path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
90108947/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import matplotlib.pylab as plt import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape data_plot = pd.read_csv(data, sep=',', parse_dates=['Date'], index_col='Date') new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data train_data = scaled_data[0:training_data_len, :] X_train = [] Y_train = [] for i in range(60, len(train_data)): X_train.append(train_data[i - 60:i, 0]) Y_train.append(train_data[i, 0]) X_train, Y_train = (np.array(X_train), np.array(Y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, batch_size=1, epochs=1) test_data = scaled_data[training_data_len - 60:, :] X_test = [] Y_test = dataset[training_data_len:, :] for i in range(60, len(test_data)): X_test.append(test_data[i - 60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predictions = model.predict(X_test) predictions = scaler.inverse_transform(predictions) rmse = np.sqrt(np.mean(predictions - Y_test) ** 2) data_2 = df new_df_2 = data_2.filter(['Close']) last_60_days = new_df_2[-60:].values last_60_days_scaled = scaler.transform(last_60_days) X_test_2 = [] X_test_2.append(last_60_days_scaled) X_test_2 = np.array(X_test_2) X_test_2 = np.reshape(X_test_2, (X_test_2.shape[0], X_test_2.shape[1], 1)) final_y_predict = model.predict(X_test_2) final_y_predict = scaler.inverse_transform(final_y_predict) sample_sub = pd.read_csv('/kaggle/input/110-1-ntut-dl-app-hw3/nasdaq_predict.csv') sample_sub['Expected'] = final_y_predict sample_sub.to_csv('submission1.csv', index=False) sample_sub.head()
code
90108947/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.info()
code
90108947/cell_23
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data train_data = scaled_data[0:training_data_len, :] X_train = [] Y_train = [] for i in range(60, len(train_data)): X_train.append(train_data[i - 60:i, 0]) Y_train.append(train_data[i, 0]) X_train, Y_train = (np.array(X_train), np.array(Y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, batch_size=1, epochs=1) test_data = scaled_data[training_data_len - 60:, :] X_test = [] Y_test = dataset[training_data_len:, :] for i in range(60, len(test_data)): X_test.append(test_data[i - 60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predictions = model.predict(X_test) predictions = scaler.inverse_transform(predictions) rmse = np.sqrt(np.mean(predictions - Y_test) ** 2) data_2 = df new_df_2 = data_2.filter(['Close']) last_60_days = new_df_2[-60:].values last_60_days_scaled = scaler.transform(last_60_days) X_test_2 = [] X_test_2.append(last_60_days_scaled) X_test_2 = np.array(X_test_2) X_test_2 = np.reshape(X_test_2, (X_test_2.shape[0], X_test_2.shape[1], 1)) final_y_predict = model.predict(X_test_2) final_y_predict = scaler.inverse_transform(final_y_predict) print(final_y_predict)
code
90108947/cell_20
[ "image_output_1.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data train_data = scaled_data[0:training_data_len, :] X_train = [] Y_train = [] for i in range(60, len(train_data)): X_train.append(train_data[i - 60:i, 0]) Y_train.append(train_data[i, 0]) X_train, Y_train = (np.array(X_train), np.array(Y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, batch_size=1, epochs=1) test_data = scaled_data[training_data_len - 60:, :] X_test = [] Y_test = dataset[training_data_len:, :] for i in range(60, len(test_data)): X_test.append(test_data[i - 60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predictions = model.predict(X_test) predictions = scaler.inverse_transform(predictions) rmse = np.sqrt(np.mean(predictions - Y_test) ** 2) rmse
code
90108947/cell_6
[ "text_html_output_1.png" ]
import matplotlib.pylab as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df data_plot = pd.read_csv(data, sep=',', parse_dates=['Date'], index_col='Date') plt.figure(figsize=(16, 8)) plt.plot(data_plot['Close']) plt.xlabel('Dates', fontsize=18) plt.ylabel('Closing Prices', fontsize=18) plt.show()
code
90108947/cell_11
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import math import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data train_data = scaled_data[0:training_data_len, :] X_train = [] Y_train = [] for i in range(60, len(train_data)): X_train.append(train_data[i - 60:i, 0]) Y_train.append(train_data[i, 0]) X_train, Y_train = (np.array(X_train), np.array(Y_train)) print(X_train.shape) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape
code
90108947/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90108947/cell_7
[ "text_plain_output_1.png" ]
import math import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len
code
90108947/cell_8
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import math import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data
code
90108947/cell_3
[ "text_plain_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df
code
90108947/cell_24
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pylab as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df data_plot = pd.read_csv(data, sep=',', parse_dates=['Date'], index_col='Date') sample_sub = pd.read_csv('/kaggle/input/110-1-ntut-dl-app-hw3/nasdaq_predict.csv') sample_sub.head()
code
90108947/cell_14
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data train_data = scaled_data[0:training_data_len, :] X_train = [] Y_train = [] for i in range(60, len(train_data)): X_train.append(train_data[i - 60:i, 0]) Y_train.append(train_data[i, 0]) X_train, Y_train = (np.array(X_train), np.array(Y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, batch_size=1, epochs=1)
code
90108947/cell_22
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import matplotlib.pylab as plt import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape data_plot = pd.read_csv(data, sep=',', parse_dates=['Date'], index_col='Date') new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data train_data = scaled_data[0:training_data_len, :] X_train = [] Y_train = [] for i in range(60, len(train_data)): X_train.append(train_data[i - 60:i, 0]) Y_train.append(train_data[i, 0]) X_train, Y_train = (np.array(X_train), np.array(Y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, batch_size=1, epochs=1) test_data = scaled_data[training_data_len - 60:, :] X_test = [] Y_test = dataset[training_data_len:, :] for i in range(60, len(test_data)): X_test.append(test_data[i - 60:i, 0]) X_test = np.array(X_test) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) predictions = model.predict(X_test) predictions = scaler.inverse_transform(predictions) train = df[:training_data_len] valid = df[training_data_len:] valid['Predictions'] = predictions valid
code
90108947/cell_12
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape new_df = df.filter(['Close']) dataset = new_df.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(dataset) scaled_data train_data = scaled_data[0:training_data_len, :] X_train = [] Y_train = [] for i in range(60, len(train_data)): X_train.append(train_data[i - 60:i, 0]) Y_train.append(train_data[i, 0]) X_train, Y_train = (np.array(X_train), np.array(Y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1))
code
90108947/cell_5
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = '/kaggle/input/110-1-ntut-dl-app-hw3/IXIC.csv' df = pd.read_csv(data) df df.shape
code
17115461/cell_6
[ "text_plain_output_1.png" ]
import os import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' print(os.listdir(test_dir))
code
17115461/cell_8
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' from tensorflow.keras.preprocessing.image import ImageDataGenerator image_width, image_height = (150, 150) train_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) train_generator = train_datagen.flow_from_directory(train_dir, batch_size=128, class_mode='categorical', target_size=(image_width, image_height)) test_generator = test_datagen.flow_from_directory(test_dir, batch_size=128, class_mode='categorical', target_size=(image_width, image_height))
code
17115461/cell_15
[ "text_plain_output_1.png" ]
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.layers import Dropout, Flatten, Dense, BatchNormalization from tensorflow.keras.preprocessing.image import ImageDataGenerator import os import tensorflow as tf import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' from tensorflow.keras.preprocessing.image import ImageDataGenerator image_width, image_height = (150, 150) train_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) train_generator = train_datagen.flow_from_directory(train_dir, batch_size=128, class_mode='categorical', target_size=(image_width, image_height)) test_generator = test_datagen.flow_from_directory(test_dir, batch_size=128, class_mode='categorical', target_size=(image_width, image_height)) from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary() import tensorflow as tf from tensorflow.keras.layers import Dropout, Flatten, Dense, BatchNormalization model_using_vgg16 = tf.keras.models.Sequential([vgg16, Flatten(), Dense(512, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(64, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(6, activation='softmax')]) model_using_vgg16.summary() model_using_vgg16.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) history = model_using_vgg16.fit_generator(train_generator, validation_data=test_generator, epochs=10)
code
17115461/cell_3
[ "text_plain_output_1.png" ]
import os import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) list_files('../input')
code
17115461/cell_17
[ "text_plain_output_1.png" ]
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.layers import Dropout, Flatten, Dense, BatchNormalization from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import os import tensorflow as tf import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' test_dir = '../input/seg_test/seg_test/' from tensorflow.keras.preprocessing.image import ImageDataGenerator image_width, image_height = (150, 150) train_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) train_generator = train_datagen.flow_from_directory(train_dir, batch_size=128, class_mode='categorical', target_size=(image_width, image_height)) test_generator = test_datagen.flow_from_directory(test_dir, batch_size=128, class_mode='categorical', target_size=(image_width, image_height)) from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary() import tensorflow as tf from tensorflow.keras.layers import Dropout, Flatten, Dense, BatchNormalization model_using_vgg16 = tf.keras.models.Sequential([vgg16, Flatten(), Dense(512, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(64, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(6, activation='softmax')]) model_using_vgg16.summary() model_using_vgg16.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) history = model_using_vgg16.fit_generator(train_generator, validation_data=test_generator, epochs=10) import matplotlib.pyplot as plt acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.title('Training and validation accuracy') plt.figure() plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.title('Training and validation loss')
code
17115461/cell_10
[ "text_plain_output_1.png" ]
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary()
code
17115461/cell_12
[ "text_plain_output_1.png" ]
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.layers import Dropout, Flatten, Dense, BatchNormalization import tensorflow as tf from tensorflow.keras.applications.vgg16 import VGG16 vgg16 = VGG16(input_shape=(image_width, image_height, 3), include_top=False, weights='imagenet') for layer in vgg16.layers: layer.trainable = False vgg16.summary() import tensorflow as tf from tensorflow.keras.layers import Dropout, Flatten, Dense, BatchNormalization model_using_vgg16 = tf.keras.models.Sequential([vgg16, Flatten(), Dense(512, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(64, activation='relu'), BatchNormalization(), Dropout(0.5), Dense(6, activation='softmax')]) model_using_vgg16.summary()
code
17115461/cell_5
[ "text_plain_output_1.png" ]
import os import os def list_files(startpath): for root, dirs, files in os.walk(startpath): level = root.replace(startpath, '').count(os.sep) indent = ' ' * 4 * level subindent = ' ' * 4 * (level + 1) train_dir = '../input/seg_train/seg_train/' print(os.listdir(train_dir))
code
330287/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl plus = sum(df_train.loc[:, 'outcome'] == 0) minus = sum(df_train.loc[:, 'outcome'] == 1) def data_cleanser(data, is_train): def adjust_dates(dates, diff): return dates - diff if is_train: df_dates = data['date_x'] diff = df_dates.max() - df_dates.min() diff2 = df_dates.max() - pd.Timestamp(pd.datetime.now().date()) diffdays = diff + diff2 data['adj_date'] = adjust_dates(data['date_x'], diffdays) return data.drop(['date_x'], axis=1) data_cleanser(df_train, True).head()
code
330287/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl df_train.head(2) plus = sum(df_train.loc[:, 'outcome'] == 0) minus = sum(df_train.loc[:, 'outcome'] == 1) print(plus, minus) print(df_train['outcome'].unique())
code
330287/cell_7
[ "image_output_1.png" ]
import brewer2mpl import matplotlib.pyplot as plt set2 = brewer2mpl.get_map('Set2', 'qualitative', 8).mpl_colors font = {'family': 'sans-serif', 'color': 'teal', 'weight': 'bold', 'size': 18} plt.rc('font', family='serif') plt.rc('font', size=16) plt.rc('font', weight='bold') plt.style.use('seaborn-dark-palette') print(plt.style.available) fig_size = plt.rcParams['figure.figsize'] fig_size[0] = 6 fig_size[1] = 6 plt.rcParams['figure.figsize'] = fig_size
code
330287/cell_8
[ "text_html_output_1.png" ]
from matplotlib import rcParams import brewer2mpl import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl plus = sum(df_train.loc[:, 'outcome'] == 0) minus = sum(df_train.loc[:, 'outcome'] == 1) set2 = brewer2mpl.get_map('Set2', 'qualitative', 8).mpl_colors font = {'family': 'sans-serif', 'color': 'teal', 'weight': 'bold', 'size': 18} plt.rc('font', family='serif') plt.rc('font', size=16) plt.rc('font', weight='bold') plt.style.use('seaborn-dark-palette') fig_size = plt.rcParams['figure.figsize'] fig_size[0] = 6 fig_size[1] = 6 plt.rcParams['figure.figsize'] = fig_size from matplotlib import rcParams rcParams['font.size'] = 12 rcParams['text.color'] = 'black' piechart = plt.pie((minus, plus), labels=('plus', 'minus'), shadow=False, colors=('teal', 'crimson'), explode=(0.08, 0.08), startangle=90, autopct='%1.1f%%') plt.axis('equal') plt.title('Animal Shelter Outcome Train Data', y=1.08, fontdict=font) plt.tight_layout() plt.savefig('TWP-Status-Groups-train.png', bbox_inches='tight')
code
330287/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl for d in ['date_x', 'date_y']: print('Start of ' + d + ': ' + str(df_train[d].min().date())) print(' End of ' + d + ': ' + str(df_train[d].max().date())) print('Range of ' + d + ': ' + str(df_train[d].max() - df_train[d].min()) + '\n')
code
74049529/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74049529/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from datetime import datetime import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) date1str = str(input('Enter date(yyyy-mm-dd): ')) date1 = datetime.strptime(date1str, '%Y-%m-%d') date1after = date1 + pd.Timedelta(days=1) print('Date after ', date1, ' is ', date1after) date1before = date1 - pd.Timedelta(days=1) print('Date before ', date1, ' is ', date1before) date2str = str(input('Enter date(yyyy-mm-dd): ')) date2 = datetime.strptime(date2str, '%Y-%m-%d') print('Difference between ', date2, ' and ', date1, ' is ', date2 - date1)
code
88093705/cell_23
[ "text_plain_output_1.png" ]
from IPython.display import Markdown import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.shape data.info()
code
88093705/cell_20
[ "text_plain_output_1.png" ]
from IPython.display import Markdown import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.shape
code
88093705/cell_50
[ "application_vnd.jupyter.stderr_output_2.png", "text_html_output_4.png", "application_vnd.jupyter.stderr_output_4.png", "text_html_output_2.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_html_output_1.png", "image_output_6.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "text_html_output_3.png" ]
from IPython.core.display import HTML from IPython.display import Markdown from scipy.stats import norm, skew, kurtosis import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as stats import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.shape """Type des données de nos variables.""" bold('**Type des données de nos variables:**') listeInt = '' listeFloat = '' listeObj = '' for col in data.columns: if data[col].dtype in ['float64']: listeFloat += col + ',' if data[col].dtype in ['int64']: listeInt += col + ',' if data[col].dtype in ['object']: listeObj += col + ',' data1 = data.iloc[:, 2:] categorical_indexes = [0, 1, 3, 4] + list(range(6, 20)) data1.iloc[:, categorical_indexes] = data1.iloc[:, categorical_indexes].astype('category') def graph_unitaire(data1,nom_colonne,proba): f, (ax1, ax2) = plt.subplots(1,2,figsize=(20,8)) sns.kdeplot(data1[nom_colonne],ax = ax1,color ='blue',shade=True, label=("Skewness : %.2f"%(data1[nom_colonne].skew()), "Kurtosis: %.2f"%(data1[nom_colonne].kurtosis()))) ax1.set_xlabel(nom_colonne,color='black',fontsize=12) ax1.set_title(nom_colonne + ' Kdeplot',fontsize=14) ax1.axvline(data1[nom_colonne].mean() , color ='g',linestyle = '--') ax1.legend(loc ='upper right',fontsize=12,ncol=2) sns.distplot(data1[nom_colonne] , fit=norm,ax = ax2); ax2.set_xlabel(nom_colonne,color='black',fontsize=12) ax2.set_title(nom_colonne + ' distribution',fontsize=14) ax2.axvline(data1[nom_colonne].mean() , color ='g',linestyle = '--') (mu, sigma) = norm.fit(data1[nom_colonne]) ax2.legend(['Normal dist. ($\mu=$ {:.2f} et $\sigma=$ {:.2f} )'.format(mu, sigma)],loc ='upper right',fontsize=12,ncol=2) sns.despine() plt.show() if proba==True: graph_duo(data1,nom_colonne) return(data1[nom_colonne].skew(),data1[nom_colonne].kurtosis()) def graph_duo(data1,nom_colonne): #Get also the QQ-plot fig = plt.figure() res = stats.probplot(data1[nom_colonne], plot=plt) plt.show() """ On parcours les différentes colonnes """ for col in data1.columns: ' Uniquement les colonnes numériques ' if data1[col].dtype in ['int64', 'float64']: display(HTML('<strong>Analyse de la variable ' + col + '</strong>')) skew1, kurto1 = graph_unitaire(data1, col, True)
code
88093705/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88093705/cell_32
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from IPython.display import Markdown import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.shape """Type des données de nos variables.""" bold('**Type des données de nos variables:**') listeInt = '' listeFloat = '' listeObj = '' for col in data.columns: if data[col].dtype in ['float64']: listeFloat += col + ',' if data[col].dtype in ['int64']: listeInt += col + ',' if data[col].dtype in ['object']: listeObj += col + ',' display('Type flottant : ' + listeFloat) display('Type Int : ' + listeInt) display('Type Objet : ' + listeObj)
code
88093705/cell_15
[ "text_html_output_1.png" ]
from IPython.display import Markdown import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.tail()
code
88093705/cell_38
[ "text_plain_output_1.png" ]
from IPython.display import Markdown import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.shape """Type des données de nos variables.""" bold('**Type des données de nos variables:**') listeInt = '' listeFloat = '' listeObj = '' for col in data.columns: if data[col].dtype in ['float64']: listeFloat += col + ',' if data[col].dtype in ['int64']: listeInt += col + ',' if data[col].dtype in ['object']: listeObj += col + ',' data1 = data.iloc[:, 2:] categorical_indexes = [0, 1, 3, 4] + list(range(6, 20)) data1.iloc[:, categorical_indexes] = data1.iloc[:, categorical_indexes].astype('category') data1.info()
code
88093705/cell_46
[ "text_html_output_1.png" ]
from IPython.display import Markdown import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.shape """Type des données de nos variables.""" bold('**Type des données de nos variables:**') listeInt = '' listeFloat = '' listeObj = '' for col in data.columns: if data[col].dtype in ['float64']: listeFloat += col + ',' if data[col].dtype in ['int64']: listeInt += col + ',' if data[col].dtype in ['object']: listeObj += col + ',' data1 = data.iloc[:, 2:] categorical_indexes = [0, 1, 3, 4] + list(range(6, 20)) data1.iloc[:, categorical_indexes] = data1.iloc[:, categorical_indexes].astype('category') data1.describe().transpose()
code
88093705/cell_14
[ "text_html_output_1.png" ]
from IPython.display import Markdown import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns """Personnalisation de la visualisation""" plt.style.use('bmh') sns.set_style({'axes.grid': False}) 'On peut utiliser le gras , souligné etc avec markedown' from IPython.display import Markdown def bold(string): pass pd.options.display.max_rows = 150 df1 = pd.read_csv('../input/projet-data-mining/test.csv') df2 = pd.read_csv('../input/projet-data-mining/train.csv') data = pd.concat([df1, df2], axis=0, ignore_index=True) data.head()
code
326100/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures[global_temperatures.index.year > 2000]['LandAverageTemperature'].plot(figsize=(13, 7))
code
326100/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures.groupby(global_temperatures.index.year)['LandAverageTemperature'].mean().plot(figsize=(13, 7))
code
326100/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) from matplotlib import pyplot as plt import seaborn as sbn
code
326100/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) global_temperatures.groupby(global_temperatures.index.year)['LandAverageTemperatureUncertainty'].mean().plot(figsize=(13, 7))
code
326100/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) global_temperatures = pd.read_csv('../input/GlobalTemperatures.csv', infer_datetime_format=True, index_col='dt', parse_dates=['dt']) print(global_temperatures.info())
code
73074503/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape
code
73074503/cell_25
[ "image_output_11.png", "image_output_14.png", "image_output_13.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) object_cols = [col for col in features.columns if 'cat' in col] y.dtype for col in features.select_dtypes('object'): plt.figure() x = features[col].value_counts() features[col].value_counts().plot.pie(autopct=lambda x: str(round(x, 2)) + '%', pctdistance=2, labeldistance=1.4, shadow=True)
code
73074503/cell_33
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
X_train.head()
code
73074503/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) y.dtype plt.figure(figsize=(20, 10)) plt.plot(y.values)
code
73074503/cell_39
[ "text_html_output_1.png" ]
from sklearn.ensemble import BaggingRegressor from sklearn.metrics import mean_squared_error from xgboost import XGBRegressor from sklearn.ensemble import BaggingRegressor regr = BaggingRegressor(base_estimator=XGBRegressor(), n_estimators=10, random_state=0).fit(X_train, y_train) preds_valid = regr.predict(X_valid) print(mean_squared_error(y_valid, preds_valid, squared=False))
code
73074503/cell_19
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) y.dtype
code
73074503/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.head()
code
73074503/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) plt.figure(figsize=(20, 10)) sns.heatmap(train.isna(), cbar=False)
code
73074503/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
from xgboost import XGBRegressor params_xgb = {'lambda': 0.7044156083795233, 'alpha': 9.681476940192473, 'colsample_bytree': 0.3, 'subsample': 0.8, 'learning_rate': 0.015, 'max_depth': 3, 'min_child_weight': 235, 'random_state': 48, 'n_estimators': 30000} XGBRegressor_model = XGBRegressor(**params_xgb) 'XGBRegressor_model.fit(X_train, y_train, early_stopping_rounds=200, \n eval_set=[(X_valid, y_valid)], \n verbose=False)\npreds_valid = XGBRegressor_model.predict(X_valid)\nprint(mean_squared_error(y_valid, preds_valid, squared=False))'
code
73074503/cell_43
[ "text_plain_output_1.png" ]
from sklearn.ensemble import BaggingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectKBest, f_classif from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures, StandardScaler from sklearn.tree import DecisionTreeRegressor from xgboost import XGBRegressor preprocessor = make_pipeline(PolynomialFeatures(2, include_bias=False), SelectKBest(f_classif, k=10)) LR_model = make_pipeline(preprocessor, LinearRegression()) RandomForest_model = make_pipeline(preprocessor, RandomForestRegressor()) DecisionTreeRegressor_model = make_pipeline(preprocessor, DecisionTreeRegressor()) from sklearn.ensemble import BaggingRegressor regr = BaggingRegressor(base_estimator=XGBRegressor(), n_estimators=10, random_state=0).fit(X_train, y_train) preds_valid = regr.predict(X_valid) def evaluation(model): model.fit(X_train, y_train) preds_valid = model.predict(X_valid) list_models = {'LR_model': LR_model, 'RandomForest_model': RandomForest_model, 'DecisionTreeRegressor_model': DecisionTreeRegressor_model} for name, model in list_models.items(): print(name) evaluation(model)
code
73074503/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) object_cols = [col for col in features.columns if 'cat' in col] y.dtype for col in features.select_dtypes('object'): print(f'{col:-<50}{features[col].unique()}')
code
73074503/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) object_cols = [col for col in features.columns if 'cat' in col] y.dtype for col in features.select_dtypes('float'): plt.figure() sns.histplot(features[col])
code
73074503/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts()
code
73074503/cell_27
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) object_cols = [col for col in features.columns if 'cat' in col] y.dtype for col in features.select_dtypes('object'): x = features[col].value_counts() sns.clustermap(features.corr(), cbar=True, annot=True)
code
73074503/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.shape train.dtypes.value_counts() y = train['target'] features = train.drop(['target'], axis=1) features.head()
code
1010157/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.info()
code
1010157/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df['PREVAILING_WAGE'].describe()
code
1010157/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.isnull().sum() df[['EMPLOYER_NAME', 'PREVAILING_WAGE']].groupby('EMPLOYER_NAME', as_index=False).mean().sort_values(by='PREVAILING_WAGE', ascending=False).head(20)
code
1010157/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.describe(include=['O'])
code
1010157/cell_16
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.isnull().sum() df.EMPLOYER_NAME.value_counts().head(20).plot(kind='bar')
code
1010157/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.head()
code
1010157/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.isnull().sum() df.YEAR.value_counts().plot(kind='bar')
code
1010157/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.isnull().sum() df.WORKSITE.value_counts().head(20).plot(kind='bar')
code
1010157/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.isnull().sum()
code
1010157/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/h1b_kaggle.csv') df.isnull().sum() df.FULL_TIME_POSITION.value_counts().plot(kind='bar')
code
128019012/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] plt.plot(year, price)
code
128019012/cell_4
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] plt.plot(year, price)
code
128019012/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] plt.ylim(0, 100000) a = pd.read_csv('/kaggle/input/batter/batter.csv') a a=a.head(50) plt.plot(a['avg'], a['strike_rate'], 'o')
code
128019012/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer plt.plot(cricketer['index'], cricketer['RG Sharma'])
code
128019012/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] plt.ylim(0, 100000) a = pd.read_csv('/kaggle/input/batter/batter.csv') a a=a.head(50) plt.scatter(a['avg'], a['strike_rate']) plt.title('analysis of avg and SR of top 50 batsman') plt.xlabel('average') plt.ylabel('strike rate')
code
128019012/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer plt.plot(cricketer['index'], cricketer['RG Sharma']) plt.plot(cricketer['index'], cricketer['V Kohli'])
code
128019012/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer plt.plot(cricketer['index'], cricketer['RG Sharma']) plt.plot(cricketer['index'], cricketer['V Kohli']) plt.title('Rohit Sharma Vs King Kohli') plt.xlabel('Season') plt.ylabel('Runs')
code
128019012/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] plt.plot(year, price) plt.ylim(0, 100000) plt.grid()
code
128019012/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer a = pd.read_csv('/kaggle/input/batter/batter.csv') a
code
128019012/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] price = [46000, 56000, 60000, 54000, 70000, 4500000] year = [2018, 2019, 2020, 2021, 2022, 2023] plt.ylim(0, 100000) a = pd.read_csv('/kaggle/input/batter/batter.csv') a a=a.head(50) characters = ['naruto', 'kagashi', 'pain', 'sakura', 'lee'] dialogue = [5000, 4500, 6500, 350, 650] plt.bar(characters, dialogue)
code
128019012/cell_10
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer plt.plot(cricketer['index'], cricketer['RG Sharma'], color='Green', linestyle='dashed', linewidth=3, marker='o') plt.plot(cricketer['index'], cricketer['V Kohli'], color='Orange', linestyle='dotted', linewidth=2, marker='.', markersize=8) plt.title('Rohit Sharma Vs King Kohli') plt.xlabel('Season') plt.ylabel('Runs')
code
128019012/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd price = [46000, 56000, 60000, 54000, 70000] year = [2018, 2019, 2020, 2021, 2022] cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer plt.plot(cricketer['index'], cricketer['RG Sharma'], color='Green', linestyle='dashed', linewidth=3, marker='o', label='Rohit') plt.plot(cricketer['index'], cricketer['V Kohli'], color='Orange', linestyle='dotted', linewidth=2, marker='.', markersize=8, label='Virat') plt.legend()
code
128019012/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd cricketer = pd.read_csv('/kaggle/input/sharma-kohli/sharma-kohli.csv') cricketer
code
18121674/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from math import exp from sklearn.metrics import accuracy_score from random import randrange import os print(os.listdir('../input'))
code
18121674/cell_8
[ "text_plain_output_1.png" ]
from math import exp from random import randrange from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) diabetes_df = pd.read_csv('../input/diabetes.csv') diabetes_df = diabetes_df.values diabetes_df logistic_model = LogisticRegression() logistic_model.fit(X_train, y_train) predicted = logistic_model.predict(X_test) lr_accuracy = accuracy_score(y_test, predicted) report = classification_report(y_test, predicted) matrix = confusion_matrix(y_test, predicted) def predict(row, coefficients): yhat = coefficients[0] for i in range(len(row) - 1): yhat += coefficients[i + 1] * row[i] return 1.0 / (1.0 + exp(-yhat)) def coefficients_sgd(train, l_rate, n_epoch): coef = [0.0 for i in range(len(train[0]))] for epoch in range(n_epoch): sum_error = 0 for row in train: yhat = predict(row, coef) error = row[-1] - yhat sum_error += error ** 2 coef[0] = coef[0] + l_rate * error * yhat * (1.0 - yhat) for i in range(len(row) - 1): coef[i + 1] = coef[i + 1] + l_rate * error * yhat * (1.0 - yhat) * row[i] return coef def logistic_regression(train, test, l_rate, n_epoch): predictions = [] coef = coefficients_sgd(train, l_rate, n_epoch) for r in test: yhat = predict(r, coef) yhat = round(yhat) predictions.append(yhat) return predictions def accuracy_metric(actual, predicted): correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0 def dataset_minmax(dataset): minmax = list() for i in range(len(dataset[0])): col_values = [row[i] for row in dataset] value_min = min(col_values) value_max = max(col_values) minmax.append([value_min, value_max]) return minmax def normalize_dataset(dataset, minmax): for row in dataset: for i in range(len(row)): row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0]) def cross_validation_split(dataset, n_folds): dataset_split = list() dataset_copy = list(dataset) fold_size = int(len(dataset) / n_folds) for i in range(n_folds): fold = list() while len(fold) < fold_size: index = randrange(len(dataset_copy)) fold.append(dataset_copy.pop(index)) dataset_split.append(fold) return dataset_split def evaluate_algorithm(dataset, algorithm, n_folds, *args): folds = cross_validation_split(dataset, n_folds) scores = list() for i, fold in enumerate(folds): train_set = list(folds) del train_set[i] train_set = sum(train_set, []) test_set = list() for row in fold: row_copy = list(row) test_set.append(row_copy) row_copy[-1] = None predicted = algorithm(train_set, test_set, *args) actual = [row[-1] for row in fold] accuracy = accuracy_metric(actual, predicted) scores.append(accuracy) return scores minmax = dataset_minmax(diabetes_df) normalize_dataset(diabetes_df, minmax) l_rate = 0.3 n_epoch = 100 n_folds = 3 scores = evaluate_algorithm(diabetes_df, logistic_regression, n_folds, l_rate, n_epoch) print('Scores: %s' % scores) print('Mean Accuracy: %.3f%%' % (sum(scores) / float(len(scores))))
code
18121674/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) diabetes_df = pd.read_csv('../input/diabetes.csv') diabetes_df = diabetes_df.values diabetes_df
code
18121674/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix logistic_model = LogisticRegression() logistic_model.fit(X_train, y_train) predicted = logistic_model.predict(X_test) lr_accuracy = accuracy_score(y_test, predicted) print('Logistic Regression Accuracy: {:.2f}%'.format(lr_accuracy * 100)) report = classification_report(y_test, predicted) print(report) matrix = confusion_matrix(y_test, predicted) print(matrix)
code
333798/cell_21
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.decomposition import NMF from sklearn.feature_extraction.text import CountVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] import re fanboy_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in fanboy_space_split for j in i if not '@' in j and (not '#' in j)] about_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in about_space_split for j in i if not '@' in j and (not '#' in j)] from sklearn.feature_extraction.text import CountVectorizer fc_vectorizer = CountVectorizer(stop_words='english', max_features=1000) fanboy_counts = fc_vectorizer.fit_transform(fanboy_text).toarray() ac_vectorizer = CountVectorizer(stop_words='english', max_features=1000) about_counts = ac_vectorizer.fit_transform(about_text).toar from sklearn.decomposition import NMF n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 fanboy_nmf = NMF(n_components=n_topics, random_state=1, alpha=0.1, l1_ratio=0.5).fit(fanboy_counts) about_nmf = NMF(n_components=n_topics, random_state=1, alpha=0.1, l1_ratio=0.5).fit(about_counts)
code
333798/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys()
code
333798/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] print(len(set(fanboy_data['username'])) / len(set(fanboy_handles)), len(set(about_data['username'])) / len(set(about_handles)))
code
333798/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import seaborn as sns import matplotlib from matplotlib import * from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
333798/cell_11
[ "text_plain_output_1.png" ]
import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] fanboy_edges = [(k, j[1:]) for k, i in zip(fanboy_data['username'], fanboy_space_split) for j in i if '@' in j] about_edges = [(k, j[1:]) for k, i in zip(about_data['username'], about_space_split) for j in i if '@' in j] about_graph = nx.Graph() fanboy_graph = nx.Graph() about_graph.add_edges_from(about_edges) fanboy_graph.add_edges_from(fanboy_edges) print(1 / (float(fanboy_graph.order()) / float(fanboy_graph.size()))) print(1 / (float(about_graph.order()) / float(about_graph.size())))
code
333798/cell_16
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] import re fanboy_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in fanboy_space_split for j in i if not '@' in j and (not '#' in j)] about_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in about_space_split for j in i if not '@' in j and (not '#' in j)] from sklearn.feature_extraction.text import CountVectorizer fc_vectorizer = CountVectorizer(stop_words='english', max_features=1000) fanboy_counts = fc_vectorizer.fit_transform(fanboy_text).toarray() ac_vectorizer = CountVectorizer(stop_words='english', max_features=1000) about_counts = ac_vectorizer.fit_transform(about_text).toar
code
333798/cell_14
[ "text_plain_output_1.png" ]
import matplotlib import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] fanboy_edges = [(k, j[1:]) for k, i in zip(fanboy_data['username'], fanboy_space_split) for j in i if '@' in j] about_edges = [(k, j[1:]) for k, i in zip(about_data['username'], about_space_split) for j in i if '@' in j] about_graph = nx.Graph() fanboy_graph = nx.Graph() about_graph.add_edges_from(about_edges) fanboy_graph.add_edges_from(fanboy_edges) fanboy_cc = nx.connected_component_subgraphs(fanboy_graph) bet_cen = nx.betweenness_centrality([i for i in fanboy_cc][0]) fanboy_cc = nx.connected_component_subgraphs(fanboy_graph) clo_cen = nx.closeness_centrality([i for i in fanboy_cc][0]) fig, ax = matplotlib.pyplot.subplots() ax.scatter(list(clo_cen.values()), list(bet_cen.values())) ax.set_ylim(0.04, 0.3) ax.set_xlim(0.32, 0.45) ax.set_xlabel('Closeness Centrality') ax.set_ylabel('Betweenness Centrality') ax.set_yscale('log') for i, txt in enumerate(list(clo_cen.keys())): ax.annotate(txt, (list(clo_cen.values())[i], list(bet_cen.values())[i]))
code
333798/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.decomposition import NMF from sklearn.feature_extraction.text import CountVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] import re fanboy_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in fanboy_space_split for j in i if not '@' in j and (not '#' in j)] about_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in about_space_split for j in i if not '@' in j and (not '#' in j)] from sklearn.feature_extraction.text import CountVectorizer fc_vectorizer = CountVectorizer(stop_words='english', max_features=1000) fanboy_counts = fc_vectorizer.fit_transform(fanboy_text).toarray() ac_vectorizer = CountVectorizer(stop_words='english', max_features=1000) about_counts = ac_vectorizer.fit_transform(about_text).toar def print_top_words(model, feature_names, n_top_words): pass from sklearn.decomposition import NMF n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 fanboy_nmf = NMF(n_components=n_topics, random_state=1, alpha=0.1, l1_ratio=0.5).fit(fanboy_counts) about_nmf = NMF(n_components=n_topics, random_state=1, alpha=0.1, l1_ratio=0.5).fit(about_counts) fanboy_feature_names = fc_vectorizer.get_feature_names() print_top_words(fanboy_nmf, fanboy_feature_names, n_top_words)
code
333798/cell_12
[ "text_plain_output_1.png" ]
import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] fanboy_edges = [(k, j[1:]) for k, i in zip(fanboy_data['username'], fanboy_space_split) for j in i if '@' in j] about_edges = [(k, j[1:]) for k, i in zip(about_data['username'], about_space_split) for j in i if '@' in j] about_graph = nx.Graph() fanboy_graph = nx.Graph() about_graph.add_edges_from(about_edges) fanboy_graph.add_edges_from(fanboy_edges) fanboy_cc = nx.connected_component_subgraphs(fanboy_graph) bet_cen = nx.betweenness_centrality([i for i in fanboy_cc][0])
code
128044361/cell_4
[ "image_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/men-born-in-1960-from-7-regions-in-korea-2005-2009/Data.csv', sep=';') incplot = data.income.hist(grid=False)
code
128044361/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/men-born-in-1960-from-7-regions-in-korea-2005-2009/Data.csv', sep=';') data.head()
code
128044361/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/men-born-in-1960-from-7-regions-in-korea-2005-2009/Data.csv', sep=';') data.describe()
code
128015173/cell_42
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='billy tauzin ran unopposed in 1996', table=['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']))
code
128015173/cell_21
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='in alberta greens , the year 2008 was the only year were over 50 candidates were nominated. Is it true?', table=['election', 'of candidates nominated', 'of seats won', 'of total votes', '% of popular vote']))
code