path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
74061207/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/sales-store-product-details/Salesstore.csv') df.isna().sum() plot_1 = sns.histplot(data=df, x='Ship_Mode') plt.show() plot_2 = sns.histplot(data=df, x='Order_Priority') plt.show() plot_3 = sns.histplot(data=df, x='Customer_Segment') plt.show() plot_4 = sns.histplot(data=df, x='Product_Category') plt.show() plot_5 = sns.histplot(data=df, x='Product_Container') plt.show()
code
74061207/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/sales-store-product-details/Salesstore.csv') df.isna().sum() plot_1=sns.histplot(data=df, x='Ship_Mode') plt.show() plot_2=sns.histplot(data=df, x='Order_Priority') plt.show() plot_3=sns.histplot(data=df, x='Customer_Segment') plt.show() plot_4=sns.histplot(data=df, x='Product_Category') plt.show() plot_5=sns.histplot(data=df, x='Product_Container') plt.show() plot_6 = sns.barplot(data=df, x='Order_Priority', y='Profit', hue='Ship_Mode') plt.show() plot_7 = sns.barplot(data=df, x='Region', y='Profit', hue='Ship_Mode') plt.xticks(rotation=45) plt.show() plot_8 = sns.barplot(data=df, x='Region', y='Sales', hue='Ship_Mode') plt.xticks(rotation=45) plt.show() plot_9 = sns.barplot(data=df, x='Region', y='Profit', hue='Customer_Segment') plt.xticks(rotation=45) plt.show() plot_10 = sns.barplot(data=df, x='Region', y='Profit', hue='Product_Category') plt.xticks(rotation=45) plt.show() plot_11 = sns.lineplot(data=df, x='Order_Quantity', y='Sales') plt.show() plot_12 = sns.lmplot(data=df, x='Order_Quantity', y='Profit') plt.show()
code
74061207/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/sales-store-product-details/Salesstore.csv') df.isna().sum() plot_1=sns.histplot(data=df, x='Ship_Mode') plt.show() plot_2=sns.histplot(data=df, x='Order_Priority') plt.show() plot_3=sns.histplot(data=df, x='Customer_Segment') plt.show() plot_4=sns.histplot(data=df, x='Product_Category') plt.show() plot_5=sns.histplot(data=df, x='Product_Container') plt.show() plot_6=sns.barplot(data=df,x='Order_Priority',y='Profit',hue='Ship_Mode') plt.show() plot_7=sns.barplot(data=df,x='Region',y='Profit',hue='Ship_Mode') plt.xticks(rotation=45) plt.show() plot_8=sns.barplot(data=df,x='Region',y='Sales',hue='Ship_Mode') plt.xticks(rotation=45) plt.show() plot_9=sns.barplot(data=df,x='Region',y='Profit',hue='Customer_Segment') plt.xticks(rotation=45) plt.show() plot_10=sns.barplot(data=df,x='Region',y='Profit',hue='Product_Category') plt.xticks(rotation=45) plt.show() plot_11=sns.lineplot(data=df,x='Order_Quantity',y='Sales') plt.show() plot_12=sns.lmplot(data=df,x='Order_Quantity',y='Profit') plt.show() plot_14 = sns.barplot(data=df, x='Product_Category', y='Profit', hue='Product_Container') plt.show()
code
74061207/cell_3
[ "image_output_5.png", "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/sales-store-product-details/Salesstore.csv') print(df.shape) df.head()
code
74061207/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/sales-store-product-details/Salesstore.csv') df.isna().sum() print(df.Order_Priority.unique(), df.Ship_Mode.unique(), df.Region.unique(), df.Customer_Segment.unique(), df.Product_Category.unique(), df.Product_Container.unique())
code
74061207/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/sales-store-product-details/Salesstore.csv') df.isna().sum() plot_1=sns.histplot(data=df, x='Ship_Mode') plt.show() plot_2=sns.histplot(data=df, x='Order_Priority') plt.show() plot_3=sns.histplot(data=df, x='Customer_Segment') plt.show() plot_4=sns.histplot(data=df, x='Product_Category') plt.show() plot_5=sns.histplot(data=df, x='Product_Container') plt.show() plot_6=sns.barplot(data=df,x='Order_Priority',y='Profit',hue='Ship_Mode') plt.show() plot_7=sns.barplot(data=df,x='Region',y='Profit',hue='Ship_Mode') plt.xticks(rotation=45) plt.show() plot_8=sns.barplot(data=df,x='Region',y='Sales',hue='Ship_Mode') plt.xticks(rotation=45) plt.show() plot_9=sns.barplot(data=df,x='Region',y='Profit',hue='Customer_Segment') plt.xticks(rotation=45) plt.show() plot_10=sns.barplot(data=df,x='Region',y='Profit',hue='Product_Category') plt.xticks(rotation=45) plt.show() plot_11=sns.lineplot(data=df,x='Order_Quantity',y='Sales') plt.show() plot_12=sns.lmplot(data=df,x='Order_Quantity',y='Profit') plt.show() plot_14=sns.barplot(data=df,x='Product_Category',y='Profit',hue='Product_Container') plt.show() plot_11=sns.regplot(data=df,x='Sales',y='Profit') plt.show() # Linear relationship between the profits and sales corrMatt = df[['Order_ID', 'Order_Priority', 'Order_Quantity', 'Sales', 'Ship_Mode', 'Region', 'Customer_Segment', 'Product_Category', 'Product_Sub-Category', 'Product_Name', 'Product_Container', 'Profit']].corr() mask = np.array(corrMatt) mask[np.tril_indices_from(mask)] = False fig, ax = plt.subplots() fig.set_size_inches(20, 10) sns.heatmap(corrMatt, mask=mask, vmax=0.8, square=True, annot=True)
code
50224445/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') fraud_data = data[data['isFraud'] == 1] fraud_data.head()
code
50224445/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') data[data['isFraud'] == 1]['type'].unique()
code
50224445/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') 100 * data['isFraud'].value_counts() / len(data)
code
50224445/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') data.info()
code
50224445/cell_30
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') fraud_data = data[data['isFraud'] == 1] safe_data = data[data['isFraud'] == 0] sampled_data = safe_data.sample(n=len(fraud_data)) df = pd.concat([fraud_data, sampled_data]) 100 * df.isFraud.value_counts() / len(df) df.info()
code
50224445/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') fraud_data = data[data['isFraud'] == 1] safe_data = data[data['isFraud'] == 0] sampled_data = safe_data.sample(n=len(fraud_data)) df = pd.concat([fraud_data, sampled_data]) 100 * df.isFraud.value_counts() / len(df)
code
50224445/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') data['type'].unique()
code
50224445/cell_50
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train)
code
50224445/cell_52
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix preds = rf_model.predict(X_test) print('classification_report') print(classification_report(y_test, preds))
code
50224445/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50224445/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') fraud_data = data[data['isFraud'] == 1] safe_data = data[data['isFraud'] == 0] sampled_data = safe_data.sample(n=len(fraud_data)) df = pd.concat([fraud_data, sampled_data]) 100 * df.isFraud.value_counts() / len(df) df['type'].unique()
code
50224445/cell_51
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix preds = rf_model.predict(X_test) print('Accuracy Score :', accuracy_score(y_test, preds)) print('F1-score :', f1_score(y_test, preds))
code
50224445/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') data['isFraud'].value_counts()
code
50224445/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') data['isFlaggedFraud'].value_counts()
code
50224445/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') fraud_data = data[data['isFraud'] == 1] safe_data = data[data['isFraud'] == 0] sampled_data = safe_data.sample(n=len(fraud_data)) df = pd.concat([fraud_data, sampled_data]) 100 * df.isFraud.value_counts() / len(df) df.head()
code
50224445/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/paysim1/PS_20174392719_1491204439457_log.csv') fraud_data = data[data['isFraud'] == 1] len(fraud_data)
code
50224445/cell_53
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) from sklearn.metrics import accuracy_score, f1_score, classification_report, confusion_matrix preds = rf_model.predict(X_test) print('Confusion_matrix : ') print(confusion_matrix(y_test, preds))
code
2042925/cell_9
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode import numpy as np import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py from plotly.graph_objs import * import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() data = pd.read_csv('../input/shot_logs.csv') playerIDList = list(data['player_id'].unique()) defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'made_against', 'missed_against', 'fg_percentage_against']) for defenderID in defenderIDList: name = data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['CLOSEST_DEFENDER'].iloc[0] made = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[defenderID, 'player'] = name playerData.at[defenderID, 'made_against'] = made playerData.at[defenderID, 'missed_against'] = missed playerData.at[defenderID, 'fg_percentage_against'] = percentage for attackerID in attackerIDList: made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage newPlayerData = playerData.sort_values('fg_percentage_against') newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.missed_against < 200].index) ESPNRankTop30 = ['James, LeBron', 'Paul, Chris', 'Davis, Anthony', 'Westbrook, Russell', 'Griffin, Blake', 'Curry, Stephen', 'Love, Kevin', 'Durant, Kevin', 'Harden, James', 'Howard, Dwight', 'Anthony, Carmelo', 'Noah, Joakim', 'Aldridge, LaMarcus', 'Gasol, Marc', 'Parker, Tony', 'Lillard, Damian', 'Nowitzki, Dirk', 'Wall, John', 'Cousins, DeMarcus', 'Bosh, Chris', 'Duncan, Tim', 'Jefferson, Al', 'Irving, Kyrie', 'Leonard, Kawhi', 'Ibaka, Serge', 'Horford, Al', 'Dragic, Goran', 'Rose, Derrick', 'Lowry, Kyle', 'Drummond, Andre'] newPlayerData3 = newPlayerData[newPlayerData['player'].isin(ESPNRankTop30)] newPlayerData3 = newPlayerData3.sort_values('player') newPlayerData3['ranking'] = 0 for i in range(len(ESPNRankTop30)): newPlayerData3.loc[newPlayerData3['player'] == ESPNRankTop30[i], 'ranking'] = str(i + 1) newPlayerData3
code
2042925/cell_4
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode import numpy as np import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py from plotly.graph_objs import * import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() data = pd.read_csv('../input/shot_logs.csv') playerIDList = list(data['player_id'].unique()) defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'made_against', 'missed_against', 'fg_percentage_against']) for defenderID in defenderIDList: name = data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['CLOSEST_DEFENDER'].iloc[0] made = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[defenderID, 'player'] = name playerData.at[defenderID, 'made_against'] = made playerData.at[defenderID, 'missed_against'] = missed playerData.at[defenderID, 'fg_percentage_against'] = percentage for attackerID in attackerIDList: made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage newPlayerData = playerData.sort_values('fg_percentage_against') newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.missed_against < 200].index)
code
2042925/cell_20
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode import numpy as np import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py from plotly.graph_objs import * import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() data = pd.read_csv('../input/shot_logs.csv') playerIDList = list(data['player_id'].unique()) defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'made_against', 'missed_against', 'fg_percentage_against']) for defenderID in defenderIDList: name = data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['CLOSEST_DEFENDER'].iloc[0] made = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[defenderID, 'player'] = name playerData.at[defenderID, 'made_against'] = made playerData.at[defenderID, 'missed_against'] = missed playerData.at[defenderID, 'fg_percentage_against'] = percentage for attackerID in attackerIDList: made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage newPlayerData = playerData.sort_values('fg_percentage_against') newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.missed_against < 200].index) ESPNRankTop30 = ['James, LeBron', 'Paul, Chris', 'Davis, Anthony', 'Westbrook, Russell', 'Griffin, Blake', 'Curry, Stephen', 'Love, Kevin', 'Durant, Kevin', 'Harden, James', 'Howard, Dwight', 'Anthony, Carmelo', 'Noah, Joakim', 'Aldridge, LaMarcus', 'Gasol, Marc', 'Parker, Tony', 'Lillard, Damian', 'Nowitzki, Dirk', 'Wall, John', 'Cousins, DeMarcus', 'Bosh, Chris', 'Duncan, Tim', 'Jefferson, Al', 'Irving, Kyrie', 'Leonard, Kawhi', 'Ibaka, Serge', 'Horford, Al', 'Dragic, Goran', 'Rose, Derrick', 'Lowry, Kyle', 'Drummond, Andre'] newPlayerData3 = newPlayerData[newPlayerData['player'].isin(ESPNRankTop30)] newPlayerData3 = newPlayerData3.sort_values('player') newPlayerData3['ranking'] = 0 for i in range(len(ESPNRankTop30)): newPlayerData3.loc[newPlayerData3['player'] == ESPNRankTop30[i], 'ranking'] = str(i + 1) line = Scatter(x=[0, 1], y=[0, 1], marker=dict(size=1, color='rgba(200, 200, 200, .5)'), name='Line of Neutrality') trace1 = Scatter(x=newPlayerData2['fg_percentage'], y=newPlayerData2['fg_percentage_against'], mode='markers', marker=dict(size=10, color='rgba(132, 123, 255, .9)', line=dict(width=2)), name='League', text=newPlayerData2['player']) trace2 = Scatter(x=newPlayerData3['fg_percentage'], y=newPlayerData3['fg_percentage_against'], mode='markers', marker=dict(size=10, color='rgba(255, 123, 132, .9)', line=dict(width=2)), name='#NBARank Top 30', text=newPlayerData3['player'] + ' (#' + newPlayerData3['ranking'] + ')') data = [line, trace1, trace2] layout = Layout(hovermode='closest', annotations=Annotations([Annotation(x=0.5004254919715793, y=-0.16191064079952971, showarrow=False, text='Made Field Goal %', xref='paper', yref='paper'), Annotation(x=-0.05944728761514841, y=0.4714285714285711, showarrow=False, text='Allowed Field Goal %', textangle=-90, xref='paper', yref='paper')]), autosize=True, margin=Margin(b=100), title='Made Vs. Allowed FG%', xaxis=XAxis(autorange=False, range=[0.35, 0.72], type='linear'), yaxis=YAxis(autorange=False, range=[0.35, 0.55], type='linear')) graph = Figure(data=data, layout=layout) data = pd.read_csv('../input/shot_logs.csv') defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'fg_distance']) for attackerID in attackerIDList: name = data[data['player_id'] == attackerID]['player_name'].iloc[0] spacePos = name.find(' ') firstname = name[0].upper() + name[1:spacePos] lastname = name[spacePos + 1].upper() + name[spacePos + 2:] name = firstname + ' ' + lastname made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) averageDist = np.mean(data[data['player_id'] == attackerID]['SHOT_DIST']) playerData.at[attackerID, 'player'] = name playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage playerData.at[attackerID, 'fg_distance'] = averageDist newPlayerData = playerData.sort_values('fg_distance', ascending=False) newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.made < 200].index) newPlayerData2 import plotly import plotly.plotly as py from plotly.graph_objs import * from ipywidgets import widgets from IPython.display import display, clear_output, Image from plotly.graph_objs import * from plotly.widgets import GraphWidget ESPNRankTop30 = ['Lebron James', 'Chris Paul', 'Anthony Davis', 'Russell Westbrook', 'Blake Griffin', 'Stephen Curry', 'Kevin Love', 'Kevin Durant', 'James Harden', 'Dwight Howard', 'Carmelo Anthony', 'Joakim Noah', 'Lamarcus Aldridge', 'Marc Gasol', 'Tony Parker', 'Damian Lillard', 'Dirk Nowtizski', 'John Wall', 'Demarcus Cousins', 'Chris Bosh', 'Tim Duncan', 'Al Jefferson', 'Kyrie Irving', 'Kawhi Leonard', 'Serge Ibaka', 'Al Horford', 'Goran Dragic', 'Derrick Rose', 'Kyle Lowry', 'Andre Drummond'] trace1 = Scatter(x=newPlayerData2['fg_distance'], y=newPlayerData2['fg_percentage'], mode='markers', marker=dict(size=newPlayerData2['made'] / 20, color='rgba(132, 123, 255, .9)', line=dict(width=2)), name='League', text=newPlayerData2['player']) newPlayerData3 = newPlayerData2[newPlayerData2.player.isin(ESPNRankTop30)] trace2 = Scatter(x=newPlayerData3['fg_distance'], y=newPlayerData3['fg_percentage'], mode='markers', marker=dict(size=newPlayerData3['made'] / 20, color='rgba(255, 123, 132, .9)', line=dict(width=2)), name='#NBARank Top 30', text=newPlayerData3['player']) data = [trace1, trace2] layout = Layout(hovermode='closest', annotations=Annotations([Annotation(x=0.5004254919715793, y=-0.16191064079952971, showarrow=False, text='Average Shot Distance (Feet)', xref='paper', yref='paper'), Annotation(x=-0.06944728761514841, y=0.4714285714285711, showarrow=False, text='Field Goal %', textangle=-90, xref='paper', yref='paper')]), autosize=True, margin=Margin(b=100), title="Comparing Players' FG% and Average Shot Distance (Minimum 200 Made Shots)") graph = Figure(data=data, layout=layout) data = pd.read_csv('../input/shot_logs.csv') attackerIDList = list(data['player_id'].unique()) playerIDList = [] for ID in attackerIDList: for period in range(1, 4): playerIDList.append(ID + period / 10) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'period', 'made', 'missed', 'fg_percentage']) for attackerID in attackerIDList: name = data[data['player_id'] == attackerID]['player_name'].iloc[0] spacePos = name.find(' ') firstname = name[0].upper() + name[1:spacePos] lastname = name[spacePos + 1].upper() + name[spacePos + 2:] name = firstname + ' ' + lastname for period in range(1, 5): made = np.sum(np.logical_and(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made', data[data['player_id'] == attackerID]['PERIOD'] == period)) missed = np.sum(np.logical_and(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed', data[data['player_id'] == attackerID]['PERIOD'] == period)) percentage = made / (made + missed) playerData.at[attackerID + period / 10, 'player'] = name playerData.at[attackerID + period / 10, 'period'] = period playerData.at[attackerID + period / 10, 'made'] = made playerData.at[attackerID + period / 10, 'missed'] = missed playerData.at[attackerID + period / 10, 'fg_percentage'] = percentage newPlayerData = playerData.sort_values('player', ascending=True) inelligibleNames = newPlayerData[newPlayerData.made < 50]['player'] inelligibleNames = inelligibleNames.unique() newPlayerData2 = newPlayerData[~newPlayerData.player.isin(inelligibleNames)] newPlayerData2
code
2042925/cell_6
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode import numpy as np import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py from plotly.graph_objs import * import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() data = pd.read_csv('../input/shot_logs.csv') playerIDList = list(data['player_id'].unique()) defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'made_against', 'missed_against', 'fg_percentage_against']) for defenderID in defenderIDList: name = data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['CLOSEST_DEFENDER'].iloc[0] made = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[defenderID, 'player'] = name playerData.at[defenderID, 'made_against'] = made playerData.at[defenderID, 'missed_against'] = missed playerData.at[defenderID, 'fg_percentage_against'] = percentage for attackerID in attackerIDList: made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage newPlayerData = playerData.sort_values('fg_percentage_against') newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.missed_against < 200].index) newPlayerData2
code
2042925/cell_16
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode import numpy as np import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py from plotly.graph_objs import * import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() data = pd.read_csv('../input/shot_logs.csv') playerIDList = list(data['player_id'].unique()) defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'made_against', 'missed_against', 'fg_percentage_against']) for defenderID in defenderIDList: name = data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['CLOSEST_DEFENDER'].iloc[0] made = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[defenderID, 'player'] = name playerData.at[defenderID, 'made_against'] = made playerData.at[defenderID, 'missed_against'] = missed playerData.at[defenderID, 'fg_percentage_against'] = percentage for attackerID in attackerIDList: made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage newPlayerData = playerData.sort_values('fg_percentage_against') newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.missed_against < 200].index) ESPNRankTop30 = ['James, LeBron', 'Paul, Chris', 'Davis, Anthony', 'Westbrook, Russell', 'Griffin, Blake', 'Curry, Stephen', 'Love, Kevin', 'Durant, Kevin', 'Harden, James', 'Howard, Dwight', 'Anthony, Carmelo', 'Noah, Joakim', 'Aldridge, LaMarcus', 'Gasol, Marc', 'Parker, Tony', 'Lillard, Damian', 'Nowitzki, Dirk', 'Wall, John', 'Cousins, DeMarcus', 'Bosh, Chris', 'Duncan, Tim', 'Jefferson, Al', 'Irving, Kyrie', 'Leonard, Kawhi', 'Ibaka, Serge', 'Horford, Al', 'Dragic, Goran', 'Rose, Derrick', 'Lowry, Kyle', 'Drummond, Andre'] newPlayerData3 = newPlayerData[newPlayerData['player'].isin(ESPNRankTop30)] newPlayerData3 = newPlayerData3.sort_values('player') newPlayerData3['ranking'] = 0 for i in range(len(ESPNRankTop30)): newPlayerData3.loc[newPlayerData3['player'] == ESPNRankTop30[i], 'ranking'] = str(i + 1) line = Scatter(x=[0, 1], y=[0, 1], marker=dict(size=1, color='rgba(200, 200, 200, .5)'), name='Line of Neutrality') trace1 = Scatter(x=newPlayerData2['fg_percentage'], y=newPlayerData2['fg_percentage_against'], mode='markers', marker=dict(size=10, color='rgba(132, 123, 255, .9)', line=dict(width=2)), name='League', text=newPlayerData2['player']) trace2 = Scatter(x=newPlayerData3['fg_percentage'], y=newPlayerData3['fg_percentage_against'], mode='markers', marker=dict(size=10, color='rgba(255, 123, 132, .9)', line=dict(width=2)), name='#NBARank Top 30', text=newPlayerData3['player'] + ' (#' + newPlayerData3['ranking'] + ')') data = [line, trace1, trace2] layout = Layout(hovermode='closest', annotations=Annotations([Annotation(x=0.5004254919715793, y=-0.16191064079952971, showarrow=False, text='Made Field Goal %', xref='paper', yref='paper'), Annotation(x=-0.05944728761514841, y=0.4714285714285711, showarrow=False, text='Allowed Field Goal %', textangle=-90, xref='paper', yref='paper')]), autosize=True, margin=Margin(b=100), title='Made Vs. Allowed FG%', xaxis=XAxis(autorange=False, range=[0.35, 0.72], type='linear'), yaxis=YAxis(autorange=False, range=[0.35, 0.55], type='linear')) graph = Figure(data=data, layout=layout) data = pd.read_csv('../input/shot_logs.csv') defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'fg_distance']) for attackerID in attackerIDList: name = data[data['player_id'] == attackerID]['player_name'].iloc[0] spacePos = name.find(' ') firstname = name[0].upper() + name[1:spacePos] lastname = name[spacePos + 1].upper() + name[spacePos + 2:] name = firstname + ' ' + lastname made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) averageDist = np.mean(data[data['player_id'] == attackerID]['SHOT_DIST']) playerData.at[attackerID, 'player'] = name playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage playerData.at[attackerID, 'fg_distance'] = averageDist newPlayerData = playerData.sort_values('fg_distance', ascending=False) newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.made < 200].index) newPlayerData2 import plotly import plotly.plotly as py from plotly.graph_objs import * from ipywidgets import widgets from IPython.display import display, clear_output, Image from plotly.graph_objs import * from plotly.widgets import GraphWidget ESPNRankTop30 = ['Lebron James', 'Chris Paul', 'Anthony Davis', 'Russell Westbrook', 'Blake Griffin', 'Stephen Curry', 'Kevin Love', 'Kevin Durant', 'James Harden', 'Dwight Howard', 'Carmelo Anthony', 'Joakim Noah', 'Lamarcus Aldridge', 'Marc Gasol', 'Tony Parker', 'Damian Lillard', 'Dirk Nowtizski', 'John Wall', 'Demarcus Cousins', 'Chris Bosh', 'Tim Duncan', 'Al Jefferson', 'Kyrie Irving', 'Kawhi Leonard', 'Serge Ibaka', 'Al Horford', 'Goran Dragic', 'Derrick Rose', 'Kyle Lowry', 'Andre Drummond'] trace1 = Scatter(x=newPlayerData2['fg_distance'], y=newPlayerData2['fg_percentage'], mode='markers', marker=dict(size=newPlayerData2['made'] / 20, color='rgba(132, 123, 255, .9)', line=dict(width=2)), name='League', text=newPlayerData2['player']) newPlayerData3 = newPlayerData2[newPlayerData2.player.isin(ESPNRankTop30)] trace2 = Scatter(x=newPlayerData3['fg_distance'], y=newPlayerData3['fg_percentage'], mode='markers', marker=dict(size=newPlayerData3['made'] / 20, color='rgba(255, 123, 132, .9)', line=dict(width=2)), name='#NBARank Top 30', text=newPlayerData3['player']) data = [trace1, trace2] layout = Layout(hovermode='closest', annotations=Annotations([Annotation(x=0.5004254919715793, y=-0.16191064079952971, showarrow=False, text='Average Shot Distance (Feet)', xref='paper', yref='paper'), Annotation(x=-0.06944728761514841, y=0.4714285714285711, showarrow=False, text='Field Goal %', textangle=-90, xref='paper', yref='paper')]), autosize=True, margin=Margin(b=100), title="Comparing Players' FG% and Average Shot Distance (Minimum 200 Made Shots)") graph = Figure(data=data, layout=layout) iplot(graph)
code
2042925/cell_14
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode import numpy as np import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py from plotly.graph_objs import * import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() data = pd.read_csv('../input/shot_logs.csv') playerIDList = list(data['player_id'].unique()) defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'made_against', 'missed_against', 'fg_percentage_against']) for defenderID in defenderIDList: name = data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['CLOSEST_DEFENDER'].iloc[0] made = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['CLOSEST_DEFENDER_PLAYER_ID'] == defenderID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[defenderID, 'player'] = name playerData.at[defenderID, 'made_against'] = made playerData.at[defenderID, 'missed_against'] = missed playerData.at[defenderID, 'fg_percentage_against'] = percentage for attackerID in attackerIDList: made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage newPlayerData = playerData.sort_values('fg_percentage_against') newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.missed_against < 200].index) ESPNRankTop30 = ['James, LeBron', 'Paul, Chris', 'Davis, Anthony', 'Westbrook, Russell', 'Griffin, Blake', 'Curry, Stephen', 'Love, Kevin', 'Durant, Kevin', 'Harden, James', 'Howard, Dwight', 'Anthony, Carmelo', 'Noah, Joakim', 'Aldridge, LaMarcus', 'Gasol, Marc', 'Parker, Tony', 'Lillard, Damian', 'Nowitzki, Dirk', 'Wall, John', 'Cousins, DeMarcus', 'Bosh, Chris', 'Duncan, Tim', 'Jefferson, Al', 'Irving, Kyrie', 'Leonard, Kawhi', 'Ibaka, Serge', 'Horford, Al', 'Dragic, Goran', 'Rose, Derrick', 'Lowry, Kyle', 'Drummond, Andre'] newPlayerData3 = newPlayerData[newPlayerData['player'].isin(ESPNRankTop30)] newPlayerData3 = newPlayerData3.sort_values('player') newPlayerData3['ranking'] = 0 for i in range(len(ESPNRankTop30)): newPlayerData3.loc[newPlayerData3['player'] == ESPNRankTop30[i], 'ranking'] = str(i + 1) line = Scatter(x=[0, 1], y=[0, 1], marker=dict(size=1, color='rgba(200, 200, 200, .5)'), name='Line of Neutrality') trace1 = Scatter(x=newPlayerData2['fg_percentage'], y=newPlayerData2['fg_percentage_against'], mode='markers', marker=dict(size=10, color='rgba(132, 123, 255, .9)', line=dict(width=2)), name='League', text=newPlayerData2['player']) trace2 = Scatter(x=newPlayerData3['fg_percentage'], y=newPlayerData3['fg_percentage_against'], mode='markers', marker=dict(size=10, color='rgba(255, 123, 132, .9)', line=dict(width=2)), name='#NBARank Top 30', text=newPlayerData3['player'] + ' (#' + newPlayerData3['ranking'] + ')') data = [line, trace1, trace2] layout = Layout(hovermode='closest', annotations=Annotations([Annotation(x=0.5004254919715793, y=-0.16191064079952971, showarrow=False, text='Made Field Goal %', xref='paper', yref='paper'), Annotation(x=-0.05944728761514841, y=0.4714285714285711, showarrow=False, text='Allowed Field Goal %', textangle=-90, xref='paper', yref='paper')]), autosize=True, margin=Margin(b=100), title='Made Vs. Allowed FG%', xaxis=XAxis(autorange=False, range=[0.35, 0.72], type='linear'), yaxis=YAxis(autorange=False, range=[0.35, 0.55], type='linear')) graph = Figure(data=data, layout=layout) data = pd.read_csv('../input/shot_logs.csv') defenderIDList = list(data['CLOSEST_DEFENDER_PLAYER_ID'].unique()) attackerIDList = list(data['player_id'].unique()) playerData = pd.DataFrame(index=playerIDList, columns=['player', 'made', 'missed', 'fg_percentage', 'fg_distance']) for attackerID in attackerIDList: name = data[data['player_id'] == attackerID]['player_name'].iloc[0] spacePos = name.find(' ') firstname = name[0].upper() + name[1:spacePos] lastname = name[spacePos + 1].upper() + name[spacePos + 2:] name = firstname + ' ' + lastname made = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'made') missed = np.sum(data[data['player_id'] == attackerID]['SHOT_RESULT'] == 'missed') percentage = made / (made + missed) averageDist = np.mean(data[data['player_id'] == attackerID]['SHOT_DIST']) playerData.at[attackerID, 'player'] = name playerData.at[attackerID, 'made'] = made playerData.at[attackerID, 'missed'] = missed playerData.at[attackerID, 'fg_percentage'] = percentage playerData.at[attackerID, 'fg_distance'] = averageDist newPlayerData = playerData.sort_values('fg_distance', ascending=False) newPlayerData2 = newPlayerData.drop(newPlayerData[newPlayerData.made < 200].index) newPlayerData2
code
74056226/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum() districts_cleaned = districts_info.dropna() districts_cleaned.duplicated().sum() list(districts_cleaned.columns.values)
code
74056226/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum()
code
74056226/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum() districts_cleaned = districts_info.dropna() districts_cleaned.duplicated().sum()
code
74056226/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.head()
code
74056226/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum() districts_cleaned = districts_info.dropna() percent_missing(districts_cleaned)
code
74056226/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74056226/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum() districts_cleaned = districts_info.dropna() every_column_percent_missing(districts_cleaned)
code
74056226/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum() every_column_percent_missing(districts_info)
code
74056226/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum() districts_cleaned = districts_info.dropna() print(f' There are {districts_cleaned.shape[0]} rows and {districts_cleaned.shape[1]} columns')
code
74056226/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.isnull().sum() percent_missing(districts_info)
code
74056226/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns def percent_missing(df: pd.DataFrame): totalCells = np.product(df.shape) missingCount = df.isnull().sum() totalMissing = missingCount.sum() return def every_column_percent_missing(df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_db = pd.DataFrame({'column_name': df.columns, 'percent_missing': percent_missing}) missing_value_db.sort_values('percent_missing', inplace=True) def plot_hist(df: pd.DataFrame, column: str, color: str) -> None: pass def plot_dist(df: pd.DataFrame, column: str): pass def plot_count(df: pd.DataFrame, column: str) -> None: pass def plot_bar(df: pd.DataFrame, x_col: str, y_col: str, title: str, xlabel: str, ylabel: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_heatmap(df: pd.DataFrame, title: str, cbar=False) -> None: pass def plot_box(df: pd.DataFrame, x_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) def plot_box_multi(df: pd.DataFrame, x_col: str, y_col: str, title: str) -> None: plt.xticks(rotation=75, fontsize=14) plt.yticks(fontsize=14) def plot_scatter(df: pd.DataFrame, x_col: str, y_col: str, title: str, hue: str, style: str) -> None: plt.xticks(fontsize=14) plt.yticks(fontsize=14) def bar_plot(x, y, title, palette_len, xlim = None, ylim = None, xticklabels = None, yticklabels = None, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, xlabel = None, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.barplot(x = x, y = y, edgecolor = 'black', ax = ax, palette = reversed(sns.color_palette("viridis", len(palette_len)))) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_xticklabels(xticklabels, fontfamily = 'serif') ax.set_yticklabels(yticklabels, fontfamily = 'serif') plt.xlabel(xlabel, fontfamily = 'serif') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def line_plot(data, y, title, color, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (10, 4), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title(title, size = 15, fontweight = 'bold', fontfamily = 'serif') for i in ['top', 'right', 'bottom', 'left']: ax.spines[i].set_color('black') ax.spines['top'].set_visible(top_visible) ax.spines['right'].set_visible(right_visible) ax.spines['bottom'].set_visible(bottom_visible) ax.spines['left'].set_visible(left_visible) sns.lineplot(x = range(len(data[y])), y = data[y], dashes = False, color = color, linewidth = .5) ax.xaxis.set_major_locator(plt.MaxNLocator(20)) ax.set_xticks([]) plt.xticks(rotation = 90) plt.xlabel('') plt.ylabel(ylabel, fontfamily = 'serif') ax.grid(axis = axis_grid, linestyle = '--', alpha = 0.9) plt.show() def corr_plot(data, top_visible = False, right_visible = False, bottom_visible = True, left_visible = False, ylabel = None, figsize = (15, 11), axis_grid = 'y'): fig, ax = plt.subplots(figsize = figsize) plt.title('Correlations (Pearson)', size = 15, fontweight = 'bold', fontfamily = 'serif') mask = np.triu(np.ones_like(data.corr(), dtype = bool)) sns.heatmap(round(data.corr(), 2), mask = mask, cmap = 'viridis', annot = True) plt.show() def columns_viz(data, color): for i in range(len(data.columns)): line_plot(data = data, y = data.columns[i], color = color, title = '{} dynamics'.format(data.columns[i]), bottom_visible = False, figsize = (10, 2)) districts_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv") products_info = pd.read_csv("../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv") eng_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' districts_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') products_info = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') districts_info.describe()
code
130005876/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from datetime import datetime from usgs_scraper import extra_data_scraper import pandas as pd import re import requests import sys """ Get all the monitoring locations for a state from the USGS Water Services API. Input: The state we want data from (Arizona, New York, etc.) Output: A CSV of all monitoring locations, including: - the agency monitoring them (usually USGS) - monitoring location ID number - name of monitoring location - latitude - longitude - lat/long type - county - hydrologic unit - drainage area (square miles) - datum of gage (AKA elevation) Example CSV: agency Data: USGS National Water Dashboard: https://dashboard.waterdata.usgs.gov/app/nwd/en/?aoi=default USGS Water Services API: https://waterdata.usgs.gov/nwis/rt USGS Water Services API URL builder tool: https://waterservices.usgs.gov/rest/IV-Test-Tool.html """ import csv import numpy as np import pandas as pd import re import requests import sys from datetime import datetime from usgs_scraper import extra_data_scraper def add_location_details(row): """ Scrapes the following from the USGS website and adds it to the dataframe for the current row: - latitude - longitude - lat/long type - county - hydrologic unit - drainage area (square miles) - datum of gage (AKA elevation) """ location_id = row['location_id'] scraped_data = extra_data_scraper(location_id) row['latitude'] = scraped_data['latitude'] row['longitude'] = scraped_data['longitude'] row['lat_long_type'] = scraped_data['lat_long_type'] row['county'] = scraped_data['county'] row['hydrologic_unit'] = scraped_data['hydrologic_unit'] row['drainage_area'] = scraped_data['drainage_area'] row['datum_of_gage'] = scraped_data['datum_of_gage'] row['datum_type'] = scraped_data['datum_type'] return row def main(arg): state = arg print(f'Getting USGS streamgage data for state: {state}') timestamp = datetime.now().strftime('%Y%m%d') outfile = f'usgs_streamgages_{state}_{timestamp}.csv' data_type = 'rdb' water_api_url = f'https://nwis.waterservices.usgs.gov/nwis/iv/?format={data_type}&stateCd={state}&parameterCd=00060,00065&siteStatus=all' response = requests.get(water_api_url) text = response.text lines = text.split('\n') lines = lines[17:] monitoring_locations = [] for line in lines: if line[:5] == '# ---': break else: regex = '# ([a-zA-Z]+) ([0-9]+) ([A-Za-z0-9\\.\\,\\s\\-\\@\\(\\)]+)' extraction = re.search(regex, line) agency = extraction.group(1) location_id = extraction.group(2) name = extraction.group(3) monitoring_locations.append({'agency': agency, 'location_id': location_id, 'name': name}) df = pd.DataFrame(monitoring_locations) df = df.apply(add_location_details, axis=1) print(df) df.to_csv(outfile) if __name__ == '__main__': if sys.argv[1]: state = sys.argv[1] main(state) else: default_state = 'az' main(default_state)
code
104120001/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) nyra_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') nyra_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') nyra_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') track_id = 'SAR' race_date = '2019-07-24' race_number = 5 target_tracking = nyra_tracking.query('track_id == @track_id & race_date == @race_date & race_number == @race_number').sort_values('trakus_index') target_tracking
code
104120001/cell_2
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns !pip install pymap3d import pymap3d as pm from shapely.geometry import Point from shapely.geometry.polygon import Polygon # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) nyra_tracking = pd.read_csv("/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv") nyra_start = pd.read_csv("/kaggle/input/big-data-derby-2022/nyra_start_table.csv") nyra_race = pd.read_csv("/kaggle/input/big-data-derby-2022/nyra_race_table.csv")
code
104120001/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_html_output_1.png", "text_plain_output_1.png" ]
from shapely.geometry import Point from shapely.geometry.polygon import Polygon import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pymap3d as pm nyra_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') nyra_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') nyra_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') track_id = 'SAR' race_date = '2019-07-24' race_number = 5 target_tracking = nyra_tracking.query('track_id == @track_id & race_date == @race_date & race_number == @race_number').sort_values('trakus_index') target_tracking dtime = 0.25 if track_id == 'AQU': elevation = 3 elif track_id == 'BEL': elevation = 20 elif track_id == 'SAR': elevation = 93 target_trackings = [] for number, group in target_tracking.groupby('program_number'): ecef = np.array(pm.geodetic2ecef(group['latitude'].values, group['longitude'].values, np.array([elevation] * len(group)))).T v_ecef = np.sqrt(np.sum(np.diff(ecef, axis=0) ** 2, axis=1)) * 3.6 / dtime group['time'] = group['trakus_index'] * dtime - dtime group['speed'] = np.insert(v_ecef, 0, 0) target_trackings.append(group) target_tracking = pd.concat(target_trackings) target_tracking poly = [[43.071833, -73.770353], [43.071685, -73.770699], [43.07247, -73.77113], [43.072486, -73.77086]] df_poly = pd.DataFrame(poly, columns=['Lat', 'Lon'], dtype=float) polygon = Polygon([tuple(x) for x in df_poly[['Lat', 'Lon']].to_numpy()]) target_tracking['Within'] = target_tracking.apply(lambda target_tracking: polygon.contains(Point(target_tracking['latitude'], target_tracking['longitude'])), axis=1) new_df = target_tracking.query('Within == True') new_df = new_df[new_df.trakus_index > 100] new_df.sort_values(by=['trakus_index'], inplace=True) new_df.drop_duplicates(subset='program_number', keep='first', inplace=True) def cross(row): x1 = 43.071816 y1 = -73.77039 x2 = 43.07248 y2 = -73.770883 return (row['latitude'] - x1) * (y2 - y1) - (row['longitude'] - y1) * (x2 - x1) target_tracking['crossed'] = target_tracking.apply(cross, axis=1) df2 = target_tracking[(target_tracking['Within'] == True) & (target_tracking['crossed'] > 0)] df2.drop_duplicates(subset='program_number', keep='last', inplace=True) df2.sort_values(by=['trakus_index', 'crossed'], ascending=[True, False], inplace=True) print('Results') print('Track:', track_id, 'Date:', race_date, 'Race:', race_number) df2
code
104120001/cell_5
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pymap3d as pm nyra_tracking = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv') nyra_start = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv') nyra_race = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv') track_id = 'SAR' race_date = '2019-07-24' race_number = 5 target_tracking = nyra_tracking.query('track_id == @track_id & race_date == @race_date & race_number == @race_number').sort_values('trakus_index') target_tracking dtime = 0.25 if track_id == 'AQU': elevation = 3 elif track_id == 'BEL': elevation = 20 elif track_id == 'SAR': elevation = 93 target_trackings = [] for number, group in target_tracking.groupby('program_number'): ecef = np.array(pm.geodetic2ecef(group['latitude'].values, group['longitude'].values, np.array([elevation] * len(group)))).T v_ecef = np.sqrt(np.sum(np.diff(ecef, axis=0) ** 2, axis=1)) * 3.6 / dtime group['time'] = group['trakus_index'] * dtime - dtime group['speed'] = np.insert(v_ecef, 0, 0) target_trackings.append(group) print('No.', number, ' Mean speed : {:.2f} km/h'.format(np.mean(v_ecef))) target_tracking = pd.concat(target_trackings) target_tracking
code
1009451/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.models import Sequential from keras.models import model_from_json from keras.optimizers import SGD import cv2 import cv2 import glob import glob import matplotlib.pyplot as plt import matplotlib.pyplot as plt import os import os import pickle import random import random labels = [1, 2, 3] count = 0 for l in labels: train_files = ['../input/train/Type_' + str(l) + '/' + f for f in os.listdir('../input/train/Type_' + str(l) + '/')] random_file = random.choice(train_files) im = cv2.imread(random_file) plt.axis('off') count += 1 img_rows = 224 img_cols = 224 def get_im_cv2(path, img_rows, img_cols, color_type=3): if color_type == 1: img = cv2.imread(path, 0) elif color_type == 3: img = cv2.imread(path) resized = cv2.resize(img, (img_cols, img_rows)) return resized def load_train(img_rows, img_cols, color_type=3): X_train = [] y_train = [] for j in range(1, 4): path = os.path.join('..', 'input', 'train', 'Type_' + str(j), '*.jpg') files = glob.glob(path) for fl in files: flbase = os.path.basename(fl) img = get_im_cv2(fl, img_rows, img_cols, color_type) X_train.append(img) y_train.append(j) return (X_train, y_train) X_train, y_train = load_train(64, 64, 3) def cache_data(data, path): if os.path.isdir(os.path.dirname(path)): file = open(path, 'wb') pickle.dump(data, file) file.close() def restore_data(path): data = dict() if os.path.isfile(path): file = open(path, 'rb') data = pickle.load(file) return data def save_model(model): json_string = model.to_json() if not os.path.isdir('cache'): os.mkdir('cache') open(os.path.join('cache', 'architecture.json'), 'w').write(json_string) model.save_weights(os.path.join('cache', 'model_weights.h5'), overwrite=True) def read_model(): model = model_from_json(open(os.path.join('cache', 'architecture.json')).read()) model.load_weights(os.path.join('cache', 'model_weights.h5')) return model def create_model(img_rows, img_cols, color_type=3): nb_classes = 3 nb_filters = 8 nb_pool = 2 nb_conv = 2 model = Sequential() model.add(Convolution2D(nb_filters, nb_conv, nb_conv, border_mode='valid', input_shape=(color_type, img_rows, img_cols))) model.add(Activation('relu')) model.add(Convolution2D(nb_filters, nb_conv, nb_conv)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) sgd = SGD(lr=0.01, decay=0, momentum=0, nesterov=False) model.compile(loss='categorical_crossentropy', optimizer=sgd) return model nb_epoch = 3 batch_size = 16 model = create_model_v1(img_rows, img_cols, color_type_global) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=1)
code
1009451/cell_4
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import cv2 import cv2 import matplotlib.pyplot as plt import matplotlib.pyplot as plt import os import os import random import random labels = [1, 2, 3] count = 0 for l in labels: train_files = ['../input/train/Type_' + str(l) + '/' + f for f in os.listdir('../input/train/Type_' + str(l) + '/')] random_file = random.choice(train_files) im = cv2.imread(random_file) print('{} : {}'.format(random_file, im.shape)) plt.subplot(1, 4, count + 1).set_title(labels[l]) plt.imshow(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)) plt.axis('off') count += 1
code
1009451/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import numpy as np np.random.seed(2016) import os import glob import cv2 import math import pickle import datetime import pandas as pd import statistics import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from sklearn.cross_validation import KFold from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.models import model_from_json from sklearn.metrics import log_loss from scipy.misc import imread, imresize
code
1009451/cell_5
[ "text_plain_output_1.png" ]
import cv2 import cv2 import glob import glob import matplotlib.pyplot as plt import matplotlib.pyplot as plt import os import os import random import random labels = [1, 2, 3] count = 0 for l in labels: train_files = ['../input/train/Type_' + str(l) + '/' + f for f in os.listdir('../input/train/Type_' + str(l) + '/')] random_file = random.choice(train_files) im = cv2.imread(random_file) plt.axis('off') count += 1 img_rows = 224 img_cols = 224 def get_im_cv2(path, img_rows, img_cols, color_type=3): if color_type == 1: img = cv2.imread(path, 0) elif color_type == 3: img = cv2.imread(path) resized = cv2.resize(img, (img_cols, img_rows)) return resized def load_train(img_rows, img_cols, color_type=3): X_train = [] y_train = [] print('Read train images') for j in range(1, 4): print('Load folder Type_{}'.format(j)) path = os.path.join('..', 'input', 'train', 'Type_' + str(j), '*.jpg') files = glob.glob(path) for fl in files: flbase = os.path.basename(fl) img = get_im_cv2(fl, img_rows, img_cols, color_type) X_train.append(img) y_train.append(j) return (X_train, y_train) X_train, y_train = load_train(64, 64, 3)
code
34128064/cell_13
[ "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(["category_id"]).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:,['category_id','video_id']] df_1 = pd.merge(cnt_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') df_1 = df_1.sort_values(by='video_id', ascending = False) df_1["Proportion"] = round((df_1["video_id"]/sum(df_1["video_id"]) * 100),2) print(df_1) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) ax = sns.barplot(x="category_name",y="video_id", data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #this section is used to check the likes, dislike, and comment rate #first we need to create 3 new variable df["likes_rate"] = df["likes"] /df["views"] * 100 df["dislikes_rate"] = df["dislikes"] / df["views"] * 100 df["comment_rate"] = df["comment_count"] / df["views"] * 100 #grouping the likes rate per category cnt_likes_per_video_per_category = df.groupby("category_id").mean().reset_index() cnt_likes_per_video_per_category = cnt_likes_per_video_per_category.loc[:,['category_id','likes_rate','dislikes_rate','comment_rate']] #left join to get the category name df_2 = pd.merge(cnt_likes_per_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') print(df_2) #likes rate df_2 = df_2.sort_values(by='likes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("likes rate") ax = sns.barplot(x="category_name",y="likes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #dislikes rate df_2 = df_2.sort_values(by='dislikes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("dislikes rate") ax = sns.barplot(x="category_name",y="dislikes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #comments rate df_2 = df_2.sort_values(by='comment_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("comments rate") ax = sns.barplot(x="category_name",y="comment_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() p_null = (len(df) - df.count()) * 100.0 / len(df) p_null train = df[['trending_date', 'title', 'channel_title', 'publish_time', 'tags', 'views', 'likes', 'dislikes', 'comment_count', 'video_error_or_removed']] df.isnull().any() train['video_error_or_removed'].fillna('M', inplace=True) train.isnull().any() train['video_error_or_removed'].interpolate(inplace=True) train.isnull().any() train['video_error_or_removed'].replace('M', 2, inplace=True) train['video_error_or_removed'].replace('D', 1, inplace=True) train['video_error_or_removed'].replace('A', 0, inplace=True) sns.heatmap(train.corr(), cmap='coolwarm', annot=True)
code
34128064/cell_9
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(["category_id"]).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:,['category_id','video_id']] df_1 = pd.merge(cnt_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') df_1 = df_1.sort_values(by='video_id', ascending = False) df_1["Proportion"] = round((df_1["video_id"]/sum(df_1["video_id"]) * 100),2) print(df_1) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) ax = sns.barplot(x="category_name",y="video_id", data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #this section is used to check the likes, dislike, and comment rate #first we need to create 3 new variable df["likes_rate"] = df["likes"] /df["views"] * 100 df["dislikes_rate"] = df["dislikes"] / df["views"] * 100 df["comment_rate"] = df["comment_count"] / df["views"] * 100 #grouping the likes rate per category cnt_likes_per_video_per_category = df.groupby("category_id").mean().reset_index() cnt_likes_per_video_per_category = cnt_likes_per_video_per_category.loc[:,['category_id','likes_rate','dislikes_rate','comment_rate']] #left join to get the category name df_2 = pd.merge(cnt_likes_per_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') print(df_2) #likes rate df_2 = df_2.sort_values(by='likes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("likes rate") ax = sns.barplot(x="category_name",y="likes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #dislikes rate df_2 = df_2.sort_values(by='dislikes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("dislikes rate") ax = sns.barplot(x="category_name",y="dislikes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #comments rate df_2 = df_2.sort_values(by='comment_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("comments rate") ax = sns.barplot(x="category_name",y="comment_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() p_null = (len(df) - df.count()) * 100.0 / len(df) p_null train = df[['trending_date', 'title', 'channel_title', 'publish_time', 'tags', 'views', 'likes', 'dislikes', 'comment_count', 'video_error_or_removed']] df.isnull().any()
code
34128064/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/youtube-new/USvideos.csv') print(df.columns)
code
34128064/cell_6
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(['category_id']).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:, ['category_id', 'video_id']] df_1 = pd.merge(cnt_video_per_category, category_df, left_on='category_id', right_on='category_id', how='left') df_1 = df_1.sort_values(by='video_id', ascending=False) df_1['Proportion'] = round(df_1['video_id'] / sum(df_1['video_id']) * 100, 2) print(df_1) sns.set(style='whitegrid') plt.figure(figsize=(11, 10)) ax = sns.barplot(x='category_name', y='video_id', data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha='right') plt.tight_layout() plt.show()
code
34128064/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(["category_id"]).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:,['category_id','video_id']] df_1 = pd.merge(cnt_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') df_1 = df_1.sort_values(by='video_id', ascending = False) df_1["Proportion"] = round((df_1["video_id"]/sum(df_1["video_id"]) * 100),2) print(df_1) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) ax = sns.barplot(x="category_name",y="video_id", data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #this section is used to check the likes, dislike, and comment rate #first we need to create 3 new variable df["likes_rate"] = df["likes"] /df["views"] * 100 df["dislikes_rate"] = df["dislikes"] / df["views"] * 100 df["comment_rate"] = df["comment_count"] / df["views"] * 100 #grouping the likes rate per category cnt_likes_per_video_per_category = df.groupby("category_id").mean().reset_index() cnt_likes_per_video_per_category = cnt_likes_per_video_per_category.loc[:,['category_id','likes_rate','dislikes_rate','comment_rate']] #left join to get the category name df_2 = pd.merge(cnt_likes_per_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') print(df_2) #likes rate df_2 = df_2.sort_values(by='likes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("likes rate") ax = sns.barplot(x="category_name",y="likes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #dislikes rate df_2 = df_2.sort_values(by='dislikes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("dislikes rate") ax = sns.barplot(x="category_name",y="dislikes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #comments rate df_2 = df_2.sort_values(by='comment_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("comments rate") ax = sns.barplot(x="category_name",y="comment_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() p_null = (len(df) - df.count()) * 100.0 / len(df) p_null train = df[['trending_date', 'title', 'channel_title', 'publish_time', 'tags', 'views', 'likes', 'dislikes', 'comment_count', 'video_error_or_removed']] df.isnull().any() train['video_error_or_removed'].fillna('M', inplace=True) train.isnull().any() train['video_error_or_removed'].interpolate(inplace=True) train.isnull().any()
code
34128064/cell_7
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(["category_id"]).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:,['category_id','video_id']] df_1 = pd.merge(cnt_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') df_1 = df_1.sort_values(by='video_id', ascending = False) df_1["Proportion"] = round((df_1["video_id"]/sum(df_1["video_id"]) * 100),2) print(df_1) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) ax = sns.barplot(x="category_name",y="video_id", data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() df['likes_rate'] = df['likes'] / df['views'] * 100 df['dislikes_rate'] = df['dislikes'] / df['views'] * 100 df['comment_rate'] = df['comment_count'] / df['views'] * 100 cnt_likes_per_video_per_category = df.groupby('category_id').mean().reset_index() cnt_likes_per_video_per_category = cnt_likes_per_video_per_category.loc[:, ['category_id', 'likes_rate', 'dislikes_rate', 'comment_rate']] df_2 = pd.merge(cnt_likes_per_video_per_category, category_df, left_on='category_id', right_on='category_id', how='left') print(df_2) df_2 = df_2.sort_values(by='likes_rate', ascending=False) sns.set(style='whitegrid') plt.figure(figsize=(11, 10)) plt.title('likes rate') ax = sns.barplot(x='category_name', y='likes_rate', data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha='right') plt.tight_layout() plt.show() df_2 = df_2.sort_values(by='dislikes_rate', ascending=False) sns.set(style='whitegrid') plt.figure(figsize=(11, 10)) plt.title('dislikes rate') ax = sns.barplot(x='category_name', y='dislikes_rate', data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha='right') plt.tight_layout() plt.show() df_2 = df_2.sort_values(by='comment_rate', ascending=False) sns.set(style='whitegrid') plt.figure(figsize=(11, 10)) plt.title('comments rate') ax = sns.barplot(x='category_name', y='comment_rate', data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha='right') plt.tight_layout() plt.show()
code
34128064/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(["category_id"]).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:,['category_id','video_id']] df_1 = pd.merge(cnt_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') df_1 = df_1.sort_values(by='video_id', ascending = False) df_1["Proportion"] = round((df_1["video_id"]/sum(df_1["video_id"]) * 100),2) print(df_1) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) ax = sns.barplot(x="category_name",y="video_id", data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #this section is used to check the likes, dislike, and comment rate #first we need to create 3 new variable df["likes_rate"] = df["likes"] /df["views"] * 100 df["dislikes_rate"] = df["dislikes"] / df["views"] * 100 df["comment_rate"] = df["comment_count"] / df["views"] * 100 #grouping the likes rate per category cnt_likes_per_video_per_category = df.groupby("category_id").mean().reset_index() cnt_likes_per_video_per_category = cnt_likes_per_video_per_category.loc[:,['category_id','likes_rate','dislikes_rate','comment_rate']] #left join to get the category name df_2 = pd.merge(cnt_likes_per_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') print(df_2) #likes rate df_2 = df_2.sort_values(by='likes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("likes rate") ax = sns.barplot(x="category_name",y="likes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #dislikes rate df_2 = df_2.sort_values(by='dislikes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("dislikes rate") ax = sns.barplot(x="category_name",y="dislikes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #comments rate df_2 = df_2.sort_values(by='comment_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("comments rate") ax = sns.barplot(x="category_name",y="comment_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() p_null = (len(df) - df.count()) * 100.0 / len(df) p_null
code
34128064/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(["category_id"]).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:,['category_id','video_id']] df_1 = pd.merge(cnt_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') df_1 = df_1.sort_values(by='video_id', ascending = False) df_1["Proportion"] = round((df_1["video_id"]/sum(df_1["video_id"]) * 100),2) print(df_1) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) ax = sns.barplot(x="category_name",y="video_id", data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #this section is used to check the likes, dislike, and comment rate #first we need to create 3 new variable df["likes_rate"] = df["likes"] /df["views"] * 100 df["dislikes_rate"] = df["dislikes"] / df["views"] * 100 df["comment_rate"] = df["comment_count"] / df["views"] * 100 #grouping the likes rate per category cnt_likes_per_video_per_category = df.groupby("category_id").mean().reset_index() cnt_likes_per_video_per_category = cnt_likes_per_video_per_category.loc[:,['category_id','likes_rate','dislikes_rate','comment_rate']] #left join to get the category name df_2 = pd.merge(cnt_likes_per_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') print(df_2) #likes rate df_2 = df_2.sort_values(by='likes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("likes rate") ax = sns.barplot(x="category_name",y="likes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #dislikes rate df_2 = df_2.sort_values(by='dislikes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("dislikes rate") ax = sns.barplot(x="category_name",y="dislikes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #comments rate df_2 = df_2.sort_values(by='comment_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("comments rate") ax = sns.barplot(x="category_name",y="comment_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() p_null = (len(df) - df.count()) * 100.0 / len(df) p_null train = df[['trending_date', 'title', 'channel_title', 'publish_time', 'tags', 'views', 'likes', 'dislikes', 'comment_count', 'video_error_or_removed']] df.isnull().any() train['video_error_or_removed'].fillna('M', inplace=True) train.isnull().any()
code
34128064/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/youtube-new/USvideos.csv') cnt_video_per_category = df.groupby(["category_id"]).count().reset_index() cnt_video_per_category = cnt_video_per_category.loc[:,['category_id','video_id']] df_1 = pd.merge(cnt_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') df_1 = df_1.sort_values(by='video_id', ascending = False) df_1["Proportion"] = round((df_1["video_id"]/sum(df_1["video_id"]) * 100),2) print(df_1) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) ax = sns.barplot(x="category_name",y="video_id", data=df_1) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #this section is used to check the likes, dislike, and comment rate #first we need to create 3 new variable df["likes_rate"] = df["likes"] /df["views"] * 100 df["dislikes_rate"] = df["dislikes"] / df["views"] * 100 df["comment_rate"] = df["comment_count"] / df["views"] * 100 #grouping the likes rate per category cnt_likes_per_video_per_category = df.groupby("category_id").mean().reset_index() cnt_likes_per_video_per_category = cnt_likes_per_video_per_category.loc[:,['category_id','likes_rate','dislikes_rate','comment_rate']] #left join to get the category name df_2 = pd.merge(cnt_likes_per_video_per_category,category_df,left_on='category_id',right_on='category_id',how='left') print(df_2) #likes rate df_2 = df_2.sort_values(by='likes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("likes rate") ax = sns.barplot(x="category_name",y="likes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #dislikes rate df_2 = df_2.sort_values(by='dislikes_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("dislikes rate") ax = sns.barplot(x="category_name",y="dislikes_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() #comments rate df_2 = df_2.sort_values(by='comment_rate', ascending = False) sns.set(style="whitegrid") plt.figure(figsize=(11, 10)) plt.title("comments rate") ax = sns.barplot(x="category_name",y="comment_rate", data=df_2) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show() p_null = (len(df) - df.count()) * 100.0 / len(df) p_null train = df[['trending_date', 'title', 'channel_title', 'publish_time', 'tags', 'views', 'likes', 'dislikes', 'comment_count', 'video_error_or_removed']] df.isnull().any() train['video_error_or_removed'].fillna('M', inplace=True) train.isnull().any() train['video_error_or_removed'].interpolate(inplace=True) train.isnull().any() train['video_error_or_removed'].replace('M', 2, inplace=True) train['video_error_or_removed'].replace('D', 1, inplace=True) train['video_error_or_removed'].replace('A', 0, inplace=True) train.head()
code
34128064/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/youtube-new/USvideos.csv') df.head()
code
105207443/cell_42
[ "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) def pie_plot(df, cols_list, rows, cols): fig, axes = plt.subplots(rows, cols) for ax, col in zip(axes.ravel(), cols_list): df[col].value_counts().plot(ax=ax, kind='pie', figsize=(15, 15), fontsize=10, autopct='%1.0f%%') ax.set_title(str(col), fontsize = 12) plt.show() df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) def box_plot(num_cols): for i in range(len(num_cols)): if i == 16: break else: l = num_cols[i] def corr(x, y, **kwargs): coef = np.corrcoef(x, y)[0][1] label = '$\\rho$ = ' + str(round(coef, 2)) ax = plt.gca() ax.annotate(label, xy=(0.3, 1), size=30, xycoords=ax.transAxes) def scatter_features(l): g = sns.PairGrid(df_c, y_vars='price', x_vars=df_c[l].columns, height=5) g.map(plt.scatter, color='darkred', alpha=0.2) g.map(corr) plt.figure(figsize=(8, 8)) sns.heatmap(df.corr(), annot=True, cmap='Blues', fmt='.3f') plt.show()
code
105207443/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.head()
code
105207443/cell_29
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) df_c.head()
code
105207443/cell_39
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) def pie_plot(df, cols_list, rows, cols): fig, axes = plt.subplots(rows, cols) for ax, col in zip(axes.ravel(), cols_list): df[col].value_counts().plot(ax=ax, kind='pie', figsize=(15, 15), fontsize=10, autopct='%1.0f%%') ax.set_title(str(col), fontsize = 12) plt.show() df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) def box_plot(num_cols): for i in range(len(num_cols)): if i == 16: break else: l = num_cols[i] def corr(x, y, **kwargs): coef = np.corrcoef(x, y)[0][1] label = '$\\rho$ = ' + str(round(coef, 2)) ax = plt.gca() ax.annotate(label, xy=(0.3, 1), size=30, xycoords=ax.transAxes) def scatter_features(l): g = sns.PairGrid(df_c, y_vars='price', x_vars=df_c[l].columns, height=5) g.map(plt.scatter, color='darkred', alpha=0.2) g.map(corr) scatter_features(['stroke', 'compressionratio', 'horsepower', 'peakrpm', 'citympg'])
code
105207443/cell_41
[ "image_output_1.png" ]
from statsmodels.stats.outliers_influence import variance_inflation_factor import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) from statsmodels.stats.outliers_influence import variance_inflation_factor vif_df = df_c.loc[:, df_c.columns != 'price'] vif_data = pd.DataFrame() vif_data['feature'] = vif_df.columns vif_data['VIF'] = [variance_inflation_factor(vif_df.values, i) for i in range(len(vif_df.columns))] vif_data.head(17)
code
105207443/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) df_c = df.copy() df_c = df_c.drop_duplicates() print('Before dropping duplicates {} after dropping duplicates {}'.format(df.shape[0], df_c.shape[0]))
code
105207443/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.info()
code
105207443/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) def pie_plot(df, cols_list, rows, cols): fig, axes = plt.subplots(rows, cols) for ax, col in zip(axes.ravel(), cols_list): df[col].value_counts().plot(ax=ax, kind='pie', figsize=(15, 15), fontsize=10, autopct='%1.0f%%') ax.set_title(str(col), fontsize = 12) plt.show() df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) def box_plot(num_cols): for i in range(len(num_cols)): if i == 16: break else: l = num_cols[i] box_plot(['symboling', 'doornumber', 'wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'cylindernumber', 'enginesize', 'boreratio', 'stroke', 'compressionratio', 'horsepower', 'peakrpm', 'citympg', 'highwaympg'])
code
105207443/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'})
code
105207443/cell_38
[ "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) def pie_plot(df, cols_list, rows, cols): fig, axes = plt.subplots(rows, cols) for ax, col in zip(axes.ravel(), cols_list): df[col].value_counts().plot(ax=ax, kind='pie', figsize=(15, 15), fontsize=10, autopct='%1.0f%%') ax.set_title(str(col), fontsize = 12) plt.show() df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) def box_plot(num_cols): for i in range(len(num_cols)): if i == 16: break else: l = num_cols[i] def corr(x, y, **kwargs): coef = np.corrcoef(x, y)[0][1] label = '$\\rho$ = ' + str(round(coef, 2)) ax = plt.gca() ax.annotate(label, xy=(0.3, 1), size=30, xycoords=ax.transAxes) def scatter_features(l): g = sns.PairGrid(df_c, y_vars='price', x_vars=df_c[l].columns, height=5) g.map(plt.scatter, color='darkred', alpha=0.2) g.map(corr) scatter_features(['carheight', 'curbweight', 'cylindernumber', 'enginesize', 'boreratio'])
code
105207443/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) df_c.head()
code
105207443/cell_46
[ "image_output_1.png" ]
from statsmodels.stats.outliers_influence import variance_inflation_factor import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) from statsmodels.stats.outliers_influence import variance_inflation_factor vif_df = df_c.loc[:, df_c.columns != 'price'] vif_data = pd.DataFrame() vif_data['feature'] = vif_df.columns vif_data['VIF'] = [variance_inflation_factor(vif_df.values, i) for i in range(len(vif_df.columns))] df_num_clean = df_c[['symboling', 'doornumber', 'wheelbase', 'carlength', 'carwidth', 'carheight', 'curbweight', 'cylindernumber', 'enginesize', 'boreratio', 'stroke', 'compressionratio', 'horsepower', 'peakrpm', 'citympg', 'highwaympg']].copy() df_num_clean.head()
code
105207443/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) sns.heatmap(df.isnull())
code
105207443/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) df.hist(bins=200, figsize=[20, 10])
code
105207443/cell_37
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) def pie_plot(df, cols_list, rows, cols): fig, axes = plt.subplots(rows, cols) for ax, col in zip(axes.ravel(), cols_list): df[col].value_counts().plot(ax=ax, kind='pie', figsize=(15, 15), fontsize=10, autopct='%1.0f%%') ax.set_title(str(col), fontsize = 12) plt.show() df_c = df.copy() df_c = df_c.drop_duplicates() df_c = pd.get_dummies(df_c, columns=['fueltype', 'aspiration', 'carbody', 'drivewheel', 'enginelocation', 'enginetype', 'fuelsystem']) df_c = pd.get_dummies(df_c, columns=['CarName']) def box_plot(num_cols): for i in range(len(num_cols)): if i == 16: break else: l = num_cols[i] def corr(x, y, **kwargs): coef = np.corrcoef(x, y)[0][1] label = '$\\rho$ = ' + str(round(coef, 2)) ax = plt.gca() ax.annotate(label, xy=(0.3, 1), size=30, xycoords=ax.transAxes) def scatter_features(l): g = sns.PairGrid(df_c, y_vars='price', x_vars=df_c[l].columns, height=5) g.map(plt.scatter, color='darkred', alpha=0.2) g.map(corr) scatter_features(['symboling', 'doornumber', 'wheelbase', 'carlength', 'carwidth'])
code
105207443/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv') df.describe(include='all').style.background_gradient(cmap='Blues').set_properties(**{'font-family': 'Segoe UI'}) def pie_plot(df, cols_list, rows, cols): fig, axes = plt.subplots(rows, cols) for ax, col in zip(axes.ravel(), cols_list): df[col].value_counts().plot(ax=ax, kind='pie', figsize=(15, 15), fontsize=10, autopct='%1.0f%%') ax.set_title(str(col), fontsize = 12) plt.show() pie_plot(df, ['fueltype', 'aspiration', 'doornumber', 'cylindernumber', 'carbody', 'enginetype', 'fuelsystem', 'enginelocation', 'drivewheel'], 3, 3)
code
72065687/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape test.shape train.isnull().sum() test.isnull().sum() train.dropna(inplace=True) test.dropna(inplace=True) train.shape test.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) travel_dum = pd.get_dummies(test[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(test[['Class']], drop_first=True) test = pd.concat([test, travel_dum, class_dum], axis=1) test.head()
code
72065687/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape
code
72065687/cell_25
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape test.shape train.isnull().sum() test.isnull().sum() train.dropna(inplace=True) test.dropna(inplace=True) train.shape test.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) travel_dum = pd.get_dummies(test[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(test[['Class']], drop_first=True) test = pd.concat([test, travel_dum, class_dum], axis=1) test.drop(['Type of Travel', 'Class'], axis=1, inplace=True) test.head()
code
72065687/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape
code
72065687/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.drop(['Type of Travel', 'Class'], axis=1, inplace=True) sns.histplot(x='Flight Distance', hue='satisfaction', data=train, kde=True, palette='dark')
code
72065687/cell_30
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt plt.figure(figsize=(20, 20))
code
72065687/cell_33
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.drop(['Type of Travel', 'Class'], axis=1, inplace=True) sns.countplot(x='Customer Type', hue='satisfaction', data=train)
code
72065687/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.info()
code
72065687/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.head()
code
72065687/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72065687/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum()
code
72065687/cell_32
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.drop(['Type of Travel', 'Class'], axis=1, inplace=True) sns.histplot(x='Age', hue='satisfaction', data=train, kde=True, palette='flare')
code
72065687/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.drop(['Type of Travel', 'Class'], axis=1, inplace=True) train.info()
code
72065687/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') test.shape test.isnull().sum()
code
72065687/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape train.head()
code
72065687/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape train.info()
code
72065687/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.head()
code
72065687/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') test.shape test.isnull().sum() test.dropna(inplace=True) test.shape test.info()
code
72065687/cell_31
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.drop(['Type of Travel', 'Class'], axis=1, inplace=True) sns.countplot(x='Online boarding', hue='satisfaction', data=train, color='green')
code
72065687/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.drop(['Type of Travel', 'Class'], axis=1, inplace=True) train.head()
code
72065687/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') test.shape test.isnull().sum() test.dropna(inplace=True) test.shape
code
72065687/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') train.shape train.isnull().sum() train.dropna(inplace=True) train.shape travel_dum = pd.get_dummies(train[['Type of Travel']], drop_first=True) class_dum = pd.get_dummies(train[['Class']], drop_first=True) train = pd.concat([train, travel_dum, class_dum], axis=1) train.drop(['Type of Travel', 'Class'], axis=1, inplace=True) train.head()
code
72065687/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/train.csv') test = pd.read_csv('/kaggle/input/airline-passenger-satisfaction/test.csv') test.shape
code
128010675/cell_30
[ "text_html_output_1.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from datasets import load_dataset from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay from torch.utils.data import DataLoader from transformers import TrainingArguments, Trainer from transformers import ViTForImageClassification from transformers import ViTImageProcessor import numpy as np import torch import torch from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] label = list(set(train_data['label'])) id2label = {id: label for id, label in enumerate(label)} label2id = {label: id for id, label in id2label.items()} from transformers import ViTImageProcessor processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k') from torchvision.transforms import CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor image_mean, image_std = (processor.image_mean, processor.image_std) size = processor.size['height'] normalize = Normalize(mean=image_mean, std=image_std) _train_transforms = Compose([Resize((size, size)), RandomHorizontalFlip(), ToTensor(), normalize]) _val_transforms = Compose([Resize((size, size)), ToTensor(), normalize]) def train_transforms(examples): examples['pixel_values'] = [_train_transforms(image.convert('RGB')) for image in examples['image']] return examples def val_transforms(examples): examples['pixel_values'] = [_val_transforms(image.convert('RGB')) for image in examples['image']] return examples train_data.set_transform(train_transforms) test_data.set_transform(val_transforms) from torch.utils.data import DataLoader import torch def collate_fn(examples): pixel_values = torch.stack([example['pixel_values'] for example in examples]) labels = torch.tensor([label2id[example['label']] for example in examples]) return {'pixel_values': pixel_values, 'labels': labels} train_dataloader = DataLoader(train_data, collate_fn=collate_fn, batch_size=4) test_dataloader = DataLoader(test_data, collate_fn=collate_fn, batch_size=4) from transformers import ViTForImageClassification model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224-in21k', id2label=id2label, label2id=label2id) from transformers import TrainingArguments, Trainer metric_name = 'accuracy' args = TrainingArguments('5-Flower-Types-Classification', save_strategy='epoch', evaluation_strategy='epoch', learning_rate=2e-05, per_device_train_batch_size=32, per_device_eval_batch_size=4, num_train_epochs=5, weight_decay=0.01, load_best_model_at_end=True, metric_for_best_model=metric_name, logging_dir='logs', remove_unused_columns=False) from sklearn.metrics import accuracy_score import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return dict(accuracy=accuracy_score(predictions, labels)) import torch trainer = Trainer(model, args, train_dataset=train_data, eval_dataset=test_data, data_collator=collate_fn, compute_metrics=compute_metrics, tokenizer=processor) trainer.train() outputs = trainer.predict(test_data) from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay labels = ['Lilly', 'otus', 'Sunflower', 'Orchid', 'Tulip'] y_true = outputs.label_ids y_pred = outputs.predictions.argmax(1) cm = confusion_matrix(y_true, y_pred) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels) disp.plot(xticks_rotation=45)
code
128010675/cell_6
[ "text_plain_output_1.png" ]
from datasets import load_dataset from datasets import load_dataset train_ds = load_dataset('miladfa7/5-Flower-Types-Classification-Dataset') train_ds = train_ds['train'].train_test_split(test_size=0.15) train_data = train_ds['train'] test_data = train_ds['test'] train_data[52]['image']
code