path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
16136283/cell_14
[ "text_plain_output_1.png" ]
X_train.shape
code
16136283/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Amazon_Unlocked_Mobile.csv') df.dropna(inplace=True) df = df[df['Rating'] != 3] df.head()
code
16136283/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/Amazon_Unlocked_Mobile.csv') df.describe()
code
2016758/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.applications.vgg16 import VGG16 from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Input, Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.models import Sequential, Model from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator np.random.seed(7)
code
2016758/cell_5
[ "text_plain_output_1.png" ]
from keras.applications.vgg16 import VGG16 from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Conv2D, MaxPooling2D from keras.layers import Input, Dense, Dropout, Flatten from keras.models import Sequential, Model from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.applications.vgg16 import VGG16 from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Input, Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.models import Sequential, Model from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator np.random.seed(7) def make_df(path, mode): """ params -------- path(str): path to json mode(str): "train" or "test" outputs -------- X(np.array): list of images shape=(None, 75, 75, 3) Y(np.array): list of labels shape=(None,) df(pd.DataFrame): data frame from json """ df = pd.read_json(path) df.inc_angle = df.inc_angle.replace('na', 0) X = _get_scaled_imgs(df) if mode == 'test': return (X, df) Y = np.array(df['is_iceberg']) idx_tr = np.where(df.inc_angle > 0) X = X[idx_tr[0]] Y = Y[idx_tr[0], ...] return (X, Y) def _get_scaled_imgs(df): imgs = [] for i, row in df.iterrows(): band_1 = np.array(row['band_1']).reshape(75, 75) band_2 = np.array(row['band_2']).reshape(75, 75) band_3 = band_1 + band_2 a = (band_1 - band_1.mean()) / (band_1.max() - band_1.min()) b = (band_2 - band_2.mean()) / (band_2.max() - band_2.min()) c = (band_3 - band_3.mean()) / (band_3.max() - band_3.min()) imgs.append(np.dstack((a, b, c))) return np.array(imgs) def SmallCNN(): model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=(75, 75, 3))) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.2)) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.3)) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(256, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) return model def Vgg16(): input_tensor = Input(shape=(75, 75, 3)) vgg16 = VGG16(include_top=False, weights='imagenet', input_tensor=input_tensor) top_model = Sequential() top_model.add(Flatten(input_shape=vgg16.output_shape[1:])) top_model.add(Dense(512, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(1, activation='sigmoid')) model = Model(input=vgg16.input, output=top_model(vgg16.output)) for layer in model.layers[:13]: layer.trainable = False return model if __name__ == '__main__': x, y = make_df('../input/train.json', 'train') xtr, xval, ytr, yval = train_test_split(x, y, test_size=0.25, random_state=7) model = SmallCNN() optimizer = Adam(lr=0.001, decay=0.0) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) earlyStopping = EarlyStopping(monitor='val_loss', patience=20, verbose=0, mode='min') ckpt = ModelCheckpoint('.model.hdf5', save_best_only=True, monitor='val_loss', mode='min') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, epsilon=0.0001, mode='min') gen = ImageDataGenerator(horizontal_flip=True, vertical_flip=True, width_shift_range=0, height_shift_range=0, channel_shift_range=0, zoom_range=0.2, rotation_range=10) gen.fit(xtr) model.fit_generator(gen.flow(xtr, ytr, batch_size=32), steps_per_epoch=len(xtr), epochs=1, callbacks=[earlyStopping, ckpt, reduce_lr_loss], validation_data=(xval, yval)) model.load_weights(filepath='.model.hdf5') score = model.evaluate(xtr, ytr, verbose=1) print('Train score:', score[0], 'Train accuracy:', score[1]) xtest, df_test = make_df('../input/test.json', 'test') pred_test = model.predict(xtest) pred_test = pred_test.reshape(pred_test.shape[0]) submission = pd.DataFrame({'id': df_test['id'], 'is_iceberg': pred_test}) submission.to_csv('submission.csv', index=False)
code
32062145/cell_21
[ "text_plain_output_1.png" ]
from six.moves import xrange import collections import math import numpy as np import os import random import tensorflow as tf import tensorflow.compat.v1 as tf folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 batch_size = 128 embedding_size = 64 skip_window = 1 num_skips = 2 valid_size = 32 valid_window = 200 valid_examples = np.random.choice(valid_window, valid_size, replace=False) file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() word_count = [['UNK', -1]] word_count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in word_count: dictionary[word] = len(dictionary) reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count += 1 data.append(index) word_count[0][1] = unk_count data_index = 0 def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=batch_size, dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return (batch, labels) train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) with tf.variable_scope('EMBEDDING'): with tf.device('/cpu:0'): embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) with tf.variable_scope('NCE_WEIGHT'): nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) with tf.device('/cpu:0'): num_sampled = 64 loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) optm = tf.train.GradientDescentOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) siml = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) sess = tf.Session() sess.run(tf.initialize_all_variables()) average_loss = 0 num_steps = 10001 for iter in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} _, loss_val = sess.run([optm, loss], feed_dict=feed_dict) average_loss += loss_val if iter % 2000 == 0: average_loss /= 2000 if iter % 10000 == 0: siml_val = sess.run(siml) for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 6 nearest = (-siml_val[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to '%s':" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s '%s'," % (log_str, close_word) final_embeddings = sess.run(normalized_embeddings) np.savez(filename[0:-4] + '_word2vec_' + str(embedding_size), word_count=word_count, dictionary=dictionary, reverse_dictionary=reverse_dictionary, word_embeddings=final_embeddings) K = 10 target = 'drunk' scores = final_embeddings[dictionary[target]].dot(final_embeddings.transpose()) scores = scores / np.linalg.norm(final_embeddings, axis=1) k_neighbors = (-scores).argsort()[0:K + 1] print('The nearest neighbors of', target, 'are:') for k in k_neighbors: print(reverse_dictionary[k], ' ', scores[k])
code
32062145/cell_23
[ "text_plain_output_1.png" ]
from IPython.display import FileLink from IPython.display import FileLink from IPython.display import FileLink FileLink('meta.tsv')
code
32062145/cell_26
[ "text_html_output_1.png" ]
from IPython.display import FileLink from IPython.display import FileLink from IPython.display import FileLink folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 batch_size = 128 embedding_size = 64 skip_window = 1 num_skips = 2 from IPython.display import FileLink FileLink(filename[0:-4] + '_word2vec_' + str(embedding_size) + '.npz')
code
32062145/cell_11
[ "text_plain_output_1.png" ]
import collections import os folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() word_count = [['UNK', -1]] word_count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) print('Most common words (+UNK) are: %s' % word_count[:10])
code
32062145/cell_7
[ "text_html_output_1.png" ]
import os folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() words
code
32062145/cell_18
[ "text_plain_output_1.png" ]
from six.moves import xrange from sklearn.manifold import TSNE import collections import math import matplotlib.pyplot as plt import numpy as np import os import random import tensorflow as tf import tensorflow.compat.v1 as tf folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 batch_size = 128 embedding_size = 64 skip_window = 1 num_skips = 2 valid_size = 32 valid_window = 200 valid_examples = np.random.choice(valid_window, valid_size, replace=False) file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() word_count = [['UNK', -1]] word_count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in word_count: dictionary[word] = len(dictionary) reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count += 1 data.append(index) word_count[0][1] = unk_count data_index = 0 def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=batch_size, dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return (batch, labels) train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) with tf.variable_scope('EMBEDDING'): with tf.device('/cpu:0'): embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) with tf.variable_scope('NCE_WEIGHT'): nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) with tf.device('/cpu:0'): num_sampled = 64 loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) optm = tf.train.GradientDescentOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) siml = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) sess = tf.Session() sess.run(tf.initialize_all_variables()) average_loss = 0 num_steps = 10001 for iter in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} _, loss_val = sess.run([optm, loss], feed_dict=feed_dict) average_loss += loss_val if iter % 2000 == 0: average_loss /= 2000 if iter % 10000 == 0: siml_val = sess.run(siml) for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 6 nearest = (-siml_val[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to '%s':" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s '%s'," % (log_str, close_word) final_embeddings = sess.run(normalized_embeddings) num_points = 100 tsne = TSNE(perplexity=10, n_components=2, init='pca', n_iter=5000) two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points + 1, :]) def plot(embeddings, labels): assert embeddings.shape[0] >= len(labels), 'More labels than embeddings' plt.figure(figsize=(15, 15)) for i, label in enumerate(labels): x, y = embeddings[i, :] plt.scatter(x, y, color=['blue']) plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.show() words = [reverse_dictionary[i] for i in range(1, num_points + 1)] plot(two_d_embeddings, words)
code
32062145/cell_8
[ "text_html_output_1.png" ]
import collections import os folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() word_count = [['UNK', -1]] word_count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) print('%s' % word_count[0:10])
code
32062145/cell_16
[ "text_plain_output_1.png" ]
import math import numpy as np import tensorflow as tf import tensorflow.compat.v1 as tf folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 batch_size = 128 embedding_size = 64 skip_window = 1 num_skips = 2 valid_size = 32 valid_window = 200 valid_examples = np.random.choice(valid_window, valid_size, replace=False) train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) with tf.variable_scope('EMBEDDING'): with tf.device('/cpu:0'): embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) with tf.variable_scope('NCE_WEIGHT'): nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) with tf.device('/cpu:0'): num_sampled = 64 loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) optm = tf.train.GradientDescentOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) siml = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) print(normalized_embeddings.shape)
code
32062145/cell_17
[ "text_plain_output_1.png" ]
from six.moves import xrange import collections import math import numpy as np import os import random import tensorflow as tf import tensorflow.compat.v1 as tf folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 batch_size = 128 embedding_size = 64 skip_window = 1 num_skips = 2 valid_size = 32 valid_window = 200 valid_examples = np.random.choice(valid_window, valid_size, replace=False) file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() word_count = [['UNK', -1]] word_count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in word_count: dictionary[word] = len(dictionary) reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count += 1 data.append(index) word_count[0][1] = unk_count data_index = 0 def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=batch_size, dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return (batch, labels) train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) with tf.variable_scope('EMBEDDING'): with tf.device('/cpu:0'): embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) with tf.variable_scope('NCE_WEIGHT'): nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) with tf.device('/cpu:0'): num_sampled = 64 loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) optm = tf.train.GradientDescentOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) siml = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) sess = tf.Session() sess.run(tf.initialize_all_variables()) average_loss = 0 num_steps = 10001 for iter in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} _, loss_val = sess.run([optm, loss], feed_dict=feed_dict) average_loss += loss_val if iter % 2000 == 0: average_loss /= 2000 print('Average loss at step %d is %.3f' % (iter, average_loss)) if iter % 10000 == 0: siml_val = sess.run(siml) for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 6 nearest = (-siml_val[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to '%s':" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s '%s'," % (log_str, close_word) print(log_str) final_embeddings = sess.run(normalized_embeddings)
code
32062145/cell_22
[ "image_output_1.png" ]
from IPython.display import FileLink from six.moves import xrange import collections import math import numpy as np import os import random import tensorflow as tf import tensorflow.compat.v1 as tf folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 batch_size = 128 embedding_size = 64 skip_window = 1 num_skips = 2 valid_size = 32 valid_window = 200 valid_examples = np.random.choice(valid_window, valid_size, replace=False) file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() word_count = [['UNK', -1]] word_count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in word_count: dictionary[word] = len(dictionary) reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count += 1 data.append(index) word_count[0][1] = unk_count data_index = 0 def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=batch_size, dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return (batch, labels) train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) with tf.variable_scope('EMBEDDING'): with tf.device('/cpu:0'): embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) with tf.variable_scope('NCE_WEIGHT'): nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) with tf.device('/cpu:0'): num_sampled = 64 loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) optm = tf.train.GradientDescentOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) siml = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True) sess = tf.Session() sess.run(tf.initialize_all_variables()) average_loss = 0 num_steps = 10001 for iter in xrange(num_steps): batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window) feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels} _, loss_val = sess.run([optm, loss], feed_dict=feed_dict) average_loss += loss_val if iter % 2000 == 0: average_loss /= 2000 if iter % 10000 == 0: siml_val = sess.run(siml) for i in xrange(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 6 nearest = (-siml_val[i, :]).argsort()[1:top_k + 1] log_str = "Nearest to '%s':" % valid_word for k in xrange(top_k): close_word = reverse_dictionary[nearest[k]] log_str = "%s '%s'," % (log_str, close_word) final_embeddings = sess.run(normalized_embeddings) np.savez(filename[0:-4] + '_word2vec_' + str(embedding_size), word_count=word_count, dictionary=dictionary, reverse_dictionary=reverse_dictionary, word_embeddings=final_embeddings) K = 10 target = 'drunk' scores = final_embeddings[dictionary[target]].dot(final_embeddings.transpose()) scores = scores / np.linalg.norm(final_embeddings, axis=1) k_neighbors = (-scores).argsort()[0:K + 1] out_v = open('vecs.tsv', 'w', encoding='utf-8') out_m = open('meta.tsv', 'w', encoding='utf-8') for num, word in enumerate(dictionary): vec = final_embeddings[num] out_m.write(word + '\n') out_v.write('\t'.join([str(x) for x in vec]) + '\n') out_v.close() out_m.close() from IPython.display import FileLink FileLink('vecs.tsv')
code
32062145/cell_12
[ "text_plain_output_1.png" ]
import collections import os folder_dir = '/kaggle/input/108-2-ntut-dl-app-hw2' filename = 'tag_list.txt' vocabulary_size = 990 file_path = os.path.join(folder_dir, filename) with open(file_path, 'r', encoding='utf-8') as f: words = f.read().split() word_count = [['UNK', -1]] word_count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in word_count: dictionary[word] = len(dictionary) reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count += 1 data.append(index) word_count[0][1] = unk_count print('Sample data corresponds to\n__________________') for i in range(10): print('%d->%s' % (data[i], reverse_dictionary[data[i]]))
code
32071559/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import pandas as pd import numpy as np from keras import backend as K from keras.models import Model from keras.callbacks import EarlyStopping from keras.layers import Input, LSTM, Dense, BatchNormalization, Lambda, Flatten, Reshape from sklearn.preprocessing import MinMaxScaler from keras.layers.normalization import BatchNormalization from keras import backend as K from keras.layers import Input, Dense, Flatten, Dropout, Lambda, TimeDistributed, Permute, RepeatVector, LSTM, GRU, Add, Concatenate, Reshape, Multiply, merge, Dot, Activation, concatenate, dot, Subtract from keras.initializers import Identity from keras.activations import sigmoid from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import Conv1D from keras.models import Sequential, Model from keras.optimizers import Adam, SGD, RMSprop from sklearn.neighbors import KernelDensity from scipy.stats import ks_2samp, trim_mean, shapiro, normaltest, anderson from keras.losses import mse, binary_crossentropy, sparse_categorical_crossentropy from keras import backend as K import matplotlib.pyplot as plt
code
32071559/cell_11
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.initializers import Identity from keras.layers import Input, Dense, Flatten, Dropout, Lambda, \ from keras.layers import Input, LSTM, Dense, BatchNormalization, Lambda, Flatten, Reshape from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.models import Sequential, Model from keras.optimizers import Adam, SGD, RMSprop import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def read_data(): data = pd.read_csv('../input/datatrain4/train4.csv') data = data.values return data data = read_data() def handle_country_text(data): stats = list(np.unique(data[:, 2])) for idx, d in enumerate(data): country = d[2] id = stats.index(country) d[2] = id return (stats, data) def create_sequences(data, stats): sequences = [] to_compute = [] for idx, s in enumerate(stats): seq = data[data[:, 2] == idx] if pd.isnull(seq[0, 1]): seq = np.delete(seq, [1], 1) else: to_compute.append(seq) stats_p = list(np.unique(seq[:, 1])) for idx2, s2 in enumerate(stats_p): seqs2 = seq[seq[:, 1] == s2] seqs2 = np.delete(seqs2, [0, 1, 3], 1) for idx, value in enumerate(reversed(seqs2[:, 1:])): if idx + 1 < len(seqs2): cases = value[0] - seqs2[-(idx + 2), 1] deaths = value[1] - seqs2[-(idx + 2), 2] seqs2[-(idx + 1), 1] = cases seqs2[-(idx + 1), 2] = deaths offset = float(idx2) / 10 seqs2[:, 0] = seqs2[:, 0] + offset sequences.append(seqs2) continue seq = np.delete(seq, [0, 2], 1) for idx, value in enumerate(reversed(seq[:, 1:])): if idx + 1 < len(seq): cases = value[0] - seq[-(idx + 2), 1] deaths = value[1] - seq[-(idx + 2), 2] seq[-(idx + 1), 1] = cases seq[-(idx + 1), 2] = deaths sequences.append(seq) return np.array(sequences) sequences = create_sequences(data, stats) sequences = np.array(sequences) sequences_train = np.delete(sequences, [0], 2) sequences_train = np.array(sequences_train) def dain(input): n_features = 2 mean = Lambda(lambda x: K.mean(input, axis=1))(input) adaptive_avg = Dense(n_features, kernel_initializer=Identity(gain=1.0), bias=False)(mean) adaptive_avg = Reshape((1, n_features))(adaptive_avg) X = Lambda(lambda inputs: inputs[0] - inputs[1])([input, adaptive_avg]) std = Lambda(lambda x: K.mean(x ** 2, axis=1))(X) std = Lambda(lambda x: K.sqrt(x + 1e-08))(std) adaptive_std = Dense(n_features, bias=False)(std) adaptive_std = Reshape((1, n_features))(adaptive_std) X = Lambda(lambda inputs: inputs[0] / inputs[1])([X, adaptive_std]) avg = Lambda(lambda x: K.mean(x, axis=1))(X) gate = Dense(n_features, activation='sigmoid', kernel_initializer=Identity(gain=1.0), bias=False)(avg) gate = Reshape((1, n_features))(gate) X = Lambda(lambda inputs: inputs[0] * inputs[1])([X, gate]) return (X, adaptive_avg, adaptive_std) def build_generator(encoder_input_shape, missing_len, verbose=True): learning_rate = 0.0002 optimizer = Adam(lr=learning_rate) generator_decoder_type = 'seq2seq' encoder_inputs = Input(shape=encoder_input_shape) hidden, avg, std = dain(encoder_inputs) decoder_outputs = [] encoder = LSTM(128, return_sequences=True, return_state=True) lstm_outputs, state_h, state_c = encoder(hidden) if generator_decoder_type == 'seq2seq': states = [state_h, state_c] decoder_lstm = LSTM(128, return_sequences=True, return_state=True) decoder_cases = Dense(1, activation='relu') decoder_deaths = Dense(1, activation='relu') all_outputs_c = [] all_outputs_d = [] inputs = lstm_outputs for idx in range(missing_len): outputs, state_h, state_c = decoder_lstm(inputs, initial_state=states) inputs = outputs outputs = BatchNormalization()(outputs) outputs = Flatten()(outputs) outputs_cases = decoder_cases(outputs) outputs_deaths = decoder_deaths(outputs) states = [state_h, state_c] std_c = Lambda(lambda inputs: inputs[:, 0, 0])(std) avg_c = Lambda(lambda inputs: inputs[:, 0, 0])(avg) outputs_cases = Multiply()([outputs_cases, std_c]) outputs_cases = Add()([outputs_cases, avg_c]) std_d = Lambda(lambda inputs: inputs[:, 0, 1])(std) avg_d = Lambda(lambda inputs: inputs[:, 0, 1])(avg) outputs_deaths = Multiply()([outputs_deaths, std_d]) outputs_deaths = Add()([outputs_deaths, avg_d]) all_outputs_c.append(outputs_cases) all_outputs_d.append(outputs_deaths) decoder_outputs_c = Lambda(lambda x: x)(outputs_cases) decoder_outputs_d = Lambda(lambda x: x)(outputs_deaths) model = Model(inputs=encoder_inputs, outputs=[decoder_outputs_c, decoder_outputs_d]) model.compile(loss='mean_squared_logarithmic_error', optimizer=optimizer) return model given = 80 missing = 1 total_missing = 33 model = build_generator(sequences_train[:, :given, :].shape[1:], missing) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=30) history = model.fit(x=sequences_train[:, :given, :], y=[sequences_train[:, given:, 0], sequences_train[:, given:, 1]], epochs=1, validation_split=0.2, shuffle=True, callbacks=[es]) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig('plots/losses.png') plt.close()
code
32071559/cell_16
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.initializers import Identity from keras.layers import Input, Dense, Flatten, Dropout, Lambda, \ from keras.layers import Input, LSTM, Dense, BatchNormalization, Lambda, Flatten, Reshape from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.models import Sequential, Model from keras.optimizers import Adam, SGD, RMSprop import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def read_data(): data = pd.read_csv('../input/datatrain4/train4.csv') data = data.values return data data = read_data() def handle_country_text(data): stats = list(np.unique(data[:, 2])) for idx, d in enumerate(data): country = d[2] id = stats.index(country) d[2] = id return (stats, data) def create_sequences(data, stats): sequences = [] to_compute = [] for idx, s in enumerate(stats): seq = data[data[:, 2] == idx] if pd.isnull(seq[0, 1]): seq = np.delete(seq, [1], 1) else: to_compute.append(seq) stats_p = list(np.unique(seq[:, 1])) for idx2, s2 in enumerate(stats_p): seqs2 = seq[seq[:, 1] == s2] seqs2 = np.delete(seqs2, [0, 1, 3], 1) for idx, value in enumerate(reversed(seqs2[:, 1:])): if idx + 1 < len(seqs2): cases = value[0] - seqs2[-(idx + 2), 1] deaths = value[1] - seqs2[-(idx + 2), 2] seqs2[-(idx + 1), 1] = cases seqs2[-(idx + 1), 2] = deaths offset = float(idx2) / 10 seqs2[:, 0] = seqs2[:, 0] + offset sequences.append(seqs2) continue seq = np.delete(seq, [0, 2], 1) for idx, value in enumerate(reversed(seq[:, 1:])): if idx + 1 < len(seq): cases = value[0] - seq[-(idx + 2), 1] deaths = value[1] - seq[-(idx + 2), 2] seq[-(idx + 1), 1] = cases seq[-(idx + 1), 2] = deaths sequences.append(seq) return np.array(sequences) sequences = create_sequences(data, stats) sequences = np.array(sequences) sequences_train = np.delete(sequences, [0], 2) sequences_train = np.array(sequences_train) def dain(input): n_features = 2 mean = Lambda(lambda x: K.mean(input, axis=1))(input) adaptive_avg = Dense(n_features, kernel_initializer=Identity(gain=1.0), bias=False)(mean) adaptive_avg = Reshape((1, n_features))(adaptive_avg) X = Lambda(lambda inputs: inputs[0] - inputs[1])([input, adaptive_avg]) std = Lambda(lambda x: K.mean(x ** 2, axis=1))(X) std = Lambda(lambda x: K.sqrt(x + 1e-08))(std) adaptive_std = Dense(n_features, bias=False)(std) adaptive_std = Reshape((1, n_features))(adaptive_std) X = Lambda(lambda inputs: inputs[0] / inputs[1])([X, adaptive_std]) avg = Lambda(lambda x: K.mean(x, axis=1))(X) gate = Dense(n_features, activation='sigmoid', kernel_initializer=Identity(gain=1.0), bias=False)(avg) gate = Reshape((1, n_features))(gate) X = Lambda(lambda inputs: inputs[0] * inputs[1])([X, gate]) return (X, adaptive_avg, adaptive_std) def build_generator(encoder_input_shape, missing_len, verbose=True): learning_rate = 0.0002 optimizer = Adam(lr=learning_rate) generator_decoder_type = 'seq2seq' encoder_inputs = Input(shape=encoder_input_shape) hidden, avg, std = dain(encoder_inputs) decoder_outputs = [] encoder = LSTM(128, return_sequences=True, return_state=True) lstm_outputs, state_h, state_c = encoder(hidden) if generator_decoder_type == 'seq2seq': states = [state_h, state_c] decoder_lstm = LSTM(128, return_sequences=True, return_state=True) decoder_cases = Dense(1, activation='relu') decoder_deaths = Dense(1, activation='relu') all_outputs_c = [] all_outputs_d = [] inputs = lstm_outputs for idx in range(missing_len): outputs, state_h, state_c = decoder_lstm(inputs, initial_state=states) inputs = outputs outputs = BatchNormalization()(outputs) outputs = Flatten()(outputs) outputs_cases = decoder_cases(outputs) outputs_deaths = decoder_deaths(outputs) states = [state_h, state_c] std_c = Lambda(lambda inputs: inputs[:, 0, 0])(std) avg_c = Lambda(lambda inputs: inputs[:, 0, 0])(avg) outputs_cases = Multiply()([outputs_cases, std_c]) outputs_cases = Add()([outputs_cases, avg_c]) std_d = Lambda(lambda inputs: inputs[:, 0, 1])(std) avg_d = Lambda(lambda inputs: inputs[:, 0, 1])(avg) outputs_deaths = Multiply()([outputs_deaths, std_d]) outputs_deaths = Add()([outputs_deaths, avg_d]) all_outputs_c.append(outputs_cases) all_outputs_d.append(outputs_deaths) decoder_outputs_c = Lambda(lambda x: x)(outputs_cases) decoder_outputs_d = Lambda(lambda x: x)(outputs_deaths) model = Model(inputs=encoder_inputs, outputs=[decoder_outputs_c, decoder_outputs_d]) model.compile(loss='mean_squared_logarithmic_error', optimizer=optimizer) return model given = 80 missing = 1 total_missing = 33 model = build_generator(sequences_train[:, :given, :].shape[1:], missing) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=30) history = model.fit(x=sequences_train[:, :given, :], y=[sequences_train[:, given:, 0], sequences_train[:, given:, 1]], epochs=1, validation_split=0.2, shuffle=True, callbacks=[es]) plt.close() def backtest2(sequences, model, given, missing): sequences_test = sequences[:, -given:] pred_d = [] pred_c = [] for i in range(0, missing): predictions = model.predict(sequences_test[:, :]) predictions[0][predictions[0] < 0] = 0 predictions[1][predictions[1] < 0] = 0 predictions[1] = np.around(predictions[1].astype(np.double)) predictions[0] = np.around(predictions[0].astype(np.double)) pred = np.concatenate([np.expand_dims(predictions[0], axis=2), np.expand_dims(predictions[1], axis=2)], axis=2) pred_c.append(pred) pred_d.append(predictions[1]) sequences_test = np.concatenate([sequences_test[:, 1:], pred], axis=1) predictions = np.array(pred_c[0]) for i in range(1, len(pred_c)): predictions = np.concatenate([predictions, pred_c[i]], axis=1) seq_cases = sequences[:, :, 0] seq_death = sequences[:, :, 1] death = np.cumsum(seq_death, axis=1) cases = np.cumsum(seq_cases, axis=1) cases = np.around(cases.astype(np.double)) cases[cases < 0] = 0 cases_csv = np.expand_dims(cases[:, -1], axis=1) predictions[0] = np.around(predictions[0].astype(np.double)) cases_csv = np.concatenate((cases_csv, predictions[:, :, 0]), axis=1) death = np.around(death.astype(np.double)) death[death < 0] = 0 death_csv = np.expand_dims(death[:, -1], axis=1) predictions[1] = np.around(predictions[1].astype(np.double)) death_csv = np.concatenate((death_csv, predictions[:, :, 1]), axis=1) cases_csv = np.cumsum(cases_csv, axis=1) death_csv = np.cumsum(death_csv, axis=1) death_csv = death_csv[:, 1:] cases_csv = cases_csv[:, 1:] death_csv = np.concatenate((death[:, -11:], death_csv), axis=1) cases_csv = np.concatenate((cases[:, -11:], cases_csv), axis=1) csv = [] cases_csv = np.reshape(cases_csv[:, 1:], (-1, 1)) death_csv = np.reshape(death_csv[:, 1:], (-1, 1)) j = 1 for idx, (c, d) in enumerate(zip(cases_csv, death_csv)): csv.append([j, c, d]) j += 1 sub = pd.read_csv('../input/result2w4/submission.csv', header=None, dtype=np.float32) sub = pd.DataFrame(sub.values, columns=['ForecastId', 'ConfirmedCases', 'Fatalities']) sub.ConfirmedCases.astype(np.double) sub.Fatalities.astype(np.double) sub.ForecastId = sub.ForecastId.astype(np.int) sub.to_csv('submission.csv', index=False) print('done')
code
32071559/cell_14
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.initializers import Identity from keras.layers import Input, Dense, Flatten, Dropout, Lambda, \ from keras.layers import Input, LSTM, Dense, BatchNormalization, Lambda, Flatten, Reshape from keras.layers.normalization import BatchNormalization from keras.models import Model from keras.models import Sequential, Model from keras.optimizers import Adam, SGD, RMSprop import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def read_data(): data = pd.read_csv('../input/datatrain4/train4.csv') data = data.values return data data = read_data() def handle_country_text(data): stats = list(np.unique(data[:, 2])) for idx, d in enumerate(data): country = d[2] id = stats.index(country) d[2] = id return (stats, data) def create_sequences(data, stats): sequences = [] to_compute = [] for idx, s in enumerate(stats): seq = data[data[:, 2] == idx] if pd.isnull(seq[0, 1]): seq = np.delete(seq, [1], 1) else: to_compute.append(seq) stats_p = list(np.unique(seq[:, 1])) for idx2, s2 in enumerate(stats_p): seqs2 = seq[seq[:, 1] == s2] seqs2 = np.delete(seqs2, [0, 1, 3], 1) for idx, value in enumerate(reversed(seqs2[:, 1:])): if idx + 1 < len(seqs2): cases = value[0] - seqs2[-(idx + 2), 1] deaths = value[1] - seqs2[-(idx + 2), 2] seqs2[-(idx + 1), 1] = cases seqs2[-(idx + 1), 2] = deaths offset = float(idx2) / 10 seqs2[:, 0] = seqs2[:, 0] + offset sequences.append(seqs2) continue seq = np.delete(seq, [0, 2], 1) for idx, value in enumerate(reversed(seq[:, 1:])): if idx + 1 < len(seq): cases = value[0] - seq[-(idx + 2), 1] deaths = value[1] - seq[-(idx + 2), 2] seq[-(idx + 1), 1] = cases seq[-(idx + 1), 2] = deaths sequences.append(seq) return np.array(sequences) sequences = create_sequences(data, stats) sequences = np.array(sequences) sequences_train = np.delete(sequences, [0], 2) sequences_train = np.array(sequences_train) def dain(input): n_features = 2 mean = Lambda(lambda x: K.mean(input, axis=1))(input) adaptive_avg = Dense(n_features, kernel_initializer=Identity(gain=1.0), bias=False)(mean) adaptive_avg = Reshape((1, n_features))(adaptive_avg) X = Lambda(lambda inputs: inputs[0] - inputs[1])([input, adaptive_avg]) std = Lambda(lambda x: K.mean(x ** 2, axis=1))(X) std = Lambda(lambda x: K.sqrt(x + 1e-08))(std) adaptive_std = Dense(n_features, bias=False)(std) adaptive_std = Reshape((1, n_features))(adaptive_std) X = Lambda(lambda inputs: inputs[0] / inputs[1])([X, adaptive_std]) avg = Lambda(lambda x: K.mean(x, axis=1))(X) gate = Dense(n_features, activation='sigmoid', kernel_initializer=Identity(gain=1.0), bias=False)(avg) gate = Reshape((1, n_features))(gate) X = Lambda(lambda inputs: inputs[0] * inputs[1])([X, gate]) return (X, adaptive_avg, adaptive_std) def build_generator(encoder_input_shape, missing_len, verbose=True): learning_rate = 0.0002 optimizer = Adam(lr=learning_rate) generator_decoder_type = 'seq2seq' encoder_inputs = Input(shape=encoder_input_shape) hidden, avg, std = dain(encoder_inputs) decoder_outputs = [] encoder = LSTM(128, return_sequences=True, return_state=True) lstm_outputs, state_h, state_c = encoder(hidden) if generator_decoder_type == 'seq2seq': states = [state_h, state_c] decoder_lstm = LSTM(128, return_sequences=True, return_state=True) decoder_cases = Dense(1, activation='relu') decoder_deaths = Dense(1, activation='relu') all_outputs_c = [] all_outputs_d = [] inputs = lstm_outputs for idx in range(missing_len): outputs, state_h, state_c = decoder_lstm(inputs, initial_state=states) inputs = outputs outputs = BatchNormalization()(outputs) outputs = Flatten()(outputs) outputs_cases = decoder_cases(outputs) outputs_deaths = decoder_deaths(outputs) states = [state_h, state_c] std_c = Lambda(lambda inputs: inputs[:, 0, 0])(std) avg_c = Lambda(lambda inputs: inputs[:, 0, 0])(avg) outputs_cases = Multiply()([outputs_cases, std_c]) outputs_cases = Add()([outputs_cases, avg_c]) std_d = Lambda(lambda inputs: inputs[:, 0, 1])(std) avg_d = Lambda(lambda inputs: inputs[:, 0, 1])(avg) outputs_deaths = Multiply()([outputs_deaths, std_d]) outputs_deaths = Add()([outputs_deaths, avg_d]) all_outputs_c.append(outputs_cases) all_outputs_d.append(outputs_deaths) decoder_outputs_c = Lambda(lambda x: x)(outputs_cases) decoder_outputs_d = Lambda(lambda x: x)(outputs_deaths) model = Model(inputs=encoder_inputs, outputs=[decoder_outputs_c, decoder_outputs_d]) model.compile(loss='mean_squared_logarithmic_error', optimizer=optimizer) return model given = 80 missing = 1 total_missing = 33 model = build_generator(sequences_train[:, :given, :].shape[1:], missing) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=30) history = model.fit(x=sequences_train[:, :given, :], y=[sequences_train[:, given:, 0], sequences_train[:, given:, 1]], epochs=1, validation_split=0.2, shuffle=True, callbacks=[es]) plt.close() def backtest2(sequences, model, given, missing): sequences_test = sequences[:, -given:] pred_d = [] pred_c = [] for i in range(0, missing): predictions = model.predict(sequences_test[:, :]) predictions[0][predictions[0] < 0] = 0 predictions[1][predictions[1] < 0] = 0 predictions[1] = np.around(predictions[1].astype(np.double)) predictions[0] = np.around(predictions[0].astype(np.double)) pred = np.concatenate([np.expand_dims(predictions[0], axis=2), np.expand_dims(predictions[1], axis=2)], axis=2) pred_c.append(pred) pred_d.append(predictions[1]) sequences_test = np.concatenate([sequences_test[:, 1:], pred], axis=1) predictions = np.array(pred_c[0]) for i in range(1, len(pred_c)): predictions = np.concatenate([predictions, pred_c[i]], axis=1) seq_cases = sequences[:, :, 0] seq_death = sequences[:, :, 1] death = np.cumsum(seq_death, axis=1) cases = np.cumsum(seq_cases, axis=1) cases = np.around(cases.astype(np.double)) cases[cases < 0] = 0 cases_csv = np.expand_dims(cases[:, -1], axis=1) predictions[0] = np.around(predictions[0].astype(np.double)) cases_csv = np.concatenate((cases_csv, predictions[:, :, 0]), axis=1) death = np.around(death.astype(np.double)) death[death < 0] = 0 death_csv = np.expand_dims(death[:, -1], axis=1) predictions[1] = np.around(predictions[1].astype(np.double)) death_csv = np.concatenate((death_csv, predictions[:, :, 1]), axis=1) cases_csv = np.cumsum(cases_csv, axis=1) death_csv = np.cumsum(death_csv, axis=1) death_csv = death_csv[:, 1:] cases_csv = cases_csv[:, 1:] death_csv = np.concatenate((death[:, -11:], death_csv), axis=1) cases_csv = np.concatenate((cases[:, -11:], cases_csv), axis=1) csv = [] cases_csv = np.reshape(cases_csv[:, 1:], (-1, 1)) death_csv = np.reshape(death_csv[:, 1:], (-1, 1)) j = 1 for idx, (c, d) in enumerate(zip(cases_csv, death_csv)): csv.append([j, c, d]) j += 1 backtest2(sequences_train, model, given, total_missing)
code
34122628/cell_13
[ "text_html_output_1.png" ]
from keras.preprocessing import image from tqdm import tqdm import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.columns train_image = [] path = '../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' for i in tqdm(range(train.shape[0])): put = 'train' if train['Dataset_type'][i] == 'TRAIN' else 'test' img = image.load_img('../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' + put + '/' + train['X_ray_image_name'][i], target_size=(256, 256, 3)) img = image.img_to_array(img) img = img / 255 train_image.append(img) X = np.array(train_image) for i, item in train.iteritems(): print(item.unique())
code
34122628/cell_9
[ "text_plain_output_1.png" ]
from keras.preprocessing import image from tqdm import tqdm import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.columns train_image = [] path = '../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' for i in tqdm(range(train.shape[0])): put = 'train' if train['Dataset_type'][i] == 'TRAIN' else 'test' img = image.load_img('../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' + put + '/' + train['X_ray_image_name'][i], target_size=(256, 256, 3)) img = image.img_to_array(img) img = img / 255 train_image.append(img) X = np.array(train_image)
code
34122628/cell_25
[ "text_plain_output_1.png" ]
""" model = Sequential() model.add(Conv2D(filters=64, kernel_size=(5, 5), input_shape=(256, 256, 3), activation='relu')) model.add(BatchNormalization(axis=3)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(BatchNormalization(axis=3)) model.add(Dropout(0.1)) model.add(Conv2D(filters=128, kernel_size=(5, 5), activation='relu')) model.add(BatchNormalization(axis=3)) model.add(Conv2D(filters=128, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(BatchNormalization(axis=3)) model.add(Dropout(0.1)) model.add(Conv2D(filters=256, kernel_size=(5, 5), activation='relu')) model.add(BatchNormalization(axis=3)) model.add(Conv2D(filters=256, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(BatchNormalization(axis=3)) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(9, activation='sigmoid')) """
code
34122628/cell_20
[ "text_plain_output_1.png" ]
from keras.preprocessing import image from tqdm import tqdm import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.columns train_image = [] path = '../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' for i in tqdm(range(train.shape[0])): put = 'train' if train['Dataset_type'][i] == 'TRAIN' else 'test' img = image.load_img('../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' + put + '/' + train['X_ray_image_name'][i], target_size=(256, 256, 3)) img = image.img_to_array(img) img = img / 255 train_image.append(img) X = np.array(train_image) train['Normal'] = 0 train['Pnemonia'] = 0 train['Virus'] = 0 train['bacteria'] = 0 train['Stress-Smoking'] = 0 train['Streptococcus'] = 0 train['COVID-19'] = 0 train['ARDS'] = 0 train['SARS'] = 0 train.loc[train.Label == 'Normal', 'Normal'] = 1 train.loc[train.Label == 'Pnemonia', 'Pnemonia'] = 1 train.loc[train.Label_2_Virus_category == 'Streptococcus', 'Streptococcus'] = 1 train.loc[train.Label_2_Virus_category == 'COVID-19', 'COVID-19'] = 1 train.loc[train.Label_2_Virus_category == 'ARDS', 'ARDS'] = 1 train.loc[train.Label_2_Virus_category == 'SARS', 'SARS'] = 1 train.loc[train.Label_1_Virus_category == 'Virus', 'Virus'] = 1 train.loc[train.Label_1_Virus_category == 'bacteria', 'bacteria'] = 1 train.loc[train.Label_1_Virus_category == 'Stress-Smoking', 'Stress-Smoking'] = 1 y = np.array(train.drop(['Unnamed: 0', 'X_ray_image_name', 'Dataset_type', 'Label_2_Virus_category', 'Label_1_Virus_category', 'Label'], axis=1)) y.shape
code
34122628/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing import image from tqdm import tqdm import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.columns train_image = [] path = '../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' for i in tqdm(range(train.shape[0])): put = 'train' if train['Dataset_type'][i] == 'TRAIN' else 'test' img = image.load_img('../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' + put + '/' + train['X_ray_image_name'][i], target_size=(256, 256, 3)) img = image.img_to_array(img) img = img / 255 train_image.append(img) X = np.array(train_image) X.shape
code
34122628/cell_1
[ "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34122628/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.columns
code
34122628/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing import image from tqdm import tqdm import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.columns train_image = [] path = '../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' for i in tqdm(range(train.shape[0])): put = 'train' if train['Dataset_type'][i] == 'TRAIN' else 'test' img = image.load_img('../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' + put + '/' + train['X_ray_image_name'][i], target_size=(256, 256, 3)) img = image.img_to_array(img) img = img / 255 train_image.append(img) X = np.array(train_image) train['Normal'] = 0 train['Pnemonia'] = 0 train['Virus'] = 0 train['bacteria'] = 0 train['Stress-Smoking'] = 0 train['Streptococcus'] = 0 train['COVID-19'] = 0 train['ARDS'] = 0 train['SARS'] = 0 train.loc[train.Label == 'Normal', 'Normal'] = 1 train.loc[train.Label == 'Pnemonia', 'Pnemonia'] = 1 train.loc[train.Label_2_Virus_category == 'Streptococcus', 'Streptococcus'] = 1 train.loc[train.Label_2_Virus_category == 'COVID-19', 'COVID-19'] = 1 train.loc[train.Label_2_Virus_category == 'ARDS', 'ARDS'] = 1 train.loc[train.Label_2_Virus_category == 'SARS', 'SARS'] = 1 train.loc[train.Label_1_Virus_category == 'Virus', 'Virus'] = 1 train.loc[train.Label_1_Virus_category == 'bacteria', 'bacteria'] = 1 train.loc[train.Label_1_Virus_category == 'Stress-Smoking', 'Stress-Smoking'] = 1 train.head()
code
34122628/cell_15
[ "text_plain_output_1.png" ]
from keras.preprocessing import image from tqdm import tqdm import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.columns train_image = [] path = '../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' for i in tqdm(range(train.shape[0])): put = 'train' if train['Dataset_type'][i] == 'TRAIN' else 'test' img = image.load_img('../input/coronahack-chest-xraydataset/Coronahack-Chest-XRay-Dataset/Coronahack-Chest-XRay-Dataset/' + put + '/' + train['X_ray_image_name'][i], target_size=(256, 256, 3)) img = image.img_to_array(img) img = img / 255 train_image.append(img) X = np.array(train_image) train['Normal'] = 0 train['Pnemonia'] = 0 train['Virus'] = 0 train['bacteria'] = 0 train['Stress-Smoking'] = 0 train['Streptococcus'] = 0 train['COVID-19'] = 0 train['ARDS'] = 0 train['SARS'] = 0 train.head()
code
34122628/cell_3
[ "text_html_output_1.png" ]
import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.utils import to_categorical from keras.preprocessing import image import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from tqdm import tqdm
code
34122628/cell_31
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential model = Sequential() model.add(Conv2D(filters=16, kernel_size=(5, 5), activation='relu', input_shape=(256, 256, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(9, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_test, y_test))
code
34122628/cell_27
[ "text_html_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential model = Sequential() model.add(Conv2D(filters=16, kernel_size=(5, 5), activation='relu', input_shape=(256, 256, 3))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=64, kernel_size=(5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(9, activation='sigmoid')) model.summary()
code
34122628/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/coronahack-chest-xraydataset/Chest_xray_Corona_Metadata.csv') train.head()
code
105201902/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/chocolate-bar-ratings/chocolate_bars.csv') df.info()
code
105201902/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105201902/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/chocolate-bar-ratings/chocolate_bars.csv') plt.xticks(rotation=90) y = df['cocoa_percent'] x = df['rating'] correlation = y.corr(x) plt.xticks(rotation=0) plt.figure(figsize=(25, 10)) df.groupby('company_location').mean()['rating'].plot(kind='bar', color='tan') plt.xticks(rotation=90) plt.xlabel('Company location', fontsize=14) plt.ylabel("Rating'", fontsize=14) plt.title('Company location versus rating', fontsize=14) plt.show()
code
105201902/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/chocolate-bar-ratings/chocolate_bars.csv') df.head(-5)
code
105201902/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/chocolate-bar-ratings/chocolate_bars.csv') plt.xticks(rotation=90) y = df['cocoa_percent'] x = df['rating'] correlation = y.corr(x) print(correlation) plt.figure(figsize=(25, 10)) sns.regplot(x='cocoa_percent', y='rating', data=df) plt.title('Bean Origin vs Rating', fontsize=14) plt.xticks(rotation=0) plt.xlabel('Cacao persentage', fontsize=14) plt.ylabel('Ratings', fontsize=14) plt.show()
code
105201902/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/chocolate-bar-ratings/chocolate_bars.csv') df.describe()
code
105201902/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/chocolate-bar-ratings/chocolate_bars.csv') plt.figure(figsize=(10, 25)) sns.catplot(x='bean_origin', y='rating', kind='bar', height=10, aspect=2, data=df.head(2530)).set(title='Bean Origin vs Ratings') plt.xticks(rotation=90) plt.xlabel('Bean Origin', fontsize=14) plt.ylabel('Ratings', fontsize=14) plt.show()
code
32069765/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr df1 = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Pediatric patients who were asymptomatic.csv') df1 = df1.rename(columns={'Unnamed: 0': 'unnamed1', 'Asymptomatic Proportion': 'asymptomatic1', 'Age': 'age'}) fig = sns.lmplot(x='asymptomatic1', y='unnamed1', data=df1)
code
32069765/cell_25
[ "text_html_output_2.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr df1 = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Pediatric patients who were asymptomatic.csv') df1 = df1.rename(columns={'Unnamed: 0': 'unnamed1', 'Asymptomatic Proportion': 'asymptomatic1', 'Age': 'age'}) fig=sns.lmplot(x="asymptomatic1", y="unnamed1",data=df1) df1_age = pd.DataFrame({'Date': df1.Date, 'age': df1.age}) fig = px.line(df1_age, x='Date', y='age', title='Pediatric Asymptomatic Patients ') fig = px.bar(df1, x='Date', y='age', color_discrete_sequence=['#21bf73'], title='Pediatric Asymptomatic Patients', text='age') fig.show()
code
32069765/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr plt.figure(figsize=(10, 4)) sns.heatmap(df.corr(), annot=False, cmap='summer') plt.show()
code
32069765/cell_26
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr df1 = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Pediatric patients who were asymptomatic.csv') df1 = df1.rename(columns={'Unnamed: 0': 'unnamed1', 'Asymptomatic Proportion': 'asymptomatic1', 'Age': 'age'}) fig=sns.lmplot(x="asymptomatic1", y="unnamed1",data=df1) df1_age = pd.DataFrame({'Date': df1.Date, 'age': df1.age}) fig = px.line(df1_age, x='Date', y='age', title='Pediatric Asymptomatic Patients ') fig = px.bar(df1, x='Date', y='age', color_discrete_sequence=['#21bf73'], title='Pediatric Asymptomatic Patients', text='age') fig.show() fig = px.line(df1, x='Date', y='asymptomatic1', color_discrete_sequence=['#ff2e63'], title='Pediatric Asymptomatic Patients', text='asymptomatic1') fig.show()
code
32069765/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df.head()
code
32069765/cell_19
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df1 = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Pediatric patients who were asymptomatic.csv') df1.head()
code
32069765/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objs as go import plotly.offline as py import plotly.express as px import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32069765/cell_18
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr dfmodel = df.copy() for col in dfmodel.columns[dfmodel.dtypes == 'object']: le = LabelEncoder() dfmodel[col] = dfmodel[col].astype(str) le.fit(dfmodel[col]) dfmodel[col] = le.transform(dfmodel[col]) df.dtypes
code
32069765/cell_28
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr df1 = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Pediatric patients who were asymptomatic.csv') df1 = df1.rename(columns={'Unnamed: 0': 'unnamed1', 'Asymptomatic Proportion': 'asymptomatic1', 'Age': 'age'}) df1_age = pd.DataFrame({'Date': df1.Date, 'age': df1.age}) import networkx as nx df1 = pd.DataFrame(df1['asymptomatic1']).groupby(['asymptomatic1']).size().reset_index() G = nx.from_pandas_edgelist(df1, 'asymptomatic1', 'asymptomatic1', [0]) colors = [] for node in G: if node in df1['asymptomatic1'].unique(): colors.append('green') else: colors.append('lightgreen') labels = df1['asymptomatic1'].value_counts().index size = df1['asymptomatic1'].value_counts() colors = ['#ff2e63', '#3F3FBF'] plt.pie(size, labels=labels, colors=colors, shadow=True, autopct='%1.1f%%', startangle=90) plt.title('Pediatric Asymptomatic Patients', fontsize=20) plt.legend() plt.show()
code
32069765/cell_15
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import seaborn as sns import shap df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr SEED = 99 random.seed(SEED) np.random.seed(SEED) dfmodel = df.copy() for col in dfmodel.columns[dfmodel.dtypes == 'object']: le = LabelEncoder() dfmodel[col] = dfmodel[col].astype(str) le.fit(dfmodel[col]) dfmodel[col] = le.transform(dfmodel[col]) dfmodel.columns = [''.join((c if c.isalnum() else '_' for c in str(x))) for x in dfmodel.columns] X = dfmodel.drop(['unnamed', 'asymptomatic'], axis=1) y = dfmodel['unnamed'] lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.005, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': 2500, 'seed': SEED, 'early_stopping_rounds': 100} K = 5 folds = KFold(K, shuffle=True, random_state=SEED) best_scorecv = 0 best_iteration = 0 for fold, (train_index, test_index) in enumerate(folds.split(X, y)): X_traincv, X_testcv = (X.iloc[train_index], X.iloc[test_index]) y_traincv, y_testcv = (y.iloc[train_index], y.iloc[test_index]) train_data = lgb.Dataset(X_traincv, y_traincv) val_data = lgb.Dataset(X_testcv, y_testcv) LGBM = lgb.train(lgb_params, train_data, valid_sets=[train_data, val_data], verbose_eval=250) best_scorecv += LGBM.best_score['valid_1']['auc'] best_iteration += LGBM.best_iteration best_scorecv /= K best_iteration /= K lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.05, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': round(best_iteration), 'seed': SEED, 'early_stopping_rounds': None} train_data_final = lgb.Dataset(X, y) LGBM = lgb.train(lgb_params, train_data) explainer = shap.TreeExplainer(LGBM) shap_values = explainer.shap_values(X)
code
32069765/cell_16
[ "text_plain_output_1.png" ]
from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import seaborn as sns import shap df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr SEED = 99 random.seed(SEED) np.random.seed(SEED) dfmodel = df.copy() for col in dfmodel.columns[dfmodel.dtypes == 'object']: le = LabelEncoder() dfmodel[col] = dfmodel[col].astype(str) le.fit(dfmodel[col]) dfmodel[col] = le.transform(dfmodel[col]) dfmodel.columns = [''.join((c if c.isalnum() else '_' for c in str(x))) for x in dfmodel.columns] X = dfmodel.drop(['unnamed', 'asymptomatic'], axis=1) y = dfmodel['unnamed'] lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.005, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': 2500, 'seed': SEED, 'early_stopping_rounds': 100} K = 5 folds = KFold(K, shuffle=True, random_state=SEED) best_scorecv = 0 best_iteration = 0 for fold, (train_index, test_index) in enumerate(folds.split(X, y)): X_traincv, X_testcv = (X.iloc[train_index], X.iloc[test_index]) y_traincv, y_testcv = (y.iloc[train_index], y.iloc[test_index]) train_data = lgb.Dataset(X_traincv, y_traincv) val_data = lgb.Dataset(X_testcv, y_testcv) LGBM = lgb.train(lgb_params, train_data, valid_sets=[train_data, val_data], verbose_eval=250) best_scorecv += LGBM.best_score['valid_1']['auc'] best_iteration += LGBM.best_iteration best_scorecv /= K best_iteration /= K lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.05, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': round(best_iteration), 'seed': SEED, 'early_stopping_rounds': None} train_data_final = lgb.Dataset(X, y) LGBM = lgb.train(lgb_params, train_data) explainer = shap.TreeExplainer(LGBM) shap_values = explainer.shap_values(X) shap.summary_plot(shap_values[1], X, plot_type='bar')
code
32069765/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import seaborn as sns import shap df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr SEED = 99 random.seed(SEED) np.random.seed(SEED) dfmodel = df.copy() for col in dfmodel.columns[dfmodel.dtypes == 'object']: le = LabelEncoder() dfmodel[col] = dfmodel[col].astype(str) le.fit(dfmodel[col]) dfmodel[col] = le.transform(dfmodel[col]) dfmodel.columns = [''.join((c if c.isalnum() else '_' for c in str(x))) for x in dfmodel.columns] X = dfmodel.drop(['unnamed', 'asymptomatic'], axis=1) y = dfmodel['unnamed'] lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.005, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': 2500, 'seed': SEED, 'early_stopping_rounds': 100} K = 5 folds = KFold(K, shuffle=True, random_state=SEED) best_scorecv = 0 best_iteration = 0 for fold, (train_index, test_index) in enumerate(folds.split(X, y)): X_traincv, X_testcv = (X.iloc[train_index], X.iloc[test_index]) y_traincv, y_testcv = (y.iloc[train_index], y.iloc[test_index]) train_data = lgb.Dataset(X_traincv, y_traincv) val_data = lgb.Dataset(X_testcv, y_testcv) LGBM = lgb.train(lgb_params, train_data, valid_sets=[train_data, val_data], verbose_eval=250) best_scorecv += LGBM.best_score['valid_1']['auc'] best_iteration += LGBM.best_iteration best_scorecv /= K best_iteration /= K lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.05, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': round(best_iteration), 'seed': SEED, 'early_stopping_rounds': None} train_data_final = lgb.Dataset(X, y) LGBM = lgb.train(lgb_params, train_data) explainer = shap.TreeExplainer(LGBM) shap_values = explainer.shap_values(X) shap.summary_plot(shap_values[1], X)
code
32069765/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr df1 = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Pediatric patients who were asymptomatic.csv') df1 = df1.rename(columns={'Unnamed: 0': 'unnamed1', 'Asymptomatic Proportion': 'asymptomatic1', 'Age': 'age'}) fig=sns.lmplot(x="asymptomatic1", y="unnamed1",data=df1) df1_age = pd.DataFrame({'Date': df1.Date, 'age': df1.age}) fig = px.line(df1_age, x='Date', y='age', title='Pediatric Asymptomatic Patients ') fig.show()
code
32069765/cell_14
[ "image_output_1.png" ]
from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr SEED = 99 random.seed(SEED) np.random.seed(SEED) dfmodel = df.copy() for col in dfmodel.columns[dfmodel.dtypes == 'object']: le = LabelEncoder() dfmodel[col] = dfmodel[col].astype(str) le.fit(dfmodel[col]) dfmodel[col] = le.transform(dfmodel[col]) dfmodel.columns = [''.join((c if c.isalnum() else '_' for c in str(x))) for x in dfmodel.columns] X = dfmodel.drop(['unnamed', 'asymptomatic'], axis=1) y = dfmodel['unnamed'] lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.005, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': 2500, 'seed': SEED, 'early_stopping_rounds': 100} K = 5 folds = KFold(K, shuffle=True, random_state=SEED) best_scorecv = 0 best_iteration = 0 for fold, (train_index, test_index) in enumerate(folds.split(X, y)): X_traincv, X_testcv = (X.iloc[train_index], X.iloc[test_index]) y_traincv, y_testcv = (y.iloc[train_index], y.iloc[test_index]) train_data = lgb.Dataset(X_traincv, y_traincv) val_data = lgb.Dataset(X_testcv, y_testcv) LGBM = lgb.train(lgb_params, train_data, valid_sets=[train_data, val_data], verbose_eval=250) best_scorecv += LGBM.best_score['valid_1']['auc'] best_iteration += LGBM.best_iteration best_scorecv /= K best_iteration /= K lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.05, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': round(best_iteration), 'seed': SEED, 'early_stopping_rounds': None} train_data_final = lgb.Dataset(X, y) LGBM = lgb.train(lgb_params, train_data) print(LGBM)
code
32069765/cell_27
[ "text_html_output_1.png" ]
import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df1 = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Pediatric patients who were asymptomatic.csv') df1 = df1.rename(columns={'Unnamed: 0': 'unnamed1', 'Asymptomatic Proportion': 'asymptomatic1', 'Age': 'age'}) df1_age = pd.DataFrame({'Date': df1.Date, 'age': df1.age}) import networkx as nx df1 = pd.DataFrame(df1['asymptomatic1']).groupby(['asymptomatic1']).size().reset_index() G = nx.from_pandas_edgelist(df1, 'asymptomatic1', 'asymptomatic1', [0]) colors = [] for node in G: if node in df1['asymptomatic1'].unique(): colors.append('green') else: colors.append('lightgreen') nx.draw(nx.from_pandas_edgelist(df1, 'asymptomatic1', 'asymptomatic1', [0]), with_labels=True, node_color=colors)
code
32069765/cell_12
[ "text_html_output_1.png" ]
from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import seaborn as sns df = pd.read_csv('../input/aipowered-literature-review-csvs/kaggle/working/TIE/Proportion of patients who were asymptomatic.csv') df = df.rename(columns={'Unnamed: 0': 'unnamed', 'Asymptomatic Proportion': 'asymptomatic'}) dfcorr = df.corr() dfcorr SEED = 99 random.seed(SEED) np.random.seed(SEED) dfmodel = df.copy() for col in dfmodel.columns[dfmodel.dtypes == 'object']: le = LabelEncoder() dfmodel[col] = dfmodel[col].astype(str) le.fit(dfmodel[col]) dfmodel[col] = le.transform(dfmodel[col]) dfmodel.columns = [''.join((c if c.isalnum() else '_' for c in str(x))) for x in dfmodel.columns] X = dfmodel.drop(['unnamed', 'asymptomatic'], axis=1) y = dfmodel['unnamed'] lgb_params = {'objective': 'binary', 'metric': 'auc', 'n_jobs': -1, 'learning_rate': 0.005, 'num_leaves': 20, 'max_depth': -1, 'subsample': 0.9, 'n_estimators': 2500, 'seed': SEED, 'early_stopping_rounds': 100} K = 5 folds = KFold(K, shuffle=True, random_state=SEED) best_scorecv = 0 best_iteration = 0 for fold, (train_index, test_index) in enumerate(folds.split(X, y)): print('Fold:', fold + 1) X_traincv, X_testcv = (X.iloc[train_index], X.iloc[test_index]) y_traincv, y_testcv = (y.iloc[train_index], y.iloc[test_index]) train_data = lgb.Dataset(X_traincv, y_traincv) val_data = lgb.Dataset(X_testcv, y_testcv) LGBM = lgb.train(lgb_params, train_data, valid_sets=[train_data, val_data], verbose_eval=250) best_scorecv += LGBM.best_score['valid_1']['auc'] best_iteration += LGBM.best_iteration best_scorecv /= K best_iteration /= K print('\n Mean AUC score:', best_scorecv) print('\n Mean best iteration:', best_iteration)
code
128004504/cell_13
[ "text_plain_output_1.png" ]
from keras.callbacks import ModelCheckpoint from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import MultiLabelBinarizer from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model from vit_keras import vit, utils import csv import cv2 as cv import matplotlib.pyplot as plt import numpy as np import os import re X = [] Y = [] input_shape = (96, 96, 3) path_to_subset = f'../input/apparel-images-dataset/' for folder in os.listdir(path_to_subset): for image in os.listdir(os.path.join(path_to_subset, folder)): path_to_image = os.path.join(path_to_subset, folder, image) image = cv.imread(path_to_image) image = cv.resize(image, (input_shape[1], input_shape[0])) label = re.findall('\\w+\\_\\w+', path_to_image)[0].split('_') X.append(image) Y.append(label) X = np.array(X) / 255.0 Y = np.array(Y) mlb = MultiLabelBinarizer() Y = mlb.fit_transform(Y) x, test_x, y, test_y = train_test_split(X, Y, test_size=0.1, stratify=Y, shuffle=True, random_state=1) train_x, val_x, train_y, val_y = train_test_split(x, y, test_size=0.2, stratify=y, shuffle=True, random_state=1) datagen = ImageDataGenerator(rotation_range=45, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, horizontal_flip=True, validation_split=0.2) input_shape = (96, 96, 3) num_classes = Y.shape[1] vit_model = vit.vit_b16(image_size=input_shape[0], activation='softmax', pretrained=True, include_top=False, pretrained_top=False, classes=num_classes, weights='imagenet21k') for layer in vit_model.layers: layer.trainable = False output_layer = Dense(num_classes, activation='sigmoid')(vit_model.output) model = Model(inputs=vit_model.input, outputs=output_layer) checkpoint = ModelCheckpoint('../working/visiontransformermodel.tf', save_best_only=True, monitor='val_loss', verbose=1) batch_size = 64 epochs = 100 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(datagen.flow(train_x, train_y, batch_size=batch_size, subset='training'), validation_data=datagen.flow(train_x, train_y, batch_size=batch_size, subset='validation'), epochs=epochs, callbacks=[checkpoint]) training_acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] filename = '../working/accuracy.csv' with open(filename, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(['Epoch', 'Training Accuracy', 'Validation Accuracy']) for epoch, (train_acc, val_acc) in enumerate(zip(training_acc, val_acc), 1): csvwriter.writerow([epoch, train_acc, val_acc]) training_loss = history.history['loss'] val_loss = history.history['val_loss'] filename = '../working/loss.csv' with open(filename, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(['Epoch', 'loss', 'val_loss']) for epoch, (loss, val_loss) in enumerate(zip(training_loss, val_loss), 1): csvwriter.writerow([epoch, loss, val_loss]) filename = "../working/accuracy.csv" epoch = [] train_acc = [] val_acc = [] with open(filename, 'r') as csvfile: csvreader = csv.reader(csvfile) header = next(csvreader) for row in csvreader: epoch.append(int(row[0])) train_acc.append(float(row[1])) val_acc.append(float(row[2])) fig = plt.figure(figsize=(20,7)) plt.subplot(121) plt.plot(epoch, train_acc, label='acc') plt.plot(epoch, val_acc, label='val_acc') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.grid() plt.legend() plt.show() filename = '../working/loss.csv' epoch = [] train_loss = [] val_loss = [] with open(filename, 'r') as csvfile: csvreader = csv.reader(csvfile) header = next(csvreader) for row in csvreader: epoch.append(int(row[0])) train_loss.append(float(row[1])) val_loss.append(float(row[2])) fig = plt.figure(figsize=(20, 7)) plt.subplot(121) plt.plot(epoch, train_loss, label='loss') plt.plot(epoch, val_loss, label='val_loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.grid() plt.legend() plt.show()
code
128004504/cell_9
[ "image_output_1.png" ]
from keras.callbacks import ModelCheckpoint from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import MultiLabelBinarizer from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model from vit_keras import vit, utils import cv2 as cv import numpy as np import os import re X = [] Y = [] input_shape = (96, 96, 3) path_to_subset = f'../input/apparel-images-dataset/' for folder in os.listdir(path_to_subset): for image in os.listdir(os.path.join(path_to_subset, folder)): path_to_image = os.path.join(path_to_subset, folder, image) image = cv.imread(path_to_image) image = cv.resize(image, (input_shape[1], input_shape[0])) label = re.findall('\\w+\\_\\w+', path_to_image)[0].split('_') X.append(image) Y.append(label) X = np.array(X) / 255.0 Y = np.array(Y) mlb = MultiLabelBinarizer() Y = mlb.fit_transform(Y) x, test_x, y, test_y = train_test_split(X, Y, test_size=0.1, stratify=Y, shuffle=True, random_state=1) train_x, val_x, train_y, val_y = train_test_split(x, y, test_size=0.2, stratify=y, shuffle=True, random_state=1) datagen = ImageDataGenerator(rotation_range=45, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, horizontal_flip=True, validation_split=0.2) input_shape = (96, 96, 3) num_classes = Y.shape[1] vit_model = vit.vit_b16(image_size=input_shape[0], activation='softmax', pretrained=True, include_top=False, pretrained_top=False, classes=num_classes, weights='imagenet21k') for layer in vit_model.layers: layer.trainable = False output_layer = Dense(num_classes, activation='sigmoid')(vit_model.output) model = Model(inputs=vit_model.input, outputs=output_layer) checkpoint = ModelCheckpoint('../working/visiontransformermodel.tf', save_best_only=True, monitor='val_loss', verbose=1) batch_size = 64 epochs = 100 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(datagen.flow(train_x, train_y, batch_size=batch_size, subset='training'), validation_data=datagen.flow(train_x, train_y, batch_size=batch_size, subset='validation'), epochs=epochs, callbacks=[checkpoint]) import csv model.summary() model.save('../working/ViTm.hdf5')
code
128004504/cell_4
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import MultiLabelBinarizer import cv2 as cv import numpy as np import os import re X = [] Y = [] input_shape = (96, 96, 3) path_to_subset = f'../input/apparel-images-dataset/' for folder in os.listdir(path_to_subset): for image in os.listdir(os.path.join(path_to_subset, folder)): path_to_image = os.path.join(path_to_subset, folder, image) image = cv.imread(path_to_image) image = cv.resize(image, (input_shape[1], input_shape[0])) label = re.findall('\\w+\\_\\w+', path_to_image)[0].split('_') X.append(image) Y.append(label) X = np.array(X) / 255.0 Y = np.array(Y) mlb = MultiLabelBinarizer() Y = mlb.fit_transform(Y) x, test_x, y, test_y = train_test_split(X, Y, test_size=0.1, stratify=Y, shuffle=True, random_state=1) train_x, val_x, train_y, val_y = train_test_split(x, y, test_size=0.2, stratify=y, shuffle=True, random_state=1) print(x.shape, test_x.shape, y.shape, test_y.shape) print(train_x.shape, val_x.shape, train_y.shape, val_y.shape) datagen = ImageDataGenerator(rotation_range=45, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, horizontal_flip=True, validation_split=0.2)
code
128004504/cell_6
[ "image_output_1.png" ]
from sklearn.preprocessing import MultiLabelBinarizer from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model from vit_keras import vit, utils import cv2 as cv import numpy as np import os import re X = [] Y = [] input_shape = (96, 96, 3) path_to_subset = f'../input/apparel-images-dataset/' for folder in os.listdir(path_to_subset): for image in os.listdir(os.path.join(path_to_subset, folder)): path_to_image = os.path.join(path_to_subset, folder, image) image = cv.imread(path_to_image) image = cv.resize(image, (input_shape[1], input_shape[0])) label = re.findall('\\w+\\_\\w+', path_to_image)[0].split('_') X.append(image) Y.append(label) X = np.array(X) / 255.0 Y = np.array(Y) mlb = MultiLabelBinarizer() Y = mlb.fit_transform(Y) input_shape = (96, 96, 3) num_classes = Y.shape[1] vit_model = vit.vit_b16(image_size=input_shape[0], activation='softmax', pretrained=True, include_top=False, pretrained_top=False, classes=num_classes, weights='imagenet21k') for layer in vit_model.layers: layer.trainable = False output_layer = Dense(num_classes, activation='sigmoid')(vit_model.output) model = Model(inputs=vit_model.input, outputs=output_layer)
code
128004504/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import matplotlib.pyplot as plt import os import cv2 as cv import re import requests from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split import tensorflow from vit_keras import vit, utils from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint
code
128004504/cell_7
[ "image_output_1.png" ]
from keras.callbacks import ModelCheckpoint from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import MultiLabelBinarizer from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model from vit_keras import vit, utils import cv2 as cv import numpy as np import os import re X = [] Y = [] input_shape = (96, 96, 3) path_to_subset = f'../input/apparel-images-dataset/' for folder in os.listdir(path_to_subset): for image in os.listdir(os.path.join(path_to_subset, folder)): path_to_image = os.path.join(path_to_subset, folder, image) image = cv.imread(path_to_image) image = cv.resize(image, (input_shape[1], input_shape[0])) label = re.findall('\\w+\\_\\w+', path_to_image)[0].split('_') X.append(image) Y.append(label) X = np.array(X) / 255.0 Y = np.array(Y) mlb = MultiLabelBinarizer() Y = mlb.fit_transform(Y) x, test_x, y, test_y = train_test_split(X, Y, test_size=0.1, stratify=Y, shuffle=True, random_state=1) train_x, val_x, train_y, val_y = train_test_split(x, y, test_size=0.2, stratify=y, shuffle=True, random_state=1) datagen = ImageDataGenerator(rotation_range=45, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, horizontal_flip=True, validation_split=0.2) input_shape = (96, 96, 3) num_classes = Y.shape[1] vit_model = vit.vit_b16(image_size=input_shape[0], activation='softmax', pretrained=True, include_top=False, pretrained_top=False, classes=num_classes, weights='imagenet21k') for layer in vit_model.layers: layer.trainable = False output_layer = Dense(num_classes, activation='sigmoid')(vit_model.output) model = Model(inputs=vit_model.input, outputs=output_layer) checkpoint = ModelCheckpoint('../working/visiontransformermodel.tf', save_best_only=True, monitor='val_loss', verbose=1) batch_size = 64 epochs = 100 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(datagen.flow(train_x, train_y, batch_size=batch_size, subset='training'), validation_data=datagen.flow(train_x, train_y, batch_size=batch_size, subset='validation'), epochs=epochs, callbacks=[checkpoint])
code
128004504/cell_3
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MultiLabelBinarizer import cv2 as cv import numpy as np import os import re X = [] Y = [] input_shape = (96, 96, 3) path_to_subset = f'../input/apparel-images-dataset/' for folder in os.listdir(path_to_subset): for image in os.listdir(os.path.join(path_to_subset, folder)): path_to_image = os.path.join(path_to_subset, folder, image) image = cv.imread(path_to_image) image = cv.resize(image, (input_shape[1], input_shape[0])) label = re.findall('\\w+\\_\\w+', path_to_image)[0].split('_') X.append(image) Y.append(label) X = np.array(X) / 255.0 Y = np.array(Y) mlb = MultiLabelBinarizer() Y = mlb.fit_transform(Y) print(mlb.classes_) print(Y[0])
code
128004504/cell_12
[ "text_plain_output_1.png" ]
from keras.callbacks import ModelCheckpoint from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.preprocessing import MultiLabelBinarizer from tensorflow.keras.layers import Input, Dense from tensorflow.keras.models import Model from vit_keras import vit, utils import csv import cv2 as cv import matplotlib.pyplot as plt import numpy as np import os import re X = [] Y = [] input_shape = (96, 96, 3) path_to_subset = f'../input/apparel-images-dataset/' for folder in os.listdir(path_to_subset): for image in os.listdir(os.path.join(path_to_subset, folder)): path_to_image = os.path.join(path_to_subset, folder, image) image = cv.imread(path_to_image) image = cv.resize(image, (input_shape[1], input_shape[0])) label = re.findall('\\w+\\_\\w+', path_to_image)[0].split('_') X.append(image) Y.append(label) X = np.array(X) / 255.0 Y = np.array(Y) mlb = MultiLabelBinarizer() Y = mlb.fit_transform(Y) x, test_x, y, test_y = train_test_split(X, Y, test_size=0.1, stratify=Y, shuffle=True, random_state=1) train_x, val_x, train_y, val_y = train_test_split(x, y, test_size=0.2, stratify=y, shuffle=True, random_state=1) datagen = ImageDataGenerator(rotation_range=45, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, horizontal_flip=True, validation_split=0.2) input_shape = (96, 96, 3) num_classes = Y.shape[1] vit_model = vit.vit_b16(image_size=input_shape[0], activation='softmax', pretrained=True, include_top=False, pretrained_top=False, classes=num_classes, weights='imagenet21k') for layer in vit_model.layers: layer.trainable = False output_layer = Dense(num_classes, activation='sigmoid')(vit_model.output) model = Model(inputs=vit_model.input, outputs=output_layer) checkpoint = ModelCheckpoint('../working/visiontransformermodel.tf', save_best_only=True, monitor='val_loss', verbose=1) batch_size = 64 epochs = 100 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(datagen.flow(train_x, train_y, batch_size=batch_size, subset='training'), validation_data=datagen.flow(train_x, train_y, batch_size=batch_size, subset='validation'), epochs=epochs, callbacks=[checkpoint]) training_acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] filename = '../working/accuracy.csv' with open(filename, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(['Epoch', 'Training Accuracy', 'Validation Accuracy']) for epoch, (train_acc, val_acc) in enumerate(zip(training_acc, val_acc), 1): csvwriter.writerow([epoch, train_acc, val_acc]) training_loss = history.history['loss'] val_loss = history.history['val_loss'] filename = '../working/loss.csv' with open(filename, 'w', newline='') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(['Epoch', 'loss', 'val_loss']) for epoch, (loss, val_loss) in enumerate(zip(training_loss, val_loss), 1): csvwriter.writerow([epoch, loss, val_loss]) filename = '../working/accuracy.csv' epoch = [] train_acc = [] val_acc = [] with open(filename, 'r') as csvfile: csvreader = csv.reader(csvfile) header = next(csvreader) for row in csvreader: epoch.append(int(row[0])) train_acc.append(float(row[1])) val_acc.append(float(row[2])) fig = plt.figure(figsize=(20, 7)) plt.subplot(121) plt.plot(epoch, train_acc, label='acc') plt.plot(epoch, val_acc, label='val_acc') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.grid() plt.legend() plt.show()
code
128001783/cell_21
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc ta = df.sort_values(by='Active', ascending=False) ta td = df.sort_values(by='Discharged', ascending=False) td tdh = df.sort_values(by='Deaths', ascending=False) tdh tp = df.sort_values(by='Population', ascending=False) tp
code
128001783/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') ta = df.sort_values(by='Active', ascending=False) ta sns.barplot(x='State/UTs', y='Active', data=ta) plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.title('Active cases satate/uts') plt.show()
code
128001783/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc
code
128001783/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') ta = df.sort_values(by='Active', ascending=False) ta plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') td = df.sort_values(by='Discharged', ascending=False) td plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') tdh = df.sort_values(by='Deaths', ascending=False) tdh plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.pie(x='Deaths', data=tdh[:5], labels=tdh['State/UTs'][:5], autopct='%0.2f%%') plt.title('top 5 deaths state %') plt.show()
code
128001783/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') df.info()
code
128001783/cell_2
[ "image_output_1.png" ]
import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore')
code
128001783/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.pie(x='Total Cases', data=tc[:5], labels=tc['State/UTs'][:5], autopct='%0.2f%%') plt.title('top 5 total cases state %') plt.show()
code
128001783/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') ta = df.sort_values(by='Active', ascending=False) ta plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') td = df.sort_values(by='Discharged', ascending=False) td plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') tdh = df.sort_values(by='Deaths', ascending=False) tdh sns.barplot(x='State/UTs', y='Deaths', data=tdh) plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.title('Deaths cases satate/uts') plt.show()
code
128001783/cell_7
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') df.describe()
code
128001783/cell_18
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc ta = df.sort_values(by='Active', ascending=False) ta td = df.sort_values(by='Discharged', ascending=False) td tdh = df.sort_values(by='Deaths', ascending=False) tdh
code
128001783/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') for col in df.describe(include='object').columns: print(col) print(df[col].unique()) print('--' * 50)
code
128001783/cell_15
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc ta = df.sort_values(by='Active', ascending=False) ta td = df.sort_values(by='Discharged', ascending=False) td
code
128001783/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') ta = df.sort_values(by='Active', ascending=False) ta plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') td = df.sort_values(by='Discharged', ascending=False) td sns.barplot(x='State/UTs', y='Discharged', data=td) plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.title('Discharged cases satate/uts') plt.show()
code
128001783/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') ta = df.sort_values(by='Active', ascending=False) ta plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') td = df.sort_values(by='Discharged', ascending=False) td plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.pie(x='Discharged', data=td[:5], labels=td['State/UTs'][:5], autopct='%0.2f%%') plt.title('top 5 discharged state %') plt.show()
code
128001783/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') ta = df.sort_values(by='Active', ascending=False) ta plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.pie(x='Active', data=ta[:5], labels=ta['State/UTs'][:5], autopct='%0.2f%%') plt.title('top 5 active state %') plt.show()
code
128001783/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc sns.barplot(x='State/UTs', y='Total Cases', data=tc) plt.xticks(rotation=90) plt.ticklabel_format(style='plain', axis='y') plt.title('total cases satate/uts') plt.show()
code
128001783/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') tc = df.sort_values(by='Total Cases', ascending=False) tc ta = df.sort_values(by='Active', ascending=False) ta
code
128001783/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/latest-covid19-india-statewise-data/Latest Covid-19 India Status.csv') df
code
32064609/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd base = pd.read_csv('/kaggle/input/novel-corona-virus-2019-dataset/covid_19_data.csv', parse_dates=['Last Update']) df = base[base['Country/Region'] == 'Brazil'] df['Contamined'] = df['Confirmed'] - df['Deaths'] - df['Recovered']
code
32064609/cell_7
[ "text_html_output_1.png" ]
import pandas as pd base = pd.read_csv('/kaggle/input/novel-corona-virus-2019-dataset/covid_19_data.csv', parse_dates=['Last Update']) df = base[base['Country/Region'] == 'Brazil'] df[df['Last Update'] == '2020-03-08 05:31:00']
code
32064609/cell_5
[ "text_html_output_1.png" ]
import pandas as pd base = pd.read_csv('/kaggle/input/novel-corona-virus-2019-dataset/covid_19_data.csv', parse_dates=['Last Update']) df = base[base['Country/Region'] == 'Brazil'] df
code
322480/cell_9
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 print(titanic['Sex'])
code
322480/cell_4
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') print(titanic.head())
code
322480/cell_11
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S')
code
322480/cell_1
[ "application_vnd.jupyter.stderr_output_9.png", "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_6.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_8.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) titanic = pd.read_csv('../input/train.csv') print(titanic.describe())
code
322480/cell_7
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 print(titanic['Sex'])
code
322480/cell_3
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') print(titanic.describe())
code
322480/cell_10
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 print(titanic['Embarked'].count()) print(titanic['Embarked'].unique())
code
322480/cell_12
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 print(titanic['Embarked'].unique())
code
322480/cell_5
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') print(titanic['Cabin'].count())
code
18161218/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'}) data.shape missing_list = data.columns[data.isna().any()].tolist() data.columns[data.isna().any()].tolist() data.shape data_org = data data_org.shape data.drop(['Alley', 'MasVnrArea', 'PoolQC', 'Fence', 'MiscFeature'], inplace=True, axis=1) data.shape numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] categorical = ['object'] for cols in list(data.select_dtypes(include=numerics).columns.values): data[cols] = data[cols].replace(np.nan, data[cols].median()) for cols in list(data.select_dtypes(include=categorical).columns.values): data[cols] = data[cols].replace(np.nan, 'Not_Available') data.columns[data.isna().any()].tolist() a = data.select_dtypes(include=numerics) a.drop(['Id'], inplace=True, axis=1) df = a.iloc[:, 2:3] df.shape a = data.select_dtypes(include=numerics) df = pd.DataFrame(data=a.iloc[:, 1:2]) import seaborn as sns import matplotlib.pyplot as plt for i in range(0, len(data.select_dtypes(include=numerics))): df = pd.DataFrame(data=data.select_dtypes(include=numerics).iloc[:, i:i + 4]) data.shape
code
18161218/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'}) data.shape missing_list = data.columns[data.isna().any()].tolist() data.columns[data.isna().any()].tolist()
code
18161218/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'}) data.shape data.info(verbose=True)
code
18161218/cell_6
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'}) data.shape data.describe()
code
18161218/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'}) data.shape missing_list = data.columns[data.isna().any()].tolist() data.columns[data.isna().any()].tolist() data.shape
code
18161218/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'}) data.shape missing_list = data.columns[data.isna().any()].tolist() data.columns[data.isna().any()].tolist() data.shape data_org = data data_org.shape data.drop(['Alley', 'MasVnrArea', 'PoolQC', 'Fence', 'MiscFeature'], inplace=True, axis=1) data.shape numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] categorical = ['object'] for cols in list(data.select_dtypes(include=numerics).columns.values): data[cols] = data[cols].replace(np.nan, data[cols].median()) for cols in list(data.select_dtypes(include=categorical).columns.values): data[cols] = data[cols].replace(np.nan, 'Not_Available') data.columns[data.isna().any()].tolist() a = data.select_dtypes(include=numerics) a.drop(['Id'], inplace=True, axis=1) df = a.iloc[:, 2:3] df.shape a = data.select_dtypes(include=numerics) df = pd.DataFrame(data=a.iloc[:, 1:2]) import seaborn as sns import matplotlib.pyplot as plt for i in range(0, len(data.select_dtypes(include=numerics))): df = pd.DataFrame(data=data.select_dtypes(include=numerics).iloc[:, i:i + 4]) sns.boxplot(pd.melt(df)) plt.show()
code