path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128032771/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() sns.displot(data=train, x='Weight', hue='Gender', kde=True)
code
128032771/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() sns.displot(data=train, x='Height', hue='Gender', kde=True)
code
128032771/cell_3
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import warnings import pandas as pd import numpy as np import random import os import gc from sklearn.preprocessing import PolynomialFeatures from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Ridge import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore')
code
128032771/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() sns.displot(data=train, x='Age', kde=True)
code
128032771/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import random import seaborn as sns def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) seed_everything(42) fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() mask = np.zeros_like(train.corr()) mask[np.triu_indices_from(mask)] = True plt.plot(train['Age'], train['Calories_Burned'], 'g*') plt.title('Age vs Calories Burned') plt.xlabel('Age') plt.ylabel('Calories Burned') plt.show() plt.plot(train['Height'], train['Calories_Burned'], 'g*') plt.title('Height vs Calories Burned') plt.xlabel('Height') plt.ylabel('Calories Burned') plt.show() plt.plot(train['Weight'], train['Calories_Burned'], 'g*') plt.title('Weight vs Calories Burned') plt.xlabel('Weight') plt.ylabel('Calories Burned') plt.show()
code
128032771/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() sns.displot(data=train, x='Calories_Burned', kde=True)
code
128032771/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import random import seaborn as sns def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) seed_everything(42) fig, axes = plt.subplots(2,3, figsize = (10,10)) sns.boxplot(y = train['Age'], ax = axes[0][0]) sns.boxplot(y = train['Height'], ax = axes[0][1]) sns.boxplot(y = train['Weight'], ax = axes[0][2]) sns.boxplot(y = train['Duration'], ax = axes[1][0]) sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1]) sns.boxplot(y = train['Body_Temp'],ax = axes[1][2]) plt.tight_layout() plt.show() mask = np.zeros_like(train.corr()) mask[np.triu_indices_from(mask)] = True plt.figure(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, cmap='YlOrRd') plt.show()
code
128032771/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns fig, axes = plt.subplots(2, 3, figsize=(10, 10)) sns.boxplot(y=train['Age'], ax=axes[0][0]) sns.boxplot(y=train['Height'], ax=axes[0][1]) sns.boxplot(y=train['Weight'], ax=axes[0][2]) sns.boxplot(y=train['Duration'], ax=axes[1][0]) sns.boxplot(y=train['Heart_Rate'], ax=axes[1][1]) sns.boxplot(y=train['Body_Temp'], ax=axes[1][2]) plt.tight_layout() plt.show()
code
72118116/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) df['type'].unique()
code
72118116/cell_29
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) df['type'] = pd.get_dummies(df['type'], drop_first=True) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) lr = lr.score(X_test, y_test) from sklearn.svm import SVC svm = SVC() svm.fit(X_train, y_train) svm = svm.score(X_test, y_test) from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=100) rf.fit(X_train, y_train) rf = rf.score(X_test, y_test) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) knn = knn.score(X_test, y_test) from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) dt = dt.score(X_test, y_test) from sklearn.naive_bayes import GaussianNB nb = GaussianNB() nb.fit(X_train, y_train) nb = nb.score(X_test, y_test) models = pd.DataFrame({'Model': ['Linear Regression', 'KNN', 'SVM', 'Random Forest', 'Naive Bayes', 'Decision Tree'], 'Score': [lr, knn, svm, rf, nb, dt]}) models.sort_values(by='Score', ascending=False) plt.figure(figsize=(10, 5)) sns.barplot(x='Model', y='Score', data=models) plt.show()
code
72118116/cell_19
[ "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) df['type'] = pd.get_dummies(df['type'], drop_first=True) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(df.drop('quality', axis=1))
code
72118116/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72118116/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape
code
72118116/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LinearRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) df['type'] = pd.get_dummies(df['type'], drop_first=True) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) lr = lr.score(X_test, y_test) from sklearn.svm import SVC svm = SVC() svm.fit(X_train, y_train) svm = svm.score(X_test, y_test) from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=100) rf.fit(X_train, y_train) rf = rf.score(X_test, y_test) from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) knn = knn.score(X_test, y_test) from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) dt = dt.score(X_test, y_test) from sklearn.naive_bayes import GaussianNB nb = GaussianNB() nb.fit(X_train, y_train) nb = nb.score(X_test, y_test) models = pd.DataFrame({'Model': ['Linear Regression', 'KNN', 'SVM', 'Random Forest', 'Naive Bayes', 'Decision Tree'], 'Score': [lr, knn, svm, rf, nb, dt]}) models.sort_values(by='Score', ascending=False)
code
72118116/cell_8
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape df.describe()
code
72118116/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) plt.figure(figsize=(10, 5)) sns.heatmap(df.corr(), cmap='coolwarm') plt.show()
code
72118116/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) plt.figure(figsize=(5, 3)) sns.countplot(x='quality', data=df)
code
72118116/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) df['type'] = pd.get_dummies(df['type'], drop_first=True) df.head()
code
72118116/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() df.fillna(df.mean(), inplace=True) plt.figure(figsize=(10, 7)) sns.countplot(x='type', data=df, palette='hls') plt.show()
code
72118116/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.shape missing_val_count_by_column = df.isnull().sum() print(missing_val_count_by_column[missing_val_count_by_column > 0])
code
72118116/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality/winequalityN.csv') df.head()
code
18115505/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.Survived.value_counts() train_set[['Pclass', 'Survived']].groupby(['Pclass']).mean().sort_values(by='Survived', ascending=False)
code
18115505/cell_9
[ "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
342 * 100 / 891
code
18115505/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any()
code
18115505/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.head()
code
18115505/cell_11
[ "text_plain_output_1.png" ]
549 * 100 / 891
code
18115505/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.Survived.value_counts()
code
18115505/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.Survived.value_counts() train_set[['Parch', 'Survived']].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived', ascending=False)
code
18115505/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.Survived.value_counts() pd.DataFrame(train_set['Survived'], index=train_set.Age).plot(kind='hist')
code
18115505/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.info()
code
18115505/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.Survived.value_counts() train_set[['Sex', 'Survived']].groupby(['Sex']).mean().plot(kind='bar') train_set[['Pclass', 'Survived']].groupby(['Pclass']).mean().sort_values(by='Survived', ascending=False).plot(kind='bar') train_set[['SibSp', 'Survived']].groupby(['SibSp']).mean().sort_values(by='Survived', ascending=False).plot(kind='bar') plt.ylabel('Survived')
code
18115505/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.Survived.value_counts() train_set[['SibSp', 'Survived']].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False)
code
18115505/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() train_set.Survived.value_counts() train_set[['Sex', 'Survived']].groupby(['Sex']).mean()
code
18115505/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_set = pd.read_csv('../input/train.csv') test_set = pd.read_csv('../input/test.csv') train_set.isnull().any() print('Total null entries:\n') print('Age :%d\nCabin:%d\nEmbarked:%d' % (train_set.Age.isnull().sum(), train_set.Cabin.isnull().sum(), train_set.Embarked.isnull().sum()))
code
327240/cell_21
[ "image_output_1.png" ]
import pandas as ps import pylab import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] subfile = fileR[['Aboard', 'Fatalities', 'year']].groupby('year').sum() subfile['survived'] = subfile['Aboard'] - subfile['Fatalities'] pylab.plot(subfile['Aboard'], label='Aboard') pylab.plot(subfile['Fatalities'], label='Fatalities') pylab.plot(subfile['survived'], label='Survived') pylab.legend(loc='upper left')
code
327240/cell_25
[ "text_html_output_1.png" ]
import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] countrySub = fileR.groupby('countries').sum() dangerousCountries = countrySub.sort_values('Fatalities', ascending=False) dangerousCountries['Fatalities'][:20].plot(kind='bar', color='g', fontsize=14, title='Highest fatalities based on the location')
code
327240/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as ps fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') print(fileR.head())
code
327240/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib import pandas as ps fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') matplotlib.rcParams['figure.figsize'] = (10, 5) ops = fileR['Operator'].value_counts()[:20] ops.plot(kind='bar', legend='Operator', color='g', fontsize=10, title='Operators with Highest Crashes')
code
327240/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] subfile2 = fileR[['Aboard', 'Fatalities', 'year', 'Operator', 'Type']].groupby('Operator').sum() subfile2['survived'] = subfile2['Aboard'] - subfile2['Fatalities'] subfile2['percentageSurvived'] = subfile2['survived'] / subfile2['Aboard'] subfile3 = subfile2[subfile2['year'] > max(fileR['year'])] highSurvive = subfile3.sort_values(by='percentageSurvived', ascending=False)[:20] highSurvive highSurvive['percentageSurvived'].plot(kind='bar', color='g', fontsize=14, title='Operators with high percentage of survivers')
code
327240/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as ps fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') types = fileR['Type'].value_counts()[:20] types.plot(kind='bar', legend='Types', color='g', fontsize=10, title='Types with Highest Crashes')
code
327240/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] subfile2 = fileR[['Aboard', 'Fatalities', 'year', 'Operator', 'Type']].groupby('Operator').sum() subfile2['survived'] = subfile2['Aboard'] - subfile2['Fatalities'] subfile2['percentageSurvived'] = subfile2['survived'] / subfile2['Aboard'] subfile3 = subfile2[subfile2['year'] > max(fileR['year'])] highSurvive = subfile3.sort_values(by='percentageSurvived', ascending=False)[:20] highSurvive
code
327240/cell_10
[ "text_plain_output_1.png" ]
import matplotlib import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') matplotlib.rcParams['figure.figsize'] = (10, 5) ops = fileR['Operator'].value_counts()[:20] fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] matplotlib.rcParams['figure.figsize'] = (10, 5) fileR[['Fatalities', 'year_group']].groupby('year_group').count().plot(kind='bar', fontsize=14, legend=True, color='g', title='Fatalities based on decades')
code
327240/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
from matplotlib import cm import matplotlib.pyplot as plt import numpy as np import pandas as ps import string fileR = ps.read_csv('../input/3-Airplane_Crashes_Since_1908.txt', sep=',') fileR['Date'] = ps.to_datetime(fileR['Date']) fileR['year'] = fileR['Date'].dt.year fileR['month'] = fileR['Date'].dt.month fileR['day'] = fileR['Date'].dt.day sub_years = [1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010] years_legend = list(string.ascii_letters[:len(sub_years)]) fileR['year_group'] = '' for i in range(0, len(sub_years) - 1): fileR.loc[(sub_years[i + 1] > fileR['year']) & (fileR['year'] >= sub_years[i]), ['year_group']] = years_legend[i] labels = ['1900-1910', '1910-1920', '1920-1930', '1930-1940', '1940-1950', '1950-1960', '1960-1970', '1970-1980', '1980-1990', '1990-2000', '2000-2010'] sizes = fileR[['Fatalities', 'year_group']].groupby('year_group').sum() explode = (0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0) colors = cm.Set1(np.arange(20) / 30.0) plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=45) plt.axis('equal') plt.show()
code
2037064/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('../input/all_energy_statistics.csv') df.columns = ['country', 'commodity', 'year', 'unit', 'quantity', 'footnotes', 'category'] df_solar = df[df.commodity.str.contains('Electricity - total net installed capacity of electric power plants, solar')] df_max = df_solar.groupby(pd.Grouper(key='country'))['quantity'].max() df_max = df_max.sort_values(ascending=False) df_max = df_max[:6] df_max.index.values commodity_string = 'Electricity - total net installed capacity of electric power plants, solar' df_max = df[df.commodity.str.contains(commodity_string)].groupby(pd.Grouper(key='country'))['quantity'].max().sort_values(ascending=False)[:6] range = np.arange(2000, 2015) dict_major = {} for c in df_max.index.values: read_index = df_solar[df_solar.commodity.str.contains(commodity_string) & df_solar.country.str.contains(c + '$')].year read_data = df_solar[df_solar.commodity.str.contains(commodity_string) & df_solar.country.str.contains(c + '$')].quantity read_data.index = read_index prod = read_data.reindex(index=range, fill_value=0) dict_major.update({c: prod.values}) df_major = pd.DataFrame(dict_major) df_major.index = range df_major ax = df_major.plot(kind='bar', x=df_major.index, stacked=False, figsize=(15, 9)) plt.title('Solar energy production') plt.xlabel('Year') plt.ylabel('Megawatts') ax.yaxis.grid(False, 'minor') ax.yaxis.grid(True, 'major')
code
2037064/cell_7
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/all_energy_statistics.csv') df.columns = ['country', 'commodity', 'year', 'unit', 'quantity', 'footnotes', 'category'] df_solar = df[df.commodity.str.contains('Electricity - total net installed capacity of electric power plants, solar')] df_max = df_solar.groupby(pd.Grouper(key='country'))['quantity'].max() df_max = df_max.sort_values(ascending=False) df_max = df_max[:6] df_max.index.values commodity_string = 'Electricity - total net installed capacity of electric power plants, solar' df_max = df[df.commodity.str.contains(commodity_string)].groupby(pd.Grouper(key='country'))['quantity'].max().sort_values(ascending=False)[:6] range = np.arange(2000, 2015) dict_major = {} for c in df_max.index.values: read_index = df_solar[df_solar.commodity.str.contains(commodity_string) & df_solar.country.str.contains(c + '$')].year read_data = df_solar[df_solar.commodity.str.contains(commodity_string) & df_solar.country.str.contains(c + '$')].quantity read_data.index = read_index prod = read_data.reindex(index=range, fill_value=0) dict_major.update({c: prod.values}) df_major = pd.DataFrame(dict_major) df_major.index = range df_major
code
2037064/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/all_energy_statistics.csv') df.columns = ['country', 'commodity', 'year', 'unit', 'quantity', 'footnotes', 'category'] df_solar = df[df.commodity.str.contains('Electricity - total net installed capacity of electric power plants, solar')] df_max = df_solar.groupby(pd.Grouper(key='country'))['quantity'].max() df_max = df_max.sort_values(ascending=False) df_max = df_max[:6] df_max.index.values
code
33102430/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') test_PassengerId = test['PassengerId'] train.columns train.info()
code
33102430/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') test_PassengerId = test['PassengerId'] train.columns train.head()
code
33102430/cell_2
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.style.use('seaborn-whitegrid') import seaborn as sns from collections import Counter import warnings warnings.filterwarnings('ignore') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33102430/cell_7
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') test_PassengerId = test['PassengerId'] train.columns train.describe()
code
33102430/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') test_PassengerId = test['PassengerId'] train.columns
code
50219234/cell_42
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import learning_curve from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import seaborn as sns concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.colorbar() california_df.isnull().sum() # Our goal here is to extract the numeric columns so we can boxplot them in order to detect outliers. # Numeric column extraction numeric_columns = california_df.select_dtypes(include = ['float64', 'int']).columns len_numeric_columns = len(numeric_columns) # Boxplotting fig = plt.figure(figsize = (15,10)) # Set number of columns you want to plot n_cols = 3 n_plot_rows = len_numeric_columns//n_cols n_plot_rows for i, column in enumerate(numeric_columns): ax = fig.add_subplot(n_plot_rows, n_cols, i+1) sns.boxplot(y = california_df[column], orient = 'h', ax = ax) fig.tight_layout() X = california.data y = california.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) from sklearn.neighbors import KNeighborsRegressor k_max = 20 rang_K = np.arange(1, k_max + 1) tuned_parameters = [{'n_neighbors': rang_K}] nfold = 5 neigh_CV = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = neigh_CV.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = neigh_CV.score(X_test_rs, y_test) K_CV = neigh_CV.best_params_['n_neighbors'] fig = plt.figure(figsize = (15,10)) print("Cross validation results:") cv_results = pd.DataFrame(neigh_CV.cv_results_) accs = pd.DataFrame(columns=["Neighbors"]) # Mostramos los resultados melted_accs = accs.assign(**{'Neighbors': pd.DataFrame(neigh_CV.cv_results_['params']).unstack().values, "Training R2": cv_results.mean_train_R2, "Validation R2": cv_results.mean_test_R2, "Traning MSE": cv_results.mean_train_MSE, "Validation MSE": cv_results.mean_test_MSE}) \ .melt('Neighbors', value_vars = ['Traning MSE', 'Validation MSE'], var_name="Type", value_name="MSE") g = sns.lineplot(x="Neighbors", y="MSE", hue='Type', data=melted_accs) from sklearn.ensemble import RandomForestRegressor nfold = 5 param_grid = [{'n_estimators': [3, 10, 30, 100, 150], 'max_features': [2, 4, 6, 8]}, {'bootstrap': [False], 'n_estimators': [3, 10, 30, 100], 'max_features': [2, 3, 4]}] grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = grid_search.predict(X_test_rs) y_est_train = grid_search.predict(X_train_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = grid_search.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, y_est_train) R2_coeff_train = grid_search.score(X_train_rs, y_train) RF_best_params = grid_search.best_params_ df_metrics = pd.concat( [pd.DataFrame(grid_search.cv_results_['params']), pd.DataFrame({'train_MSE': grid_search.cv_results_['mean_train_MSE']}), pd.DataFrame({'test_MSE': grid_search.cv_results_['mean_test_MSE']}) ], axis = 1 ) m = ((df_metrics.max_features == 3) & (df_metrics.bootstrap == False)) df_metrics.loc[:, ['n_estimators', 'test_MSE']] #df_metrics = df_metrics.melt('n_estimators', value_vars = ['train_MSE', 'test_MSE'], var_name = 'Type') fig = plt.figure(figsize = (15,10)) g = sns.lineplot(x="n_estimators", y="test_MSE", data=df_metrics, err_style = None) # We use this function made by Sklearn (https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html) # Graphics "Scalabilty of the model" and "Performance of the model" have been removed. import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate 3 plots: the test and training learning curve, the training samples vs fit times curve, the fit times vs score curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. axes : array of 3 axes, optional (default=None) Axes to use for plotting the curves. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : int or None, optional (default=None) Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) """ if axes is None: _, axes = plt.subplots(1, 1, figsize=(15, 10)) axes.set_title(title) if ylim is not None: axes.set_ylim(*ylim) axes.set_xlabel("Training examples") axes.set_ylabel("Score") train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) # Plot learning curve axes.grid() axes.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") axes.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") axes.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") axes.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") axes.legend(loc="best") return plt title = 'Learning Curves Random Forest' cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0) estimator = grid_search.best_estimator_ plot_learning_curve(estimator, title, X_train_rs, y_train, cv=cv, n_jobs=4) plt.show()
code
50219234/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.figure(figsize=(15, 10)) plt.scatter(california_df['Longitude'], california_df['Latitude'], c=california_df['price'], s=california_df['Population'] / 10, cmap='viridis') plt.colorbar() plt.xlabel('longitude') plt.ylabel('latitude') plt.title('house price on basis of geo-coordinates') plt.show()
code
50219234/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
print(california.DESCR)
code
50219234/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) california_df.head(3)
code
50219234/cell_39
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.colorbar() california_df.isnull().sum() # Our goal here is to extract the numeric columns so we can boxplot them in order to detect outliers. # Numeric column extraction numeric_columns = california_df.select_dtypes(include = ['float64', 'int']).columns len_numeric_columns = len(numeric_columns) # Boxplotting fig = plt.figure(figsize = (15,10)) # Set number of columns you want to plot n_cols = 3 n_plot_rows = len_numeric_columns//n_cols n_plot_rows for i, column in enumerate(numeric_columns): ax = fig.add_subplot(n_plot_rows, n_cols, i+1) sns.boxplot(y = california_df[column], orient = 'h', ax = ax) fig.tight_layout() rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) from sklearn.neighbors import KNeighborsRegressor k_max = 20 rang_K = np.arange(1, k_max + 1) tuned_parameters = [{'n_neighbors': rang_K}] nfold = 5 neigh_CV = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = neigh_CV.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = neigh_CV.score(X_test_rs, y_test) K_CV = neigh_CV.best_params_['n_neighbors'] fig = plt.figure(figsize = (15,10)) print("Cross validation results:") cv_results = pd.DataFrame(neigh_CV.cv_results_) accs = pd.DataFrame(columns=["Neighbors"]) # Mostramos los resultados melted_accs = accs.assign(**{'Neighbors': pd.DataFrame(neigh_CV.cv_results_['params']).unstack().values, "Training R2": cv_results.mean_train_R2, "Validation R2": cv_results.mean_test_R2, "Traning MSE": cv_results.mean_train_MSE, "Validation MSE": cv_results.mean_test_MSE}) \ .melt('Neighbors', value_vars = ['Traning MSE', 'Validation MSE'], var_name="Type", value_name="MSE") g = sns.lineplot(x="Neighbors", y="MSE", hue='Type', data=melted_accs) from sklearn.ensemble import RandomForestRegressor nfold = 5 param_grid = [{'n_estimators': [3, 10, 30, 100, 150], 'max_features': [2, 4, 6, 8]}, {'bootstrap': [False], 'n_estimators': [3, 10, 30, 100], 'max_features': [2, 3, 4]}] grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = grid_search.predict(X_test_rs) y_est_train = grid_search.predict(X_train_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = grid_search.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, y_est_train) R2_coeff_train = grid_search.score(X_train_rs, y_train) RF_best_params = grid_search.best_params_ df_metrics = pd.concat([pd.DataFrame(grid_search.cv_results_['params']), pd.DataFrame({'train_MSE': grid_search.cv_results_['mean_train_MSE']}), pd.DataFrame({'test_MSE': grid_search.cv_results_['mean_test_MSE']})], axis=1) m = (df_metrics.max_features == 3) & (df_metrics.bootstrap == False) df_metrics.loc[:, ['n_estimators', 'test_MSE']] fig = plt.figure(figsize=(15, 10)) g = sns.lineplot(x='n_estimators', y='test_MSE', data=df_metrics, err_style=None)
code
50219234/cell_48
[ "image_output_1.png" ]
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import train_test_split from sklearn.preprocessing import RobustScaler from xgboost import XGBRegressor import numpy as np import numpy as np import pandas as pd concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) X = california.data y = california.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from xgboost import XGBRegressor xg_regressor = XGBRegressor(max_depth=6, n_estimators=500, learning_rate=0.01, silent=True) xg_regressor.fit(X_train_rs, y_train) print('Feature importance:') for name, score in zip(california['feature_names'], xg_regressor.feature_importances_): print(name, '{0:.2f} %'.format(score * 100)) print('\n' * 2, 'Scoring:') print('MSE for test {0:.2f}'.format(mean_squared_error(y_test, xg_regressor.predict(X_test_rs)))) print('R-squared for test {0:.2f}'.format(xg_regressor.score(X_test_rs, y_test))) print('MSE for train {0:.2f}'.format(mean_squared_error(y_train, xg_regressor.predict(X_train_rs)))) print('R-squared for train {0:.2f}'.format(xg_regressor.score(X_train_rs, y_train)))
code
50219234/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.colorbar() california_df.isnull().sum() numeric_columns = california_df.select_dtypes(include=['float64', 'int']).columns len_numeric_columns = len(numeric_columns) fig = plt.figure(figsize=(15, 10)) n_cols = 3 n_plot_rows = len_numeric_columns // n_cols n_plot_rows for i, column in enumerate(numeric_columns): ax = fig.add_subplot(n_plot_rows, n_cols, i + 1) sns.boxplot(y=california_df[column], orient='h', ax=ax) fig.tight_layout()
code
50219234/cell_45
[ "image_output_1.png" ]
from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import RobustScaler from sklearn.tree import DecisionTreeRegressor import numpy as np import numpy as np import pandas as pd concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) from sklearn.neighbors import KNeighborsRegressor k_max = 20 rang_K = np.arange(1, k_max + 1) tuned_parameters = [{'n_neighbors': rang_K}] nfold = 5 neigh_CV = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = neigh_CV.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = neigh_CV.score(X_test_rs, y_test) K_CV = neigh_CV.best_params_['n_neighbors'] from sklearn.ensemble import RandomForestRegressor nfold = 5 param_grid = [{'n_estimators': [3, 10, 30, 100, 150], 'max_features': [2, 4, 6, 8]}, {'bootstrap': [False], 'n_estimators': [3, 10, 30, 100], 'max_features': [2, 3, 4]}] grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = grid_search.predict(X_test_rs) y_est_train = grid_search.predict(X_train_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = grid_search.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, y_est_train) R2_coeff_train = grid_search.score(X_train_rs, y_train) RF_best_params = grid_search.best_params_ from sklearn.ensemble import AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor ada_reg = AdaBoostRegressor(DecisionTreeRegressor(), n_estimators=200, learning_rate=0.5).fit(X_train_rs, y_train) y_est = ada_reg.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = ada_reg.score(X_test_rs, y_test) print('MSE : ' + str(MSE_tst)) print('R2 score: ' + str(R2_coeff))
code
50219234/cell_32
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import RobustScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.colorbar() california_df.isnull().sum() # Our goal here is to extract the numeric columns so we can boxplot them in order to detect outliers. # Numeric column extraction numeric_columns = california_df.select_dtypes(include = ['float64', 'int']).columns len_numeric_columns = len(numeric_columns) # Boxplotting fig = plt.figure(figsize = (15,10)) # Set number of columns you want to plot n_cols = 3 n_plot_rows = len_numeric_columns//n_cols n_plot_rows for i, column in enumerate(numeric_columns): ax = fig.add_subplot(n_plot_rows, n_cols, i+1) sns.boxplot(y = california_df[column], orient = 'h', ax = ax) fig.tight_layout() rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) from sklearn.neighbors import KNeighborsRegressor k_max = 20 rang_K = np.arange(1, k_max + 1) tuned_parameters = [{'n_neighbors': rang_K}] nfold = 5 neigh_CV = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = neigh_CV.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = neigh_CV.score(X_test_rs, y_test) K_CV = neigh_CV.best_params_['n_neighbors'] fig = plt.figure(figsize=(15, 10)) print('Cross validation results:') cv_results = pd.DataFrame(neigh_CV.cv_results_) accs = pd.DataFrame(columns=['Neighbors']) melted_accs = accs.assign(**{'Neighbors': pd.DataFrame(neigh_CV.cv_results_['params']).unstack().values, 'Training R2': cv_results.mean_train_R2, 'Validation R2': cv_results.mean_test_R2, 'Traning MSE': cv_results.mean_train_MSE, 'Validation MSE': cv_results.mean_test_MSE}).melt('Neighbors', value_vars=['Traning MSE', 'Validation MSE'], var_name='Type', value_name='MSE') g = sns.lineplot(x='Neighbors', y='MSE', hue='Type', data=melted_accs)
code
50219234/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.colorbar() california_df.isnull().sum()
code
50219234/cell_31
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import RobustScaler import numpy as np import pandas as pd concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) from sklearn.neighbors import KNeighborsRegressor k_max = 20 rang_K = np.arange(1, k_max + 1) tuned_parameters = [{'n_neighbors': rang_K}] nfold = 5 neigh_CV = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = neigh_CV.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = neigh_CV.score(X_test_rs, y_test) K_CV = neigh_CV.best_params_['n_neighbors'] print('MSE : ' + str(MSE_tst)) print('R2 score: ' + str(R2_coeff)) print('Selected value of k: ' + str(K_CV))
code
50219234/cell_53
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import learning_curve from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import RobustScaler from xgboost import XGBRegressor import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import seaborn as sns concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.colorbar() california_df.isnull().sum() # Our goal here is to extract the numeric columns so we can boxplot them in order to detect outliers. # Numeric column extraction numeric_columns = california_df.select_dtypes(include = ['float64', 'int']).columns len_numeric_columns = len(numeric_columns) # Boxplotting fig = plt.figure(figsize = (15,10)) # Set number of columns you want to plot n_cols = 3 n_plot_rows = len_numeric_columns//n_cols n_plot_rows for i, column in enumerate(numeric_columns): ax = fig.add_subplot(n_plot_rows, n_cols, i+1) sns.boxplot(y = california_df[column], orient = 'h', ax = ax) fig.tight_layout() X = california.data y = california.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) from sklearn.neighbors import KNeighborsRegressor k_max = 20 rang_K = np.arange(1, k_max + 1) tuned_parameters = [{'n_neighbors': rang_K}] nfold = 5 neigh_CV = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = neigh_CV.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = neigh_CV.score(X_test_rs, y_test) K_CV = neigh_CV.best_params_['n_neighbors'] fig = plt.figure(figsize = (15,10)) print("Cross validation results:") cv_results = pd.DataFrame(neigh_CV.cv_results_) accs = pd.DataFrame(columns=["Neighbors"]) # Mostramos los resultados melted_accs = accs.assign(**{'Neighbors': pd.DataFrame(neigh_CV.cv_results_['params']).unstack().values, "Training R2": cv_results.mean_train_R2, "Validation R2": cv_results.mean_test_R2, "Traning MSE": cv_results.mean_train_MSE, "Validation MSE": cv_results.mean_test_MSE}) \ .melt('Neighbors', value_vars = ['Traning MSE', 'Validation MSE'], var_name="Type", value_name="MSE") g = sns.lineplot(x="Neighbors", y="MSE", hue='Type', data=melted_accs) from sklearn.ensemble import RandomForestRegressor nfold = 5 param_grid = [{'n_estimators': [3, 10, 30, 100, 150], 'max_features': [2, 4, 6, 8]}, {'bootstrap': [False], 'n_estimators': [3, 10, 30, 100], 'max_features': [2, 3, 4]}] grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = grid_search.predict(X_test_rs) y_est_train = grid_search.predict(X_train_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = grid_search.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, y_est_train) R2_coeff_train = grid_search.score(X_train_rs, y_train) RF_best_params = grid_search.best_params_ df_metrics = pd.concat( [pd.DataFrame(grid_search.cv_results_['params']), pd.DataFrame({'train_MSE': grid_search.cv_results_['mean_train_MSE']}), pd.DataFrame({'test_MSE': grid_search.cv_results_['mean_test_MSE']}) ], axis = 1 ) m = ((df_metrics.max_features == 3) & (df_metrics.bootstrap == False)) df_metrics.loc[:, ['n_estimators', 'test_MSE']] #df_metrics = df_metrics.melt('n_estimators', value_vars = ['train_MSE', 'test_MSE'], var_name = 'Type') fig = plt.figure(figsize = (15,10)) g = sns.lineplot(x="n_estimators", y="test_MSE", data=df_metrics, err_style = None) # We use this function made by Sklearn (https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html) # Graphics "Scalabilty of the model" and "Performance of the model" have been removed. import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate 3 plots: the test and training learning curve, the training samples vs fit times curve, the fit times vs score curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. axes : array of 3 axes, optional (default=None) Axes to use for plotting the curves. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : int or None, optional (default=None) Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) """ if axes is None: _, axes = plt.subplots(1, 1, figsize=(15, 10)) axes.set_title(title) if ylim is not None: axes.set_ylim(*ylim) axes.set_xlabel("Training examples") axes.set_ylabel("Score") train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) # Plot learning curve axes.grid() axes.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") axes.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") axes.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") axes.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") axes.legend(loc="best") return plt params = {'n_estimators': [100, 150, 200, 300, 350], 'learning_rate': np.linspace(0.1, 1.0, 10), 'min_child_weight': [1, 5, 10], 'gamma': [0, 0.5, 1, 1.5, 2, 5], 'subsample': [0.6, 0.8, 1.0], 'colsample_bytree': [0.6, 0.8, 1.0], 'max_depth': np.arange(3, 11, 1)} from sklearn.model_selection import RandomizedSearchCV xgb_reg = XGBRegressor(silent=True) xgb_random = RandomizedSearchCV(estimator=xgb_reg, param_distributions=params, n_iter=200, cv=5, verbose=0, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train)
code
50219234/cell_27
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.preprocessing import RobustScaler rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) print('TESTING METRICS') print('Metrics without scaling:') print('MSE : ' + str(MSE_tst)) print('R2 score: ' + str(R2_coeff)) print('\nMetrics with RobustScaler:') print('MSE : ' + str(MSE_tst_rs)) print('R2 score: ' + str(R2_coeff_rs)) print('\nTRAINING METRICS') print('Metrics without scaling:') print('MSE : ' + str(MSE_train)) print('R2 score: ' + str(R2_train_coeff))
code
50219234/cell_37
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error, r2_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import RobustScaler import numpy as np import pandas as pd concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) rs = RobustScaler() X_train_rs = rs.fit_transform(X_train) X_test_rs = rs.transform(X_test) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lg = LinearRegression() lg.fit(X_train, y_train) lg_rs = LinearRegression() lg_rs.fit(X_train_rs, y_train) y_est = lg.predict(X_test) y_est_rs = lg_rs.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = lg.score(X_test, y_test) MSE_tst_rs = mean_squared_error(y_test, y_est_rs) R2_coeff_rs = lg_rs.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, lg.predict(X_train)) R2_train_coeff = lg.score(X_train, y_train) from sklearn.neighbors import KNeighborsRegressor k_max = 20 rang_K = np.arange(1, k_max + 1) tuned_parameters = [{'n_neighbors': rang_K}] nfold = 5 neigh_CV = GridSearchCV(KNeighborsRegressor(), tuned_parameters, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = neigh_CV.predict(X_test_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = neigh_CV.score(X_test_rs, y_test) K_CV = neigh_CV.best_params_['n_neighbors'] from sklearn.ensemble import RandomForestRegressor nfold = 5 param_grid = [{'n_estimators': [3, 10, 30, 100, 150], 'max_features': [2, 4, 6, 8]}, {'bootstrap': [False], 'n_estimators': [3, 10, 30, 100], 'max_features': [2, 3, 4]}] grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=nfold, scoring={'MSE': make_scorer(mean_squared_error), 'R2': make_scorer(r2_score)}, return_train_score=True, refit='R2', n_jobs=-1).fit(X_train_rs, y_train) y_est = grid_search.predict(X_test_rs) y_est_train = grid_search.predict(X_train_rs) MSE_tst = mean_squared_error(y_test, y_est) R2_coeff = grid_search.score(X_test_rs, y_test) MSE_train = mean_squared_error(y_train, y_est_train) R2_coeff_train = grid_search.score(X_train_rs, y_train) RF_best_params = grid_search.best_params_ print('MSE test : ' + str(MSE_tst)) print('R2 test score: ' + str(R2_coeff)) print('MSE train : ' + str(MSE_train)) print('R2 train score: ' + str(R2_coeff_train)) print('Selected value of best params: ' + str(RF_best_params))
code
50219234/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns concat_california_array = np.concatenate((california.data, np.reshape(california.target, (california.target.shape[0], 1))), axis=1) california_df = pd.DataFrame(concat_california_array, columns=california.feature_names + ['price']) plt.colorbar() plt.figure(figsize=(11, 7)) sns.heatmap(cbar=False, annot=True, data=california_df.corr() * 100, cmap='coolwarm') plt.title('% Corelation Matrix') plt.show()
code
50231668/cell_4
[ "text_plain_output_1.png" ]
def binary_search_recursive(array, element, start, end): if start > end: return -1 mid = (start + end) // 2 if element == array[mid]: return mid if element < array[mid]: return binary_search_recursive(array, element, start, mid - 1) else: return binary_search_recursive(array, element, mid + 1, end) element = 35 array = list(range(1, 1000)) n = 1000 print('Searching for {}'.format(element)) print('Index of {}: {}'.format(element, binary_search_recursive(array, element, 0, len(array))))
code
50231668/cell_6
[ "text_plain_output_1.png" ]
def binary_search_recursive(array, element, start, end): if start > end: return -1 mid = (start + end) // 2 if element == array[mid]: return mid if element < array[mid]: return binary_search_recursive(array, element, start, mid - 1) else: return binary_search_recursive(array, element, mid + 1, end) def linearsearch(arr, x): for i in range(len(arr)): if arr[i] == x: return i return -1 arr = ['10', '20', '30', '40', '50', '60', '70'] x = '50' def binarySearch(arr, left, right, x): if right >= left: mid = left + (right - left) // 2 if arr[mid] == x: return mid elif arr[mid] > x: return binarySearch(arr, left, mid - 1, x) else: return binarySearch(arr, mid + 1, right, x) else: return -1 arr = [10, 20, 30, 40, 50, 60, 70] x = 50 result = binarySearch(arr, 0, len(arr) - 1, x) if result != -1: print('Element is present at index % d' % result) else: print('Element is not present in array')
code
50231668/cell_2
[ "text_plain_output_1.png" ]
for num in range(1, 1001): if num > 0: for i in range(1000, num): if num % i == 0: break else: print(num)
code
50231668/cell_7
[ "text_plain_output_1.png" ]
def binary_search_recursive(array, element, start, end): if start > end: return -1 mid = (start + end) // 2 if element == array[mid]: return mid if element < array[mid]: return binary_search_recursive(array, element, start, mid - 1) else: return binary_search_recursive(array, element, mid + 1, end) element = 35 array = list(range(1, 1000)) n = 1000 def insertionSort(array): for step in range(1, len(array)): key = array[step] j = step - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j = j - 1 array[j + 1] = key data = [10, 5, 30, 15, 50, 6, 25] insertionSort(data) print('Sorted Array in Ascending Order:') print(data)
code
50231668/cell_8
[ "text_plain_output_1.png" ]
def binary_search_recursive(array, element, start, end): if start > end: return -1 mid = (start + end) // 2 if element == array[mid]: return mid if element < array[mid]: return binary_search_recursive(array, element, start, mid - 1) else: return binary_search_recursive(array, element, mid + 1, end) element = 35 array = list(range(1, 1000)) n = 1000 def insertionSort(array): for step in range(1, len(array)): key = array[step] j = step - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j = j - 1 array[j + 1] = key data = [10, 5, 30, 15, 50, 6, 25] insertionSort(data) def selectionSort(array, size): for step in range(size): min_idx = step for i in range(step + 1, size): if array[i] < array[min_idx]: min_idx = i array[step], array[min_idx] = (array[min_idx], array[step]) data = [10, 5, 30, 15, 50, 6, 25] size = len(data) selectionSort(data, size) print('Sorted Array in Ascending Order:') print(data)
code
50231668/cell_5
[ "text_plain_output_1.png" ]
def linearsearch(arr, x): for i in range(len(arr)): if arr[i] == x: return i return -1 arr = ['10', '20', '30', '40', '50', '60', '70'] x = '50' print('element nya ' + str(linearsearch(arr, x)))
code
2041736/cell_13
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape btc['ohlc_average'] = (btc['open'] + btc['high'] + btc['low'] + btc['close']) / 4
code
2041736/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape btc.tail()
code
2041736/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') df.tail()
code
2041736/cell_23
[ "text_html_output_1.png" ]
from datetime import datetime, timedelta from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape sns.set() sns.set_style('whitegrid') from sklearn import preprocessing btc.dropna(inplace=True) X = btc.drop('Price_After_Month', axis=1) X = preprocessing.scale(X) y = btc['Price_After_Month'] from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor(n_estimators=200, random_state=101) reg.fit(X_train, y_train) accuracy = reg.score(X_test, y_test) accuracy = accuracy * 100 accuracy = float('{0:.4f}'.format(accuracy)) preds = reg.predict(X_test) X_30 = X[-30:] forecast = reg.predict(X_30) from datetime import datetime, timedelta last_date = btc.iloc[-1].name modified_date = last_date + timedelta(days=1) date = pd.date_range(modified_date, periods=30, freq='D') df1 = pd.DataFrame(forecast, columns=['Forecast'], index=date) btc = btc.append(df1) btc['close'].plot(figsize=(12, 6), label='Close') btc['Forecast'].plot(label='forecast') plt.legend()
code
2041736/cell_20
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor(n_estimators=200, random_state=101) reg.fit(X_train, y_train) accuracy = reg.score(X_test, y_test) accuracy = accuracy * 100 accuracy = float('{0:.4f}'.format(accuracy)) preds = reg.predict(X_test) print('The prediction is:', preds[1], 'But the real value is:', y_test[1])
code
2041736/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True)
code
2041736/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape sns.set() sns.set_style('whitegrid') btc['close'].plot(figsize=(12, 6), label='Close') btc['close'].rolling(window=30).mean().plot(label='30 Day Avg') plt.legend()
code
2041736/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor(n_estimators=200, random_state=101) reg.fit(X_train, y_train) accuracy = reg.score(X_test, y_test) accuracy = accuracy * 100 accuracy = float('{0:.4f}'.format(accuracy)) print('Accuracy is:', accuracy, '%')
code
2041736/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any()
code
2041736/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import cross_validation from sklearn import preprocessing import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape from sklearn import preprocessing btc.dropna(inplace=True) X = btc.drop('Price_After_Month', axis=1) X = preprocessing.scale(X) y = btc['Price_After_Month'] from sklearn import cross_validation X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.3, random_state=101)
code
2041736/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape
code
2041736/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape btc['Price_After_Month'] = btc['close'].shift(-30)
code
2041736/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape btc.tail()
code
2041736/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') df.head()
code
2041736/cell_17
[ "text_html_output_1.png" ]
from sklearn import preprocessing import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape from sklearn import preprocessing btc.dropna(inplace=True) X = btc.drop('Price_After_Month', axis=1) X = preprocessing.scale(X) y = btc['Price_After_Month']
code
2041736/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape btc.head()
code
2041736/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
from datetime import datetime, timedelta from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor import pandas as pd df = pd.read_csv('../input/crypto-markets.csv', parse_dates=['date'], index_col='date') btc = df[df['symbol'] == 'BTC'] btc.drop(['volume', 'symbol', 'name', 'ranknow', 'market'], axis=1, inplace=True) btc.isnull().any() btc.shape from sklearn import preprocessing btc.dropna(inplace=True) X = btc.drop('Price_After_Month', axis=1) X = preprocessing.scale(X) y = btc['Price_After_Month'] from sklearn.ensemble import RandomForestRegressor reg = RandomForestRegressor(n_estimators=200, random_state=101) reg.fit(X_train, y_train) accuracy = reg.score(X_test, y_test) accuracy = accuracy * 100 accuracy = float('{0:.4f}'.format(accuracy)) preds = reg.predict(X_test) X_30 = X[-30:] forecast = reg.predict(X_30) from datetime import datetime, timedelta last_date = btc.iloc[-1].name modified_date = last_date + timedelta(days=1) date = pd.date_range(modified_date, periods=30, freq='D') df1 = pd.DataFrame(forecast, columns=['Forecast'], index=date) btc = btc.append(df1) btc.tail()
code
17118879/cell_21
[ "text_plain_output_1.png" ]
import pathlib import random import tensorflow as tf train_images_path = '../input/train_images' test_images_path = '../input/test_images' root_path = pathlib.Path(train_images_path) for item in root_path.iterdir(): break all_paths = list(root_path.glob('*.png')) all_paths[0] all_paths = [str(path) for path in all_paths] random.shuffle(all_paths) img = tf.read_file(all_paths) img def preprocess_image(image): img_tensor = tf.image.decode_png(image, channels=3) img_tensor = tf.cast(img_tensor, tf.float32) img_tensor /= 255.0 return img_tensor def load_and_preprocess_image(path): image = tf.read_file(path) return preprocess_image(image) print('Resized', img_tensor.shape) print(img_tensor.dtype)
code
17118879/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sample_sub_df = pd.read_csv('../input/train.csv') train_df.info()
code
17118879/cell_23
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sample_sub_df = pd.read_csv('../input/train.csv') train_df[train_df.id_code == '5d024177e214'] classes_dist = pd.DataFrame(train_df['diagnosis'].value_counts()/train_df.shape[0]).reset_index() # barplot ax = sns.barplot(x="index", y="diagnosis", data=classes_dist) # Imbalanced dataset with 49% - no DR, 8% proliferative - i.e most severe DR # Model Building - Need to do oversampling for minority classes train_df.columns train_df['image_path'] = '../input/train_images/' + train_df['id_code'] train_df.head(3)
code
17118879/cell_20
[ "text_plain_output_1.png" ]
import pathlib import random import tensorflow as tf train_images_path = '../input/train_images' test_images_path = '../input/test_images' root_path = pathlib.Path(train_images_path) for item in root_path.iterdir(): break all_paths = list(root_path.glob('*.png')) all_paths[0] all_paths = [str(path) for path in all_paths] random.shuffle(all_paths) img = tf.read_file(all_paths) img
code
17118879/cell_29
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pathlib import random import seaborn as sns import tensorflow as tf train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sample_sub_df = pd.read_csv('../input/train.csv') train_images_path = '../input/train_images' test_images_path = '../input/test_images' train_df[train_df.id_code == '5d024177e214'] classes_dist = pd.DataFrame(train_df['diagnosis'].value_counts()/train_df.shape[0]).reset_index() # barplot ax = sns.barplot(x="index", y="diagnosis", data=classes_dist) # Imbalanced dataset with 49% - no DR, 8% proliferative - i.e most severe DR # Model Building - Need to do oversampling for minority classes root_path = pathlib.Path(train_images_path) for item in root_path.iterdir(): break all_paths = list(root_path.glob('*.png')) all_paths[0] all_paths = [str(path) for path in all_paths] random.shuffle(all_paths) img = tf.read_file(all_paths) img def preprocess_image(image): img_tensor = tf.image.decode_png(image, channels=3) img_tensor = tf.cast(img_tensor, tf.float32) img_tensor /= 255.0 return img_tensor def load_and_preprocess_image(path): image = tf.read_file(path) return preprocess_image(image) train_df.columns train_df['image_path'] = '../input/train_images/' + train_df['id_code'] np.array(train_df['diagnosis']) labels = tf.convert_to_tensor(np.array(train_df['diagnosis']), dtype=tf.int32) paths = tf.convert_to_tensor(np.array(train_df['image_path']), dtype=tf.string) image, label = tf.train.slice_input_producer([paths, labels], shuffle=True) path_ds = tf.data.Dataset.from_tensor_slices(train_df['image_path']) AUTOTUNE = tf.data.experimental.AUTOTUNE image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=AUTOTUNE) image_ds.take(1) import matplotlib.pyplot as plt plt.figure(figsize=(8, 8)) for n, image in enumerate(image_ds.take(4)): print(image.shape) plt.subplot(2, 2, n + 1) plt.imshow(image) plt.grid(False) plt.xticks([]) plt.yticks([]) plt.xlabel(caption_image(all_image_paths[n])) plt.show()
code
17118879/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pathlib import random import seaborn as sns import tensorflow as tf train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sample_sub_df = pd.read_csv('../input/train.csv') train_images_path = '../input/train_images' test_images_path = '../input/test_images' train_df[train_df.id_code == '5d024177e214'] classes_dist = pd.DataFrame(train_df['diagnosis'].value_counts()/train_df.shape[0]).reset_index() # barplot ax = sns.barplot(x="index", y="diagnosis", data=classes_dist) # Imbalanced dataset with 49% - no DR, 8% proliferative - i.e most severe DR # Model Building - Need to do oversampling for minority classes root_path = pathlib.Path(train_images_path) for item in root_path.iterdir(): break all_paths = list(root_path.glob('*.png')) all_paths[0] all_paths = [str(path) for path in all_paths] random.shuffle(all_paths) img = tf.read_file(all_paths) img def preprocess_image(image): img_tensor = tf.image.decode_png(image, channels=3) img_tensor = tf.cast(img_tensor, tf.float32) img_tensor /= 255.0 return img_tensor def load_and_preprocess_image(path): image = tf.read_file(path) return preprocess_image(image) train_df.columns train_df['image_path'] = '../input/train_images/' + train_df['id_code'] np.array(train_df['diagnosis']) labels = tf.convert_to_tensor(np.array(train_df['diagnosis']), dtype=tf.int32) paths = tf.convert_to_tensor(np.array(train_df['image_path']), dtype=tf.string) image, label = tf.train.slice_input_producer([paths, labels], shuffle=True) path_ds = tf.data.Dataset.from_tensor_slices(train_df['image_path']) print('shape: ', repr(path_ds.output_shapes)) print('type: ', path_ds.output_types) print() print(path_ds)
code
17118879/cell_2
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import os os.getcwd()
code
17118879/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') sample_sub_df = pd.read_csv('../input/train.csv') train_df[train_df.id_code == '5d024177e214'] classes_dist = pd.DataFrame(train_df['diagnosis'].value_counts() / train_df.shape[0]).reset_index() ax = sns.barplot(x='index', y='diagnosis', data=classes_dist)
code
17118879/cell_19
[ "text_html_output_1.png" ]
from IPython.core.display import Image from IPython.display import display import pathlib import random train_images_path = '../input/train_images' test_images_path = '../input/test_images' root_path = pathlib.Path(train_images_path) for item in root_path.iterdir(): break all_paths = list(root_path.glob('*.png')) all_paths[0] all_paths = [str(path) for path in all_paths] random.shuffle(all_paths) for n in range(3): image_path = random.choice(all_paths) print(image_path) display(Image(image_path, width=300, height=300))
code
17118879/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
17118879/cell_7
[ "text_plain_output_1.png" ]
train_images_path = '../input/train_images' test_images_path = '../input/test_images' print(train_images_path)
code