path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
1008563/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " sns.barplot(df['salary'], df['satisfaction_level'])
code
1008563/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any()
code
1008563/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " sns.pointplot(df1['average_montly_hours'], df1['satisfaction_level'])
code
1008563/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) sns.heatmap(df.corr(), vmax=0.8, square=True, annot=True, fmt='.2f')
code
1008563/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " test_dict = {'last_evaluation': [0.2, 0.6, 0.7, 0.8], 'number_project': [1, 3, 4, 6], 'average_montly_hours': [110, 180, 190, 250], 'time_spend_company': [3, 4, 5, 6], 'Work_accident': [0, 1, 1, 0], 'promotion_last_5years': [0, 0, 1, 1], 'job': [0, 1, 2, 3], 'salary': [0, 1, 1, 0]} df_test = pd.DataFrame(test_dict) test_X = np.array(df_test) model = RandomForestRegressor() model.fit(X_train, y_train) model.predict(test_X)
code
1008563/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " sns.barplot(df['job'], df['satisfaction_level'])
code
1008563/cell_11
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) print(sorted(feature_importance_dict.items(), key=lambda x: x[1], reverse=True))
code
1008563/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " sns.pointplot(df1['last_evaluation'], df1['satisfaction_level'])
code
1008563/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import KFold,cross_val_score,train_test_split from sklearn.tree import DecisionTreeRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import classification_report from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=7) models = [['LR', LinearRegression()], ['CART', DecisionTreeRegressor()], ['RF', RandomForestRegressor()]] scoring = 'neg_mean_squared_error' result_list = [] for names, model in models: results = cross_val_score(model, X, y, cv=kfold, scoring=scoring) print(names, results.mean())
code
1008563/cell_8
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) print(sorted(feature_importance_dict.items(), key=lambda x: x[1], reverse=True))
code
1008563/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) sns.pointplot(df['number_project'], df['satisfaction_level'])
code
1008563/cell_16
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) projects = df['number_project'].unique() projects = sorted(projects) for i in projects: mean_satisfaction_level = df['satisfaction_level'][df['number_project'] == i].mean() print('project_total', i, ':', mean_satisfaction_level)
code
1008563/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/HR_comma_sep.csv') df.describe()
code
1008563/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n "
code
1008563/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " sns.barplot(df['Work_accident'], df['satisfaction_level'])
code
1008563/cell_14
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) plt.scatter(df['satisfaction_level'], df['last_evaluation']) plt.xlabel('satisfaction_level') plt.ylabel('last_evaluation')
code
1008563/cell_22
[ "text_plain_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) from sklearn.ensemble import ExtraTreesRegressor model = ExtraTreesRegressor() X = df.drop(['left', 'satisfaction_level'], axis=1) y = df['satisfaction_level'] model.fit(X, y) feature_list = list(df.drop(['left', 'satisfaction_level'], 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) df1 = df.copy() group_name = list(range(20)) df1['last_evaluation'] = pd.cut(df1['last_evaluation'], 20, labels=group_name) df1['average_montly_hours'] = pd.cut(df1['average_montly_hours'], 20, labels=group_name) "\n{0: '(149.5, 160.2]', 1: '(256.5, 267.2]', 2: '(267.2, 277.9]', 3: '(213.7, 224.4]', 4: '(245.8, 256.5]', 5: '(138.8, 149.5]',\n 6: '(128.1, 138.8]', 7: '(299.3, 310]', 8: '(224.4, 235.1]', 9: '(277.9, 288.6]', 10: '(235.1, 245.8]'\n , 11: '(117.4, 128.1]', 12: '(288.6, 299.3]', 13: '(181.6, 192.3]', 14: '(160.2, 170.9]',\n 15: '(170.9, 181.6]', 16: '(192.3, 203]', 17: '(203, 213.7]', 18: '(106.7, 117.4]',\n 19: '(95.786, 106.7]'}\n " sns.pointplot(df1['last_evaluation'], df['average_montly_hours'])
code
1008563/cell_10
[ "text_html_output_1.png" ]
from sklearn.ensemble import ExtraTreesClassifier import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/HR_comma_sep.csv') df.isnull().any() df = df.rename(columns={'sales': 'job'}) X = np.array(df.drop('left', 1)) y = np.array(df['left']) model = ExtraTreesClassifier() model.fit(X, y) feature_list = list(df.drop('left', 1).columns) feature_importance_dict = dict(zip(feature_list, model.feature_importances_)) sns.barplot(df['left'], df['satisfaction_level'])
code
74070881/cell_9
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.metrics import mean_squared_error, accuracy_score from xgboost import XGBClassifier import numpy as np import pandas as pd train_data = pd.read_csv('../input/sept-tps-5fold-stratified/sept_TPS_train_5_folds.csv') test_data = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv') sample_solution = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv') X_test = test_data.copy() X_test = X_test.drop(['id'], axis=1) exclude_cols = ['id', 'kfold', 'claim'] useful_cols = [i for i in train_data.columns if i not in exclude_cols] feature_cols = [col for col in train_data.columns if col.startswith('f')] num_cols_with_missing = sum(train_data.isnull().sum() > 0) num_cols_with_missing final_predictions = [] for fold in range(5): X_train = train_data[train_data.kfold != fold].reset_index(drop=True) X_valid = train_data[train_data.kfold == fold].reset_index(drop=True) my_imputer = SimpleImputer(missing_values=np.nan, strategy='mean') X_train[feature_cols] = pd.DataFrame(my_imputer.fit_transform(X_train[feature_cols])) X_valid[feature_cols] = pd.DataFrame(my_imputer.transform(X_valid[feature_cols])) y_train = X_train['claim'] X_train = X_train.drop(exclude_cols, axis=1) y_valid = X_valid['claim'] X_valid = X_valid.drop(exclude_cols, axis=1) X_test[feature_cols] = pd.DataFrame(my_imputer.transform(X_test[feature_cols])) model = XGBClassifier(objective='binary:logistic', random_state=fold, tree_method='gpu_hist', gpu_id=0, n_jobs=4) model.fit(X_train, y_train) preds_valid = model.predict(X_valid) test_preds = model.predict(X_test) final_predictions.append(test_preds) len(final_predictions[0])
code
74070881/cell_6
[ "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_7.png", "text_plain_output_4.png", "text_plain_output_10.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_8.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/sept-tps-5fold-stratified/sept_TPS_train_5_folds.csv') test_data = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv') sample_solution = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv') X_test = test_data.copy() X_test = X_test.drop(['id'], axis=1) test_data.shape test_data.head()
code
74070881/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/sept-tps-5fold-stratified/sept_TPS_train_5_folds.csv') test_data = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv') sample_solution = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv') X_test = test_data.copy() X_test = X_test.drop(['id'], axis=1) sample_solution.head()
code
74070881/cell_7
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.metrics import mean_squared_error, accuracy_score from xgboost import XGBClassifier import numpy as np import pandas as pd train_data = pd.read_csv('../input/sept-tps-5fold-stratified/sept_TPS_train_5_folds.csv') test_data = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv') sample_solution = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv') X_test = test_data.copy() X_test = X_test.drop(['id'], axis=1) exclude_cols = ['id', 'kfold', 'claim'] useful_cols = [i for i in train_data.columns if i not in exclude_cols] feature_cols = [col for col in train_data.columns if col.startswith('f')] num_cols_with_missing = sum(train_data.isnull().sum() > 0) num_cols_with_missing final_predictions = [] for fold in range(5): X_train = train_data[train_data.kfold != fold].reset_index(drop=True) X_valid = train_data[train_data.kfold == fold].reset_index(drop=True) my_imputer = SimpleImputer(missing_values=np.nan, strategy='mean') X_train[feature_cols] = pd.DataFrame(my_imputer.fit_transform(X_train[feature_cols])) X_valid[feature_cols] = pd.DataFrame(my_imputer.transform(X_valid[feature_cols])) y_train = X_train['claim'] X_train = X_train.drop(exclude_cols, axis=1) y_valid = X_valid['claim'] X_valid = X_valid.drop(exclude_cols, axis=1) X_test[feature_cols] = pd.DataFrame(my_imputer.transform(X_test[feature_cols])) model = XGBClassifier(objective='binary:logistic', random_state=fold, tree_method='gpu_hist', gpu_id=0, n_jobs=4) model.fit(X_train, y_train) preds_valid = model.predict(X_valid) test_preds = model.predict(X_test) final_predictions.append(test_preds) print(fold, accuracy_score(y_valid, preds_valid))
code
74070881/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/sept-tps-5fold-stratified/sept_TPS_train_5_folds.csv') test_data = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv') sample_solution = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv') X_test = test_data.copy() X_test = X_test.drop(['id'], axis=1) test_data.shape test_data
code
74070881/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/sept-tps-5fold-stratified/sept_TPS_train_5_folds.csv') test_data = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv') sample_solution = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv') X_test = test_data.copy() X_test = X_test.drop(['id'], axis=1) test_data.shape
code
74070881/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/sept-tps-5fold-stratified/sept_TPS_train_5_folds.csv') test_data = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv') sample_solution = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv') X_test = test_data.copy() X_test = X_test.drop(['id'], axis=1) exclude_cols = ['id', 'kfold', 'claim'] useful_cols = [i for i in train_data.columns if i not in exclude_cols] feature_cols = [col for col in train_data.columns if col.startswith('f')] num_cols_with_missing = sum(train_data.isnull().sum() > 0) num_cols_with_missing
code
33097350/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/uncover/regional_sources/the_belgian_institute_for_health/dataset-of-confirmed-cases-by-date-and-municipality.csv', encoding='ISO-8859-2') df.dtypes
code
33097350/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/uncover/regional_sources/the_belgian_institute_for_health/dataset-of-confirmed-cases-by-date-and-municipality.csv', encoding='ISO-8859-2') plt.xticks(rotation=90) sns.countplot(df['tx_adm_dstr_descr_fr']) plt.xticks(rotation=90) plt.show()
code
33097350/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/uncover/regional_sources/the_belgian_institute_for_health/dataset-of-confirmed-cases-by-date-and-municipality.csv', encoding='ISO-8859-2') df.head()
code
33097350/cell_2
[ "text_html_output_2.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import feature_extraction, linear_model, model_selection, preprocessing import plotly.graph_objs as go import plotly.offline as py import plotly.express as px from plotly.offline import iplot import seaborn import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33097350/cell_11
[ "text_plain_output_1.png" ]
df_grp_rl20 = df_grp_rl20.sort_values(by=['yearstart'], ascending=False)
code
33097350/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/uncover/regional_sources/the_belgian_institute_for_health/dataset-of-confirmed-cases-by-date-and-municipality.csv', encoding='ISO-8859-2') sns.countplot(df['tx_rgn_descr_nl']) plt.xticks(rotation=90) plt.show()
code
33097350/cell_5
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px df = pd.read_csv('../input/uncover/regional_sources/the_belgian_institute_for_health/dataset-of-confirmed-cases-by-date-and-municipality.csv', encoding='ISO-8859-2') fig = px.bar(df[['cases', 'nis5']].sort_values('nis5', ascending=False), y='nis5', x='cases', color='cases', log_y=True, template='ggplot2', title='Covid-19 Belgian Institute for Health ') fig.show()
code
2009832/cell_13
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier from sklearn.metrics import confusion_matrix from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) classifier = RandomForestClassifier(n_estimators=100, criterion='entropy', random_state=0) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) print(cm) labels = [1, 0] fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(cm) plt.title('Confusion matrix of the classifier') fig.colorbar(cax) ax.set_xticklabels([''] + labels) ax.set_yticklabels([''] + labels) plt.xlabel('Predicted') plt.ylabel('True') plt.show()
code
2009832/cell_4
[ "text_plain_output_1.png" ]
Weather.head()
code
2009832/cell_6
[ "text_plain_output_1.png" ]
Weather['RAIN'].value_counts()
code
2009832/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold, learning_curve sns.set(style='white', context='notebook', palette='deep') from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) Weather = pd.read_csv('../input/seattleWeather_1948-2017.csv')
code
2009832/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
Weather['RAIN'] = Weather['RAIN'].map(lambda i: 1 if i == True else 0) Weather['RAIN'].value_counts()
code
128011561/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from Bio import SeqIO from tqdm import tqdm import pandas as pd def read_fasta(fastaPath): fasta_sequences = SeqIO.parse(open(fastaPath), 'fasta') ids = [] sequences = [] for fasta in fasta_sequences: ids.append(fasta.id) sequences.append(str(fasta.seq)) return pd.DataFrame({'Id': ids, 'Sequence': sequences}) def get_top_go_terms(data, num_terms): term_counts = data['term'].value_counts() freq_counts = term_counts / len(data) freq_top = freq_counts.nlargest(num_terms) return freq_top train_terms = pd.read_csv('/kaggle/input/cafa-5-protein-function-prediction/Train/train_terms.tsv', sep='\t') top_terms = get_top_go_terms(train_terms, 10) test_data = read_fasta('/kaggle/input/cafa-5-protein-function-prediction/Test (Targets)/testsuperset.fasta') results = [] for index, row in tqdm(test_data.iterrows(), total=test_data.shape[0], position=0): for term, freq in top_terms.items(): results.append((row['Id'], term, freq)) final_results = pd.DataFrame(results, columns=['Id', 'GO term', 'Confidence']) final_results.to_csv('submission.tsv', sep='\t', index=False)
code
329725/cell_4
[ "text_plain_output_1.png" ]
from scipy.stats import chisquare import pandas as pd import pandas as pd df = pd.read_csv('../input/people.csv') from scipy.stats import chisquare chars = [i for i in df.columns.values if 'char_' in i] flags = [] for feat in df[chars]: group = df[chars].groupby(feat) for otherfeat in df[chars].drop(feat, axis=1): summary = group[otherfeat].count() if chisquare(summary)[1] < 0.05: flags.append(feat) flags.append(otherfeat) flags = set(flags) print('It looks like {}% of the characteristics might be related to one another.'.format(len(flags) / len(chars) * 100))
code
329725/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd df = pd.read_csv('../input/people.csv') print(df.head())
code
74041129/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import tensorflow as tf train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') n_train = 700 X_train_class = train_df['Pclass'].values.reshape(-1, 1) X_train_sex = train_df['Sex'].values.reshape(-1, 1) X_train_age = train_df['Age'].values.reshape(-1, 1) X_train_sib = train_df['SibSp'].values.reshape(-1, 1) X_train_par = train_df['Parch'].values.reshape(-1, 1) y = train_df['Survived'].values.T X_train = np.hstack((X_train_sex[:n_train, :], X_train_class[:n_train, :], X_train_sib[:n_train, :], X_train_age[:n_train, :], X_train_par[:n_train, :])) X_test = np.hstack((X_train_sex[n_train:, :], X_train_class[n_train:, :], X_train_sib[n_train:, :], X_train_age[n_train:, :], X_train_par[n_train:, :])) X_train, X_test = (tf.convert_to_tensor(X_train.astype(np.float64)), tf.convert_to_tensor(X_test.astype(np.float64))) y_train, y_test = (y[:n_train], y[n_train:]) X_test_class = test_df['Pclass'].values.reshape(-1, 1) X_test_sex = test_df['Sex'].values.reshape(-1, 1) X_test_age = test_df['Age'].values.reshape(-1, 1) X_test_sib = test_df['SibSp'].values.reshape(-1, 1) X_test_par = test_df['Parch'].values.reshape(-1, 1) x_test = np.hstack((X_test_sex, X_test_class, X_test_sib, X_test_age, X_test_par)).astype(np.float64) print(x_test)
code
74041129/cell_9
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import Dropout from keras.models import Sequential from keras.optimizers import Adam import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') n_train = 700 X_train_class = train_df['Pclass'].values.reshape(-1, 1) X_train_sex = train_df['Sex'].values.reshape(-1, 1) X_train_age = train_df['Age'].values.reshape(-1, 1) X_train_sib = train_df['SibSp'].values.reshape(-1, 1) X_train_par = train_df['Parch'].values.reshape(-1, 1) y = train_df['Survived'].values.T X_train = np.hstack((X_train_sex[:n_train, :], X_train_class[:n_train, :], X_train_sib[:n_train, :], X_train_age[:n_train, :], X_train_par[:n_train, :])) X_test = np.hstack((X_train_sex[n_train:, :], X_train_class[n_train:, :], X_train_sib[n_train:, :], X_train_age[n_train:, :], X_train_par[n_train:, :])) X_train, X_test = (tf.convert_to_tensor(X_train.astype(np.float64)), tf.convert_to_tensor(X_test.astype(np.float64))) y_train, y_test = (y[:n_train], y[n_train:]) model = Sequential() model.add(Dense(300, input_dim=5, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(150, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(25, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.999), metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) _, train_acc = model.evaluate(X_train, y_train, verbose=2) _, test_acc = model.evaluate(X_test, y_test, verbose=2) print('Train: %.3f, Test: %.3f' % (train_acc, test_acc)) plt.plot(history.history['accuracy'], label='train') plt.plot(history.history['val_accuracy'], label='test') plt.legend() plt.show()
code
74041129/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') train_df.describe()
code
74041129/cell_11
[ "text_html_output_1.png" ]
from keras.layers import Dense from keras.layers import Dropout from keras.models import Sequential from keras.models import load_model from keras.optimizers import Adam import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') n_train = 700 X_train_class = train_df['Pclass'].values.reshape(-1, 1) X_train_sex = train_df['Sex'].values.reshape(-1, 1) X_train_age = train_df['Age'].values.reshape(-1, 1) X_train_sib = train_df['SibSp'].values.reshape(-1, 1) X_train_par = train_df['Parch'].values.reshape(-1, 1) y = train_df['Survived'].values.T X_train = np.hstack((X_train_sex[:n_train, :], X_train_class[:n_train, :], X_train_sib[:n_train, :], X_train_age[:n_train, :], X_train_par[:n_train, :])) X_test = np.hstack((X_train_sex[n_train:, :], X_train_class[n_train:, :], X_train_sib[n_train:, :], X_train_age[n_train:, :], X_train_par[n_train:, :])) X_train, X_test = (tf.convert_to_tensor(X_train.astype(np.float64)), tf.convert_to_tensor(X_test.astype(np.float64))) y_train, y_test = (y[:n_train], y[n_train:]) model = Sequential() model.add(Dense(300, input_dim=5, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(150, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(25, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.999), metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) _, train_acc = model.evaluate(X_train, y_train, verbose=2) _, test_acc = model.evaluate(X_test, y_test, verbose=2) model.save('model_' + str(1) + '.h5') model = load_model('./model_1.h5') model.summary()
code
74041129/cell_18
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import Dropout from keras.models import Sequential from keras.models import load_model from keras.optimizers import Adam import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') n_train = 700 X_train_class = train_df['Pclass'].values.reshape(-1, 1) X_train_sex = train_df['Sex'].values.reshape(-1, 1) X_train_age = train_df['Age'].values.reshape(-1, 1) X_train_sib = train_df['SibSp'].values.reshape(-1, 1) X_train_par = train_df['Parch'].values.reshape(-1, 1) y = train_df['Survived'].values.T X_train = np.hstack((X_train_sex[:n_train, :], X_train_class[:n_train, :], X_train_sib[:n_train, :], X_train_age[:n_train, :], X_train_par[:n_train, :])) X_test = np.hstack((X_train_sex[n_train:, :], X_train_class[n_train:, :], X_train_sib[n_train:, :], X_train_age[n_train:, :], X_train_par[n_train:, :])) X_train, X_test = (tf.convert_to_tensor(X_train.astype(np.float64)), tf.convert_to_tensor(X_test.astype(np.float64))) y_train, y_test = (y[:n_train], y[n_train:]) model = Sequential() model.add(Dense(300, input_dim=5, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(150, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(25, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.999), metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) _, train_acc = model.evaluate(X_train, y_train, verbose=2) _, test_acc = model.evaluate(X_test, y_test, verbose=2) model.save('model_' + str(1) + '.h5') model = load_model('./model_1.h5') model.summary() X_test_class = test_df['Pclass'].values.reshape(-1, 1) X_test_sex = test_df['Sex'].values.reshape(-1, 1) X_test_age = test_df['Age'].values.reshape(-1, 1) X_test_sib = test_df['SibSp'].values.reshape(-1, 1) X_test_par = test_df['Parch'].values.reshape(-1, 1) x_test = np.hstack((X_test_sex, X_test_class, X_test_sib, X_test_age, X_test_par)).astype(np.float64) y_pred = [] prediction = model.predict(x_test).ravel().tolist() y_pred += prediction for i in range(0, len(y_pred)): if y_pred[i] > 0.8: y_pred[i] = 1 else: y_pred[i] = 0 print(y_pred)
code
74041129/cell_15
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import Dropout from keras.models import Sequential from keras.models import load_model from keras.optimizers import Adam import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') n_train = 700 X_train_class = train_df['Pclass'].values.reshape(-1, 1) X_train_sex = train_df['Sex'].values.reshape(-1, 1) X_train_age = train_df['Age'].values.reshape(-1, 1) X_train_sib = train_df['SibSp'].values.reshape(-1, 1) X_train_par = train_df['Parch'].values.reshape(-1, 1) y = train_df['Survived'].values.T X_train = np.hstack((X_train_sex[:n_train, :], X_train_class[:n_train, :], X_train_sib[:n_train, :], X_train_age[:n_train, :], X_train_par[:n_train, :])) X_test = np.hstack((X_train_sex[n_train:, :], X_train_class[n_train:, :], X_train_sib[n_train:, :], X_train_age[n_train:, :], X_train_par[n_train:, :])) X_train, X_test = (tf.convert_to_tensor(X_train.astype(np.float64)), tf.convert_to_tensor(X_test.astype(np.float64))) y_train, y_test = (y[:n_train], y[n_train:]) model = Sequential() model.add(Dense(300, input_dim=5, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(150, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(25, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.999), metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) _, train_acc = model.evaluate(X_train, y_train, verbose=2) _, test_acc = model.evaluate(X_test, y_test, verbose=2) model.save('model_' + str(1) + '.h5') model = load_model('./model_1.h5') model.summary() X_test_class = test_df['Pclass'].values.reshape(-1, 1) X_test_sex = test_df['Sex'].values.reshape(-1, 1) X_test_age = test_df['Age'].values.reshape(-1, 1) X_test_sib = test_df['SibSp'].values.reshape(-1, 1) X_test_par = test_df['Parch'].values.reshape(-1, 1) x_test = np.hstack((X_test_sex, X_test_class, X_test_sib, X_test_age, X_test_par)).astype(np.float64) y_pred = [] prediction = model.predict(x_test).ravel().tolist() y_pred += prediction print(y_pred)
code
74041129/cell_16
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import Dropout from keras.models import Sequential from keras.models import load_model from keras.optimizers import Adam import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') n_train = 700 X_train_class = train_df['Pclass'].values.reshape(-1, 1) X_train_sex = train_df['Sex'].values.reshape(-1, 1) X_train_age = train_df['Age'].values.reshape(-1, 1) X_train_sib = train_df['SibSp'].values.reshape(-1, 1) X_train_par = train_df['Parch'].values.reshape(-1, 1) y = train_df['Survived'].values.T X_train = np.hstack((X_train_sex[:n_train, :], X_train_class[:n_train, :], X_train_sib[:n_train, :], X_train_age[:n_train, :], X_train_par[:n_train, :])) X_test = np.hstack((X_train_sex[n_train:, :], X_train_class[n_train:, :], X_train_sib[n_train:, :], X_train_age[n_train:, :], X_train_par[n_train:, :])) X_train, X_test = (tf.convert_to_tensor(X_train.astype(np.float64)), tf.convert_to_tensor(X_test.astype(np.float64))) y_train, y_test = (y[:n_train], y[n_train:]) model = Sequential() model.add(Dense(300, input_dim=5, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(150, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(25, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.999), metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) _, train_acc = model.evaluate(X_train, y_train, verbose=2) _, test_acc = model.evaluate(X_test, y_test, verbose=2) model.save('model_' + str(1) + '.h5') model = load_model('./model_1.h5') model.summary() X_test_class = test_df['Pclass'].values.reshape(-1, 1) X_test_sex = test_df['Sex'].values.reshape(-1, 1) X_test_age = test_df['Age'].values.reshape(-1, 1) X_test_sib = test_df['SibSp'].values.reshape(-1, 1) X_test_par = test_df['Parch'].values.reshape(-1, 1) x_test = np.hstack((X_test_sex, X_test_class, X_test_sib, X_test_age, X_test_par)).astype(np.float64) y_pred = [] prediction = model.predict(x_test).ravel().tolist() y_pred += prediction for i in range(0, len(y_pred)): if y_pred[i] > 0.5: y_pred[i] = 1 else: y_pred[i] = 0 print(y_pred)
code
74041129/cell_17
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.layers import Dropout from keras.models import Sequential from keras.models import load_model from keras.optimizers import Adam import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf train_df = pd.read_csv('../input/titanic/train.csv') test_df = pd.read_csv('../input/titanic/test.csv') n_train = 700 X_train_class = train_df['Pclass'].values.reshape(-1, 1) X_train_sex = train_df['Sex'].values.reshape(-1, 1) X_train_age = train_df['Age'].values.reshape(-1, 1) X_train_sib = train_df['SibSp'].values.reshape(-1, 1) X_train_par = train_df['Parch'].values.reshape(-1, 1) y = train_df['Survived'].values.T X_train = np.hstack((X_train_sex[:n_train, :], X_train_class[:n_train, :], X_train_sib[:n_train, :], X_train_age[:n_train, :], X_train_par[:n_train, :])) X_test = np.hstack((X_train_sex[n_train:, :], X_train_class[n_train:, :], X_train_sib[n_train:, :], X_train_age[n_train:, :], X_train_par[n_train:, :])) X_train, X_test = (tf.convert_to_tensor(X_train.astype(np.float64)), tf.convert_to_tensor(X_test.astype(np.float64))) y_train, y_test = (y[:n_train], y[n_train:]) model = Sequential() model.add(Dense(300, input_dim=5, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(150, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(25, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer=Adam(learning_rate=0.01, beta_1=0.9, beta_2=0.999), metrics=['accuracy']) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=200, verbose=0) _, train_acc = model.evaluate(X_train, y_train, verbose=2) _, test_acc = model.evaluate(X_test, y_test, verbose=2) model.save('model_' + str(1) + '.h5') model = load_model('./model_1.h5') model.summary() X_test_class = test_df['Pclass'].values.reshape(-1, 1) X_test_sex = test_df['Sex'].values.reshape(-1, 1) X_test_age = test_df['Age'].values.reshape(-1, 1) X_test_sib = test_df['SibSp'].values.reshape(-1, 1) X_test_par = test_df['Parch'].values.reshape(-1, 1) x_test = np.hstack((X_test_sex, X_test_class, X_test_sib, X_test_age, X_test_par)).astype(np.float64) y_pred = [] prediction = model.predict(x_test).ravel().tolist() y_pred += prediction for i in range(0, len(y_pred)): if y_pred[i] > 0.5: y_pred[i] = 1 else: y_pred[i] = 0 print(y_pred)
code
50213265/cell_13
[ "text_html_output_2.png" ]
col = 'Q4' v2 = df[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2 = v2.sort_values(by='count', ascending=False) plt.figure(figsize=(20, 8)) barplot = plt.bar(v2.Q4, v2['count'], color='red') for bar in barplot: yval = bar.get_height() plt.text(bar.get_x() + bar.get_width() / 2.0, yval, int(yval), va='bottom') plt.title(' Distribution of Eduction') plt.xticks(rotation=90) plt.show()
code
50213265/cell_2
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] print(df.shape) df.head(3)
code
50213265/cell_11
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt import pandas as pd import plotly.graph_objs as go import plotly.graph_objs as go data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] init_notebook_mode(connected=True) col = 'Q1' v1 = df[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1 = v1.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], marker=dict()) layout = {'title': 'Age Distribution', 'xaxis': {'title': 'Age Group'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=[trace1], layout=layout) import plotly import plotly.graph_objs as go from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) col = 'Q2' grouped = df[col].value_counts().reset_index() grouped = grouped.rename(columns={col: 'count', 'index': col}) trace = go.Pie(labels=grouped[col], values=grouped['count'], pull=[0.05, 0]) layout = {'title': 'Gender Distribution'} fig = go.Figure(data=[trace], layout=layout) d1 = df[df['Q2'] == 'Man'] d2 = df[df['Q2'] == 'Woman'] col = 'Q1' v1 = d1[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1['percent'] = v1['count'].apply(lambda x: 100 * x / sum(v1['count'])) v1 = v1.sort_values(col) v2 = d2[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2['percent'] = v2['count'].apply(lambda x: 100 * x / sum(v2['count'])) v2 = v2.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], name='Man', marker=dict(color='rgb(26, 118, 255)')) trace2 = go.Bar(x=v2[col], y=v2['count'], name='Woman', marker=dict(color='rgb(55, 83, 109)')) y = [trace1, trace2] layout = {'title': 'Age Distribution over the Gender', 'bargap': 0.2, 'bargroupgap': 0.1, 'xaxis': {'title': 'Age Distribution'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=y, layout=layout) fig.layout.template = 'presentation' plt.style.use('fivethirtyeight') col='Q3' v2=df[col].value_counts().reset_index() v2=v2.rename(columns={col:'count','index':col}) #v2['percent']=v2['count'].apply(lambda x : 100*x/sum(v2['count'])) v2=v2.sort_values(by='count',ascending=False) plt.figure(figsize=(30,12)) barplot = plt.bar(v2.Q3,v2['count'],color='black') for bar in barplot: yval = bar.get_height() plt.text(bar.get_x() + bar.get_width()/2.0, yval, int(yval), va='bottom') #va: vertical alignment y positional argument plt.title(" Number of Respondents per Country") plt.xticks(rotation=90) plt.show() col = 'Q3' v1 = d1[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1['percent'] = v1['count'].apply(lambda x: 100 * x / sum(v1['count'])) v1 = v1.sort_values(by='count') v2 = d2[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2['percent'] = v2['count'].apply(lambda x: 100 * x / sum(v2['count'])) v2 = v2.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], name='Man', marker=dict(color='black')) trace2 = go.Bar(x=v2[col], y=v2['count'], name='Woman', marker=dict(color='orange')) y = [trace1, trace2] layout = {'title': 'Gender Distribution over the Country', 'barmode': 'relative', 'xaxis_tickangle': -45, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=y, layout=layout) fig.layout.template = 'presentation' iplot(fig)
code
50213265/cell_7
[ "image_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from plotly.offline import init_notebook_mode, iplot import pandas as pd import plotly.graph_objs as go import plotly.graph_objs as go data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] init_notebook_mode(connected=True) col = 'Q1' v1 = df[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1 = v1.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], marker=dict()) layout = {'title': 'Age Distribution', 'xaxis': {'title': 'Age Group'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=[trace1], layout=layout) import plotly import plotly.graph_objs as go from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) col = 'Q2' grouped = df[col].value_counts().reset_index() grouped = grouped.rename(columns={col: 'count', 'index': col}) trace = go.Pie(labels=grouped[col], values=grouped['count'], pull=[0.05, 0]) layout = {'title': 'Gender Distribution'} fig = go.Figure(data=[trace], layout=layout) iplot(fig)
code
50213265/cell_8
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from plotly.offline import init_notebook_mode, iplot import pandas as pd import plotly.graph_objs as go import plotly.graph_objs as go data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] init_notebook_mode(connected=True) col = 'Q1' v1 = df[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1 = v1.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], marker=dict()) layout = {'title': 'Age Distribution', 'xaxis': {'title': 'Age Group'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=[trace1], layout=layout) import plotly import plotly.graph_objs as go from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) col = 'Q2' grouped = df[col].value_counts().reset_index() grouped = grouped.rename(columns={col: 'count', 'index': col}) trace = go.Pie(labels=grouped[col], values=grouped['count'], pull=[0.05, 0]) layout = {'title': 'Gender Distribution'} fig = go.Figure(data=[trace], layout=layout) d1 = df[df['Q2'] == 'Man'] d2 = df[df['Q2'] == 'Woman'] col = 'Q1' v1 = d1[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1['percent'] = v1['count'].apply(lambda x: 100 * x / sum(v1['count'])) v1 = v1.sort_values(col) v2 = d2[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2['percent'] = v2['count'].apply(lambda x: 100 * x / sum(v2['count'])) v2 = v2.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], name='Man', marker=dict(color='rgb(26, 118, 255)')) trace2 = go.Bar(x=v2[col], y=v2['count'], name='Woman', marker=dict(color='rgb(55, 83, 109)')) y = [trace1, trace2] layout = {'title': 'Age Distribution over the Gender', 'bargap': 0.2, 'bargroupgap': 0.1, 'xaxis': {'title': 'Age Distribution'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=y, layout=layout) fig.layout.template = 'presentation' iplot(fig)
code
50213265/cell_16
[ "text_html_output_1.png" ]
col = 'Q5' v2 = df[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2 = v2.sort_values(by='count', ascending=False) plt.figure(figsize=(20, 8)) barplot = plt.bar(v2.Q5, v2['count'], color='green') for bar in barplot: yval = bar.get_height() plt.text(bar.get_x() + bar.get_width() / 2.0, yval, int(yval), va='bottom') plt.title(' Title most similar to your current role ') plt.ylabel('Number of Data Science Enthusiasts') plt.xticks(rotation=90) plt.show()
code
50213265/cell_3
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] data.iloc[0, :].transpose()
code
50213265/cell_14
[ "text_html_output_2.png" ]
from plotly.offline import init_notebook_mode, iplot from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt import pandas as pd import plotly.graph_objs as go import plotly.graph_objs as go data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] init_notebook_mode(connected=True) col = 'Q1' v1 = df[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1 = v1.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], marker=dict()) layout = {'title': 'Age Distribution', 'xaxis': {'title': 'Age Group'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=[trace1], layout=layout) import plotly import plotly.graph_objs as go from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) col = 'Q2' grouped = df[col].value_counts().reset_index() grouped = grouped.rename(columns={col: 'count', 'index': col}) trace = go.Pie(labels=grouped[col], values=grouped['count'], pull=[0.05, 0]) layout = {'title': 'Gender Distribution'} fig = go.Figure(data=[trace], layout=layout) d1 = df[df['Q2'] == 'Man'] d2 = df[df['Q2'] == 'Woman'] col = 'Q1' v1 = d1[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1['percent'] = v1['count'].apply(lambda x: 100 * x / sum(v1['count'])) v1 = v1.sort_values(col) v2 = d2[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2['percent'] = v2['count'].apply(lambda x: 100 * x / sum(v2['count'])) v2 = v2.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], name='Man', marker=dict(color='rgb(26, 118, 255)')) trace2 = go.Bar(x=v2[col], y=v2['count'], name='Woman', marker=dict(color='rgb(55, 83, 109)')) y = [trace1, trace2] layout = {'title': 'Age Distribution over the Gender', 'bargap': 0.2, 'bargroupgap': 0.1, 'xaxis': {'title': 'Age Distribution'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=y, layout=layout) fig.layout.template = 'presentation' plt.style.use('fivethirtyeight') col='Q3' v2=df[col].value_counts().reset_index() v2=v2.rename(columns={col:'count','index':col}) #v2['percent']=v2['count'].apply(lambda x : 100*x/sum(v2['count'])) v2=v2.sort_values(by='count',ascending=False) plt.figure(figsize=(30,12)) barplot = plt.bar(v2.Q3,v2['count'],color='black') for bar in barplot: yval = bar.get_height() plt.text(bar.get_x() + bar.get_width()/2.0, yval, int(yval), va='bottom') #va: vertical alignment y positional argument plt.title(" Number of Respondents per Country") plt.xticks(rotation=90) plt.show() key1 = "Master's degree" key2 = "Bachelor's degree" df1 = df[df['Q4'] == 'Master’s degree'] df2 = df[df['Q4'] == 'Bachelor’s degree'] nations = ['United States of America', 'Canada', 'Brazil', 'Mexico', 'Germany', 'Spain', 'France', 'Italy', 'India', 'Japan', 'China', 'South Korea'] nation_map = {'United States of America': 'USA', 'United Kingdom of Great Britain and Northern Ireland': 'UK'} plt.figure(figsize=(15, 15)) vals = [] for j in range(len(nations)): country = nations[j] country_df = df[df['Q3'] == country] ddf1 = country_df[country_df['Q4'] == 'Master’s degree'] ddf2 = country_df[country_df['Q4'] == 'Bachelor’s degree'] plt.subplot(4, 4, j + 1) if j < 4: colors = ['orange', 'yellow'] elif j < 8: colors = ['red', '#ff8ce0'] else: colors = ['green', '#827ec4'] vals.append(len(ddf1) / (len(ddf1) + len(ddf2))) plt.pie([len(ddf1), len(ddf2)], labels=['Mastor Degree', "Bachelor's Degree"], autopct='%1.0f%%', colors=colors, wedgeprops={'linewidth': 5, 'edgecolor': 'white'}) if country in nation_map: country = nation_map[country] plt.title('$\\bf{' + country + '}$')
code
50213265/cell_10
[ "text_html_output_1.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt import pandas as pd import plotly.graph_objs as go import plotly.graph_objs as go data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] init_notebook_mode(connected=True) col = 'Q1' v1 = df[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1 = v1.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], marker=dict()) layout = {'title': 'Age Distribution', 'xaxis': {'title': 'Age Group'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=[trace1], layout=layout) import plotly import plotly.graph_objs as go from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) col = 'Q2' grouped = df[col].value_counts().reset_index() grouped = grouped.rename(columns={col: 'count', 'index': col}) trace = go.Pie(labels=grouped[col], values=grouped['count'], pull=[0.05, 0]) layout = {'title': 'Gender Distribution'} fig = go.Figure(data=[trace], layout=layout) d1 = df[df['Q2'] == 'Man'] d2 = df[df['Q2'] == 'Woman'] col = 'Q1' v1 = d1[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1['percent'] = v1['count'].apply(lambda x: 100 * x / sum(v1['count'])) v1 = v1.sort_values(col) v2 = d2[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2['percent'] = v2['count'].apply(lambda x: 100 * x / sum(v2['count'])) v2 = v2.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], name='Man', marker=dict(color='rgb(26, 118, 255)')) trace2 = go.Bar(x=v2[col], y=v2['count'], name='Woman', marker=dict(color='rgb(55, 83, 109)')) y = [trace1, trace2] layout = {'title': 'Age Distribution over the Gender', 'bargap': 0.2, 'bargroupgap': 0.1, 'xaxis': {'title': 'Age Distribution'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=y, layout=layout) fig.layout.template = 'presentation' plt.style.use('fivethirtyeight') col = 'Q3' v2 = df[col].value_counts().reset_index() v2 = v2.rename(columns={col: 'count', 'index': col}) v2 = v2.sort_values(by='count', ascending=False) plt.figure(figsize=(30, 12)) barplot = plt.bar(v2.Q3, v2['count'], color='black') for bar in barplot: yval = bar.get_height() plt.text(bar.get_x() + bar.get_width() / 2.0, yval, int(yval), va='bottom') plt.title(' Number of Respondents per Country') plt.xticks(rotation=90) plt.show()
code
50213265/cell_5
[ "image_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import pandas as pd import plotly.graph_objs as go data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') df = data.iloc[1:, :] init_notebook_mode(connected=True) col = 'Q1' v1 = df[col].value_counts().reset_index() v1 = v1.rename(columns={col: 'count', 'index': col}) v1 = v1.sort_values(col) trace1 = go.Bar(x=v1[col], y=v1['count'], marker=dict()) layout = {'title': 'Age Distribution', 'xaxis': {'title': 'Age Group'}, 'yaxis': {'title': 'Count'}} fig = go.Figure(data=[trace1], layout=layout) iplot(fig)
code
90138657/cell_21
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import numpy as np import pandas as pd dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_ X_test = df.drop(columns=['price'])[:10] X_test y_hat = model.predict(X_test) dc = pd.concat([df[:10].reset_index(), pd.Series(y_hat, name='predicted')], axis='columns') dc data = pd.read_csv('../input/kc-house-data/kc_house_data.csv') X1 = data.drop(columns=['price', 'id', 'date', 'sqft_above'])[:200] y1 = data['price'][:200] X_b = np.c_[np.ones((200, 1)), X1] X1.info()
code
90138657/cell_13
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y)
code
90138657/cell_20
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_ X_test = df.drop(columns=['price'])[:10] X_test y_hat = model.predict(X_test) dc = pd.concat([df[:10].reset_index(), pd.Series(y_hat, name='predicted')], axis='columns') dc
code
90138657/cell_6
[ "text_html_output_1.png" ]
import seaborn as sns dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() with sns.plotting_context('notebook', font_scale=2.5): g = sns.pairplot(dataset[['sqft_lot', 'sqft_above', 'price', 'sqft_living', 'bedrooms']], hue='bedrooms', palette='tab20', height=6) g.set(xticklabels=[])
code
90138657/cell_2
[ "text_plain_output_1.png" ]
dataset.columns
code
90138657/cell_11
[ "text_plain_output_1.png" ]
dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] y.head()
code
90138657/cell_19
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_ X_test = df.drop(columns=['price'])[:10] X_test y_hat = model.predict(X_test) y_hat
code
90138657/cell_1
[ "text_html_output_1.png" ]
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.linear_model import LinearRegression dataset = pd.read_csv('../input/kc-house-data/kc_house_data.csv') dataset.head()
code
90138657/cell_7
[ "text_plain_output_1.png" ]
dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() len(df)
code
90138657/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns
code
90138657/cell_15
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_
code
90138657/cell_16
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_
code
90138657/cell_3
[ "text_html_output_1.png" ]
dataset.columns print(dataset.dtypes)
code
90138657/cell_17
[ "text_plain_output_1.png" ]
dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] X_test = df.drop(columns=['price'])[:10] X_test
code
90138657/cell_14
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y) model.score(X, y)
code
90138657/cell_22
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import numpy as np import pandas as pd dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] model = LinearRegression() model.fit(X, y) model.score(X, y) model.intercept_ model.coef_ X_test = df.drop(columns=['price'])[:10] X_test y_hat = model.predict(X_test) dc = pd.concat([df[:10].reset_index(), pd.Series(y_hat, name='predicted')], axis='columns') dc data = pd.read_csv('../input/kc-house-data/kc_house_data.csv') X1 = data.drop(columns=['price', 'id', 'date', 'sqft_above'])[:200] y1 = data['price'][:200] X_b = np.c_[np.ones((200, 1)), X1] alpha = 0.1 n_iterations = 1000 m = 100 theta = np.random.randn(18, 1) for iteration in range(n_iterations): gradients = 2 / m * X_b.T.dot(X_b.dot(theta) - y) theta = theta - alpha * gradients theta
code
90138657/cell_10
[ "text_plain_output_1.png" ]
dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] len(X) len(y)
code
90138657/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() df.columns X = df.drop(columns=['price'])[:10] y = df['price'][:10] X.head()
code
90138657/cell_5
[ "text_plain_output_1.png" ]
import seaborn as sns dataset.columns df = dataset.drop(columns=['date', 'id']) df1 = df.dropna() sns.lmplot(x='price', y='sqft_living', data=df, ci=None)
code
72087593/cell_6
[ "text_plain_output_1.png" ]
from catboost import CatBoostRegressor from sklearn.metrics import mean_squared_error from sklearn.preprocessing import OrdinalEncoder from xgboost import XGBRegressor import pandas as pd df = pd.read_csv('../input/train-folds/train_folds.csv') test_df = pd.read_csv('../input/30-days-of-ml/test.csv') test_df.head().T from xgboost import XGBRegressor from catboost import CatBoostRegressor useful_features = [c for c in df.columns if c not in ('id', 'target', 'kfold')] object_cols = [col for col in useful_features if 'cat' in col] test_df = test_df[useful_features] final_predictions = [] for fold in range(5): xtrain = df[df.kfold != fold].reset_index(drop=True) xvalid = df[df.kfold == fold].reset_index(drop=True) xtest = test_df.copy() ytrain = xtrain.target yvalid = xvalid.target xtrain = xtrain[useful_features] xvalid = xvalid[useful_features] ordinal_encoder = OrdinalEncoder() xtrain[object_cols] = ordinal_encoder.fit_transform(xtrain[object_cols]) xvalid[object_cols] = ordinal_encoder.transform(xvalid[object_cols]) xtest[object_cols] = ordinal_encoder.transform(xtest[object_cols]) model = XGBRegressor(random_state=fold, n_jobs=4) model.fit(xtrain, ytrain) preds_valid = model.predict(xvalid) test_preds = model.predict(xtest) catboost_model = CatBoostRegressor(random_state=fold, verbose=100) catboost_model.fit(xtrain, ytrain) cat_preds_valid = catboost_model.predict(xvalid) cat_preds_test = model.predict(xtest) final_predictions.append(test_preds) final_predictions.append(cat_preds_test) print('XGB:', fold, mean_squared_error(yvalid, preds_valid, squared=False)) print('Catboost:', fold, mean_squared_error(yvalid, cat_preds_valid, squared=False))
code
72087593/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72087593/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train-folds/train_folds.csv') test_df = pd.read_csv('../input/30-days-of-ml/test.csv') test_df.head().T
code
2029019/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np sales = pd.read_csv('../input/nyc-rolling-sales.csv', index_col=0) sales.head(3)
code
2029019/cell_5
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import log_loss from sklearn.metrics import log_loss import numpy as np import pandas as pd import pandas as pd import numpy as np sales = pd.read_csv('../input/nyc-rolling-sales.csv', index_col=0) df = sales[['SALE PRICE', 'TOTAL UNITS']].dropna() df['SALE PRICE'] = df['SALE PRICE'].str.strip().replace('-', np.nan) df = df.dropna() X = df.loc[:, 'TOTAL UNITS'].values[:, np.newaxis].astype(float) y = df.loc[:, 'SALE PRICE'].astype(int) > 1000000 from sklearn.linear_model import LogisticRegression clf = LogisticRegression() clf.fit(X[:1000], y[:1000]) y_hat = clf.predict(X) from sklearn.metrics import log_loss log_loss(y, y_hat)
code
90105911/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] people_cat = ['Education', 'Marital_Status', 'Dt_Customer', 'Complain'] product = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'] plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.figure(figsize=(12, 8)) for i, colName in enumerate(product): plt.subplot(2, 3, i + 1) sns.histplot(data=df, x=colName) plt.tight_layout() plt.show()
code
90105911/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.head()
code
90105911/cell_30
[ "image_output_1.png" ]
place = ['NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth'] place
code
90105911/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns
code
90105911/cell_26
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] people_cat = ['Education', 'Marital_Status', 'Dt_Customer', 'Complain'] product = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'] plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.tight_layout() promotion_cat = ['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'Response'] plt.figure(figsize=(12, 8)) for i, colName in enumerate(promotion_cat): plt.subplot(3, 3, i + 1) sns.countplot(data=df, x=colName) plt.tight_layout() plt.show()
code
90105911/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90105911/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] people_cat = ['Education', 'Marital_Status', 'Dt_Customer', 'Complain'] plt.tight_layout() plt.tight_layout() plt.figure(figsize=(18, 8)) for i, colName in enumerate(people_cat): plt.subplot(2, 3, i + 1) sns.countplot(data=df, x=colName) plt.tight_layout() plt.show()
code
90105911/cell_28
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns df[['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'Response']]
code
90105911/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] plt.figure(figsize=(12, 8)) for i, colName in enumerate(people_num): plt.subplot(2, 3, i + 1) sns.histplot(data=df, x=colName) plt.tight_layout() plt.show()
code
90105911/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] plt.tight_layout() plt.figure(figsize=(12, 8)) for i, colName in enumerate(people_num): plt.subplot(2, 3, i + 1) sns.boxplot(data=df, x=colName) plt.tight_layout() plt.show()
code
90105911/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] people_cat = ['Education', 'Marital_Status', 'Dt_Customer', 'Complain'] product = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'] plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.tight_layout() promotion_num = 'NumDealsPurchases' promotion_cat = ['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'Response'] plt.tight_layout() sns.countplot(data=df, x='NumWebPurchases')
code
90105911/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] people_cat = ['Education', 'Marital_Status', 'Dt_Customer', 'Complain'] product = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'] plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.figure(figsize=(12, 8)) for i, colName in enumerate(product): plt.subplot(2, 3, i + 1) sns.boxplot(data=df, x=colName) plt.tight_layout() plt.show()
code
90105911/cell_27
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os plt.style.use('ggplot') import warnings warnings.filterwarnings('ignore') df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.columns people_num = ['Year_Birth', 'Income', 'Kidhome', 'Teenhome', 'Recency'] people_cat = ['Education', 'Marital_Status', 'Dt_Customer', 'Complain'] product = ['MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds'] plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.tight_layout() plt.tight_layout() promotion_num = 'NumDealsPurchases' promotion_cat = ['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'Response'] plt.tight_layout() sns.countplot(data=df, x=promotion_num)
code
90105911/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/customer-personality-analysis/marketing_campaign.csv', sep='\t') df.info()
code
104126253/cell_4
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer df = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') def trainModelAndAssessMAE(df): df = df.select_dtypes(exclude=['object']) df, df_test = train_test_split(df, random_state=0) mdl = DecisionTreeRegressor(random_state=0) data = df answers = df[['Price']] mdl = mdl.fit(data, answers) predictions = mdl.predict(df_test.select_dtypes(exclude=['object'])) return mean_absolute_error(predictions, df_test[['Price']]) trainModelAndAssessMAE(df.dropna(axis=0))
code
104126253/cell_6
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer df = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') def trainModelAndAssessMAE(df): df = df.select_dtypes(exclude=['object']) df, df_test = train_test_split(df, random_state=0) mdl = DecisionTreeRegressor(random_state=0) data = df answers = df[['Price']] mdl = mdl.fit(data, answers) predictions = mdl.predict(df_test.select_dtypes(exclude=['object'])) return mean_absolute_error(predictions, df_test[['Price']]) trainModelAndAssessMAE(df.dropna(axis=0)) trainModelAndAssessMAE(df.dropna(axis=1))
code
104126253/cell_8
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer df = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') def trainModelAndAssessMAE(df): df = df.select_dtypes(exclude=['object']) df, df_test = train_test_split(df, random_state=0) mdl = DecisionTreeRegressor(random_state=0) data = df answers = df[['Price']] mdl = mdl.fit(data, answers) predictions = mdl.predict(df_test.select_dtypes(exclude=['object'])) return mean_absolute_error(predictions, df_test[['Price']]) trainModelAndAssessMAE(df.dropna(axis=0)) trainModelAndAssessMAE(df.dropna(axis=1)) imputer = SimpleImputer() df_only_numerical = df.select_dtypes(exclude=['object']) df_imputed = pd.DataFrame(imputer.fit_transform(df_only_numerical)) df_imputed.columns = df_only_numerical.columns trainModelAndAssessMAE(df_imputed)
code
104126253/cell_10
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer df = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') def trainModelAndAssessMAE(df): df = df.select_dtypes(exclude=['object']) df, df_test = train_test_split(df, random_state=0) mdl = DecisionTreeRegressor(random_state=0) data = df answers = df[['Price']] mdl = mdl.fit(data, answers) predictions = mdl.predict(df_test.select_dtypes(exclude=['object'])) return mean_absolute_error(predictions, df_test[['Price']]) trainModelAndAssessMAE(df.dropna(axis=0)) trainModelAndAssessMAE(df.dropna(axis=1)) imputer = SimpleImputer() df_only_numerical = df.select_dtypes(exclude=['object']) df_imputed = pd.DataFrame(imputer.fit_transform(df_only_numerical)) df_imputed.columns = df_only_numerical.columns trainModelAndAssessMAE(df_imputed) df_ei = df.copy() cols_with_missing = [c for c in df_ei.columns if df_ei[c].isnull().any()] for column in df_ei: df_ei[column + '_was_missing'] = df_ei[column].isnull() imputer = SimpleImputer() df_ei_only_numerical = df_ei.select_dtypes(exclude=['object']) df_ei_imputed = pd.DataFrame(imputer.fit_transform(df_ei_only_numerical)) df_ei_imputed.columns = df_ei_only_numerical.columns trainModelAndAssessMAE(df_ei_imputed)
code