path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
122262213/cell_10
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split, cross_val_score from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier, plot_tree, export_text import pandas as pd df = pd.read_csv('/kaggle/input/iris-flower-dataset/IRIS.csv') df.columns y = df['species'] X = df.drop(['species'], axis=1) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() clf.fit(X_train, y_train) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report prediction = clf.predict(X_test) accuracy_score(y_test, prediction) from sklearn.model_selection import cross_val_score scores = cross_val_score(clf, X, y, scoring='accuracy', cv=10) scores.mean()
code
73097582/cell_34
[ "text_plain_output_1.png" ]
import glob import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) used_df.boxplot(column=['ride_duration'], by=['member_casual'], figsize=(10, 6), labels=['casual', 'member'])
code
73097582/cell_30
[ "text_plain_output_1.png" ]
import glob import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) used_df.info()
code
73097582/cell_33
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import glob import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) used_df[['member_casual', 'ride_duration']].groupby(by=['member_casual']).describe(percentiles=[0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99])
code
73097582/cell_44
[ "text_plain_output_1.png" ]
import glob import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats merged_df['started_at'] = pd.to_datetime(merged_df['started_at']) merged_df['ended_at'] = pd.to_datetime(merged_df['ended_at']) merged_df['ride_duration'] = (merged_df['ended_at'] - merged_df['started_at']) / pd.Timedelta(minutes=1) merged_df['ride_duration'] conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) num_ride_by_hour = pd.pivot_table(used_df, values='ride_id', index=['starting_hour'], columns=['member_casual'], aggfunc='count') num_ride_by_hour['pct_col_casual'] = num_ride_by_hour['casual'] / num_ride_by_hour['casual'].sum() num_ride_by_hour['pct_col_member'] = num_ride_by_hour['member'] / num_ride_by_hour['member'].sum() fig, ax = plt.subplots() x = np.arange(len(num_ride_by_hour.index)) width = 0.4 casual = ax.bar(x-width/2, num_ride_by_hour['pct_col_casual'], width=width, label='Casual') member = ax.bar(x+width/2, num_ride_by_hour['pct_col_member'], width=width, label='Member') plt.xticks(x, num_ride_by_hour.index) ax.legend() plt.show() num_ride_by_weekday = pd.pivot_table(used_df, values='ride_id', index=['starting_weekday'], columns=['member_casual'], aggfunc='count') num_ride_by_weekday['pct_col_casual'] = num_ride_by_weekday['casual'] / num_ride_by_weekday['casual'].sum() num_ride_by_weekday['pct_col_member'] = num_ride_by_weekday['member'] / num_ride_by_weekday['member'].sum() fig, ax = plt.subplots() x = np.arange(len(num_ride_by_weekday.index)) width = 0.4 casual = ax.bar(x - width / 2, num_ride_by_weekday['pct_col_casual'], width=width, label='Casual') member = ax.bar(x + width / 2, num_ride_by_weekday['pct_col_member'], width=width, label='Member') plt.xticks(x, num_ride_by_weekday.index) ax.legend() plt.show()
code
73097582/cell_20
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import glob import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats explore_stats(merged_df.loc[:, 'ride_duration':'season'])
code
73097582/cell_6
[ "text_plain_output_1.png" ]
import glob import os path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files
code
73097582/cell_40
[ "text_html_output_1.png" ]
import glob import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats merged_df['started_at'] = pd.to_datetime(merged_df['started_at']) merged_df['ended_at'] = pd.to_datetime(merged_df['ended_at']) merged_df['ride_duration'] = (merged_df['ended_at'] - merged_df['started_at']) / pd.Timedelta(minutes=1) merged_df['ride_duration'] conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) num_ride_by_hour = pd.pivot_table(used_df, values='ride_id', index=['starting_hour'], columns=['member_casual'], aggfunc='count') num_ride_by_hour['pct_col_casual'] = num_ride_by_hour['casual'] / num_ride_by_hour['casual'].sum() num_ride_by_hour['pct_col_member'] = num_ride_by_hour['member'] / num_ride_by_hour['member'].sum() fig, ax = plt.subplots() x = np.arange(len(num_ride_by_hour.index)) width = 0.4 casual = ax.bar(x - width / 2, num_ride_by_hour['pct_col_casual'], width=width, label='Casual') member = ax.bar(x + width / 2, num_ride_by_hour['pct_col_member'], width=width, label='Member') plt.xticks(x, num_ride_by_hour.index) ax.legend() plt.show()
code
73097582/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
import glob import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats merged_df['started_at'] = pd.to_datetime(merged_df['started_at']) merged_df['ended_at'] = pd.to_datetime(merged_df['ended_at']) merged_df['ride_duration'] = (merged_df['ended_at'] - merged_df['started_at']) / pd.Timedelta(minutes=1) merged_df['ride_duration'] conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) a = used_df[used_df['member_casual'] == 'member']['ride_duration'] b = used_df[used_df['member_casual'] == 'casual']['ride_duration'] for i in range(7): result = stats.ttest_ind(a + i, b, equal_var=False, alternative='two-sided') num_ride_by_hour = pd.pivot_table(used_df, values='ride_id', index=['starting_hour'], columns=['member_casual'], aggfunc='count') num_ride_by_hour['pct_col_casual'] = num_ride_by_hour['casual'] / num_ride_by_hour['casual'].sum() num_ride_by_hour['pct_col_member'] = num_ride_by_hour['member'] / num_ride_by_hour['member'].sum() fig, ax = plt.subplots() x = np.arange(len(num_ride_by_hour.index)) width = 0.4 casual = ax.bar(x-width/2, num_ride_by_hour['pct_col_casual'], width=width, label='Casual') member = ax.bar(x+width/2, num_ride_by_hour['pct_col_member'], width=width, label='Member') plt.xticks(x, num_ride_by_hour.index) ax.legend() plt.show() stat, p, dof, expected = stats.chi2_contingency(num_ride_by_hour[['casual', 'member']]) print('T-statistics: ' + str(stat)) print('P-value: ' + str(p))
code
73097582/cell_11
[ "text_plain_output_1.png" ]
import glob import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats data_dict = explore_stats(merged_df) data_dict
code
73097582/cell_7
[ "image_output_1.png" ]
import glob import os import pandas as pd path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) merged_df.head()
code
73097582/cell_8
[ "text_plain_output_1.png" ]
import glob import os import pandas as pd path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) merged_df.tail()
code
73097582/cell_16
[ "text_html_output_1.png" ]
import glob import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats merged_df['started_at'] = pd.to_datetime(merged_df['started_at']) merged_df['ended_at'] = pd.to_datetime(merged_df['ended_at']) merged_df['ride_duration'] = (merged_df['ended_at'] - merged_df['started_at']) / pd.Timedelta(minutes=1) merged_df['ride_duration']
code
73097582/cell_31
[ "text_plain_output_1.png" ]
import glob import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) used_df.describe()
code
73097582/cell_24
[ "text_plain_output_1.png" ]
import glob import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr print('Lower bound and upper bound are: ' + str(lower_bound) + ', ' + str(upper_bound)) print('Percentile of lower bound: ' + str(stats.percentileofscore(duration_data, lower_bound))) print('Percentile of upper bound: ' + str(stats.percentileofscore(duration_data, upper_bound)))
code
73097582/cell_14
[ "text_html_output_1.png" ]
import glob import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats merged_df['started_at'] = pd.to_datetime(merged_df['started_at']) merged_df['ended_at'] = pd.to_datetime(merged_df['ended_at']) print(merged_df['started_at'].dtype) print(merged_df['ended_at'].dtype)
code
73097582/cell_22
[ "text_plain_output_1.png" ]
import glob import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape
code
73097582/cell_27
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import glob import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type'])
code
73097582/cell_36
[ "text_html_output_1.png" ]
import glob import numpy as np import os import pandas as pd import scipy.stats as stats path = '../input/cyclistic-trip-data' all_files = glob.glob(os.path.join(path, '*.csv')) all_files merged_df = pd.DataFrame() for f in all_files: df_each_file = pd.read_csv(f) merged_df = merged_df.append(df_each_file, ignore_index=True) def explore_stats(df): nrows, ncols = df.shape print("Total records:", nrows) print("Total columns:", ncols) # create columns list and check dtype feature = [] type_lst = [] for key, value in df.dtypes.iteritems(): feature.append(key) type_lst.append(value) # check distinct value distinct = [] for i in df.columns: num_distinct = df[i].unique().size distinct_pct = num_distinct / nrows * 100 distinct.append("{} ({:0.2f}%)".format(num_distinct, distinct_pct)) # check null values null = [] for i in df.columns: num_null = df[i].isna().sum() null_pct = num_null / nrows * 100 null.append("{} ({:0.2f}%)".format(num_null, null_pct)) # check negative values negative = [] for i in df.columns: try: num_neg = (df[i].astype('float') < 0).sum() neg_pct = num_neg / nrows * 100 negative.append("{} ({:0.2f}%)".format(num_neg, neg_pct)) except: negative.append(str(0) + " (0%)") continue # check zeros zeros = [] for i in df.columns: try: num_zero = (df[i] == 0).sum() zero_pct = num_zero / nrows * 100 zeros.append("{} ({:0.2f}%)".format(num_zero, zero_pct)) except: zeros.append(str(0) + " (0%)") continue # check stats measure stats = df.describe().transpose() # put measures into a dataframe data = {'feature': feature, 'data_type': type_lst, 'n_distinct': distinct, 'n_missing': null, 'n_negative': negative, 'n_zeros': zeros} for y in stats.columns: data[y] = [] for x in df.columns: try: data[y].append(stats.loc[x, y]) except: data[y].append(0.0) df_stats = pd.DataFrame(data) return df_stats conditions = [merged_df['starting_month'] <= 3, (merged_df['starting_month'] >= 4) & (merged_df['starting_month'] <= 6), (merged_df['starting_month'] >= 7) & (merged_df['starting_month'] <= 9), (merged_df['starting_month'] >= 10) & (merged_df['starting_month'] <= 12)] values = ['spring', 'summer', 'autumn', 'winter'] merged_df['season'] = np.select(conditions, values) explore_stats(merged_df.loc[:, 'ride_duration':'season']) merged_df_v2 = merged_df[merged_df['ride_duration'] > 0] merged_df_v2.shape duration_data = sorted(merged_df_v2['ride_duration']) q1 = np.percentile(duration_data, 25) q3 = np.percentile(duration_data, 75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr merged_df_v3 = merged_df_v2[merged_df_v2['ride_duration'] < upper_bound] merged_df_v4 = merged_df_v3.dropna(axis=0, how='any', subset=['start_station_name', 'end_station_name']) explore_stats(merged_df_v4).sort_values(by=['data_type']) used_df = merged_df_v4.drop(['start_station_id', 'end_station_id'], axis=1) a = used_df[used_df['member_casual'] == 'member']['ride_duration'] b = used_df[used_df['member_casual'] == 'casual']['ride_duration'] for i in range(7): result = stats.ttest_ind(a + i, b, equal_var=False, alternative='two-sided') print('Result of ttest with MEMBER smaller than CASUAL by ' + str(i)) print(result) print('--------------------------------------------')
code
49130544/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/creditcard/creditcard.csv') fraud = data[data['Class'] == 1] normal = data[data['Class'] == 0] f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) f.suptitle('Amount per transaction by class') bins = 50 ax1.hist(fraud.Amount, bins=bins) ax1.set_title('Fraud') ax2.hist(normal.Amount, bins=bins) ax2.set_title('Normal') plt.xlabel('Amount ($)') plt.ylabel('Number of Transactions') plt.xlim((0, 20000)) plt.yscale('log')
code
49130544/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import seaborn as sns data = pd.read_csv('../input/creditcard/creditcard.csv') fraud = data[data['Class'] == 1] normal = data[data['Class'] == 0] f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) f.suptitle('Amount per transaction by class') bins = 50 ax1.hist(fraud.Amount, bins = bins) ax1.set_title('Fraud') ax2.hist(normal.Amount, bins = bins) ax2.set_title('Normal') plt.xlabel('Amount ($)') plt.ylabel('Number of Transactions') plt.xlim((0, 20000)) plt.yscale('log') data1 = data.sample(frac=0.1, random_state=1) Fraud = data1[data1['Class'] == 1] Valid = data1[data1['Class'] == 0] state = np.random.RandomState(42) outlier_fraction = len(Fraud) / float(len(Valid)) state = np.random.RandomState(42) ## Correlation import seaborn as sns #get correlations of each features in dataset corrmat = data1.corr() top_corr_features = corrmat.index plt.figure(figsize=(20,20)) #plot heat map g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn") columns = data1.columns.tolist() columns = [c for c in columns if c not in ['Class']] target = 'Class' state = np.random.RandomState(42) X = data1[columns] Y = data1[target] X_outliers = state.uniform(low=0, high=1, size=(X.shape[0], X.shape[1])) classifiers = {'Isolation Forest': IsolationForest(n_estimators=100, max_samples=len(X), contamination=outlier_fraction, random_state=state, verbose=0), 'Local Outlier Factor': LocalOutlierFactor(n_neighbors=20, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination=outlier_fraction)} type(classifiers)
code
49130544/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import seaborn as sns data = pd.read_csv('../input/creditcard/creditcard.csv') fraud = data[data['Class'] == 1] normal = data[data['Class'] == 0] f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) f.suptitle('Amount per transaction by class') bins = 50 ax1.hist(fraud.Amount, bins = bins) ax1.set_title('Fraud') ax2.hist(normal.Amount, bins = bins) ax2.set_title('Normal') plt.xlabel('Amount ($)') plt.ylabel('Number of Transactions') plt.xlim((0, 20000)) plt.yscale('log') data1 = data.sample(frac=0.1, random_state=1) Fraud = data1[data1['Class'] == 1] Valid = data1[data1['Class'] == 0] state = np.random.RandomState(42) outlier_fraction = len(Fraud) / float(len(Valid)) state = np.random.RandomState(42) ## Correlation import seaborn as sns #get correlations of each features in dataset corrmat = data1.corr() top_corr_features = corrmat.index plt.figure(figsize=(20,20)) #plot heat map g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn") columns = data1.columns.tolist() columns = [c for c in columns if c not in ['Class']] target = 'Class' state = np.random.RandomState(42) X = data1[columns] Y = data1[target] X_outliers = state.uniform(low=0, high=1, size=(X.shape[0], X.shape[1])) print(X.shape) print(Y.shape)
code
49130544/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/creditcard/creditcard.csv') data.head()
code
49130544/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from statistics import mean import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import seaborn as sns data = pd.read_csv('../input/creditcard/creditcard.csv') fraud = data[data['Class'] == 1] normal = data[data['Class'] == 0] f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) f.suptitle('Amount per transaction by class') bins = 50 ax1.hist(fraud.Amount, bins = bins) ax1.set_title('Fraud') ax2.hist(normal.Amount, bins = bins) ax2.set_title('Normal') plt.xlabel('Amount ($)') plt.ylabel('Number of Transactions') plt.xlim((0, 20000)) plt.yscale('log') data1 = data.sample(frac=0.1, random_state=1) Fraud = data1[data1['Class'] == 1] Valid = data1[data1['Class'] == 0] state = np.random.RandomState(42) outlier_fraction = len(Fraud) / float(len(Valid)) state = np.random.RandomState(42) ## Correlation import seaborn as sns #get correlations of each features in dataset corrmat = data1.corr() top_corr_features = corrmat.index plt.figure(figsize=(20,20)) #plot heat map g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn") xs = data.V2 ys = data.Amount def line_of_best(xs, ys): m = (mean(xs) * mean(ys) - mean(xs * ys)) / (mean(xs) * mean(xs) - mean(xs * xs)) b = mean(ys) - m * mean(xs) return (m, b) m, b = line_of_best(xs, ys) regression_line = [m * x + b for x in xs] plt.scatter(xs, ys) plt.plot(xs, regression_line)
code
49130544/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import seaborn as sns data = pd.read_csv('../input/creditcard/creditcard.csv') fraud = data[data['Class'] == 1] normal = data[data['Class'] == 0] f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) f.suptitle('Amount per transaction by class') bins = 50 ax1.hist(fraud.Amount, bins = bins) ax1.set_title('Fraud') ax2.hist(normal.Amount, bins = bins) ax2.set_title('Normal') plt.xlabel('Amount ($)') plt.ylabel('Number of Transactions') plt.xlim((0, 20000)) plt.yscale('log') data1 = data.sample(frac=0.1, random_state=1) Fraud = data1[data1['Class'] == 1] Valid = data1[data1['Class'] == 0] state = np.random.RandomState(42) outlier_fraction = len(Fraud) / float(len(Valid)) state = np.random.RandomState(42) import seaborn as sns corrmat = data1.corr() top_corr_features = corrmat.index plt.figure(figsize=(20, 20)) g = sns.heatmap(data[top_corr_features].corr(), annot=True, cmap='RdYlGn')
code
49130544/cell_27
[ "text_plain_output_1.png" ]
from sklearn.ensemble import IsolationForest from sklearn.metrics import classification_report,accuracy_score from sklearn.neighbors import LocalOutlierFactor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import seaborn as sns data = pd.read_csv('../input/creditcard/creditcard.csv') fraud = data[data['Class'] == 1] normal = data[data['Class'] == 0] f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) f.suptitle('Amount per transaction by class') bins = 50 ax1.hist(fraud.Amount, bins = bins) ax1.set_title('Fraud') ax2.hist(normal.Amount, bins = bins) ax2.set_title('Normal') plt.xlabel('Amount ($)') plt.ylabel('Number of Transactions') plt.xlim((0, 20000)) plt.yscale('log') data1 = data.sample(frac=0.1, random_state=1) Fraud = data1[data1['Class'] == 1] Valid = data1[data1['Class'] == 0] state = np.random.RandomState(42) outlier_fraction = len(Fraud) / float(len(Valid)) state = np.random.RandomState(42) ## Correlation import seaborn as sns #get correlations of each features in dataset corrmat = data1.corr() top_corr_features = corrmat.index plt.figure(figsize=(20,20)) #plot heat map g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn") columns = data1.columns.tolist() columns = [c for c in columns if c not in ['Class']] target = 'Class' state = np.random.RandomState(42) X = data1[columns] Y = data1[target] X_outliers = state.uniform(low=0, high=1, size=(X.shape[0], X.shape[1])) classifiers = {'Isolation Forest': IsolationForest(n_estimators=100, max_samples=len(X), contamination=outlier_fraction, random_state=state, verbose=0), 'Local Outlier Factor': LocalOutlierFactor(n_neighbors=20, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination=outlier_fraction)} n_outliers = len(Fraud) for i, (clf_name, clf) in enumerate(classifiers.items()): if clf_name == 'Local Outlier Factor': y_pred = clf.fit_predict(X) scores_prediction = clf.negative_outlier_factor_ else: clf.fit(X) scores_prediction = clf.decision_function(X) y_pred = clf.predict(X) y_pred[y_pred == 1] = 0 y_pred[y_pred == -1] = 1 n_errors = (y_pred != Y).sum() print('{}: {}'.format(clf_name, n_errors)) print('Accuracy Score :') print(accuracy_score(Y, y_pred)) print('Classification Report :') print(classification_report(Y, y_pred))
code
49130544/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/creditcard/creditcard.csv') fraud = data[data['Class'] == 1] normal = data[data['Class'] == 0] f, (ax1, ax2) = plt.subplots(2, 1, sharex=True) f.suptitle('Amount per transaction by class') bins = 50 ax1.hist(fraud.Amount, bins = bins) ax1.set_title('Fraud') ax2.hist(normal.Amount, bins = bins) ax2.set_title('Normal') plt.xlabel('Amount ($)') plt.ylabel('Number of Transactions') plt.xlim((0, 20000)) plt.yscale('log') plt.boxplot(data.Amount)
code
2017954/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dtypes train['Age'].head()
code
2017954/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') pd.isnull(train).sum() pd.isnull(test).sum() test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) pd.isnull(train).sum() pd.isnull(test).sum()
code
2017954/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dtypes train.head()
code
2017954/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') pd.isnull(train).sum()
code
2017954/cell_30
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dtypes test.dtypes from sklearn.linear_model import LogisticRegression glm = LogisticRegression() X_train = train.drop('Survived', axis=1) Y_train = train['Survived'] X_test = test.drop('PassengerId', axis=1).copy() glm.fit(X_train, Y_train)
code
2017954/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) test.dtypes test.head()
code
2017954/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
2017954/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) test.dtypes test.Age.describe()
code
2017954/cell_32
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') pd.isnull(train).sum() pd.isnull(test).sum() test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) pd.isnull(train).sum() pd.isnull(test).sum() train.dtypes test.dtypes from sklearn.linear_model import LogisticRegression glm = LogisticRegression() X_train = train.drop('Survived', axis=1) Y_train = train['Survived'] X_test = test.drop('PassengerId', axis=1).copy() glm.fit(X_train, Y_train) predicted = glm.predict(X_test) submission = pd.DataFrame({'PassengerId': test_ID, 'Survived': predicted}) submission.head()
code
2017954/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) age_mean_train = train['Age'].mean() train['Age'] = train['Age'].fillna(age_mean_train) age_mean_test = test['Age'].mean() test['Age'] = test['Age'].fillna(age_mean_test) print('From train data') southampton = train[train['Embarked'] == 'S'].shape[0] cherbourg = train[train['Embarked'] == 'C'].shape[0] queenstown = train[train['Embarked'] == 'Q'].shape[0] print('No. of people from Southampton (S) = ', southampton) print('No. of people from Cherbourg (C) = ', cherbourg) print('No. of people from Queenstown (Q) = ', queenstown) print('\nFrom test data') southampton = train[train['Embarked'] == 'S'].shape[0] cherbourg = train[train['Embarked'] == 'C'].shape[0] queenstown = train[train['Embarked'] == 'Q'].shape[0] print('No. of people from Southampton (S) = ', southampton) print('No. of people from Cherbourg (C) = ', cherbourg) print('No. of people from Queenstown (Q) = ', queenstown)
code
2017954/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) test.dtypes
code
2017954/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dtypes train.Age.describe()
code
2017954/cell_31
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dtypes test.dtypes from sklearn.linear_model import LogisticRegression glm = LogisticRegression() X_train = train.drop('Survived', axis=1) Y_train = train['Survived'] X_test = test.drop('PassengerId', axis=1).copy() glm.fit(X_train, Y_train) predicted = glm.predict(X_test) print('Accurcy = %.2f' % round(glm.score(X_train, Y_train) * 100, 2))
code
2017954/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dtypes
code
2017954/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) test.dtypes test['Age'].head()
code
2017954/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') pd.isnull(train).sum() pd.isnull(test).sum() test_ID = test.PassengerId train = train.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test = test.drop(['Name', 'Ticket'], axis=1) train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) pd.isnull(train).sum()
code
2017954/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') pd.isnull(train).sum() pd.isnull(test).sum()
code
90120622/cell_21
[ "text_html_output_1.png" ]
import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') df['time'] = df['time'].map(lambda x: datetime.datetime.strptime(x, '%Y-%m-%d %X')) df['day'] = df['time'].map(lambda x: x.strftime('%A')) df['timeonly'] = df['time'].map(lambda x: x.time()) df['date'] = df['time'].map(lambda x: x.date()) df['month'] = df['time'].map(lambda x: x.month) fig, axes = plt.subplots(nrows=2,ncols=2) fig.set_size_inches(12, 10) sns.boxplot(data=df,y="congestion",x="y",ax=axes[0][0]) sns.boxplot(data=df,y="congestion",x="x",orient="v",ax=axes[0][1]) sns.boxplot(data=df,y="congestion",x="direction",orient="v",ax=axes[1][0]) sns.boxplot(data=df,y="congestion",x="xy",orient="v",ax=axes[1][1]) plt.suptitle("Boxplots of congestion over spatial features",fontsize=16) plt.show() daysofweek = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, axes = plt.subplots(nrows=1,ncols=2) fig.set_size_inches(15, 5) sns.boxplot(data=df,y="congestion",x="day",ax=axes[0]) axes[1].plot(df.groupby(["day"]).congestion.mean().reindex(daysofweek)) plt.show() dd = df.groupby('timeonly').congestion.mean().reset_index() plt.figure(figsize=(18, 5)) plt.plot(dd['timeonly'].map(lambda x: str(x)), dd['congestion']) plt.xticks(rotation=45) plt.axvline(x=str(dd.loc[np.argmin(dd['congestion']), 'timeonly']), c='red') plt.axvline(x=str(dd.loc[np.argmax(dd['congestion']), 'timeonly']), c='green') plt.axvline(x=str(dd.loc[np.argmax(dd.loc[dd['timeonly'] < datetime.time(10, 20, 0), 'congestion']), 'timeonly']), c='blue') plt.title('Average congestion vs time of day', fontsize=20) plt.xlabel('Time of day', fontsize=16) plt.ylabel('Mean congestion', fontsize=16) plt.show()
code
90120622/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') df.head()
code
90120622/cell_4
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') df.head()
code
90120622/cell_23
[ "image_output_1.png" ]
import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') df['time'] = df['time'].map(lambda x: datetime.datetime.strptime(x, '%Y-%m-%d %X')) df['day'] = df['time'].map(lambda x: x.strftime('%A')) df['timeonly'] = df['time'].map(lambda x: x.time()) df['date'] = df['time'].map(lambda x: x.date()) df['month'] = df['time'].map(lambda x: x.month) fig, axes = plt.subplots(nrows=2,ncols=2) fig.set_size_inches(12, 10) sns.boxplot(data=df,y="congestion",x="y",ax=axes[0][0]) sns.boxplot(data=df,y="congestion",x="x",orient="v",ax=axes[0][1]) sns.boxplot(data=df,y="congestion",x="direction",orient="v",ax=axes[1][0]) sns.boxplot(data=df,y="congestion",x="xy",orient="v",ax=axes[1][1]) plt.suptitle("Boxplots of congestion over spatial features",fontsize=16) plt.show() daysofweek = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, axes = plt.subplots(nrows=1,ncols=2) fig.set_size_inches(15, 5) sns.boxplot(data=df,y="congestion",x="day",ax=axes[0]) axes[1].plot(df.groupby(["day"]).congestion.mean().reindex(daysofweek)) plt.show() dd = df.groupby('timeonly').congestion.mean().reset_index() plt.xticks(rotation=45) plt.figure(figsize=(20, 10)) for x in daysofweek: dd = df[df['day'] == x].groupby('timeonly').congestion.mean().reset_index() plt.plot(dd['timeonly'].map(lambda x: str(x)), dd['congestion'], label=x) plt.xticks(rotation=45) plt.title('Average congestion over the day for different days of the week', fontsize=20) plt.xlabel('Time of day', fontsize=16) plt.ylabel('Mean congestion', fontsize=16) plt.legend() plt.show()
code
90120622/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') print(df.x.unique(), df.y.unique(), df.direction.unique())
code
90120622/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') fig, axes = plt.subplots(nrows=2,ncols=2) fig.set_size_inches(12, 10) sns.boxplot(data=df,y="congestion",x="y",ax=axes[0][0]) sns.boxplot(data=df,y="congestion",x="x",orient="v",ax=axes[0][1]) sns.boxplot(data=df,y="congestion",x="direction",orient="v",ax=axes[1][0]) sns.boxplot(data=df,y="congestion",x="xy",orient="v",ax=axes[1][1]) plt.suptitle("Boxplots of congestion over spatial features",fontsize=16) plt.show() daysofweek = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, axes = plt.subplots(nrows=1, ncols=2) fig.set_size_inches(15, 5) sns.boxplot(data=df, y='congestion', x='day', ax=axes[0]) axes[1].plot(df.groupby(['day']).congestion.mean().reindex(daysofweek)) plt.show()
code
90120622/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') df['xy'] = list(zip(df['x'], df['y'])) df['xydir'] = list(zip(df['x'], df['y'], df['direction'])) df['xy'].unique()
code
90120622/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') fig, axes = plt.subplots(nrows=2, ncols=2) fig.set_size_inches(12, 10) sns.boxplot(data=df, y='congestion', x='y', ax=axes[0][0]) sns.boxplot(data=df, y='congestion', x='x', orient='v', ax=axes[0][1]) sns.boxplot(data=df, y='congestion', x='direction', orient='v', ax=axes[1][0]) sns.boxplot(data=df, y='congestion', x='xy', orient='v', ax=axes[1][1]) plt.suptitle('Boxplots of congestion over spatial features', fontsize=16) plt.show()
code
90120622/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv') for i in df['xy'].unique(): print(i, ':', df.loc[df['xy'] == i, 'direction'].unique())
code
334788/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd dficd = pd.read_csv('../input/Icd10Code.csv')
code
104117596/cell_9
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(X_train, y_train) model.score(X_test, y_test) arr = model.predict(X_test) arr2 = [] for x in arr: if x == 1: arr2.append(x) print(len(arr2) / len(arr))
code
104117596/cell_2
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104117596/cell_7
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(X_train, y_train)
code
104117596/cell_8
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier() model.fit(X_train, y_train) model.score(X_test, y_test)
code
73086698/cell_6
[ "text_html_output_1.png" ]
from surprise import Dataset,Reader,SVD import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from surprise import Dataset, Reader, SVD reader = Reader() ratings = pd.read_csv('../input/the-movies-dataset/ratings_small.csv') rows = ratings.userId.unique() columns = ratings.movieId.unique() columns rows ratings
code
73086698/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73086698/cell_7
[ "text_html_output_1.png" ]
from surprise import Dataset,Reader,SVD import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from surprise import Dataset, Reader, SVD reader = Reader() ratings = pd.read_csv('../input/the-movies-dataset/ratings_small.csv') rows = ratings.userId.unique() columns = ratings.movieId.unique() columns rows myData = np.array([0.0 for i in range(671 * 9066)]) mydf = pd.DataFrame(myData.reshape(671, -1)) mydf.columns = columns mydf.index = rows mydf for i in range(100004): mydf.loc[ratings.loc[i, 'userId'], ratings.loc[i, 'movieId']] = ratings.loc[i, 'rating'] mydf
code
73086698/cell_8
[ "text_html_output_1.png" ]
from surprise import Dataset,Reader,SVD import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from surprise import Dataset, Reader, SVD reader = Reader() ratings = pd.read_csv('../input/the-movies-dataset/ratings_small.csv') rows = ratings.userId.unique() columns = ratings.movieId.unique() columns rows myData = np.array([0.0 for i in range(671 * 9066)]) mydf = pd.DataFrame(myData.reshape(671, -1)) mydf.columns = columns mydf.index = rows mydf for i in range(100004): mydf.loc[ratings.loc[i, 'userId'], ratings.loc[i, 'movieId']] = ratings.loc[i, 'rating'] mydf mydf
code
73086698/cell_3
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from surprise import Dataset,Reader,SVD import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from surprise import Dataset, Reader, SVD reader = Reader() ratings = pd.read_csv('../input/the-movies-dataset/ratings_small.csv') rows = ratings.userId.unique() columns = ratings.movieId.unique() print(len(rows)) print(len(columns)) columns rows
code
73086698/cell_5
[ "text_html_output_1.png" ]
from surprise import Dataset,Reader,SVD import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from surprise import Dataset, Reader, SVD reader = Reader() ratings = pd.read_csv('../input/the-movies-dataset/ratings_small.csv') rows = ratings.userId.unique() columns = ratings.movieId.unique() columns rows myData = np.array([0.0 for i in range(671 * 9066)]) mydf = pd.DataFrame(myData.reshape(671, -1)) mydf.columns = columns mydf.index = rows mydf
code
122262131/cell_42
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 h = df1['State'].value_counts() h u = df1.groupby('Category')['Profit'].sum() u l = df1.groupby('Category')['Sales'].sum() l h = df1.groupby(['State', 'City'])['Profit'].sum() h
code
122262131/cell_4
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import cufflinks as cs import plotly.express as px import plotly as py import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
code
122262131/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 u = df1.groupby('Category')['Profit'].sum() u
code
122262131/cell_33
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 h = df1['State'].value_counts() h
code
122262131/cell_44
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 h = df1['State'].value_counts() h u = df1.groupby('Category')['Profit'].sum() u l = df1.groupby('Category')['Sales'].sum() l h = df1.groupby(['State', 'City'])['Profit'].sum() h r = df1.groupby(['State', 'City'])['Sales'].sum() r t = df1.groupby(['State', 'City'])['Quantity'].mean() t
code
122262131/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3)
code
122262131/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.head()
code
122262131/cell_40
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.express as px df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 fig = px.line(v1, 'Month', 'Profit', color='State', hover_name='State', title='Profit Over Months') fig = px.line(v1, 'Month', 'Sales', color='State', hover_name='State', title='Sales Over Months') u = df1.groupby('Category')['Profit'].sum() u l = df1.groupby('Category')['Sales'].sum() l fig=px.bar(u,u.index,u.values,color=u.index,title='Profit By Categroy',hover_name=u.values) fig.show() fig = px.bar(l, l.index, l.values, color=l.index, title='Sales From Each Category', hover_name=l.index) fig.show()
code
122262131/cell_29
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 fig = px.line(v1, 'Month', 'Profit', color='State', hover_name='State', title='Profit Over Months') fig = px.line(v1, 'Month', 'Sales', color='State', hover_name='State', title='Sales Over Months') fig.show()
code
122262131/cell_26
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 fig = px.line(v1, 'Month', 'Profit', color='State', hover_name='State', title='Profit Over Months') fig.show()
code
122262131/cell_45
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 h = df1['State'].value_counts() h u = df1.groupby('Category')['Profit'].sum() u l = df1.groupby('Category')['Sales'].sum() l h = df1.groupby(['State', 'City'])['Profit'].sum() h r = df1.groupby(['State', 'City'])['Sales'].sum() r t = df1.groupby(['State', 'City'])['Quantity'].mean() t x = df1.groupby(['State', 'City'])['Sales'].cumsum() x
code
122262131/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1.nunique() df1.isna().sum()
code
122262131/cell_32
[ "text_html_output_2.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 m = df1['City'].value_counts() m
code
122262131/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape
code
122262131/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1.nunique()
code
122262131/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 u = df1.groupby('Category')['Profit'].sum() u l = df1.groupby('Category')['Sales'].sum() l
code
122262131/cell_43
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 h = df1['State'].value_counts() h u = df1.groupby('Category')['Profit'].sum() u l = df1.groupby('Category')['Sales'].sum() l h = df1.groupby(['State', 'City'])['Profit'].sum() h r = df1.groupby(['State', 'City'])['Sales'].sum() r
code
122262131/cell_31
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 g = df1['Category'].value_counts() g
code
122262131/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1
code
122262131/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3)
code
122262131/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.info()
code
122262131/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.express as px df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns df1['Order Date'] = pd.to_datetime(df1['Order Date']) df1['Ship Date'] = pd.to_datetime(df1['Ship Date']) df1.nunique() df1.isna().sum() df1['Profit/Unit'] = df1['Profit'] / df1['Quantity'] df1['Price'] = df1['Sales'] / df1['Quantity'] df1['Cost Per Unit'] = df1['Price'] - df1['Profit/Unit'] df1.sample(3) df1['Month'] = df1['Order Date'].dt.month df1.sample(3) b = df1.groupby(['Month', 'State'])['Sales'].sum() v = df1.groupby(['Month', 'State'])['Profit'].sum() v1 = pd.merge(b, v, how='left', on=['Month', 'State']) v1.reset_index v1 = pd.DataFrame(v1) v1.reset_index(inplace=True) v1 fig = px.line(v1, 'Month', 'Profit', color='State', hover_name='State', title='Profit Over Months') fig = px.line(v1, 'Month', 'Sales', color='State', hover_name='State', title='Sales Over Months') u = df1.groupby('Category')['Profit'].sum() u fig = px.bar(u, u.index, u.values, color=u.index, title='Profit By Categroy', hover_name=u.values) fig.show()
code
122262131/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('/kaggle/input/walmart-sales-analysis/Walmart.csv', index_col='Order ID') df1.shape df1.columns
code
130022960/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] asus_new.isnull().sum() * 100 / asus_new.shape[0] asus_new.duplicated().sum() asus_new.drop(columns=['Unnamed: 0']) sns.pairplot(asus_new, x_vars=['TV Ad Budget ($)', 'Radio Ad Budget ($)', 'Newspaper Ad Budget ($)'], y_vars='Sales ($)', height=5, aspect=0.5, kind='scatter') plt.show()
code
130022960/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) plt.figure(figsize=(6, 3)) sns.boxplot(asus['TV Ad Budget ($)']) plt.show()
code
130022960/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape
code
130022960/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] asus_new.isnull().sum() * 100 / asus_new.shape[0] asus_new.duplicated().sum() asus_new.drop(columns=['Unnamed: 0']) sns.heatmap(asus_new.corr(), cmap='YlGnBu', annot=True) plt.show()
code
130022960/cell_6
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.describe()
code
130022960/cell_2
[ "image_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
code
130022960/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) plt.figure(figsize=(6, 3)) sns.boxplot(asus['Newspaper Ad Budget ($)']) plt.show()
code
130022960/cell_19
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] asus_new.isnull().sum() * 100 / asus_new.shape[0] asus_new.duplicated().sum() asus_new.drop(columns=['Unnamed: 0'])
code
130022960/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0'])
code
130022960/cell_18
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] asus_new.isnull().sum() * 100 / asus_new.shape[0] asus_new.duplicated().sum()
code
130022960/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] print('number of rows we lost', asus.shape[0] - asus_new.shape[0])
code
130022960/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] asus_new.info()
code
130022960/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.head(10)
code