path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128015173/cell_13
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='pivnice is the only settlement in vojvodina with slovaks as the largest ethnic groupIs it true?', table=['Settlement', 'Cyrillic Name', 'Other Names', 'Type', 'Population (2011)', 'Largest ethnic group (2002)', 'Dominant religion (2002)']))
code
128015173/cell_9
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='here were twelve occasions where the length was sixty minutes. Is it true?', table=['round', 'circuit', 'date', 'length', 'pole position', 'gt3 winner', 'gt4 winner']))
code
128015173/cell_25
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Chris Pratt has been in his current profession since the turn of the century.Is it true?', table=['title', 'Birth Name', 'Born', 'Residence', 'Occupation', 'Years active', 'Spouse(s)', 'Partner(s)', 'Children']))
code
128015173/cell_34
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Kara-Khanid Khanate was disestablished in the second decade of the 12th century.Is it true?', table=['title', 'Capital', 'Common languages', 'Government', 'Khagan, Khan', 'Established ', 'Disestablished ']))
code
128015173/cell_33
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='The only government that Kara-Khanid Khanate ever had was a monarchy.', table=['title', 'Capital', 'Common languages', 'Government', 'Khagan, Khan', 'Established ', 'Disestablished ']))
code
128015173/cell_44
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='jim mccrerey be first elect in 1988', table=['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']))
code
128015173/cell_40
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='In 1982 , the redskin lose to the dallas cowboy. They scored only 10 total points. The cowboys scored 24 score of 24', table=['week', 'date', 'opponent', 'result', 'game site', 'record', 'attendance']))
code
128015173/cell_29
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Chris Pratt and Anna Faris have one son together.Is it true?', table=['title', 'Birth Name', 'Born', 'Residence', 'Occupation', 'Years active', 'Spouse(s)', 'Partner(s)', 'Children']))
code
128015173/cell_39
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='in 1982 , the redskin lose to the dallas cowboy. They scored only 10 total points. The cowboys scored 24.Is it true?', table=['week', 'date', 'opponent', 'result', 'game site', 'record', 'attendance']))
code
128015173/cell_26
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Chris Pratt was born in Los Angeles where he currently resides. Is it true?', table=['title', 'Birth Name', 'Born', 'Residence', 'Occupation', 'Years active', 'Spouse(s)', 'Partner(s)', 'Children']))
code
128015173/cell_48
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result def infer(prompt): input_data = tokenizer(prompt, max_length=700, return_tensors='pt').input_ids outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result prompt1 = 'Task Description: In this task, your goal is to generate a SQL query using the input sentence and table schema given. The generated SQL query should be able to verify the given sentence without requiring any additional knowledge.\n\nExample 1:\nTable Schema: \'Author\', \'Publication date\', \'Genre\', \'Publisher\', \'Pages\', \'ISBN\'\nInput: The book "To Kill a Mockingbird" was written by Harper Lee, published by J. B. Lippincott Company in 1960, and has 281 pages.\nOutput: SELECT * FROM table WHERE title = "To Kill a Mockingbird" AND Author = "Harper Lee" AND Publisher = "J. B. Lippincott Company" AND Publication date = "1960" AND Pages = 281\n\nExample 2:\nTable Schema: \'Player\', \'Team\', \'Position\', \'Number\', \'Age\', \'Height\', \'Weight\', \'Nationality\'\nInput: Lionel Messi, who is from Argentina, plays for Paris Saint-Germain and wears the number 30 jersey.\nOutput: SELECT * FROM table WHERE Player = "Lionel Messi" AND Nationality = "Argentina" AND Team = "Paris Saint-Germain" AND Number = 30\n\nExample 3:\nTable Schema: \'Movie Title\', \'Director\', \'Lead Actor\', \'Lead Actress\', \'Release Year\', \'Budget\', \'Box Office Collection\'\nInput: The movie "Forrest Gump" was directed by Robert Zemeckis, starred Tom Hanks and Robin Wright, was released in 1994, and had a budget of $55 million.\nOutput: SELECT * FROM table WHERE "Movie Title" = "Forrest Gump" AND Director = "Robert Zemeckis" AND "Lead Actor" = "Tom Hanks" AND "Lead Actress" = "Robin Wright" AND "Release Year" = 1994 AND Budget = "$55 million"\n\nNow complete the following:\nTable Schema: \'title\', \'Birth Name\', \'Born\', \'Residence\', \'Occupation\', \'Years active\', \'Spouse(s)\', \'Partner(s)\', \'Children\'\nInput: Chris Pratt has been in his current profession since the turn of the century.\nOutput: \n' print(infer(prompt1))
code
128015173/cell_19
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='in alberta greens , the year 2008 was the only year were over 50 candidates were nominated', table=['election', 'of candidates nominated', 'of seats won', 'of total votes', '% of popular vote']))
code
128015173/cell_49
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result def infer(prompt): input_data = tokenizer(prompt, max_length=700, return_tensors='pt').input_ids outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result prompt2 = "Task Description: In this task, your goal is to generate a SQL query using the input sentence and table schema given. The generated SQL query should be able to verify the given sentence without requiring any additional knowledge.\n\nNow complete the following:\nTable Schema: 'title', 'Birth Name', 'Born', 'Residence', 'Occupation', 'Years active', 'Spouse(s)', 'Partner(s)', 'Children'\nInput: Chris Pratt has been in his current profession since the turn of the century.\nOutput:\n" print(infer(prompt2))
code
128015173/cell_32
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Kara-Khanid Khanate had many people that were Arabic.Is it true?', table=['title', 'Capital', 'Common languages', 'Government', 'Khagan, Khan', 'Established ', 'Disestablished ']))
code
128015173/cell_28
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Chris Pratt broke up with Anna Faris because of Katherine Schwarzenegger.Is it true?', table=['title', 'Birth Name', 'Born', 'Residence', 'Occupation', 'Years active', 'Spouse(s)', 'Partner(s)', 'Children']))
code
128015173/cell_8
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='here were twelve occasions where the length was sixty minutes', table=['round', 'circuit', 'date', 'length', 'pole position', 'gt3 winner', 'gt4 winner']))
code
128015173/cell_38
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='n the 1982 , the washington redskins beat the new orleans saint 27 to 10 , with their win score match a win against the new york giant earlier in the season', table=['week', 'date', 'opponent', 'result', 'game site', 'record', 'attendance']))
code
128015173/cell_3
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema')
code
128015173/cell_35
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Tengrism was the religion of the Kara-Khanid Khanate for longer than Islam was.Is it true?', table=['title', 'Capital', 'Common languages', 'Government', 'Khagan, Khan', 'Established ', 'Disestablished ']))
code
128015173/cell_43
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='richard baker be louisanas 6th district incumbent', table=['district', 'incumbent', 'party', 'first elected', 'result', 'candidates']))
code
128015173/cell_14
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='pivnice is the only settlement in vojvodina with slovaks as the largest ethnic group.', table=['Settlement', 'Cyrillic Name', 'Other Names', 'Type', 'Population (2011)', 'Largest ethnic group (2002)', 'Dominant religion (2002)']))
code
128015173/cell_27
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Chris Pratt and Anna Faris have one son together.', table=['title', 'Birth Name', 'Born', 'Residence', 'Occupation', 'Years active', 'Spouse(s)', 'Partner(s)', 'Children']))
code
128015173/cell_36
[ "text_plain_output_1.png" ]
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from typing import List tokenizer = AutoTokenizer.from_pretrained('juierror/flan-t5-text2sql-with-schema') model = AutoModelForSeq2SeqLM.from_pretrained('juierror/flan-t5-text2sql-with-schema') def prepare_input(question: str, table: List[str]): table_prefix = 'table:' question_prefix = 'question:' join_table = ','.join(table) inputs = f'{question_prefix} {question} {table_prefix} {join_table}' input_ids = tokenizer(inputs, max_length=700, return_tensors='pt').input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question='Tengrism was the religion of the Kara-Khanid Khanate. It was for longer than Islam was.Is it true?', table=['title', 'Capital', 'Common languages', 'Government', 'Khagan, Khan', 'Established ', 'Disestablished ']))
code
90137233/cell_34
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import GaussianNB train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y)
code
90137233/cell_30
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names()) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y) print(svc.predict(tfidf.transform(['A good movie']))) print(svc.predict(tfidf.transform(['An excellent movie']))) print(svc.predict(tfidf.transform(['I did not like this movie at all I gave this movie away'])))
code
90137233/cell_20
[ "text_html_output_1.png" ]
train_y.value_counts()
code
90137233/cell_6
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90137233/cell_40
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names()) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y) from sklearn.tree import DecisionTreeClassifier dec_tree = DecisionTreeClassifier() dec_tree.fit(train_x_vector, train_y) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(train_x_vector, train_y) print(svc.score(test_x_vector, test_y)) print(dec_tree.score(test_x_vector, test_y)) print(gnb.score(test_x_vector.toarray(), test_y)) print(log_reg.score(test_x_vector, test_y))
code
90137233/cell_29
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import SVC train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y)
code
90137233/cell_26
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names())
code
90137233/cell_50
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names()) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y) from sklearn.tree import DecisionTreeClassifier dec_tree = DecisionTreeClassifier() dec_tree.fit(train_x_vector, train_y) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(train_x_vector, train_y) from sklearn.metrics import f1_score f1_score(test_y, svc.predict(test_x_vector), labels=['positive', 'negative'], average=None) from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix conf_mat = confusion_matrix(test_y, svc.predict(test_x_vector), labels=['positive', 'negative']) conf_mat from sklearn.model_selection import GridSearchCV params = {'C': [1, 4, 8, 16, 32], 'kernel': ['linear', 'rbf']} svc = SVC() svc_grid = GridSearchCV(svc, params, cv=5) svc_grid.fit(train_x_vector, train_y)
code
90137233/cell_45
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names()) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y) from sklearn.tree import DecisionTreeClassifier dec_tree = DecisionTreeClassifier() dec_tree.fit(train_x_vector, train_y) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(train_x_vector, train_y) from sklearn.metrics import f1_score f1_score(test_y, svc.predict(test_x_vector), labels=['positive', 'negative'], average=None) from sklearn.metrics import classification_report print(classification_report(test_y, svc.predict(test_x_vector), labels=['positive', 'negative']))
code
90137233/cell_32
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.tree import DecisionTreeClassifier train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) from sklearn.tree import DecisionTreeClassifier dec_tree = DecisionTreeClassifier() dec_tree.fit(train_x_vector, train_y)
code
90137233/cell_51
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names()) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y) from sklearn.tree import DecisionTreeClassifier dec_tree = DecisionTreeClassifier() dec_tree.fit(train_x_vector, train_y) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(train_x_vector, train_y) from sklearn.metrics import f1_score f1_score(test_y, svc.predict(test_x_vector), labels=['positive', 'negative'], average=None) from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix conf_mat = confusion_matrix(test_y, svc.predict(test_x_vector), labels=['positive', 'negative']) conf_mat from sklearn.model_selection import GridSearchCV params = {'C': [1, 4, 8, 16, 32], 'kernel': ['linear', 'rbf']} svc = SVC() svc_grid = GridSearchCV(svc, params, cv=5) svc_grid.fit(train_x_vector, train_y) print(svc_grid.best_params_) print(svc_grid.best_estimator_)
code
90137233/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review
code
90137233/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) colors = sns.color_palette('deep') print(df_review_imb.value_counts('sentiment')) print(df_review_bal.value_counts('sentiment'))
code
90137233/cell_47
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names()) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y) from sklearn.tree import DecisionTreeClassifier dec_tree = DecisionTreeClassifier() dec_tree.fit(train_x_vector, train_y) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(train_x_vector, train_y) from sklearn.metrics import f1_score f1_score(test_y, svc.predict(test_x_vector), labels=['positive', 'negative'], average=None) from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix conf_mat = confusion_matrix(test_y, svc.predict(test_x_vector), labels=['positive', 'negative']) conf_mat
code
90137233/cell_43
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import pandas as pd df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) pd.DataFrame.sparse.from_spmatrix(train_x_vector, index=train_x.index, columns=tfidf.get_feature_names()) from sklearn.svm import SVC svc = SVC(kernel='linear') svc.fit(train_x_vector, train_y) from sklearn.tree import DecisionTreeClassifier dec_tree = DecisionTreeClassifier() dec_tree.fit(train_x_vector, train_y) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(train_x_vector, train_y) from sklearn.metrics import f1_score f1_score(test_y, svc.predict(test_x_vector), labels=['positive', 'negative'], average=None)
code
90137233/cell_14
[ "text_html_output_1.png" ]
from imblearn.under_sampling import RandomUnderSampler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) colors = sns.color_palette('deep') from imblearn.under_sampling import RandomUnderSampler rus = RandomUnderSampler(random_state=0) df_review_bal, df_review_bal['sentiment'] = rus.fit_resample(df_review_imb[['review']], df_review_imb['sentiment']) df_review_bal
code
90137233/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') df_review = pd.read_csv('/kaggle/input/imdb-dataset-of-50k-movie-reviews/IMDB Dataset.csv') df_review df_positive = df_review[df_review['sentiment'] == 'positive'][:9000] df_negative = df_review[df_review['sentiment'] == 'negative'][:1000] df_review_imb = pd.concat([df_positive, df_negative]) colors = sns.color_palette('deep') plt.figure(figsize=(8, 4), tight_layout=True) plt.bar(x=['Positive', 'Negative'], height=df_review_imb.value_counts(['sentiment']), color=colors[:2]) plt.title('Sentiment') plt.savefig('sentiment.png') plt.show()
code
90137233/cell_36
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB train_y.value_counts() from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words='english') train_x_vector = tfidf.fit_transform(train_x) test_x_vector = tfidf.transform(test_x) from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() gnb.fit(train_x_vector.toarray(), train_y) from sklearn.linear_model import LogisticRegression log_reg = LogisticRegression() log_reg.fit(train_x_vector, train_y)
code
33105010/cell_13
[ "image_output_1.png" ]
from tensorflow.keras import Model from tensorflow.keras.layers import Input, Dense import matplotlib.pyplot as plt import tensorflow as tf def sample_dataset(): dataset_shape = (2000, 1) return tf.random.normal(mean=8.0, shape=dataset_shape, stddev=0.5, dtype=tf.float32) axes = plt.gca() axes.set_xlim([-1, 11]) axes.set_ylim([0, 70]) def generator(input_shape): """Defines the generator keras.Model. Args: input_shape: the desired input shape (e.g.: (latent_space_size)) Returns: G: The generator model """ inputs = Input(input_shape) net = Dense(units=64, activation=tf.nn.elu, name='fc1')(inputs) net = Dense(units=64, activation=tf.nn.elu, name='fc2')(net) net = Dense(units=1, name='G')(net) G = Model(inputs=inputs, outputs=net) return G def disciminator(input_shape): """Defines the Discriminator keras.Model. Args: input_shape: the desired input shape (e.g.: (the generator output shape)) Returns: D: the Discriminator model """ inputs = Input(input_shape) net = Dense(units=32, activation=tf.nn.elu, name='fc1')(inputs) net = Dense(units=1, name='D')(net) D = Model(inputs=inputs, outputs=net) return D input_shape = (1,) D = disciminator(input_shape) latent_space_shape = (100,) G = generator(latent_space_shape) bce = tf.keras.losses.BinaryCrossentropy(from_logits=True) def d_loss(d_real, d_fake): """The disciminator loss function.""" return bce(tf.ones_like(d_real), d_real) + bce(tf.zeros_like(d_fake), d_fake) def g_loss(generated_output): """The Generator loss function.""" return bce(tf.ones_like(generated_output), generated_output) optimizer = tf.keras.optimizers.Adam(1e-05) @tf.function def train_step(): with tf.GradientTape(persistent=True) as tape: real_data = sample_dataset() noise_vector = tf.random.normal(mean=0, stddev=1, shape=(real_data.shape[0], latent_space_shape[0])) fake_data = G(noise_vector) d_fake_data = D(fake_data) d_real_data = D(real_data) d_loss_value = d_loss(d_real_data, d_fake_data) g_loss_value = g_loss(d_fake_data) d_gradients = tape.gradient(d_loss_value, D.trainable_variables) g_gradients = tape.gradient(g_loss_value, G.trainable_variables) del tape optimizer.apply_gradients(zip(d_gradients, D.trainable_variables)) optimizer.apply_gradients(zip(g_gradients, G.trainable_variables)) return (real_data, fake_data, g_loss_value, d_loss_value) fig, ax = plt.subplots() for step in range(40000): real_data, fake_data, g_loss_value, d_loss_value = train_step() if step % 2000 == 0: print('G loss: ', g_loss_value.numpy(), ' D loss: ', d_loss_value.numpy(), ' step: ', step) ax.hist(fake_data.numpy(), 100) ax.hist(real_data.numpy(), 100) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) textstr = f'step={step}' ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=14, verticalalignment='top', bbox=props) axes = plt.gca() axes.set_xlim([-1, 11]) axes.set_ylim([0, 60]) display(plt.gcf()) plt.gca().clear()
code
33105010/cell_4
[ "image_output_11.png", "text_plain_output_5.png", "text_plain_output_15.png", "image_output_17.png", "text_plain_output_9.png", "image_output_14.png", "text_plain_output_20.png", "text_plain_output_4.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "text_plain_output_14.png", "image_output_18.png", "image_output_21.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "image_output_20.png", "text_plain_output_18.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_16.png", "image_output_16.png", "text_plain_output_8.png", "image_output_6.png", "image_output_12.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_15.png", "image_output_9.png", "image_output_19.png" ]
import matplotlib.pyplot as plt import tensorflow as tf def sample_dataset(): dataset_shape = (2000, 1) return tf.random.normal(mean=8.0, shape=dataset_shape, stddev=0.5, dtype=tf.float32) plt.hist(sample_dataset().numpy(), 100) axes = plt.gca() axes.set_xlim([-1, 11]) axes.set_ylim([0, 70]) plt.show()
code
130004323/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from sklearn.model_selection import train_test_split, cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.linear_model import ElasticNet from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from xgboost import XGBRegressor from sklearn.preprocessing import PolynomialFeatures
code
130004323/cell_3
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap='RdBu') plt.title('Correlations Between Variables', size=15) plt.show()
code
130004323/cell_12
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split, cross_val_score import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') important = list(data.corr()['SalePrice'][(data.corr()['SalePrice'] > 0.5) | (data.corr()['SalePrice'] < -0.5)].index) cat_columns = ['MSZoning', 'Utilities', 'BldgType', 'Heating', 'KitchenQual', 'SaleCondition', 'LandSlope'] important_columns = important + cat_columns data = data[important_columns] X = data.drop('SalePrice', axis=1) y = data['SalePrice'] X = pd.get_dummies(X, columns=cat_columns) def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=5)).mean() return rmse def evaluation(y, predictions): mae = mean_absolute_error(y, predictions) mse = mean_squared_error(y, predictions) rmse = np.sqrt(mean_squared_error(y, predictions)) r_squared = r2_score(y, predictions) return (mae, mse, rmse, r_squared) models = pd.DataFrame(columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2 Score', 'RMSE (Cross-Validation)']) lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) prediction = lin_reg.predict(X_test) mae, mse, rmse, r_squared = evaluation(y_test, prediction) print('MAE:', mae) print('MSE:', mse) print('RMSE:', rmse) print('R2 Score:', r_squared) print('-' * 30) rmse_cross_val = rmse_cv(lin_reg) print('RMSE Cross-Validation:', rmse_cross_val) new_row = {'Model': 'LinearRegression', 'MAE': mae, 'MSE': mse, 'RMSE': rmse, 'R2 Score': r_squared, 'RMSE (Cross-Validation)': rmse_cross_val} models = models.append(new_row, ignore_index=True)
code
130004323/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') important = list(data.corr()['SalePrice'][(data.corr()['SalePrice'] > 0.5) | (data.corr()['SalePrice'] < -0.5)].index) cat_columns = ['MSZoning', 'Utilities', 'BldgType', 'Heating', 'KitchenQual', 'SaleCondition', 'LandSlope'] important_columns = important + cat_columns data = data[important_columns] print('Missing Values by Column') print('-' * 30) print(data.isna().sum()) print('-' * 30) print('Numer of missing values:', data.isna().sum().sum())
code
18102746/cell_21
[ "image_output_11.png", "text_plain_output_5.png", "text_plain_output_9.png", "image_output_14.png", "text_plain_output_4.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "image_output_12.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_9.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns Deliveries_extras_analysed = Deliveries_Data[['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs']] Deliveries_extras_analysed.head(2)
code
18102746/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5)) def Team_Win_By_Zone(Team_Name): Wins_Analysed = Matches_Data[((Matches_Data['team1'] == Team_Name) | (Matches_Data['team2'] == Team_Name)) & (Matches_Data['winner'] == Team_Name)] Team_Win_By_Zone('Chennai Super Kings')
code
18102746/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5))
code
18102746/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5)) Distinct_Team = Matches_Data['team1'].unique() Total_Teams = len(Distinct_Team) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Matches_Data_Toss_Comparision = Matches_Data[['city', 'Zone', 'toss_winner', 'toss_decision', 'Toss_Win_Zone', 'winner', 'Winner_Zone']] Matches_Data_Toss_Comparision = Matches_Data_Toss_Comparision[Matches_Data_Toss_Comparision['toss_winner'] == Team_Name] Matches_Data_Toss_Comparision['Win_comparison'] = Matches_Data_Toss_Comparision.apply(lambda x: 'Win' if x['toss_winner'] == x['winner'] else 'Lost', axis=1) Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Team_Data = Deliveries_Data[Deliveries_Data['batting_team'] == Team_Name] Deliveries_Type_defined = Team_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Deliveries_Type_defined['Death_Over'].sum() / (Deliveries_Type_defined['Death_Over'].sum() + Deliveries_Type_defined['Middle_Over'].sum() + Deliveries_Type_defined['Powerplay_Over'].sum()) Deliveries_Type_defined = pd.Series.to_frame(Deliveries_Type_defined.sum()).reset_index() Column_Names = ['Over_Type', 'Total_Score'] Overtype_defined_names = pd.DataFrame(data=Deliveries_Type_defined.values, columns=Column_Names) Overtype_defined_names['%Contribution'] = Overtype_defined_names['Total_Score'] / Overtype_defined_names['Total_Score'].sum() * 100 Deliveries_Data.columns Deliveries_extras_analysed = Deliveries_Data[['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs']] Extra_Columns = ['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs'] Extra_Columns Deliveries_extras_analysed['Total_Extras'] = Deliveries_extras_analysed[Extra_Columns].sum(axis=1) Extras_Over_type = Deliveries_extras_analysed.groupby(['bowling_team', 'over_type'])['extra_runs'].sum().unstack() Extras_Runs = Deliveries_extras_analysed.groupby(['bowling_team', 'batting_team'])['extra_runs'].sum().unstack().fillna(0) Runs_Values_Analysed = ["wide_runs","bye_runs","legbye_runs","noball_runs","penalty_runs","batsman_runs","extra_runs","total_runs"] Total_Extras = len(Runs_Values_Analysed) for i in range(Total_Extras): Extra_Name = Runs_Values_Analysed[i] print(Extra_Name) #Deliveries_extras_analysed = Deliveries_extras_analysed[Deliveries_extras_analysed[Extra_Name]] Extras_By_team = Deliveries_extras_analysed.groupby(['bowling_team',Extra_Name])['extra_runs'].sum().unstack().fillna(0) Extras_By_team_Columns = Extras_By_team.columns String = "Total"+Extra_Name Extras_By_team[String] = Extras_By_team[Extras_By_team_Columns].sum(axis=1) Extras_By_team = Extras_By_team.sort_values(by=String, ascending = False) String_Plot = "Plot"+Extra_Name String_Plot = Extras_By_team[String].plot(kind = "bar",figsize=((15,5))) plt.xlabel('Toss_decision, Zone',fontsize = 10) #plt.ylabel('Ticket Count',fontsize = 10) plt.title(Team_Name,fontsize = 15) print(plt.show()) All_2_Detailed = Deliveries_extras_analysed[Deliveries_extras_analysed['batsman_runs'] == 2] All_2_Detailed.head(2) All_3_Detailed = Deliveries_extras_analysed[Deliveries_extras_analysed['batsman_runs'] == 2] All_3_Detailed.head(2) All_4_Detailed = Deliveries_extras_analysed[Deliveries_extras_analysed['batsman_runs'] == 4] All_4_Detailed.head(2) All_5_Detailed = Deliveries_extras_analysed[Deliveries_extras_analysed['batsman_runs'] == 5] All_5_Detailed.head(2) All_6_Detailed = Deliveries_extras_analysed[Deliveries_extras_analysed['batsman_runs'] == 6] All_6_Detailed.head(2) All_7_Detailed = Deliveries_extras_analysed[Deliveries_extras_analysed['batsman_runs'] == 7] All_7_Detailed.head(2) All_8_Detailed = Deliveries_extras_analysed[Deliveries_extras_analysed['batsman_runs'] == 8] All_8_Detailed.head(2)
code
18102746/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5)) Distinct_Team = Matches_Data['team1'].unique() Total_Teams = len(Distinct_Team) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Matches_Data_Toss_Comparision = Matches_Data[['city', 'Zone', 'toss_winner', 'toss_decision', 'Toss_Win_Zone', 'winner', 'Winner_Zone']] Matches_Data_Toss_Comparision = Matches_Data_Toss_Comparision[Matches_Data_Toss_Comparision['toss_winner'] == Team_Name] Matches_Data_Toss_Comparision['Win_comparison'] = Matches_Data_Toss_Comparision.apply(lambda x: 'Win' if x['toss_winner'] == x['winner'] else 'Lost', axis=1) Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Team_Data = Deliveries_Data[Deliveries_Data['batting_team'] == Team_Name] Deliveries_Type_defined = Team_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Deliveries_Type_defined['Death_Over'].sum() / (Deliveries_Type_defined['Death_Over'].sum() + Deliveries_Type_defined['Middle_Over'].sum() + Deliveries_Type_defined['Powerplay_Over'].sum()) Deliveries_Type_defined = pd.Series.to_frame(Deliveries_Type_defined.sum()).reset_index() Column_Names = ['Over_Type', 'Total_Score'] Overtype_defined_names = pd.DataFrame(data=Deliveries_Type_defined.values, columns=Column_Names) Overtype_defined_names['%Contribution'] = Overtype_defined_names['Total_Score'] / Overtype_defined_names['Total_Score'].sum() * 100 Deliveries_Data.columns Deliveries_extras_analysed = Deliveries_Data[['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs']] Extra_Columns = ['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs'] Extra_Columns Deliveries_extras_analysed['Total_Extras'] = Deliveries_extras_analysed[Extra_Columns].sum(axis=1) Extras_Over_type = Deliveries_extras_analysed.groupby(['bowling_team', 'over_type'])['extra_runs'].sum().unstack() Extras_Runs = Deliveries_extras_analysed.groupby(['bowling_team', 'batting_team'])['extra_runs'].sum().unstack().fillna(0) Runs_Values_Analysed = ['wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs'] Total_Extras = len(Runs_Values_Analysed) for i in range(Total_Extras): Extra_Name = Runs_Values_Analysed[i] print(Extra_Name) Extras_By_team = Deliveries_extras_analysed.groupby(['bowling_team', Extra_Name])['extra_runs'].sum().unstack().fillna(0) Extras_By_team_Columns = Extras_By_team.columns String = 'Total' + Extra_Name Extras_By_team[String] = Extras_By_team[Extras_By_team_Columns].sum(axis=1) Extras_By_team = Extras_By_team.sort_values(by=String, ascending=False) String_Plot = 'Plot' + Extra_Name String_Plot = Extras_By_team[String].plot(kind='bar', figsize=(15, 5)) plt.xlabel('Toss_decision, Zone', fontsize=10) plt.title(Team_Name, fontsize=15) print(plt.show())
code
18102746/cell_30
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns Delivery_matrix = Deliveries_Data.groupby(['batsman', 'over_type'])['total_runs'].sum().unstack() Type_Of_Wicket = Deliveries_Data Type_Of_Wicket['dismissal_kind'].value_counts()
code
18102746/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns
code
18102746/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 Overall_Matches_Zone['%Contribution'].plot(kind='bar', figsize=(15, 5), color='darkorange', edgecolor='black', hatch='X')
code
18102746/cell_29
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns Delivery_matrix = Deliveries_Data.groupby(['batsman', 'over_type'])['total_runs'].sum().unstack() print(sns.violinplot(x='ball', y='total_runs', data=Deliveries_Data).set_title('Total Runs by Ball'))
code
18102746/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5)) def Performance_Team_Venue(Team_Name): Performance_ByTeam_Analysed = Matches_Data[(Matches_Data['Home_City_Team1'] == Team_Name) | (Matches_Data['Home_City_team2'] == Team_Name)] Performance_Team_Venue('Mumbai')
code
18102746/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind='bar', figsize=(15, 5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15, 1)))
code
18102746/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) print(Plot.get_legend().set_bbox_to_anchor((1, 1)))
code
18102746/cell_28
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns Delivery_matrix = Deliveries_Data.groupby(['batsman', 'over_type'])['total_runs'].sum().unstack() Delivery_matrix['Middle_Over'].sum() Delivery_matrix['Powerplay_Over'].sum()
code
18102746/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('season')['Winner_Zone_Type'].value_counts().unstack().plot(kind='bar', stacked=True, figsize=(15, 5))
code
18102746/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5)) Distinct_Team = Matches_Data['team1'].unique() Total_Teams = len(Distinct_Team) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Matches_Data_Toss_Comparision = Matches_Data[['city', 'Zone', 'toss_winner', 'toss_decision', 'Toss_Win_Zone', 'winner', 'Winner_Zone']] Matches_Data_Toss_Comparision = Matches_Data_Toss_Comparision[Matches_Data_Toss_Comparision['toss_winner'] == Team_Name] Matches_Data_Toss_Comparision['Win_comparison'] = Matches_Data_Toss_Comparision.apply(lambda x: 'Win' if x['toss_winner'] == x['winner'] else 'Lost', axis=1) Matches_Data_Toss_Comparision.groupby(['toss_decision', 'Zone'])['Win_comparison'].value_counts().unstack().plot(kind='bar', figsize=(15, 5)) plt.xlabel('Toss_decision, Zone', fontsize=10) plt.title(Team_Name, fontsize=15) print(plt.show())
code
18102746/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5)) Distinct_Team = Matches_Data['team1'].unique() Total_Teams = len(Distinct_Team) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Matches_Data_Toss_Comparision = Matches_Data[['city', 'Zone', 'toss_winner', 'toss_decision', 'Toss_Win_Zone', 'winner', 'Winner_Zone']] Matches_Data_Toss_Comparision = Matches_Data_Toss_Comparision[Matches_Data_Toss_Comparision['toss_winner'] == Team_Name] Matches_Data_Toss_Comparision['Win_comparison'] = Matches_Data_Toss_Comparision.apply(lambda x: 'Win' if x['toss_winner'] == x['winner'] else 'Lost', axis=1) Matches_Data_Toss_Comparision = Matches_Data[['city', 'Zone', 'toss_winner', 'toss_decision', 'Toss_Win_Zone', 'winner', 'Winner_Zone']] Matches_Data_Toss_Comparision = Matches_Data_Toss_Comparision[Matches_Data_Toss_Comparision['toss_winner'] == 'Mumbai Indians'] Matches_Data_Toss_Comparision['Win_comparison'] = Matches_Data_Toss_Comparision.apply(lambda x: 'Win' if x['toss_winner'] == x['winner'] else 'Lost', axis=1) print(Matches_Data_Toss_Comparision.groupby(['toss_decision', 'Zone'])['Win_comparison'].value_counts().unstack().plot(kind='bar', stacked=True, figsize=(15, 5)))
code
18102746/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data['over'] < 7] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team', 'over'])['total_runs'].sum().unstack().plot(kind='bar', figsize=(15, 5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18, 1))
code
18102746/cell_31
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns Delivery_matrix = Deliveries_Data.groupby(['batsman', 'over_type'])['total_runs'].sum().unstack() Type_Of_Wicket = Deliveries_Data Type_Of_Wicket['dismissal_kind'].value_counts() Type_Of_Wicket_Clean = Type_Of_Wicket.dropna() Type_Of_Wicket_Clean.head(20) Type_Of_Wicket_Clean['bowler'].value_counts().sort_values(ascending=False) Type_Of_Wicket_Clean.groupby(['bowler', 'over_type'])['player_dismissed'].count().unstack().sort_values(by='Death_Over', ascending=False)
code
18102746/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_Zone = pd.Series.to_frame(Matches_Data['Zone'].value_counts()) Overall_Matches_Zone['%Contribution'] = Overall_Matches_Zone['Zone'] / Overall_Matches_Zone['Zone'].sum() * 100 import matplotlib.pyplot as plt Matches_understood_by_year = pd.Series.to_frame(Matches_Data.groupby('season')['Zone'].value_counts()) Plot_Zone = Matches_Data.groupby('season')['Zone'].value_counts().unstack().plot(kind="bar", figsize = (15,5)) print(Plot_Zone.get_legend().set_bbox_to_anchor((0.15,1))) Matches_Data.groupby('city')['Winner_Zone_Type'].value_counts().unstack().dropna().plot(kind='bar', figsize=(15, 5)) Distinct_Team = Matches_Data['team1'].unique() Total_Teams = len(Distinct_Team) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Matches_Data_Toss_Comparision = Matches_Data[['city', 'Zone', 'toss_winner', 'toss_decision', 'Toss_Win_Zone', 'winner', 'Winner_Zone']] Matches_Data_Toss_Comparision = Matches_Data_Toss_Comparision[Matches_Data_Toss_Comparision['toss_winner'] == Team_Name] Matches_Data_Toss_Comparision['Win_comparison'] = Matches_Data_Toss_Comparision.apply(lambda x: 'Win' if x['toss_winner'] == x['winner'] else 'Lost', axis=1) Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) for i in range(Total_Teams): Team_Name = Distinct_Team[i] Team_Data = Deliveries_Data[Deliveries_Data['batting_team'] == Team_Name] Deliveries_Type_defined = Team_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Deliveries_Type_defined['Death_Over'].sum() / (Deliveries_Type_defined['Death_Over'].sum() + Deliveries_Type_defined['Middle_Over'].sum() + Deliveries_Type_defined['Powerplay_Over'].sum()) Deliveries_Type_defined = pd.Series.to_frame(Deliveries_Type_defined.sum()).reset_index() Column_Names = ['Over_Type', 'Total_Score'] Overtype_defined_names = pd.DataFrame(data=Deliveries_Type_defined.values, columns=Column_Names) Overtype_defined_names['%Contribution'] = Overtype_defined_names['Total_Score'] / Overtype_defined_names['Total_Score'].sum() * 100 Deliveries_Data.columns Deliveries_extras_analysed = Deliveries_Data[['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs']] Extra_Columns = ['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs'] Extra_Columns Deliveries_extras_analysed['Total_Extras'] = Deliveries_extras_analysed[Extra_Columns].sum(axis=1) Extras_Over_type = Deliveries_extras_analysed.groupby(['bowling_team', 'over_type'])['extra_runs'].sum().unstack() Extras_Runs = Deliveries_extras_analysed.groupby(['bowling_team', 'batting_team'])['extra_runs'].sum().unstack().fillna(0) Runs_Values_Analysed = ["wide_runs","bye_runs","legbye_runs","noball_runs","penalty_runs","batsman_runs","extra_runs","total_runs"] Total_Extras = len(Runs_Values_Analysed) for i in range(Total_Extras): Extra_Name = Runs_Values_Analysed[i] print(Extra_Name) #Deliveries_extras_analysed = Deliveries_extras_analysed[Deliveries_extras_analysed[Extra_Name]] Extras_By_team = Deliveries_extras_analysed.groupby(['bowling_team',Extra_Name])['extra_runs'].sum().unstack().fillna(0) Extras_By_team_Columns = Extras_By_team.columns String = "Total"+Extra_Name Extras_By_team[String] = Extras_By_team[Extras_By_team_Columns].sum(axis=1) Extras_By_team = Extras_By_team.sort_values(by=String, ascending = False) String_Plot = "Plot"+Extra_Name String_Plot = Extras_By_team[String].plot(kind = "bar",figsize=((15,5))) plt.xlabel('Toss_decision, Zone',fontsize = 10) #plt.ylabel('Ticket Count',fontsize = 10) plt.title(Team_Name,fontsize = 15) print(plt.show()) Deliveries_extras_analysed.head(2)
code
18102746/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns Deliveries_extras_analysed = Deliveries_Data[['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs']] Extra_Columns = ['batting_team', 'bowling_team', 'over_type', 'bowler', 'batsman', 'wide_runs', 'bye_runs', 'legbye_runs', 'noball_runs', 'penalty_runs', 'batsman_runs', 'extra_runs', 'total_runs'] Extra_Columns Deliveries_extras_analysed['Total_Extras'] = Deliveries_extras_analysed[Extra_Columns].sum(axis=1) Deliveries_extras_analysed.head(2) Extras_Over_type = Deliveries_extras_analysed.groupby(['bowling_team', 'over_type'])['extra_runs'].sum().unstack() Extras_Runs = Deliveries_extras_analysed.groupby(['bowling_team', 'batting_team'])['extra_runs'].sum().unstack().fillna(0) Extras_Over_type.plot(kind='bar', figsize=(15, 5)).get_legend().set_bbox_to_anchor((1, 1))
code
18102746/cell_27
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Deliveries_Data.head(2) Deliveries_Powerplay = Deliveries_Data.loc[Deliveries_Data["over"] < 7] #Delivery_team = Deliveries_Powerplay[Deliveries_Powerplay["batting_team"] == "Sunrisers Hyderabad"] Deliveries_team_analysed = Deliveries_Powerplay.groupby(['batting_team','over'])['total_runs'].sum().unstack().plot(kind="bar",figsize = (15,5)) Deliveries_team_analysed.get_legend().set_bbox_to_anchor((0.18,1)) #Deliveries_team_analysed #.sort_values(by ="total_runs", ascending = False) Contribution_data = Deliveries_Data.groupby(['batting_team', 'over_type'])['total_runs'].sum().unstack() Contribution_data['%Runs_Powerplay'] = Contribution_data['Powerplay_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_MiddleOvers'] = Contribution_data['Middle_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data['%Runs_DeathOvers'] = Contribution_data['Death_Over'] / (Contribution_data['Death_Over'] + Contribution_data['Middle_Over'] + Contribution_data['Powerplay_Over']) * 100 Contribution_data Plot = Contribution_data[['%Runs_Powerplay', '%Runs_MiddleOvers', '%Runs_DeathOvers']].sort_values(by='%Runs_DeathOvers', ascending=False).plot(kind='bar', stacked=True, figsize=(15, 5)) Deliveries_Data.columns Delivery_matrix = Deliveries_Data.groupby(['batsman', 'over_type'])['total_runs'].sum().unstack() print('Best Death Over Batsman') print(Delivery_matrix['Death_Over'].sort_values(ascending=False).head(1)) print('Best Powerplay Over Batsman') print(Delivery_matrix['Powerplay_Over'].sort_values(ascending=False).head(1)) print('Best Middle Over Batsman') print(Delivery_matrix['Middle_Over'].sort_values(ascending=False).head(1))
code
18102746/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns Deliveries_Data = pd.read_csv('../input/deliveries_expanded.csv') Matches_Data = pd.read_csv('../input/matches_expanded.csv') Overall_Matches_State = pd.Series.to_frame(Matches_Data['State'].value_counts()) Overall_Matches_State['%Contribution'] = Overall_Matches_State['State'] / Overall_Matches_State['State'].sum() * 100 Overall_Matches_State['%Contribution'].plot(kind='bar', figsize=(15, 5), color='darkorange', edgecolor='black', hatch='X')
code
121153872/cell_13
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) print(missing)
code
121153872/cell_9
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T train.info()
code
121153872/cell_30
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import pandas as pd import seaborn as sns train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() correlation = train.corr() def customized_scatterplot(y, x): style.use('seaborn-darkgrid') customized_scatterplot(train.SalePrice, train.GrLivArea)
code
121153872/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import pandas as pd import seaborn as sns train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() correlation = train.corr() plt.figure(figsize=(15, 6)) sns.heatmap(correlation, fmt='.5f', linewidth=0.5, cmap='BuPu') plt.show()
code
121153872/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.shape
code
121153872/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import pandas as pd import seaborn as sns train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() correlation = train.corr() def customized_scatterplot(y, x): style.use('seaborn-darkgrid') customized_scatterplot(train.SalePrice, train.OverallQual)
code
121153872/cell_19
[ "image_output_1.png" ]
import matplotlib.style as style import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() correlation = train.corr() print(correlation)
code
121153872/cell_7
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.shape train.head()
code
121153872/cell_32
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import pandas as pd import seaborn as sns train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() correlation = train.corr() def customized_scatterplot(y, x): style.use('seaborn-darkgrid') customized_scatterplot(train.SalePrice, train.GarageArea)
code
121153872/cell_28
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import pandas as pd import seaborn as sns train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() correlation = train.corr() def customized_scatterplot(y, x): style.use('seaborn-darkgrid') sns.barplot(train.OverallCond, train.SalePrice)
code
121153872/cell_8
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T
code
121153872/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.style as style import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() print('Number of duplicated instances:', duplicated.sum()) print(train[duplicated])
code
121153872/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.style as style import pandas as pd import seaborn as sns train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) duplicated = train.duplicated() correlation = train.corr() def customized_scatterplot(y, x): style.use('seaborn-darkgrid') sns.distplot(train['SalePrice'])
code
121153872/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.style as style import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() total = train.isnull().sum().sort_values(ascending=False)[train.isnull().sum().sort_values(ascending=False) != 0] percent = (train.isnull().sum() / train.isnull().count()).sort_values(ascending=False)[(train.isnull().sum() / train.isnull().count()).sort_values(ascending=False) != 0] missing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing = train.isnull().sum() missing = missing[missing > 0] style.use('seaborn-darkgrid') missing.sort_values(inplace=True) missing.plot.bar()
code
121153872/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts()
code
121153872/cell_12
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd train = pd.read_csv('train.csv') train.shape train.describe().T train.dtypes.value_counts() msno.matrix(train)
code
17108148/cell_13
[ "image_output_1.png" ]
import pandas as pd # data , CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') molecule = 'dsgdb9nsd_000001' a = df_train.loc[df_train['molecule_name'] == f'{molecule}'] b = structures[structures.molecule_name == f'{molecule}'] def convert_index_to_atom(a, b, atom_index): c = a.merge(b, how='left', left_on=['molecule_name', f'atom_index_{atom_index}'], right_on=['molecule_name', 'atom_index']) c.drop('atom_index', axis=1, inplace=True) c.rename(columns={'atom': f'atom_{atom_index}', 'x': f'x_{atom_index}', 'y': f'y_{atom_index}', 'z': f'z_{atom_index}'}, inplace=True) c.drop(f'atom_index_{atom_index}', axis=1, inplace=True) return c c = convert_index_to_atom(df_train, structures, 0) c = convert_index_to_atom(c, structures, 1) types = list(c.groupby('type').groups) types fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '1JHC']['x_0'] y = c[c['type'] == '1JHC']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('1JHC') fig.tight_layout() plt.show() fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '1JHN']['x_0'] y = c[c['type'] == '1JHN']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('1JHN') fig.tight_layout() plt.show() fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '2JHC']['x_0'] y = c[c['type'] == '2JHC']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('2JHC') fig.tight_layout() plt.show()
code
17108148/cell_6
[ "image_output_1.png" ]
import pandas as pd # data , CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') molecule = 'dsgdb9nsd_000001' a = df_train.loc[df_train['molecule_name'] == f'{molecule}'] b = structures[structures.molecule_name == f'{molecule}'] list(df_train['type'].unique())
code
17108148/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data , CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') molecule = 'dsgdb9nsd_000001' a = df_train.loc[df_train['molecule_name'] == f'{molecule}'] b = structures[structures.molecule_name == f'{molecule}'] def convert_index_to_atom(a, b, atom_index): c = a.merge(b, how='left', left_on=['molecule_name', f'atom_index_{atom_index}'], right_on=['molecule_name', 'atom_index']) c.drop('atom_index', axis=1, inplace=True) c.rename(columns={'atom': f'atom_{atom_index}', 'x': f'x_{atom_index}', 'y': f'y_{atom_index}', 'z': f'z_{atom_index}'}, inplace=True) c.drop(f'atom_index_{atom_index}', axis=1, inplace=True) return c c = convert_index_to_atom(df_train, structures, 0) c = convert_index_to_atom(c, structures, 1) types = list(c.groupby('type').groups) types fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '1JHC']['x_0'] y = c[c['type'] == '1JHC']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('1JHC') fig.tight_layout() plt.show()
code
17108148/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os import matplotlib from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt print(os.listdir('../input'))
code
17108148/cell_14
[ "image_output_1.png" ]
import pandas as pd # data , CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') molecule = 'dsgdb9nsd_000001' a = df_train.loc[df_train['molecule_name'] == f'{molecule}'] b = structures[structures.molecule_name == f'{molecule}'] def convert_index_to_atom(a, b, atom_index): c = a.merge(b, how='left', left_on=['molecule_name', f'atom_index_{atom_index}'], right_on=['molecule_name', 'atom_index']) c.drop('atom_index', axis=1, inplace=True) c.rename(columns={'atom': f'atom_{atom_index}', 'x': f'x_{atom_index}', 'y': f'y_{atom_index}', 'z': f'z_{atom_index}'}, inplace=True) c.drop(f'atom_index_{atom_index}', axis=1, inplace=True) return c c = convert_index_to_atom(df_train, structures, 0) c = convert_index_to_atom(c, structures, 1) types = list(c.groupby('type').groups) types fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '1JHC']['x_0'] y = c[c['type'] == '1JHC']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('1JHC') fig.tight_layout() plt.show() fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '1JHN']['x_0'] y = c[c['type'] == '1JHN']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('1JHN') fig.tight_layout() plt.show() fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '2JHC']['x_0'] y = c[c['type'] == '2JHC']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('2JHC') fig.tight_layout() plt.show() fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '2JHH']['x_0'] y = c[c['type'] == '2JHH']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('2JHH') fig.tight_layout() plt.show()
code
17108148/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data , CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') molecule = 'dsgdb9nsd_000001' a = df_train.loc[df_train['molecule_name'] == f'{molecule}'] b = structures[structures.molecule_name == f'{molecule}'] def convert_index_to_atom(a, b, atom_index): c = a.merge(b, how='left', left_on=['molecule_name', f'atom_index_{atom_index}'], right_on=['molecule_name', 'atom_index']) c.drop('atom_index', axis=1, inplace=True) c.rename(columns={'atom': f'atom_{atom_index}', 'x': f'x_{atom_index}', 'y': f'y_{atom_index}', 'z': f'z_{atom_index}'}, inplace=True) c.drop(f'atom_index_{atom_index}', axis=1, inplace=True) return c c = convert_index_to_atom(df_train, structures, 0) c = convert_index_to_atom(c, structures, 1) types = list(c.groupby('type').groups) types
code
17108148/cell_12
[ "image_output_1.png" ]
import pandas as pd # data , CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') structures = pd.read_csv('../input/structures.csv') molecule = 'dsgdb9nsd_000001' a = df_train.loc[df_train['molecule_name'] == f'{molecule}'] b = structures[structures.molecule_name == f'{molecule}'] def convert_index_to_atom(a, b, atom_index): c = a.merge(b, how='left', left_on=['molecule_name', f'atom_index_{atom_index}'], right_on=['molecule_name', 'atom_index']) c.drop('atom_index', axis=1, inplace=True) c.rename(columns={'atom': f'atom_{atom_index}', 'x': f'x_{atom_index}', 'y': f'y_{atom_index}', 'z': f'z_{atom_index}'}, inplace=True) c.drop(f'atom_index_{atom_index}', axis=1, inplace=True) return c c = convert_index_to_atom(df_train, structures, 0) c = convert_index_to_atom(c, structures, 1) types = list(c.groupby('type').groups) types fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '1JHC']['x_0'] y = c[c['type'] == '1JHC']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('1JHC') fig.tight_layout() plt.show() fig, ax = plt.subplots(figsize=(10, 5)) x = c[c['type'] == '1JHN']['x_0'] y = c[c['type'] == '1JHN']['y_0'] ax.scatter(x, y) ax.grid(True) ax.set_title('1JHN') fig.tight_layout() plt.show()
code
88092182/cell_21
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder from tensorflow import keras from tensorflow.keras import layers import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/train.csv', index_col=0) test = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/test.csv', index_col=0) submission = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/sample_submission.csv', index_col=0) cols_with_missing_train = [col for col in train.columns if train[col].isnull().any()] cols_with_missing_test = [col for col in test.columns if test[col].isnull().any()] from sklearn.preprocessing import OneHotEncoder a = train.target.values a = a.reshape(-1, 1) OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(a)) OH_cols_train.index = train.index num_X_train = train.drop('target', axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_train target = ['Bacteroides_fragilis', 'Campylobacter_jejuni', 'Enterococcus_hirae', 'Escherichia_coli', 'Escherichia_fergusonii', 'Klebsiella_pneumoniae', 'Salmonella_enterica', 'Staphylococcus_aureus', 'Streptococcus_pneumoniae', 'Streptococcus_pyogenes'] y_train.shape model = None model = keras.Sequential([layers.BatchNormalization(), layers.Dense(100, activation='relu', input_shape=[286]), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(80, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(40, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(10, activation='relu'), layers.BatchNormalization(), layers.Dense(10, activation='sigmoid')]) model.compile(optimizer='adam', loss='categorical_crossentropy') history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid), batch_size=3000, epochs=100) sns.set(rc={'figure.figsize': (10, 5)}) history_df = pd.DataFrame(history.history) a = model.predict(X_valid) a = pd.DataFrame(data=a, columns=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) a = a.idxmax(axis=1) a.index = y_valid.index y_valid = y_valid.idxmax(axis=1) prediction = model.predict(test) prediction_df = pd.DataFrame(data=prediction, columns=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) prediction_df['target'] = prediction_df.idxmax(axis=1) prediction_df.index = test.index submission['row_id'] = test.index submission['target'] = prediction_df['target'] submission.loc[submission['target'] == 0, 'target'] = target[0] submission.loc[submission['target'] == 1, 'target'] = target[1] submission.loc[submission['target'] == 2, 'target'] = target[2] submission.loc[submission['target'] == 3, 'target'] = target[3] submission.loc[submission['target'] == 4, 'target'] = target[4] submission.loc[submission['target'] == 5, 'target'] = target[5] submission.loc[submission['target'] == 6, 'target'] = target[6] submission.loc[submission['target'] == 7, 'target'] = target[7] submission.loc[submission['target'] == 8, 'target'] = target[8] submission.loc[submission['target'] == 9, 'target'] = target[9] submission.head()
code
88092182/cell_13
[ "text_plain_output_1.png" ]
y_train.shape
code
88092182/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/train.csv', index_col=0) test = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/test.csv', index_col=0) submission = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/sample_submission.csv', index_col=0) cols_with_missing_train = [col for col in train.columns if train[col].isnull().any()] cols_with_missing_test = [col for col in test.columns if test[col].isnull().any()] train.head()
code
88092182/cell_19
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder from tensorflow import keras from tensorflow.keras import layers import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/train.csv', index_col=0) test = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/test.csv', index_col=0) submission = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/sample_submission.csv', index_col=0) cols_with_missing_train = [col for col in train.columns if train[col].isnull().any()] cols_with_missing_test = [col for col in test.columns if test[col].isnull().any()] from sklearn.preprocessing import OneHotEncoder a = train.target.values a = a.reshape(-1, 1) OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(a)) OH_cols_train.index = train.index num_X_train = train.drop('target', axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_train y_train.shape model = None model = keras.Sequential([layers.BatchNormalization(), layers.Dense(100, activation='relu', input_shape=[286]), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(80, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(40, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(10, activation='relu'), layers.BatchNormalization(), layers.Dense(10, activation='sigmoid')]) model.compile(optimizer='adam', loss='categorical_crossentropy') history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid), batch_size=3000, epochs=100) sns.set(rc={'figure.figsize': (10, 5)}) history_df = pd.DataFrame(history.history) a = model.predict(X_valid) a = pd.DataFrame(data=a, columns=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) a = a.idxmax(axis=1) a.index = y_valid.index y_valid = y_valid.idxmax(axis=1) prediction = model.predict(test) prediction_df = pd.DataFrame(data=prediction, columns=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) prediction_df['target'] = prediction_df.idxmax(axis=1) prediction_df.index = test.index submission['row_id'] = test.index submission['target'] = prediction_df['target'] submission.head()
code
88092182/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedKFold import matplotlib.pyplot as plt import seaborn as sns from tensorflow import keras from tensorflow.keras import layers
code
88092182/cell_8
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/train.csv', index_col=0) test = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/test.csv', index_col=0) submission = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/sample_submission.csv', index_col=0) cols_with_missing_train = [col for col in train.columns if train[col].isnull().any()] cols_with_missing_test = [col for col in test.columns if test[col].isnull().any()] from sklearn.preprocessing import OneHotEncoder a = train.target.values a = a.reshape(-1, 1) OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(a)) OH_cols_train.index = train.index num_X_train = train.drop('target', axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_train
code
88092182/cell_15
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder from tensorflow import keras from tensorflow.keras import layers import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/train.csv', index_col=0) test = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/test.csv', index_col=0) submission = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/sample_submission.csv', index_col=0) cols_with_missing_train = [col for col in train.columns if train[col].isnull().any()] cols_with_missing_test = [col for col in test.columns if test[col].isnull().any()] from sklearn.preprocessing import OneHotEncoder a = train.target.values a = a.reshape(-1, 1) OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(a)) OH_cols_train.index = train.index num_X_train = train.drop('target', axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_train y_train.shape model = None model = keras.Sequential([layers.BatchNormalization(), layers.Dense(100, activation='relu', input_shape=[286]), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(80, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(40, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(10, activation='relu'), layers.BatchNormalization(), layers.Dense(10, activation='sigmoid')]) model.compile(optimizer='adam', loss='categorical_crossentropy') history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid), batch_size=3000, epochs=100) sns.set(rc={'figure.figsize': (10, 5)}) history_df = pd.DataFrame(history.history) history_df.loc[:, ['loss', 'val_loss']].plot()
code
88092182/cell_16
[ "text_html_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder from tensorflow import keras from tensorflow.keras import layers import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/train.csv', index_col=0) test = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/test.csv', index_col=0) submission = pd.read_csv('/kaggle/input/tabular-playground-series-feb-2022/sample_submission.csv', index_col=0) cols_with_missing_train = [col for col in train.columns if train[col].isnull().any()] cols_with_missing_test = [col for col in test.columns if test[col].isnull().any()] from sklearn.preprocessing import OneHotEncoder a = train.target.values a = a.reshape(-1, 1) OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(a)) OH_cols_train.index = train.index num_X_train = train.drop('target', axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_train y_train.shape model = None model = keras.Sequential([layers.BatchNormalization(), layers.Dense(100, activation='relu', input_shape=[286]), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(80, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(40, activation='relu'), layers.Dropout(0.25), layers.BatchNormalization(), layers.Dense(10, activation='relu'), layers.BatchNormalization(), layers.Dense(10, activation='sigmoid')]) model.compile(optimizer='adam', loss='categorical_crossentropy') history = model.fit(X_train, y_train, validation_data=(X_valid, y_valid), batch_size=3000, epochs=100) sns.set(rc={'figure.figsize': (10, 5)}) history_df = pd.DataFrame(history.history) a = model.predict(X_valid) a = pd.DataFrame(data=a, columns=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) a = a.idxmax(axis=1) a.index = y_valid.index y_valid = y_valid.idxmax(axis=1) print(accuracy_score(a, y_valid) * 100)
code