path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73072707/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dtrain = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv') dtest = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv') dtrain total = dtrain.isnull().sum().sort_values(ascending=False) percent = (dtrain.isnull().sum() / dtrain.isnull().count()).sort_values(ascending=False) missing_values = pd.concat([total, percent], axis=1, keys=['total', 'percent']) dtrain = dtrain.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtest = dtest.drop(missing_values[missing_values['percent'] > 0.8].index, 1) dtrain.isnull().sum().sort_values(ascending=False).head(13) dtrain['Electrical']
code
106192046/cell_42
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results best_score = model_cv.best_score_ best_C = model_cv.best_params_['C'] logistic_1 = LogisticRegression(class_weight='balanced', C=best_C) log_1_model = logistic_1.fit(X_train_scaled, y_train) Y_train_pred = log_1_model.predict(X_train_scaled) Y_test_pred = log_1_model.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) df_eval
code
106192046/cell_21
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder, OneHotEncoder import math import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) train_data.drop(['Ticket'], axis=1, inplace=True) train_data.dtypes rows = int(math.ceil(len(['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']) / 4)) cols = 4 #Heatmap f, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train_data.corr(), xticklabels=train_data.corr().columns.values, yticklabels=train_data.corr().columns.values,annot= True) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) plt.show() objList = train_data.select_dtypes(include='object').columns le = LabelEncoder() for feat in objList: train_data[feat] = le.fit_transform(train_data[feat].astype(str)) print(train_data.info())
code
106192046/cell_9
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] for a in train_data.columns: if len(train_data[a].unique()) == train_data.shape[0]: print(a)
code
106192046/cell_25
[ "text_html_output_1.png" ]
X_train.shape
code
106192046/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.describe()
code
106192046/cell_30
[ "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) X_test_scaled.head()
code
106192046/cell_44
[ "image_output_1.png" ]
from plot_metric.functions import BinaryClassification from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler import math import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) train_data.drop(['Ticket'], axis=1, inplace=True) train_data.dtypes rows = int(math.ceil(len(['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']) / 4)) cols = 4 #Heatmap f, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train_data.corr(), xticklabels=train_data.corr().columns.values, yticklabels=train_data.corr().columns.values,annot= True) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) plt.show() X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results plt.xscale('log') best_score = model_cv.best_score_ best_C = model_cv.best_params_['C'] logistic_1 = LogisticRegression(class_weight='balanced', C=best_C) log_1_model = logistic_1.fit(X_train_scaled, y_train) Y_train_pred = log_1_model.predict(X_train_scaled) Y_test_pred = log_1_model.predict(X_test_scaled) from plot_metric.functions import BinaryClassification bc = BinaryClassification(y_test, Y_test_pred, labels=['Class 1', 'Class 2']) plt.figure(figsize=(5, 5)) bc.plot_roc_curve() plt.show()
code
106192046/cell_20
[ "text_plain_output_1.png" ]
import math import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) train_data.drop(['Ticket'], axis=1, inplace=True) train_data.dtypes rows = int(math.ceil(len(['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']) / 4)) cols = 4 #Heatmap f, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train_data.corr(), xticklabels=train_data.corr().columns.values, yticklabels=train_data.corr().columns.values,annot= True) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) plt.show() objList = train_data.select_dtypes(include='object').columns print(objList)
code
106192046/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) getDatasetDetail(train_data)
code
106192046/cell_39
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results best_score = model_cv.best_score_ best_C = model_cv.best_params_['C'] print(' The highest test sensitivity is {0} at C = {1}'.format(best_score, best_C))
code
106192046/cell_48
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results best_score = model_cv.best_score_ best_C = model_cv.best_params_['C'] logistic_1 = LogisticRegression(class_weight='balanced', C=best_C) log_1_model = logistic_1.fit(X_train_scaled, y_train) Y_train_pred = log_1_model.predict(X_train_scaled) Y_test_pred = log_1_model.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) param_grid = {'max_depth': range(10, 20, 10), 'min_samples_leaf': range(50, 150, 50), 'min_samples_split': range(50, 150, 50)} dtree = DecisionTreeClassifier(class_weight='balanced', random_state=42) grid_search = GridSearchCV(estimator=dtree, param_grid=param_grid, scoring='recall', cv=5, verbose=1) grid_search.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(grid_search.cv_results_) cv_results print('Best score:-', grid_search.best_score_) print(grid_search.best_estimator_)
code
106192046/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) getDatasetDetail(train_data)
code
106192046/cell_50
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results best_score = model_cv.best_score_ best_C = model_cv.best_params_['C'] logistic_1 = LogisticRegression(class_weight='balanced', C=best_C) log_1_model = logistic_1.fit(X_train_scaled, y_train) Y_train_pred = log_1_model.predict(X_train_scaled) Y_test_pred = log_1_model.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) param_grid = {'max_depth': range(10, 20, 10), 'min_samples_leaf': range(50, 150, 50), 'min_samples_split': range(50, 150, 50)} dtree = DecisionTreeClassifier(class_weight='balanced', random_state=42) grid_search = GridSearchCV(estimator=dtree, param_grid=param_grid, scoring='recall', cv=5, verbose=1) grid_search.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(grid_search.cv_results_) cv_results dt = DecisionTreeClassifier(class_weight='balanced', criterion='gini', max_depth=10, min_samples_leaf=50, min_samples_split=50, random_state=42) dt_model = dt.fit(X_train_scaled, y_train) Y_train_pred = dt_model.predict(X_train_scaled) Y_test_pred = dt_model.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) df_eval
code
106192046/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106192046/cell_18
[ "text_html_output_1.png" ]
import math import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) train_data.drop(['Ticket'], axis=1, inplace=True) train_data.dtypes rows = int(math.ceil(len(['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']) / 4)) cols = 4 f, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train_data.corr(), xticklabels=train_data.corr().columns.values, yticklabels=train_data.corr().columns.values, annot=True) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) plt.show()
code
106192046/cell_28
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_train_scaled.head()
code
106192046/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] getDatasetDetail(train_data)
code
106192046/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) train_data.drop(['Ticket'], axis=1, inplace=True) train_data.dtypes
code
106192046/cell_38
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler import math import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) train_data.drop(['Ticket'], axis=1, inplace=True) train_data.dtypes rows = int(math.ceil(len(['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']) / 4)) cols = 4 #Heatmap f, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train_data.corr(), xticklabels=train_data.corr().columns.values, yticklabels=train_data.corr().columns.values,annot= True) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) plt.show() X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results plt.figure(figsize=(8, 6)) plt.plot(cv_results['param_C'], cv_results['mean_test_score']) plt.plot(cv_results['param_C'], cv_results['mean_train_score']) plt.xlabel('C') plt.ylabel('sensitivity') plt.legend(['test result', 'train result'], loc='upper left') plt.xscale('log')
code
106192046/cell_47
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results best_score = model_cv.best_score_ best_C = model_cv.best_params_['C'] logistic_1 = LogisticRegression(class_weight='balanced', C=best_C) log_1_model = logistic_1.fit(X_train_scaled, y_train) Y_train_pred = log_1_model.predict(X_train_scaled) Y_test_pred = log_1_model.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) param_grid = {'max_depth': range(10, 20, 10), 'min_samples_leaf': range(50, 150, 50), 'min_samples_split': range(50, 150, 50)} dtree = DecisionTreeClassifier(class_weight='balanced', random_state=42) grid_search = GridSearchCV(estimator=dtree, param_grid=param_grid, scoring='recall', cv=5, verbose=1) grid_search.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(grid_search.cv_results_) cv_results
code
106192046/cell_3
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.head()
code
106192046/cell_17
[ "text_html_output_1.png" ]
import math import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) train_data.drop(['Ticket'], axis=1, inplace=True) train_data.dtypes plt.figure(figsize=(20, 10)) rows = int(math.ceil(len(['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']) / 4)) cols = 4 for i, n in enumerate(['Survived', 'Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']): plt.subplot(rows, cols, i + 1) sns.countplot(x=n, data=train_data) plt.show()
code
106192046/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) df_eval
code
106192046/cell_43
[ "text_html_output_1.png" ]
!pip install plot_metric
code
106192046/cell_46
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) param_grid = {'max_depth': range(10, 20, 10), 'min_samples_leaf': range(50, 150, 50), 'min_samples_split': range(50, 150, 50)} dtree = DecisionTreeClassifier(class_weight='balanced', random_state=42) grid_search = GridSearchCV(estimator=dtree, param_grid=param_grid, scoring='recall', cv=5, verbose=1) grid_search.fit(X_train_scaled, y_train)
code
106192046/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) train_data = train_data.loc[:, train_data.isnull().sum() / len(train_data) * 100 < 60] train_data.drop(['PassengerId', 'Name'], axis=1, inplace=True) def fill_Missing_Values(df): miss_col = df.isnull().sum() miss_col = miss_col[miss_col > 0] for column in miss_col.index: if df[column].dtype.name == 'object': df[column].fillna(df[column].mode()[0], inplace=True) elif df[column].dtype.name == 'float64' or df[column].dtype.name == 'int64' or df[column].dtype.name == 'int32': df[column] = df[column].fillna(df[column].median()) return df train_data = fill_Missing_Values(train_data) getDatasetDetail(train_data)
code
106192046/cell_37
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, log_loss, f1_score, classification_report, roc_curve, plot_roc_curve from sklearn.metrics import confusion_matrix, precision_score, recall_score, precision_recall_curve, roc_auc_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) X_test_sc = scaler.transform(X_test) X_test_scaled = pd.DataFrame(X_test_sc, columns=X_test.columns) def evaluate_model(actual, pred): acc_sc = round(accuracy_score(actual, pred) * 100, 2) prec_sc = round(precision_score(actual, pred) * 100, 2) rec_sc = round(recall_score(actual, pred) * 100, 2) confusion_m = confusion_matrix(actual, pred) TP = confusion_m[1, 1] TN = confusion_m[0, 0] FP = confusion_m[0, 1] FN = confusion_m[1, 0] Specificity = round(TN / float(TN + FP), 2) roc_score = round(recall_score(actual, pred) * 100, 2) f1_score = round(2 * (prec_sc * rec_sc / (prec_sc + rec_sc)), 2) return {'TP': TP, 'TN': TN, 'FP': FP, 'FN': FN, 'Recall': rec_sc, 'Precision': prec_sc, 'Specificity': Specificity, 'ROC/AUC Score': roc_score, 'F1-Score': f1_score, 'Accuracy': acc_sc} model_lg = LogisticRegression(random_state=42) model_lg.fit(X_train_scaled, y_train) Y_train_pred = model_lg.predict(X_train_scaled) Y_test_pred = model_lg.predict(X_test_scaled) train_eval = pd.DataFrame([evaluate_model(y_train, Y_train_pred)]) test_eval = pd.DataFrame([evaluate_model(y_test, Y_test_pred)]) df_eval = pd.concat([train_eval, test_eval]) df_eval['data'] = ['train_data', 'test_data'] df_eval.set_index('data', inplace=True) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train) cv_results = pd.DataFrame(model_cv.cv_results_) cv_results
code
106192046/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape
code
106192046/cell_36
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedShuffleSplit from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') train_data.shape def getDatasetDetail(data): return pd.DataFrame({'Datatype': data.dtypes.astype(str), 'Non_Null_Count': data.count(axis=0).astype(int), 'Null_Count': data.isnull().sum().astype(int), 'Null_Percentage': round(data.isnull().sum() / len(data) * 100, 2), 'Unique_Values_Count': data.nunique().astype(int)}).sort_values(by='Null_Percentage', ascending=False) X_train.shape scaler = StandardScaler() X_train_sc = scaler.fit_transform(X_train) X_train_scaled = pd.DataFrame(X_train_sc, columns=X_train.columns) folds = KFold(n_splits=10, shuffle=True, random_state=4) params = {'C': [0.01, 0.1, 1, 10, 100, 1000]} model_cv = GridSearchCV(estimator=LogisticRegression(), param_grid=params, scoring='recall', cv=folds, verbose=1, return_train_score=True) model_cv.fit(X_train_scaled, y_train)
code
16115529/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import fastai from fastai.train import Learner from fastai.train import DataBunch from fastai.callbacks import GeneralScheduler, TrainingPhase from fastai.basic_data import DatasetType import fastprogress from fastprogress import force_console_behavior import numpy as np from pprint import pprint import pandas as pd import os import time import gc import random from tqdm._tqdm_notebook import tqdm_notebook as tqdm from keras.preprocessing import text, sequence import torch from torch import nn from torch.utils import data from torch.nn import functional as F import torch.utils.data from tqdm import tqdm import warnings from nltk.tokenize.treebank import TreebankWordTokenizer from scipy.stats import rankdata from gensim.models import KeyedVectors from sklearn.metrics import roc_auc_score import copy
code
16115529/cell_10
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from fastai.callbacks import GeneralScheduler, TrainingPhase from fastprogress import force_console_behavior from gensim.models import KeyedVectors from keras.preprocessing import text, sequence from scipy.stats import rankdata from torch import nn from torch.utils import data from tqdm import tqdm import copy import fastai import fastprogress import gc import numpy as np import numpy as np import os import pandas as pd import pandas as pd import random import torch import warnings def convert_lines(example, max_seq_length,tokenizer): max_seq_length -=2 all_tokens = [] longer = 0 for text in tqdm(example): tokens_a = tokenizer.tokenize(text) if len(tokens_a)>max_seq_length: tokens_a = tokens_a[:max_seq_length] longer += 1 one_token = tokenizer.convert_tokens_to_ids(["[CLS]"]+tokens_a+["[SEP]"])+[0] * (max_seq_length - len(tokens_a)) all_tokens.append(one_token) return np.array(all_tokens) def is_interactive(): return 'SHLVL' not in os.environ def seed_everything(seed=123): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def get_coefs(word, *arr): return word, np.asarray(arr, dtype='float32') def load_embeddings(path): #with open(path,'rb') as f: emb_arr = KeyedVectors.load(path) return emb_arr def build_matrix(word_index, path, dim=300): embedding_index = load_embeddings(path) embedding_matrix = np.zeros((max_features + 1, dim)) unknown_words = [] for word, i in word_index.items(): if i <= max_features: try: embedding_matrix[i] = embedding_index[word] except KeyError: try: embedding_matrix[i] = embedding_index[word.lower()] except KeyError: try: embedding_matrix[i] = embedding_index[word.title()] except KeyError: unknown_words.append(word) return embedding_matrix, unknown_words def sigmoid(x): return 1 / (1 + np.exp(-x)) class SpatialDropout(nn.Dropout2d): def forward(self, x): x = x.unsqueeze(2) # (N, T, 1, K) x = x.permute(0, 3, 2, 1) # (N, K, 1, T) x = super(SpatialDropout, self).forward(x) # (N, K, 1, T), some features are masked x = x.permute(0, 3, 2, 1) # (N, T, 1, K) x = x.squeeze(2) # (N, T, K) return x def train_model(learn,output_dim,lr=0.001, batch_size=512, n_epochs=5): n = len(learn.data.train_dl) phases = [(TrainingPhase(n).schedule_hp('lr', lr * (0.6**(i)))) for i in range(n_epochs)] sched = GeneralScheduler(learn, phases) learn.callbacks.append(sched) models_array = [] for epoch in range(n_epochs): learn.fit(1) learn.save('model_{}'.format(epoch)) models_array.append(copy.deepcopy(learn.model)) return models_array def handle_punctuation(x): x = x.translate(remove_dict) x = x.translate(isolate_dict) return x def handle_contractions(x): x = tokenizer.tokenize(x) return x def fix_quote(x): x = [x_[1:] if x_.startswith("'") else x_ for x_ in x] x = ' '.join(x) return x def preprocess(x): x = handle_punctuation(x) x = handle_contractions(x) x = fix_quote(x) return x class SequenceBucketCollator(): def __init__(self, choose_length, sequence_index, length_index, label_index=None): self.choose_length = choose_length self.sequence_index = sequence_index self.length_index = length_index self.label_index = label_index def __call__(self, batch): batch = [torch.stack(x) for x in list(zip(*batch))] sequences = batch[self.sequence_index] lengths = batch[self.length_index] length = self.choose_length(lengths) mask = torch.arange(start=maxlen, end=0, step=-1) < length padded_sequences = sequences[:, mask] batch[self.sequence_index] = padded_sequences if self.label_index is not None: return [x for i, x in enumerate(batch) if i != self.label_index], batch[self.label_index] return batch class SoftmaxPooling(nn.Module): def __init__(self, dim=1): super(self.__class__, self).__init__() self.dim = dim def forward(self, x): return (x * x.softmax(dim=self.dim)).sum(dim=self.dim) class NeuralNet(nn.Module): def __init__(self, embedding_matrix, num_aux_targets): super(NeuralNet, self).__init__() embed_size = embedding_matrix.shape[1] self.embedding = nn.Embedding(max_features, embed_size) self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32)) self.embedding.weight.requires_grad = False self.embedding_dropout = SpatialDropout(0.3) self.lstm1 = nn.LSTM(embed_size, LSTM_UNITS, bidirectional=True, batch_first=True) self.lstm2 = nn.LSTM(LSTM_UNITS * 2, LSTM_UNITS, bidirectional=True, batch_first=True) self.linear_out = nn.Sequential( nn.Dropout(0.5), nn.BatchNorm1d(DENSE_HIDDEN_UNITS), nn.Linear(DENSE_HIDDEN_UNITS, 1) ) self.linear_aux_out = nn.Sequential( nn.Dropout(0.5), nn.BatchNorm1d(DENSE_HIDDEN_UNITS), nn.Linear(DENSE_HIDDEN_UNITS, num_aux_targets) ) self.softmaxpool = SoftmaxPooling() def forward(self, x, lengths=None): h_embedding = self.embedding(x.long()) h_embedding = self.embedding_dropout(h_embedding) h_lstm1, _ = self.lstm1(h_embedding) h_lstm2, _ = self.lstm2(h_lstm1) # global average pooling avg_pool = torch.mean(h_lstm2, 1) # global max pooling max_pool, _ = torch.max(h_lstm2, 1) # softmax pooling soft_pool = self.softmaxpool(h_lstm2) h_conc = torch.cat((max_pool, avg_pool, soft_pool), 1) hidden = h_conc result = self.linear_out(hidden) aux_result = self.linear_aux_out(hidden) out = torch.cat([result, aux_result], 1) return out def custom_loss(data, targets): bce_loss_1 = nn.BCEWithLogitsLoss(weight=targets[:,1:2])(data[:,:1],targets[:,:1]) bce_loss_2 = nn.BCEWithLogitsLoss()(data[:,1:],targets[:,2:]) return (bce_loss_1 * loss_weight) + bce_loss_2 def reduce_mem_usage(df): start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df def ensemble_predictions(predictions, weights, type_="linear"): assert np.isclose(np.sum(weights), 1.0) if type_ == "linear": res = np.average(predictions, weights=weights, axis=0) elif type_ == "harmonic": res = np.average([1 / p for p in predictions], weights=weights, axis=0) return 1 / res elif type_ == "geometric": numerator = np.average( [np.log(p) for p in predictions], weights=weights, axis=0 ) res = np.exp(numerator / sum(weights)) return res elif type_ == "rank": res = np.average([rankdata(p) for p in predictions], weights=weights, axis=0) return res / (len(res) + 1) return res warnings.filterwarnings(action='once') device = torch.device('cuda') SEED = 1234 BATCH_SIZE = 512 np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.backends.cudnn.deterministic = True tqdm.pandas() CRAWL_EMBEDDING_PATH = '../input/gensim-embeddings-dataset/crawl-300d-2M.gensim' PARAGRAM_EMBEDDING_PATH = '../input/gensim-embeddings-dataset/paragram_300_sl999.gensim' NUM_MODELS = 1 LSTM_UNITS = 256 DENSE_HIDDEN_UNITS = 1536 if not is_interactive(): def nop(it, *a, **k): return it tqdm = nop fastprogress.fastprogress.NO_BAR = True master_bar, progress_bar = force_console_behavior() fastai.basic_train.master_bar, fastai.basic_train.progress_bar = (master_bar, progress_bar) seed_everything() x_train = pd.read_csv('../input/jigsawbiaspreprocessed/x_train.csv', header=None)[0].astype('str') y_aux_train = np.load('../input/jigsawbiaspreprocessed/y_aux_train.npy') y_train = np.load('../input/jigsawbiaspreprocessed/y_train.npy') loss_weight = 3.209226860170181 max_features = 400000 train = pd.read_csv('../input/jigsaw-unintended-bias-in-toxicity-classification/train.csv') annot_idx = train[train['identity_annotator_count'] > 0].sample(n=48660, random_state=13).index not_annot_idx = train[train['identity_annotator_count'] == 0].sample(n=48660, random_state=13).index x_val_idx = list(set(annot_idx).union(set(not_annot_idx))) x_train_idx = list(set(x_train.index) - set(x_val_idx)) X_train = x_train.loc[x_train_idx] Y_train = y_train[x_train_idx] Y_train[:, 0] = Y_train[:, 0] * 0.9 + 0.05 Y_aux_train = y_aux_train[x_train_idx] * 0.9 + 0.05 X_val = x_train.loc[x_val_idx] Y_val = y_train[x_val_idx] Y_aux_val = y_aux_train[x_val_idx] tokenizer = text.Tokenizer(num_words=max_features, filters='', lower=False) tokenizer.fit_on_texts(list(X_train)) crawl_matrix, unknown_words_crawl = build_matrix(tokenizer.word_index, CRAWL_EMBEDDING_PATH) print('n unknown words (crawl): ', len(unknown_words_crawl)) paragram_matrix, unknown_words_paragram = build_matrix(tokenizer.word_index, PARAGRAM_EMBEDDING_PATH) print('n unknown words (paragram): ', len(unknown_words_paragram)) max_features = max_features or len(tokenizer.word_index) + 1 max_features embedding_matrix = np.concatenate([crawl_matrix, paragram_matrix], axis=-1) print(embedding_matrix.shape) del crawl_matrix del paragram_matrix gc.collect() y_train_torch = torch.tensor(np.hstack([Y_train, Y_aux_train]), dtype=torch.float32) X_train = tokenizer.texts_to_sequences(X_train)
code
332359/cell_4
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'] = train['Age'].fillna(train['Age'].median()) train.loc[train['Sex'] == 'male', 'Sex'] = 0 train.loc[train['Sex'] == 'female', 'Sex'] = 1 train['Embarked'] = train['Embarked'].fillna('S') train.loc[train['Embarked'] == 'S', 'Embarked'] = 0 train.loc[train['Embarked'] == 'C', 'Embarked'] = 1 train.loc[train['Embarked'] == 'Q', 'Embarked'] = 2 print(train['Embarked'].unique())
code
332359/cell_2
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.describe()
code
332359/cell_1
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
332359/cell_3
[ "text_html_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'] = train['Age'].fillna(train['Age'].median()) train.describe()
code
332359/cell_5
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'] = train['Age'].fillna(train['Age'].median()) train.loc[train['Sex'] == 'male', 'Sex'] = 0 train.loc[train['Sex'] == 'female', 'Sex'] = 1 train['Embarked'] = train['Embarked'].fillna('S') train.loc[train['Embarked'] == 'S', 'Embarked'] = 0 train.loc[train['Embarked'] == 'C', 'Embarked'] = 1 train.loc[train['Embarked'] == 'Q', 'Embarked'] = 2 train_predictors = train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']].values test_predictors = train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']].values target = train['Survived'] alg = LinearRegression() alg.fit(train_predictors, target) test_predictions = alg.predict(test_predictors) print(test_predictions)
code
74063893/cell_42
[ "text_html_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(dataset['all_cleaned']) X = X.toarray() preparing_test_df = vectorizer.transform(test_dataset_cleaned['all_cleaned']) preparing_test_df = preparing_test_df.toarray() from sklearn.linear_model import LogisticRegression X_train = np.array(X) print(X_train.shape) y_train = dataset['target'] print(y_train.shape) X_test = np.array(preparing_test_df) print(X_test.shape) clf = LogisticRegression(solver='liblinear') clf.fit(X_train, y_train)
code
74063893/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) train_dataset['target'].value_counts()
code
74063893/cell_25
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from nltk.corpus import stopwords print(stopwords.words('english'))
code
74063893/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape test_dataset_cleaned.tail(100)
code
74063893/cell_33
[ "text_html_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape dataset.head(520)
code
74063893/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape
code
74063893/cell_40
[ "text_html_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(dataset['all_cleaned']) X = X.toarray() print(X.shape) preparing_test_df = vectorizer.transform(test_dataset_cleaned['all_cleaned']) preparing_test_df = preparing_test_df.toarray() print(preparing_test_df.shape)
code
74063893/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape test_dataset_cleaned.head(520)
code
74063893/cell_39
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape dataset.head(520)
code
74063893/cell_48
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(dataset['all_cleaned']) X = X.toarray() preparing_test_df = vectorizer.transform(test_dataset_cleaned['all_cleaned']) preparing_test_df = preparing_test_df.toarray() from sklearn.linear_model import LogisticRegression X_train = np.array(X) y_train = dataset['target'] X_test = np.array(preparing_test_df) clf = LogisticRegression(solver='liblinear') clf.fit(X_train, y_train) prediction = clf.predict(X_test) submission = pd.DataFrame({'id': test_dataset['id'], 'target': prediction}) submission.head()
code
74063893/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) test_dataset.head()
code
74063893/cell_45
[ "text_html_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(dataset['all_cleaned']) X = X.toarray() preparing_test_df = vectorizer.transform(test_dataset_cleaned['all_cleaned']) preparing_test_df = preparing_test_df.toarray() from sklearn.linear_model import LogisticRegression X_train = np.array(X) y_train = dataset['target'] X_test = np.array(preparing_test_df) clf = LogisticRegression(solver='liblinear') clf.fit(X_train, y_train) prediction = clf.predict(X_test) prediction
code
74063893/cell_49
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(dataset['all_cleaned']) X = X.toarray() preparing_test_df = vectorizer.transform(test_dataset_cleaned['all_cleaned']) preparing_test_df = preparing_test_df.toarray() from sklearn.linear_model import LogisticRegression X_train = np.array(X) y_train = dataset['target'] X_test = np.array(preparing_test_df) clf = LogisticRegression(solver='liblinear') clf.fit(X_train, y_train) prediction = clf.predict(X_test) submission = pd.DataFrame({'id': test_dataset['id'], 'target': prediction}) submission.shape
code
74063893/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] print(dataset.shape) test_dataset_cleaned.shape
code
74063893/cell_32
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import pandas as pd import re train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape def clean(data): data = data.lower() data = re.sub('https?://\\S+|www\\.\\S+', ' ', data) data = re.sub('\\W', ' ', data) data = re.sub('\n', ' ', data) data = re.sub(' +', ' ', data) data = re.sub('^ ', ' ', data) data = re.sub(' $', ' ', data) data = re.sub('#', ' ', data) data = re.sub('@', ' ', data) data = re.sub('[^a-zA-Z]', ' ', data) return data stop = set(stopwords.words('english')) def remove_stopwords(data): words = [word for word in data if word not in stop] words = ''.join(words).split() words = [words.lower() for words in data.split()] return words from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() def lemmatization(data): lemmas = [] for word in data.split(): lemmas.append(lemmatizer.lemmatize(word)) return ' '.join(lemmas) dataset['all_cleaned'].apply(lemmatization) test_dataset_cleaned['all_cleaned'].apply(lemmatization)
code
74063893/cell_28
[ "text_html_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape dataset.head(520)
code
74063893/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.info()
code
74063893/cell_15
[ "text_html_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) train_dataset['location'].value_counts()
code
74063893/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) train_dataset['keyword'].value_counts()
code
74063893/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) plt.figure(figsize=(15, 7)) sns.countplot(train_dataset['target'])
code
74063893/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape dataset.head(100)
code
74063893/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) train_dataset.head()
code
74063893/cell_27
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import re train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape def clean(data): data = data.lower() data = re.sub('https?://\\S+|www\\.\\S+', ' ', data) data = re.sub('\\W', ' ', data) data = re.sub('\n', ' ', data) data = re.sub(' +', ' ', data) data = re.sub('^ ', ' ', data) data = re.sub(' $', ' ', data) data = re.sub('#', ' ', data) data = re.sub('@', ' ', data) data = re.sub('[^a-zA-Z]', ' ', data) return data stop = set(stopwords.words('english')) def remove_stopwords(data): words = [word for word in data if word not in stop] words = ''.join(words).split() words = [words.lower() for words in data.split()] return words dataset['all_cleaned'].apply(remove_stopwords) test_dataset_cleaned['all_cleaned'].apply(remove_stopwords)
code
74063893/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.head()
code
74063893/cell_36
[ "text_html_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/nlp-getting-started/train.csv') test_dataset = pd.read_csv('../input/nlp-getting-started/test.csv') train_dataset.shape train_dataset.fillna('', inplace=True) test_dataset.fillna('', inplace=True) dataset = pd.DataFrame() test_dataset_cleaned = pd.DataFrame() dataset['all_combined'] = train_dataset['keyword'] + ' ' + train_dataset['location'] + ' ' + train_dataset['text'] test_dataset_cleaned['all_combined'] = test_dataset['keyword'] + ' ' + test_dataset['location'] + ' ' + test_dataset['text'] test_dataset_cleaned.shape dataset.head(520)
code
74057429/cell_2
[ "text_plain_output_1.png" ]
!pip install --upgrade tensorflow
code
74057429/cell_5
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import numpy as np # linear algebra import tensorflow as tf import tensorflow_datasets as tfds def load_data(): mnist_train = tfds.load('mnist', split='train', shuffle_files=True) x_train = np.zeros((60000, 28, 28, 1)) y_train = np.zeros((60000, 1)) i = 0 for ex in mnist_train: x_train[i] = ex['image'] y_train[i] = ex['label'] i = i + 1 mnist_train_c = tfds.load('mnist_corrupted/splatter', split='train', shuffle_files=True) x_test = np.zeros((60000, 28, 28, 1)) y_test = np.zeros((60000, 1)) i = 0 for ex in mnist_train_c: x_test[i] = ex['image'] y_test[i] = ex['label'] i = i + 1 x_train = 1 - x_train / 255.0 x_train = x_train.astype(np.float32) y_train_oh = tf.keras.utils.to_categorical(y_train) x_test = 1 - x_test / 255.0 x_test = x_test.astype(np.float32) y_test_oh = tf.keras.utils.to_categorical(y_test) return ((x_train, y_train, y_train_oh), (x_test, y_test, y_test_oh)) (x_train, y_train, y_train_oh), (x_test_c, y_test_c, y_test_oh_c) = load_data()
code
104118935/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df fig, ax = plt.subplots(figsize=(15,3)) ax=sns.countplot(x='launch site',data=df) plt.xticks(rotation=90) fig, ax = plt.subplots(figsize=(15,3)) ax=sns.countplot(x='launch site',data=df) plt.xticks(rotation=90) fig, ax = plt.subplots(figsize=(15, 3)) ax = sns.countplot(x='launch status', data=df)
code
104118935/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df df['launch site'].groupby(df['launch site']).count().sort_values(ascending=False)
code
104118935/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df def hlaunch_site(value): a = str(value).split(' ') if 'Satish' in a: return 'Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh' else: return value df['launch site'] = df['launch site'].apply(hlaunch_site) df['launch site'].groupby(df['launch site']).count().sort_values(ascending=False)
code
104118935/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df
code
104118935/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df (df['launch site'] == 'Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh').groupby(df['launch status']).count()
code
104118935/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import missingno as msno import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104118935/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df fig, ax = plt.subplots(figsize=(15,3)) ax=sns.countplot(x='launch site',data=df) plt.xticks(rotation=90) fig, ax = plt.subplots(figsize=(15, 3)) ax = sns.countplot(x='launch site', data=df) plt.xticks(rotation=90)
code
104118935/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df df['launch status'].groupby(df['launch status']).count()
code
104118935/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import missingno as msno import pandas as pd df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df msno.bar(df, figsize=(6, 3), color='magenta')
code
104118935/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df df[df['launch status'] == 0]
code
104118935/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/list-of-indian-satellites/List_of_Indian_satellites.csv', encoding='cp1252') df fig, ax = plt.subplots(figsize=(15, 3)) ax = sns.countplot(x='launch site', data=df) plt.xticks(rotation=90)
code
324293/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import colorsys import matplotlib.pyplot as plt labels = df.Gender.value_counts().index N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) patches, texts = plt.pie(df.Gender.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.05,1)) plt.title("Gender") plt.show() N = len(df.JobRoleInterest.value_counts().index) HSV_tuples = [(x * 1.0 / N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) labels = df.JobRoleInterest.value_counts().index colors = ['OliveDrab', 'Orange', 'OrangeRed', 'DarkCyan', 'Salmon', 'Sienna', 'Maroon', 'LightSlateGrey', 'DimGray'] patches, texts = plt.pie(df.JobRoleInterest.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.25, 1)) plt.title('Job Role Interest') plt.show()
code
324293/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import colorsys import matplotlib.pyplot as plt labels = df.Gender.value_counts().index N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x * 1.0 / N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) patches, texts = plt.pie(df.Gender.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.05, 1)) plt.title('Gender') plt.show()
code
324293/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import matplotlib.pyplot as plt import pandas as pd import colorsys plt.style.use('seaborn-talk') df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', sep=',')
code
324293/cell_18
[ "image_output_1.png" ]
import colorsys import matplotlib.pyplot as plt import pandas as pd labels = df.Gender.value_counts().index N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) patches, texts = plt.pie(df.Gender.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.05,1)) plt.title("Gender") plt.show() N = len(df.JobRoleInterest.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) labels = df.JobRoleInterest.value_counts().index colors = ['OliveDrab', 'Orange', 'OrangeRed', 'DarkCyan', 'Salmon', 'Sienna', 'Maroon', 'LightSlateGrey', 'DimGray'] patches, texts = plt.pie(df.JobRoleInterest.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.25, 1)) plt.title("Job Role Interest") plt.show() N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) labels = df.EmploymentField.value_counts().index patches, texts = plt.pie(df.EmploymentField.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.3, 1)) plt.title("Employment Field") plt.show() df_ageranges = df.copy() bins=[0, 20, 30, 40, 50, 60, 100] df_ageranges['AgeRanges'] = pd.cut(df_ageranges['Age'], bins, labels=["< 20", "20-30", "30-40", "40-50", "50-60", "< 60"]) df2 = pd.crosstab(df_ageranges.AgeRanges,df_ageranges.JobPref).apply(lambda r: r/r.sum(), axis=1) N = len(df_ageranges.AgeRanges.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) ax1 = df2.plot(kind="bar", stacked=True, color= RGB_tuples, title="Job preference per Age") lines, labels = ax1.get_legend_handles_labels() ax1.legend(lines,labels, bbox_to_anchor=(1.51, 1)) df4 = pd.crosstab(df_ageranges.EmploymentField, df_ageranges.IsUnderEmployed).apply(lambda r: r / r.sum(), axis=1) df4 = df4.sort_values(by=1.0) N = len(df_ageranges.EmploymentField.value_counts().index) HSV_tuples = [(x * 1.0 / N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) ax1 = df4.plot(kind='bar', stacked=True, color=RGB_tuples, title='Under-employed per Employment Field') lines, labels = ax1.get_legend_handles_labels() ax1.legend(lines, ['No', 'Yes'], bbox_to_anchor=(1.51, 1))
code
324293/cell_15
[ "image_output_1.png" ]
import colorsys import matplotlib.pyplot as plt import pandas as pd labels = df.Gender.value_counts().index N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) patches, texts = plt.pie(df.Gender.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.05,1)) plt.title("Gender") plt.show() N = len(df.JobRoleInterest.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) labels = df.JobRoleInterest.value_counts().index colors = ['OliveDrab', 'Orange', 'OrangeRed', 'DarkCyan', 'Salmon', 'Sienna', 'Maroon', 'LightSlateGrey', 'DimGray'] patches, texts = plt.pie(df.JobRoleInterest.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.25, 1)) plt.title("Job Role Interest") plt.show() N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) labels = df.EmploymentField.value_counts().index patches, texts = plt.pie(df.EmploymentField.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.3, 1)) plt.title("Employment Field") plt.show() df_ageranges = df.copy() bins = [0, 20, 30, 40, 50, 60, 100] df_ageranges['AgeRanges'] = pd.cut(df_ageranges['Age'], bins, labels=['< 20', '20-30', '30-40', '40-50', '50-60', '< 60']) df2 = pd.crosstab(df_ageranges.AgeRanges, df_ageranges.JobPref).apply(lambda r: r / r.sum(), axis=1) N = len(df_ageranges.AgeRanges.value_counts().index) HSV_tuples = [(x * 1.0 / N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) ax1 = df2.plot(kind='bar', stacked=True, color=RGB_tuples, title='Job preference per Age') lines, labels = ax1.get_legend_handles_labels() ax1.legend(lines, labels, bbox_to_anchor=(1.51, 1))
code
324293/cell_3
[ "image_output_1.png" ]
import matplotlib.pyplot as plt df.Age.hist(bins=100) plt.xlabel('Age') plt.title('Distribution of Age') plt.show()
code
324293/cell_12
[ "image_output_1.png" ]
import colorsys import matplotlib.pyplot as plt labels = df.Gender.value_counts().index N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) patches, texts = plt.pie(df.Gender.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.05,1)) plt.title("Gender") plt.show() N = len(df.JobRoleInterest.value_counts().index) HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) labels = df.JobRoleInterest.value_counts().index colors = ['OliveDrab', 'Orange', 'OrangeRed', 'DarkCyan', 'Salmon', 'Sienna', 'Maroon', 'LightSlateGrey', 'DimGray'] patches, texts = plt.pie(df.JobRoleInterest.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.25, 1)) plt.title("Job Role Interest") plt.show() N = len(df.EmploymentField.value_counts().index) HSV_tuples = [(x * 1.0 / N, 0.5, 0.5) for x in range(N)] RGB_tuples = list(map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)) labels = df.EmploymentField.value_counts().index patches, texts = plt.pie(df.EmploymentField.value_counts(), colors=RGB_tuples, startangle=90) plt.axes().set_aspect('equal', 'datalim') plt.legend(patches, labels, bbox_to_anchor=(1.3, 1)) plt.title('Employment Field') plt.show()
code
73079996/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from tensorflow import keras import pandas as pd import tensorflow as tf sample_submission = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/sample_submission.csv') test = sample_submission test['BraTS21ID5'] = [format(x, '05d') for x in test.BraTS21ID] test_dataset = Dataset(test, is_train=False) model = keras.Model() model = tf.keras.models.load_model('../input/brain-tumor-3d-weights-l/Brain_3d_cls_FLAIR.h5') preds = model.predict(test_dataset) preds = preds.reshape(-1) submission = pd.DataFrame({'BraTS21ID': sample_submission['BraTS21ID'], 'MGMT_value': preds}) submission
code
73079996/cell_9
[ "image_output_1.png" ]
from pydicom.pixel_data_handlers.util import apply_voi_lut import cv2 import glob import matplotlib.pyplot as plt import numpy as np import pydicom import re data_directory = '../input/rsna-miccai-brain-tumor-radiogenomic-classification' pytorch3dpath = '../input/efficientnetpyttorch3d/EfficientNet-PyTorch-3D' mri_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] IMAGE_SIZE = 256 NUM_IMAGES = 64 def load_dicom_image(path, img_size=IMAGE_SIZE, voi_lut=True, rotate=0): dicom = pydicom.read_file(path) data = dicom.pixel_array if voi_lut: data = apply_voi_lut(dicom.pixel_array, dicom) else: data = dicom.pixel_array if rotate > 0: rot_choices = [0, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE, cv2.ROTATE_180] data = cv2.rotate(data, rot_choices[rotate]) data = cv2.resize(data, (img_size, img_size)) return data def load_dicom_images_3d(scan_id, num_imgs=NUM_IMAGES, img_size=IMAGE_SIZE, mri_type='FLAIR', split='test', rotate=0): files = sorted(glob.glob(f'{data_directory}/{split}/{scan_id}/{mri_type}/*.dcm'), key=lambda var: [int(x) if x.isdigit() else x for x in re.findall('[^0-9]|[0-9]+', var)]) middle = len(files) // 2 num_imgs2 = num_imgs // 2 p1 = max(0, middle - num_imgs2) p2 = min(len(files), middle + num_imgs2) img3d = np.stack([load_dicom_image(f, rotate=rotate) for f in files[p1:p2]]).T if img3d.shape[-1] < num_imgs: n_zero = np.zeros((img_size, img_size, num_imgs - img3d.shape[-1])) img3d = np.concatenate((img3d, n_zero), axis=-1) if np.min(img3d) < np.max(img3d): img3d = img3d - np.min(img3d) img3d = img3d / np.max(img3d) return np.expand_dims(img3d, 0) a = load_dicom_images_3d('00001') print(a.shape) print(np.min(a), np.max(a), np.mean(a), np.median(a)) image = a[0] print('Dimension of the CT scan is:', image.shape) plt.imshow(np.squeeze(image[:, :, 30]), cmap='gray')
code
73079996/cell_23
[ "text_plain_output_1.png" ]
from pydicom.pixel_data_handlers.util import apply_voi_lut from tensorflow import keras import cv2 import glob import matplotlib.pyplot as plt import numpy as np import pandas as pd import pydicom import re import tensorflow as tf data_directory = '../input/rsna-miccai-brain-tumor-radiogenomic-classification' pytorch3dpath = '../input/efficientnetpyttorch3d/EfficientNet-PyTorch-3D' mri_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] IMAGE_SIZE = 256 NUM_IMAGES = 64 sample_submission = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/sample_submission.csv') test = sample_submission test['BraTS21ID5'] = [format(x, '05d') for x in test.BraTS21ID] def load_dicom_image(path, img_size=IMAGE_SIZE, voi_lut=True, rotate=0): dicom = pydicom.read_file(path) data = dicom.pixel_array if voi_lut: data = apply_voi_lut(dicom.pixel_array, dicom) else: data = dicom.pixel_array if rotate > 0: rot_choices = [0, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE, cv2.ROTATE_180] data = cv2.rotate(data, rot_choices[rotate]) data = cv2.resize(data, (img_size, img_size)) return data def load_dicom_images_3d(scan_id, num_imgs=NUM_IMAGES, img_size=IMAGE_SIZE, mri_type='FLAIR', split='test', rotate=0): files = sorted(glob.glob(f'{data_directory}/{split}/{scan_id}/{mri_type}/*.dcm'), key=lambda var: [int(x) if x.isdigit() else x for x in re.findall('[^0-9]|[0-9]+', var)]) middle = len(files) // 2 num_imgs2 = num_imgs // 2 p1 = max(0, middle - num_imgs2) p2 = min(len(files), middle + num_imgs2) img3d = np.stack([load_dicom_image(f, rotate=rotate) for f in files[p1:p2]]).T if img3d.shape[-1] < num_imgs: n_zero = np.zeros((img_size, img_size, num_imgs - img3d.shape[-1])) img3d = np.concatenate((img3d, n_zero), axis=-1) if np.min(img3d) < np.max(img3d): img3d = img3d - np.min(img3d) img3d = img3d / np.max(img3d) return np.expand_dims(img3d, 0) a = load_dicom_images_3d('00001') image = a[0] def plot_slices(num_rows, num_columns, width, height, data): """Plot a montage of 20 CT slices""" data = np.rot90(np.array(data)) data = np.transpose(data) data = np.reshape(data, (num_rows, num_columns, width, height)) rows_data, columns_data = data.shape[0], data.shape[1] heights = [slc[0].shape[0] for slc in data] widths = [slc.shape[1] for slc in data[0]] fig_width = 12.0 fig_height = fig_width * sum(heights) / sum(widths) f, axarr = plt.subplots( rows_data, columns_data, figsize=(fig_width, fig_height), gridspec_kw={"height_ratios": heights}, ) for i in range(rows_data): for j in range(columns_data): axarr[i, j].imshow(data[i][j], cmap="gray") axarr[i, j].axis("off") plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) plt.show() # Visualize montage of slices. # 5 rows and 10 columns for 100 slices of the CT scan. plot_slices(3, 10, 256, 256, image[:, :, :30]) test_dataset = Dataset(test, is_train=False) for i in range(1): image = test_dataset[i] model = keras.Model() model = tf.keras.models.load_model('../input/brain-tumor-3d-weights-l/Brain_3d_cls_FLAIR.h5') preds = model.predict(test_dataset) preds = preds.reshape(-1) submission = pd.DataFrame({'BraTS21ID': sample_submission['BraTS21ID'], 'MGMT_value': preds}) submission.to_csv('submission.csv', index=False) plt.figure(figsize=(5, 5)) plt.hist(submission['MGMT_value'])
code
73079996/cell_19
[ "image_output_1.png" ]
from tensorflow import keras import pandas as pd import tensorflow as tf sample_submission = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/sample_submission.csv') test = sample_submission test['BraTS21ID5'] = [format(x, '05d') for x in test.BraTS21ID] test_dataset = Dataset(test, is_train=False) model = keras.Model() model = tf.keras.models.load_model('../input/brain-tumor-3d-weights-l/Brain_3d_cls_FLAIR.h5') preds = model.predict(test_dataset) preds = preds.reshape(-1) preds
code
73079996/cell_7
[ "text_html_output_1.png" ]
import pandas as pd sample_submission = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/sample_submission.csv') test = sample_submission test['BraTS21ID5'] = [format(x, '05d') for x in test.BraTS21ID] test.head(3)
code
73079996/cell_14
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from pydicom.pixel_data_handlers.util import apply_voi_lut import cv2 import glob import matplotlib.pyplot as plt import numpy as np import pandas as pd import pydicom import re data_directory = '../input/rsna-miccai-brain-tumor-radiogenomic-classification' pytorch3dpath = '../input/efficientnetpyttorch3d/EfficientNet-PyTorch-3D' mri_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] IMAGE_SIZE = 256 NUM_IMAGES = 64 sample_submission = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/sample_submission.csv') test = sample_submission test['BraTS21ID5'] = [format(x, '05d') for x in test.BraTS21ID] def load_dicom_image(path, img_size=IMAGE_SIZE, voi_lut=True, rotate=0): dicom = pydicom.read_file(path) data = dicom.pixel_array if voi_lut: data = apply_voi_lut(dicom.pixel_array, dicom) else: data = dicom.pixel_array if rotate > 0: rot_choices = [0, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE, cv2.ROTATE_180] data = cv2.rotate(data, rot_choices[rotate]) data = cv2.resize(data, (img_size, img_size)) return data def load_dicom_images_3d(scan_id, num_imgs=NUM_IMAGES, img_size=IMAGE_SIZE, mri_type='FLAIR', split='test', rotate=0): files = sorted(glob.glob(f'{data_directory}/{split}/{scan_id}/{mri_type}/*.dcm'), key=lambda var: [int(x) if x.isdigit() else x for x in re.findall('[^0-9]|[0-9]+', var)]) middle = len(files) // 2 num_imgs2 = num_imgs // 2 p1 = max(0, middle - num_imgs2) p2 = min(len(files), middle + num_imgs2) img3d = np.stack([load_dicom_image(f, rotate=rotate) for f in files[p1:p2]]).T if img3d.shape[-1] < num_imgs: n_zero = np.zeros((img_size, img_size, num_imgs - img3d.shape[-1])) img3d = np.concatenate((img3d, n_zero), axis=-1) if np.min(img3d) < np.max(img3d): img3d = img3d - np.min(img3d) img3d = img3d / np.max(img3d) return np.expand_dims(img3d, 0) a = load_dicom_images_3d('00001') image = a[0] def plot_slices(num_rows, num_columns, width, height, data): """Plot a montage of 20 CT slices""" data = np.rot90(np.array(data)) data = np.transpose(data) data = np.reshape(data, (num_rows, num_columns, width, height)) rows_data, columns_data = data.shape[0], data.shape[1] heights = [slc[0].shape[0] for slc in data] widths = [slc.shape[1] for slc in data[0]] fig_width = 12.0 fig_height = fig_width * sum(heights) / sum(widths) f, axarr = plt.subplots( rows_data, columns_data, figsize=(fig_width, fig_height), gridspec_kw={"height_ratios": heights}, ) for i in range(rows_data): for j in range(columns_data): axarr[i, j].imshow(data[i][j], cmap="gray") axarr[i, j].axis("off") plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) plt.show() # Visualize montage of slices. # 5 rows and 10 columns for 100 slices of the CT scan. plot_slices(3, 10, 256, 256, image[:, :, :30]) test_dataset = Dataset(test, is_train=False) for i in range(1): image = test_dataset[i] print('Dimension of the CT scan is:', image.shape) plt.imshow(image[0, :, :, 30], cmap='gray') plt.show()
code
73079996/cell_10
[ "text_html_output_1.png" ]
from pydicom.pixel_data_handlers.util import apply_voi_lut import cv2 import glob import matplotlib.pyplot as plt import numpy as np import pydicom import re data_directory = '../input/rsna-miccai-brain-tumor-radiogenomic-classification' pytorch3dpath = '../input/efficientnetpyttorch3d/EfficientNet-PyTorch-3D' mri_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] IMAGE_SIZE = 256 NUM_IMAGES = 64 def load_dicom_image(path, img_size=IMAGE_SIZE, voi_lut=True, rotate=0): dicom = pydicom.read_file(path) data = dicom.pixel_array if voi_lut: data = apply_voi_lut(dicom.pixel_array, dicom) else: data = dicom.pixel_array if rotate > 0: rot_choices = [0, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE, cv2.ROTATE_180] data = cv2.rotate(data, rot_choices[rotate]) data = cv2.resize(data, (img_size, img_size)) return data def load_dicom_images_3d(scan_id, num_imgs=NUM_IMAGES, img_size=IMAGE_SIZE, mri_type='FLAIR', split='test', rotate=0): files = sorted(glob.glob(f'{data_directory}/{split}/{scan_id}/{mri_type}/*.dcm'), key=lambda var: [int(x) if x.isdigit() else x for x in re.findall('[^0-9]|[0-9]+', var)]) middle = len(files) // 2 num_imgs2 = num_imgs // 2 p1 = max(0, middle - num_imgs2) p2 = min(len(files), middle + num_imgs2) img3d = np.stack([load_dicom_image(f, rotate=rotate) for f in files[p1:p2]]).T if img3d.shape[-1] < num_imgs: n_zero = np.zeros((img_size, img_size, num_imgs - img3d.shape[-1])) img3d = np.concatenate((img3d, n_zero), axis=-1) if np.min(img3d) < np.max(img3d): img3d = img3d - np.min(img3d) img3d = img3d / np.max(img3d) return np.expand_dims(img3d, 0) a = load_dicom_images_3d('00001') image = a[0] def plot_slices(num_rows, num_columns, width, height, data): """Plot a montage of 20 CT slices""" data = np.rot90(np.array(data)) data = np.transpose(data) data = np.reshape(data, (num_rows, num_columns, width, height)) rows_data, columns_data = (data.shape[0], data.shape[1]) heights = [slc[0].shape[0] for slc in data] widths = [slc.shape[1] for slc in data[0]] fig_width = 12.0 fig_height = fig_width * sum(heights) / sum(widths) f, axarr = plt.subplots(rows_data, columns_data, figsize=(fig_width, fig_height), gridspec_kw={'height_ratios': heights}) for i in range(rows_data): for j in range(columns_data): axarr[i, j].imshow(data[i][j], cmap='gray') axarr[i, j].axis('off') plt.subplots_adjust(wspace=0, hspace=0, left=0, right=1, bottom=0, top=1) plt.show() plot_slices(3, 10, 256, 256, image[:, :, :30])
code
17139154/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) x = sns.PairGrid(df) x.map(plt.scatter) uf = pd.DataFrame(df['uf'].value_counts()) eleitores = df[['uf', 'total_eleitores']].sort_values(by='uf') plt.figure(figsize=(15, 5)) plt.title('Média de eleitores por Município em cada UF') sns.barplot(x=eleitores.uf, y=eleitores.total_eleitores)
code
17139154/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) df.head()
code
17139154/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.head(10)
code
17139154/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) x = sns.PairGrid(df) x.map(plt.scatter) uf = pd.DataFrame(df['uf'].value_counts()) eleitores = df[['uf', 'total_eleitores']].sort_values(by='uf') eleitores_grpd_by_uf = eleitores.groupby(['uf']).sum() norte = ['AM', 'RR', 'AP', 'PA', 'TO', 'RO', 'AC'] centroeste = ['MT', 'MS', 'GO'] sudeste = ['SP', 'ES', 'MG', 'RJ'] sul = ['PR', 'RS', 'SC'] nordeste = ['MA', 'PI', 'CE', 'RN', 'PE', 'PB', 'SE', 'AL', 'BA'] df_region = eleitores df_region['regiao'] = '' for i, r in df_region.iterrows(): if r['uf'] in norte: df_region.at[i, 'regiao'] = 'Norte' elif r['uf'] in centroeste: df_region.at[i, 'regiao'] = 'Centro-Oeste' elif r['uf'] in sudeste: df_region.at[i, 'regiao'] = 'Sudeste' elif r['uf'] in sul: df_region.at[i, 'regiao'] = 'Sul' else: df_region.at[i, 'regiao'] = 'Nordeste' df_ufs = pd.DataFrame(norte + centroeste + sudeste + sul + nordeste) reg = pd.DataFrame(df_region['regiao'].value_counts()) elec = pd.DataFrame(df_region.drop(columns=['uf']).groupby(['regiao']).sum()) plt.figure(figsize=(25, 8)) sns.stripplot(x='total_eleitores', y='regiao', hue='uf', data=df_region, palette='muted', size=5, jitter=0.3)
code
17139154/cell_33
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) x = sns.PairGrid(df) x.map(plt.scatter) uf = pd.DataFrame(df['uf'].value_counts()) eleitores = df[['uf', 'total_eleitores']].sort_values(by='uf') eleitores_grpd_by_uf = eleitores.groupby(['uf']).sum() norte = ['AM', 'RR', 'AP', 'PA', 'TO', 'RO', 'AC'] centroeste = ['MT', 'MS', 'GO'] sudeste = ['SP', 'ES', 'MG', 'RJ'] sul = ['PR', 'RS', 'SC'] nordeste = ['MA', 'PI', 'CE', 'RN', 'PE', 'PB', 'SE', 'AL', 'BA'] df_region = eleitores df_region['regiao'] = '' for i, r in df_region.iterrows(): if r['uf'] in norte: df_region.at[i, 'regiao'] = 'Norte' elif r['uf'] in centroeste: df_region.at[i, 'regiao'] = 'Centro-Oeste' elif r['uf'] in sudeste: df_region.at[i, 'regiao'] = 'Sudeste' elif r['uf'] in sul: df_region.at[i, 'regiao'] = 'Sul' else: df_region.at[i, 'regiao'] = 'Nordeste' df_ufs = pd.DataFrame(norte + centroeste + sudeste + sul + nordeste) reg = pd.DataFrame(df_region['regiao'].value_counts()) elec = pd.DataFrame(df_region.drop(columns=['uf']).groupby(['regiao']).sum()) plt.figure(figsize=(25, 8)) sns.stripplot(x='total_eleitores', y='regiao', hue='uf', data=df_region[df_region['total_eleitores'] < 100000], palette='bright', size=4, jitter=0.3)
code
17139154/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) x = sns.PairGrid(df) x.map(plt.scatter) uf = pd.DataFrame(df['uf'].value_counts()) eleitores = df[['uf', 'total_eleitores']].sort_values(by='uf') eleitores_grpd_by_uf = eleitores.groupby(['uf']).sum() norte = ['AM', 'RR', 'AP', 'PA', 'TO', 'RO', 'AC'] centroeste = ['MT', 'MS', 'GO'] sudeste = ['SP', 'ES', 'MG', 'RJ'] sul = ['PR', 'RS', 'SC'] nordeste = ['MA', 'PI', 'CE', 'RN', 'PE', 'PB', 'SE', 'AL', 'BA'] df_region = eleitores df_region['regiao'] = '' for i, r in df_region.iterrows(): if r['uf'] in norte: df_region.at[i, 'regiao'] = 'Norte' elif r['uf'] in centroeste: df_region.at[i, 'regiao'] = 'Centro-Oeste' elif r['uf'] in sudeste: df_region.at[i, 'regiao'] = 'Sudeste' elif r['uf'] in sul: df_region.at[i, 'regiao'] = 'Sul' else: df_region.at[i, 'regiao'] = 'Nordeste' df_region.head()
code
17139154/cell_2
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os print(os.listdir('../input'))
code
17139154/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) x = sns.PairGrid(df) x.map(plt.scatter)
code
17139154/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum=1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show()
code
17139154/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) x = sns.PairGrid(df) x.map(plt.scatter) uf = pd.DataFrame(df['uf'].value_counts()) eleitores = df[['uf', 'total_eleitores']].sort_values(by='uf') eleitores_grpd_by_uf = eleitores.groupby(['uf']).sum() norte = ['AM', 'RR', 'AP', 'PA', 'TO', 'RO', 'AC'] centroeste = ['MT', 'MS', 'GO'] sudeste = ['SP', 'ES', 'MG', 'RJ'] sul = ['PR', 'RS', 'SC'] nordeste = ['MA', 'PI', 'CE', 'RN', 'PE', 'PB', 'SE', 'AL', 'BA'] df_region = eleitores df_region['regiao'] = '' for i, r in df_region.iterrows(): if r['uf'] in norte: df_region.at[i, 'regiao'] = 'Norte' elif r['uf'] in centroeste: df_region.at[i, 'regiao'] = 'Centro-Oeste' elif r['uf'] in sudeste: df_region.at[i, 'regiao'] = 'Sudeste' elif r['uf'] in sul: df_region.at[i, 'regiao'] = 'Sul' else: df_region.at[i, 'regiao'] = 'Nordeste' df_ufs = pd.DataFrame(norte + centroeste + sudeste + sul + nordeste) reg = pd.DataFrame(df_region['regiao'].value_counts()) reg.plot(kind='pie', title='Quantidade de Municípios por Região', subplots=True, figsize=(10, 10)) elec = pd.DataFrame(df_region.drop(columns=['uf']).groupby(['regiao']).sum()) elec.plot(kind='pie', title='Quantidade de Eleitores por Região', subplots=True, figsize=(10, 10))
code
17139154/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/BR_eleitorado_2016_municipio.csv', delimiter=';') df.shape corr = df.corr() plt.figure(num=None, dpi=80, facecolor='w', edgecolor='k') corrMat = plt.matshow(corr, fignum = 1) plt.xticks(range(len(corr.columns)), corr.columns, rotation=90) plt.yticks(range(len(corr.columns)), corr.columns) plt.gca().xaxis.tick_bottom() plt.colorbar(corrMat) plt.title('Correlation Matrix') plt.show() df = df.drop(columns=['cod_municipio_tse']) x = sns.PairGrid(df) x.map(plt.scatter) uf = pd.DataFrame(df['uf'].value_counts()) plt.figure(figsize=(15, 5)) sns.barplot(x=uf.index, y=uf.uf, palette='rocket')
code