path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
104121949/cell_19
[ "text_plain_output_1.png" ]
age2 = {'a': 3, 'b': 6, 'c': 9} age2
code
104121949/cell_8
[ "text_plain_output_1.png" ]
marks = {'Rahul': 23, 'Joe': 15, 'Venkat': {'Section1': 12, 'Section2': 15, 'Section3': 22}} marks['Venkat']
code
104121949/cell_15
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} a = age.get('Rohit') print(a)
code
104121949/cell_17
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} a = age.get('Rohit') age['Rohit'] = 18 age
code
104121949/cell_14
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} age
code
104121949/cell_22
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} a = age.get('Rohit') age2 = {'a': 3, 'b': 6, 'c': 9} age.update(age2) age.pop('c')
code
104121949/cell_10
[ "text_plain_output_1.png" ]
marks = {'Rahul': 23, 'Joe': 15, 'Venkat': {'Section1': 12, 'Section2': 15, 'Section3': 22}} for i in marks: print(i)
code
104121949/cell_27
[ "text_plain_output_1.png" ]
n = int(input('Enter the number')) d = {} for i in range(1, 1 + n): d[i] = i * i print(d)
code
104121949/cell_12
[ "text_plain_output_1.png" ]
marks = {'Rahul': 23, 'Joe': 15, 'Venkat': {'Section1': 12, 'Section2': 15, 'Section3': 22}} marks.keys() marks.values()
code
104121949/cell_5
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} age['Venkat']
code
128010513/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt #visualisation import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) column_names = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15'] Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 upper = data[~(data > Q3 + 1.5 * IQR)].max() lower = data[~(data < Q1 - 1.5 * IQR)].min() df = np.where(data > upper, data.mean(), np.where(data < lower, data.mean(), data)) data = pd.DataFrame(df, columns=data.columns) plt.figure(figsize=(10, 5)) c = data.corr() sns.heatmap(c, cmap='BrBG', annot=True) c
code
128010513/cell_9
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) data.hist(bins=10, figsize=(15, 10), xlabelsize=7, ylabelsize=7)
code
128010513/cell_6
[ "text_html_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes
code
128010513/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 print(IQR) upper = data[~(data > Q3 + 1.5 * IQR)].max() lower = data[~(data < Q1 - 1.5 * IQR)].min() df = np.where(data > upper, data.mean(), np.where(data < lower, data.mean(), data)) data = pd.DataFrame(df, columns=data.columns)
code
128010513/cell_19
[ "image_output_11.png", "image_output_14.png", "image_output_13.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "image_output_9.png" ]
from scipy import stats from sklearn import preprocessing from sklearn.linear_model import LinearRegression from sklearn.metrics import accuracy_score, jaccard_score, mean_absolute_error, mean_squared_error, r2_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt #visualisation import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) column_names = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15'] Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 upper = data[~(data > Q3 + 1.5 * IQR)].max() lower = data[~(data < Q1 - 1.5 * IQR)].min() df = np.where(data > upper, data.mean(), np.where(data < lower, data.mean(), data)) data = pd.DataFrame(df, columns=data.columns) pearson_coef_values = [] p_values = [] for name in column_names: pearson_coef, p_value = stats.pearsonr(data[name], data['price']) pearson_coef_values.append(pearson_coef) p_values.append(p_value) pearson_corelation = pd.DataFrame({'Feature': column_names, 'Pearson Coefficient Values': pearson_coef_values, 'P Values': p_values}) pearson_corelation.sort_values('Pearson Coefficient Values') c = data.corr() c X = data[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15']] X = preprocessing.StandardScaler().fit(X).transform(X) Y = data['price'] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=1) from sklearn.linear_model import LinearRegression linearReg = LinearRegression().fit(x_train, y_train) predictions = linearReg.predict(x_test) from sklearn.metrics import accuracy_score, jaccard_score, mean_absolute_error, mean_squared_error, r2_score LinearRegression_MAE = mean_absolute_error(y_test, predictions) LinearRegression_MSE = mean_squared_error(y_test, predictions) LinearRegression_R2 = r2_score(y_test, predictions) Report = pd.DataFrame({'Mean Absolute Error': LinearRegression_MAE, 'Mean Squared Error': LinearRegression_MSE, 'R Squared': LinearRegression_R2}, index=[0]) Report.head()
code
128010513/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) data.describe()
code
128010513/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import preprocessing from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt #visualisation import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) column_names = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15'] Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 upper = data[~(data > Q3 + 1.5 * IQR)].max() lower = data[~(data < Q1 - 1.5 * IQR)].min() df = np.where(data > upper, data.mean(), np.where(data < lower, data.mean(), data)) data = pd.DataFrame(df, columns=data.columns) c = data.corr() c X = data[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15']] X = preprocessing.StandardScaler().fit(X).transform(X) Y = data['price'] from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=1) print('number of test samples :', x_test.shape[0]) print('number of training samples:', x_train.shape[0])
code
128010513/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.head()
code
128010513/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt #visualisation import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) column_names = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15'] for column in column_names: plt.figure(figsize=(17, 3)) sns.boxplot(data=data, x=column)
code
128010513/cell_12
[ "text_plain_output_1.png" ]
from scipy import stats import matplotlib.pyplot as plt #visualisation import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape data.dtypes data.drop(['id', 'date', 'lat', 'long'], axis=1, inplace=True) column_names = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15'] Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 upper = data[~(data > Q3 + 1.5 * IQR)].max() lower = data[~(data < Q1 - 1.5 * IQR)].min() df = np.where(data > upper, data.mean(), np.where(data < lower, data.mean(), data)) data = pd.DataFrame(df, columns=data.columns) pearson_coef_values = [] p_values = [] for name in column_names: pearson_coef, p_value = stats.pearsonr(data[name], data['price']) pearson_coef_values.append(pearson_coef) p_values.append(p_value) pearson_corelation = pd.DataFrame({'Feature': column_names, 'Pearson Coefficient Values': pearson_coef_values, 'P Values': p_values}) pearson_corelation.sort_values('Pearson Coefficient Values') pearson_corelation.head(30)
code
128010513/cell_5
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/housesalesprediction/kc_house_data.csv') data.shape
code
88077915/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train_data = pd.read_csv('/kaggle/input/porto-seguro-safe-driver-prediction/train.csv') test_data = pd.read_csv('/kaggle/input/porto-seguro-safe-driver-prediction/test.csv') def check_data(data): new_dataframe = pd.concat([data.head(5), data.tail(5)], axis=0) return new_dataframe check_data(train_data)
code
88077915/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88077915/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train_data = pd.read_csv('/kaggle/input/porto-seguro-safe-driver-prediction/train.csv') test_data = pd.read_csv('/kaggle/input/porto-seguro-safe-driver-prediction/test.csv') print(train_data.info()) print(test_data.info()) print(train_data.head(10)) print(test_data.head(10)) print(train_data.tail(7)) print(test_data.tail(7))
code
88077915/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd train_data = pd.read_csv('/kaggle/input/porto-seguro-safe-driver-prediction/train.csv') test_data = pd.read_csv('/kaggle/input/porto-seguro-safe-driver-prediction/test.csv') print(train_data.info()) print(train_data.head(1)) print(train_data.tail(1)) print(test_data.info()) print(test_data.head(1)) print(test_data.tail(1))
code
128023079/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.colab import files from google.colab import files files.upload()
code
128023079/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import re import pandas as pd import librosa import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score, classification_report from scipy.fft import fft import seaborn as sns import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as f import torch.optim as optim from torch.utils.data import DataLoader, random_split, TensorDataset
code
128023079/cell_3
[ "text_plain_output_1.png" ]
! pip install -q kaggle
code
17138453/cell_19
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from torch.utils.data import TensorDataset, DataLoader, Dataset import cv2 import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import torch import torch.nn as nn labels = pd.read_csv('../input/train.csv') sub = pd.read_csv('../input/sample_submission.csv') train_path = '../input/train/train/' test_path = '../input/test/test/' dtrain, dval = train_test_split(labels, stratify=labels.has_cactus, test_size=0.1) (dtrain.shape, dval.shape) class MyDataset(Dataset): def __init__(self, df_data, data_dir='./', transform=None): super().__init__() self.df = df_data.values self.data_dir = data_dir self.transform = transform def __len__(self): return len(self.df) def __getitem__(self, index): img_name, label = self.df[index] img_path = os.path.join(self.data_dir, img_name) image = cv2.imread(img_path) if self.transform is not None: image = self.transform(image) return (image, label) class VGG(nn.Module): def __init__(self, cfg): super(VGG, self).__init__() self.features = self._make_layers(cfg) self.classifier = nn.Linear(4608, 2) def forward(self, x): out = self.features(x) out = out.view(out.size(0), -1) out = self.classifier(out) return out def _make_layers(self, cfg): """ cfg: a list define layers this layer contains 'M': MaxPool, number: Conv2d(out_channels=number) -> BN -> ReLU """ layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) vgg_cfg = {'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M']} def train(model, train_loader, loss_func, optimizer, device): total_loss = 0 for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) outputs = model(images) loss = loss_func(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() return total_loss / len(train_loader) def save_model(model, save_path): torch.save(model.state_dict(), save_path) def evaluate(model, val_loader, device): model.eval() with torch.no_grad(): correct = 0 total = 0 for i, (images, labels) in enumerate(val_loader): images = images.to(device) labels = labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, dim=1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total return accuracy def show_curve(ys, title): """ plot curlve for Loss and Accuacy Args: ys: loss or acc list title: loss or accuracy """ x = np.array(range(len(ys))) y = np.array(ys) plt.axis() def fit(model, num_epochs, optimizer, device): loss_func = nn.CrossEntropyLoss() model.to(device) loss_func.to(device) losses = [] accs = [] for epoch in range(num_epochs): loss = train(model, loader_train, loss_func, optimizer, device) losses.append(loss) accuracy = evaluate(model, loader_valid, device) accs.append(accuracy) num_epochs = 30 num_classes = 2 batch_size = 128 learning_rate = 0.001 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = VGG(vgg_cfg['VGG16']) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) fit(model, num_epochs, optimizer, device)
code
17138453/cell_5
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd labels = pd.read_csv('../input/train.csv') sub = pd.read_csv('../input/sample_submission.csv') train_path = '../input/train/train/' test_path = '../input/test/test/' dtrain, dval = train_test_split(labels, stratify=labels.has_cactus, test_size=0.1) (dtrain.shape, dval.shape)
code
88091034/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data['Type'].value_counts(ascending=True) corr = data.drop('UDI', axis=1).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) mask = np.triu(np.ones_like(corr, dtype=bool)) plt.figure(figsize=(20, 15)) plt.subplot(3, 3, 1) sns.boxplot(x='Air temperature [K]', data=data) plt.subplot(3, 3, 2) sns.boxplot(x='Process temperature [K]', data=data) plt.subplot(3, 3, 3) sns.boxplot(x='Rotational speed [rpm]', data=data) plt.subplot(3, 3, 4) sns.boxplot(x='Torque [Nm]', data=data) plt.subplot(3, 3, 5) sns.boxplot(x='Tool wear [min]', data=data) plt.subplot(3, 3, 6) sns.boxplot(x='Overstrain [minNm]', data=data) plt.subplot(3, 3, 7) sns.boxplot(x='Required Power [W]', data=data) plt.subplot(3, 3, 8) sns.boxplot(x='Heat Dissipation [K]', data=data)
code
88091034/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] sns.countplot(x='Type', data=data, hue='Target') data['Type'].value_counts(ascending=True)
code
88091034/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data.head()
code
88091034/cell_6
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data.info()
code
88091034/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data['Type'].value_counts(ascending=True) corr = data.drop('UDI', axis=1).corr() plt.figure(figsize=(12, 10)) cmap = sns.diverging_palette(230, 20, as_cmap=True) mask = np.triu(np.ones_like(corr, dtype=bool)) sns.heatmap(corr, annot=True, cmap=cmap, mask=mask, center=0)
code
88091034/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data.describe()
code
88091034/cell_8
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] print(f"Unique Product IDs: {len(data['Product ID'].value_counts())}") print('Test/Validation columns with null values: \n', data.isnull().sum())
code
88091034/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data['Type'].value_counts(ascending=True) corr = data.drop('UDI', axis=1).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) mask = np.triu(np.ones_like(corr, dtype=bool)) clean_data = pd.get_dummies(data, prefix=['Type'], columns=['Type'], drop_first=False) clean_data = clean_data.drop(['Product ID', 'UDI'], axis=1) cols = clean_data.columns.tolist() cols = cols[-3:] + cols[:-3] clean_data = clean_data[cols] failures = clean_data.copy() clean_data = clean_data.drop('Failure Type', axis=1) failures.head()
code
88091034/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data.head()
code
88091034/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data['Type'].value_counts(ascending=True) plt.figure(figsize=(15, 5)) sns.countplot(x='Failure Type', data=data[data['Failure Type'] != 'No Failure'])
code
88091034/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv', sep=',') data['Overstrain [minNm]'] = data['Torque [Nm]'] * data['Tool wear [min]'] data['Required Power [W]'] = data['Torque [Nm]'] * data['Rotational speed [rpm]'] data['Heat Dissipation [K]'] = data['Process temperature [K]'] - data['Air temperature [K]'] cols = data.columns.tolist() cols = cols[-3:] + cols[:-3] data = data[cols] data['Type'].value_counts(ascending=True) corr = data.drop('UDI', axis=1).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) mask = np.triu(np.ones_like(corr, dtype=bool)) plt.figure(figsize=(15, 5)) sns.pairplot(data.select_dtypes(exclude=object).drop(['UDI'], axis=1), corner=True, hue='Target')
code
50240953/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data['Embarked'].unique()
code
50240953/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum() test_data.isna().sum() train_data.sample(10) Ticket1 = [] TicketNumber1 = [] TicketNumber2 = [] for i in list(train_data.Ticket): if not i.isdigit(): Ticket1.append(i.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket1.append('X') TicketNumber1.append(0) train_data['Ticket'] = Ticket1 Ticket2 = [] for j in list(test_data.Ticket): if not j.isdigit(): Ticket2.append(j.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket2.append('X') test_data['Ticket'] = Ticket2 print(train_data['Ticket'].unique()) print(test_data['Ticket'].unique())
code
50240953/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum() test_data.isna().sum() train_data.sample(10) Ticket1 = [] TicketNumber1 = [] TicketNumber2 = [] for i in list(train_data.Ticket): if not i.isdigit(): Ticket1.append(i.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket1.append('X') TicketNumber1.append(0) train_data['Ticket'] = Ticket1 Ticket2 = [] for j in list(test_data.Ticket): if not j.isdigit(): Ticket2.append(j.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket2.append('X') test_data['Ticket'] = Ticket2 unique1 = [] unique2 = [] for i in train_data['Ticket'].unique(): if i not in test_data['Ticket'].unique(): unique1.append(i) else: pass for j in test_data['Ticket'].unique(): if j not in train_data['Ticket'].unique(): unique2.append(j) else: pass unique1 = ['Ticket_' + s for s in unique1] unique2 = ['Ticket_' + s for s in unique2] train_data = pd.get_dummies(train_data, columns=['Ticket']) test_data = pd.get_dummies(test_data, columns=['Ticket']) train_data = train_data.drop(labels=unique1, axis='columns') test_data = test_data.drop(labels=unique2, axis='columns') train_data.head()
code
50240953/cell_20
[ "text_html_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') test_data.isna().sum()
code
50240953/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum()
code
50240953/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.head()
code
50240953/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum()
code
50240953/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data
code
50240953/cell_38
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum() test_data.isna().sum() train_data.sample(10) Ticket1 = [] TicketNumber1 = [] TicketNumber2 = [] for i in list(train_data.Ticket): if not i.isdigit(): Ticket1.append(i.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket1.append('X') TicketNumber1.append(0) train_data['Ticket'] = Ticket1 Ticket2 = [] for j in list(test_data.Ticket): if not j.isdigit(): Ticket2.append(j.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket2.append('X') test_data['Ticket'] = Ticket2 unique1 = [] unique2 = [] for i in train_data['Ticket'].unique(): if i not in test_data['Ticket'].unique(): unique1.append(i) else: pass for j in test_data['Ticket'].unique(): if j not in train_data['Ticket'].unique(): unique2.append(j) else: pass unique1 = ['Ticket_' + s for s in unique1] unique2 = ['Ticket_' + s for s in unique2] train_data = pd.get_dummies(train_data, columns=['Ticket']) test_data = pd.get_dummies(test_data, columns=['Ticket']) train_data = train_data.drop(labels=unique1, axis='columns') test_data = test_data.drop(labels=unique2, axis='columns') train_data = train_data.drop(labels='Name', axis='columns') test_data = test_data.drop(labels='Name', axis='columns') train_data = train_data.drop(labels='Survived', axis=1) train_data.columns
code
50240953/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') test_data.describe()
code
50240953/cell_31
[ "text_html_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum() test_data.isna().sum() train_data.sample(10) Ticket1 = [] TicketNumber1 = [] TicketNumber2 = [] for i in list(train_data.Ticket): if not i.isdigit(): Ticket1.append(i.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket1.append('X') TicketNumber1.append(0) train_data['Ticket'] = Ticket1 Ticket2 = [] for j in list(test_data.Ticket): if not j.isdigit(): Ticket2.append(j.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket2.append('X') test_data['Ticket'] = Ticket2 unique1 = [] unique2 = [] for i in train_data['Ticket'].unique(): if i not in test_data['Ticket'].unique(): unique1.append(i) else: pass for j in test_data['Ticket'].unique(): if j not in train_data['Ticket'].unique(): unique2.append(j) else: pass unique1 = ['Ticket_' + s for s in unique1] unique2 = ['Ticket_' + s for s in unique2] train_data = pd.get_dummies(train_data, columns=['Ticket']) test_data = pd.get_dummies(test_data, columns=['Ticket']) train_data = train_data.drop(labels=unique1, axis='columns') test_data = test_data.drop(labels=unique2, axis='columns') print(train_data.columns, test_data.columns, sep='\n')
code
50240953/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum() test_data.isna().sum() train_data.sample(10) Ticket1 = [] TicketNumber1 = [] TicketNumber2 = [] for i in list(train_data.Ticket): if not i.isdigit(): Ticket1.append(i.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket1.append('X') TicketNumber1.append(0) train_data['Ticket'] = Ticket1 Ticket2 = [] for j in list(test_data.Ticket): if not j.isdigit(): Ticket2.append(j.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket2.append('X') test_data['Ticket'] = Ticket2 train_data
code
50240953/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') test_data['Embarked'].unique()
code
50240953/cell_22
[ "text_html_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum() train_data.sample(10)
code
50240953/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape
code
50240953/cell_27
[ "text_html_output_1.png" ]
import pandas as pd # data processing train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isna().sum() train_data = train_data.drop(labels=['Cabin'], axis='columns') test_data = test_data.drop(labels=['Cabin'], axis='columns') train_data.shape train_data.isna().sum() test_data.isna().sum() train_data.sample(10) Ticket1 = [] TicketNumber1 = [] TicketNumber2 = [] for i in list(train_data.Ticket): if not i.isdigit(): Ticket1.append(i.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket1.append('X') TicketNumber1.append(0) train_data['Ticket'] = Ticket1 Ticket2 = [] for j in list(test_data.Ticket): if not j.isdigit(): Ticket2.append(j.replace('.', '').replace('/', '').strip().split(' ')[0]) else: Ticket2.append('X') test_data['Ticket'] = Ticket2 unique1 = [] unique2 = [] for i in train_data['Ticket'].unique(): if i not in test_data['Ticket'].unique(): unique1.append(i) else: pass for j in test_data['Ticket'].unique(): if j not in train_data['Ticket'].unique(): unique2.append(j) else: pass print('Unique in train data: {} \nUnique in test data: {}'.format(unique1, unique2))
code
50240953/cell_5
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import neighbors from sklearn.preprocessing import LabelEncoder from sklearn.impute import SimpleImputer import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) print('import complete')
code
128029205/cell_21
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier, plot_tree gini_classifier = DecisionTreeClassifier(criterion='gini') gini_classifier.fit(X_train, y_train) y_pred = gini_classifier.predict(X_test) features = list(X_train.columns) target = list(y_train.unique()) fig, ax = plt.subplots(figsize=(12, 8)) plot_tree(gini_classifier, filled=True, feature_names=features, class_names=target, ax=ax) plt.show()
code
128029205/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') data.shape
code
128029205/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') import pandas as pd iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) iris.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] class_counts = iris['class'].value_counts() class_proportions = class_counts / len(iris) iris.head()
code
128029205/cell_30
[ "image_output_1.png" ]
from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.tree import DecisionTreeClassifier, plot_tree import matplotlib.pyplot as plt import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') gini_classifier = DecisionTreeClassifier(criterion='gini') gini_classifier.fit(X_train, y_train) y_pred = gini_classifier.predict(X_test) features = list(X_train.columns) target = list(y_train.unique()) fig, ax = plt.subplots(figsize=(12, 8)) plot_tree(gini_classifier, filled=True, feature_names=features, class_names=target, ax=ax) plt.show() import pandas as pd iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) iris.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] class_counts = iris['class'].value_counts() class_proportions = class_counts / len(iris) from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier, plot_tree import matplotlib.pyplot as plt # Load the iris dataset iris = load_iris() # Train a decision tree classifier clf = DecisionTreeClassifier() clf.fit(iris.data, iris.target) # Visualize the decision tree using Matplotlib fig, ax = plt.subplots(figsize=(12, 8)) plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names, ax=ax) plt.show() iris = load_iris() iris.target
code
128029205/cell_20
[ "text_plain_output_1.png" ]
features = list(X_train.columns) target = list(y_train.unique()) y_train.unique()
code
128029205/cell_29
[ "text_plain_output_1.png" ]
from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.tree import DecisionTreeClassifier, plot_tree import matplotlib.pyplot as plt import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') gini_classifier = DecisionTreeClassifier(criterion='gini') gini_classifier.fit(X_train, y_train) y_pred = gini_classifier.predict(X_test) features = list(X_train.columns) target = list(y_train.unique()) fig, ax = plt.subplots(figsize=(12, 8)) plot_tree(gini_classifier, filled=True, feature_names=features, class_names=target, ax=ax) plt.show() import pandas as pd iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) iris.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] class_counts = iris['class'].value_counts() class_proportions = class_counts / len(iris) from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier, plot_tree import matplotlib.pyplot as plt iris = load_iris() clf = DecisionTreeClassifier() clf.fit(iris.data, iris.target) fig, ax = plt.subplots(figsize=(12, 8)) plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names, ax=ax) plt.show()
code
128029205/cell_26
[ "text_html_output_1.png" ]
import math import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') import pandas as pd iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) iris.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] class_counts = iris['class'].value_counts() class_proportions = class_counts / len(iris) import math entropy = 0 for proportion in class_proportions: entropy -= proportion * math.log2(proportion) print('Entropy:', entropy)
code
128029205/cell_11
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') data.shape X = data.drop(['Drug'], axis=1) y = data['Drug'] data.describe()
code
128029205/cell_18
[ "text_plain_output_1.png" ]
from sklearn.metrics import confusion_matrix from sklearn.tree import DecisionTreeClassifier, plot_tree gini_classifier = DecisionTreeClassifier(criterion='gini') gini_classifier.fit(X_train, y_train) y_pred = gini_classifier.predict(X_test) confusion_matrix(y_test, y_pred)
code
128029205/cell_28
[ "text_plain_output_1.png" ]
import math import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') import pandas as pd iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) iris.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] class_counts = iris['class'].value_counts() class_proportions = class_counts / len(iris) import math entropy = 0 for proportion in class_proportions: entropy -= proportion * math.log2(proportion) proportions = [0.25, 0.25, 0.1667, 0.1667, 0.1667] e = 0 for proportion in proportions: e -= proportion + math.log2(proportion) e
code
128029205/cell_16
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier, plot_tree gini_classifier = DecisionTreeClassifier(criterion='gini') gini_classifier.fit(X_train, y_train) y_pred = gini_classifier.predict(X_test) print(f'Predicted Values : {y_pred}')
code
128029205/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') data.head()
code
128029205/cell_17
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier, plot_tree gini_classifier = DecisionTreeClassifier(criterion='gini') gini_classifier.fit(X_train, y_train) y_pred = gini_classifier.predict(X_test) accuracy = accuracy_score(y_test, y_pred) * 100 print(f'accuracy : {accuracy}')
code
128029205/cell_24
[ "image_output_1.png" ]
import pandas as pd import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') import pandas as pd iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) iris.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'] class_counts = iris['class'].value_counts() class_proportions = class_counts / len(iris) print(class_counts) print() print(class_proportions)
code
128029205/cell_14
[ "text_html_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier, plot_tree gini_classifier = DecisionTreeClassifier(criterion='gini') gini_classifier.fit(X_train, y_train)
code
128029205/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/drugs-a-b-c-x-y-for-decision-trees/drug200.csv') data.shape X = data.drop(['Drug'], axis=1) y = data['Drug'] len(data['Drug'].unique())
code
17096225/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt X = X.reshape(X.shape[0], 28, 28) X = X / 255.0 import matplotlib.pyplot as plt fig = plt.gcf() fig.set_size_inches(9, 9) for i, img in enumerate(X): if i + 1 > 3 * 3: break plt.subplot(3, 3, i + 1) plt.imshow(img) plt.show()
code
17096225/cell_4
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') train = df.drop(['label'], axis=1) train.head()
code
17096225/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') train = df.drop(['label'], axis=1) labels = df['label'] labels.head()
code
17096225/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.head()
code
17096225/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
17096225/cell_18
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_test.head()
code
17096225/cell_15
[ "text_html_output_1.png" ]
import tensorflow as tf model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax')]) model.compile(metrics=['acc'], optimizer='adam', loss='sparse_categorical_crossentropy') model.summary() history = model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=100)
code
17096225/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import tensorflow as tf X = X.reshape(X.shape[0], 28, 28) X = X / 255.0 import matplotlib.pyplot as plt fig = plt.gcf() fig.set_size_inches(9, 9) for i, img in enumerate(X): if i + 1 > 3 * 3: break model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax')]) model.compile(metrics=['acc'], optimizer='adam', loss='sparse_categorical_crossentropy') model.summary() history = model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=100) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc) plt.plot(epochs, val_acc) plt.title('Training and validation accuracy') plt.figure() plt.plot(epochs, loss) plt.plot(epochs, val_loss) plt.title('Training and validation loss')
code
17096225/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf df = pd.read_csv('../input/train.csv') model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax')]) model.compile(metrics=['acc'], optimizer='adam', loss='sparse_categorical_crossentropy') model.summary() history = model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=100) df_test = pd.read_csv('../input/test.csv') X_testing = df_test.values X_testing = X_testing.reshape(X_testing.shape[0], 28, 28) X_testing = X_testing / 255.0 pred = model.predict(X_testing) pred = pred.argmax(axis=1) pred[0:19]
code
17096225/cell_12
[ "text_html_output_1.png" ]
import tensorflow as tf model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax')]) model.compile(metrics=['acc'], optimizer='adam', loss='sparse_categorical_crossentropy') model.summary()
code
130020397/cell_4
[ "text_plain_output_1.png" ]
import requests url = 'https://www.trendyol.com/cep-telefonu-x-c103498?pi=6?' header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36 OPR/98.0.0.0'} page = requests.get(url, headers=header) print(page)
code
130020397/cell_5
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import requests url = 'https://www.trendyol.com/cep-telefonu-x-c103498?pi=6?' header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36 OPR/98.0.0.0'} page = requests.get(url, headers=header) soup = BeautifulSoup(page.content, 'html.parser') product_cards = soup.find_all('div', class_='p-card-wrppr') dataset = [] for card in product_cards: product_down_div = card.find('div', class_='product-down') product_name_div = product_down_div.find('div', class_='prdct-desc-cntnr-ttl-w two-line-text') product_name_span_1 = product_name_div.find('span', class_='prdct-desc-cntnr-ttl') product_name_span_2 = product_name_div.find('span', class_='prdct-desc-cntnr-name hasRatings') product_name_1 = product_name_span_1.text.strip() if product_name_span_1 else None product_name_2 = product_name_span_2.text.strip() if product_name_span_2 else None star_ratings_container = product_down_div.find('div', class_='ratings') filled_star_count = None if star_ratings_container: star_w_divs = star_ratings_container.find_all('div', class_='star-w') for star_w_div in star_w_divs: star_div = star_w_div.find('div', class_='full') if star_div and star_div.get('style'): width_match = re.search('width:\\s*([\\d.]+)%', star_div['style']) if width_match: width = float(width_match.group(1)) if width > 0: filled_star_count = round(width / 20) rating_count_span = product_down_div.find('span', class_='ratingCount') rating_count = int(rating_count_span.text.strip('()')) if rating_count_span else None price_promotion_container = product_down_div.find('div', class_='prc-box-dscntd') original_price_div = price_promotion_container.text.strip() product_data = {'Brand': product_name_1, 'Product': product_name_2, 'Filled Star Percentages': filled_star_count, 'Original Price': original_price_div, 'Rating Count': rating_count} dataset.append(product_data) df = pd.DataFrame(dataset) print(df) df.to_csv('trendyol_data.csv')
code
73072707/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain.isnull().sum().sort_values(ascending=False).head(13) random_sample = dtrain['GarageCond'].dropna().sample(dtrain['GarageCond'].isnull().sum(), random_state=0) random_sample.isnull().sum()
code
73072707/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain['MasVnrArea']
code
73072707/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) missing_values[missing_values['percent'] > 0.8]
code
73072707/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain['LotFrontage']
code
73072707/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain
code
73072707/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain.isnull().sum().sort_values(ascending=False).head(13)
code
73072707/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73072707/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) median = dtrain['LotFrontage'].median() dtrain['LotFrontage'] = dtrain['LotFrontage'].fillna(median) dtrain['LotFrontage'].isnull().sum()
code
73072707/cell_8
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain['GarageYrBlt'] = np.where(dtrain['GarageYrBlt'], 1, 0) dtrain['GarageYrBlt'].isnull().sum()
code
73072707/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain.isnull().sum().sort_values(ascending=False).head(13) dtrain = dtrain.fillna(dtrain.mode()) dtrain.isnull().sum() dtrain = pd.concat((dtrain.select_dtypes(include=object), dtrain.select_dtypes(exclude=object)), axis=1) dtrain.dtypes.head(50)
code
73072707/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain.isnull().sum().sort_values(ascending=False).head(13) dtrain = dtrain.fillna(dtrain.mode()) dtrain.isnull().sum() dtrain = pd.concat((dtrain.select_dtypes(include=object), dtrain.select_dtypes(exclude=object)), axis=1) dtrain.columns
code
73072707/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) missing_values.head(30)
code
73072707/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain.isnull().sum().sort_values(ascending=False).head(13) dtrain = dtrain.fillna(dtrain.mode()) dtrain.isnull().sum()
code
73072707/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) extreme = dtrain['MasVnrArea'].mean() + 3 * dtrain['MasVnrArea'].std() dtrain['MasVnrArea'] = dtrain['MasVnrArea'].fillna(extreme) dtrain['MasVnrArea'].isnull().mean()
code