path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
32062628/cell_11
[ "text_html_output_1.png" ]
from IPython.core.display import display, HTML from copy import deepcopy from spacy.matcher import Matcher from spacy.matcher import PhraseMatcher import gc import json import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import spacy import time SAMPLE_SIZE_BIORXIV = 100 SAMPLE_SIZE_COMM = 100 SAMPLE_SIZE_NON_COMM = 100 SAMPLE_SIZE_CUSTOM_LICENSE = 100 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import json from pprint import pprint from copy import deepcopy import numpy as np import pandas as pd from tqdm.notebook import tqdm import spacy from spacy.matcher import PhraseMatcher from spacy.matcher import Matcher nlp = spacy.load('en_core_web_sm') import torch import scipy.spatial import time import gc import plotly.express as px from IPython.core.display import display, HTML RUN_MODE = "SUBSET" #"ALL" RUN_SAMPLES = 100 BIORXIV = "biorxiv" COMM = "comm" NON_COMM = "non_comm" CUSTOM_LICENSE = "custom_license" FILE_BIORXIV_ARTICLES_INFO = "biorxiv_article_info.txt" FILE_COMM_ARTICLES_INFO = "comm_article_info.txt" FILE_NON_COMM_ARTICLES_INFO = "non_comm_article_info.txt" FILE_CUSTOM_LICENSE_ARTICLES_INFO = "custom_license_article_info.txt" lst_url_exclusions = ['//github.com', 'https://doi.org','https://doi.org/10','perpetuity.is', 'https://doi.org/10.1101/2020.03', 'https://doi.org/10.1101/2020.04'] ## Functions to generate CSVs from Json files, four types of datasets are available here. def save_article_info(obj, filename): with open(filename, 'a') as the_file: the_file.write("# PAPER_ID ----- : " + obj.paper_id + "\n") the_file.write("# TITLE -----------: " + obj.title + "\n") the_file.write("# RELEVANT SENTENCES ----------:") the_file.write("\n") for item in obj.lst_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") if (len(obj.lst_rapid_assessment_sentences) > 0): the_file.write("# ASSESSMENT RELATED SENTENCES ----------:") the_file.write("\n") for item in obj.lst_rapid_assessment_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") if (len(obj.lst_rapid_design_sentences) > 0): the_file.write("# DESIGN RELATED SENTENCES ----------:") the_file.write("\n") for item in obj.lst_rapid_design_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") if (len(obj.lst_design_experiments_sentences) > 0): the_file.write("# EXPERIMENT RELATED SENTENCES ----------:") the_file.write("\n") for item in obj.lst_design_experiments_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") the_file.write("# URL -------------:") for item in obj.lst_urls: the_file.write("\n ==>") the_file.write("%s " % item) if (len(obj.lst_urls)==0): the_file.write("No urls found.") the_file.write("\n") author_out = obj.authors if (obj.authors.strip() == ""): author_out = "NOT_FOUND" the_file.write("\n") the_file.write("# AUTHORS -----------: " + obj.authors + "\n") the_file.write("# SCORE -----------: " + str(obj.score) + "\n") the_file.write("# =========================================================: " + "\n") def format_name(author): middle_name = " ".join(author['middle']) if author['middle']: return " ".join([author['first'], middle_name, author['last']]) else: return " ".join([author['first'], author['last']]) def format_affiliation(affiliation): text = [] location = affiliation.get('location') if location: text.extend(list(affiliation['location'].values())) institution = affiliation.get('institution') if institution: text = [institution] + text return ", ".join(text) def format_authors(authors, with_affiliation=False): name_ls = [] for author in authors: name = format_name(author) if with_affiliation: affiliation = format_affiliation(author['affiliation']) if affiliation: name_ls.append(f"{name} ({affiliation})") else: name_ls.append(name) else: name_ls.append(name) return ", ".join(name_ls) def format_body(body_text): texts = [(di['section'], di['text']) for di in body_text] texts_di = {di['section']: "" for di in body_text} for section, text in texts: texts_di[section] += text body = "" for section, text in texts_di.items(): if (section.strip() != ""): body += section.upper() body += " : " body += text body += "." return body def format_bib(bibs): if type(bibs) == dict: bibs = list(bibs.values()) bibs = deepcopy(bibs) formatted = [] for bib in bibs: bib['authors'] = format_authors( bib['authors'], with_affiliation=False ) formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']] formatted.append(", ".join(formatted_ls)) return "; ".join(formatted) def load_files(dirname, SAMPLE_SIZE = 50): filenames = os.listdir(dirname) lst_orig_count = len(filenames) raw_files = [] if (RUN_MODE == "SUBSET"): filenames = filenames[0: SAMPLE_SIZE] for filename in (filenames): filename = dirname + filename file = json.load(open(filename, 'rb')) raw_files.append(file) return (raw_files, lst_orig_count) def generate_clean_df(all_files): cleaned_files = [] for file in (all_files): features = [ file['paper_id'], file['metadata']['title'], format_authors(file['metadata']['authors']), format_authors(file['metadata']['authors'], with_affiliation=True), format_body(file['abstract']), format_body(file['body_text']), format_bib(file['bib_entries']), file['metadata']['authors'], file['bib_entries'] ] cleaned_files.append(features) col_names = ['paper_id', 'title', 'authors', 'affiliations', 'abstract', 'text', 'bibliography','raw_authors','raw_bibliography'] clean_df = pd.DataFrame(cleaned_files, columns=col_names) clean_df.head() return clean_df def find_phrases_in_title_npi(doc , span_start = 5 , span_end = 5): matcher = Matcher(nlp.vocab) pattern1= [{'LOWER': 'non'}, {'LOWER': 'pharmaceutical'}, {'LOWER': 'intervention'}] pattern2 = [{'LOWER': 'non'}, {'LOWER': 'pharmaceutical'}, {'LOWER': 'interventions'}] pattern3 = [{'LOWER': 'non'}, {'IS_PUNCT': True, 'OP' : '*'} , {'LOWER': 'pharmaceutical'}, {'IS_PUNCT': True, 'OP' : '*'}, {'LOWER': 'interventions'}] pattern4 = [{'LOWER': 'non'}, {'IS_PUNCT': True, 'OP' : '*'} , {'LOWER': 'pharmaceutical'}, {'IS_PUNCT': True, 'OP' : '*'}, {'LOWER': 'intervention'}] lst_spans = [] #matcher.add('titlematcher', None, *phrase_patterns) matcher.add('titlematcher', None, pattern1, pattern2, pattern3, pattern4) found_matches = matcher(doc) find_count = len(found_matches) for match_id, start, end in found_matches: string_id = nlp.vocab.strings[match_id] end = min(end + span_end, len(doc)) start = max(start - span_start,0) span = doc[start:end] lst_spans.append(span.text) snippets = '| '.join([lst for lst in lst_spans]) return find_count, snippets def prepare_dataframe_for_nlp(df, nlp): df.fillna('', inplace=True) return(df) def get_sents_from_snippets(lst_snippets, nlpdoc, paper_id): """ Finding full sentences when snippets are passed to this function. """ phrase_patterns = [nlp(text) for text in lst_snippets] matcher = PhraseMatcher(nlp.vocab) matcher.add('xyz', None, *phrase_patterns) sentences = nlpdoc res_sentences = [] for sent in sentences.sents: found_matches = matcher(nlp(sent.text)) find_count = len(found_matches) if len(found_matches) > 0: res_sentences.append(sent.text) res_sentences = list(set(res_sentences)) return(res_sentences) def limit_text_size(text): # if (len(text) > (10000)): text = text[0:40000] return(text) def find_phrases_in_text(doc , phrase_list, span_start = 5 , span_end = 5): matcher = PhraseMatcher(nlp.vocab) #print(phrase_list) lst_spans = [] phrase_patterns = [nlp(text) for text in phrase_list] matcher.add('covidmatcher', None, *phrase_patterns) found_matches = matcher(doc) find_count = len(found_matches) for match_id, start, end in found_matches: string_id = nlp.vocab.strings[match_id] end = min(end + span_end, len(doc) - 1) start = max(start - span_start,0) span = doc[start:end] lst_spans.append(span.text) #print("found a match.", span.text) snippets = '| '.join([lst for lst in lst_spans]) ret_list = list(set(lst_spans)) return(find_count, ret_list) def generate_data(dir_path, SAMPLE_SIZE = 50): _files, count_files_orig = load_files(dir_path, SAMPLE_SIZE) df = generate_clean_df(_files) return(df, count_files_orig) def add_lists(lst1, lst2, lst3, lst4): lst_final = list(lst1) + list(lst2) + list(lst3) + list(lst4) return(lst_final) def do_scoring_npi(title_find_count , text_find_count_in , text_find_count_ph , text_find_count_non , text_find_count_npi): if ((text_find_count_in > 0) & (text_find_count_ph > 0) & (text_find_count_non > 0)): ret = 30 * title_find_count + 10 * text_find_count_npi + text_find_count_in + text_find_count_non + text_find_count_ph else: ret = 30 * title_find_count + 10 * text_find_count_npi return(ret) def process_url(url): ret = url #print(url in lst_url_exclusions) if url in lst_url_exclusions: ret = '' return(ret) def is_main_url(d): if d.startswith('https://doi.org/'): # Could use /10.1101 return (True) else: return (False) def find_url_in_text(doc): main_url = "NOT FOUND" lst_urls = [] matcher = Matcher(nlp.vocab) pattern = [{'LIKE_URL': True}] matcher.add('url', None, pattern) found_matches = matcher(doc) #print(found_matches) for match_id, start, end in found_matches: url = doc[start:end] url = process_url(url.text) #print(url) if (url != ""): lst_urls.append(url) if is_main_url(url): main_url = url return(main_url , list(set(lst_urls))) def get_summary_row_for_df(processed_articles, count_find, count_fund_infra, count_cost_benefits, module): dict_row ={"Module":module, "Processed": processed_articles, "Found": count_find , "Found Funding and Infrastructure": count_fund_infra , "Count Cost benefits": count_cost_benefits} return(dict_row) def process_a_module(path, SAMPLE_SIZE = 50, MODULE = "provide-module"): df_data, count_orig_files = generate_data(path, SAMPLE_SIZE) df_master = df_data.copy()[["paper_id", "title"]] df_data = prepare_dataframe_for_nlp(df_data, nlp) df_data['small_text'] = list(map(limit_text_size, (df_data['text']))) df_data['nlp_title'] = list(map(nlp, (df_data['title']))) with nlp.disable_pipes("tagger", "parser", "ner"): df_data['nlp_snall_text'] = list(map(nlp, (df_data['small_text']))) df_master['title_find_count'], df_master['title_found_snippets'] = zip(*df_data['nlp_title'].apply(lambda title: find_phrases_in_title_npi((title)))) phrase_list = [u"intervention"] df_master['text_find_count_in'], df_master['text_found_snippets_in'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) phrase_list = [u"pharmaceutical"] df_master['text_find_count_ph'], df_master['text_found_snippets_ph'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) phrase_list = [u"non"] df_master['text_find_count_non'], df_master['text_found_snippets_non'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) phrase_list = [u"NPI"] df_master['text_find_count_npi'], df_master['text_found_snippets_npi'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) df_master['lst_snippets'] = list(map(add_lists , (df_master['text_found_snippets_ph']) , (df_master['text_found_snippets_npi']) , (df_master['text_found_snippets_non']) , (df_master['text_found_snippets_in']) ) ) df_master["score"] = list(map(do_scoring_npi , df_master['title_find_count'] , df_master['text_find_count_in'] , df_master['text_find_count_ph'] , df_master['text_find_count_non'] , df_master['text_find_count_npi'] )) df_master = df_master.sort_values('score', ascending = False) df_master['module'] = MODULE df_data['module'] = MODULE _ = gc.collect() return(df_master, df_data, count_orig_files) def get_paper_info(paper_id, journal): if (journal == BIORXIV): df = df_biorxiv[df_biorxiv['paper_id'] == paper_id] if (journal == COMM): df = df_comm[df_comm['paper_id'] == paper_id] if (journal == NON_COMM): df = df_non_comm[df_non_comm['paper_id'] == paper_id] if (journal == CUSTOM_LICENSE): df = df_custom_license[df_custom_license['paper_id'] == paper_id] text = df.iloc[0]['text']#[0:5000] title = df.iloc[0]['title'] authors = df.iloc[0]['authors'] return(text, title, authors) def print_list(lst, number_to_print = 5, shuffle = True): if len(lst) < number_to_print: number_to_print = len(lst) for i in range(-1*number_to_print, 0): print( lst[i]) def get_stats_from_articles(lst_articles): count_articles = 0 count_cost_benefits = 0 count_fund_infra = 0 lst_cost_benefits = [] lst_fund_infra = [] for obj in lst_articles: count_articles = count_articles + 1 if len(obj.lst_cost_benefits_sentences) > 0: count_cost_benefits = count_cost_benefits + 1 lst_cost_benefits.append((obj.title, obj.lst_urls, obj.score)) if len(obj.lst_funding_infra_sentences) > 0: count_fund_infra = count_fund_infra + 1 lst_fund_infra.append((obj.title, obj.lst_urls, obj.score)) return(count_articles, count_cost_benefits, count_fund_infra, lst_cost_benefits) def create_file(filename): with open(filename, 'w') as the_file: the_file.close() def write_to_file(filename, Text): with open(filename, 'a') as the_file: the_file.write(Text) the_file.close() def get_nlp_text_for_paper_id(paper_id, module): text, x, y = get_paper_info(paper_id, module) with nlp.disable_pipes("tagger", "parser", "ner"): return(nlp(text)) def get_td_string(): tdstring = '<td style="text-align: left; vertical-align: middle; font-size:1.2em;">' return(tdstring) def get_sentence_tr(sent): row = get_td_string() + f'{sent}</td></tr>' return(row) #return( f'<tr>' + f'<td align = "left">{sent}</td>' + '<td>&nbsp;</td></tr>') def display_article(serial , title, url , sentences, score , lst_other_keywords , lst_cost_benefits, lst_funding_infra_sentences , lst_all_urls, authors, publish_date, npi_count, paper_id): if (publish_date == NOT_FOUND): publish_date = "N/A" if (url != "NOT FOUND"): link_text = f'<a href="{url}" target="_blank">{url}</a>' else: link_text = "N/A" text = f'<h3>{serial}: {title}</h3><table border = "1">' tdstring = get_td_string() #'<td style="text-align: left; vertical-align: middle;">' text_info = f'&nbsp;&nbsp;&nbsp;&nbsp;<b>Score:</b> {score} &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>Date:</b> {publish_date} NPI Count:{npi_count}' text_1 = '<tr>' + tdstring + '<b>URL:</b>' + link_text + f'{text_info}</td>' + '</tr>' text_paper = '<tr>' + tdstring + '<b>Paper ID:</b>'+ f'{paper_id}</td>' + '</tr>' text_author = '<tr>' + tdstring + f'<b>Author(s): </b>{authors}</td></tr>' text = text + text_1 + text_paper + text_author #text += ''.join([f'<td><b>{col}</b></td>' for col in df.columns.values]) + '</tr>' i = 0 if (len(sentences) > 0): #text += f'<tr><td align ="left"><b>Relevant Sentences</b></td></tr>' text += tdstring + '<b>Relevant Sentences</b></td></tr>' for sent in sentences: i = i + 1 text += get_sentence_tr(sent) if (len(lst_other_keywords) > 0): text += tdstring + '<b>Sentences containing keywords - "rapid", "design", "experiments", "assessment" (and/or)</b></td></tr>' for sent in lst_other_keywords: i = i + 1 text += get_sentence_tr(sent) if (len(lst_cost_benefits) > 0): text += tdstring + '<b>Sentences containing keywords - "cost", "benefits" (and/or)</b></td></tr>' for sent in lst_cost_benefits: i = i + 1 text += get_sentence_tr(sent) if (len(lst_funding_infra_sentences) > 0): text += tdstring + '<b>Sentences containing keywords - "funding", "infra","authorities" (and/or) </b></td></tr>' for sent in lst_funding_infra_sentences: i = i + 1 text += get_sentence_tr(sent) if (len(lst_all_urls) > 0): text += tdstring + '<b>All urls which appear in the article</b></td></tr>' str_urls = '<br> '.join([u for u in lst_all_urls]) text += get_sentence_tr(str_urls) text += '</table>' display(HTML(text)) def get_df_from_article_list(lst_articles): lst = [] serial = 0 for l in lst_articles: serial +=1 str_rel = "Low" url = l.main_url if (l.main_url == "NOT FOUND"): url = "N/A" if (l.npi_count > 0): str_rel = "High" dict_row = {"Serial": serial, "Title":l.title, "URL": url, "Score": l.score , "Relevance": str_rel, "PaperID": l.paper_id} lst.append(dict_row) #print(len(lst_articles), len(lst)) return(pd.DataFrame(lst)) def get_processing_flag(module): retval = False if (module == BIORXIV): if (SAMPLE_SIZE_BIORXIV != -1): retval = True if (module == COMM): if (SAMPLE_SIZE_COMM != -1): retval = True if (module == NON_COMM): if (SAMPLE_SIZE_NON_COMM != -1): retval = True if (module == CUSTOM_LICENSE): if (SAMPLE_SIZE_CUSTOM_LICENSE != -1): retval = True return(retval) def print_user_message(mess = "Pl provide" ): m = f'<font size=4 , color=grey >{mess}</font>' display(HTML(m)) def display_dataframe(df, title = ""): #tdstring = f'<td style="text-align: left; vertical-align: middle; font-size:1.2em;">{v}</td>' if (title != ""): text = f'<h2>{title}</h2><table><tr>' else: text = '<table><tr>' text += ''.join([f'<td style="text-align: left; vertical-align: middle; font-size:1.2em;"><b>{col}</b></td>' for col in df.columns.values]) + '</tr>' for row in df.itertuples(): #text += '<tr>' + ''.join([f'<td valign="top">{v}</td>' for v in row[1:]]) + '</tr>' text += '<tr>' + ''.join([ f'<td style="text-align: left; vertical-align: middle; font-size:1.1em;">{v}</td>' for v in row[1:]]) + '</tr>' text += '</table>' display(HTML(text)) def start_td(): tdstring = '<td style="text-align: center; vertical-align: middle; font-size:1.2em;">' return(tdstring) def end_td(): tdstring = '</td>' return(tdstring) def get_bolded(tstr): tdstring = '<b>'+ tstr + '</b>' return(tdstring) def get_sentence_tr_vs(sent): row = get_td_string() + f'{sent}</td></tr>' return(row) #return( f'<tr>' + f'<td align = "left">{sent}</td>' + '<td>&nbsp;</td></tr>') def display_data_processing_info(): text = f'<h3>Table: Data Processing Information</h3><table border = "1">' td_header_1 = start_td() + get_bolded("Module") + end_td() td_header_2 = start_td() + get_bolded("Total articles") + end_td() td_header_3 = start_td() + get_bolded("Processed articles") + end_td() td_header_4 = start_td() + get_bolded("Number of articles of interest") + end_td() td_header_5 = start_td() + get_bolded("Excerpts of interest") + end_td() text_header = "\n<tr>" + td_header_1 + td_header_2 + td_header_3 + td_header_4 + td_header_5+ "</tr>\n" #text_header = text_header + "<tr>" + start_td() + get_bolded("total articles") + end_td() + "</tr>\n" text = text + text_header if get_processing_flag(BIORXIV): td_data_1 = start_td() + "Biorxiv/Medrxiv" + end_td() td_data_2 = start_td() + str(count_biorxiv_orig) + end_td() td_data_3 = start_td() + str(df_biorxiv.shape[0]) + end_td() td_data_4 = start_td() + str(df_biorxiv_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_bio_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row if get_processing_flag(NON_COMM): td_data_1 = start_td() + "Non Comm" + end_td() td_data_2 = start_td() + str(count_non_comm_orig) + end_td() td_data_3 = start_td() + str(df_non_comm.shape[0]) + end_td() td_data_4 = start_td() + str(df_non_comm_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_non_comm_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row if get_processing_flag(COMM): td_data_1 = start_td() + "Comm" + end_td() td_data_2 = start_td() + str(count_comm_orig) + end_td() td_data_3 = start_td() + str(df_comm.shape[0]) + end_td() td_data_4 = start_td() + str(df_comm_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_comm_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row if get_processing_flag(CUSTOM_LICENSE): td_data_1 = start_td() + "Custom License" + end_td() td_data_2 = start_td() + str(count_custom_license_orig) + end_td() td_data_3 = start_td() + str(df_custom_license.shape[0]) + end_td() td_data_4 = start_td() + str(df_custom_license_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_cl_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row text += '\n</table>' display(HTML(text)) NOT_FOUND = "<not found>" def add_list(*lsts): retlist = [] for l in lsts: retlist =retlist + l return(list(set(retlist))) def get_date(paper_url): retval = NOT_FOUND if paper_url.startswith('https://doi.org/'): # Could use /10.1101 retval = paper_url.replace('https://doi.org/10.1101/', '')[0:10] return(retval) class article(): def __init__(self, paper_id, score, journal, lst_snippets, npi_count): self.publish_date = "" self.npi_count = npi_count self.paper_id = paper_id self.main_url = "" self.score = score self.journal = journal self.lst_sentences = [] self.lst_snippets = lst_snippets self.nlp_text = None self.text = None self.lst_urls = [] self.title = None self.authors = None self.lst_funding_infra_snippets = [] self.lst_funding_infra_sentences = [] self.lst_cost_benefits_snippets =[] self.lst_cost_benefits_sentences = [] self.lst_all_sentences = [] self.lst_other_keywords_snippets = [] self.lst_other_keywords_sentences = [] self.count_sentences = 0 self.initialize() self.consolidate_all_sentences() def consolidate_all_sentences(self): self.lst_all_sentences = add_list(self.lst_sentences , self.lst_funding_infra_sentences , self.lst_cost_benefits_sentences , self.lst_other_keywords_sentences) self.count_sentences = len(self.lst_all_sentences) def save_biorxiv_all_info(self): write_to_file(FILE_BIORXIV_ARTICLES_INFO, "===================== START ===========================\n") write_to_file(FILE_BIORXIV_ARTICLES_INFO, "TITLE:" + self.title + "\n") write_to_file(FILE_BIORXIV_ARTICLES_INFO, "SENTENCES:" + ' \n'.join(self.lst_sentences)) write_to_file(FILE_BIORXIV_ARTICLES_INFO, "===================== END ===========================\n") def find_url_in_text(self): self.main_url , self.lst_urls = find_url_in_text(self.nlp_text) def initialize(self): self.text, self.title, self.authors = get_paper_info(self.paper_id, self.journal) self.nlp_text = nlp(self.text) self.find_url_in_text() self.get_sents_from_snippets() self.get_cost_benefits_info() self.get_funding_infra_info() self.get_other_keywords_info() self.publish_date = get_date(self.main_url) def get_sents_from_snippets(self): self.lst_sentences = [] self.lst_sentences = get_sents_from_snippets(self.lst_snippets, self.nlp_text, self.paper_id) def get_funding_infra_info(self): phrase_list = [ u"funding", u"fund" , u"authorities" , u"infrastructure"] count, snippets = find_phrases_in_text(self.nlp_text, phrase_list, span_start = 1, span_end = 1 ) self.lst_funding_infra_snippets = snippets if (count > 0): self.lst_funding_infra_sentences = get_sents_from_snippets(self.lst_funding_infra_snippets, self.nlp_text, self.paper_id) def get_other_keywords_info(self): phrase_list = [ u"experiment", u"rapid", u"assesment", u"design"] count, snippets = find_phrases_in_text(self.nlp_text, phrase_list, span_start = 1, span_end = 1 ) self.lst_other_keywords_snippets = snippets if (count > 0): self.lst_other_keywords_sentences = get_sents_from_snippets(snippets, self.nlp_text, self.paper_id) def get_cost_benefits_info(self): phrase_list = [u"cost", u"benefit"] count, snippets = find_phrases_in_text(self.nlp_text, phrase_list, span_start = 1, span_end = 1 ) self.lst_cost_benefits_snippets = snippets if (count > 0): self.lst_cost_benefits_sentences = get_sents_from_snippets(self.lst_cost_benefits_snippets, self.nlp_text, self.paper_id) def info_cost_benefits(self): if ((len(self.lst_cost_benefits_sentences) > 0) & (len(self.lst_cost_benefits_sentences) < 10)): self.print_header() print("Cost Benefits Information:", self.lst_cost_benefits_sentences) print("Number of cost benefits sentences found:", len(self.lst_cost_benefits_sentences)) self.print_footer() def print_header(self): strformat = "================== START ===========================\n TITLE: {} \n".format(self.title) print(strformat) def print_footer(self): strformat = "RELEVANT URLS:\n {} \n PAPER ID {}".format(self.lst_urls, self.paper_id) print(strformat) print("PaperID: ", self.paper_id , " Score:" , self.score) print("======================= END ==========================================\n") def print_1_basic_article_information(self): self.print_header() print(" -------------- PRINTING SOME EXTRACTED SENTENCES (MAX 5) Related to NPI -------------- ") if len(self.lst_sentences) > 5: print_list(self.lst_sentences[0:5]) #print(self.lst_sentences[0:5]) else: print_list(self.lst_sentences) self.print_footer() def get_objectlist_from_df(df): lst_objs = list(map(article, (df['paper_id']) , df['score'], df['module'], df['lst_snippets'], df['text_find_count_npi'])) #print("sorting") #lst_objs.sort(key=lambda x: x.score, reverse=True) return (lst_objs) if get_processing_flag(BIORXIV): path = '/kaggle/input/CORD-19-research-challenge/biorxiv_medrxiv/biorxiv_medrxiv/pdf_json/' start_time = time.time() df_biorxiv_master, df_biorxiv, count_biorxiv_orig = process_a_module(path, SAMPLE_SIZE=SAMPLE_SIZE_BIORXIV, MODULE=BIORXIV) df_biorxiv_filter = df_biorxiv_master[df_biorxiv_master['score'] > 0].reset_index() lst_obj_biorxiv = get_objectlist_from_df(df_biorxiv_filter) lst_obj_biorxiv.sort(key=lambda x: x.score, reverse=True) sum_bio_sents = sum((c.count_sentences for c in lst_obj_biorxiv)) if get_processing_flag(COMM): path = '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pdf_json/' start_time = time.time() df_comm_master, df_comm, count_comm_orig = process_a_module(path, SAMPLE_SIZE_COMM, COMM) df_comm_filter = df_comm_master[df_comm_master['score'] > 0].reset_index() lst_obj_comm = get_objectlist_from_df(df_comm_filter) lst_obj_comm.sort(key=lambda x: x.score, reverse=True) sum_comm_sents = sum((c.count_sentences for c in lst_obj_comm)) if get_processing_flag(NON_COMM): path = '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pdf_json/' start_time = time.time() df_non_comm_master, df_non_comm, count_non_comm_orig = process_a_module(path, SAMPLE_SIZE_NON_COMM, NON_COMM) df_non_comm_filter = df_non_comm_master[df_non_comm_master['score'] > 0].reset_index() lst_obj_non_comm = get_objectlist_from_df(df_non_comm_filter) lst_obj_non_comm.sort(key=lambda x: x.score, reverse=True) sum_non_comm_sents = sum((c.count_sentences for c in lst_obj_non_comm)) if get_processing_flag(CUSTOM_LICENSE): path = '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pdf_json/' start_time = time.time() df_custom_license_master, df_custom_license, count_custom_license_orig = process_a_module(path, SAMPLE_SIZE_CUSTOM_LICENSE, CUSTOM_LICENSE) df_custom_license_filter = df_custom_license_master[df_custom_license_master['score'] > 0].reset_index() lst_obj_custom_license = get_objectlist_from_df(df_custom_license_filter) lst_obj_custom_license.sort(key=lambda x: x.score, reverse=True) sum_cl_sents = sum((c.count_sentences for c in lst_obj_custom_license)) lst = [] lst_hit_ratio = [] if get_processing_flag(BIORXIV): dict_hit_ratio = {'module': 'biorxiv', 'ratio': df_biorxiv_filter.shape[0] / df_biorxiv.shape[0], 'type': 'article_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_hit_ratio = {'module': 'biorxiv', 'ratio': sum_bio_sents / df_biorxiv.shape[0], 'type': 'snippets_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_row = {'count': count_biorxiv_orig, 'module': 'biorxiv', 'type': 'total'} lst.append(dict_row) dict_row = {'count': df_biorxiv.shape[0], 'module': 'biorxiv', 'type': 'processed'} lst.append(dict_row) dict_row = {'count': df_biorxiv_filter.shape[0], 'module': 'biorxiv', 'type': 'found'} lst.append(dict_row) dict_row = {'count': sum_bio_sents, 'module': 'biorxiv', 'type': 'excerpts'} lst.append(dict_row) if get_processing_flag(NON_COMM): dict_hit_ratio = {'module': 'non_comm', 'ratio': df_non_comm_filter.shape[0] / df_non_comm.shape[0], 'type': 'article_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_hit_ratio = {'module': 'non_comm', 'ratio': sum_non_comm_sents / df_non_comm.shape[0], 'type': 'snippets_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_row = {'count': count_non_comm_orig, 'module': 'non_comm', 'type': 'total'} lst.append(dict_row) dict_row = {'count': df_non_comm.shape[0], 'module': 'non_comm', 'type': 'processed'} lst.append(dict_row) dict_row = {'count': df_non_comm_filter.shape[0], 'module': 'non_comm', 'type': 'found'} lst.append(dict_row) dict_row = {'count': sum_non_comm_sents, 'module': 'non_comm', 'type': 'excerpts'} lst.append(dict_row) if get_processing_flag(COMM): dict_hit_ratio = {'module': 'comm', 'ratio': df_comm_filter.shape[0] / df_comm.shape[0], 'type': 'article_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_hit_ratio = {'module': 'comm', 'ratio': sum_comm_sents / df_comm.shape[0], 'type': 'snippets_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_row = {'count': count_comm_orig, 'module': 'comm', 'type': 'total'} lst.append(dict_row) dict_row = {'count': df_comm.shape[0], 'module': 'comm', 'type': 'processed'} lst.append(dict_row) dict_row = {'count': df_comm_filter.shape[0], 'module': 'comm', 'type': 'found'} lst.append(dict_row) dict_row = {'count': sum_comm_sents, 'module': 'comm', 'type': 'excerpts'} lst.append(dict_row) if get_processing_flag(CUSTOM_LICENSE): dict_hit_ratio = {'module': 'custom_license', 'ratio': df_custom_license_filter.shape[0] / df_custom_license.shape[0], 'type': 'article_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_hit_ratio = {'module': 'custom_license', 'ratio': sum_cl_sents / df_custom_license.shape[0], 'type': 'snippets_hit_ratio'} lst_hit_ratio.append(dict_hit_ratio) dict_row = {'count': count_custom_license_orig, 'module': 'custom_license', 'type': 'total'} lst.append(dict_row) dict_row = {'count': df_custom_license.shape[0], 'module': 'custom_license', 'type': 'processed'} lst.append(dict_row) dict_row = {'count': df_custom_license_filter.shape[0], 'module': 'custom_license', 'type': 'found'} lst.append(dict_row) dict_row = {'count': sum_cl_sents, 'module': 'custom_license', 'type': 'excerpts'} lst.append(dict_row) df_data = pd.DataFrame(lst) df_hit_ratio = pd.DataFrame(lst_hit_ratio) fig = px.bar(df_hit_ratio, x='module', y='ratio', color='type', barmode='group', title='Hit Ratio of various modules', template='plotly_dark') fig.show()
code
32062628/cell_8
[ "text_html_output_1.png" ]
from IPython.core.display import display, HTML from copy import deepcopy from spacy.matcher import Matcher from spacy.matcher import PhraseMatcher import gc import json import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import spacy import time SAMPLE_SIZE_BIORXIV = 100 SAMPLE_SIZE_COMM = 100 SAMPLE_SIZE_NON_COMM = 100 SAMPLE_SIZE_CUSTOM_LICENSE = 100 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import json from pprint import pprint from copy import deepcopy import numpy as np import pandas as pd from tqdm.notebook import tqdm import spacy from spacy.matcher import PhraseMatcher from spacy.matcher import Matcher nlp = spacy.load('en_core_web_sm') import torch import scipy.spatial import time import gc import plotly.express as px from IPython.core.display import display, HTML RUN_MODE = "SUBSET" #"ALL" RUN_SAMPLES = 100 BIORXIV = "biorxiv" COMM = "comm" NON_COMM = "non_comm" CUSTOM_LICENSE = "custom_license" FILE_BIORXIV_ARTICLES_INFO = "biorxiv_article_info.txt" FILE_COMM_ARTICLES_INFO = "comm_article_info.txt" FILE_NON_COMM_ARTICLES_INFO = "non_comm_article_info.txt" FILE_CUSTOM_LICENSE_ARTICLES_INFO = "custom_license_article_info.txt" lst_url_exclusions = ['//github.com', 'https://doi.org','https://doi.org/10','perpetuity.is', 'https://doi.org/10.1101/2020.03', 'https://doi.org/10.1101/2020.04'] ## Functions to generate CSVs from Json files, four types of datasets are available here. def save_article_info(obj, filename): with open(filename, 'a') as the_file: the_file.write("# PAPER_ID ----- : " + obj.paper_id + "\n") the_file.write("# TITLE -----------: " + obj.title + "\n") the_file.write("# RELEVANT SENTENCES ----------:") the_file.write("\n") for item in obj.lst_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") if (len(obj.lst_rapid_assessment_sentences) > 0): the_file.write("# ASSESSMENT RELATED SENTENCES ----------:") the_file.write("\n") for item in obj.lst_rapid_assessment_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") if (len(obj.lst_rapid_design_sentences) > 0): the_file.write("# DESIGN RELATED SENTENCES ----------:") the_file.write("\n") for item in obj.lst_rapid_design_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") if (len(obj.lst_design_experiments_sentences) > 0): the_file.write("# EXPERIMENT RELATED SENTENCES ----------:") the_file.write("\n") for item in obj.lst_design_experiments_sentences: the_file.write("\n ==>") the_file.write("%s " % item) the_file.write("\n") the_file.write("# URL -------------:") for item in obj.lst_urls: the_file.write("\n ==>") the_file.write("%s " % item) if (len(obj.lst_urls)==0): the_file.write("No urls found.") the_file.write("\n") author_out = obj.authors if (obj.authors.strip() == ""): author_out = "NOT_FOUND" the_file.write("\n") the_file.write("# AUTHORS -----------: " + obj.authors + "\n") the_file.write("# SCORE -----------: " + str(obj.score) + "\n") the_file.write("# =========================================================: " + "\n") def format_name(author): middle_name = " ".join(author['middle']) if author['middle']: return " ".join([author['first'], middle_name, author['last']]) else: return " ".join([author['first'], author['last']]) def format_affiliation(affiliation): text = [] location = affiliation.get('location') if location: text.extend(list(affiliation['location'].values())) institution = affiliation.get('institution') if institution: text = [institution] + text return ", ".join(text) def format_authors(authors, with_affiliation=False): name_ls = [] for author in authors: name = format_name(author) if with_affiliation: affiliation = format_affiliation(author['affiliation']) if affiliation: name_ls.append(f"{name} ({affiliation})") else: name_ls.append(name) else: name_ls.append(name) return ", ".join(name_ls) def format_body(body_text): texts = [(di['section'], di['text']) for di in body_text] texts_di = {di['section']: "" for di in body_text} for section, text in texts: texts_di[section] += text body = "" for section, text in texts_di.items(): if (section.strip() != ""): body += section.upper() body += " : " body += text body += "." return body def format_bib(bibs): if type(bibs) == dict: bibs = list(bibs.values()) bibs = deepcopy(bibs) formatted = [] for bib in bibs: bib['authors'] = format_authors( bib['authors'], with_affiliation=False ) formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']] formatted.append(", ".join(formatted_ls)) return "; ".join(formatted) def load_files(dirname, SAMPLE_SIZE = 50): filenames = os.listdir(dirname) lst_orig_count = len(filenames) raw_files = [] if (RUN_MODE == "SUBSET"): filenames = filenames[0: SAMPLE_SIZE] for filename in (filenames): filename = dirname + filename file = json.load(open(filename, 'rb')) raw_files.append(file) return (raw_files, lst_orig_count) def generate_clean_df(all_files): cleaned_files = [] for file in (all_files): features = [ file['paper_id'], file['metadata']['title'], format_authors(file['metadata']['authors']), format_authors(file['metadata']['authors'], with_affiliation=True), format_body(file['abstract']), format_body(file['body_text']), format_bib(file['bib_entries']), file['metadata']['authors'], file['bib_entries'] ] cleaned_files.append(features) col_names = ['paper_id', 'title', 'authors', 'affiliations', 'abstract', 'text', 'bibliography','raw_authors','raw_bibliography'] clean_df = pd.DataFrame(cleaned_files, columns=col_names) clean_df.head() return clean_df def find_phrases_in_title_npi(doc , span_start = 5 , span_end = 5): matcher = Matcher(nlp.vocab) pattern1= [{'LOWER': 'non'}, {'LOWER': 'pharmaceutical'}, {'LOWER': 'intervention'}] pattern2 = [{'LOWER': 'non'}, {'LOWER': 'pharmaceutical'}, {'LOWER': 'interventions'}] pattern3 = [{'LOWER': 'non'}, {'IS_PUNCT': True, 'OP' : '*'} , {'LOWER': 'pharmaceutical'}, {'IS_PUNCT': True, 'OP' : '*'}, {'LOWER': 'interventions'}] pattern4 = [{'LOWER': 'non'}, {'IS_PUNCT': True, 'OP' : '*'} , {'LOWER': 'pharmaceutical'}, {'IS_PUNCT': True, 'OP' : '*'}, {'LOWER': 'intervention'}] lst_spans = [] #matcher.add('titlematcher', None, *phrase_patterns) matcher.add('titlematcher', None, pattern1, pattern2, pattern3, pattern4) found_matches = matcher(doc) find_count = len(found_matches) for match_id, start, end in found_matches: string_id = nlp.vocab.strings[match_id] end = min(end + span_end, len(doc)) start = max(start - span_start,0) span = doc[start:end] lst_spans.append(span.text) snippets = '| '.join([lst for lst in lst_spans]) return find_count, snippets def prepare_dataframe_for_nlp(df, nlp): df.fillna('', inplace=True) return(df) def get_sents_from_snippets(lst_snippets, nlpdoc, paper_id): """ Finding full sentences when snippets are passed to this function. """ phrase_patterns = [nlp(text) for text in lst_snippets] matcher = PhraseMatcher(nlp.vocab) matcher.add('xyz', None, *phrase_patterns) sentences = nlpdoc res_sentences = [] for sent in sentences.sents: found_matches = matcher(nlp(sent.text)) find_count = len(found_matches) if len(found_matches) > 0: res_sentences.append(sent.text) res_sentences = list(set(res_sentences)) return(res_sentences) def limit_text_size(text): # if (len(text) > (10000)): text = text[0:40000] return(text) def find_phrases_in_text(doc , phrase_list, span_start = 5 , span_end = 5): matcher = PhraseMatcher(nlp.vocab) #print(phrase_list) lst_spans = [] phrase_patterns = [nlp(text) for text in phrase_list] matcher.add('covidmatcher', None, *phrase_patterns) found_matches = matcher(doc) find_count = len(found_matches) for match_id, start, end in found_matches: string_id = nlp.vocab.strings[match_id] end = min(end + span_end, len(doc) - 1) start = max(start - span_start,0) span = doc[start:end] lst_spans.append(span.text) #print("found a match.", span.text) snippets = '| '.join([lst for lst in lst_spans]) ret_list = list(set(lst_spans)) return(find_count, ret_list) def generate_data(dir_path, SAMPLE_SIZE = 50): _files, count_files_orig = load_files(dir_path, SAMPLE_SIZE) df = generate_clean_df(_files) return(df, count_files_orig) def add_lists(lst1, lst2, lst3, lst4): lst_final = list(lst1) + list(lst2) + list(lst3) + list(lst4) return(lst_final) def do_scoring_npi(title_find_count , text_find_count_in , text_find_count_ph , text_find_count_non , text_find_count_npi): if ((text_find_count_in > 0) & (text_find_count_ph > 0) & (text_find_count_non > 0)): ret = 30 * title_find_count + 10 * text_find_count_npi + text_find_count_in + text_find_count_non + text_find_count_ph else: ret = 30 * title_find_count + 10 * text_find_count_npi return(ret) def process_url(url): ret = url #print(url in lst_url_exclusions) if url in lst_url_exclusions: ret = '' return(ret) def is_main_url(d): if d.startswith('https://doi.org/'): # Could use /10.1101 return (True) else: return (False) def find_url_in_text(doc): main_url = "NOT FOUND" lst_urls = [] matcher = Matcher(nlp.vocab) pattern = [{'LIKE_URL': True}] matcher.add('url', None, pattern) found_matches = matcher(doc) #print(found_matches) for match_id, start, end in found_matches: url = doc[start:end] url = process_url(url.text) #print(url) if (url != ""): lst_urls.append(url) if is_main_url(url): main_url = url return(main_url , list(set(lst_urls))) def get_summary_row_for_df(processed_articles, count_find, count_fund_infra, count_cost_benefits, module): dict_row ={"Module":module, "Processed": processed_articles, "Found": count_find , "Found Funding and Infrastructure": count_fund_infra , "Count Cost benefits": count_cost_benefits} return(dict_row) def process_a_module(path, SAMPLE_SIZE = 50, MODULE = "provide-module"): df_data, count_orig_files = generate_data(path, SAMPLE_SIZE) df_master = df_data.copy()[["paper_id", "title"]] df_data = prepare_dataframe_for_nlp(df_data, nlp) df_data['small_text'] = list(map(limit_text_size, (df_data['text']))) df_data['nlp_title'] = list(map(nlp, (df_data['title']))) with nlp.disable_pipes("tagger", "parser", "ner"): df_data['nlp_snall_text'] = list(map(nlp, (df_data['small_text']))) df_master['title_find_count'], df_master['title_found_snippets'] = zip(*df_data['nlp_title'].apply(lambda title: find_phrases_in_title_npi((title)))) phrase_list = [u"intervention"] df_master['text_find_count_in'], df_master['text_found_snippets_in'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) phrase_list = [u"pharmaceutical"] df_master['text_find_count_ph'], df_master['text_found_snippets_ph'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) phrase_list = [u"non"] df_master['text_find_count_non'], df_master['text_found_snippets_non'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) phrase_list = [u"NPI"] df_master['text_find_count_npi'], df_master['text_found_snippets_npi'] = zip(*df_data['nlp_snall_text'].apply(lambda nlptext: find_phrases_in_text((nlptext), phrase_list))) df_master['lst_snippets'] = list(map(add_lists , (df_master['text_found_snippets_ph']) , (df_master['text_found_snippets_npi']) , (df_master['text_found_snippets_non']) , (df_master['text_found_snippets_in']) ) ) df_master["score"] = list(map(do_scoring_npi , df_master['title_find_count'] , df_master['text_find_count_in'] , df_master['text_find_count_ph'] , df_master['text_find_count_non'] , df_master['text_find_count_npi'] )) df_master = df_master.sort_values('score', ascending = False) df_master['module'] = MODULE df_data['module'] = MODULE _ = gc.collect() return(df_master, df_data, count_orig_files) def get_paper_info(paper_id, journal): if (journal == BIORXIV): df = df_biorxiv[df_biorxiv['paper_id'] == paper_id] if (journal == COMM): df = df_comm[df_comm['paper_id'] == paper_id] if (journal == NON_COMM): df = df_non_comm[df_non_comm['paper_id'] == paper_id] if (journal == CUSTOM_LICENSE): df = df_custom_license[df_custom_license['paper_id'] == paper_id] text = df.iloc[0]['text']#[0:5000] title = df.iloc[0]['title'] authors = df.iloc[0]['authors'] return(text, title, authors) def print_list(lst, number_to_print = 5, shuffle = True): if len(lst) < number_to_print: number_to_print = len(lst) for i in range(-1*number_to_print, 0): print( lst[i]) def get_stats_from_articles(lst_articles): count_articles = 0 count_cost_benefits = 0 count_fund_infra = 0 lst_cost_benefits = [] lst_fund_infra = [] for obj in lst_articles: count_articles = count_articles + 1 if len(obj.lst_cost_benefits_sentences) > 0: count_cost_benefits = count_cost_benefits + 1 lst_cost_benefits.append((obj.title, obj.lst_urls, obj.score)) if len(obj.lst_funding_infra_sentences) > 0: count_fund_infra = count_fund_infra + 1 lst_fund_infra.append((obj.title, obj.lst_urls, obj.score)) return(count_articles, count_cost_benefits, count_fund_infra, lst_cost_benefits) def create_file(filename): with open(filename, 'w') as the_file: the_file.close() def write_to_file(filename, Text): with open(filename, 'a') as the_file: the_file.write(Text) the_file.close() def get_nlp_text_for_paper_id(paper_id, module): text, x, y = get_paper_info(paper_id, module) with nlp.disable_pipes("tagger", "parser", "ner"): return(nlp(text)) def get_td_string(): tdstring = '<td style="text-align: left; vertical-align: middle; font-size:1.2em;">' return(tdstring) def get_sentence_tr(sent): row = get_td_string() + f'{sent}</td></tr>' return(row) #return( f'<tr>' + f'<td align = "left">{sent}</td>' + '<td>&nbsp;</td></tr>') def display_article(serial , title, url , sentences, score , lst_other_keywords , lst_cost_benefits, lst_funding_infra_sentences , lst_all_urls, authors, publish_date, npi_count, paper_id): if (publish_date == NOT_FOUND): publish_date = "N/A" if (url != "NOT FOUND"): link_text = f'<a href="{url}" target="_blank">{url}</a>' else: link_text = "N/A" text = f'<h3>{serial}: {title}</h3><table border = "1">' tdstring = get_td_string() #'<td style="text-align: left; vertical-align: middle;">' text_info = f'&nbsp;&nbsp;&nbsp;&nbsp;<b>Score:</b> {score} &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<b>Date:</b> {publish_date} NPI Count:{npi_count}' text_1 = '<tr>' + tdstring + '<b>URL:</b>' + link_text + f'{text_info}</td>' + '</tr>' text_paper = '<tr>' + tdstring + '<b>Paper ID:</b>'+ f'{paper_id}</td>' + '</tr>' text_author = '<tr>' + tdstring + f'<b>Author(s): </b>{authors}</td></tr>' text = text + text_1 + text_paper + text_author #text += ''.join([f'<td><b>{col}</b></td>' for col in df.columns.values]) + '</tr>' i = 0 if (len(sentences) > 0): #text += f'<tr><td align ="left"><b>Relevant Sentences</b></td></tr>' text += tdstring + '<b>Relevant Sentences</b></td></tr>' for sent in sentences: i = i + 1 text += get_sentence_tr(sent) if (len(lst_other_keywords) > 0): text += tdstring + '<b>Sentences containing keywords - "rapid", "design", "experiments", "assessment" (and/or)</b></td></tr>' for sent in lst_other_keywords: i = i + 1 text += get_sentence_tr(sent) if (len(lst_cost_benefits) > 0): text += tdstring + '<b>Sentences containing keywords - "cost", "benefits" (and/or)</b></td></tr>' for sent in lst_cost_benefits: i = i + 1 text += get_sentence_tr(sent) if (len(lst_funding_infra_sentences) > 0): text += tdstring + '<b>Sentences containing keywords - "funding", "infra","authorities" (and/or) </b></td></tr>' for sent in lst_funding_infra_sentences: i = i + 1 text += get_sentence_tr(sent) if (len(lst_all_urls) > 0): text += tdstring + '<b>All urls which appear in the article</b></td></tr>' str_urls = '<br> '.join([u for u in lst_all_urls]) text += get_sentence_tr(str_urls) text += '</table>' display(HTML(text)) def get_df_from_article_list(lst_articles): lst = [] serial = 0 for l in lst_articles: serial +=1 str_rel = "Low" url = l.main_url if (l.main_url == "NOT FOUND"): url = "N/A" if (l.npi_count > 0): str_rel = "High" dict_row = {"Serial": serial, "Title":l.title, "URL": url, "Score": l.score , "Relevance": str_rel, "PaperID": l.paper_id} lst.append(dict_row) #print(len(lst_articles), len(lst)) return(pd.DataFrame(lst)) def get_processing_flag(module): retval = False if (module == BIORXIV): if (SAMPLE_SIZE_BIORXIV != -1): retval = True if (module == COMM): if (SAMPLE_SIZE_COMM != -1): retval = True if (module == NON_COMM): if (SAMPLE_SIZE_NON_COMM != -1): retval = True if (module == CUSTOM_LICENSE): if (SAMPLE_SIZE_CUSTOM_LICENSE != -1): retval = True return(retval) def print_user_message(mess = "Pl provide" ): m = f'<font size=4 , color=grey >{mess}</font>' display(HTML(m)) def display_dataframe(df, title = ""): #tdstring = f'<td style="text-align: left; vertical-align: middle; font-size:1.2em;">{v}</td>' if (title != ""): text = f'<h2>{title}</h2><table><tr>' else: text = '<table><tr>' text += ''.join([f'<td style="text-align: left; vertical-align: middle; font-size:1.2em;"><b>{col}</b></td>' for col in df.columns.values]) + '</tr>' for row in df.itertuples(): #text += '<tr>' + ''.join([f'<td valign="top">{v}</td>' for v in row[1:]]) + '</tr>' text += '<tr>' + ''.join([ f'<td style="text-align: left; vertical-align: middle; font-size:1.1em;">{v}</td>' for v in row[1:]]) + '</tr>' text += '</table>' display(HTML(text)) def start_td(): tdstring = '<td style="text-align: center; vertical-align: middle; font-size:1.2em;">' return(tdstring) def end_td(): tdstring = '</td>' return(tdstring) def get_bolded(tstr): tdstring = '<b>'+ tstr + '</b>' return(tdstring) def get_sentence_tr_vs(sent): row = get_td_string() + f'{sent}</td></tr>' return(row) #return( f'<tr>' + f'<td align = "left">{sent}</td>' + '<td>&nbsp;</td></tr>') def display_data_processing_info(): text = f'<h3>Table: Data Processing Information</h3><table border = "1">' td_header_1 = start_td() + get_bolded("Module") + end_td() td_header_2 = start_td() + get_bolded("Total articles") + end_td() td_header_3 = start_td() + get_bolded("Processed articles") + end_td() td_header_4 = start_td() + get_bolded("Number of articles of interest") + end_td() td_header_5 = start_td() + get_bolded("Excerpts of interest") + end_td() text_header = "\n<tr>" + td_header_1 + td_header_2 + td_header_3 + td_header_4 + td_header_5+ "</tr>\n" #text_header = text_header + "<tr>" + start_td() + get_bolded("total articles") + end_td() + "</tr>\n" text = text + text_header if get_processing_flag(BIORXIV): td_data_1 = start_td() + "Biorxiv/Medrxiv" + end_td() td_data_2 = start_td() + str(count_biorxiv_orig) + end_td() td_data_3 = start_td() + str(df_biorxiv.shape[0]) + end_td() td_data_4 = start_td() + str(df_biorxiv_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_bio_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row if get_processing_flag(NON_COMM): td_data_1 = start_td() + "Non Comm" + end_td() td_data_2 = start_td() + str(count_non_comm_orig) + end_td() td_data_3 = start_td() + str(df_non_comm.shape[0]) + end_td() td_data_4 = start_td() + str(df_non_comm_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_non_comm_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row if get_processing_flag(COMM): td_data_1 = start_td() + "Comm" + end_td() td_data_2 = start_td() + str(count_comm_orig) + end_td() td_data_3 = start_td() + str(df_comm.shape[0]) + end_td() td_data_4 = start_td() + str(df_comm_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_comm_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row if get_processing_flag(CUSTOM_LICENSE): td_data_1 = start_td() + "Custom License" + end_td() td_data_2 = start_td() + str(count_custom_license_orig) + end_td() td_data_3 = start_td() + str(df_custom_license.shape[0]) + end_td() td_data_4 = start_td() + str(df_custom_license_filter.shape[0]) + end_td() td_data_5 = start_td() + str(sum_cl_sents) + end_td() text_row = "\n<tr>" + td_data_1 + td_data_2 + td_data_3 + td_data_4 + td_data_5 + "</tr>\n" text = text + text_row text += '\n</table>' display(HTML(text)) NOT_FOUND = "<not found>" def add_list(*lsts): retlist = [] for l in lsts: retlist =retlist + l return(list(set(retlist))) def get_date(paper_url): retval = NOT_FOUND if paper_url.startswith('https://doi.org/'): # Could use /10.1101 retval = paper_url.replace('https://doi.org/10.1101/', '')[0:10] return(retval) class article(): def __init__(self, paper_id, score, journal, lst_snippets, npi_count): self.publish_date = "" self.npi_count = npi_count self.paper_id = paper_id self.main_url = "" self.score = score self.journal = journal self.lst_sentences = [] self.lst_snippets = lst_snippets self.nlp_text = None self.text = None self.lst_urls = [] self.title = None self.authors = None self.lst_funding_infra_snippets = [] self.lst_funding_infra_sentences = [] self.lst_cost_benefits_snippets =[] self.lst_cost_benefits_sentences = [] self.lst_all_sentences = [] self.lst_other_keywords_snippets = [] self.lst_other_keywords_sentences = [] self.count_sentences = 0 self.initialize() self.consolidate_all_sentences() def consolidate_all_sentences(self): self.lst_all_sentences = add_list(self.lst_sentences , self.lst_funding_infra_sentences , self.lst_cost_benefits_sentences , self.lst_other_keywords_sentences) self.count_sentences = len(self.lst_all_sentences) def save_biorxiv_all_info(self): write_to_file(FILE_BIORXIV_ARTICLES_INFO, "===================== START ===========================\n") write_to_file(FILE_BIORXIV_ARTICLES_INFO, "TITLE:" + self.title + "\n") write_to_file(FILE_BIORXIV_ARTICLES_INFO, "SENTENCES:" + ' \n'.join(self.lst_sentences)) write_to_file(FILE_BIORXIV_ARTICLES_INFO, "===================== END ===========================\n") def find_url_in_text(self): self.main_url , self.lst_urls = find_url_in_text(self.nlp_text) def initialize(self): self.text, self.title, self.authors = get_paper_info(self.paper_id, self.journal) self.nlp_text = nlp(self.text) self.find_url_in_text() self.get_sents_from_snippets() self.get_cost_benefits_info() self.get_funding_infra_info() self.get_other_keywords_info() self.publish_date = get_date(self.main_url) def get_sents_from_snippets(self): self.lst_sentences = [] self.lst_sentences = get_sents_from_snippets(self.lst_snippets, self.nlp_text, self.paper_id) def get_funding_infra_info(self): phrase_list = [ u"funding", u"fund" , u"authorities" , u"infrastructure"] count, snippets = find_phrases_in_text(self.nlp_text, phrase_list, span_start = 1, span_end = 1 ) self.lst_funding_infra_snippets = snippets if (count > 0): self.lst_funding_infra_sentences = get_sents_from_snippets(self.lst_funding_infra_snippets, self.nlp_text, self.paper_id) def get_other_keywords_info(self): phrase_list = [ u"experiment", u"rapid", u"assesment", u"design"] count, snippets = find_phrases_in_text(self.nlp_text, phrase_list, span_start = 1, span_end = 1 ) self.lst_other_keywords_snippets = snippets if (count > 0): self.lst_other_keywords_sentences = get_sents_from_snippets(snippets, self.nlp_text, self.paper_id) def get_cost_benefits_info(self): phrase_list = [u"cost", u"benefit"] count, snippets = find_phrases_in_text(self.nlp_text, phrase_list, span_start = 1, span_end = 1 ) self.lst_cost_benefits_snippets = snippets if (count > 0): self.lst_cost_benefits_sentences = get_sents_from_snippets(self.lst_cost_benefits_snippets, self.nlp_text, self.paper_id) def info_cost_benefits(self): if ((len(self.lst_cost_benefits_sentences) > 0) & (len(self.lst_cost_benefits_sentences) < 10)): self.print_header() print("Cost Benefits Information:", self.lst_cost_benefits_sentences) print("Number of cost benefits sentences found:", len(self.lst_cost_benefits_sentences)) self.print_footer() def print_header(self): strformat = "================== START ===========================\n TITLE: {} \n".format(self.title) print(strformat) def print_footer(self): strformat = "RELEVANT URLS:\n {} \n PAPER ID {}".format(self.lst_urls, self.paper_id) print(strformat) print("PaperID: ", self.paper_id , " Score:" , self.score) print("======================= END ==========================================\n") def print_1_basic_article_information(self): self.print_header() print(" -------------- PRINTING SOME EXTRACTED SENTENCES (MAX 5) Related to NPI -------------- ") if len(self.lst_sentences) > 5: print_list(self.lst_sentences[0:5]) #print(self.lst_sentences[0:5]) else: print_list(self.lst_sentences) self.print_footer() def get_objectlist_from_df(df): lst_objs = list(map(article, (df['paper_id']) , df['score'], df['module'], df['lst_snippets'], df['text_find_count_npi'])) #print("sorting") #lst_objs.sort(key=lambda x: x.score, reverse=True) return (lst_objs) if get_processing_flag(BIORXIV): path = '/kaggle/input/CORD-19-research-challenge/biorxiv_medrxiv/biorxiv_medrxiv/pdf_json/' start_time = time.time() df_biorxiv_master, df_biorxiv, count_biorxiv_orig = process_a_module(path, SAMPLE_SIZE=SAMPLE_SIZE_BIORXIV, MODULE=BIORXIV) df_biorxiv_filter = df_biorxiv_master[df_biorxiv_master['score'] > 0].reset_index() lst_obj_biorxiv = get_objectlist_from_df(df_biorxiv_filter) lst_obj_biorxiv.sort(key=lambda x: x.score, reverse=True) sum_bio_sents = sum((c.count_sentences for c in lst_obj_biorxiv)) if get_processing_flag(COMM): path = '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pdf_json/' start_time = time.time() df_comm_master, df_comm, count_comm_orig = process_a_module(path, SAMPLE_SIZE_COMM, COMM) df_comm_filter = df_comm_master[df_comm_master['score'] > 0].reset_index() lst_obj_comm = get_objectlist_from_df(df_comm_filter) lst_obj_comm.sort(key=lambda x: x.score, reverse=True) sum_comm_sents = sum((c.count_sentences for c in lst_obj_comm)) if get_processing_flag(NON_COMM): path = '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pdf_json/' start_time = time.time() df_non_comm_master, df_non_comm, count_non_comm_orig = process_a_module(path, SAMPLE_SIZE_NON_COMM, NON_COMM) df_non_comm_filter = df_non_comm_master[df_non_comm_master['score'] > 0].reset_index() lst_obj_non_comm = get_objectlist_from_df(df_non_comm_filter) lst_obj_non_comm.sort(key=lambda x: x.score, reverse=True) sum_non_comm_sents = sum((c.count_sentences for c in lst_obj_non_comm)) if get_processing_flag(CUSTOM_LICENSE): path = '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pdf_json/' start_time = time.time() df_custom_license_master, df_custom_license, count_custom_license_orig = process_a_module(path, SAMPLE_SIZE_CUSTOM_LICENSE, CUSTOM_LICENSE) df_custom_license_filter = df_custom_license_master[df_custom_license_master['score'] > 0].reset_index() lst_obj_custom_license = get_objectlist_from_df(df_custom_license_filter) lst_obj_custom_license.sort(key=lambda x: x.score, reverse=True) sum_cl_sents = sum((c.count_sentences for c in lst_obj_custom_license)) display_data_processing_info()
code
1010130/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import random import tensorflow as tf import tensorflow as tf features = ['Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Age', 'SibSp', 'Parch', 'Fare'] df = pd.read_csv('../input/train.csv') t = pd.DataFrame({'Validation': list(map(lambda x: random.random() < 0.3, range(891)))}) x_preprocess = pd.DataFrame({'Pclass_1': (df['Pclass'] == 1) * 1, 'Pclass_2': (df['Pclass'] == 2) * 1, 'Pclass_3': (df['Pclass'] == 3) * 1, 'Sex_female': (df['Sex'] == 'female') * 1, 'Age': df['Age'] / pd.Series.std(df['Age']), 'SibSp': df['SibSp'], 'Parch': df['Parch'], 'Fare': df['Fare'] / pd.Series.std(df['Fare'])}) x_preprocess.fillna(0, inplace=True) y = pd.DataFrame({'Survived': df['Survived']}) y_train = y[t['Validation'] == False] x_train = x_preprocess[t['Validation'] == False] y_validation = y[t['Validation']] x_validation = x_preprocess[t['Validation']] x = tf.placeholder(dtype=tf.float32, shape=[None, len(features)]) y = tf.placeholder(dtype=tf.float32, shape=[None, 1]) h1_feature = 32 h2_feature = 32 epic_max = 1000 mini_batch = 64 W1 = tf.Variable(tf.truncated_normal(shape=[len(features), h1_feature], stddev=0.1)) W2 = tf.Variable(tf.truncated_normal(shape=[h1_feature, h2_feature], stddev=0.1)) W3 = tf.Variable(tf.truncated_normal(shape=[h2_feature, 1], stddev=0.1)) b1 = tf.Variable(tf.ones(shape=[1, h1_feature])) b2 = tf.Variable(tf.ones(shape=[1, h2_feature])) b3 = tf.Variable(tf.ones(shape=[1, 1])) init = tf.global_variables_initializer() x_dropout = tf.nn.dropout(x, 0.5) h1_relu = tf.nn.sigmoid(tf.matmul(x, W1) + b1) h2_relu = tf.nn.sigmoid(tf.matmul(h1_relu, W2) + b2) h3_sigmoid = tf.nn.sigmoid(tf.matmul(h2_relu, W3) + b3) cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=h3_sigmoid, logits=y)) train_step = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(cross_entropy) accuracy = tf.reduce_mean(tf.cast(tf.equal(h3_sigmoid, y), tf.float32)) with tf.Session() as sess: sess.run(init) feed_train = {x: x_train[features].values, y: y_train[['Survived']].values} feed_validation = {x: x_validation[features].values, y: y_validation[['Survived']].values} for j in range(100): for i in range(100): sess.run(train_step, feed_dict=feed_train) features = ['Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Age', 'SibSp', 'Parch', 'Fare'] df = pd.read_csv('../input/train.csv') t = pd.DataFrame({'Validation': list(map(lambda x: random.random() < 0.3, range(891)))}) x = pd.DataFrame({'Pclass_1': (df['Pclass'] == 1) * 1, 'Pclass_2': (df['Pclass'] == 2) * 1, 'Pclass_3': (df['Pclass'] == 3) * 1, 'Sex_female': (df['Sex'] == 'female') * 1, 'Age': df['Age'] / pd.Series.std(df['Age']), 'SibSp': df['SibSp'], 'Parch': df['Parch'], 'Fare': df['Fare'] / pd.Series.std(df['Fare'])}) x.fillna(0, inplace=True) y = pd.DataFrame({'Survived': df['Survived']}) y_train = y[t['Validation'] == False] x_train = x[t['Validation'] == False] y_validation = y[t['Validation']] x_validation = x[t['Validation']] x = tf.placeholder(dtype=tf.float32, shape=[None, len(features)]) y = tf.placeholder(dtype=tf.float32, shape=[None, 1]) h1_feature = 32 h2_feature = 32 epic_max = 1000 mini_batch = 64 W1 = tf.Variable(tf.truncated_normal(shape=[len(features), h1_feature], stddev=0.1)) W2 = tf.Variable(tf.truncated_normal(shape=[h1_feature, h2_feature], stddev=0.1)) W3 = tf.Variable(tf.truncated_normal(shape=[h2_feature, 1], stddev=0.01)) b1 = tf.Variable(tf.zeros(shape=[1, h1_feature])) b2 = tf.Variable(tf.zeros(shape=[1, h2_feature])) b3 = tf.Variable(tf.zeros(shape=[1, 1])) x_dropout = tf.nn.dropout(x, 0.5) h1_tanh = tf.nn.tanh(tf.matmul(x, W1) + b1) h2_tanh = tf.nn.tanh(tf.matmul(h1_tanh, W2) + b2) h3_sigmoid = tf.nn.sigmoid(tf.matmul(h2_tanh, W3) + b3) cross_entropy = -tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=h3_sigmoid, logits=y)) train_step = tf.train.AdamOptimizer(learning_rate=0.5).minimize(cross_entropy) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.round(h3_sigmoid), y), tf.float32)) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) feed_train = {x: x_train[features].values, y: y_train[['Survived']].values} feed_validation = {x: x_validation[features].values, y: y_validation[['Survived']].values} print(sess.run([cross_entropy, accuracy], feed_dict=feed_train)) print(sess.run([cross_entropy, accuracy], feed_dict=feed_validation)) for j in range(10): for i in range(1000): sess.run(train_step, feed_dict=feed_train) print(sess.run([cross_entropy, accuracy], feed_dict=feed_train)) print(sess.run([cross_entropy, accuracy], feed_dict=feed_validation))
code
1010130/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import tensorflow as tf features = ['Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Age', 'SibSp', 'Parch', 'Fare'] df = pd.read_csv('../input/train.csv') t = pd.DataFrame({'Validation': list(map(lambda x: random.random() < 0.3, range(891)))}) x_preprocess = pd.DataFrame({'Pclass_1': (df['Pclass'] == 1) * 1, 'Pclass_2': (df['Pclass'] == 2) * 1, 'Pclass_3': (df['Pclass'] == 3) * 1, 'Sex_female': (df['Sex'] == 'female') * 1, 'Age': df['Age'] / pd.Series.std(df['Age']), 'SibSp': df['SibSp'], 'Parch': df['Parch'], 'Fare': df['Fare'] / pd.Series.std(df['Fare'])}) x_preprocess.fillna(0, inplace=True) y = pd.DataFrame({'Survived': df['Survived']}) y_train = y[t['Validation'] == False] x_train = x_preprocess[t['Validation'] == False] y_validation = y[t['Validation']] x_validation = x_preprocess[t['Validation']] x = tf.placeholder(dtype=tf.float32, shape=[None, len(features)]) y = tf.placeholder(dtype=tf.float32, shape=[None, 1]) h1_feature = 32 h2_feature = 32 epic_max = 1000 mini_batch = 64 W1 = tf.Variable(tf.truncated_normal(shape=[len(features), h1_feature], stddev=0.1)) W2 = tf.Variable(tf.truncated_normal(shape=[h1_feature, h2_feature], stddev=0.1)) W3 = tf.Variable(tf.truncated_normal(shape=[h2_feature, 1], stddev=0.1)) b1 = tf.Variable(tf.ones(shape=[1, h1_feature])) b2 = tf.Variable(tf.ones(shape=[1, h2_feature])) b3 = tf.Variable(tf.ones(shape=[1, 1])) init = tf.global_variables_initializer() x_dropout = tf.nn.dropout(x, 0.5) h1_relu = tf.nn.sigmoid(tf.matmul(x, W1) + b1) h2_relu = tf.nn.sigmoid(tf.matmul(h1_relu, W2) + b2) h3_sigmoid = tf.nn.sigmoid(tf.matmul(h2_relu, W3) + b3) cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=h3_sigmoid, logits=y)) train_step = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(cross_entropy) accuracy = tf.reduce_mean(tf.cast(tf.equal(h3_sigmoid, y), tf.float32)) with tf.Session() as sess: sess.run(init) feed_train = {x: x_train[features].values, y: y_train[['Survived']].values} feed_validation = {x: x_validation[features].values, y: y_validation[['Survived']].values} for j in range(100): for i in range(100): sess.run(train_step, feed_dict=feed_train) print(sess.run(cross_entropy, feed_dict=feed_train)) print(sess.run(cross_entropy, feed_dict=feed_validation))
code
1010130/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import tensorflow as tf import random from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1010130/cell_7
[ "text_plain_output_1.png" ]
from subprocess import check_output from subprocess import check_output import numpy as np import pandas as pd import tensorflow as tf import random from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1010130/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import random import tensorflow as tf import tensorflow as tf features = ['Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Age', 'SibSp', 'Parch', 'Fare'] df = pd.read_csv('../input/train.csv') t = pd.DataFrame({'Validation': list(map(lambda x: random.random() < 0.3, range(891)))}) x_preprocess = pd.DataFrame({'Pclass_1': (df['Pclass'] == 1) * 1, 'Pclass_2': (df['Pclass'] == 2) * 1, 'Pclass_3': (df['Pclass'] == 3) * 1, 'Sex_female': (df['Sex'] == 'female') * 1, 'Age': df['Age'] / pd.Series.std(df['Age']), 'SibSp': df['SibSp'], 'Parch': df['Parch'], 'Fare': df['Fare'] / pd.Series.std(df['Fare'])}) x_preprocess.fillna(0, inplace=True) y = pd.DataFrame({'Survived': df['Survived']}) y_train = y[t['Validation'] == False] x_train = x_preprocess[t['Validation'] == False] y_validation = y[t['Validation']] x_validation = x_preprocess[t['Validation']] x = tf.placeholder(dtype=tf.float32, shape=[None, len(features)]) y = tf.placeholder(dtype=tf.float32, shape=[None, 1]) h1_feature = 32 h2_feature = 32 epic_max = 1000 mini_batch = 64 W1 = tf.Variable(tf.truncated_normal(shape=[len(features), h1_feature], stddev=0.1)) W2 = tf.Variable(tf.truncated_normal(shape=[h1_feature, h2_feature], stddev=0.1)) W3 = tf.Variable(tf.truncated_normal(shape=[h2_feature, 1], stddev=0.1)) b1 = tf.Variable(tf.ones(shape=[1, h1_feature])) b2 = tf.Variable(tf.ones(shape=[1, h2_feature])) b3 = tf.Variable(tf.ones(shape=[1, 1])) init = tf.global_variables_initializer() x_dropout = tf.nn.dropout(x, 0.5) h1_relu = tf.nn.sigmoid(tf.matmul(x, W1) + b1) h2_relu = tf.nn.sigmoid(tf.matmul(h1_relu, W2) + b2) h3_sigmoid = tf.nn.sigmoid(tf.matmul(h2_relu, W3) + b3) cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=h3_sigmoid, logits=y)) train_step = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(cross_entropy) accuracy = tf.reduce_mean(tf.cast(tf.equal(h3_sigmoid, y), tf.float32)) with tf.Session() as sess: sess.run(init) feed_train = {x: x_train[features].values, y: y_train[['Survived']].values} feed_validation = {x: x_validation[features].values, y: y_validation[['Survived']].values} for j in range(100): for i in range(100): sess.run(train_step, feed_dict=feed_train) features = ['Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Age', 'SibSp', 'Parch', 'Fare'] df = pd.read_csv('../input/train.csv') t = pd.DataFrame({'Validation': list(map(lambda x: random.random() < 0.3, range(891)))}) x = pd.DataFrame({'Pclass_1': (df['Pclass'] == 1) * 1, 'Pclass_2': (df['Pclass'] == 2) * 1, 'Pclass_3': (df['Pclass'] == 3) * 1, 'Sex_female': (df['Sex'] == 'female') * 1, 'Age': df['Age'] / pd.Series.std(df['Age']), 'SibSp': df['SibSp'], 'Parch': df['Parch'], 'Fare': df['Fare'] / pd.Series.std(df['Fare'])}) x.fillna(0, inplace=True) y = pd.DataFrame({'Survived': df['Survived']}) y_train = y[t['Validation'] == False] x_train = x[t['Validation'] == False] y_validation = y[t['Validation']] x_validation = x[t['Validation']] print(x_train[features].values)
code
1010130/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random features = ['Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_female', 'Age', 'SibSp', 'Parch', 'Fare'] df = pd.read_csv('../input/train.csv') t = pd.DataFrame({'Validation': list(map(lambda x: random.random() < 0.3, range(891)))}) x_preprocess = pd.DataFrame({'Pclass_1': (df['Pclass'] == 1) * 1, 'Pclass_2': (df['Pclass'] == 2) * 1, 'Pclass_3': (df['Pclass'] == 3) * 1, 'Sex_female': (df['Sex'] == 'female') * 1, 'Age': df['Age'] / pd.Series.std(df['Age']), 'SibSp': df['SibSp'], 'Parch': df['Parch'], 'Fare': df['Fare'] / pd.Series.std(df['Fare'])}) x_preprocess.fillna(0, inplace=True) y = pd.DataFrame({'Survived': df['Survived']}) y_train = y[t['Validation'] == False] x_train = x_preprocess[t['Validation'] == False] y_validation = y[t['Validation']] x_validation = x_preprocess[t['Validation']] print(y_train[['Survived']].values)
code
129029982/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/suicide-attempts-in-shandong-china/SuicideChina.csv') data.info()
code
129029982/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129029982/cell_7
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_9.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/suicide-attempts-in-shandong-china/SuicideChina.csv') data = data.drop(columns=['Unnamed: 0', 'Person_ID']) data.head()
code
129029982/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/suicide-attempts-in-shandong-china/SuicideChina.csv') data = data.drop(columns=['Unnamed: 0', 'Person_ID']) data.Age.describe()
code
129029982/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/suicide-attempts-in-shandong-china/SuicideChina.csv') data = data.drop(columns=['Unnamed: 0', 'Person_ID']) def bar_plot(variable): """ input: variable ex: "Sex" output: bar plot & Value count. """ var = data[variable] varValue = var.value_counts() plt.figure(figsize=(9, 3)) plt.bar(varValue.index, varValue) plt.xticks(varValue.index, varValue.index.values, rotation=45) plt.ylabel('Frequency') plt.title(variable) plt.grid() plt.show() print('{}: \n {}'.format(variable, varValue)) category1 = ['Hospitalised', 'Died', 'Urban', 'Sex', 'Education', 'Occupation', 'method', 'Year', 'Month'] for c in category1: bar_plot(c)
code
129029982/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/suicide-attempts-in-shandong-china/SuicideChina.csv') data = data.drop(columns=['Unnamed: 0', 'Person_ID']) def bar_plot(variable): """ input: variable ex: "Sex" output: bar plot & Value count. """ var = data[variable] varValue = var.value_counts() plt.xticks(varValue.index, varValue.index.values, rotation=45) category1 = ['Hospitalised', 'Died', 'Urban', 'Sex', 'Education', 'Occupation', 'method', 'Year', 'Month'] plt.figure(figsize=(9, 3)) plt.hist(data['Age'], bins=50) plt.xlabel('Age') plt.ylabel('Frequency') plt.title('Age distrubution of suicidals') plt.grid() plt.show()
code
129029982/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/suicide-attempts-in-shandong-china/SuicideChina.csv') data.head()
code
2005813/cell_9
[ "text_html_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tqdm import tqdm from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = datagen.flow_from_directory('../input/train/', batch_size=1, class_mode='categorical') x, y = train_generator.next() X_data, Y_data = ([], []) for _ in tqdm(range(2750)): x, y = train_generator.next() X_data.append(x[0]) Y_data.append(y[0]) X_data = np.asarray(X_data) Y_data = np.asarray(Y_data) X_test = [] sub = pd.read_csv('../input/sample_submission.csv') for fname in tqdm(sub['fname']): filepath = '../input/test/' + fname X_test.append(img_to_array(load_img(filepath, target_size=(256, 256)))) X_test = np.asarray(X_test)
code
2005813/cell_4
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array import matplotlib.pyplot as plt import numpy as np datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = datagen.flow_from_directory('../input/train/', batch_size=1, class_mode='categorical') x, y = train_generator.next() plt.imshow((x[0] * 255).astype('uint8')) print(list(train_generator.class_indices.keys())[np.argmax(y)])
code
2005813/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
!ls ../input/train/
code
2005813/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd from glob import glob from tqdm import tqdm import matplotlib.pyplot as plt from keras.models import * from keras.layers import * from keras.optimizers import * from keras.applications.vgg16 import VGG16 from keras.applications.inception_v3 import InceptionV3 from keras.callbacks import EarlyStopping from keras.utils import plot_model from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from sklearn.model_selection import train_test_split from tqdm import tqdm
code
2005813/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
def get_model(): input_img = Input((256, 256, 3)) X = BatchNormalization()(input_img) X = Convolution2D(16, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(16, (3, 3), activation='relu')(X) X = MaxPooling2D()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = GlobalMaxPooling2D()(X) X = BatchNormalization()(X) X = Dense(512, activation='relu')(X) X = Dropout(0.2)(X) X = Dense(10, activation='softmax')(X) model = Model(inputs=input_img, outputs=X) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) model.summary() return model model = get_model()
code
2005813/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tqdm import tqdm from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = datagen.flow_from_directory('../input/train/', batch_size=1, class_mode='categorical') x, y = train_generator.next() X_data, Y_data = ([], []) for _ in tqdm(range(2750)): x, y = train_generator.next() X_data.append(x[0]) Y_data.append(y[0]) X_data = np.asarray(X_data) Y_data = np.asarray(Y_data) def get_model(): input_img = Input((256, 256, 3)) X = BatchNormalization()(input_img) X = Convolution2D(16, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(16, (3, 3), activation='relu')(X) X = MaxPooling2D()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = GlobalMaxPooling2D()(X) X = BatchNormalization()(X) X = Dense(512, activation='relu')(X) X = Dropout(0.2)(X) X = Dense(10, activation='softmax')(X) model = Model(inputs=input_img, outputs=X) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) model.summary() return model model = get_model() model_history = model.fit(X_data, Y_data, batch_size=10, epochs=3, validation_split=0.2, callbacks=[EarlyStopping(monitor='val_acc', patience=3, verbose=1)])
code
2005813/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = datagen.flow_from_directory('../input/train/', batch_size=1, class_mode='categorical')
code
2005813/cell_10
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tqdm import tqdm from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = datagen.flow_from_directory('../input/train/', batch_size=1, class_mode='categorical') x, y = train_generator.next() X_data, Y_data = ([], []) for _ in tqdm(range(2750)): x, y = train_generator.next() X_data.append(x[0]) Y_data.append(y[0]) X_data = np.asarray(X_data) Y_data = np.asarray(Y_data) def get_model(): input_img = Input((256, 256, 3)) X = BatchNormalization()(input_img) X = Convolution2D(16, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(16, (3, 3), activation='relu')(X) X = MaxPooling2D()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = GlobalMaxPooling2D()(X) X = BatchNormalization()(X) X = Dense(512, activation='relu')(X) X = Dropout(0.2)(X) X = Dense(10, activation='softmax')(X) model = Model(inputs=input_img, outputs=X) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) model.summary() return model model = get_model() model_history = model.fit(X_data, Y_data, batch_size=10, epochs=3, validation_split=0.2, callbacks=[EarlyStopping(monitor='val_acc', patience=3, verbose=1)]) X_test = [] sub = pd.read_csv('../input/sample_submission.csv') for fname in tqdm(sub['fname']): filepath = '../input/test/' + fname X_test.append(img_to_array(load_img(filepath, target_size=(256, 256)))) X_test = np.asarray(X_test) preds = model.predict(X_test, verbose=1) preds = np.argmax(preds, axis=1) preds = [list(train_generator.class_indices.keys())[p] for p in tqdm(preds)]
code
2005813/cell_12
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tqdm import tqdm from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = datagen.flow_from_directory('../input/train/', batch_size=1, class_mode='categorical') x, y = train_generator.next() X_data, Y_data = ([], []) for _ in tqdm(range(2750)): x, y = train_generator.next() X_data.append(x[0]) Y_data.append(y[0]) X_data = np.asarray(X_data) Y_data = np.asarray(Y_data) def get_model(): input_img = Input((256, 256, 3)) X = BatchNormalization()(input_img) X = Convolution2D(16, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(16, (3, 3), activation='relu')(X) X = MaxPooling2D()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = BatchNormalization()(X) X = Convolution2D(32, (3, 3), activation='relu')(X) X = GlobalMaxPooling2D()(X) X = BatchNormalization()(X) X = Dense(512, activation='relu')(X) X = Dropout(0.2)(X) X = Dense(10, activation='softmax')(X) model = Model(inputs=input_img, outputs=X) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) model.summary() return model model = get_model() model_history = model.fit(X_data, Y_data, batch_size=10, epochs=3, validation_split=0.2, callbacks=[EarlyStopping(monitor='val_acc', patience=3, verbose=1)]) X_test = [] sub = pd.read_csv('../input/sample_submission.csv') for fname in tqdm(sub['fname']): filepath = '../input/test/' + fname X_test.append(img_to_array(load_img(filepath, target_size=(256, 256)))) X_test = np.asarray(X_test) preds = model.predict(X_test, verbose=1) preds = np.argmax(preds, axis=1) preds = [list(train_generator.class_indices.keys())[p] for p in tqdm(preds)] sub['camera'] = preds sub.to_csv('sub.csv', index=False) sub.head()
code
2005813/cell_5
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tqdm import tqdm from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = datagen.flow_from_directory('../input/train/', batch_size=1, class_mode='categorical') x, y = train_generator.next() X_data, Y_data = ([], []) for _ in tqdm(range(2750)): x, y = train_generator.next() X_data.append(x[0]) Y_data.append(y[0]) X_data = np.asarray(X_data) Y_data = np.asarray(Y_data)
code
333447/cell_9
[ "text_plain_output_1.png" ]
from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from subprocess import check_output import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) from sklearn.linear_model import LogisticRegression from sklearn import cross_validation alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) titanic_test['Age'] = titanic_test['Age'].fillna(titanic['Age'].median()) titanic_test.loc[titanic_test['Sex'] == 'male', 'Sex'] = 0 titanic_test.loc[titanic_test['Sex'] == 'female', 'Sex'] = 1 titanic_test['Embarked'] = titanic_test['Embarked'].fillna('S') titanic_test.loc[titanic_test['Embarked'] == 'S', 'Embarked'] = 0 titanic_test.loc[titanic_test['Embarked'] == 'C', 'Embarked'] = 1 titanic_test.loc[titanic_test['Embarked'] == 'Q', 'Embarked'] = 2 titanic_test['Fare'] = titanic_test['Fare'].fillna(titanic_test['Fare'].median()) alg = LogisticRegression(random_state=1) alg.fit(titanic[predictors], titanic['Survived']) predictions = alg.predict(titanic_test[predictors]) submission = pd.DataFrame({'PassengerId': titanic_test['PassengerId'], 'Survived': predictions}) print(submission)
code
333447/cell_4
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 print(titanic['Embarked'].unique())
code
333447/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from subprocess import check_output import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) predictions = np.concatenate(predictions, axis=0) predictions[predictions > 0.5] = 1 predictions[predictions <= 0.5] = 0 accuracy = sum(predictions[predictions == titanic['Survived']]) / len(predictions) print(accuracy)
code
333447/cell_2
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic.describe()
code
333447/cell_1
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic.head()
code
333447/cell_7
[ "text_plain_output_1.png" ]
from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions) from sklearn.linear_model import LogisticRegression from sklearn import cross_validation alg = LogisticRegression(random_state=1) scores = cross_validation.cross_val_score(alg, titanic[predictors], titanic['Survived'], cv=3) print(scores.mean())
code
333447/cell_3
[ "text_html_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.describe()
code
333447/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.cross_validation import KFold from sklearn.linear_model import LinearRegression from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output titanic = pd.read_csv('../input/train.csv') titanic_test = pd.read_csv('../input/test.csv') titanic['Age'] = titanic['Age'].fillna(titanic['Age'].median()) titanic.loc[titanic['Sex'] == 'male', 'Sex'] = 0 titanic.loc[titanic['Sex'] == 'female', 'Sex'] = 1 titanic['Embarked'] = titanic['Embarked'].fillna('S') titanic.loc[titanic['Embarked'] == 'S', 'Embarked'] = 0 titanic.loc[titanic['Embarked'] == 'C', 'Embarked'] = 1 titanic.loc[titanic['Embarked'] == 'Q', 'Embarked'] = 2 from sklearn.linear_model import LinearRegression from sklearn.cross_validation import KFold predictors = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked'] alg = LinearRegression() kf = KFold(titanic.shape[0], n_folds=3, random_state=1) predictions = [] for train, test in kf: train_predictors = titanic[predictors].iloc[train, :] train_target = titanic['Survived'].iloc[train] alg.fit(train_predictors, train_target) test_predictions = alg.predict(titanic[predictors].iloc[test, :]) predictions.append(test_predictions)
code
18157867/cell_13
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t2.shape
code
18157867/cell_9
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3
code
18157867/cell_4
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1
code
18157867/cell_23
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4 x = torch.tensor(3.0) w = torch.tensor(4.0, requires_grad=True) b = torch.tensor(5.0, requires_grad=True) print('dy/dx:', x.grad) print('dy/dw:', w.grad) print('dy/db:', b.grad)
code
18157867/cell_30
[ "text_plain_output_1.png" ]
import numpy as np import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4 x = torch.tensor(3.0) w = torch.tensor(4.0, requires_grad=True) b = torch.tensor(5.0, requires_grad=True) y = w * x + b y y.backward() import numpy as np x = np.array([[1, 2], [3, 4]]) x y = torch.from_numpy(x) y (x.dtype, y.dtype)
code
18157867/cell_6
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t1.dtype
code
18157867/cell_26
[ "text_plain_output_1.png" ]
import numpy as np import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4 x = torch.tensor(3.0) w = torch.tensor(4.0, requires_grad=True) b = torch.tensor(5.0, requires_grad=True) import numpy as np x = np.array([[1, 2], [3, 4]]) x
code
18157867/cell_19
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4 x = torch.tensor(3.0) w = torch.tensor(4.0, requires_grad=True) b = torch.tensor(5.0, requires_grad=True) y = w * x + b y
code
18157867/cell_32
[ "text_plain_output_1.png" ]
import numpy as np import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4 x = torch.tensor(3.0) w = torch.tensor(4.0, requires_grad=True) b = torch.tensor(5.0, requires_grad=True) y = w * x + b y y.backward() import numpy as np x = np.array([[1, 2], [3, 4]]) x y = torch.from_numpy(x) y (x.dtype, y.dtype) z = y.numpy() z
code
18157867/cell_28
[ "text_plain_output_1.png" ]
import numpy as np import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4 x = torch.tensor(3.0) w = torch.tensor(4.0, requires_grad=True) b = torch.tensor(5.0, requires_grad=True) y = w * x + b y y.backward() import numpy as np x = np.array([[1, 2], [3, 4]]) x y = torch.from_numpy(x) y
code
18157867/cell_8
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2
code
18157867/cell_15
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4 t4.shape
code
18157867/cell_35
[ "text_plain_output_1.png" ]
import jovian import jovian jovian.commit()
code
18157867/cell_14
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t3.shape
code
18157867/cell_10
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t2 = torch.tensor([1.0, 2, 3, 4]) t2 t3 = torch.tensor([[5.0, 6], [7, 8], [9, 10]]) t3 t4 = torch.tensor([[[11, 12, 13], [13, 14, 15]], [[15, 16, 17], [17, 18, 19.0]]]) t4
code
18157867/cell_12
[ "text_plain_output_1.png" ]
import torch t1 = torch.tensor(4.0) t1 t1.dtype t1.shape
code
34144897/cell_4
[ "text_plain_output_1.png" ]
from torchvision import datasets, models, transforms from torchvision.datasets import ImageFolder import torch from torchvision import datasets, models, transforms import urllib import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.autograd import Variable from collections import OrderedDict from torch.utils.data import Dataset, DataLoader import cv2 from os import listdir from torchvision.datasets import ImageFolder import sys import time import torchvision preprocess = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) ImageFolder('training', transform=preprocess) ImageFolder('testing', transform=preprocess)
code
73060659/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() #generation of mask mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # matplotlib figure f, ax = plt.subplots(figsize=(18, 15)) # set up ustom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}) X = wine.drop('quality', axis=1) y = wine['quality'] wine.columns[:11] features_label = wine.columns[:11] from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=200, criterion='entropy', random_state=0) classifier.fit(X, y) importances = classifier.feature_importances_ indices = np.argsort(importances)[::-1] for i in range(X.shape[1]): print('%2d) %-*s %f' % (i + 1, 30, features_label[i], importances[indices[i]]))
code
73060659/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns wine[wine.columns[:11]].describe()
code
73060659/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') from sklearn.preprocessing import LabelEncoder bins = (2, 6.5, 8) group_names = ['bad', 'good'] wine['quality'] = pd.cut(wine['quality'], bins=bins, labels=group_names) label_quality = LabelEncoder() wine['quality'] = label_quality.fit_transform(wine['quality']) wine['quality'].value_counts() from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train2 = pd.DataFrame(sc.fit_transform(X_train)) X_test2 = pd.DataFrame(sc.transform(X_test)) X_train2.columns = X_train.columns.values X_test2.columns = X_test.columns.values X_train2.index = X_train.index.values X_test2.index = X_test.index.values X_train = X_train2 X_test = X_test2 from sklearn.decomposition import PCA pca = PCA(n_components=4) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) explained_variance = pca.explained_variance_ratio_ print(pd.DataFrame(explained_variance))
code
73060659/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.head()
code
73060659/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') sns.countplot(wine['quality'])
code
73060659/cell_26
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, recall_score from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') from sklearn.preprocessing import LabelEncoder bins = (2, 6.5, 8) group_names = ['bad', 'good'] wine['quality'] = pd.cut(wine['quality'], bins=bins, labels=group_names) label_quality = LabelEncoder() wine['quality'] = label_quality.fit_transform(wine['quality']) wine['quality'].value_counts() wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() #generation of mask mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # matplotlib figure f, ax = plt.subplots(figsize=(18, 15)) # set up ustom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}) X = wine.drop('quality', axis=1) y = wine['quality'] wine.columns[:11] features_label = wine.columns[:11] from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=200, criterion='entropy', random_state=0) classifier.fit(X, y) importances = classifier.feature_importances_ indices = np.argsort(importances)[::-1] from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train2 = pd.DataFrame(sc.fit_transform(X_train)) X_test2 = pd.DataFrame(sc.transform(X_test)) X_train2.columns = X_train.columns.values X_test2.columns = X_test.columns.values X_train2.index = X_train.index.values X_test2.index = X_test.index.values X_train = X_train2 X_test = X_test2 from sklearn.decomposition import PCA pca = PCA(n_components=4) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) explained_variance = pca.explained_variance_ratio_ from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=0, penalty='l1', solver='liblinear') classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, recall_score acc = accuracy_score(y_test, y_pred) prec = precision_score(y_test, y_pred) rec = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) results = pd.DataFrame([['Logistic Regression', acc, prec, rec, f1]], columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score']) print(results)
code
73060659/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any()
code
73060659/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() X = wine.drop('quality', axis=1) y = wine['quality'] wine.columns[:11]
code
73060659/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73060659/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns
code
73060659/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() X = wine.drop('quality', axis=1) y = wine['quality'] y.head()
code
73060659/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns sns.pairplot(wine)
code
73060659/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True f, ax = plt.subplots(figsize=(18, 15)) cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmax=0.3, center=0, square=True, linewidths=0.5, cbar_kws={'shrink': 0.5})
code
73060659/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() X = wine.drop('quality', axis=1) y = wine['quality'] X.head()
code
73060659/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() corr.head()
code
73060659/cell_22
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() #generation of mask mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # matplotlib figure f, ax = plt.subplots(figsize=(18, 15)) # set up ustom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}) X = wine.drop('quality', axis=1) y = wine['quality'] wine.columns[:11] features_label = wine.columns[:11] from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=200, criterion='entropy', random_state=0) classifier.fit(X, y) importances = classifier.feature_importances_ indices = np.argsort(importances)[::-1] plt.title('Feature Importances') plt.bar(range(X.shape[1]), importances[indices], color='blue', align='edge') plt.xticks(range(X.shape[1]), features_label, rotation=90) plt.xlim([-1, X.shape[1]]) plt.show()
code
73060659/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95])
code
73060659/cell_27
[ "text_plain_output_1.png" ]
from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, recall_score from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') from sklearn.preprocessing import LabelEncoder bins = (2, 6.5, 8) group_names = ['bad', 'good'] wine['quality'] = pd.cut(wine['quality'], bins=bins, labels=group_names) label_quality = LabelEncoder() wine['quality'] = label_quality.fit_transform(wine['quality']) wine['quality'].value_counts() wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() sns.set(style='white') corr = wine.corr() #generation of mask mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # matplotlib figure f, ax = plt.subplots(figsize=(18, 15)) # set up ustom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}) X = wine.drop('quality', axis=1) y = wine['quality'] wine.columns[:11] features_label = wine.columns[:11] from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=200, criterion='entropy', random_state=0) classifier.fit(X, y) importances = classifier.feature_importances_ indices = np.argsort(importances)[::-1] from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train2 = pd.DataFrame(sc.fit_transform(X_train)) X_test2 = pd.DataFrame(sc.transform(X_test)) X_train2.columns = X_train.columns.values X_test2.columns = X_test.columns.values X_train2.index = X_train.index.values X_test2.index = X_test.index.values X_train = X_train2 X_test = X_test2 from sklearn.decomposition import PCA pca = PCA(n_components=4) X_train = pca.fit_transform(X_train) X_test = pca.transform(X_test) explained_variance = pca.explained_variance_ratio_ from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state=0, penalty='l1', solver='liblinear') classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, recall_score acc = accuracy_score(y_test, y_pred) prec = precision_score(y_test, y_pred) rec = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) results = pd.DataFrame([['Logistic Regression', acc, prec, rec, f1]], columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score']) from sklearn.svm import SVC classifier = SVC(random_state=0, kernel='linear') classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) acc = accuracy_score(y_test, y_pred) prec = precision_score(y_test, y_pred) rec = recall_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) model_results = pd.DataFrame([['SVM (Linear)', acc, prec, rec, f1]], columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1 Score']) results = results.append(model_results, ignore_index=True) print(results)
code
73060659/cell_12
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') wine.columns #getting the histograms of the data fig = plt.figure(figsize=(30, 20)) plt.suptitle('Histograms of the respective columns', fontsize=20) for i in range(wine.shape[1]): plt.subplot(6, 3, i + 1) f = plt.gca() f.set_title(wine.columns.values[i]) vals = np.size(wine.iloc[:, i].unique()) if vals >= 100: vals = 100 plt.hist(wine.iloc[:, i], bins=vals, color='#5D2A4C') plt.tight_layout(rect=[0, 0.03, 1, 0.95]) wine.isna().any() wine.corrwith(wine.quality).plot.bar(figsize=(20, 10), title='Correlation with quality', fontsize=15, rot=45, grid=True)
code
73060659/cell_5
[ "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) wine = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') from sklearn.preprocessing import LabelEncoder bins = (2, 6.5, 8) group_names = ['bad', 'good'] wine['quality'] = pd.cut(wine['quality'], bins=bins, labels=group_names) label_quality = LabelEncoder() wine['quality'] = label_quality.fit_transform(wine['quality']) wine['quality'].value_counts()
code
130002580/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import tensorflow as tf training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) training_outputs = np.array([[0], [1], [1], [1]], dtype=np.float32) i = tf.keras.Input(2) x = tf.keras.layers.Dense(8, activation='relu')(i) x = tf.keras.layers.Dense(16, activation='relu')(x) x = tf.keras.layers.Dense(32, activation='tanh')(x) x = tf.keras.layers.Dense(8, activation='tanh')(x) x = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.models.Model(i, x) model.summary() model.compile(loss='mean_squared_error', optimizer='adam', metrics='accuracy') r = model.fit(training_inputs, training_outputs, epochs=100) test_input = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) predictions = model.predict(test_input) for i in range(len(test_input)): print('Input: {} Predicted Output: {}'.format(test_input[i], predictions[i].round()))
code
130002580/cell_2
[ "text_plain_output_1.png" ]
def or_gate(a, b): return a or b print('A\tB\tOutput') print('-' * 25) for a in [False, True]: for b in [False, True]: output = or_gate(a, b) print(f'{a}\t{b}\t{output}')
code
130002580/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) training_outputs = np.array([[0], [1], [1], [1]], dtype=np.float32) i = tf.keras.Input(2) x = tf.keras.layers.Dense(8, activation='relu')(i) x = tf.keras.layers.Dense(16, activation='relu')(x) x = tf.keras.layers.Dense(32, activation='tanh')(x) x = tf.keras.layers.Dense(8, activation='tanh')(x) x = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.models.Model(i, x) model.summary() model.compile(loss='mean_squared_error', optimizer='adam', metrics='accuracy') r = model.fit(training_inputs, training_outputs, epochs=100) plt.plot(r.history['loss'], label='loss') plt.xlabel('epoch') plt.legend()
code
130002580/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt
code
130002580/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import tensorflow as tf training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) training_outputs = np.array([[0], [1], [1], [1]], dtype=np.float32) i = tf.keras.Input(2) x = tf.keras.layers.Dense(8, activation='relu')(i) x = tf.keras.layers.Dense(16, activation='relu')(x) x = tf.keras.layers.Dense(32, activation='tanh')(x) x = tf.keras.layers.Dense(8, activation='tanh')(x) x = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.models.Model(i, x) model.summary() model.compile(loss='mean_squared_error', optimizer='adam', metrics='accuracy') r = model.fit(training_inputs, training_outputs, epochs=100)
code
130002580/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import tensorflow as tf training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) training_outputs = np.array([[0], [1], [1], [1]], dtype=np.float32) i = tf.keras.Input(2) x = tf.keras.layers.Dense(8, activation='relu')(i) x = tf.keras.layers.Dense(16, activation='relu')(x) x = tf.keras.layers.Dense(32, activation='tanh')(x) x = tf.keras.layers.Dense(8, activation='tanh')(x) x = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.models.Model(i, x) model.summary() model.compile(loss='mean_squared_error', optimizer='adam', metrics='accuracy') r = model.fit(training_inputs, training_outputs, epochs=100) test_input = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) predictions = model.predict(test_input)
code
130002580/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf training_inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32) training_outputs = np.array([[0], [1], [1], [1]], dtype=np.float32) i = tf.keras.Input(2) x = tf.keras.layers.Dense(8, activation='relu')(i) x = tf.keras.layers.Dense(16, activation='relu')(x) x = tf.keras.layers.Dense(32, activation='tanh')(x) x = tf.keras.layers.Dense(8, activation='tanh')(x) x = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.models.Model(i, x) model.summary() model.compile(loss='mean_squared_error', optimizer='adam', metrics='accuracy') r = model.fit(training_inputs, training_outputs, epochs=100) plt.plot(r.history['accuracy'], label='accuracy') plt.xlabel('epoch') plt.legend()
code
130002580/cell_5
[ "text_plain_output_1.png" ]
import tensorflow as tf i = tf.keras.Input(2) x = tf.keras.layers.Dense(8, activation='relu')(i) x = tf.keras.layers.Dense(16, activation='relu')(x) x = tf.keras.layers.Dense(32, activation='tanh')(x) x = tf.keras.layers.Dense(8, activation='tanh')(x) x = tf.keras.layers.Dense(1, activation='sigmoid')(x) model = tf.keras.models.Model(i, x) model.summary()
code
329567/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import trueskill as ts def cleanResults(raceName,raceColumns,dfResultsTemp,dfResults): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() raceIndex = raceName + '-' + raceCol dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('\(|\)|DNF-|RET-|SCP-|RDG-|RCT-|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*','') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('DNF',str(len(dfResults)+1)) dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del(dfResultsTemp[raceCol]) dfResults = pd.merge(dfResults,dfResultsTemp[[raceIndex]],left_index=True,right_index=True,how='outer') return dfResults def doRating(numRaces, dfResults, dfRatings): for raceCol in range(1, numRaces + 1): competed = dfRatings['Name'].isin(dfResults['Name'][dfResults['R' + str(raceCol)].notnull()]) rating_group = list(zip(dfRatings['Rating'][competed].T.values.tolist())) dfRatings['Rating'][competed] = ts.rate(rating_group, ranks=dfResults['R' + str(raceCol)][competed].T.values.tolist()) return pd.DataFrame(dfRatings) dfResults = pd.DataFrame() dfResultsTemp = pd.read_csv('../input/20160323-LaVentana-HydrofoilProTour.csv') dfResultsTemp = dfResultsTemp.set_index(dfResultsTemp['Name'] + ' ' + dfResultsTemp['LastName']) raceColumns = ['R1', 'R2', 'R3', 'R4', 'R5', 'R6'] dfResults = cleanResults('20160323-LaVentana-HydrofoilProTour', raceColumns, dfResultsTemp, dfResults) dfResultsTemp = pd.read_csv('../input/20160807-SanFracisco-HydrofoilProTour.csv') dfResultsTemp = dfResultsTemp.set_index(dfResultsTemp['Name']) raceColumns = ['R1', 'R2', 'R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R9', 'R10', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16'] dfResults = cleanResults('20160807-SanFracisco-HydrofoilProTour', raceColumns, dfResultsTemp, dfResults) dfResults
code
329567/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
dfRatings.index = dfRatings['mu_minus_3sigma'].rank(ascending=False) dfRatings.sort('mu_minus_3sigma', ascending=False)
code
34140243/cell_25
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import requests #library used to download web pages. G = 6.674 * 10 ** (-11) M_e = 5.97 * 10 ** 24 R_e = 6.37 * 10 ** 6 def escape_velocity(): pass import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a all_links = soup.find_all('a') all_tables = soup.find_all('table') planet_table = soup.find('table') A = [] B = [] C = [] D = [] E = [] F = [] G = [] H = [] I = [] J = [] K = [] for row in planet_table.findAll('tr'): body = row.findAll('td') cells = row.findAll('td') if len(cells) == 11: A.append(cells[0].find(text=True)) B.append(cells[1].find(text=True)) C.append(cells[2].find(text=True)) D.append(cells[3].find(text=True)) E.append(cells[4].find(text=True)) F.append(cells[5].find(text=True)) G.append(cells[6].find(text=True)) H.append(cells[7].find(text=True)) I.append(cells[8].find(text=True)) J.append(cells[9].find(text=True)) K.append(cells[10].find(text=True)) A
code
34140243/cell_33
[ "text_html_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd import requests #library used to download web pages. G = 6.674 * 10 ** (-11) M_e = 5.97 * 10 ** 24 R_e = 6.37 * 10 ** 6 def escape_velocity(): pass import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a all_links = soup.find_all('a') all_tables = soup.find_all('table') planet_table = soup.find('table') A = [] B = [] C = [] D = [] E = [] F = [] G = [] H = [] I = [] J = [] K = [] for row in planet_table.findAll('tr'): body = row.findAll('td') cells = row.findAll('td') if len(cells) == 11: A.append(cells[0].find(text=True)) B.append(cells[1].find(text=True)) C.append(cells[2].find(text=True)) D.append(cells[3].find(text=True)) E.append(cells[4].find(text=True)) F.append(cells[5].find(text=True)) G.append(cells[6].find(text=True)) H.append(cells[7].find(text=True)) I.append(cells[8].find(text=True)) J.append(cells[9].find(text=True)) K.append(cells[10].find(text=True)) import pandas as pd df = pd.DataFrame(A, columns=['Physical_Measurement']) df['Mercury'] = B df['Venus'] = C df['Earth'] = D df['Moon'] = E df['Mars'] = F df['Jupiter'] = G df['Saturn'] = H df['Uranus'] = I df['Neptune'] = J df['Pluto'] = K df = df.fillna(0) df = df.replace(to_replace='Unknown*', value=0) df df = df.drop(df.index[0]) df = df.drop(df.index[-1]) df df.dtypes
code
34140243/cell_29
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd import requests #library used to download web pages. G = 6.674 * 10 ** (-11) M_e = 5.97 * 10 ** 24 R_e = 6.37 * 10 ** 6 def escape_velocity(): pass import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a all_links = soup.find_all('a') all_tables = soup.find_all('table') planet_table = soup.find('table') A = [] B = [] C = [] D = [] E = [] F = [] G = [] H = [] I = [] J = [] K = [] for row in planet_table.findAll('tr'): body = row.findAll('td') cells = row.findAll('td') if len(cells) == 11: A.append(cells[0].find(text=True)) B.append(cells[1].find(text=True)) C.append(cells[2].find(text=True)) D.append(cells[3].find(text=True)) E.append(cells[4].find(text=True)) F.append(cells[5].find(text=True)) G.append(cells[6].find(text=True)) H.append(cells[7].find(text=True)) I.append(cells[8].find(text=True)) J.append(cells[9].find(text=True)) K.append(cells[10].find(text=True)) import pandas as pd df = pd.DataFrame(A, columns=['Physical_Measurement']) df['Mercury'] = B df['Venus'] = C df['Earth'] = D df['Moon'] = E df['Mars'] = F df['Jupiter'] = G df['Saturn'] = H df['Uranus'] = I df['Neptune'] = J df['Pluto'] = K df = df.fillna(0) df = df.replace(to_replace='Unknown*', value=0) df
code
34140243/cell_11
[ "text_plain_output_1.png" ]
import requests #library used to download web pages. import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code
code
34140243/cell_19
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import requests #library used to download web pages. import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a all_links = soup.find_all('a') for link in all_links[0:20]: print(link.get('href'))
code
34140243/cell_16
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import requests #library used to download web pages. import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title
code
34140243/cell_17
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import requests #library used to download web pages. import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a
code
34140243/cell_35
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd import requests #library used to download web pages. G = 6.674 * 10 ** (-11) M_e = 5.97 * 10 ** 24 R_e = 6.37 * 10 ** 6 def escape_velocity(): pass import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a all_links = soup.find_all('a') all_tables = soup.find_all('table') planet_table = soup.find('table') A = [] B = [] C = [] D = [] E = [] F = [] G = [] H = [] I = [] J = [] K = [] for row in planet_table.findAll('tr'): body = row.findAll('td') cells = row.findAll('td') if len(cells) == 11: A.append(cells[0].find(text=True)) B.append(cells[1].find(text=True)) C.append(cells[2].find(text=True)) D.append(cells[3].find(text=True)) E.append(cells[4].find(text=True)) F.append(cells[5].find(text=True)) G.append(cells[6].find(text=True)) H.append(cells[7].find(text=True)) I.append(cells[8].find(text=True)) J.append(cells[9].find(text=True)) K.append(cells[10].find(text=True)) import pandas as pd df = pd.DataFrame(A, columns=['Physical_Measurement']) df['Mercury'] = B df['Venus'] = C df['Earth'] = D df['Moon'] = E df['Mars'] = F df['Jupiter'] = G df['Saturn'] = H df['Uranus'] = I df['Neptune'] = J df['Pluto'] = K df = df.fillna(0) df = df.replace(to_replace='Unknown*', value=0) df df = df.drop(df.index[0]) df = df.drop(df.index[-1]) df df.dtypes df = df.applymap(lambda x: x.strip('*') if isinstance(x, str) else x) df
code
34140243/cell_31
[ "text_html_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd import requests #library used to download web pages. G = 6.674 * 10 ** (-11) M_e = 5.97 * 10 ** 24 R_e = 6.37 * 10 ** 6 def escape_velocity(): pass import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a all_links = soup.find_all('a') all_tables = soup.find_all('table') planet_table = soup.find('table') A = [] B = [] C = [] D = [] E = [] F = [] G = [] H = [] I = [] J = [] K = [] for row in planet_table.findAll('tr'): body = row.findAll('td') cells = row.findAll('td') if len(cells) == 11: A.append(cells[0].find(text=True)) B.append(cells[1].find(text=True)) C.append(cells[2].find(text=True)) D.append(cells[3].find(text=True)) E.append(cells[4].find(text=True)) F.append(cells[5].find(text=True)) G.append(cells[6].find(text=True)) H.append(cells[7].find(text=True)) I.append(cells[8].find(text=True)) J.append(cells[9].find(text=True)) K.append(cells[10].find(text=True)) import pandas as pd df = pd.DataFrame(A, columns=['Physical_Measurement']) df['Mercury'] = B df['Venus'] = C df['Earth'] = D df['Moon'] = E df['Mars'] = F df['Jupiter'] = G df['Saturn'] = H df['Uranus'] = I df['Neptune'] = J df['Pluto'] = K df = df.fillna(0) df = df.replace(to_replace='Unknown*', value=0) df df = df.drop(df.index[0]) df = df.drop(df.index[-1]) df
code
34140243/cell_10
[ "text_plain_output_1.png" ]
import requests #library used to download web pages. import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) type(page)
code
34140243/cell_37
[ "text_html_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd import requests #library used to download web pages. G = 6.674 * 10 ** (-11) M_e = 5.97 * 10 ** 24 R_e = 6.37 * 10 ** 6 def escape_velocity(): pass import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text soup = BeautifulSoup(HTMLstr, 'html.parser') soup.title soup.a all_links = soup.find_all('a') all_tables = soup.find_all('table') planet_table = soup.find('table') A = [] B = [] C = [] D = [] E = [] F = [] G = [] H = [] I = [] J = [] K = [] for row in planet_table.findAll('tr'): body = row.findAll('td') cells = row.findAll('td') if len(cells) == 11: A.append(cells[0].find(text=True)) B.append(cells[1].find(text=True)) C.append(cells[2].find(text=True)) D.append(cells[3].find(text=True)) E.append(cells[4].find(text=True)) F.append(cells[5].find(text=True)) G.append(cells[6].find(text=True)) H.append(cells[7].find(text=True)) I.append(cells[8].find(text=True)) J.append(cells[9].find(text=True)) K.append(cells[10].find(text=True)) import pandas as pd df = pd.DataFrame(A, columns=['Physical_Measurement']) df['Mercury'] = B df['Venus'] = C df['Earth'] = D df['Moon'] = E df['Mars'] = F df['Jupiter'] = G df['Saturn'] = H df['Uranus'] = I df['Neptune'] = J df['Pluto'] = K df = df.fillna(0) df = df.replace(to_replace='Unknown*', value=0) df df = df.drop(df.index[0]) df = df.drop(df.index[-1]) df df.dtypes df = df.applymap(lambda x: x.strip('*') if isinstance(x, str) else x) df df = df.replace(to_replace=['No', 'Yes', 'Unknown'], value=[0, 1, 2]) df
code
34140243/cell_12
[ "text_plain_output_1.png" ]
import requests #library used to download web pages. import requests URL = 'https://nssdc.gsfc.nasa.gov/planetary/factsheet/planet_table_ratio.html' page = requests.get(URL) page.status_code HTMLstr = page.text print(HTMLstr[:1000])
code
34140243/cell_5
[ "text_html_output_1.png" ]
G = 6.674 * 10 ** (-11) M_e = 5.97 * 10 ** 24 R_e = 6.37 * 10 ** 6 def escape_velocity(): pass escape_velocity()
code
121148449/cell_13
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense from keras.models import Sequential from keras.utils import normalize from keras.utils import to_categorical (x_train.shape, y_train.shape) (x_test.shape, y_test.shape) x_train = normalize(x_train, axis=1) x_test = normalize(x_test, axis=1) Y_train = to_categorical(y_train, num_classes=2) Y_test = to_categorical(y_test, num_classes=2) model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (3, 3), kernel_initializer='he_uniform')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3), kernel_initializer='he_uniform')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(2)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, Y_train, batch_size=16, verbose=True, epochs=10, validation_data=(x_test, Y_test), shuffle=False)
code
121148449/cell_4
[ "text_plain_output_1.png" ]
from PIL import Image import cv2 import numpy as np import os image_dir = 'datasets/' no_tumour = os.listdir(image_dir + 'no/') yes_tumour = os.listdir(image_dir + 'yes/') dataset = [] label = [] for i, image_name in enumerate(no_tumour): if image_name.split('.')[1] == 'jpg': image = cv2.imread(image_dir + 'no/' + image_name) image = Image.fromarray(image, 'RGB') image = image.resize((64, 64)) dataset.append(np.array(image)) label.append(0) for i, image_name in enumerate(yes_tumour): if image_name.split('.')[1] == 'jpg': image = cv2.imread(image_dir + 'yes/' + image_name) image = Image.fromarray(image, 'RGB') image = image.resize((64, 64)) dataset.append(np.array(image)) label.append(1) print(dataset)
code
121148449/cell_7
[ "text_plain_output_1.png" ]
(x_train.shape, y_train.shape)
code
121148449/cell_8
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
(x_test.shape, y_test.shape)
code
90108519/cell_13
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/chinas-population-by-gender-and-urbanrural/Chinas Population En.csv') df.columns = ['year', 'total', 'male', 'female', 'urban', 'rural'] df.sort_values(by='year', ignore_index=True, inplace=True) print('Cases of nonconformity by gender: {}'.format(sum(df['total'] - df['male'] - df['female'])))
code
90108519/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/chinas-population-by-gender-and-urbanrural/Chinas Population En.csv') df.columns = ['year', 'total', 'male', 'female', 'urban', 'rural'] df.sort_values(by='year', ignore_index=True, inplace=True) df.head()
code
90108519/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/chinas-population-by-gender-and-urbanrural/Chinas Population En.csv') df.columns = ['year', 'total', 'male', 'female', 'urban', 'rural'] df.sort_values(by='year', ignore_index=True, inplace=True) tmp_mask = df['total'] - df['male'] - df['female'] != 0 df[tmp_mask] df.loc[tmp_mask, 'total'] = df.loc[tmp_mask, 'male'] + df.loc[tmp_mask, 'female'] plt.figure(figsize=(12, 5)) plt.title("Characteristics of China's population over the period of 70 years", fontweight='bold', fontsize=12) plt.plot(df['year'], df['female'], linewidth=3, label='female') plt.plot(df['year'], df['male'], linewidth=3, label='male') plt.plot(df['year'], df['urban'], linewidth=3, linestyle='--', label='urban') plt.plot(df['year'], df['rural'], linewidth=3, linestyle='--', label='rural') plt.xlabel('year', fontweight='bold', fontsize=10) plt.ylabel('population', fontweight='bold', fontsize=10) plt.grid(axis='x', color='0.95') plt.legend(title='Features:') plt.show()
code