path
stringlengths
13
17
screenshot_names
listlengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
17120135/cell_9
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd df_main = pd.read_csv('../input/zomato.csv') df_main.head(1)
code
17120135/cell_33
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df_main = pd.read_csv('../input/zomato.csv') df_loc = df_main['location'].value_counts()[:20] df_BTM =df_main.loc[df_main['location']=='BTM'] df_BTM_REST= df_BTM['rest_type'].value_counts() fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) sns.barplot(x=df_BTM_REST, y= df_BTM_REST.index,ax=ax1) plt.title('Count of restaurant types in BTM') plt.xlabel('Count') plt.ylabel('Restaurant Name') df_BTM_REST1 = df_BTM_REST[:10] labels = df_BTM_REST1.index explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0) df_RATE_BTM = df_BTM[['rate', 'rest_type', 'online_order', 'votes', 'book_table', 'approx_cost(for two people)', 'listed_in(type)', 'listed_in(city)']].dropna() df_RATE_BTM['rate'] = df_RATE_BTM['rate'].apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else 0) df_RATE_BTM['approx_cost(for two people)'] = df_RATE_BTM['approx_cost(for two people)'].apply(lambda x: int(x.replace(',', ''))) df_rating = df_BTM['rate'].dropna().apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else np.nan).dropna() f, axes = plt.subplots(1, 2, figsize=(20, 10), sharex=True) sns.despine(left=True) sns.distplot(df_rating,bins= 20,ax = axes[0]).set_title('Rating distribution in BTM Region') plt.xlabel('Rating') df_grp= df_RATE_BTM.groupby(by= 'rest_type').agg('mean').sort_values(by='votes', ascending=False) sns.distplot(df_grp['rate'],bins= 20,ax = axes[1]).set_title('Average Rating distribution in BTM Region') df_grp.reset_index(inplace=True) df_grp1 = df_RATE_BTM.groupby(by='rest_type').agg('mean').sort_values(by='rate', ascending=False) plt.xlim(2.5, 5) df_grp2 = df_RATE_BTM.groupby(by='rest_type').agg('mean').sort_values(by='approx_cost(for two people)', ascending=False) df_Count_CasualDinning = df_main.loc[df_main['rest_type'] == 'Casual Dining, Bar'].groupby(by='location').agg('count').sort_values(by='rest_type') df_count_casual = df_main.loc[df_main['rest_type'] == 'Casual Dining, Microbrewery'].groupby(by='location').agg('count').sort_values(by='rest_type') sns.barplot(x=df_count_casual['name'], y=df_count_casual.index).set_title('Number of Casual Dining, Microbrewery in Bengaluru ') plt.xlabel('Count')
code
17120135/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df_main = pd.read_csv('../input/zomato.csv') df_loc = df_main['location'].value_counts()[:20] df_BTM =df_main.loc[df_main['location']=='BTM'] df_BTM_REST= df_BTM['rest_type'].value_counts() fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) sns.barplot(x=df_BTM_REST, y= df_BTM_REST.index,ax=ax1) plt.title('Count of restaurant types in BTM') plt.xlabel('Count') plt.ylabel('Restaurant Name') df_BTM_REST1 = df_BTM_REST[:10] labels = df_BTM_REST1.index explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0) df_RATE_BTM = df_BTM[['rate', 'rest_type', 'online_order', 'votes', 'book_table', 'approx_cost(for two people)', 'listed_in(type)', 'listed_in(city)']].dropna() df_RATE_BTM['rate'] = df_RATE_BTM['rate'].apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else 0) df_RATE_BTM['approx_cost(for two people)'] = df_RATE_BTM['approx_cost(for two people)'].apply(lambda x: int(x.replace(',', ''))) df_rating = df_BTM['rate'].dropna().apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else np.nan).dropna() f, axes = plt.subplots(1, 2, figsize=(20, 10), sharex=True) sns.despine(left=True) sns.distplot(df_rating,bins= 20,ax = axes[0]).set_title('Rating distribution in BTM Region') plt.xlabel('Rating') df_grp= df_RATE_BTM.groupby(by= 'rest_type').agg('mean').sort_values(by='votes', ascending=False) sns.distplot(df_grp['rate'],bins= 20,ax = axes[1]).set_title('Average Rating distribution in BTM Region') df_grp.reset_index(inplace=True) df_grp1 = df_RATE_BTM.groupby(by='rest_type').agg('mean').sort_values(by='rate', ascending=False) plt.xlim(2.5, 5) df_grp2 = df_RATE_BTM.groupby(by='rest_type').agg('mean').sort_values(by='approx_cost(for two people)', ascending=False) plt.figure(figsize=(20, 10)) sns.barplot(y=df_grp2.index, x=df_grp2['approx_cost(for two people)']).set_title('Average Cost for 2 distributed in BTM Region')
code
17120135/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df_main = pd.read_csv('../input/zomato.csv') df_main.info()
code
17120135/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_main = pd.read_csv('../input/zomato.csv') df_loc = df_main['location'].value_counts()[:20] df_BTM = df_main.loc[df_main['location'] == 'BTM'] df_BTM_REST = df_BTM['rest_type'].value_counts() fig = plt.figure(figsize=(20, 10)) ax1 = fig.add_subplot(121) sns.barplot(x=df_BTM_REST, y=df_BTM_REST.index, ax=ax1) plt.title('Count of restaurant types in BTM') plt.xlabel('Count') plt.ylabel('Restaurant Name')
code
17120135/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_main = pd.read_csv('../input/zomato.csv') df_loc = df_main['location'].value_counts()[:20] df_BTM =df_main.loc[df_main['location']=='BTM'] df_BTM_REST= df_BTM['rest_type'].value_counts() fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) sns.barplot(x=df_BTM_REST, y= df_BTM_REST.index,ax=ax1) plt.title('Count of restaurant types in BTM') plt.xlabel('Count') plt.ylabel('Restaurant Name') plt.figure(figsize=(20, 15)) df_BTM_REST1 = df_BTM_REST[:10] labels = df_BTM_REST1.index explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0) plt.pie(df_BTM_REST1.values, labels=labels, autopct='%1.1f%%', shadow=True, startangle=140) plt.title('top 10 restaurant types in BTM') print('Quick bites are {} % of all the Restaurant types'.format(df_BTM_REST.values[0] / df_BTM_REST.sum() * 100))
code
17120135/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df_main = pd.read_csv('../input/zomato.csv') df_loc = df_main['location'].value_counts()[:20] df_BTM =df_main.loc[df_main['location']=='BTM'] df_BTM_REST= df_BTM['rest_type'].value_counts() fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) sns.barplot(x=df_BTM_REST, y= df_BTM_REST.index,ax=ax1) plt.title('Count of restaurant types in BTM') plt.xlabel('Count') plt.ylabel('Restaurant Name') df_BTM_REST1 = df_BTM_REST[:10] labels = df_BTM_REST1.index explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0) df_RATE_BTM = df_BTM[['rate', 'rest_type', 'online_order', 'votes', 'book_table', 'approx_cost(for two people)', 'listed_in(type)', 'listed_in(city)']].dropna() df_RATE_BTM['rate'] = df_RATE_BTM['rate'].apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else 0) df_RATE_BTM['approx_cost(for two people)'] = df_RATE_BTM['approx_cost(for two people)'].apply(lambda x: int(x.replace(',', ''))) df_rating = df_BTM['rate'].dropna().apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else np.nan).dropna() f, axes = plt.subplots(1, 2, figsize=(20, 10), sharex=True) sns.despine(left=True) sns.distplot(df_rating,bins= 20,ax = axes[0]).set_title('Rating distribution in BTM Region') plt.xlabel('Rating') df_grp= df_RATE_BTM.groupby(by= 'rest_type').agg('mean').sort_values(by='votes', ascending=False) sns.distplot(df_grp['rate'],bins= 20,ax = axes[1]).set_title('Average Rating distribution in BTM Region') df_grp.reset_index(inplace=True) df_grp1 = df_RATE_BTM.groupby(by='rest_type').agg('mean').sort_values(by='rate', ascending=False) plt.xlim(2.5, 5) df_grp2 = df_RATE_BTM.groupby(by='rest_type').agg('mean').sort_values(by='approx_cost(for two people)', ascending=False) df_Count_CasualDinning = df_main.loc[df_main['rest_type'] == 'Casual Dining, Bar'].groupby(by='location').agg('count').sort_values(by='rest_type') plt.figure(figsize=(10, 10)) sns.barplot(x=df_Count_CasualDinning['rest_type'], y=df_Count_CasualDinning.index).set_title('Count of Casual Dining, Bar in Bengaluru') print('There are about {} number of Casual Dining, Bar in Bengaluru.'.format(df_Count_CasualDinning['rest_type'].sum()))
code
17120135/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df_main = pd.read_csv('../input/zomato.csv') df_loc = df_main['location'].value_counts()[:20] df_BTM =df_main.loc[df_main['location']=='BTM'] df_BTM_REST= df_BTM['rest_type'].value_counts() fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) sns.barplot(x=df_BTM_REST, y= df_BTM_REST.index,ax=ax1) plt.title('Count of restaurant types in BTM') plt.xlabel('Count') plt.ylabel('Restaurant Name') df_BTM_REST1 = df_BTM_REST[:10] labels = df_BTM_REST1.index explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0) df_RATE_BTM = df_BTM[['rate', 'rest_type', 'online_order', 'votes', 'book_table', 'approx_cost(for two people)', 'listed_in(type)', 'listed_in(city)']].dropna() df_RATE_BTM['rate'] = df_RATE_BTM['rate'].apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else 0) df_RATE_BTM['approx_cost(for two people)'] = df_RATE_BTM['approx_cost(for two people)'].apply(lambda x: int(x.replace(',', ''))) df_rating = df_BTM['rate'].dropna().apply(lambda x: float(x.split('/')[0]) if len(x) > 3 else np.nan).dropna() f, axes = plt.subplots(1, 2, figsize=(20, 10), sharex=True) sns.despine(left=True) sns.distplot(df_rating,bins= 20,ax = axes[0]).set_title('Rating distribution in BTM Region') plt.xlabel('Rating') df_grp= df_RATE_BTM.groupby(by= 'rest_type').agg('mean').sort_values(by='votes', ascending=False) sns.distplot(df_grp['rate'],bins= 20,ax = axes[1]).set_title('Average Rating distribution in BTM Region') df_grp.reset_index(inplace=True) plt.figure(figsize=(20, 10)) sns.barplot(x=df_grp['votes'], y=df_grp['rest_type']).set_title('Average Votes distribution in BTM Region') df_grp1 = df_RATE_BTM.groupby(by='rest_type').agg('mean').sort_values(by='rate', ascending=False) plt.figure(figsize=(20, 10)) sns.barplot(y=df_grp1.index, x=df_grp1['rate']).set_title('Average Rating distributed in BTM Region') plt.xlim(2.5, 5)
code
17120135/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df_main = pd.read_csv('../input/zomato.csv') df_main.describe()
code
33107127/cell_9
[ "text_plain_output_1.png" ]
from sklearn.svm import SVC from sklearn.metrics import classification_report from sklearn.svm import SVC model = SVC() model.fit(X_train, y_train) pred2 = model.predict(X_test) print(classification_report(y_test, pred2))
code
33107127/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33107127/cell_7
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, y_train) pred1 = lr.predict(X_test) print(classification_report(y_test, pred1))
code
33107127/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/league-of-legends-diamond-ranked-games-10-min/high_diamond_ranked_10min.csv') data.head()
code
33107127/cell_17
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.neighbors import KNeighborsClassifier import numpy as np # linear algebra from sklearn.neighbors import KNeighborsClassifier knnscore = [] for i, k in enumerate(range(1, 40)): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) knnscore.append(knn.score(X_test, y_test)) knn = KNeighborsClassifier(1 + knnscore.index(np.max(knnscore))) knn.fit(X_train, y_train) pred3 = knn.predict(X_test) from sklearn.ensemble import RandomForestClassifier rfcscore = [] for i, k in enumerate(range(100, 300, 20)): rfc = RandomForestClassifier(n_estimators=k) rfc.fit(X_train, y_train) rfcscore.append(rfc.score(X_test, y_test)) rfc = RandomForestClassifier(n_estimators=1 + rfcscore.index(np.max(rfcscore))) rfc.fit(X_train, y_train) pred5 = rfc.predict(X_test) print(classification_report(y_test, pred5))
code
33107127/cell_14
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) pred4 = dt.predict(X_test) print(classification_report(y_test, pred4))
code
33107127/cell_12
[ "text_html_output_1.png" ]
from sklearn.metrics import classification_report from sklearn.neighbors import KNeighborsClassifier import numpy as np # linear algebra from sklearn.neighbors import KNeighborsClassifier knnscore = [] for i, k in enumerate(range(1, 40)): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) knnscore.append(knn.score(X_test, y_test)) knn = KNeighborsClassifier(1 + knnscore.index(np.max(knnscore))) knn.fit(X_train, y_train) pred3 = knn.predict(X_test) print(classification_report(y_test, pred3))
code
2008917/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.offline as py import seaborn as sns import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import squarify import matplotlib.ticker as plticker from matplotlib.ticker import MultipleLocator, FormatStrFormatter plt.style.use('fivethirtyeight') import warnings warnings.filterwarnings('ignore') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import base64 import io import codecs from IPython.display import HTML import jupyter data = pd.read_csv('../input/WorldPopulation.csv', encoding='ISO-8859-1') index_min = np.argmin(data['2016']) index_max = np.argmax(data['2016']) unit_min = data['Country'].values[index_min] unit_max = data['Country'].values[index_max] plt.subplots(figsize=(13,8)) chart = plt.subplot(2, 2, 1) withWorld = np.array(data['2016']) withoutWorld = np.delete(withWorld, 210, axis=0) plt.plot(withoutWorld) plt.ylabel('Population', fontsize=12) plt.xlabel('Population Countries Distribution', fontsize=12) plt.annotate("Circa 200 countries \n Distribution of countries \n smaller than 100 Million", xy=(0.45,0.95), xycoords='axes fraction', fontsize=10) #Between 10 Millions and 100 Millions result2 = data[np.logical_and(data['2016']>10000000, data['2016']<100000000)] result2 = (result2['2016']) #Between 1 Millions and 10 Millions result3 = data[np.logical_and(data['2016']>1000000, data['2016']<10000000)] result3 = (result3['2016']) #Less than 1 Millions result4 = data['2016']<1000000 result4= (data[result4]['2016']) chart2 = plt.subplot(2, 2, 2) result2.hist() plt.setp(chart2, xticks = range(10000000,100000000,10000000), yticks=range(0,35,5)) plt.axvline(result2.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 10 and 100 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) chart3 = plt.subplot(2, 2, 3) result3.hist() plt.setp(chart3, xticks = range(1000000,10000000,1000000), yticks=range(0,35,5)) plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.axvline(result3.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 1 and 10 Million \n Frequency distribution and median", xy=(0.45,0.8), xycoords='axes fraction', fontsize=10) chart4 = plt.subplot(2, 2, 4) result4.hist() plt.setp(chart4, xticks = range(100000,1000000,100000), yticks=range(0,35,5)) plt.axvline(result4.mean(),linestyle='dashed',color='blue') plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries smaller than 1 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) population = data['2016'].sort_values(ascending=False)[1:11].to_frame() population = data['2015'].sort_values(ascending=False)[1:6].to_frame() worldPopulation = data['2015'].max() sizes = (population['2015'] / worldPopulation).iloc[::-1] labels = data['Country'].values[population.index[0:6]][::-1] explode = (0, 0, 0, 0, 0) fig1, ax1 = plt.subplots(figsize=(13, 4)) ax1.pie(sizes, radius=1.1, explode=explode, labels=labels, labeldistance=1.1, autopct='%1.1f%%', shadow=False, startangle=-5) ax1.axis('equal') plt.show()
code
2008917/cell_4
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/WorldPopulation.csv', encoding='ISO-8859-1') data.head(10)
code
2008917/cell_2
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import plotly.offline as py import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import squarify import matplotlib.ticker as plticker from matplotlib.ticker import MultipleLocator, FormatStrFormatter plt.style.use('fivethirtyeight') import warnings warnings.filterwarnings('ignore') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import base64 import io import codecs from IPython.display import HTML import jupyter
code
2008917/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.offline as py import seaborn as sns import squarify import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import squarify import matplotlib.ticker as plticker from matplotlib.ticker import MultipleLocator, FormatStrFormatter plt.style.use('fivethirtyeight') import warnings warnings.filterwarnings('ignore') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import base64 import io import codecs from IPython.display import HTML import jupyter data = pd.read_csv('../input/WorldPopulation.csv', encoding='ISO-8859-1') index_min = np.argmin(data['2016']) index_max = np.argmax(data['2016']) unit_min = data['Country'].values[index_min] unit_max = data['Country'].values[index_max] plt.subplots(figsize=(13,8)) chart = plt.subplot(2, 2, 1) withWorld = np.array(data['2016']) withoutWorld = np.delete(withWorld, 210, axis=0) plt.plot(withoutWorld) plt.ylabel('Population', fontsize=12) plt.xlabel('Population Countries Distribution', fontsize=12) plt.annotate("Circa 200 countries \n Distribution of countries \n smaller than 100 Million", xy=(0.45,0.95), xycoords='axes fraction', fontsize=10) #Between 10 Millions and 100 Millions result2 = data[np.logical_and(data['2016']>10000000, data['2016']<100000000)] result2 = (result2['2016']) #Between 1 Millions and 10 Millions result3 = data[np.logical_and(data['2016']>1000000, data['2016']<10000000)] result3 = (result3['2016']) #Less than 1 Millions result4 = data['2016']<1000000 result4= (data[result4]['2016']) chart2 = plt.subplot(2, 2, 2) result2.hist() plt.setp(chart2, xticks = range(10000000,100000000,10000000), yticks=range(0,35,5)) plt.axvline(result2.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 10 and 100 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) chart3 = plt.subplot(2, 2, 3) result3.hist() plt.setp(chart3, xticks = range(1000000,10000000,1000000), yticks=range(0,35,5)) plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.axvline(result3.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 1 and 10 Million \n Frequency distribution and median", xy=(0.45,0.8), xycoords='axes fraction', fontsize=10) chart4 = plt.subplot(2, 2, 4) result4.hist() plt.setp(chart4, xticks = range(100000,1000000,100000), yticks=range(0,35,5)) plt.axvline(result4.mean(),linestyle='dashed',color='blue') plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries smaller than 1 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) population = data['2016'].sort_values(ascending=False)[1:11].to_frame() population=data['2015'].sort_values(ascending=False)[1:6].to_frame() worldPopulation = data['2015'].max() sizes = (population['2015']/worldPopulation).iloc[::-1] labels = data['Country'].values[population.index[0:6]][::-1] explode = (0, 0, 0, 0, 0) fig1, ax1 = plt.subplots(figsize=(13,4)) ax1.pie(sizes, radius = 1.1, explode=explode, labels=labels, labeldistance=1.1, autopct='%1.1f%%', shadow=False, startangle=-5) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.show() x = range(0, 216) withoutWorld = withoutWorld.astype(float) population = data['2016'].sort_values(ascending=False)[1:11] country = data['Country'].values[population.index[0:11]] df = pd.DataFrame({'nb_people': population, 'group': country}) plt.axis('off') plt.subplots(figsize=(13, 8)) Mammals = ['Horse', 'Dogs', 'Cats', 'Goats', 'Pigs', 'Sheep', 'Cows', 'People'] MammalsPopulation = (60000000, 425000000, 625000000, 860000000, 1000000000, 1100000000, 1500000000, 7330000000) Mammals = Mammals[::-1] MammalsPopulation = MammalsPopulation[::-1] squarify.plot(sizes=MammalsPopulation, label=Mammals, alpha=0.9) plt.axis('off') plt.title('Top Mammals by population') plt.show()
code
2008917/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.offline as py import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import squarify import matplotlib.ticker as plticker from matplotlib.ticker import MultipleLocator, FormatStrFormatter plt.style.use('fivethirtyeight') import warnings warnings.filterwarnings('ignore') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import base64 import io import codecs from IPython.display import HTML import jupyter data = pd.read_csv('../input/WorldPopulation.csv', encoding='ISO-8859-1') index_min = np.argmin(data['2016']) index_max = np.argmax(data['2016']) unit_min = data['Country'].values[index_min] unit_max = data['Country'].values[index_max] plt.subplots(figsize=(13, 8)) chart = plt.subplot(2, 2, 1) withWorld = np.array(data['2016']) withoutWorld = np.delete(withWorld, 210, axis=0) plt.plot(withoutWorld) plt.ylabel('Population', fontsize=12) plt.xlabel('Population Countries Distribution', fontsize=12) plt.annotate('Circa 200 countries \n Distribution of countries \n smaller than 100 Million', xy=(0.45, 0.95), xycoords='axes fraction', fontsize=10) result2 = data[np.logical_and(data['2016'] > 10000000, data['2016'] < 100000000)] result2 = result2['2016'] result3 = data[np.logical_and(data['2016'] > 1000000, data['2016'] < 10000000)] result3 = result3['2016'] result4 = data['2016'] < 1000000 result4 = data[result4]['2016'] chart2 = plt.subplot(2, 2, 2) result2.hist() plt.setp(chart2, xticks=range(10000000, 100000000, 10000000), yticks=range(0, 35, 5)) plt.axvline(result2.mean(), linestyle='dashed', color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate('Countries between 10 and 100 Million \n Frequency distribution and median', xy=(0.3, 0.8), xycoords='axes fraction', fontsize=10) chart3 = plt.subplot(2, 2, 3) result3.hist() plt.setp(chart3, xticks=range(1000000, 10000000, 1000000), yticks=range(0, 35, 5)) plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) plt.axvline(result3.mean(), linestyle='dashed', color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate('Countries between 1 and 10 Million \n Frequency distribution and median', xy=(0.45, 0.8), xycoords='axes fraction', fontsize=10) chart4 = plt.subplot(2, 2, 4) result4.hist() plt.setp(chart4, xticks=range(100000, 1000000, 100000), yticks=range(0, 35, 5)) plt.axvline(result4.mean(), linestyle='dashed', color='blue') plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) plt.ylabel('Number of Countries', fontsize=12) plt.annotate('Countries smaller than 1 Million \n Frequency distribution and median', xy=(0.3, 0.8), xycoords='axes fraction', fontsize=10)
code
2008917/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.offline as py import seaborn as sns import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import squarify import matplotlib.ticker as plticker from matplotlib.ticker import MultipleLocator, FormatStrFormatter plt.style.use('fivethirtyeight') import warnings warnings.filterwarnings('ignore') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import base64 import io import codecs from IPython.display import HTML import jupyter data = pd.read_csv('../input/WorldPopulation.csv', encoding='ISO-8859-1') index_min = np.argmin(data['2016']) index_max = np.argmax(data['2016']) unit_min = data['Country'].values[index_min] unit_max = data['Country'].values[index_max] plt.subplots(figsize=(13,8)) chart = plt.subplot(2, 2, 1) withWorld = np.array(data['2016']) withoutWorld = np.delete(withWorld, 210, axis=0) plt.plot(withoutWorld) plt.ylabel('Population', fontsize=12) plt.xlabel('Population Countries Distribution', fontsize=12) plt.annotate("Circa 200 countries \n Distribution of countries \n smaller than 100 Million", xy=(0.45,0.95), xycoords='axes fraction', fontsize=10) #Between 10 Millions and 100 Millions result2 = data[np.logical_and(data['2016']>10000000, data['2016']<100000000)] result2 = (result2['2016']) #Between 1 Millions and 10 Millions result3 = data[np.logical_and(data['2016']>1000000, data['2016']<10000000)] result3 = (result3['2016']) #Less than 1 Millions result4 = data['2016']<1000000 result4= (data[result4]['2016']) chart2 = plt.subplot(2, 2, 2) result2.hist() plt.setp(chart2, xticks = range(10000000,100000000,10000000), yticks=range(0,35,5)) plt.axvline(result2.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 10 and 100 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) chart3 = plt.subplot(2, 2, 3) result3.hist() plt.setp(chart3, xticks = range(1000000,10000000,1000000), yticks=range(0,35,5)) plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.axvline(result3.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 1 and 10 Million \n Frequency distribution and median", xy=(0.45,0.8), xycoords='axes fraction', fontsize=10) chart4 = plt.subplot(2, 2, 4) result4.hist() plt.setp(chart4, xticks = range(100000,1000000,100000), yticks=range(0,35,5)) plt.axvline(result4.mean(),linestyle='dashed',color='blue') plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries smaller than 1 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) population = data['2016'].sort_values(ascending=False)[1:11].to_frame() population=data['2015'].sort_values(ascending=False)[1:6].to_frame() worldPopulation = data['2015'].max() sizes = (population['2015']/worldPopulation).iloc[::-1] labels = data['Country'].values[population.index[0:6]][::-1] explode = (0, 0, 0, 0, 0) fig1, ax1 = plt.subplots(figsize=(13,4)) ax1.pie(sizes, radius = 1.1, explode=explode, labels=labels, labeldistance=1.1, autopct='%1.1f%%', shadow=False, startangle=-5) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.show() plt.subplots(figsize=(13, 8)) x = range(0, 216) withoutWorld = withoutWorld.astype(float) plt.scatter(x, withoutWorld, s=withoutWorld / 1000000, c=withoutWorld) plt.xlabel('Countries') plt.ylabel('Population')
code
2008917/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.offline as py import seaborn as sns import squarify import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import squarify import matplotlib.ticker as plticker from matplotlib.ticker import MultipleLocator, FormatStrFormatter plt.style.use('fivethirtyeight') import warnings warnings.filterwarnings('ignore') import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.tools as tls import base64 import io import codecs from IPython.display import HTML import jupyter data = pd.read_csv('../input/WorldPopulation.csv', encoding='ISO-8859-1') index_min = np.argmin(data['2016']) index_max = np.argmax(data['2016']) unit_min = data['Country'].values[index_min] unit_max = data['Country'].values[index_max] plt.subplots(figsize=(13,8)) chart = plt.subplot(2, 2, 1) withWorld = np.array(data['2016']) withoutWorld = np.delete(withWorld, 210, axis=0) plt.plot(withoutWorld) plt.ylabel('Population', fontsize=12) plt.xlabel('Population Countries Distribution', fontsize=12) plt.annotate("Circa 200 countries \n Distribution of countries \n smaller than 100 Million", xy=(0.45,0.95), xycoords='axes fraction', fontsize=10) #Between 10 Millions and 100 Millions result2 = data[np.logical_and(data['2016']>10000000, data['2016']<100000000)] result2 = (result2['2016']) #Between 1 Millions and 10 Millions result3 = data[np.logical_and(data['2016']>1000000, data['2016']<10000000)] result3 = (result3['2016']) #Less than 1 Millions result4 = data['2016']<1000000 result4= (data[result4]['2016']) chart2 = plt.subplot(2, 2, 2) result2.hist() plt.setp(chart2, xticks = range(10000000,100000000,10000000), yticks=range(0,35,5)) plt.axvline(result2.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 10 and 100 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) chart3 = plt.subplot(2, 2, 3) result3.hist() plt.setp(chart3, xticks = range(1000000,10000000,1000000), yticks=range(0,35,5)) plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.axvline(result3.mean(),linestyle='dashed',color='blue') plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries between 1 and 10 Million \n Frequency distribution and median", xy=(0.45,0.8), xycoords='axes fraction', fontsize=10) chart4 = plt.subplot(2, 2, 4) result4.hist() plt.setp(chart4, xticks = range(100000,1000000,100000), yticks=range(0,35,5)) plt.axvline(result4.mean(),linestyle='dashed',color='blue') plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) plt.ylabel('Number of Countries', fontsize=12) plt.annotate("Countries smaller than 1 Million \n Frequency distribution and median", xy=(0.3,0.8), xycoords='axes fraction', fontsize=10) population = data['2016'].sort_values(ascending=False)[1:11].to_frame() population=data['2015'].sort_values(ascending=False)[1:6].to_frame() worldPopulation = data['2015'].max() sizes = (population['2015']/worldPopulation).iloc[::-1] labels = data['Country'].values[population.index[0:6]][::-1] explode = (0, 0, 0, 0, 0) fig1, ax1 = plt.subplots(figsize=(13,4)) ax1.pie(sizes, radius = 1.1, explode=explode, labels=labels, labeldistance=1.1, autopct='%1.1f%%', shadow=False, startangle=-5) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.show() x = range(0, 216) withoutWorld = withoutWorld.astype(float) plt.subplots(figsize=(13, 10)) population = data['2016'].sort_values(ascending=False)[1:11] country = data['Country'].values[population.index[0:11]] df = pd.DataFrame({'nb_people': population, 'group': country}) squarify.plot(sizes=df['nb_people'], label=df['group'], alpha=0.8) plt.axis('off') plt.show()
code
2008917/cell_5
[ "image_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('../input/WorldPopulation.csv', encoding='ISO-8859-1') index_min = np.argmin(data['2016']) index_max = np.argmax(data['2016']) unit_min = data['Country'].values[index_min] unit_max = data['Country'].values[index_max] print('The most populated political unit:', unit_max, '-', round(data['2016'].max()), '; The least populated:', unit_min, '-', data['2016'].min())
code
72084932/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/tabulardata-kfolds-created/train_folds.csv') df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_submission = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') useful_features = [c for c in df_train.columns if c not in ('id', 'loss', 'kfold')] df_train[useful_features]
code
72084932/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/tabulardata-kfolds-created/train_folds.csv') df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_submission = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') sample_submission.head()
code
34134329/cell_13
[ "text_html_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes
code
34134329/cell_44
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum() cleaned_data = data_df.copy() cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True) cleaned_data.dtypes cleaned_data.dtypes cleaned_data.dtypes appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']] patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']] patient_df.duplicated().sum()
code
34134329/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34134329/cell_40
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum() cleaned_data = data_df.copy() cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True) cleaned_data.dtypes cleaned_data.dtypes cleaned_data.dtypes
code
34134329/cell_48
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum() cleaned_data = data_df.copy() cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True) cleaned_data.dtypes cleaned_data.dtypes cleaned_data.dtypes appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']] patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']] patient_df.duplicated().sum() patient_df.drop_duplicates(inplace=True) patient_df.reset_index(drop=True, inplace=True) patient_df.duplicated().sum()
code
34134329/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum()
code
34134329/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.head(2)
code
34134329/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum() cleaned_data = data_df.copy() cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True) cleaned_data.dtypes
code
34134329/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum() cleaned_data = data_df.copy() cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True) cleaned_data.head(2)
code
34134329/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df['Neighbourhood'].unique()
code
34134329/cell_46
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum() cleaned_data = data_df.copy() cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True) cleaned_data.dtypes cleaned_data.dtypes cleaned_data.dtypes appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']] patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']] patient_df.duplicated().sum() patient_df.drop_duplicates(inplace=True) patient_df.reset_index(drop=True, inplace=True)
code
34134329/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum()
code
34134329/cell_36
[ "text_html_output_1.png" ]
import pandas as pd data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv') data_df.isnull().sum() data_df.dtypes data_df.duplicated().sum() cleaned_data = data_df.copy() cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True) cleaned_data.dtypes cleaned_data.dtypes
code
1004118/cell_13
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) for i in [2, 3, 4, 5, 6, 7]: mean_satisfaction_level = df['satisfaction_level'][df['number_project'] == i].mean() print('project_total', i, ':', mean_satisfaction_level)
code
1004118/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any()
code
1004118/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) sns.heatmap(df.corr(), vmax=0.8, square=True, annot=True, fmt='.2f')
code
1004118/cell_11
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) print(sorted(feature_importance_dict.items(), key=lambda x: x[1], reverse=True))
code
1004118/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) for i in [2, 3, 4, 5, 6, 7]: mean_satisfaction_level = df['satisfaction_level'][df['number_project'] == i].mean() for i in [2, 3, 4, 5, 6, 7]: mean_satisfaction_level = df['satisfaction_level'][df['number_project'] == i].mean() print(i, mean_satisfaction_level)
code
1004118/cell_8
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) print(sorted(feature_importance_dict.items(), key=lambda x: x[1], reverse=True))
code
1004118/cell_15
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) """ for i in [2,3,4,5,6,7]: mean_satisfaction_level=df['satisfaction_level'][df['number_project']==i].mean() print('project_total',i,':',mean_satisfaction_level) """ plt.hist(df['satisfaction_level'], df['average_montly_hours'])
code
1004118/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) """ for i in [2,3,4,5,6,7]: mean_satisfaction_level=df['satisfaction_level'][df['number_project']==i].mean() print('project_total',i,':',mean_satisfaction_level) """ plt.scatter(df['satisfaction_level'], df['last_evaluation']) plt.xlabel('satisfaction_level') plt.ylabel('last_evaluation')
code
1004118/cell_3
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/HR_comma_sep.csv') df.describe()
code
1004118/cell_17
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) sns.pointplot(x=df['number_project'], y=df['average_montly_hours'])
code
1004118/cell_14
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) plt.scatter(df['satisfaction_level'], df['average_montly_hours']) plt.ylabel('average_montly_hours') plt.xlabel('satisfaction_level')
code
1004118/cell_10
[ "text_html_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) print(results.mean())
code
1004118/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] kfold = KFold(n_splits=10, random_state=7) models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor()] scoring = 'neg_mean_squared_error' for i in models: results = cross_val_score(i, X, y, cv=kfold, scoring=scoring) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) sns.pointplot(x=df['number_project'], y=df['satisfaction_level'])
code
130016562/cell_9
[ "text_plain_output_1.png" ]
patient_check_dict = {} use_model_ratio = 0 first_cb_huber_use_ratio = {'updrs_1': 0.8, 'updrs_2': 0.8, 'updrs_3': 0.3, 'updrs_4': 0} first_cb_mae_use_ratio = {'updrs_1': 0.2, 'updrs_2': 0.8, 'updrs_3': 0.1, 'updrs_4': 0} cb_huber_use_ratio = {'updrs_1': 0.4, 'updrs_2': 0.5, 'updrs_3': 0.6, 'updrs_4': 0.5} cb_mae_use_ratio = {'updrs_1': 0.2, 'updrs_2': 0.2, 'updrs_3': 0.05, 'updrs_4': 0.5} for test, test_peptides, test_proteins, sample_submission in iter_test: visit_month = test['visit_month'].iloc[0] test_pl = pl.DataFrame(test[['patient_id', 'visit_month']]).unique() test_proteins_pl = pl.DataFrame(test_proteins) test_peptides_pl = pl.DataFrame(test_peptides) protein_user_list = list(test_proteins_pl['patient_id'].unique()) print('protein prediction...') test_proteins_pl_pivot = test_proteins_pl.pivot(values='NPX', index='patient_id', columns='UniProt') test_peptides_pl_pivot = test_peptides_pl.pivot(values='PeptideAbundance', index='patient_id', columns='Peptide') test_pr_pe_base = test_proteins_pl_pivot.join(test_peptides_pl_pivot, on='patient_id', how='left') test_pr_pe_base = test_pr_pe_base.to_pandas() oof_df = test_pr_pe_base[['patient_id']] for t in [1, 2, 3]: cb_use_features = cb_feature_dict[f'updrs_{t}'] cb_null_cols = [col for col in cb_use_features if col not in test_pr_pe_base.columns] pred_model = np.zeros(len(oof_df)) if len(cb_null_cols) > 0: for col in cb_null_cols: test_pr_pe_base[col] = np.nan for fold in range(folds): model_cb = cb_model_dict[f'model_updrs_{t}_{fold}'] pred_model += model_cb.predict(test_pr_pe_base[cb_use_features]) / folds oof_df[f'pred_updrs_{t}'] = pred_model prediction_id_list = [] pred_list = [] for row in test_pl.to_numpy(): patient_id = row[0] visit_month = row[1] check_dict_value = patient_check_dict.get(patient_id, 'nothing') if check_dict_value == 'nothing': patient_check_dict[patient_id] = 0 if visit_month == 6 or visit_month == 18: patient_check_dict[patient_id] += 1 for t in [1, 2, 3, 4]: for p in [0, 6, 12, 24]: pred_month = visit_month + p prediction_id = f'{patient_id}_{visit_month}_updrs_{t}_plus_{p}_months' pred = 0 pred_trend = 0 pred_huber_cb = 0 pred_mae_cb = 0 if visit_month == 0: pred_trend = first_linear_trend_df.iloc[pred_month][f'updrs_{t}'] pred_huber_cb = first_cb_trend_huber_df.iloc[pred_month][f'updrs_{t}'] pred_mae_cb = first_cb_trend_mae_df.iloc[pred_month][f'updrs_{t}'] pred = pred_trend pred = pred * (1 - first_cb_huber_use_ratio[f'updrs_{t}']) + pred_huber_cb * first_cb_huber_use_ratio[f'updrs_{t}'] pred = pred * (1 - first_cb_mae_use_ratio[f'updrs_{t}']) + pred_mae_cb * first_cb_mae_use_ratio[f'updrs_{t}'] if t != 4: if patient_id in protein_user_list: pred_model = oof_df[oof_df['patient_id'] == patient_id][f'pred_updrs_{t}'].item() pred = pred * (1 - use_model_ratio) + pred_model * use_model_ratio pred = np.round(pred) else: check_healthy = patient_check_dict[patient_id] if check_healthy == 0: pred = healthy_trend_df.iloc[pred_month][f'updrs_{t}'] else: pred_trend = linear_trend_df.iloc[pred_month][f'updrs_{t}'] pred_huber_cb = cb_trend_huber_df.iloc[pred_month][f'updrs_{t}'] pred_mae_cb = cb_trend_mae_df.iloc[pred_month][f'updrs_{t}'] pred = pred_trend pred = pred * (1 - cb_huber_use_ratio[f'updrs_{t}']) + pred_huber_cb * cb_huber_use_ratio[f'updrs_{t}'] pred = pred * (1 - cb_mae_use_ratio[f'updrs_{t}']) + pred_mae_cb * cb_mae_use_ratio[f'updrs_{t}'] if t != 4: if patient_id in protein_user_list: pred_model = oof_df[oof_df['patient_id'] == patient_id][f'pred_updrs_{t}'].item() pred = pred * (1 - use_model_ratio) + pred_model * use_model_ratio pred = np.round(pred) prediction_id_list.append(prediction_id) pred_list.append(pred) result = pd.DataFrame(prediction_id_list, columns=['prediction_id']) result['rating'] = pred_list env.predict(result)
code
130016562/cell_4
[ "text_plain_output_5.png", "text_html_output_4.png", "text_html_output_6.png", "text_plain_output_4.png", "text_html_output_2.png", "text_html_output_5.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_html_output_3.png", "text_html_output_7.png" ]
import pandas as pd first_linear_trend_df = pd.read_csv('/kaggle/input/amp-visitmonth-model-first-month/first_linear_trend_df.csv') first_cb_trend_huber_df = pd.read_csv('/kaggle/input/amp-visitmonth-model-first-month/first_cb_trend_huber_df.csv') first_cb_trend_mae_df = pd.read_csv('/kaggle/input/amp-visitmonth-model-first-month/first_cb_trend_mae_df.csv') linear_trend_df = pd.read_csv('/kaggle/input/amp-visitmonth-model/linear_trend_df.csv') cb_trend_huber_df = pd.read_csv('/kaggle/input/amp-visitmonth-model/cb_trend_huber_df.csv') cb_trend_mae_df = pd.read_csv('/kaggle/input/amp-visitmonth-model/cb_trend_mae_df.csv') healthy_trend_df = pd.read_csv('/kaggle/input/amp-visitmonth-model/healthy_trend_df.csv') display('first_linear_trend_df:', first_linear_trend_df.iloc[[0, 12, 24, 36, 48, 60, 72, 84, 96, 108]]) display('first_cb_trend_huber_df:', first_cb_trend_huber_df.iloc[[0, 12, 24, 36, 48, 60, 72, 84, 96, 108]]) display('first_cb_trend_mae_df:', first_cb_trend_mae_df.iloc[[0, 12, 24, 36, 48, 60, 72, 84, 96, 108]]) display('linear_trend_df:', linear_trend_df.iloc[[0, 12, 24, 36, 48, 60, 72, 84, 96, 108]]) display('cb_trend_huber_df:', cb_trend_huber_df.iloc[[0, 12, 24, 36, 48, 60, 72, 84, 96, 108]]) display('cb_trend_mae_df:', cb_trend_mae_df.iloc[[0, 12, 24, 36, 48, 60, 72, 84, 96, 108]]) display('healthy_trend:', healthy_trend_df.iloc[[0, 12, 24, 36, 48, 60, 72, 84, 96, 108]])
code
90130234/cell_9
[ "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv') train = train.set_index('row_id') test = test.set_index('row_id') train.time = pd.to_datetime(train.time) test.time = pd.to_datetime(test.time) x_unique = train.x.unique() y_unique = train.y.unique() d_unique = train.direction.unique() train_min_time = train.time.min() train_max_time = train.time.max() test_min_time = test.time.min() test_max_time = test.time.max() congestion_mean = train.congestion.mean() print(f'congestion {congestion_mean}')
code
90130234/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv') train.head()
code
90130234/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90130234/cell_7
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv') train = train.set_index('row_id') test = test.set_index('row_id') train.time = pd.to_datetime(train.time) test.time = pd.to_datetime(test.time) x_unique = train.x.unique() y_unique = train.y.unique() d_unique = train.direction.unique() print(f'x: {x_unique}\r\ny: {y_unique}\r\nd: {d_unique}')
code
90130234/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv') train = train.set_index('row_id') test = test.set_index('row_id') train.time = pd.to_datetime(train.time) test.time = pd.to_datetime(test.time) x_unique = train.x.unique() y_unique = train.y.unique() d_unique = train.direction.unique() train_min_time = train.time.min() train_max_time = train.time.max() test_min_time = test.time.min() test_max_time = test.time.max() print(f'train min {train_min_time} max {train_max_time}\r\ntest min {test_min_time} max {test_max_time}')
code
90130234/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv') train = train.set_index('row_id') test = test.set_index('row_id') train.time = pd.to_datetime(train.time) test.time = pd.to_datetime(test.time) x_unique = train.x.unique() y_unique = train.y.unique() d_unique = train.direction.unique() train_min_time = train.time.min() train_max_time = train.time.max() test_min_time = test.time.min() test_max_time = test.time.max() congestion_mean = train.congestion.mean() x_group_mean = train.groupby('x').congestion.mean() y_group_mean = train.groupby('y').congestion.mean() d_group_mean = train.groupby('direction').congestion.mean() plt.xticks(x_group_mean.index) plt.xticks(y_group_mean.index) plt.xticks(d_group_mean.index) x_y_group_mean = train.groupby('x_y').congestion.mean() x_y_d_group_mean = train.groupby('x_y_d').congestion.mean() plt.xticks(x_y_group_mean.index) plt.xticks(x_y_d_group_mean.index) train['weekday'] = train.time.dt.weekday train['hour'] = train.time.dt.hour train['timeofday'] = train.time.dt.time train['weekend'] = (train['weekday'] == 5) | (train['weekday'] == 6) train['minute'] = train.time.dt.minute test['weekday'] = test.time.dt.weekday test['hour'] = test.time.dt.hour test['timeofday'] = test.time.dt.time test['weekend'] = (test['weekday'] == 5) | (test['weekday'] == 6) test['minute'] = test.time.dt.minute train.head()
code
90130234/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv') train = train.set_index('row_id') test = test.set_index('row_id') train.time = pd.to_datetime(train.time) test.time = pd.to_datetime(test.time) x_unique = train.x.unique() y_unique = train.y.unique() d_unique = train.direction.unique() train_min_time = train.time.min() train_max_time = train.time.max() test_min_time = test.time.min() test_max_time = test.time.max() congestion_mean = train.congestion.mean() x_group_mean = train.groupby('x').congestion.mean() y_group_mean = train.groupby('y').congestion.mean() d_group_mean = train.groupby('direction').congestion.mean() print(f'x_group_mean:\r\n {x_group_mean}\r\n') print(f'y_group_mean:\r\n {y_group_mean}\r\n') print(f'd_group_mean:\r\n {d_group_mean}\r\n') plt.subplot(3, 1, 1) plt.bar(x_group_mean.index, x_group_mean) plt.xlabel('x') plt.ylabel('mean') plt.xticks(x_group_mean.index) plt.subplot(3, 1, 2) plt.bar(y_group_mean.index, y_group_mean) plt.xlabel('y') plt.ylabel('mean') plt.xticks(y_group_mean.index) plt.subplot(3, 1, 3) plt.bar(d_group_mean.index, d_group_mean) plt.xlabel('direction') plt.ylabel('mean') plt.xticks(d_group_mean.index) plt.show()
code
90130234/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv') train = train.set_index('row_id') test = test.set_index('row_id') train.time = pd.to_datetime(train.time) test.time = pd.to_datetime(test.time) x_unique = train.x.unique() y_unique = train.y.unique() d_unique = train.direction.unique() train_min_time = train.time.min() train_max_time = train.time.max() test_min_time = test.time.min() test_max_time = test.time.max() congestion_mean = train.congestion.mean() x_group_mean = train.groupby('x').congestion.mean() y_group_mean = train.groupby('y').congestion.mean() d_group_mean = train.groupby('direction').congestion.mean() plt.xticks(x_group_mean.index) plt.xticks(y_group_mean.index) plt.xticks(d_group_mean.index) x_y_group_mean = train.groupby('x_y').congestion.mean() x_y_d_group_mean = train.groupby('x_y_d').congestion.mean() print(f'x_y_group_mean:\r\n {x_y_group_mean}\r\n') print(f'x_y_d_group_mean:\r\n {x_y_d_group_mean}\r\n') plt.figure() plt.bar(x_y_group_mean.index, x_y_group_mean) plt.xlabel('x_y') plt.ylabel('mean') plt.xticks(x_y_group_mean.index) plt.figure() plt.bar(x_y_d_group_mean.index, x_y_d_group_mean) plt.xlabel('x_y_direction') plt.ylabel('mean') plt.xticks(x_y_d_group_mean.index) plt.show()
code
122249704/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.common.by import By import pandas as pd
code
88101809/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from glob import os import collections import csv import matplotlib.pyplot as plt import re import csv import matplotlib.pyplot as plt import statistics as st import re import collections from glob import os import pandas as pd arr = os.listdir('../input/spectra-files/') arr = sorted(arr, key=lambda x: int(os.path.splitext(x)[0])) def function_general(file_name): wav = [] absr = [] d = {} with open(file_name, 'r') as df: reader = csv.reader(df) header = next(reader) for row in reader: d[float(row[0])] = float(row[1]) wav.append(float(row[0])) absr.append(float(row[1])) function_general('../input/spectra-files/50.csv') def function_peak_area(file_name, in_w, fin_w): dp = {} absr = [] wav = [] product = {} with open(file_name, 'r') as df: reader = csv.reader(df) header = next(reader) for row in reader: if float(row[0]) > in_w and float(row[0]) < fin_w: dp[float(row[0])] = float(row[1]) absr.append(float(row[1])) wav.append(float(row[0])) max_w = list(dp.keys())[list(dp.values()).index(max(absr))] min_w = list(dp.keys())[list(dp.values()).index(min(absr))] peak = dp[max_w] - dp[min_w] area = peak * (fin_w - in_w) / 2 name = file_name tiempo = re.findall('\\d+', name) product = {float(tiempo[0]): area} return product def function_macro(file_list): product_dict_list = {} react_dict_list = {} for x in file_list: file_name = '../input/spectra-files/' + x product_dict_list.update(function_peak_area(file_name, 1070, 1330)) react_dict_list.update(function_peak_area(file_name, 2186, 2705)) product = collections.OrderedDict(sorted(product_dict_list.items())) reactive = collections.OrderedDict(sorted(react_dict_list.items())) return (product, reactive) product, react = function_macro(arr)
code
88101809/cell_11
[ "text_plain_output_1.png" ]
from glob import os import collections import csv import matplotlib.pyplot as plt import re import csv import matplotlib.pyplot as plt import statistics as st import re import collections from glob import os import pandas as pd arr = os.listdir('../input/spectra-files/') arr = sorted(arr, key=lambda x: int(os.path.splitext(x)[0])) def function_general(file_name): wav = [] absr = [] d = {} with open(file_name, 'r') as df: reader = csv.reader(df) header = next(reader) for row in reader: d[float(row[0])] = float(row[1]) wav.append(float(row[0])) absr.append(float(row[1])) function_general('../input/spectra-files/50.csv') def function_peak_area(file_name, in_w, fin_w): dp = {} absr = [] wav = [] product = {} with open(file_name, 'r') as df: reader = csv.reader(df) header = next(reader) for row in reader: if float(row[0]) > in_w and float(row[0]) < fin_w: dp[float(row[0])] = float(row[1]) absr.append(float(row[1])) wav.append(float(row[0])) max_w = list(dp.keys())[list(dp.values()).index(max(absr))] min_w = list(dp.keys())[list(dp.values()).index(min(absr))] peak = dp[max_w] - dp[min_w] area = peak * (fin_w - in_w) / 2 name = file_name tiempo = re.findall('\\d+', name) product = {float(tiempo[0]): area} return product def function_macro(file_list): product_dict_list = {} react_dict_list = {} for x in file_list: file_name = '../input/spectra-files/' + x product_dict_list.update(function_peak_area(file_name, 1070, 1330)) react_dict_list.update(function_peak_area(file_name, 2186, 2705)) product = collections.OrderedDict(sorted(product_dict_list.items())) reactive = collections.OrderedDict(sorted(react_dict_list.items())) return (product, reactive) product, react = function_macro(arr) time = product.keys() area = product.values() plt.plot(time, area) time1 = react.keys() area1 = react.values() plt.plot(time1, area1) plt.ylabel('Area') plt.xlabel('Time')
code
88101809/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
from glob import os import csv import matplotlib.pyplot as plt import statistics as st import re import collections from glob import os import pandas as pd arr = os.listdir('../input/spectra-files/') arr = sorted(arr, key=lambda x: int(os.path.splitext(x)[0])) print(arr)
code
88101809/cell_5
[ "image_output_1.png" ]
import csv import matplotlib.pyplot as plt def function_general(file_name): wav = [] absr = [] d = {} with open(file_name, 'r') as df: reader = csv.reader(df) header = next(reader) print(header) for row in reader: d[float(row[0])] = float(row[1]) wav.append(float(row[0])) absr.append(float(row[1])) plt.plot(wav, absr) plt.ylabel('Absortion') plt.xlabel('Wavelength') function_general('../input/spectra-files/50.csv')
code
106192098/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf train = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv') ss = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') cols = ['country', 'store', 'product'] cnt_val = pd.unique(train['country']) str_val = pd.unique(train['store']) prod_val = pd.unique(train['product']) data = np.empty(shape=48, dtype='object') i = 0 for x in cnt_val: for y in str_val: for z in prod_val: data[i] = train[(train['country'] == x) & (train['store'] == y) & (train['product'] == z)] i += 1 colors = ['r', 'g', 'b', 'c', 'm', 'y'] fig = plt.figure(figsize=(20, 500)) i = 0 j = -1 days = [i for i in range(data[0].shape[0])] for x in cnt_val: j += 1 for y in str_val: for z in prod_val: ax = fig.add_subplot(len(cnt_val) * len(str_val) * len(prod_val), 1, i + 1) ax.set_title(x + ', ' + y + ', ' + z) ax.set_ylabel('num_sold') ax.plot(days, data[i]['num_sold'], color=colors[j]) i += 1 plt.show()
code
106192098/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf train = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv') ss = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') print('Train values:') cols = ['country', 'store', 'product'] for col in cols: print(col, ':', pd.unique(train[col])) print('Test values:') for col in cols: print(col, ':', pd.unique(test[col]))
code
106192098/cell_1
[ "text_html_output_2.png", "text_html_output_1.png", "text_html_output_3.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf train = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv') display(train) test = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv') display(test) ss = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') display(ss)
code
106192098/cell_7
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "text_html_output_1.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf train = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv') ss = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') cols = ['country', 'store', 'product'] cnt_val = pd.unique(train['country']) str_val = pd.unique(train['store']) prod_val = pd.unique(train['product']) data = np.empty(shape=48, dtype='object') i = 0 for x in cnt_val: for y in str_val: for z in prod_val: data[i] = train[(train['country'] == x) & (train['store'] == y) & (train['product'] == z)] i += 1 colors=['r','g','b','c','m','y'] fig=plt.figure(figsize=(20,500)) i=0 j=-1 days=[i for i in range(data[0].shape[0])] for x in cnt_val: j+=1 for y in str_val: for z in prod_val: ax=fig.add_subplot(len(cnt_val)*len(str_val)*len(prod_val),1,i+1) ax.set_title(x+', '+y+', '+z) ax.set_ylabel('num_sold') ax.plot(days,data[i]['num_sold'],color=colors[j]) i+=1 plt.show() i=0 j=-1 s=[i for i in range(24,48)] fig=plt.figure(figsize=(25,90)) for x in cnt_val: j+=1 for y in str_val: for z in prod_val: ax=fig.add_subplot(12,4,i+1) ax.set_title(x+', '+y+', '+z) ax.set_ylabel('number_of_samples') if i not in s: ax.hist(data[i]['num_sold'],bins=50,color=colors[j],ec='black') else: ax.hist(data[i]['num_sold'].iloc[1100:],bins=50,color=colors[j],ec='black') i+=1 plt.show() def windowed_dataset(series, window_size, batch_size, shuffle_buffer): dataset = tf.data.Dataset.from_tensor_slices(series) dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(window_size + 1)) dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1])) dataset = dataset.batch(batch_size).prefetch(1) return dataset days1 = 182 ep1 = 60 days2 = 60 ep2 = 21 for i in range(48): if i not in s: data_ = data[i]['num_sold'].copy() dataset = windowed_dataset(data_.values, days1, 700, 100) NN = tf.keras.Sequential([tf.keras.layers.Input(shape=(days1,)), tf.keras.layers.Dense(units=35, activation='relu'), tf.keras.layers.Dense(units=10, activation='relu'), tf.keras.layers.Dense(units=5, activation='relu'), tf.keras.layers.Dense(units=1, activation='relu')]) NN.summary() NN.compile(optimizer=tf.keras.optimizers.Adagrad(), loss=tf.keras.losses.MeanSquaredError(), metrics=['MAPE']) hist = NN.fit(dataset, epochs=ep1) while hist.history['MAPE'][-1] >= 11: NN = tf.keras.Sequential([tf.keras.layers.Input(shape=(days1,)), tf.keras.layers.Dense(units=35, activation='relu'), tf.keras.layers.Dense(units=10, activation='relu'), tf.keras.layers.Dense(units=5, activation='relu'), tf.keras.layers.Dense(units=1, activation='relu')]) NN.summary() NN.compile(optimizer=tf.keras.optimizers.Adagrad(), loss=tf.keras.losses.MeanSquaredError(), metrics=['MAPE']) hist = NN.fit(dataset, epochs=ep1) for j in range(365): pred = NN.predict(np.array([data_.values[-days1:]])) pred = int(pred * (pred - np.floor(pred) <= 0.5) + (int(pred) + 1) * (pred - np.floor(pred) > 0.5)) data_ = data_.append(pd.Series(pred)) print(pred) ss['num_sold'].iloc[i + 48 * j] = pred else: data_ = data[i]['num_sold'].iloc[1100:].copy() dataset = windowed_dataset(data_.values, days2, 180, 50) NN = tf.keras.Sequential([tf.keras.layers.Input(shape=(days2,)), tf.keras.layers.Dense(units=40, activation='relu'), tf.keras.layers.Dense(units=30, activation='relu'), tf.keras.layers.Dense(units=10, activation='relu'), tf.keras.layers.Dense(units=5, activation='relu'), tf.keras.layers.Dense(units=1, activation='relu')]) NN.summary() NN.compile(optimizer=tf.keras.optimizers.Adagrad(), loss=tf.keras.losses.MeanSquaredError(), metrics=['MAPE']) hist = NN.fit(dataset, epochs=ep2) while hist.history['MAPE'][-1] >= 10: NN = tf.keras.Sequential([tf.keras.layers.Input(shape=(days2,)), tf.keras.layers.Dense(units=40, activation='relu'), tf.keras.layers.Dense(units=30, activation='relu'), tf.keras.layers.Dense(units=10, activation='relu'), tf.keras.layers.Dense(units=5, activation='relu'), tf.keras.layers.Dense(units=1, activation='relu')]) NN.summary() NN.compile(optimizer=tf.keras.optimizers.Adagrad(), loss=tf.keras.losses.MeanSquaredError(), metrics=['MAPE']) hist = NN.fit(dataset, epochs=ep2) for j in range(365): pred = NN.predict(np.array([data_.values[-days2:]])) pred = int(pred * (pred - np.floor(pred) <= 0.5) + (int(pred) + 1) * (pred - np.floor(pred) > 0.5)) data_ = data_.append(pd.Series(pred)) print(pred) ss['num_sold'].iloc[i + 48 * j] = pred display(ss)
code
106192098/cell_3
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf train = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv') ss = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') cols = ['country', 'store', 'product'] cnt_val = pd.unique(train['country']) str_val = pd.unique(train['store']) prod_val = pd.unique(train['product']) data = np.empty(shape=48, dtype='object') print(data.shape) i = 0 for x in cnt_val: for y in str_val: for z in prod_val: data[i] = train[(train['country'] == x) & (train['store'] == y) & (train['product'] == z)] i += 1 display(data[0]) display(data[7])
code
106192098/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf train = pd.read_csv('../input/tabular-playground-series-sep-2022/train.csv') test = pd.read_csv('../input/tabular-playground-series-sep-2022/test.csv') ss = pd.read_csv('../input/tabular-playground-series-sep-2022/sample_submission.csv') cols = ['country', 'store', 'product'] cnt_val = pd.unique(train['country']) str_val = pd.unique(train['store']) prod_val = pd.unique(train['product']) data = np.empty(shape=48, dtype='object') i = 0 for x in cnt_val: for y in str_val: for z in prod_val: data[i] = train[(train['country'] == x) & (train['store'] == y) & (train['product'] == z)] i += 1 colors=['r','g','b','c','m','y'] fig=plt.figure(figsize=(20,500)) i=0 j=-1 days=[i for i in range(data[0].shape[0])] for x in cnt_val: j+=1 for y in str_val: for z in prod_val: ax=fig.add_subplot(len(cnt_val)*len(str_val)*len(prod_val),1,i+1) ax.set_title(x+', '+y+', '+z) ax.set_ylabel('num_sold') ax.plot(days,data[i]['num_sold'],color=colors[j]) i+=1 plt.show() i = 0 j = -1 s = [i for i in range(24, 48)] fig = plt.figure(figsize=(25, 90)) for x in cnt_val: j += 1 for y in str_val: for z in prod_val: ax = fig.add_subplot(12, 4, i + 1) ax.set_title(x + ', ' + y + ', ' + z) ax.set_ylabel('number_of_samples') if i not in s: ax.hist(data[i]['num_sold'], bins=50, color=colors[j], ec='black') else: ax.hist(data[i]['num_sold'].iloc[1100:], bins=50, color=colors[j], ec='black') i += 1 plt.show()
code
32068555/cell_48
[ "text_plain_output_1.png" ]
!pip install json2html from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt import pandas as pd from json2html import * from IPython.core.display import display, HTML
code
32068555/cell_50
[ "text_html_output_10.png", "text_html_output_16.png", "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_15.png", "text_html_output_5.png", "image_output_5.png", "text_html_output_14.png", "text_html_output_19.png", "image_output_7.png", "text_html_output_9.png", "text_html_output_13.png", "text_html_output_20.png", "image_output_4.png", "text_html_output_1.png", "text_html_output_17.png", "text_html_output_18.png", "image_output_6.png", "text_html_output_12.png", "text_html_output_11.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "text_html_output_8.png", "text_html_output_3.png", "text_html_output_7.png" ]
from IPython.core.display import display, HTML from nltk.tokenize import sent_tokenize from nltk.tokenize import sent_tokenize from wordcloud import WordCloud, STOPWORDS import json import json import json import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np import os import os import requests import time import time import time import time import requests import json headers = {'accept': 'application/json', 'Content-Type': 'text/plain'} params = (('annotationTypes', '*'), ('language', 'en')) def get_json_object(text): return requests.post('http://deda1x3026.merckgroup.com:8080/information-discovery/rest/textanalysis/projects/AA-Internal/pipelines/ThemeAnnotator/analyseText', headers=headers, params=params, data=text).json() def get_json_str(json_obj): return json.dumps(json_obj) def get_pretty_json(json_str): return json.dumps(json_str, indent=4) def get_themes(text): json_obj = get_json_object(text) json_array = json_obj['annotationDtos'] return json_array[-1]['themes'] def lst_to_str(word_list): return ' '.join(word_list).strip() import numpy as np import json import os import csv import time from nltk.tokenize import sent_tokenize root = '/kaggle/input/dataset/CORD-19-research-challenge/' folders = ['biorxiv_medrxiv/biorxiv_medrxiv/', 'comm_use_subset/comm_use_subset/', 'noncomm_use_subset/noncomm_use_subset/', 'custom_license/custom_license/'] def collect_sentences(): index_in_docs = 0 num_files_processed = 0 sentences_np_array = np.empty(100000000, dtype=object) start = time.time() for folder in folders: for filename in os.listdir(root + folder): if filename.endswith('.json'): input_file_path = root + folder + filename with open(input_file_path) as f: data = json.load(f) abstracts = data['abstract'] for content in abstracts: abstract_para = content['text'] sentences = sent_tokenize(abstract_para) for sentence in sentences: sentences_np_array[index_in_docs] = sentence index_in_docs += 1 body_texts = data['body_text'] for content in body_texts: body_para = content['text'] sentences = sent_tokenize(body_para) for sentence in sentences: sentences_np_array[index_in_docs] = sentence index_in_docs += 1 num_files_processed += 1 np.save('sentences.npy', sentences_np_array) import json import os import csv import time from nltk.tokenize import sent_tokenize root = '/kaggle/input/dataset/CORD-19-research-challenge/' folders = ['biorxiv_medrxiv/biorxiv_medrxiv/', 'comm_use_subset/comm_use_subset/', 'noncomm_use_subset/noncomm_use_subset/', 'custom_license/custom_license/'] def collect_json_docs(): docs = np.empty(100000000, dtype=np.object) index_in_docs = 0 num_files_processed = 0 num_docs_collected = 0 start = time.time() for folder in folders: for filename in os.listdir(root + folder): if filename.endswith('.json'): input_file_path = root + folder + filename with open(input_file_path) as f: data = json.load(f) paper_title = data['metadata']['title'] authors = data['metadata']['authors'] authors_names = [] for author in authors: first_name = author['first'] middle_name = author['middle'] last_name = author['last'] author_name = first_name + ' ' + lst_to_str(middle_name) + ' ' + last_name authors_names.append(author_name) abstracts = data['abstract'] for content in abstracts: abstract_para = content['text'] section = content['section'] sentences = sent_tokenize(abstract_para) for sentence in sentences: new_doc = {'sentence': sentence, 'section': section, 'paper_title': paper_title, 'authors': authors_names, 'paragraph': abstract_para} docs[index_in_docs] = new_doc index_in_docs += 1 num_docs_collected += 1 body_texts = data['body_text'] for content in body_texts: body_para = content['text'] section = content['section'] sentences = sent_tokenize(body_para) for sentence in sentences: new_doc = {'sentence': sentence, 'section': section, 'paper_title': paper_title, 'authors': authors_names, 'paragraph': body_para} docs[index_in_docs] = new_doc index_in_docs += 1 num_docs_collected += 1 num_files_processed += 1 np.save('docs', docs) import numpy as np docs = np.load('/kaggle/input/jsondocs/docs.npy', allow_pickle=True) stopwords = set(STOPWORDS) for id_index in I[0]: doc = docs[id_index] html = json2html.convert(doc) html = html.replace('<td>', "<td style='text-align:left'>") display(HTML(html)) themes_list = doc['themes'] final_theme_string = '' for theme in themes_list: words = theme.replace('-', ' ').split() t = '_'.join(words) final_theme_string = final_theme_string + ' ' + t if doc['themes'] and doc['themes'][0]: wordcloud = WordCloud(width=700, height=200, stopwords=stopwords, min_font_size=8, max_font_size=20, background_color='white', prefer_horizontal=1).generate(final_theme_string) plt.figure(figsize=(10, 10), linewidth=10, edgecolor='#04253a') plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show() display(HTML("<hr style='height:3px; color:black'>"))
code
32068555/cell_36
[ "text_plain_output_1.png" ]
!python -m pip install --upgrade faiss faiss-gpu
code
122255862/cell_21
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class['Age'].agg(['min', 'max'])
code
122255862/cell_13
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class for cla, titanic_df in titanic_class: print(cla) print(titanic_df)
code
122255862/cell_9
[ "text_html_output_2.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic_gender = titanic['Sex'].value_counts(normalize=True) print(f'People divided by gender in percentage: \n{titanic_gender}')
code
122255862/cell_25
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class.max() titanic_class.filter(lambda x: x['Age'].mean() < 38)
code
122255862/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape
code
122255862/cell_34
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic_gender = titanic['Sex'].value_counts(normalize=True) wp = {'linewidth': 1, 'edgecolor': 'black'} plt.axis('equal') plt.tight_layout() titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class['Age'].agg(['min', 'max']).plot(kind='bar') titanic['avg_fare_class'] = titanic.groupby('Pclass')['Fare'].transform(lambda x: x.mean()) tita_df = titanic.groupby(['Embarked', 'Sex']).mean() tita_df titanic['Embarked'].value_counts().plot(kind='bar') plt.title('Who got in?') plt.xlabel('Where embarked') plt.ylabel('Number of people')
code
122255862/cell_23
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class.max()
code
122255862/cell_30
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic['avg_fare_class'] = titanic.groupby('Pclass')['Fare'].transform(lambda x: x.mean()) titanic['fare_aboce_avg'] = titanic['avg_fare_class'] < titanic['Fare'] titanic
code
122255862/cell_33
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic_gender = titanic['Sex'].value_counts(normalize=True) wp = {'linewidth': 1, 'edgecolor': 'black'} plt.axis('equal') plt.tight_layout() titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class['Age'].agg(['min', 'max']).plot(kind='bar') titanic['avg_fare_class'] = titanic.groupby('Pclass')['Fare'].transform(lambda x: x.mean()) tita_df = titanic.groupby(['Embarked', 'Sex']).mean() tita_df titanic['Embarked'].value_counts()
code
122255862/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class['Age'].mean()
code
122255862/cell_6
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape print('Number of classes on board:') titanic['Pclass'].nunique()
code
122255862/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic['avg_fare_class'] = titanic.groupby('Pclass')['Fare'].transform(lambda x: x.mean()) titanic.head()
code
122255862/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class.max() titanic_class.filter(lambda x: x['Age'].mean() < 38) print('Mean fare for people in age under 38:') titanic_class.filter(lambda x: x['Age'].mean() < 38)['Fare'].mean()
code
122255862/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum()
code
122255862/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic_gender = titanic['Sex'].value_counts(normalize=True) wp = {'linewidth': 1, 'edgecolor': 'black'} plt.axis('equal') plt.tight_layout() titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class sns.barplot(x=titanic['Pclass'], y=titanic['Survived']) plt.title('People who survived per class') plt.xlabel('Pclass') plt.ylabel('Survived')
code
122255862/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122255862/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape print('How many people survived?') titanic['Survived'].sum()
code
122255862/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean()
code
122255862/cell_32
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic_gender = titanic['Sex'].value_counts(normalize=True) wp = {'linewidth': 1, 'edgecolor': 'black'} plt.axis('equal') plt.tight_layout() titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class['Age'].agg(['min', 'max']).plot(kind='bar') titanic['avg_fare_class'] = titanic.groupby('Pclass')['Fare'].transform(lambda x: x.mean()) tita_df = titanic.groupby(['Embarked', 'Sex']).mean() tita_df plt.figure(figsize=(5, 5)) titanic.plot.scatter(x='Embarked', y='PassengerId', c='Pclass', colormap='viridis', figsize=(10, 9)) plt.title('Which class went where') plt.xlabel('PassengerId') plt.ylabel('Pclass')
code
122255862/cell_28
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3) titanic_class.sum() titanic_class.mean() titanic_class.max() titanic_class.filter(lambda x: x['Age'].mean() < 38) titanic_class.filter(lambda x: x['Age'].mean() < 38)['Fare'].mean() titanic_class.filter(lambda x: x['Age'].mean() < 38)['Fare'].max() titanic_class.filter(lambda x: x['Age'].mean() > 38)
code
122255862/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape print('People divided by gender:') titanic['Sex'].value_counts()
code
122255862/cell_15
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2)
code
122255862/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.shape titanic.groupby('Sex').Survived.sum() titanic_class = titanic.groupby('Pclass') titanic_class titanic_class.get_group(1) titanic_class.get_group(2) titanic_class.get_group(3)
code
122255862/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic = pd.read_csv('/kaggle/input/test-file/tested.csv') titanic.head()
code