path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
33096822/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) type(avo['Date'].iloc[0]) avo['Date'] = pd.to_datetime(avo['Date']) type(avo['Date'].iloc[0]) avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'] avo.groupby('region').sum()['Total Volume'].idxmax() avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo['Revenue'] = avo['AveragePrice'] * avo['Total Volume'] c = avo.groupby('type').sum()['Revenue']['conventional'] o = avo.groupby('type').sum()['Revenue']['organic'] o - c a = pd.DataFrame(avo.groupby(['region', 'type']).sum()['Total Volume'].values.reshape((-1, 2))) a['ratio'] = a[1] / a[0] a['region'] = avo['region'].unique() a.set_index('region', inplace=True) a plt.figure(figsize=(5, 12)) a['ratio'].sort_values().plot.barh()
code
33096822/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'] avo.groupby('region').sum()['Total Volume'].idxmax() avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo['Revenue'] = avo['AveragePrice'] * avo['Total Volume'] c = avo.groupby('type').sum()['Revenue']['conventional'] o = avo.groupby('type').sum()['Revenue']['organic'] o - c
code
33096822/cell_12
[ "text_html_output_1.png" ]
avo['Month'] = avo['Date'].apply(lambda x: x.month) avo.groupby('Month').mean()['AveragePrice'].sort_values(ascending=False).index[0] avo.drop(avo.loc[avo['region'] == 'TotalUS'].index, inplace=True) avo.groupby('region').sum()['Total Volume'] avo.groupby('region').sum()['Total Volume'].idxmax()
code
33096822/cell_5
[ "text_plain_output_1.png" ]
import seaborn as sns sns.pairplot(avo)
code
72065541/cell_13
[ "text_html_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) [col for col in train.columns if train[col].isnull().sum() != 0]
code
72065541/cell_4
[ "image_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) print('The shape of the dataset is {}.\n\n'.format(train.shape)) train.head(10)
code
72065541/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() train.drop(['Id', 'Alley', 'PoolQC', 'Fence', 'MiscFeature', 'FireplaceQu'], axis=1, inplace=True) train.shape sns.set_theme(style="white") corr = train.corr() f, ax = plt.subplots(figsize=(30, 30)) mask = np.triu(np.ones_like(corr, dtype=bool)) cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr, annot=True, mask = mask, cmap=cmap) plt.show() corr['SalePrice'].sort_values(ascending=False)
code
72065541/cell_20
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) test = pd.read_csv(os.path.join(dataset_path, 'test.csv')) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() [col for col in test.columns if test[col].isnull().sum() != 0] missing_val_count_by_column = test.isnull().sum() Id = test['Id'] test.drop(['Id', 'Alley', 'PoolQC', 'Fence', 'MiscFeature', 'FireplaceQu'], axis=1, inplace=True) test.shape
code
72065541/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.describe()
code
72065541/cell_29
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() train.drop(['Id', 'Alley', 'PoolQC', 'Fence', 'MiscFeature', 'FireplaceQu'], axis=1, inplace=True) train.shape sns.set_theme(style="white") corr = train.corr() f, ax = plt.subplots(figsize=(30, 30)) mask = np.triu(np.ones_like(corr, dtype=bool)) cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr, annot=True, mask = mask, cmap=cmap) plt.show() quantitative_features = [col for col in train.columns if train[col].dtypes != 'object'] categorical_features = [col for col in train.columns if train[col].dtypes == 'object'] sns.histplot(data=train, x='SalePrice', stat='count', bins=10, kde=True) plt.title('Sale Price Distribution') plt.show()
code
72065541/cell_11
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) test = pd.read_csv(os.path.join(dataset_path, 'test.csv')) print('The shape of the dataset is {}.\n\n'.format(test.shape)) test.head(5)
code
72065541/cell_19
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() train.drop(['Id', 'Alley', 'PoolQC', 'Fence', 'MiscFeature', 'FireplaceQu'], axis=1, inplace=True) train.shape
code
72065541/cell_7
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.info()
code
72065541/cell_16
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) test = pd.read_csv(os.path.join(dataset_path, 'test.csv')) [col for col in test.columns if test[col].isnull().sum() != 0]
code
72065541/cell_17
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) test = pd.read_csv(os.path.join(dataset_path, 'test.csv')) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() [col for col in test.columns if test[col].isnull().sum() != 0] missing_val_count_by_column = test.isnull().sum() print(missing_val_count_by_column[missing_val_count_by_column > 0])
code
72065541/cell_14
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() print(missing_val_count_by_column[missing_val_count_by_column > 0])
code
72065541/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() train.drop(['Id', 'Alley', 'PoolQC', 'Fence', 'MiscFeature', 'FireplaceQu'], axis=1, inplace=True) train.shape sns.set_theme(style='white') corr = train.corr() f, ax = plt.subplots(figsize=(30, 30)) mask = np.triu(np.ones_like(corr, dtype=bool)) cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr, annot=True, mask=mask, cmap=cmap) plt.show()
code
72065541/cell_27
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() train.drop(['Id', 'Alley', 'PoolQC', 'Fence', 'MiscFeature', 'FireplaceQu'], axis=1, inplace=True) train.shape sns.set_theme(style="white") corr = train.corr() f, ax = plt.subplots(figsize=(30, 30)) mask = np.triu(np.ones_like(corr, dtype=bool)) cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr, annot=True, mask = mask, cmap=cmap) plt.show() quantitative_features = [col for col in train.columns if train[col].dtypes != 'object'] categorical_features = [col for col in train.columns if train[col].dtypes == 'object'] train[quantitative_features].hist(bins=50, figsize=(20, 17)) plt.show()
code
72065541/cell_36
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/house-prices-advanced-regression-techniques/' train = pd.read_csv(os.path.join(dataset_path, 'train.csv')) train.drop_duplicates(inplace=True) test = pd.read_csv(os.path.join(dataset_path, 'test.csv')) [col for col in train.columns if train[col].isnull().sum() != 0] missing_val_count_by_column = train.isnull().sum() [col for col in test.columns if test[col].isnull().sum() != 0] missing_val_count_by_column = test.isnull().sum() Id = test['Id'] test.drop(['Id', 'Alley', 'PoolQC', 'Fence', 'MiscFeature', 'FireplaceQu'], axis=1, inplace=True) test.shape X_train['BsmtQual'].fillna('No Basement', inplace=True) X_train['BsmtCond'].fillna('No Basement', inplace=True) X_train['BsmtExposure'].fillna('No Basement', inplace=True) X_train['BsmtFinType1'].fillna('No Basement', inplace=True) X_train['BsmtFinType2'].fillna('No Basement', inplace=True) X_train['GarageType'].fillna('No Garage', inplace=True) X_train['GarageFinish'].fillna('No Garage', inplace=True) X_train['GarageQual'].fillna('No Garage', inplace=True) X_train['GarageCond'].fillna('No Garage', inplace=True) X_valid['BsmtQual'].fillna('No Basement', inplace=True) X_valid['BsmtCond'].fillna('No Basement', inplace=True) X_valid['BsmtExposure'].fillna('No Basement', inplace=True) X_valid['BsmtFinType1'].fillna('No Basement', inplace=True) X_valid['BsmtFinType2'].fillna('No Basement', inplace=True) X_valid['GarageType'].fillna('No Garage', inplace=True) X_valid['GarageFinish'].fillna('No Garage', inplace=True) X_valid['GarageQual'].fillna('No Garage', inplace=True) X_valid['GarageCond'].fillna('No Garage', inplace=True) test['BsmtQual'].fillna('No Basement', inplace=True) test['BsmtCond'].fillna('No Basement', inplace=True) test['BsmtExposure'].fillna('No Basement', inplace=True) test['BsmtFinType1'].fillna('No Basement', inplace=True) test['BsmtFinType2'].fillna('No Basement', inplace=True) test['GarageType'].fillna('No Garage', inplace=True) test['GarageFinish'].fillna('No Garage', inplace=True) test['GarageQual'].fillna('No Garage', inplace=True) test['GarageCond'].fillna('No Garage', inplace=True)
code
128044716/cell_21
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d
code
128044716/cell_25
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b
code
128044716/cell_34
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import numpy as np import time a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c d = np.array([a, b, c]) d a = np.array([[[311, 312, 313], [321, 322, 323], [331, 332, 333]], [[211, 212, 213], [221, 222, 223], [231, 232, 233]], [[111, 112, 113], [121, 122, 123], [131, 132, 133]]]) a a.ndim initial_time = time.time() a = 0 for i in range(1000000): a = a + i print(a) final_time = time.time() diff1 = final_time - initial_time diff1
code
128044716/cell_30
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c d = np.array([a, b, c]) d a = np.array([[[311, 312, 313], [321, 322, 323], [331, 332, 333]], [[211, 212, 213], [221, 222, 223], [231, 232, 233]], [[111, 112, 113], [121, 122, 123], [131, 132, 133]]]) a
code
128044716/cell_20
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c
code
128044716/cell_29
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c d = np.array([a, b, c]) d d.shape d.size
code
128044716/cell_26
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c
code
128044716/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2)
code
128044716/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b
code
128044716/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a
code
128044716/cell_28
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c d = np.array([a, b, c]) d d.shape
code
128044716/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) a
code
128044716/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape
code
128044716/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim
code
128044716/cell_35
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import numpy as np import numpy as np import numpy as np import time a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c d = np.array([a, b, c]) d a = np.array([[[311, 312, 313], [321, 322, 323], [331, 332, 333]], [[211, 212, 213], [221, 222, 223], [231, 232, 233]], [[111, 112, 113], [121, 122, 123], [131, 132, 133]]]) a a.ndim initial_time = time.time() a = 0 for i in range(1000000): a = a + i final_time = time.time() diff1 = final_time - initial_time diff1 initial_time = time.time() n = np.arange(1000000) s = np.sum(n) print(s) final_time = time.time() diff2 = final_time - initial_time diff2
code
128044716/cell_31
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c d = np.array([a, b, c]) d a = np.array([[[311, 312, 313], [321, 322, 323], [331, 332, 333]], [[211, 212, 213], [221, 222, 223], [231, 232, 233]], [[111, 112, 113], [121, 122, 123], [131, 132, 133]]]) a a.ndim
code
128044716/cell_24
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a
code
128044716/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a
code
128044716/cell_22
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c)
code
128044716/cell_10
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) c
code
128044716/cell_27
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) c = np.arange(10) np.arange(10, 20, 2) a.shape a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) a a.shape a.ndim a = np.ones([3, 4]) a b = np.zeros([3, 5]) b c = np.eye(3) c d = np.diag([1, 2, 3]) d np.diag(c) a = np.array([[311, 312, 313], [321, 322, 323], [331, 332, 333]]) a b = np.array([[211, 212, 213], [221, 222, 223], [231, 232, 233]]) b c = np.array([[111, 112, 113], [121, 122, 123], [131, 132, 133]]) c d = np.array([a, b, c]) d
code
128044716/cell_12
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np a = np.array([2, 3, 4, 5]) a.shape
code
128020226/cell_13
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from IPython.display import display from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import os import pandas as pd import torch import torch.nn as nn DATA_PATH = '/kaggle/input/playground-series-s3e14/' TRAIN_FILE = 'train.csv' TEST_FILE = 'test.csv' train_df = pd.read_csv(os.path.join(DATA_PATH, TRAIN_FILE), index_col=0) test_df = pd.read_csv(os.path.join(DATA_PATH, TEST_FILE), index_col=0) target = 'yield' cols = [col for col in test_df.columns] fig, axes = plt.subplots(4, 4, figsize=(16, 16)) for i, col in enumerate(cols): axes[i//4, i%4].hist(train_df[col], bins=20) axes[i//4, i%4].set_title(col, fontsize=14) plt.show() import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class BlueberryDataset(Dataset): def __init__(self, X, y=None, train=False): self.train = train if self.train: self.X = X self.y = y else: self.X = X def __len__(self): return len(self.X) def __getitem__(self, idx): if self.train: x = torch.tensor(self.X.iloc[idx]).to(dtype=torch.float32) y = torch.tensor(self.y.iloc[idx]).to(dtype=torch.float32) return (x, y) else: x = torch.tensor(self.X.iloc[idx]).to(dtype=torch.float32) return x train_dataset = BlueberryDataset(X_train, y_train, train=True) train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True) val_dataset = BlueberryDataset(X_val, y_val, train=True) val_dataloader = DataLoader(val_dataset, batch_size=128, shuffle=True) test_dataset = BlueberryDataset(test_df, train=False) test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=False) class SimpleModel(nn.Module): def __init__(self, in_features=test_df.shape[1], out_features=1): super().__init__() self.fc1 = nn.Sequential(nn.Linear(in_features, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 16), nn.ReLU(), nn.Linear(16, out_features)) def forward(self, x): return self.fc1(x) model = SimpleModel().to(device) sample = torch.randn(64, test_df.shape[1]).to(device) criterion = nn.L1Loss() optimizer = torch.optim.AdamW(params=model.parameters(), lr=0.001) EPOCHS = 50 for epoch in range(EPOCHS): model.train() train_loss = 0 for i, (X_tr, y_tr) in enumerate(train_dataloader): X_tr = X_tr.to(device) y_tr = y_tr.to(device).reshape(-1, 1) y_pred = model(X_tr) loss = criterion(y_pred, y_tr) train_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() val_loss = 0 model.eval() with torch.inference_mode(): for X_v, y_v in val_dataloader: X_v = X_v.to(device) y_v = y_v.to(device).reshape(-1, 1) val_pred = model(X_v) loss = criterion(val_pred, y_v) val_loss += loss.item() train_loss /= len(train_dataloader) val_loss /= len(val_dataloader) if epoch % 10 == 9: print(f'Epoch: {epoch + 1} | Train MAE: {train_loss:.5f} | Valid MAE: {val_loss:.5f}')
code
128020226/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from IPython.display import display import os import pandas as pd DATA_PATH = '/kaggle/input/playground-series-s3e14/' TRAIN_FILE = 'train.csv' TEST_FILE = 'test.csv' train_df = pd.read_csv(os.path.join(DATA_PATH, TRAIN_FILE), index_col=0) test_df = pd.read_csv(os.path.join(DATA_PATH, TEST_FILE), index_col=0) target = 'yield' print('Train data shape:', train_df.shape) print() print('Null values in train data') print('Column #', end='') display(train_df.isna().sum()) print('Duplicates in train data:', train_df.duplicated().sum())
code
128020226/cell_6
[ "text_plain_output_1.png" ]
from IPython.display import display import matplotlib.pyplot as plt import os import pandas as pd DATA_PATH = '/kaggle/input/playground-series-s3e14/' TRAIN_FILE = 'train.csv' TEST_FILE = 'test.csv' train_df = pd.read_csv(os.path.join(DATA_PATH, TRAIN_FILE), index_col=0) test_df = pd.read_csv(os.path.join(DATA_PATH, TEST_FILE), index_col=0) target = 'yield' cols = [col for col in test_df.columns] fig, axes = plt.subplots(4, 4, figsize=(16, 16)) for i, col in enumerate(cols): axes[i // 4, i % 4].hist(train_df[col], bins=20) axes[i // 4, i % 4].set_title(col, fontsize=14) plt.show()
code
128020226/cell_11
[ "text_plain_output_1.png" ]
from IPython.display import display from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import os import pandas as pd import torch import torch.nn as nn DATA_PATH = '/kaggle/input/playground-series-s3e14/' TRAIN_FILE = 'train.csv' TEST_FILE = 'test.csv' train_df = pd.read_csv(os.path.join(DATA_PATH, TRAIN_FILE), index_col=0) test_df = pd.read_csv(os.path.join(DATA_PATH, TEST_FILE), index_col=0) target = 'yield' cols = [col for col in test_df.columns] fig, axes = plt.subplots(4, 4, figsize=(16, 16)) for i, col in enumerate(cols): axes[i//4, i%4].hist(train_df[col], bins=20) axes[i//4, i%4].set_title(col, fontsize=14) plt.show() import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class BlueberryDataset(Dataset): def __init__(self, X, y=None, train=False): self.train = train if self.train: self.X = X self.y = y else: self.X = X def __len__(self): return len(self.X) def __getitem__(self, idx): if self.train: x = torch.tensor(self.X.iloc[idx]).to(dtype=torch.float32) y = torch.tensor(self.y.iloc[idx]).to(dtype=torch.float32) return (x, y) else: x = torch.tensor(self.X.iloc[idx]).to(dtype=torch.float32) return x train_dataset = BlueberryDataset(X_train, y_train, train=True) train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True) val_dataset = BlueberryDataset(X_val, y_val, train=True) val_dataloader = DataLoader(val_dataset, batch_size=128, shuffle=True) test_dataset = BlueberryDataset(test_df, train=False) test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=False) class SimpleModel(nn.Module): def __init__(self, in_features=test_df.shape[1], out_features=1): super().__init__() self.fc1 = nn.Sequential(nn.Linear(in_features, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 16), nn.ReLU(), nn.Linear(16, out_features)) def forward(self, x): return self.fc1(x) model = SimpleModel().to(device) sample = torch.randn(64, test_df.shape[1]).to(device) print(sample.shape) print(model(sample).shape)
code
128020226/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import torch import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
code
128020226/cell_3
[ "image_output_1.png" ]
import os import pandas as pd DATA_PATH = '/kaggle/input/playground-series-s3e14/' TRAIN_FILE = 'train.csv' TEST_FILE = 'test.csv' train_df = pd.read_csv(os.path.join(DATA_PATH, TRAIN_FILE), index_col=0) test_df = pd.read_csv(os.path.join(DATA_PATH, TEST_FILE), index_col=0) target = 'yield' train_df.info()
code
128020226/cell_14
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from IPython.display import display from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import os import pandas as pd import torch import torch.nn as nn DATA_PATH = '/kaggle/input/playground-series-s3e14/' TRAIN_FILE = 'train.csv' TEST_FILE = 'test.csv' train_df = pd.read_csv(os.path.join(DATA_PATH, TRAIN_FILE), index_col=0) test_df = pd.read_csv(os.path.join(DATA_PATH, TEST_FILE), index_col=0) target = 'yield' cols = [col for col in test_df.columns] fig, axes = plt.subplots(4, 4, figsize=(16, 16)) for i, col in enumerate(cols): axes[i//4, i%4].hist(train_df[col], bins=20) axes[i//4, i%4].set_title(col, fontsize=14) plt.show() import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from sklearn.model_selection import train_test_split device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class BlueberryDataset(Dataset): def __init__(self, X, y=None, train=False): self.train = train if self.train: self.X = X self.y = y else: self.X = X def __len__(self): return len(self.X) def __getitem__(self, idx): if self.train: x = torch.tensor(self.X.iloc[idx]).to(dtype=torch.float32) y = torch.tensor(self.y.iloc[idx]).to(dtype=torch.float32) return (x, y) else: x = torch.tensor(self.X.iloc[idx]).to(dtype=torch.float32) return x train_dataset = BlueberryDataset(X_train, y_train, train=True) train_dataloader = DataLoader(train_dataset, batch_size=128, shuffle=True) val_dataset = BlueberryDataset(X_val, y_val, train=True) val_dataloader = DataLoader(val_dataset, batch_size=128, shuffle=True) test_dataset = BlueberryDataset(test_df, train=False) test_dataloader = DataLoader(test_dataset, batch_size=128, shuffle=False) class SimpleModel(nn.Module): def __init__(self, in_features=test_df.shape[1], out_features=1): super().__init__() self.fc1 = nn.Sequential(nn.Linear(in_features, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU(), nn.Linear(64, 16), nn.ReLU(), nn.Linear(16, out_features)) def forward(self, x): return self.fc1(x) model = SimpleModel().to(device) sample = torch.randn(64, test_df.shape[1]).to(device) criterion = nn.L1Loss() optimizer = torch.optim.AdamW(params=model.parameters(), lr=0.001) EPOCHS = 50 for epoch in range(EPOCHS): model.train() train_loss = 0 for i, (X_tr, y_tr) in enumerate(train_dataloader): X_tr = X_tr.to(device) y_tr = y_tr.to(device).reshape(-1, 1) y_pred = model(X_tr) loss = criterion(y_pred, y_tr) train_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() val_loss = 0 model.eval() with torch.inference_mode(): for X_v, y_v in val_dataloader: X_v = X_v.to(device) y_v = y_v.to(device).reshape(-1, 1) val_pred = model(X_v) loss = criterion(val_pred, y_v) val_loss += loss.item() train_loss /= len(train_dataloader) val_loss /= len(val_dataloader) results = [] model.eval() with torch.inference_mode(): for X_ts in test_dataloader: test_pred = model(X_ts) results.extend(test_pred.reshape(-1).tolist())
code
128020226/cell_5
[ "text_plain_output_1.png" ]
from IPython.display import display import os import pandas as pd DATA_PATH = '/kaggle/input/playground-series-s3e14/' TRAIN_FILE = 'train.csv' TEST_FILE = 'test.csv' train_df = pd.read_csv(os.path.join(DATA_PATH, TRAIN_FILE), index_col=0) test_df = pd.read_csv(os.path.join(DATA_PATH, TEST_FILE), index_col=0) target = 'yield' print('Test data shape:', test_df.shape) print() print('Null values in test data') print('Column #', end='') display(test_df.isna().sum()) print('Duplicates in train data:', test_df.duplicated().sum())
code
33120852/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique() train_data.loc[train_data.Embarked == 'S'].count() train_data.loc[train_data.Embarked == 'S']
code
33120852/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.head()
code
33120852/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum()
code
33120852/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique()
code
33120852/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique() train_data.loc[train_data.Embarked == 'S'].count() train_data.loc[train_data.Embarked == 'S'] train_data.loc[train_data.Embarked.isna()].Embarked train_data.loc[train_data.Embarked.isna()].Embarked train_data.Embarked.fillna(value='S', inplace=True) train_data.loc[train_data.Embarked.isna()].Embarked train_data.isna().sum() train_data.head()
code
33120852/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33120852/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique() train_data.loc[train_data.Embarked == 'S'].count() train_data.loc[train_data.Embarked == 'S'] train_data.loc[train_data.Embarked.isna()].Embarked train_data.loc[train_data.Embarked.isna()].Embarked train_data.Embarked.fillna(value='S', inplace=True) train_data.loc[train_data.Embarked.isna()].Embarked train_data.isna().sum()
code
33120852/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum()
code
33120852/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique() train_data.loc[train_data.Embarked == 'S'].count() train_data.loc[train_data.Embarked == 'S'] train_data.loc[train_data.Embarked.isna()].Embarked train_data.loc[train_data.Embarked.isna()].Embarked
code
33120852/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique() train_data.loc[train_data.Embarked == 'S'].count() train_data.loc[train_data.Embarked == 'S'] train_data.loc[train_data.Embarked.isna()].Embarked train_data.loc[train_data.Embarked.isna()].Embarked train_data.Embarked.fillna(value='S', inplace=True) train_data.loc[train_data.Embarked.isna()].Embarked
code
33120852/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique() train_data.loc[train_data.Embarked == 'S'].count() train_data.loc[train_data.Embarked == 'S'] train_data.loc[train_data.Embarked.isna()].Embarked
code
33120852/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum()
code
33120852/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape train_data.isnull().sum() train_data.drop(columns='Cabin', axis=1, inplace=True) train_data.isnull().sum() train_data.Age.fillna(value=train_data.Age.mean(), inplace=True) train_data.isnull().sum() train_data.Embarked.unique() train_data.loc[train_data.Embarked == 'S'].count()
code
33120852/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.shape
code
16144913/cell_3
[ "text_plain_output_1.png" ]
!ls ../input
code
333538/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', encoding='utf-8', low_memory=False) data['Age'].dropna().describe()
code
333538/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
333538/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', encoding='utf-8', low_memory=False) bins = np.arange(data['Income'].dropna().min(), data['Income'].dropna().max(), 2000) plt.hist(data['Income'].dropna(), bins=bins, alpha=0.5, color='#EDD834', label='Income')
code
333538/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', encoding='utf-8', low_memory=False) data['Income'].dropna().describe()
code
333538/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', encoding='utf-8', low_memory=False) bins = np.arange(data['Income'].dropna().min(), data['Income'].dropna().max(), 2000) bins_age = np.arange(data['Age'].dropna().min(), data['Age'].dropna().max()) plt.hist(data['Age'].dropna(), bins=bins_age, alpha=0.5, color='#EDD834', label='Age')
code
73061409/cell_6
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape
code
73061409/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import plotly.express as px import plotly.graph_objs as go import seaborn as sns data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape values = data['League'].value_counts().tolist() names = list(dict(data['League'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(238, 103, 48, 0.85)', line=dict(color='rgb(25, 20, 20)', width=1.0))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Leagues') values = data['Stage'].value_counts().tolist() names = list(dict(data['Stage'].value_counts()).keys()) values = data['Season'].value_counts().tolist() names = list(dict(data['Season'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(29, 66, 138, 0.75)', line=dict(color='rgb(25, 20, 20)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Seasons') values = data['Team'].value_counts().tolist()[:10] names = list(dict(data['Team'].value_counts()).keys())[:10] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(85, 37, 130, 0.85)', line=dict(color='rgb(253, 185, 39)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Top-10 Teams') values = data['Player'].value_counts().tolist()[:10] names = list(dict(data['Player'].value_counts()).keys())[:10] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(206, 17, 65, 0.85)', line=dict(color='rgb(6, 25, 34)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Top-10 Players') plt.style.use("seaborn") fig, ax =plt.subplots(2,1, figsize=(20,15)) fig.suptitle("Height and Weight Distribution of the Players", fontsize=25, y=0.93) sns.histplot(x = data["height_cm"], kde=True, ax=ax[0], color="navy", bins=20); ax[0].set_xlabel("Player Height in cm.",fontsize=15); sns.histplot(x = data["weight_kg"], kde=True, ax=ax[1], color="darkred", bins=20); ax[1].set_xlabel("Player Weight in kg.",fontsize=15); values = data['high_school'].value_counts().tolist()[:215] names = list(dict(data['high_school'].value_counts()).keys())[:15] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(0, 101, 58, 0.85)', line=dict(color='rgb(255, 194, 32)', width=1.5))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='High Schools of the Players') fig.show()
code
73061409/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import plotly.graph_objs as go data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape values = data['League'].value_counts().tolist() names = list(dict(data['League'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(238, 103, 48, 0.85)', line=dict(color='rgb(25, 20, 20)', width=1.0))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Leagues') fig.show()
code
73061409/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape values = data['League'].value_counts().tolist() names = list(dict(data['League'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(238, 103, 48, 0.85)', line=dict(color='rgb(25, 20, 20)', width=1.0))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Leagues') values = data['Stage'].value_counts().tolist() names = list(dict(data['Stage'].value_counts()).keys()) values = data['Season'].value_counts().tolist() names = list(dict(data['Season'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(29, 66, 138, 0.75)', line=dict(color='rgb(25, 20, 20)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Seasons') values = data['Team'].value_counts().tolist()[:10] names = list(dict(data['Team'].value_counts()).keys())[:10] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(85, 37, 130, 0.85)', line=dict(color='rgb(253, 185, 39)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Top-10 Teams') values = data['Player'].value_counts().tolist()[:10] names = list(dict(data['Player'].value_counts()).keys())[:10] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(206, 17, 65, 0.85)', line=dict(color='rgb(6, 25, 34)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Top-10 Players') fig.show()
code
73061409/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import plotly.express as px import plotly.graph_objs as go import seaborn as sns data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape values = data['League'].value_counts().tolist() names = list(dict(data['League'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(238, 103, 48, 0.85)', line=dict(color='rgb(25, 20, 20)', width=1.0))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Leagues') values = data['Stage'].value_counts().tolist() names = list(dict(data['Stage'].value_counts()).keys()) values = data['Season'].value_counts().tolist() names = list(dict(data['Season'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(29, 66, 138, 0.75)', line=dict(color='rgb(25, 20, 20)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Seasons') values = data['Team'].value_counts().tolist()[:10] names = list(dict(data['Team'].value_counts()).keys())[:10] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(85, 37, 130, 0.85)', line=dict(color='rgb(253, 185, 39)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Top-10 Teams') values = data['Player'].value_counts().tolist()[:10] names = list(dict(data['Player'].value_counts()).keys())[:10] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(206, 17, 65, 0.85)', line=dict(color='rgb(6, 25, 34)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Top-10 Players') plt.style.use('seaborn') fig, ax = plt.subplots(2, 1, figsize=(20, 15)) fig.suptitle('Height and Weight Distribution of the Players', fontsize=25, y=0.93) sns.histplot(x=data['height_cm'], kde=True, ax=ax[0], color='navy', bins=20) ax[0].set_xlabel('Player Height in cm.', fontsize=15) sns.histplot(x=data['weight_kg'], kde=True, ax=ax[1], color='darkred', bins=20) ax[1].set_xlabel('Player Weight in kg.', fontsize=15)
code
73061409/cell_14
[ "text_html_output_2.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape values = data['League'].value_counts().tolist() names = list(dict(data['League'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(238, 103, 48, 0.85)', line=dict(color='rgb(25, 20, 20)', width=1.0))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Leagues') values = data['Stage'].value_counts().tolist() names = list(dict(data['Stage'].value_counts()).keys()) values = data['Season'].value_counts().tolist() names = list(dict(data['Season'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(29, 66, 138, 0.75)', line=dict(color='rgb(25, 20, 20)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Seasons') values = data['Team'].value_counts().tolist()[:10] names = list(dict(data['Team'].value_counts()).keys())[:10] fig = go.Bar(x=names, y=values, marker=dict(color='rgba(85, 37, 130, 0.85)', line=dict(color='rgb(253, 185, 39)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Top-10 Teams') fig.show()
code
73061409/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape values = data['League'].value_counts().tolist() names = list(dict(data['League'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(238, 103, 48, 0.85)', line=dict(color='rgb(25, 20, 20)', width=1.0))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Leagues') values = data['Stage'].value_counts().tolist() names = list(dict(data['Stage'].value_counts()).keys()) px.pie(data, values=values, names=names, title='Basketball Match Stages', color_discrete_sequence=['#ee6730', '#1d428a', '#c8102e'])
code
73061409/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.shape values = data['League'].value_counts().tolist() names = list(dict(data['League'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(238, 103, 48, 0.85)', line=dict(color='rgb(25, 20, 20)', width=1.0))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Leagues') values = data['Stage'].value_counts().tolist() names = list(dict(data['Stage'].value_counts()).keys()) values = data['Season'].value_counts().tolist() names = list(dict(data['Season'].value_counts()).keys()) fig = go.Bar(x=names, y=values, marker=dict(color='rgba(29, 66, 138, 0.75)', line=dict(color='rgb(25, 20, 20)', width=1.25))) layout = go.Layout() fig = go.Figure(data=fig, layout=layout) fig.update_layout(title_text='Basketball Seasons') fig.show()
code
73061409/cell_5
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/basketball-players-stats-per-season-49-leagues/players_stats_by_season_full_details.csv') data.head()
code
88092308/cell_21
[ "text_plain_output_1.png" ]
from implicit.evaluation import mean_average_precision_at_k from scipy.sparse import coo_matrix import implicit import numpy as np import pandas as pd transactions = transactions[transactions['t_dat'] > '2020-09-14'] transactions.shape all_customers = customers['customer_id'].unique().tolist() all_articles = articles['article_id'].unique().tolist() customer_ids = dict(list(enumerate(all_customers))) article_ids = dict(list(enumerate(all_articles))) transactions['customer_id'] = transactions['customer_id'].map({u: uidx for uidx, u in customer_ids.items()}) transactions['article_id'] = transactions['article_id'].map({i: iidx for iidx, i in article_ids.items()}) del customers, articles row = transactions['customer_id'].values col = transactions['article_id'].values data = np.ones(transactions.shape[0]) coo_train = coo_matrix((data, (row, col)), shape=(len(all_customers), len(all_articles))) coo_train def to_customer_article_coo(transactions): """ Turn a dataframe with transactions into a COO sparse articles x customers matrix""" row = transactions['customer_id'].values col = transactions['article_id'].values data = np.ones(transactions.shape[0]) coo = coo_matrix((data, (row, col)), shape=(len(all_customers), len(all_articles))) return coo def split_data(transactions, validation_days=7): """ Split a pandas dataframe into training and validation data, using <<validation_days>> """ validation_cut = transactions['t_dat'].max() - pd.Timedelta(validation_days) df_train = transactions[transactions['t_dat'] < validation_cut] df_val = transactions[transactions['t_dat'] >= validation_cut] return (df_train, df_val) def get_val_matrices(transactions, validation_days=7): """ Split into training and validation and create various matrices Returns a dictionary with the following keys: coo_train: training data in COO sparse format and as (customers x articles) csr_train: training data in CSR sparse format and as (customers x articles) csr_val: validation data in CSR sparse format and as (customers x articles) """ df_train, df_val = split_data(transactions, validation_days=validation_days) coo_train = to_customer_article_coo(df_train) coo_val = to_customer_article_coo(df_val) csr_train = coo_train.tocsr() csr_val = coo_val.tocsr() return {'coo_train': coo_train, 'csr_train': csr_train, 'csr_val': csr_val} def validate(matrices, factors=200, iterations=20, regularization=0.01, show_progress=True): """ Train an ALS model with <<factors>> (embeddings dimension) for <<iterations>> over matrices and validate with MAP@12 """ coo_train, csr_train, csr_val = (matrices['coo_train'], matrices['csr_train'], matrices['csr_val']) model = implicit.als.AlternatingLeastSquares(factors=factors, iterations=iterations, regularization=regularization, random_state=7, use_gpu=True) model.fit(coo_train, show_progress=show_progress) map12 = mean_average_precision_at_k(model, csr_train, csr_val, K=12, show_progress=show_progress, num_threads=4) return map12 transactions_customers = transactions['customer_id'].unique().tolist() len(transactions_customers)
code
88092308/cell_9
[ "text_html_output_1.png", "text_plain_output_1.png" ]
transactions = transactions[transactions['t_dat'] > '2020-09-14'] transactions.shape transactions['t_dat'].max()
code
88092308/cell_4
[ "text_plain_output_1.png" ]
transactions = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/transactions_train.csv', dtype={'article_id': str}, parse_dates=['t_dat']) sample_submission = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/sample_submission.csv') customers = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/customers.csv') articles = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/articles.csv', dtype={'article_id': str})
code
88092308/cell_6
[ "text_plain_output_1.png" ]
customers
code
88092308/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
# Installing latest implicit library for ALS !pip install --upgrade implicit
code
88092308/cell_11
[ "text_plain_output_1.png" ]
from scipy.sparse import coo_matrix import numpy as np transactions = transactions[transactions['t_dat'] > '2020-09-14'] transactions.shape all_customers = customers['customer_id'].unique().tolist() all_articles = articles['article_id'].unique().tolist() customer_ids = dict(list(enumerate(all_customers))) article_ids = dict(list(enumerate(all_articles))) transactions['customer_id'] = transactions['customer_id'].map({u: uidx for uidx, u in customer_ids.items()}) transactions['article_id'] = transactions['article_id'].map({i: iidx for iidx, i in article_ids.items()}) del customers, articles row = transactions['customer_id'].values col = transactions['article_id'].values data = np.ones(transactions.shape[0]) coo_train = coo_matrix((data, (row, col)), shape=(len(all_customers), len(all_articles))) coo_train
code
88092308/cell_19
[ "text_plain_output_1.png" ]
from implicit.evaluation import mean_average_precision_at_k from scipy.sparse import coo_matrix import implicit import numpy as np import pandas as pd transactions = transactions[transactions['t_dat'] > '2020-09-14'] transactions.shape all_customers = customers['customer_id'].unique().tolist() all_articles = articles['article_id'].unique().tolist() customer_ids = dict(list(enumerate(all_customers))) article_ids = dict(list(enumerate(all_articles))) transactions['customer_id'] = transactions['customer_id'].map({u: uidx for uidx, u in customer_ids.items()}) transactions['article_id'] = transactions['article_id'].map({i: iidx for iidx, i in article_ids.items()}) del customers, articles row = transactions['customer_id'].values col = transactions['article_id'].values data = np.ones(transactions.shape[0]) coo_train = coo_matrix((data, (row, col)), shape=(len(all_customers), len(all_articles))) coo_train def to_customer_article_coo(transactions): """ Turn a dataframe with transactions into a COO sparse articles x customers matrix""" row = transactions['customer_id'].values col = transactions['article_id'].values data = np.ones(transactions.shape[0]) coo = coo_matrix((data, (row, col)), shape=(len(all_customers), len(all_articles))) return coo def split_data(transactions, validation_days=7): """ Split a pandas dataframe into training and validation data, using <<validation_days>> """ validation_cut = transactions['t_dat'].max() - pd.Timedelta(validation_days) df_train = transactions[transactions['t_dat'] < validation_cut] df_val = transactions[transactions['t_dat'] >= validation_cut] return (df_train, df_val) def get_val_matrices(transactions, validation_days=7): """ Split into training and validation and create various matrices Returns a dictionary with the following keys: coo_train: training data in COO sparse format and as (customers x articles) csr_train: training data in CSR sparse format and as (customers x articles) csr_val: validation data in CSR sparse format and as (customers x articles) """ df_train, df_val = split_data(transactions, validation_days=validation_days) coo_train = to_customer_article_coo(df_train) coo_val = to_customer_article_coo(df_val) csr_train = coo_train.tocsr() csr_val = coo_val.tocsr() return {'coo_train': coo_train, 'csr_train': csr_train, 'csr_val': csr_val} def validate(matrices, factors=200, iterations=20, regularization=0.01, show_progress=True): """ Train an ALS model with <<factors>> (embeddings dimension) for <<iterations>> over matrices and validate with MAP@12 """ coo_train, csr_train, csr_val = (matrices['coo_train'], matrices['csr_train'], matrices['csr_val']) model = implicit.als.AlternatingLeastSquares(factors=factors, iterations=iterations, regularization=regularization, random_state=7, use_gpu=True) model.fit(coo_train, show_progress=show_progress) map12 = mean_average_precision_at_k(model, csr_train, csr_val, K=12, show_progress=show_progress, num_threads=4) return map12 coo_train = to_customer_article_coo(transactions) csr_train = coo_train.tocsr() def train(coo_train, factors=200, iterations=15, regularization=0.01, show_progress=True): model = implicit.als.AlternatingLeastSquares(factors=factors, iterations=iterations, regularization=regularization, random_state=7, use_gpu=True) model.fit(coo_train, show_progress=show_progress) return model best_params model = train(coo_train, **best_params)
code
88092308/cell_18
[ "text_plain_output_1.png" ]
from implicit.evaluation import mean_average_precision_at_k from scipy.sparse import coo_matrix import implicit import numpy as np import pandas as pd transactions = transactions[transactions['t_dat'] > '2020-09-14'] transactions.shape all_customers = customers['customer_id'].unique().tolist() all_articles = articles['article_id'].unique().tolist() customer_ids = dict(list(enumerate(all_customers))) article_ids = dict(list(enumerate(all_articles))) transactions['customer_id'] = transactions['customer_id'].map({u: uidx for uidx, u in customer_ids.items()}) transactions['article_id'] = transactions['article_id'].map({i: iidx for iidx, i in article_ids.items()}) del customers, articles row = transactions['customer_id'].values col = transactions['article_id'].values data = np.ones(transactions.shape[0]) coo_train = coo_matrix((data, (row, col)), shape=(len(all_customers), len(all_articles))) coo_train def to_customer_article_coo(transactions): """ Turn a dataframe with transactions into a COO sparse articles x customers matrix""" row = transactions['customer_id'].values col = transactions['article_id'].values data = np.ones(transactions.shape[0]) coo = coo_matrix((data, (row, col)), shape=(len(all_customers), len(all_articles))) return coo def split_data(transactions, validation_days=7): """ Split a pandas dataframe into training and validation data, using <<validation_days>> """ validation_cut = transactions['t_dat'].max() - pd.Timedelta(validation_days) df_train = transactions[transactions['t_dat'] < validation_cut] df_val = transactions[transactions['t_dat'] >= validation_cut] return (df_train, df_val) def get_val_matrices(transactions, validation_days=7): """ Split into training and validation and create various matrices Returns a dictionary with the following keys: coo_train: training data in COO sparse format and as (customers x articles) csr_train: training data in CSR sparse format and as (customers x articles) csr_val: validation data in CSR sparse format and as (customers x articles) """ df_train, df_val = split_data(transactions, validation_days=validation_days) coo_train = to_customer_article_coo(df_train) coo_val = to_customer_article_coo(df_val) csr_train = coo_train.tocsr() csr_val = coo_val.tocsr() return {'coo_train': coo_train, 'csr_train': csr_train, 'csr_val': csr_val} def validate(matrices, factors=200, iterations=20, regularization=0.01, show_progress=True): """ Train an ALS model with <<factors>> (embeddings dimension) for <<iterations>> over matrices and validate with MAP@12 """ coo_train, csr_train, csr_val = (matrices['coo_train'], matrices['csr_train'], matrices['csr_val']) model = implicit.als.AlternatingLeastSquares(factors=factors, iterations=iterations, regularization=regularization, random_state=7, use_gpu=True) model.fit(coo_train, show_progress=show_progress) map12 = mean_average_precision_at_k(model, csr_train, csr_val, K=12, show_progress=show_progress, num_threads=4) return map12 coo_train = to_customer_article_coo(transactions) csr_train = coo_train.tocsr() def train(coo_train, factors=200, iterations=15, regularization=0.01, show_progress=True): model = implicit.als.AlternatingLeastSquares(factors=factors, iterations=iterations, regularization=regularization, random_state=7, use_gpu=True) model.fit(coo_train, show_progress=show_progress) return model best_params
code
88092308/cell_8
[ "text_plain_output_1.png" ]
transactions = transactions[transactions['t_dat'] > '2020-09-14'] transactions.shape
code
88092308/cell_15
[ "text_html_output_1.png" ]
best_map12 = 0 for factors in [40, 50, 60, 100, 200, 500, 1000]: for iterations in [3, 12, 14, 15, 20]: for regularization in [0.01]: map12 = validate(matrices, factors, iterations, regularization, show_progress=False) if map12 > best_map12: best_map12 = map12 best_params = {'factors': factors, 'iterations': iterations, 'regularization': regularization} print(f'Best MAP@12 found. Updating: {best_params}') del matrices
code
88092308/cell_16
[ "text_html_output_1.png" ]
best_params
code
88092308/cell_22
[ "text_plain_output_1.png" ]
df_preds = submit(model, csr_train, transactions_customers, heng_df)
code
88092308/cell_10
[ "text_plain_output_1.png" ]
transactions = transactions[transactions['t_dat'] > '2020-09-14'] transactions.shape all_customers = customers['customer_id'].unique().tolist() all_articles = articles['article_id'].unique().tolist() customer_ids = dict(list(enumerate(all_customers))) article_ids = dict(list(enumerate(all_articles))) transactions['customer_id'] = transactions['customer_id'].map({u: uidx for uidx, u in customer_ids.items()}) transactions['article_id'] = transactions['article_id'].map({i: iidx for iidx, i in article_ids.items()}) del customers, articles
code
88092308/cell_12
[ "text_html_output_1.png" ]
model = implicit.als.AlternatingLeastSquares(factors=10, iterations=2, use_gpu=True, calculate_training_loss=True, random_state=7) model.fit(coo_train)
code
88092308/cell_5
[ "text_plain_output_1.png" ]
articles
code
104121949/cell_21
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} a = age.get('Rohit') age2 = {'a': 3, 'b': 6, 'c': 9} age.update(age2) age
code
104121949/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
marks = {'Rahul': 23, 'Joe': 15, 'Venkat': {'Section1': 12, 'Section2': 15, 'Section3': 22}} marks
code
104121949/cell_25
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} a = age.get('Rohit') age2 = {'a': 3, 'b': 6, 'c': 9} age.update(age2) age.pop('c') age.clear() age
code
104121949/cell_4
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} age
code
104121949/cell_23
[ "text_plain_output_1.png" ]
age = {} type(age) age = {'Rahul': 23, 'Joe': 15, 'Venkat': 32} a = age.get('Rohit') age2 = {'a': 3, 'b': 6, 'c': 9} age.update(age2) age.pop('c') age
code
104121949/cell_2
[ "text_plain_output_1.png" ]
age = {} type(age)
code
104121949/cell_11
[ "text_plain_output_1.png" ]
marks = {'Rahul': 23, 'Joe': 15, 'Venkat': {'Section1': 12, 'Section2': 15, 'Section3': 22}} marks.keys()
code