path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
18161218/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import pandas_profiling as pp
import os
print(os.listdir('../input')) | code |
18161218/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas_profiling as pp
data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'})
data.shape
profile = pp.ProfileReport(data)
profile.to_file('HousingSales.html')
pp.ProfileReport(data) | code |
18161218/cell_18 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'})
data.shape
missing_list = data.columns[data.isna().any()].tolist()
data.columns[data.isna().any()].tolist()
data.shape
data_org = data
data_org.shape
data.drop(['Alley', 'MasVnrArea', 'PoolQC', 'Fence', 'MiscFeature'], inplace=True, axis=1)
data.shape
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
categorical = ['object']
for cols in list(data.select_dtypes(include=numerics).columns.values):
data[cols] = data[cols].replace(np.nan, data[cols].median())
for cols in list(data.select_dtypes(include=categorical).columns.values):
data[cols] = data[cols].replace(np.nan, 'Not_Available')
data.columns[data.isna().any()].tolist()
a = data.select_dtypes(include=numerics)
a.drop(['Id'], inplace=True, axis=1)
df = a.iloc[:, 2:3]
df.shape
a = data.select_dtypes(include=numerics)
df = pd.DataFrame(data=a.iloc[:, 1:2])
sns.boxplot(pd.melt(df)) | code |
18161218/cell_16 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'})
data.shape
missing_list = data.columns[data.isna().any()].tolist()
data.columns[data.isna().any()].tolist()
data.shape
data_org = data
data_org.shape
data.drop(['Alley', 'MasVnrArea', 'PoolQC', 'Fence', 'MiscFeature'], inplace=True, axis=1)
data.shape
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
categorical = ['object']
for cols in list(data.select_dtypes(include=numerics).columns.values):
data[cols] = data[cols].replace(np.nan, data[cols].median())
for cols in list(data.select_dtypes(include=categorical).columns.values):
data[cols] = data[cols].replace(np.nan, 'Not_Available')
data.columns[data.isna().any()].tolist()
a = data.select_dtypes(include=numerics)
a.drop(['Id'], inplace=True, axis=1)
df = a.iloc[:, 2:3]
df.shape | code |
18161218/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'})
data.shape | code |
18161218/cell_17 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'})
data.shape
missing_list = data.columns[data.isna().any()].tolist()
data.columns[data.isna().any()].tolist()
data.shape
data_org = data
data_org.shape
data.drop(['Alley', 'MasVnrArea', 'PoolQC', 'Fence', 'MiscFeature'], inplace=True, axis=1)
data.shape
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
categorical = ['object']
for cols in list(data.select_dtypes(include=numerics).columns.values):
data[cols] = data[cols].replace(np.nan, data[cols].median())
for cols in list(data.select_dtypes(include=categorical).columns.values):
data[cols] = data[cols].replace(np.nan, 'Not_Available')
data.columns[data.isna().any()].tolist()
a = data.select_dtypes(include=numerics)
a.drop(['Id'], inplace=True, axis=1)
df = a.iloc[:, 2:3]
df.shape
sns.boxplot(df)
plt.show() | code |
18161218/cell_14 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'})
data.shape
missing_list = data.columns[data.isna().any()].tolist()
data.columns[data.isna().any()].tolist()
data.shape
data_org = data
data_org.shape
data.drop(['Alley', 'MasVnrArea', 'PoolQC', 'Fence', 'MiscFeature'], inplace=True, axis=1)
data.shape
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
categorical = ['object']
for cols in list(data.select_dtypes(include=numerics).columns.values):
data[cols] = data[cols].replace(np.nan, data[cols].median())
for cols in list(data.select_dtypes(include=categorical).columns.values):
data[cols] = data[cols].replace(np.nan, 'Not_Available')
data.columns[data.isna().any()].tolist() | code |
18161218/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv', dtype={'YearBuilt': 'str', 'YrSold': 'str', 'GarageYrBlt': 'str', 'YearRemodAdd': 'str'})
data.shape
missing_list = data.columns[data.isna().any()].tolist()
data.columns[data.isna().any()].tolist()
data.shape
data_org = data
data_org.shape
data.drop(['Alley', 'MasVnrArea', 'PoolQC', 'Fence', 'MiscFeature'], inplace=True, axis=1)
data.shape | code |
2021553/cell_13 | [
"text_html_output_1.png"
] | from pandas.io.json import json_normalize
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
with open('../input/matches.txt') as file:
CR = [x.strip() for x in file.readlines()]
deserialize_cr = [json_normalize(eval(r1)) for r1 in CR[0:10000]]
df_cr = pd.concat(deserialize_cr, ignore_index=True)
Left_Troops = list(np.hstack([[x[0] for x in left_deck] for left_deck in df_cr['players.left.deck']]))
Right_Troops = list(np.hstack([[x[0] for x in right_deck] for right_deck in df_cr['players.right.deck']]))
distinct_troops = set(np.hstack([Left_Troops, Right_Troops]))
len(distinct_troops)
RightArmy_colNames = np.hstack([['right_troop_' + str(i + 1) for i in range(8)], ['right_troop_count_' + str(i + 1) for i in range(8)]])
LeftArmy_colNames = np.hstack([['left_troop_' + str(i + 1) for i in range(8)], ['left_troop_count_' + str(i + 1) for i in range(8)]])
RightArmy = pd.DataFrame(data=[np.hstack([[army[0] for army in x], [army[1] for army in x]]) for x in df_cr['players.right.deck']], columns=RightArmy_colNames)
LeftArmy = pd.DataFrame(data=[np.hstack([[army[0] for army in x], [army[1] for army in x]]) for x in df_cr['players.left.deck']], columns=LeftArmy_colNames)
finalCR_data = pd.concat([df_cr, LeftArmy, RightArmy], axis=1, join='inner')
finalCR_data.head() | code |
2021553/cell_9 | [
"text_html_output_1.png"
] | from pandas.io.json import json_normalize
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
with open('../input/matches.txt') as file:
CR = [x.strip() for x in file.readlines()]
deserialize_cr = [json_normalize(eval(r1)) for r1 in CR[0:10000]]
df_cr = pd.concat(deserialize_cr, ignore_index=True)
LD = [len(left_deck) for left_deck in df_cr['players.left.deck']]
RD = [len(right_deck) for right_deck in df_cr['players.right.deck']]
(set(LD), set(RD)) | code |
2021553/cell_11 | [
"text_plain_output_1.png"
] | from pandas.io.json import json_normalize
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
with open('../input/matches.txt') as file:
CR = [x.strip() for x in file.readlines()]
deserialize_cr = [json_normalize(eval(r1)) for r1 in CR[0:10000]]
df_cr = pd.concat(deserialize_cr, ignore_index=True)
Left_Troops = list(np.hstack([[x[0] for x in left_deck] for left_deck in df_cr['players.left.deck']]))
Right_Troops = list(np.hstack([[x[0] for x in right_deck] for right_deck in df_cr['players.right.deck']]))
distinct_troops = set(np.hstack([Left_Troops, Right_Troops]))
len(distinct_troops) | code |
2021553/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2021553/cell_7 | [
"text_plain_output_1.png"
] | from pandas.io.json import json_normalize
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
with open('../input/matches.txt') as file:
CR = [x.strip() for x in file.readlines()]
deserialize_cr = [json_normalize(eval(r1)) for r1 in CR[0:10000]]
df_cr = pd.concat(deserialize_cr, ignore_index=True)
df_cr.head() | code |
2021553/cell_16 | [
"text_plain_output_1.png"
] | from pandas.io.json import json_normalize
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
with open('../input/matches.txt') as file:
CR = [x.strip() for x in file.readlines()]
deserialize_cr = [json_normalize(eval(r1)) for r1 in CR[0:10000]]
df_cr = pd.concat(deserialize_cr, ignore_index=True)
Left_Troops = list(np.hstack([[x[0] for x in left_deck] for left_deck in df_cr['players.left.deck']]))
Right_Troops = list(np.hstack([[x[0] for x in right_deck] for right_deck in df_cr['players.right.deck']]))
distinct_troops = set(np.hstack([Left_Troops, Right_Troops]))
len(distinct_troops)
RightArmy_colNames = np.hstack([['right_troop_' + str(i + 1) for i in range(8)], ['right_troop_count_' + str(i + 1) for i in range(8)]])
LeftArmy_colNames = np.hstack([['left_troop_' + str(i + 1) for i in range(8)], ['left_troop_count_' + str(i + 1) for i in range(8)]])
RightArmy = pd.DataFrame(data=[np.hstack([[army[0] for army in x], [army[1] for army in x]]) for x in df_cr['players.right.deck']], columns=RightArmy_colNames)
LeftArmy = pd.DataFrame(data=[np.hstack([[army[0] for army in x], [army[1] for army in x]]) for x in df_cr['players.left.deck']], columns=LeftArmy_colNames)
finalCR_data = pd.concat([df_cr, LeftArmy, RightArmy], axis=1, join='inner')
finalCR_data.info() | code |
2021553/cell_17 | [
"text_plain_output_1.png"
] | from pandas.io.json import json_normalize
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
with open('../input/matches.txt') as file:
CR = [x.strip() for x in file.readlines()]
deserialize_cr = [json_normalize(eval(r1)) for r1 in CR[0:10000]]
df_cr = pd.concat(deserialize_cr, ignore_index=True)
Left_Troops = list(np.hstack([[x[0] for x in left_deck] for left_deck in df_cr['players.left.deck']]))
Right_Troops = list(np.hstack([[x[0] for x in right_deck] for right_deck in df_cr['players.right.deck']]))
distinct_troops = set(np.hstack([Left_Troops, Right_Troops]))
len(distinct_troops)
RightArmy_colNames = np.hstack([['right_troop_' + str(i + 1) for i in range(8)], ['right_troop_count_' + str(i + 1) for i in range(8)]])
LeftArmy_colNames = np.hstack([['left_troop_' + str(i + 1) for i in range(8)], ['left_troop_count_' + str(i + 1) for i in range(8)]])
RightArmy = pd.DataFrame(data=[np.hstack([[army[0] for army in x], [army[1] for army in x]]) for x in df_cr['players.right.deck']], columns=RightArmy_colNames)
LeftArmy = pd.DataFrame(data=[np.hstack([[army[0] for army in x], [army[1] for army in x]]) for x in df_cr['players.left.deck']], columns=LeftArmy_colNames)
finalCR_data = pd.concat([df_cr, LeftArmy, RightArmy], axis=1, join='inner')
finalCR_data.head() | code |
2021553/cell_5 | [
"text_html_output_1.png"
] | with open('../input/matches.txt') as file:
CR = [x.strip() for x in file.readlines()]
len(CR) | code |
50235721/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
def top20(column):
return data.nlargest(20, column)[['name', column]]
print('Project with the biggest number of supporters (top 20):')
top20('backers') | code |
50235721/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
data['category'].value_counts().plot.bar(figsize=(32, 9), ylabel='Amount').grid() | code |
50235721/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)] | code |
50235721/cell_4 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data.info() | code |
50235721/cell_23 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
def top20(column):
return data.nlargest(20, column)[['name', column]]
duration = data['deadline'] - data['launched']
duration.describe() | code |
50235721/cell_20 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
def top20(column):
return data.nlargest(20, column)[['name', column]]
print('Project with the biggest goal in $ (top 20):')
top20('usd_goal_real') | code |
50235721/cell_6 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data.isnull().sum() | code |
50235721/cell_19 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
def top20(column):
return data.nlargest(20, column)[['name', column]]
print('Project with the most pledged money in $ (top 20):')
top20('usd_pledged_real') | code |
50235721/cell_7 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data.isnull().sum()
data[data['usd pledged'].isnull()].sample(10) | code |
50235721/cell_15 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
data['state'].value_counts().plot.pie(autopct='%1.1f%%', figsize=(16, 9), ylabel='') | code |
50235721/cell_16 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import squarify
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
x = data['currency'].value_counts().keys()
y = list(data['currency'].value_counts())
plt.gcf().set_size_inches(16, 9)
for i in range(len(y)):
plt.annotate(str(y[i]), xy=(x[i], y[i]), ha='center', va='bottom')
sizes = list(data['country'].value_counts())
label = zip(data['country'].value_counts().keys()[:14], list(data['country'].value_counts())[:14])
squarify.plot(sizes=sizes, label=label, alpha=0.6, text_kwargs={'fontsize': 8})
plt.axis('off')
plt.gcf().set_size_inches(16, 9)
plt.show() | code |
50235721/cell_3 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5) | code |
50235721/cell_17 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
print('Days with the most launched projects (top 20):')
data['launched'].value_counts().nlargest(20) | code |
50235721/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
x = data['currency'].value_counts().keys()
y = list(data['currency'].value_counts())
plt.bar(x, y)
plt.gcf().set_size_inches(16, 9)
plt.xlabel('Currency')
plt.ylabel('Amount')
for i in range(len(y)):
plt.annotate(str(y[i]), xy=(x[i], y[i]), ha='center', va='bottom')
plt.show() | code |
50235721/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import squarify
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:,}'.format
data = pd.read_csv('../input/kickstarter-projects/ks-projects-201801.csv', index_col='ID')
data.sample(5)
data['deadline'] = pd.to_datetime(data['deadline'])
data['launched'] = pd.to_datetime(data['launched'])
data['launched'] = data['launched'].dt.date
data['launched'] = pd.to_datetime(data['launched'])
data.isnull().sum()
data = data[pd.notna(data['usd pledged'])]
data[data.duplicated(keep=False)]
data = data.drop_duplicates(subset=['name', 'category', 'deadline', 'launched'], keep='last')
data = data.drop(columns=['usd pledged', 'pledged'])
data['main_category'].value_counts().plot.pie(autopct='%1.1f%%', figsize=(16, 9), ylabel='') | code |
17111721/cell_25 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
print('Training Features shape: ', app_train.shape)
print('Testing Features shape: ', app_test.shape) | code |
17111721/cell_23 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
le = LabelEncoder()
le_count = 0
for col in app_train:
if app_train[col].dtype == 'object':
if len(list(app_train[col].unique())) <= 2:
le.fit(app_train[col])
app_train[col] = le.transform(app_train[col])
app_test[col] = le.transform(app_test[col])
le_count += 1
print(col + ' column was label encoded.')
print('%d columns were label encoded.' % le_count) | code |
17111721/cell_33 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
(app_train['DAYS_EMPLOYED'] / -365.25).describe() | code |
17111721/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
print('Training data shape: ', app_train.shape)
app_train.head() | code |
17111721/cell_29 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_BIRTH'].describe() | code |
17111721/cell_39 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED_ANOM'] = app_train['DAYS_EMPLOYED'] == 365243
app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
app_train['DAYS_EMPLOYED'].plot.hist(title='Days Employment Histogram')
plt.xlabel('Days Employment') | code |
17111721/cell_26 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
print('Training Features shape: ', app_train.shape)
print('Testing Features shape: ', app_test.shape) | code |
17111721/cell_48 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED_ANOM'] = app_train['DAYS_EMPLOYED'] == 365243
app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
correlations = app_train.corr()['TARGET'].sort_values()
plt.style.use('fivethirtyeight')
plt.figure(figsize=(10, 8))
sns.kdeplot(app_train.loc[app_train['TARGET'] == 0, 'DAYS_BIRTH'] / 365, label='target =0')
sns.kdeplot(app_train.loc[app_train['TARGET'] == 1, 'DAYS_BIRTH'] / 365, label='target = 1')
plt.xlabel('Age (years)')
plt.ylabel = 'Density'
plt.title = 'Distribution of Ages' | code |
17111721/cell_41 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED_ANOM'] = app_train['DAYS_EMPLOYED'] == 365243
app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
app_test['DAYS_EMPLOYED_ANOM'] = app_test['DAYS_EMPLOYED'] == 365243
app_test['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
print('There are %d anomalies in the test data out of %d entries' % (app_test['DAYS_EMPLOYED_ANOM'].sum(), len(app_test))) | code |
17111721/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_train['TARGET'].value_counts() | code |
17111721/cell_19 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0) | code |
17111721/cell_50 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED_ANOM'] = app_train['DAYS_EMPLOYED'] == 365243
app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
app_test['DAYS_EMPLOYED_ANOM'] = app_test['DAYS_EMPLOYED'] == 365243
app_test['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
correlations = app_train.corr()['TARGET'].sort_values()
plt.style.use('fivethirtyeight')
plt.ylabel = 'Density'
plt.title = 'Distribution of Ages'
age_data = app_train[['TARGET', 'DAYS_BIRTH']]
age_data['YEARS_BIRTH'] = age_data['DAYS_BIRTH'] / 365
age_data['YEARS_BINNED'] = pd.cut(age_data['YEARS_BIRTH'], bins=np.linspace(20, 70, num=11))
age_groups = age_data.groupby('YEARS_BINNED').mean()
age_groups | code |
17111721/cell_49 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED_ANOM'] = app_train['DAYS_EMPLOYED'] == 365243
app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
app_test['DAYS_EMPLOYED_ANOM'] = app_test['DAYS_EMPLOYED'] == 365243
app_test['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
correlations = app_train.corr()['TARGET'].sort_values()
plt.style.use('fivethirtyeight')
plt.ylabel = 'Density'
plt.title = 'Distribution of Ages'
age_data = app_train[['TARGET', 'DAYS_BIRTH']]
age_data['YEARS_BIRTH'] = age_data['DAYS_BIRTH'] / 365
age_data['YEARS_BINNED'] = pd.cut(age_data['YEARS_BIRTH'], bins=np.linspace(20, 70, num=11))
age_data.head() | code |
17111721/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_train.dtypes.value_counts() | code |
17111721/cell_32 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED'].describe() | code |
17111721/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
print('Testing data shape:', app_test.shape)
app_test.head() | code |
17111721/cell_16 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
missing_values = missing_values_table(app_train)
missing_values.head(20) | code |
17111721/cell_35 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED'].plot.hist(title='Days Employment Histogram')
plt.xlabel('Days Employment') | code |
17111721/cell_43 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
correlations = app_train.corr()['TARGET'].sort_values()
print('Most Positive Correlations:\n', correlations.tail(15))
print('\nMost Negative Correlations:\n', correlations.head(15)) | code |
17111721/cell_31 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
(app_train['DAYS_BIRTH'] / -365.25).describe() | code |
17111721/cell_46 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
app_train['DAYS_EMPLOYED_ANOM'] = app_train['DAYS_EMPLOYED'] == 365243
app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace=True)
correlations = app_train.corr()['TARGET'].sort_values()
plt.style.use('fivethirtyeight')
plt.hist(app_train['DAYS_BIRTH'] / 365, edgecolor='k', bins=25)
plt.title('Age of Client')
plt.xlabel('Age (years)')
plt.ylabel('Count') | code |
17111721/cell_37 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_test = pd.read_csv('../input/application_test.csv')
def missing_values_table(df):
"""
Function to calculate missing values by column
Arguments:
df: dataframe
Output:
miss_val_table_renamed_cols: dataframe with missing values
"""
miss_value = df.isnull().sum()
miss_value_pct = 100 * df.isnull().sum() / len(df)
miss_val_table = pd.concat([miss_value, miss_value_pct], axis=1)
miss_val_table_renamed_cols = miss_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'})
miss_val_table_renamed_cols = miss_val_table_renamed_cols[miss_val_table_renamed_cols.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1)
return miss_val_table_renamed_cols
app_train.dtypes.value_counts()
app_train.select_dtypes('object').apply(pd.Series.nunique, axis=0)
app_train = pd.get_dummies(app_train)
app_test = pd.get_dummies(app_test)
train_labels = app_train['TARGET']
app_train, app_test = app_train.align(app_test, join='inner', axis=1)
app_train['TARGET'] = train_labels
anom = app_train[app_train['DAYS_EMPLOYED'] == 365243]
non_anom = app_train[app_train['DAYS_EMPLOYED'] != 365243]
print('The non-anomalies default on %0.2f%% of loans' % (100 * non_anom['TARGET'].mean()))
print('The anomalies default on %0.2f%% of loans' % (100 * anom['TARGET'].mean()))
print('There are %d anomalous days of employment' % len(anom)) | code |
17111721/cell_12 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
app_train = pd.read_csv('../input/application_train.csv')
app_train['TARGET'].astype(int).plot.hist() | code |
17111721/cell_5 | [
"image_output_1.png"
] | import os
print(os.listdir('../input/')) | code |
90108087/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
pd.set_option('display.max_columns', None)
train_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/train.csv')
test_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/test.csv')
sample_sub = pd.read_csv('/kaggle/input/football-match-probability-prediction/sample_submission.csv')
def number_of_previous_games(row, home):
for i in range(1, 11):
col = f'{home}_team_history_match_date_{i}'
if pd.isna(row[col]):
return i - 1
return i
train_df['number_home_previous_games'] = train_df.apply(lambda row: number_of_previous_games(row, 'home'), axis=1)
train_df['number_away_previous_games'] = train_df.apply(lambda row: number_of_previous_games(row, 'away'), axis=1)
test_df['number_home_previous_games'] = test_df.apply(lambda row: number_of_previous_games(row, 'home'), axis=1)
test_df['number_away_previous_games'] = test_df.apply(lambda row: number_of_previous_games(row, 'away'), axis=1)
train_df['number_home_previous_games'].describe() | code |
90108087/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
pd.set_option('display.max_columns', None)
train_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/train.csv')
test_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/test.csv')
sample_sub = pd.read_csv('/kaggle/input/football-match-probability-prediction/sample_submission.csv') | code |
90108087/cell_23 | [
"text_plain_output_1.png"
] | """
train_df[train_df["number_na10_away_previous_games"]>0]
list_na_columns = []
for index, row in train_df[train_df["number_na10_away_previous_games"]>0].iterrows():
historical_columns_template_home = [x for x in historical_columns_template if x.startswith("away")]
for column in historical_columns_template_home:
if pd.isna(row[column+"_10"]):
list_na_columns.append(column)
""" | code |
90108087/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
pd.set_option('display.max_columns', None)
train_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/train.csv')
test_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/test.csv')
sample_sub = pd.read_csv('/kaggle/input/football-match-probability-prediction/sample_submission.csv')
train_df.describe() | code |
90108087/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
pd.set_option('display.max_columns', None)
train_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/train.csv')
test_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/test.csv')
sample_sub = pd.read_csv('/kaggle/input/football-match-probability-prediction/sample_submission.csv')
def number_of_previous_games(row, home):
for i in range(1, 11):
col = f'{home}_team_history_match_date_{i}'
if pd.isna(row[col]):
return i - 1
return i
train_df['number_home_previous_games'] = train_df.apply(lambda row: number_of_previous_games(row, 'home'), axis=1)
train_df['number_away_previous_games'] = train_df.apply(lambda row: number_of_previous_games(row, 'away'), axis=1)
test_df['number_home_previous_games'] = test_df.apply(lambda row: number_of_previous_games(row, 'home'), axis=1)
test_df['number_away_previous_games'] = test_df.apply(lambda row: number_of_previous_games(row, 'away'), axis=1)
historical_columns_template = list(set(['_'.join(x.split('_')[:-1]) for x in train_df.columns.values.tolist() if x[-1].isnumeric()]))
is_cup_columns = [x for x in historical_columns_template if 'is_cup' in x]
print(is_cup_columns)
for col in is_cup_columns:
for i in range(1, 11):
train_df[col + f'_{i}'].fillna(0, inplace=True)
test_df[col + f'_{i}'].fillna(0, inplace=True) | code |
90108087/cell_19 | [
"text_html_output_1.png"
] | """
train_df[train_df["number_na10_home_previous_games"]>0]
list_na_columns = []
for index, row in train_df[train_df["number_na10_home_previous_games"]>0].iterrows():
historical_columns_template_home = [x for x in historical_columns_template if x.startswith("home")]
for column in historical_columns_template_home:
if pd.isna(row[column+"_10"]):
list_na_columns.append(column)
""" | code |
90108087/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
90108087/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
pd.set_option('display.max_columns', None)
train_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/train.csv')
test_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/test.csv')
sample_sub = pd.read_csv('/kaggle/input/football-match-probability-prediction/sample_submission.csv')
print(train_df.columns.values.tolist()) | code |
90108087/cell_15 | [
"text_plain_output_1.png"
] | """
def count_not_na(row, home):
number_previous_games = row[f"number_{home}_previous_games"]
if number_previous_games!=10:
number_previous_games+=1
else:
return 0
count_notna = 0
historical_columns_template_home = [x for x in historical_columns_template if x.startswith(home)]
for column in historical_columns_template_home:
if pd.notna(row[column+f"_{number_previous_games}"]):
count_notna+=1
return count_notna
def count_na_10(row, home):
number_previous_games = row[f"number_{home}_previous_games"]
if number_previous_games!=10:
return 0
else:
count_na = 0
historical_columns_template_home = [x for x in historical_columns_template if x.startswith(home)]
for column in historical_columns_template_home:
if pd.isna(row[column+f"_{number_previous_games}"]):
count_na+=1
return count_na
train_df["number_notna_home_previous_games"] = train_df.apply(lambda row: count_not_na(row, "home"), axis=1)
train_df["number_notna_away_previous_games"] = train_df.apply(lambda row: count_not_na(row, "away"), axis=1)
train_df["number_na10_home_previous_games"] = train_df.apply(lambda row: count_na_10(row, "home"), axis=1)
train_df["number_na10_away_previous_games"] = train_df.apply(lambda row: count_na_10(row, "away"), axis=1)
""" | code |
90108087/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
pd.set_option('display.max_columns', None)
train_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/train.csv')
test_df = pd.read_csv('/kaggle/input/football-match-probability-prediction/test.csv')
sample_sub = pd.read_csv('/kaggle/input/football-match-probability-prediction/sample_submission.csv')
print(train_df.shape)
print(test_df.shape)
print(sample_sub.shape) | code |
32068788/cell_6 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
import numpy as np
data = pd.read_csv('../input/digit-recognizer/train.csv')
X = data.drop('label', axis=1).values
s = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
one_hot = pd.get_dummies(s)
one_hot['label'] = one_hot.index
data = pd.merge(data, one_hot)
data = data.sample(frac=1)
data = data.drop('label', axis=1)
y = np.array(data[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]].values)
X = np.array(data.drop([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], axis=1).values)
X = X.T
y = y.T
y | code |
32068788/cell_2 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
import numpy as np
data = pd.read_csv('../input/digit-recognizer/train.csv')
X = data.drop('label', axis=1).values
s = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
one_hot = pd.get_dummies(s)
one_hot['label'] = one_hot.index
data = pd.merge(data, one_hot)
data = data.sample(frac=1)
data = data.drop('label', axis=1)
y = np.array(data[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]].values)
X = np.array(data.drop([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], axis=1).values)
X = X.T
y = y.T
print(X.shape)
print(y.shape) | code |
32068788/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068788/cell_7 | [
"text_plain_output_1.png"
] | (106862.31418188661 - 101041.82401718189) / 101041.82401718189 | code |
32068788/cell_3 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import pandas as pd
import numpy as np
data = pd.read_csv('../input/digit-recognizer/train.csv')
X = data.drop('label', axis=1).values
s = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
one_hot = pd.get_dummies(s)
one_hot['label'] = one_hot.index
data = pd.merge(data, one_hot)
data = data.sample(frac=1)
data = data.drop('label', axis=1)
y = np.array(data[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]].values)
X = np.array(data.drop([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], axis=1).values)
X = X.T
y = y.T
import time
np.random.seed(42)
w1 = np.random.rand(32, 784)
b0 = np.ones((32, 42000))
w2 = np.random.rand(10, 32)
b1 = np.ones((10, 42000))
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
alpha = 0.005
loss = []
for i in range(10000):
start = time.time()
alpha = 0.5
x1 = np.tanh(w1 @ X + b0)
x2 = softmax(w2 @ x1 + b1)
if i % 10 == 0:
print('Mean Cross Entropy Loss Loss')
print('Iteration Number :', i)
loss_ = -np.mean(np.sum(np.multiply(y, np.log(x2))))
if i > 0:
if loss_ > loss[len(loss) - 1]:
print('Loss has increased')
alpha = 0.5
elif (loss[len(loss) - 1] - loss_) / loss_ < 0.01:
alpha = 10
print(loss_)
print(alpha)
loss.append(loss_)
delta_2 = np.multiply((x2 - y) / 42000, 1)
delta_1 = np.multiply(w2.T @ delta_2, 1 - np.power(x1, 2))
w1 = w1 - alpha * (delta_1 @ X.T)
b0 = b0 - alpha * delta_1
w2 = w2 - alpha * (delta_2 @ x1.T)
b1 = b1 - alpha * delta_2 | code |
32068788/cell_5 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import time
import pandas as pd
import numpy as np
data = pd.read_csv('../input/digit-recognizer/train.csv')
X = data.drop('label', axis=1).values
s = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
one_hot = pd.get_dummies(s)
one_hot['label'] = one_hot.index
data = pd.merge(data, one_hot)
data = data.sample(frac=1)
data = data.drop('label', axis=1)
y = np.array(data[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]].values)
X = np.array(data.drop([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], axis=1).values)
X = X.T
y = y.T
import time
np.random.seed(42)
w1 = np.random.rand(32, 784)
b0 = np.ones((32, 42000))
w2 = np.random.rand(10, 32)
b1 = np.ones((10, 42000))
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
alpha = 0.005
loss = []
for i in range(10000):
start = time.time()
alpha = 0.5
x1 = np.tanh(w1 @ X + b0)
x2 = softmax(w2 @ x1 + b1)
if i % 10 == 0:
loss_ = -np.mean(np.sum(np.multiply(y, np.log(x2))))
if i > 0:
if loss_ > loss[len(loss) - 1]:
alpha = 0.5
elif (loss[len(loss) - 1] - loss_) / loss_ < 0.01:
alpha = 10
loss.append(loss_)
delta_2 = np.multiply((x2 - y) / 42000, 1)
delta_1 = np.multiply(w2.T @ delta_2, 1 - np.power(x1, 2))
w1 = w1 - alpha * (delta_1 @ X.T)
b0 = b0 - alpha * delta_1
w2 = w2 - alpha * (delta_2 @ x1.T)
b1 = b1 - alpha * delta_2
x2 | code |
88101762/cell_13 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import numpy as np
import os
import tensorflow as tf
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
X_train_raw = X_train_raw.astype('float32')
X_test_raw = X_test_raw.astype('float32')
X_train_raw /= 255
X_test_raw /= 255
y_train = tf.keras.utils.to_categorical(y_train, len(CLASS_NAME))
y_test = tf.keras.utils.to_categorical(y_test, len(CLASS_NAME))
type(X_train_raw[0][0]) | code |
88101762/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import numpy as np
import os
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
y_all = np.array(y_all)
y_all | code |
88101762/cell_4 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import numpy as np
import os
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape | code |
88101762/cell_20 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from sklearn.metrics import classification_report
from tensorflow.keras.layers import Conv2D, MaxPooling2D,GlobalAveragePooling2D
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import keras_tuner as kt
import numpy as np
import os
import tensorflow as tf
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
y_all = np.array(y_all)
y_all
X_train_raw = X_train_raw.astype('float32')
X_test_raw = X_test_raw.astype('float32')
X_train_raw /= 255
X_test_raw /= 255
y_train = tf.keras.utils.to_categorical(y_train, len(CLASS_NAME))
y_test = tf.keras.utils.to_categorical(y_test, len(CLASS_NAME))
BATCH_SIZE = 64
EPOCH = 50
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(224, 224, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(len(CLASS_NAME)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
history = model.fit(X_train_raw, y_train, batch_size=BATCH_SIZE, epochs=EPOCH, validation_data=(X_test_raw, y_test), shuffle=True)
y_pred = model.predict(X_test_raw)
from tensorflow import keras
from tensorflow.keras import layers
import keras_tuner as kt
class MyHyperModel(kt.HyperModel):
def build(self, hp):
model = Sequential()
filter_num = hp.Int('num_filter', min_value=3, max_value=100, step=2)
kernel_num = hp.Int('size_kernal', min_value=3, max_value=10, step=2)
model.add(Conv2D(filter_num, (kernel_num, kernel_num), input_shape=(300, 300, 3)))
model.add(Activation('relu'))
pool_num = hp.Int('size_pool', min_value=2, max_value=10, step=2)
model.add(MaxPooling2D(pool_size=(pool_num, pool_num)))
model.add(Flatten())
model.add(Dense(len(CLASS_NAME)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
return model
def fit(self, hp, model, *args, **kwargs):
return model.fit(*args, shuffle=True, batch_size=hp.Int('size_batch', min_value=10, max_value=100, step=10), epochs=hp.Int('num_epoch', min_value=10, max_value=100, step=10), **kwargs)
tuner = kt.RandomSearch(MyHyperModel(), objective='val_accuracy', max_trials=10)
tuner.search(X_train_raw, y_train_cat, validation_data=(X_test_raw, y_test_cat))
tuner.results_summary() | code |
88101762/cell_2 | [
"text_plain_output_1.png"
] | import os
print(os.listdir('../input/magneticTileDefect')) | code |
88101762/cell_11 | [
"text_plain_output_1.png"
] | print('Shape X_train_raw', X_train_raw.shape)
print('Shape y_train', y_train.shape)
print('Shape X_test_raw', X_test_raw.shape)
print('Shape y_test', y_test.shape) | code |
88101762/cell_7 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import numpy as np
import os
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
type(X_all_raw) | code |
88101762/cell_18 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import array_to_img
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from sklearn.metrics import classification_report
from tensorflow.keras.layers import Conv2D, MaxPooling2D,GlobalAveragePooling2D
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
y_all = np.array(y_all)
y_all
X_train_raw = X_train_raw.astype('float32')
X_test_raw = X_test_raw.astype('float32')
X_train_raw /= 255
X_test_raw /= 255
y_train = tf.keras.utils.to_categorical(y_train, len(CLASS_NAME))
y_test = tf.keras.utils.to_categorical(y_test, len(CLASS_NAME))
BATCH_SIZE = 64
EPOCH = 50
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(224, 224, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(len(CLASS_NAME)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
history = model.fit(X_train_raw, y_train, batch_size=BATCH_SIZE, epochs=EPOCH, validation_data=(X_test_raw, y_test), shuffle=True)
y_pred = model.predict(X_test_raw)
plt.figure(figsize=[20, 8])
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model Accuracy', size=25, pad=20)
plt.ylabel('Accuracy', size=15)
plt.xlabel('Epoch', size=15)
plt.legend(['train', 'test'], loc='upper left')
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss', size=25, pad=20)
plt.ylabel('Loss', size=15)
plt.xlabel('Epoch', size=15)
plt.legend(['train', 'test'], loc='upper left')
plt.show() | code |
88101762/cell_8 | [
"image_output_1.png"
] | from keras.preprocessing.image import array_to_img
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import matplotlib.pyplot as plt
import numpy as np
import os
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
plt.imshow(array_to_img(X_all_raw[99, :])) | code |
88101762/cell_17 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from sklearn.metrics import classification_report
from tensorflow.keras.layers import Conv2D, MaxPooling2D,GlobalAveragePooling2D
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import numpy as np
import os
import tensorflow as tf
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
y_all = np.array(y_all)
y_all
X_train_raw = X_train_raw.astype('float32')
X_test_raw = X_test_raw.astype('float32')
X_train_raw /= 255
X_test_raw /= 255
y_train = tf.keras.utils.to_categorical(y_train, len(CLASS_NAME))
y_test = tf.keras.utils.to_categorical(y_test, len(CLASS_NAME))
BATCH_SIZE = 64
EPOCH = 50
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(224, 224, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(len(CLASS_NAME)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
history = model.fit(X_train_raw, y_train, batch_size=BATCH_SIZE, epochs=EPOCH, validation_data=(X_test_raw, y_test), shuffle=True)
y_pred = model.predict(X_test_raw)
print(classification_report(np.argmax(y_test, axis=-1), np.argmax(y_pred, axis=-1), target_names=CLASS_NAME)) | code |
88101762/cell_14 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import numpy as np
import os
import tensorflow as tf
stored_data_path = '../input/magnetictiledefect'
CLASS_NAME = ['Blowhole', 'Free', 'Break', 'Fray', 'Uneven', 'Crack']
CLASS_NAME_NUM = [0, 1, 2, 3, 4, 5]
file_path = '../input/magneticTileDefect/'
X_all_raw = []
y_all = []
for ani_class in CLASS_NAME:
for filename in os.listdir(file_path + ani_class):
for subfilename in os.listdir(file_path + ani_class + '/' + filename + '/Imgs'):
img = load_img(file_path + ani_class + '/' + filename + '/Imgs/' + subfilename, target_size=(224, 224))
img_array = img_to_array(img)
X_all_raw.append(img_array)
y_all.append(CLASS_NAME.index(ani_class))
X_all_raw = np.array(X_all_raw)
X_all_raw.shape
X_train_raw = X_train_raw.astype('float32')
X_test_raw = X_test_raw.astype('float32')
X_train_raw /= 255
X_test_raw /= 255
y_train = tf.keras.utils.to_categorical(y_train, len(CLASS_NAME))
y_test = tf.keras.utils.to_categorical(y_test, len(CLASS_NAME))
y_train[:8] | code |
2003917/cell_2 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
test_corpus = np.load('../input/preprocessing/test_corp.npy')
train_corpus = np.load('../input/preprocessing/train_corp.npy')
glove_table = pd.read_csv('../input/preprocessing/filled_glove_table.csv', index_col=0)
glove_table.describe() | code |
2003917/cell_7 | [
"text_plain_output_1.png"
] | from hmmlearn import hmm
import numpy as np
import pandas as pd
import warnings
test_corpus = np.load('../input/preprocessing/test_corp.npy')
train_corpus = np.load('../input/preprocessing/train_corp.npy')
glove_table = pd.read_csv('../input/preprocessing/filled_glove_table.csv', index_col=0)
glove_table.loc[['man', 'woman', 'man']].as_matrix().shape
train_sequence = []
train_sequence_lengths = []
for sentence_chunk in train_corpus:
words = [word for word, tag in sentence_chunk]
train_sequence.append(glove_table.loc[words].as_matrix())
train_sequence_lengths.append(len(words))
from hmmlearn import hmm
def hmm_train_model(train_sequence, train_sequence_lengths):
num_hidden_states = 20
num_dims = train_sequence[0].shape[1]
model = hmm.GaussianHMM(n_components=num_hidden_states, covariance_type='spherical', n_iter=10)
start_prob = np.random.rand(num_hidden_states)
start_prob = start_prob / np.sum(start_prob)
model.startprob_ = start_prob
transmat = np.random.rand(num_hidden_states, num_hidden_states)
transmat = transmat / np.sum(transmat, axis=1)
model.transmat_ = transmat
model.means_ = np.random.rand(num_hidden_states, num_dims)
model.covars_ = np.tile(np.identity(num_dims), (num_hidden_states, 1, 1))
return model.fit(np.concatenate(train_sequence), train_sequence_lengths)
import warnings
with warnings.catch_warnings():
warnings.simplefilter('ignore')
model = hmm_train_model(train_sequence[0:10], train_sequence_lengths[0:10])
model | code |
2003917/cell_3 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
test_corpus = np.load('../input/preprocessing/test_corp.npy')
train_corpus = np.load('../input/preprocessing/train_corp.npy')
glove_table = pd.read_csv('../input/preprocessing/filled_glove_table.csv', index_col=0)
glove_table.loc[['man', 'woman', 'man']].as_matrix().shape | code |
74069086/cell_6 | [
"text_plain_output_1.png"
] | start_page = 'https://www.checkthepolice.org/database'
trio.run(main, start_page) | code |
74069086/cell_1 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | pip uninstall -y typing # trouble for gazpacho
pip install asks trio gazpacho | code |
74069086/cell_7 | [
"text_plain_output_1.png"
] | ! zip -r dept_contracts.zip /home/contracts/*.pdf | code |
74069086/cell_8 | [
"text_plain_output_1.png"
] | ! ls -U /home/contracts | head -10 | code |
73083545/cell_20 | [
"text_plain_output_1.png"
] | from functools import partial
from scipy.stats.mstats import winsorize
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import StratifiedKFold
from tabular import TabularTransformer, DataGenerator
from tabular import gelu, Mish, mish
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Flatten, concatenate, Concatenate, Lambda, Dropout, SpatialDropout1D
from tensorflow.keras.layers import Input, Embedding, Reshape, GlobalAveragePooling1D
from tensorflow.keras.layers import Reshape, MaxPooling1D,BatchNormalization, AveragePooling1D, Conv1D
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.models import load_model
from tensorflow.keras.optimizers import Adam, Nadam
from tensorflow.keras.optimizers import SGD, Adam, Nadam
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
X_train = pd.read_csv('../input/30-days-of-ml/train.csv')
X_test = pd.read_csv('../input/30-days-of-ml/test.csv')
y_train = X_train.target
X_train = X_train.set_index('id').drop('target', axis='columns')
X_test = X_test.set_index('id')
y_stratified = pd.cut(y_train.rank(method='first'), bins=10, labels=False)
categoricals = [item for item in X_train.columns if 'cat' in item]
dummies = pd.get_dummies(X_train.append(X_test)[categoricals])
X_train[dummies.columns] = dummies.iloc[:len(X_train), :]
X_test[dummies.columns] = dummies.iloc[len(X_train):, :]
del dummies
important_features = ['cat8_E', 'cont0', 'cont5', 'cont7', 'cont8', 'cat1_A', 'cont2', 'cont13', 'cont3', 'cont10', 'cont1', 'cont9', 'cont11', 'cat1', 'cat8_C', 'cont6', 'cont12', 'cat5', 'cat3_C', 'cont4', 'cat8']
X_train = X_train[important_features]
X_test = X_test[important_features]
numeric_variables = [item for item in X_train.columns if 'cont' in item]
low_card_categoricals = ['cat1', 'cat8_E', 'cat1_A', 'cat8_C', 'cat3_C']
high_card_categoricals = ['cat5', 'cat8']
ordinals = ['cat5', 'cat8']
def tabular_dnn(numeric_variables, categorical_variables=None, categorical_counts=None, feature_selection_dropout=0.2, categorical_dropout=0.1, first_dense=256, second_dense=256, dense_dropout=0.2, activation_type=gelu):
numerical_inputs = Input(shape=(numeric_variables,))
numerical_normalization = BatchNormalization()(numerical_inputs)
numerical_feature_selection = Dropout(feature_selection_dropout)(numerical_normalization)
if categorical_variables is not None:
categorical_inputs = []
categorical_embeddings = []
for category in categorical_variables:
categorical_inputs.append(Input(shape=[1], name=category))
category_counts = categorical_counts[category]
categorical_embeddings.append(Embedding(category_counts + 1, int(np.log1p(category_counts) + 1), name=category + '_embed')(categorical_inputs[-1]))
if len(categorical_embeddings) == 1:
categorical_logits = Flatten()(SpatialDropout1D(categorical_dropout)(categorical_embeddings[0]))
else:
categorical_logits = Concatenate(name='categorical_conc')([Flatten()(SpatialDropout1D(categorical_dropout)(cat_emb)) for cat_emb in categorical_embeddings])
xs = concatenate([numerical_feature_selection, categorical_logits])
else:
xs = numerical_feature_selection
x = Dense(first_dense, activation=activation_type)(xs)
x = Dropout(dense_dropout)(x)
x = Dense(second_dense, activation=activation_type)(x)
x = concatenate([x, xs])
x = Dropout(dense_dropout)(x)
output = Dense(1)(x)
if categorical_variables is not None:
model = Model([numerical_inputs] + categorical_inputs, output)
else:
model = Model([numerical_inputs], output)
return model
# Useful functions
def RMSE(y_true, y_pred):
return tf.py_function(partial(mean_squared_error, squared=False), (y_true, y_pred), tf.double)
def MSE(y_true, y_pred):
return tf.py_function(partial(mean_squared_error, squared=True), (y_true, y_pred), tf.double)
def compile_model(model, loss, metrics, optimizer):
model.compile(loss=loss, metrics=metrics, optimizer=optimizer)
return model
def plot_keras_history(history, measures):
"""
history: Keras training history
measures = list of names of measures
"""
rows = len(measures) // 2 + len(measures) % 2
fig, panels = plt.subplots(rows, 2, figsize=(15, 5))
plt.subplots_adjust(top = 0.99, bottom=0.01, hspace=0.4, wspace=0.2)
try:
panels = [item for sublist in panels for item in sublist]
except:
pass
for k, measure in enumerate(measures):
panel = panels[k]
panel.set_title(measure + ' history')
panel.plot(history.epoch, history.history[measure], label="Train "+measure)
panel.plot(history.epoch, history.history["val_"+measure], label="Validation "+measure)
panel.set(xlabel='epochs', ylabel=measure)
panel.legend()
plt.show(fig)
measure_to_monitor = 'val_RMSE'
modality = 'min'
early_stopping = EarlyStopping(monitor=measure_to_monitor, mode=modality, patience=5, verbose=0)
reduce_lr_on_plateau = ReduceLROnPlateau(monitor=measure_to_monitor, mode=modality, patience=2, factor=0.5, verbose=0)
model_checkpoint = ModelCheckpoint('best.model', monitor=measure_to_monitor, mode=modality, save_best_only=True, verbose=0)
skf = StratifiedKFold(n_splits=Config.folds, shuffle=True, random_state=Config.seed)
score = list()
oof = np.zeros(len(X_train))
best_iteration = list()
test_preds = np.zeros(len(X_test))
for fold, (train_idx, test_idx) in enumerate(skf.split(X_train, y_stratified)):
tb = TabularTransformer(numeric=numeric_variables, ordinal=ordinals, lowcat=low_card_categoricals, highcat=high_card_categoricals)
tb.fit(X_train.iloc[train_idx])
sizes = tb.shape(X_train.iloc[train_idx])
categorical_levels = dict(zip(high_card_categoricals, sizes[1:]))
print(f'Input array sizes: {sizes}')
print(f'Categorical levels: {categorical_levels}\n')
model = tabular_dnn(numeric_variables=sizes[0], categorical_variables=high_card_categoricals, categorical_counts=categorical_levels, feature_selection_dropout=0.0, categorical_dropout=0.0, first_dense=128, second_dense=64, dense_dropout=0.1, activation_type='relu')
model = compile_model(model, loss='mean_squared_error', metrics=[MSE, RMSE], optimizer=Adam(learning_rate=0.001))
train_batch = DataGenerator(X_train.iloc[train_idx], np.array(winsorize(y_train[train_idx], [0.002, 0.0])), tabular_transformer=tb, batch_size=Config.batch_size, shuffle=True)
history = model.fit(train_batch, validation_data=(tb.transform(X_train.iloc[test_idx]), y_train[test_idx]), epochs=Config.epochs, callbacks=[model_checkpoint, reduce_lr_on_plateau, early_stopping], verbose=1)
print('\nFOLD %i' % fold)
plot_keras_history(history, measures=['RMSE', 'MSE'])
best_iteration.append(np.argmin(history.history['val_RMSE']) + 1)
model = load_model('best.model', custom_objects={'gelu': gelu, 'mish': mish, 'MSE': MSE, 'RMSE': RMSE})
preds = model.predict(tb.transform(X_train.iloc[test_idx]), verbose=1, batch_size=1024).flatten()
oof[test_idx] = preds
score.append(mean_squared_error(y_true=y_train[test_idx], y_pred=preds, squared=False))
test_preds += model.predict(tb.transform(X_test[X.columns]), verbose=1, batch_size=1024).flatten()
test_preds /= Config.folds | code |
73083545/cell_6 | [
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np
import pandas as pd
from functools import partial
import matplotlib.pyplot as plt
from scipy.stats.mstats import winsorize
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import OrdinalEncoder
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam, Nadam
from tensorflow.keras.layers import Input, Embedding, Reshape, GlobalAveragePooling1D
from tensorflow.keras.layers import Flatten, concatenate, Concatenate, Lambda, Dropout, SpatialDropout1D
from tensorflow.keras.layers import Reshape, MaxPooling1D, BatchNormalization, AveragePooling1D, Conv1D
from tensorflow.keras.layers import Activation, LeakyReLU
from tensorflow.keras.optimizers import SGD, Adam, Nadam
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.regularizers import l2, l1_l2
from keras.losses import MeanSquaredError
from tensorflow.keras.models import load_model
from tensorflow.keras.utils import get_custom_objects
from tensorflow.keras.layers import Activation, LeakyReLU
from tabular import gelu, Mish, mish
from tabular import TabularTransformer, DataGenerator | code |
130003860/cell_21 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/train.csv')
data.shape
data.isnull().sum()
data.dtypes[data.dtypes == 'object']
data.dtypes[data.dtypes == 'object'].isnull()
data.drop('Id', axis=1, inplace=True)
data.columns | code |
130003860/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/train.csv')
data.shape
data.isnull().sum()
data.dtypes[data.dtypes == 'object']
data.dtypes[data.dtypes == 'object'].isnull()
data.drop('Id', axis=1, inplace=True)
data['EJ'].nunique() | code |
130003860/cell_4 | [
"text_plain_output_1.png"
] | import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore') | code |
130003860/cell_23 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/train.csv')
data.shape
data.isnull().sum()
data.dtypes[data.dtypes == 'object']
data.dtypes[data.dtypes == 'object'].isnull()
data.drop('Id', axis=1, inplace=True)
data.columns
data[['BQ', 'DU', 'EL', 'FC', 'FL', 'FS', 'GL', 'CB', 'CC']].isnull().sum() | code |
130003860/cell_33 | [
"text_plain_output_1.png"
] | (x_train.shape, y_train.shape, x_test.shape, y_test.shape) | code |
130003860/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/train.csv')
data.head() | code |
130003860/cell_39 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
from sklearn.metrics import log_loss
(x_train.shape, y_train.shape, x_test.shape, y_test.shape)
gb = GradientBoostingClassifier(n_estimators=1000, max_depth=9, subsample=0.8, max_features='log2', min_samples_leaf=9, random_state=42)
gb.fit(x_train, y_train)
y_pred = gb.predict(x_test)
log_loss(y_test, y_pred) | code |
130003860/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/train.csv')
data.shape
data.isnull().sum()
data.dtypes[data.dtypes == 'object']
data.dtypes[data.dtypes == 'object'].isnull() | code |
130003860/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/icr-identify-age-related-conditions/train.csv')
data.shape | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.