path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
130022960/cell_17
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] asus_new.isnull().sum() * 100 / asus_new.shape[0]
code
130022960/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] asus_new.isnull().sum() * 100 / asus_new.shape[0] asus_new.duplicated().sum() asus_new.drop(columns=['Unnamed: 0']) x = asus_new['TV Ad Budget ($)'] y = asus_new['Sales ($)'] from sklearn.model_selection import train_test_split x_train = x[:137] x_test = x[137:] y_train = y[:137] y_test = y[137:] print('x_train Shape: ', x_train.shape) print('x_test Shape: ', x_test.shape) print('y_train Shape: ', y_train.shape) print('y_test Shape: ', y_test.shape)
code
130022960/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) b = asus['Newspaper Ad Budget ($)'].quantile(0.98) asus_new = asus[asus['Newspaper Ad Budget ($)'] < b] plt.figure(figsize=(6, 3)) sns.boxplot(asus_new['Newspaper Ad Budget ($)']) plt.show()
code
130022960/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) plt.figure(figsize=(6, 3)) sns.boxplot(asus['Radio Ad Budget ($)']) plt.show()
code
130022960/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.drop(columns=['Unnamed: 0']) plt.figure(figsize=(6, 3)) sns.boxplot(asus['Sales ($)']) plt.show()
code
130022960/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) asus = pd.DataFrame(pd.read_csv('/kaggle/input/advertising-sales-dataset/Advertising Budget and Sales.csv')) asus.shape asus.info()
code
88101711/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) df.info()
code
88101711/cell_34
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) df_obj = df.select_dtypes(include=['O']) df_obj.head()
code
88101711/cell_30
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) df.info()
code
88101711/cell_33
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) df_num.head()
code
88101711/cell_44
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) tamanho_original = df_num.shape sns.boxplot(x=df_num['price'])
code
88101711/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] print(df.isnull().sum())
code
88101711/cell_40
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) df_num.hist(figsize=(30, 30), bins=10, xlabelsize=10, ylabelsize=10)
code
88101711/cell_48
[ "text_plain_output_1.png", "image_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) df_obj = df.select_dtypes(include=['O']) df_datas = df.select_dtypes(include=['<M8[ns]']) tamanho_original = df_num.shape cols = ['price'] Q1 = df[cols].quantile(0.25) Q3 = df[cols].quantile(0.75) IQR = Q3 - Q1 df_num = df_num[~((df_num[cols] < Q1 - 1.5 * IQR) | (df_num[cols] > Q3 + 1.5 * IQR)).any(axis=1)] sns.boxplot(x=df_num['price']) tamanho_semout = df_num.shape redução = tamanho_original[0] - tamanho_semout[0] print(f' Foram removidas {redução} linhas onde o preço era discrepante (outliers)')
code
88101711/cell_11
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns msno.bar(df[cols[:30]], fontsize=8, figsize=(20, 5))
code
88101711/cell_18
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] print('number of duplicate rows: ', duplicate_rows_df.shape)
code
88101711/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist()))
code
88101711/cell_38
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) df_num.info()
code
88101711/cell_3
[ "text_plain_output_1.png" ]
import os import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import missingno as msno import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88101711/cell_35
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) df_obj = df.select_dtypes(include=['O']) df_datas = df.select_dtypes(include=['<M8[ns]']) df_datas.head()
code
88101711/cell_46
[ "image_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) list(set(df.dtypes.tolist())) df_num = df.select_dtypes(include=['float64', 'int64']) df_obj = df.select_dtypes(include=['O']) df_datas = df.select_dtypes(include=['<M8[ns]']) tamanho_original = df_num.shape cols = ['price'] Q1 = df[cols].quantile(0.25) Q3 = df[cols].quantile(0.75) IQR = Q3 - Q1 print(IQR) df_num = df_num[~((df_num[cols] < Q1 - 1.5 * IQR) | (df_num[cols] > Q3 + 1.5 * IQR)).any(axis=1)]
code
88101711/cell_24
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) df['price'] = df['price'].str.replace('$', '') df['price'] = df['price'].str.replace(',', '') df['price'] = df['price'].astype(float) df['host_response_rate'] = df['host_response_rate'].str.replace('%', '') df['host_response_rate'] = df['host_response_rate'].astype(float) df['host_acceptance_rate'] = df['host_acceptance_rate'].str.replace('%', '') df['host_acceptance_rate'] = df['host_acceptance_rate'].astype(float)
code
88101711/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns df.drop(df.columns[[1, 2, 4, 5, 6, 7, 9, 13, 18, 19, 22, 34, 42, 43, 44, 45, 46, 47, 48, 54, 56, 57, 70, 71, 72, 73]], axis=1, inplace=True) duplicate_rows_df = df[df.duplicated()] df = df.dropna(subset=['review_scores_rating']) print(df.isnull().sum())
code
88101711/cell_12
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) cols = df.columns msno.bar(df[cols[30:]], fontsize=8, figsize=(20, 5))
code
88101711/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/barcelona/listings.csv') pd.set_option('display.max_columns', None) df.head()
code
1009787/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import kagglegym train_df = pd.read_json('../input/train.json') test_df = pd.read_json('../input/test.json') import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette() int_level = train_df['interest_level'].value_counts() plt.figure(figsize=(8, 4)) sns.barplot(int_level.index, int_level.values, alpha=0.8, color=color[1]) plt.ylabel('Number of Occurrences', fontsize=12) plt.xlabel('Interest level', fontsize=12) plt.show()
code
1009787/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import kagglegym train_df = pd.read_json('../input/train.json') test_df = pd.read_json('../input/test.json') train_df.head()
code
17118436/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
batch_size = 8 max_epochs = 2000 print('Iniciando treinamento... ')
code
17118436/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd dfCleveland = pd.read_csv('cleveland_train.csv', header=None) dfCleveland
code
17118436/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import tensorflow as tf np.random.seed(4) tf.set_random_seed(13) mp = '.\\cleveland_model.h5' model.save(mp) np.set_printoptions(precision=4) unknown = np.array([[0.75, 1, 0, 1, 0, 0.49, 0.27, 1, -1, -1, 0.62, -1, 0.4, 0, 1, 0.23, 1, 0]], dtype=np.float32) predicted = model.predict(unknown) print('Usando o modelo para previsão de doença cardíaca para as caracteristicas: ') print(unknown) print('\nO valor de previsão diagnóstico é (0=sem doença, 1=com doença): ') print(predicted)
code
17118436/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import numpy as np import keras as K import tensorflow as tf import pandas as pd import seaborn as sns import os from matplotlib import pyplot as plt os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
code
17118436/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
print('Salvando modelo em arquivo \n') mp = '.\\cleveland_model.h5' model.save(mp)
code
17109964/cell_42
[ "text_plain_output_1.png" ]
animals = ['cat', 'dog', 'monkey'] for animal in animals: print(animal)
code
17109964/cell_63
[ "text_plain_output_1.png" ]
d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} for animal, legs in d.items(): print('A %s has %d legs' % (animal, legs))
code
17109964/cell_81
[ "text_plain_output_1.png" ]
hello = 'hello' world = 'world' def hello(name, loud=False): if loud: print('HELLO, %s' % name.upper()) else: print('Hello, %s!' % name) hello('Bob') hello('Fred', loud=True)
code
17109964/cell_13
[ "text_plain_output_1.png" ]
x = 3 print(x + 1) print(x - 1) print(x * 2) print(x ** 2)
code
17109964/cell_57
[ "text_plain_output_1.png" ]
d = {'cat': 'cute', 'dog': 'furry'} print(d.get('monkey', 'N/A')) print(d.get('fish', 'N/A'))
code
17109964/cell_56
[ "text_plain_output_1.png" ]
d = {'cat': 'cute', 'dog': 'furry'} print(d['monkey'])
code
17109964/cell_34
[ "text_plain_output_1.png" ]
xs = [3, 1, 2] xs.append('bar') print(xs)
code
17109964/cell_23
[ "text_plain_output_1.png" ]
hello = 'hello' world = 'world' hw = hello + ' ' + world print(hw)
code
17109964/cell_79
[ "text_plain_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() def sign(x): if x > 0: return 'positive' elif x < 0: return 'negative' else: return 'zero' for x in [-1, 0, 1]: print(sign(x))
code
17109964/cell_90
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) print(b) print(b.shape) print(b[0, 0], b[0, 1], b[1, 0])
code
17109964/cell_33
[ "text_plain_output_1.png" ]
xs = [3, 1, 2] xs[2] = 'foo' print(xs)
code
17109964/cell_44
[ "text_plain_output_1.png" ]
animals = ['cat', 'dog', 'monkey'] animals = ['cat', 'dog', 'monkey'] for idx, animal in enumerate(animals): print('#%d: %s' % (idx + 1, animal))
code
17109964/cell_20
[ "text_plain_output_1.png" ]
print(t and f) print(t or f) print(not t) print(t != f)
code
17109964/cell_55
[ "text_plain_output_1.png" ]
d = {'cat': 'cute', 'dog': 'furry'} d['fish'] = 'wet' print(d['fish'])
code
17109964/cell_76
[ "text_plain_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} d = {(x, x + 1): x for x in range(10)} t = (5, 6) t[0] = 1
code
17109964/cell_92
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) print(a)
code
17109964/cell_94
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) b = np.ones((1, 2)) c = np.full((2, 2), 7) print(c)
code
17109964/cell_39
[ "text_plain_output_1.png" ]
nums = list(range(5)) print(nums) print(nums[2:4]) print(nums[2:]) print(nums[:2]) print(nums[:]) print(nums[:-1]) nums[2:4] = [8, 9] print(nums)
code
17109964/cell_26
[ "text_plain_output_1.png" ]
s = 'hello' print(s.capitalize()) print(s.upper()) print(s.rjust(7)) print(s.center(7)) print(s.replace('l', '(ell)')) print(' world '.strip())
code
17109964/cell_65
[ "text_plain_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() nums = list(range(5)) nums[2:4] = [8, 9] nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) nums = [0, 1, 2, 3, 4] squares = [x ** 2 for x in nums] nums = [0, 1, 2, 3, 4] even_squares = [x ** 2 for x in nums if x % 2 == 0] nums = [0, 1, 2, 3, 4] even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0} print(even_num_to_square)
code
17109964/cell_61
[ "text_plain_output_1.png" ]
d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] print('A %s has %d legs' % (animal, legs))
code
17109964/cell_54
[ "text_plain_output_1.png" ]
d = {'cat': 'cute', 'dog': 'furry'} print(d['cat']) print('cat' in d)
code
17109964/cell_72
[ "text_plain_output_1.png" ]
from math import sqrt x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() from math import sqrt print({int(sqrt(x)) for x in range(30)})
code
17109964/cell_19
[ "text_plain_output_1.png" ]
t, f = (True, False) print(type(t))
code
17109964/cell_49
[ "text_plain_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() nums = list(range(5)) nums[2:4] = [8, 9] nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) nums = [0, 1, 2, 3, 4] squares = [x ** 2 for x in nums] print(squares)
code
17109964/cell_89
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([1, 2, 3]) print(type(a), a.shape, a[0], a[1], a[2]) a[0] = 5 print(a)
code
17109964/cell_32
[ "text_plain_output_1.png" ]
xs = [3, 1, 2] print(xs, xs[2]) print(xs[-1], xs[-2], xs[-3])
code
17109964/cell_51
[ "application_vnd.jupyter.stderr_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() nums = list(range(5)) nums[2:4] = [8, 9] nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) nums = [0, 1, 2, 3, 4] squares = [x ** 2 for x in nums] nums = [0, 1, 2, 3, 4] even_squares = [x ** 2 for x in nums if x % 2 == 0] print(even_squares)
code
17109964/cell_68
[ "text_plain_output_1.png" ]
animals = ['cat', 'dog', 'monkey'] animals = ['cat', 'dog', 'monkey'] animals = {'cat', 'dog'} print('cat' in animals) print('fish' in animals) animals.add('fish') print(len(animals)) animals.add('cat') print(len(animals))
code
17109964/cell_96
[ "text_plain_output_1.png" ]
import numpy as np x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} d = {(x, x + 1): x for x in range(10)} t = (5, 6) a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) b = np.ones((1, 2)) c = np.full((2, 2), 7) d = np.eye(2) e = np.random.random((2, 2)) print(e)
code
17109964/cell_58
[ "text_plain_output_1.png" ]
d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] print(d.get('fish', 'N/A'))
code
17109964/cell_102
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} d = {(x, x + 1): x for x in range(10)} t = (5, 6) a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) b = np.ones((1, 2)) c = np.full((2, 2), 7) d = np.eye(2) e = np.random.random((2, 2)) import numpy as np a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) b = a[:2, 1:3] print(a[0, 1]) b[0, 0] = 77 print(a[0, 1])
code
17109964/cell_95
[ "text_plain_output_1.png" ]
import numpy as np x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} d = {(x, x + 1): x for x in range(10)} t = (5, 6) a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) b = np.ones((1, 2)) c = np.full((2, 2), 7) d = np.eye(2) print(d)
code
17109964/cell_8
[ "text_plain_output_1.png" ]
def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[int(len(arr) / 2)] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quicksort(left) + middle + quicksort(right) print(quicksort([3, 6, 8, 10, 1, 2, 1]))
code
17109964/cell_15
[ "text_plain_output_1.png" ]
y = 2.5 print(type(y)) print(y, y + 1, y * 2, y ** 2)
code
17109964/cell_75
[ "text_plain_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} d = {(x, x + 1): x for x in range(10)} t = (5, 6) print(type(t)) print(d) print(d[t]) print(d[1, 2])
code
17109964/cell_47
[ "text_plain_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() nums = list(range(5)) nums[2:4] = [8, 9] nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) print(squares)
code
17109964/cell_35
[ "text_plain_output_1.png" ]
x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() print(x, xs)
code
17109964/cell_93
[ "text_plain_output_1.png" ]
import numpy as np a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) b = np.ones((1, 2)) print(b)
code
17109964/cell_24
[ "text_plain_output_1.png" ]
hello = 'hello' world = 'world' hw12 = '%s %s %d %.4f' % (hello, world, 12, 10) print(hw12)
code
17109964/cell_100
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} d = {(x, x + 1): x for x in range(10)} t = (5, 6) a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) b = np.ones((1, 2)) c = np.full((2, 2), 7) d = np.eye(2) e = np.random.random((2, 2)) import numpy as np a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) b = a[:2, 1:3] print(b)
code
17109964/cell_14
[ "text_plain_output_1.png" ]
print(7 // 3) print(7 % 3)
code
17109964/cell_22
[ "text_plain_output_1.png" ]
hello = 'hello' world = 'world' print(hello, len(hello))
code
17109964/cell_104
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np x = 3 xs = [3, 1, 2] xs.append('bar') x = xs.pop() d = {'cat': 'cute', 'dog': 'furry'} del d['fish'] d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] d = {'person': 2, 'cat': 4, 'spider': 8} d = {(x, x + 1): x for x in range(10)} t = (5, 6) a = np.array([1, 2, 3]) a[0] = 5 b = np.array([[1, 2, 3], [4, 5, 6]]) a = np.zeros((2, 2)) b = np.ones((1, 2)) c = np.full((2, 2), 7) d = np.eye(2) e = np.random.random((2, 2)) import numpy as np a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) b = a[:2, 1:3] a = np.array([[1, 2], [3, 4], [5, 6]]) print(a) print(a[[0, 1, 2], [0, 1, 0]]) print(np.array([a[0, 0], a[1, 1], a[2, 0]]))
code
17109964/cell_12
[ "text_plain_output_1.png" ]
x = 3 print(x, type(x))
code
17109964/cell_70
[ "application_vnd.jupyter.stderr_output_1.png" ]
animals = ['cat', 'dog', 'monkey'] animals = ['cat', 'dog', 'monkey'] animals = {'cat', 'dog'} animals.add('fish') animals.add('cat') animals = {'cat', 'dog', 'fish'} for idx, animal in enumerate(animals): print('#%d: %s' % (idx + 1, animal))
code
49120489/cell_21
[ "text_plain_output_1.png" ]
from sklearn.ensemble import BaggingClassifier from sklearn.feature_selection import RFE from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.multiclass import OneVsRestClassifier import matplotlib.pyplot as plt import matplotlib.pyplot as plt import seaborn as sns import seaborn as sns from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) from sklearn.metrics import confusion_matrix import seaborn as sns logreg_cm = confusion_matrix(Y_test, Y_predict1) f, ax = plt.subplots(figsize=(5,5)) sns.heatmap(logreg_cm, annot=True, linewidth=0.7, linecolor='red', fmt='g', ax=ax, cmap="BuPu") plt.title('Logistic Regression Classification Confusion Matrix') plt.xlabel('Y predict') plt.ylabel('Y test') plt.show() score_logreg = logreg.score(X_test, Y_test) from sklearn.feature_selection import RFE logreg_2 = LogisticRegression() rfe = RFE(estimator=logreg_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) logreg_2 = LogisticRegression() logreg_2 = logreg_2.fit(X_train_3, Y_train) Y_predict2 = logreg.predict(X_test_3) score_logreg = logreg_2.score(X_test_3, Y_test) from sklearn.feature_selection import RFECV logreg_3 = LogisticRegression() rfecv = RFECV(estimator=logreg_3, step=1, cv=5, scoring='accuracy') rfecv = rfecv.fit(X_train, Y_train) import matplotlib.pyplot as plt max(rfecv.grid_scores_) rfecv.grid_scores_ from sklearn.feature_selection import RFE svmcla_2 = OneVsRestClassifier(BaggingClassifier()) rfe = RFE(estimator=svmcla_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) svmcla_2 = OneVsRestClassifier(BaggingClassifier()) svmcla_2 = svmcla_2.fit(X_train_3, Y_train) Y_predict2 = svmcla_2.predict(X_test_3) score_logreg = svmcla_2.score(X_test_3, Y_test) from sklearn.feature_selection import RFECV svmcla_2 = OneVsRestClassifier(BaggingClassifier()) rfecv = RFECV(estimator=svmcla_2, step=1, cv=5, scoring='accuracy') rfecv = rfecv.fit(X_train, Y_train) print('Optimal number of features :', rfecv.n_features_) print('Best features :', X_train.columns[rfecv.support_])
code
49120489/cell_13
[ "text_plain_output_1.png" ]
from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import matplotlib.pyplot as plt import seaborn as sns import seaborn as sns from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) from sklearn.metrics import confusion_matrix import seaborn as sns logreg_cm = confusion_matrix(Y_test, Y_predict1) f, ax = plt.subplots(figsize=(5,5)) sns.heatmap(logreg_cm, annot=True, linewidth=0.7, linecolor='red', fmt='g', ax=ax, cmap="BuPu") plt.title('Logistic Regression Classification Confusion Matrix') plt.xlabel('Y predict') plt.ylabel('Y test') plt.show() score_logreg = logreg.score(X_test, Y_test) from sklearn.feature_selection import RFE logreg_2 = LogisticRegression() rfe = RFE(estimator=logreg_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) logreg_2 = LogisticRegression() logreg_2 = logreg_2.fit(X_train_3, Y_train) Y_predict2 = logreg.predict(X_test_3) score_logreg = logreg_2.score(X_test_3, Y_test) from sklearn.feature_selection import RFECV logreg_3 = LogisticRegression() rfecv = RFECV(estimator=logreg_3, step=1, cv=5, scoring='accuracy') rfecv = rfecv.fit(X_train, Y_train) import matplotlib.pyplot as plt plt.figure() plt.xlabel('Number of features selected') plt.ylabel('Cross validation score of number of selected features') plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show() max(rfecv.grid_scores_) rfecv.grid_scores_
code
49120489/cell_2
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/breast-cancer-prediction-dataset/Breast_cancer_data.csv') print('Dataset :', data.shape) x = data.iloc[:, [0, 1, 2, 3]].values data.info() data[0:10]
code
49120489/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import BaggingClassifier from sklearn.feature_selection import RFE from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) score_logreg = logreg.score(X_test, Y_test) from sklearn.feature_selection import RFE logreg_2 = LogisticRegression() rfe = RFE(estimator=logreg_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) logreg_2 = LogisticRegression() logreg_2 = logreg_2.fit(X_train_3, Y_train) Y_predict2 = logreg.predict(X_test_3) score_logreg = logreg_2.score(X_test_3, Y_test) from sklearn.feature_selection import RFECV logreg_3 = LogisticRegression() rfecv = RFECV(estimator=logreg_3, step=1, cv=5, scoring='accuracy') rfecv = rfecv.fit(X_train, Y_train) from sklearn.feature_selection import RFE svmcla_2 = OneVsRestClassifier(BaggingClassifier()) rfe = RFE(estimator=svmcla_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) print('Chosen best 5 feature by rfe:', X_train.columns[rfe.support_]) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) svmcla_2 = OneVsRestClassifier(BaggingClassifier()) svmcla_2 = svmcla_2.fit(X_train_3, Y_train) Y_predict2 = svmcla_2.predict(X_test_3) score_logreg = svmcla_2.score(X_test_3, Y_test) print(score_logreg)
code
49120489/cell_7
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns import seaborn as sns from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) from sklearn.metrics import confusion_matrix import seaborn as sns logreg_cm = confusion_matrix(Y_test, Y_predict1) f, ax = plt.subplots(figsize=(5, 5)) sns.heatmap(logreg_cm, annot=True, linewidth=0.7, linecolor='red', fmt='g', ax=ax, cmap='BuPu') plt.title('Logistic Regression Classification Confusion Matrix') plt.xlabel('Y predict') plt.ylabel('Y test') plt.show()
code
49120489/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) score_logreg = logreg.score(X_test, Y_test) print(score_logreg)
code
49120489/cell_16
[ "text_plain_output_1.png" ]
from sklearn.ensemble import BaggingClassifier from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC import matplotlib.pyplot as plt import matplotlib.pyplot as plt import seaborn as sns import seaborn as sns from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) from sklearn.metrics import confusion_matrix import seaborn as sns logreg_cm = confusion_matrix(Y_test, Y_predict1) f, ax = plt.subplots(figsize=(5,5)) sns.heatmap(logreg_cm, annot=True, linewidth=0.7, linecolor='red', fmt='g', ax=ax, cmap="BuPu") plt.title('Logistic Regression Classification Confusion Matrix') plt.xlabel('Y predict') plt.ylabel('Y test') plt.show() score_logreg = logreg.score(X_test, Y_test) from sklearn.feature_selection import RFE logreg_2 = LogisticRegression() rfe = RFE(estimator=logreg_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) logreg_2 = LogisticRegression() logreg_2 = logreg_2.fit(X_train_3, Y_train) Y_predict2 = logreg.predict(X_test_3) score_logreg = logreg_2.score(X_test_3, Y_test) from sklearn.feature_selection import RFECV logreg_3 = LogisticRegression() rfecv = RFECV(estimator=logreg_3, step=1, cv=5, scoring='accuracy') rfecv = rfecv.fit(X_train, Y_train) import matplotlib.pyplot as plt max(rfecv.grid_scores_) rfecv.grid_scores_ from sklearn.ensemble import BaggingClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC svmcla = OneVsRestClassifier(BaggingClassifier(SVC(C=10, kernel='rbf', random_state=9, probability=True), n_jobs=-1)) svmcla.fit(X_train, Y_train) Y_predict2 = svmcla.predict(X_test) svmcla_cm = confusion_matrix(Y_test, Y_predict2) f, ax = plt.subplots(figsize=(5, 5)) sns.heatmap(svmcla_cm, annot=True, linewidth=0.7, linecolor='red', fmt='g', ax=ax, cmap='BuPu') plt.title('SVM Classification Confusion Matrix') plt.xlabel('Y predict') plt.ylabel('Y test') plt.show()
code
49120489/cell_17
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import BaggingClassifier from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) score_logreg = logreg.score(X_test, Y_test) from sklearn.feature_selection import RFE logreg_2 = LogisticRegression() rfe = RFE(estimator=logreg_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) logreg_2 = LogisticRegression() logreg_2 = logreg_2.fit(X_train_3, Y_train) Y_predict2 = logreg.predict(X_test_3) score_logreg = logreg_2.score(X_test_3, Y_test) from sklearn.feature_selection import RFECV logreg_3 = LogisticRegression() rfecv = RFECV(estimator=logreg_3, step=1, cv=5, scoring='accuracy') rfecv = rfecv.fit(X_train, Y_train) from sklearn.ensemble import BaggingClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC svmcla = OneVsRestClassifier(BaggingClassifier(SVC(C=10, kernel='rbf', random_state=9, probability=True), n_jobs=-1)) svmcla.fit(X_train, Y_train) Y_predict2 = svmcla.predict(X_test) score_svmcla = svmcla.score(X_test, Y_test) print(score_svmcla)
code
49120489/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) score_logreg = logreg.score(X_test, Y_test) from sklearn.feature_selection import RFE logreg_2 = LogisticRegression() rfe = RFE(estimator=logreg_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) print('Chosen best 5 feature by rfe:', X_train.columns[rfe.support_]) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) logreg_2 = LogisticRegression() logreg_2 = logreg_2.fit(X_train_3, Y_train) Y_predict2 = logreg.predict(X_test_3) score_logreg = logreg_2.score(X_test_3, Y_test) print(score_logreg)
code
49120489/cell_12
[ "image_output_1.png" ]
from sklearn.feature_selection import RFE from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression logreg = LogisticRegression(C=10) logreg.fit(X_train, Y_train) Y_predict1 = logreg.predict(X_test) score_logreg = logreg.score(X_test, Y_test) from sklearn.feature_selection import RFE logreg_2 = LogisticRegression() rfe = RFE(estimator=logreg_2, n_features_to_select=5, step=1) rfe = rfe.fit(X_train, Y_train) X_train_3 = rfe.transform(X_train) X_test_3 = rfe.transform(X_test) logreg_2 = LogisticRegression() logreg_2 = logreg_2.fit(X_train_3, Y_train) Y_predict2 = logreg.predict(X_test_3) score_logreg = logreg_2.score(X_test_3, Y_test) from sklearn.feature_selection import RFECV logreg_3 = LogisticRegression() rfecv = RFECV(estimator=logreg_3, step=1, cv=5, scoring='accuracy') rfecv = rfecv.fit(X_train, Y_train) print('Optimal number of features :', rfecv.n_features_) print('Best features :', X_train.columns[rfecv.support_])
code
33096822/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'] avo.groupby('region').sum()['Total Volume'].idxmax() plt.figure(figsize=(12, 5)) avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'].sort_values().plot.bar()
code
33096822/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0]
code
33096822/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt plt.figure(figsize=(15, 5)) avo['AveragePrice'].plot()
code
33096822/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) type(avo['Date'].iloc[0]) avo['Date'] = pd.to_datetime(avo['Date']) type(avo['Date'].iloc[0])
code
33096822/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33096822/cell_11
[ "text_plain_output_1.png" ]
avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume']
code
33096822/cell_7
[ "text_plain_output_1.png" ]
avo[avo['AveragePrice'] == avo['AveragePrice'].max()]['Date']
code
33096822/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) type(avo['Date'].iloc[0]) avo['Date'] = pd.to_datetime(avo['Date']) type(avo['Date'].iloc[0]) avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'] avo.groupby('region').sum()['Total Volume'].idxmax() avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo['Revenue'] = avo['AveragePrice'] * avo['Total Volume'] c = avo.groupby('type').sum()['Revenue']['conventional'] o = avo.groupby('type').sum()['Revenue']['organic'] o - c a = pd.DataFrame(avo.groupby(['region', 'type']).sum()['Total Volume'].values.reshape((-1, 2))) a['ratio'] = a[1] / a[0] a['region'] = avo['region'].unique() a.set_index('region', inplace=True) a a['ratio'].sort_values().plot.barh() newdf = avo[['region', 'AveragePrice']] meandf = newdf.groupby('region').mean() meandf.reset_index(inplace=True) meandf['state_name_len'] = meandf['region'].str.len() plt.scatter(x=meandf['AveragePrice'], y=meandf['state_name_len'])
code
33096822/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
avo[avo['AveragePrice'] == avo['AveragePrice'].min()]['Date']
code
33096822/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) type(avo['Date'].iloc[0]) avo['Date'] = pd.to_datetime(avo['Date']) type(avo['Date'].iloc[0]) avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'] avo.groupby('region').sum()['Total Volume'].idxmax() avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo['Revenue'] = avo['AveragePrice'] * avo['Total Volume'] c = avo.groupby('type').sum()['Revenue']['conventional'] o = avo.groupby('type').sum()['Revenue']['organic'] o - c a = pd.DataFrame(avo.groupby(['region', 'type']).sum()['Total Volume'].values.reshape((-1, 2))) a['ratio'] = a[1] / a[0] a['region'] = avo['region'].unique() a.set_index('region', inplace=True) a
code
33096822/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) type(avo['Date'].iloc[0]) avo['Date'] = pd.to_datetime(avo['Date']) type(avo['Date'].iloc[0]) avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'] avo.groupby('region').sum()['Total Volume'].idxmax() avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo['Revenue'] = avo['AveragePrice'] * avo['Total Volume'] c = avo.groupby('type').sum()['Revenue']['conventional'] o = avo.groupby('type').sum()['Revenue']['organic'] o - c a = pd.DataFrame(avo.groupby(['region', 'type']).sum()['Total Volume'].values.reshape((-1, 2))) a['ratio'] = a[1] / a[0] a['region'] = avo['region'].unique() a.set_index('region', inplace=True) a a['ratio'].idxmax()
code
33096822/cell_3
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns import datetime avo = pd.read_csv('/kaggle/input/avocado-prices/avocado.csv') avo
code