path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
33098715/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv', index_col=0) data.isnull().sum() plt.tight_layout() plt.xticks(rotation=90) plt.figure(figsize=(18, 8)) sns.countplot(data['model']) plt.tight_layout() plt.xticks(rotation=90) plt.xlabel('Car Models') plt.show()
code
33098715/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv', index_col=0) data.isnull().sum() plt.tight_layout() plt.xticks(rotation=90) plt.tight_layout() plt.xticks(rotation=90) plt.figure(figsize=(18, 8)) data.groupby('brand')['price'].mean().sort_values(ascending=False).plot.bar() plt.xticks(rotation=90) plt.ylabel('Mean Price') plt.xlabel('Car Brands') plt.tight_layout() plt.show()
code
33098715/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns data = pd.read_csv('/kaggle/input/usa-cers-dataset/USA_cars_datasets.csv', index_col=0) print(f'This dataset has {data.shape[0]} rows') print(f'This dataset has {data.shape[1]} columns')
code
34134065/cell_42
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5d = abstracts[abstracts['abstract'].str.contains('distribution')] q5d.shape
code
34134065/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1E = abstracts[abstracts['abstract'].str.contains('risk population')] Q1E.shape
code
34134065/cell_13
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.head(3)
code
34134065/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2c = abstracts[abstracts['abstract'].str.contains('poor')] Q2c.shape
code
34134065/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4B = abstracts[abstracts['abstract'].str.contains('community spread')] q4B.shape
code
34134065/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2a = abstracts[abstracts['abstract'].str.contains('homeless')] Q2a.shape
code
34134065/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3c = abstracts[abstracts['abstract'].str.contains('hospital patients')] q3c.shape
code
34134065/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4A = abstracts[abstracts['abstract'].str.contains('compliance')] q4A.shape
code
34134065/cell_44
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape q5c = abstracts[abstracts['abstract'].str.contains('access to')] q5c.shape Question5 = pd.concat([q5c, q5b]) Question5.dropna(inplace=True) Question5.shape Question5
code
34134065/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape Q1D = abstracts[abstracts['abstract'].str.contains('health care workers')] Q1D.shape
code
34134065/cell_40
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape
code
34134065/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3b = abstracts[abstracts['abstract'].str.contains('hospital spread')] q3b.shape
code
34134065/cell_39
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5a = abstracts[abstracts['abstract'].str.contains('resources')] q5a.shape
code
34134065/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2d = abstracts[abstracts['abstract'].str.contains('housing')] Q2d.shape
code
34134065/cell_48
[ "text_plain_output_1.png" ]
pip install google
code
34134065/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5c = abstracts[abstracts['abstract'].str.contains('access to')] q5c.shape
code
34134065/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape
code
34134065/cell_50
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape q5c = abstracts[abstracts['abstract'].str.contains('access to')] q5c.shape Question5 = pd.concat([q5c, q5b]) Question5.dropna(inplace=True) Question5.shape PopStudies = pd.DataFrame(j, columns=['url']) PopStudies
code
34134065/cell_49
[ "text_plain_output_1.png" ]
from googlesearch import search try: from googlesearch import search except ImportError: print('Error/Not found') query = 'COVID 19 population studies' for j in search(query, tld='co.in', num=10, stop=10, pause=2): print(j)
code
34134065/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1C = abstracts[abstracts['abstract'].str.contains('contacting')] Q1C.shape
code
34134065/cell_51
[ "application_vnd.jupyter.stderr_output_1.png" ]
from googlesearch import search from googlesearch import search try: from googlesearch import search except ImportError: print('Error/Not found') query2 = 'COVID 19 resources failure' for j2 in search(query2, tld='co.in', num=10, stop=10, pause=2): print(j2)
code
34134065/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3a = abstracts[abstracts['abstract'].str.contains('nosocomial')] q3a.shape
code
34134065/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] tablesTable = t[['Question', 'Table Format']] tablesTable
code
34134065/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1A = abstracts[abstracts['abstract'].str.contains('communicating')] Q1A.shape
code
34134065/cell_47
[ "text_html_output_1.png" ]
pip install beautifulsoup4
code
34134065/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1B = abstracts[abstracts['abstract'].str.contains('reaching out')] Q1B
code
34134065/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4C = abstracts[abstracts['abstract'].str.contains('prevent spread')] q4C.shape
code
34134065/cell_43
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape q5c = abstracts[abstracts['abstract'].str.contains('access to')] q5c.shape Question5 = pd.concat([q5c, q5b]) Question5.dropna(inplace=True) Question5.shape
code
34134065/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3d = abstracts[abstracts['abstract'].str.contains('nosocomial outbreak')] q3d.shape
code
34134065/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2b = abstracts[abstracts['abstract'].str.contains('low income')] Q2b.shape
code
34134065/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape
code
34134065/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.head(3)
code
34134065/cell_12
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') journals['words'].head()
code
34134065/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4D = abstracts[abstracts['abstract'].str.contains('methods to prevent')] q4D.shape
code
2002739/cell_13
[ "image_output_1.png" ]
from pandas.plotting import autocorrelation_plot, lag_plot import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd cityTable = pd.read_csv('../input/city_attributes.csv') temperatureDF = pd.read_csv('../input/temperature.csv', index_col=0) temperatureDF.index = pd.to_datetime(temperatureDF.index) cityTable #%% show several temperature plots to get a feel for the dataset citiesToShow = ['Los Angeles','Chicago','Montreal','Houston'] t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/10/2016',dayfirst=True),freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/9/2015' ,dayfirst=True),freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('21/7/2015',dayfirst=True),freq='H') fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) temperatureDF.loc[t0,citiesToShow].plot(ax=ax[0]); temperatureDF.loc[t1,citiesToShow].plot(ax=ax[1],legend=False); temperatureDF.loc[t2,citiesToShow].plot(ax=ax[2],legend=False); temperatureDF.loc[t3,citiesToShow].plot(ax=ax[3],legend=False); ax[0].legend(loc='upper left',fontsize=20,bbox_to_anchor=(0.02,1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\circ$K]', fontsize=15) plt.tight_layout() #%% show autocorr and lag plots cityToShow = 'Los Angeles' selectedLagPoints = [1,3,6,9,12,24,36,48,60] maxLagDays = 7 originalSignal = temperatureDF[cityToShow] # set grid spec of the subplots plt.figure(figsize=(12,6)) gs = gridspec.GridSpec(2, len(selectedLagPoints)) axTopRow = plt.subplot(gs[0, :]) axBottomRow = [] for i in range(len(selectedLagPoints)): axBottomRow.append(plt.subplot(gs[1, i])) # plot autocorr allTimeLags = np.arange(1,maxLagDays*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in allTimeLags] axTopRow.plot(allTimeLags,autoCorr); axTopRow.set_title('Autocorrelation Plot of Temperature Signal') axTopRow.set_xlabel('time lag [hours]'); axTopRow.set_ylabel('correlation coefficient') selectedAutoCorr = [originalSignal.autocorr(lag=dt) for dt in selectedLagPoints] axTopRow.scatter(x=selectedLagPoints, y=selectedAutoCorr, s=50, c='r') # plot scatter plot of selected points for i in range(len(selectedLagPoints)): lag_plot(originalSignal, lag=selectedLagPoints[i], s=5, ax=axBottomRow[i]) if i >= 1: axBottomRow[i].set_yticks([],[]) plt.tight_layout() #%% zoom in and out on the autocorr plot fig, ax = plt.subplots(nrows=4,ncols=1, figsize=(13,11)) timeLags = np.arange(1,25*24*30) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[0].plot(1.0/(24*30)*timeLags, autoCorr); ax[0].set_title('Autocorrelation Plot') ax[0].set_xlabel('time lag [months]'); ax[0].set_ylabel('correlation coeff') timeLags = np.arange(1,20*24*7) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[1].plot(1.0/(24*7)*timeLags, autoCorr); ax[1].set_xlabel('time lag [weeks]'); ax[1].set_ylabel('correlation coeff') timeLags = np.arange(1,20*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[2].plot(1.0/24*timeLags, autoCorr); ax[2].set_xlabel('time lag [days]'); ax[2].set_ylabel('correlation coeff') timeLags = np.arange(1,3*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[3].plot(timeLags, autoCorr); ax[3].set_xlabel('time lag [hours]'); ax[3].set_ylabel('correlation coeff') windowSize = 5 * 24 lowPassFilteredSignal = originalSignal.rolling(windowSize, center=True).mean() t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015', dayfirst=True), pd.to_datetime('1/10/2016', dayfirst=True), freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015', dayfirst=True), pd.to_datetime('1/9/2015', dayfirst=True), freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015', dayfirst=True), pd.to_datetime('21/7/2015', dayfirst=True), freq='H') fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(20, 15)) ax[0].plot(t0, originalSignal) ax[0].plot(t0, lowPassFilteredSignal) ax[1].plot(t1, originalSignal[t1]) ax[1].plot(t1, lowPassFilteredSignal[t1]) ax[2].plot(t2, originalSignal[t2]) ax[2].plot(t2, lowPassFilteredSignal[t2]) ax[3].plot(t3, originalSignal[t3]) ax[3].plot(t3, lowPassFilteredSignal[t3]) ax[0].legend(['original', 'filtered'], fontsize=20, loc='upper left', bbox_to_anchor=(0.02, 1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\\circ$K]')
code
2002739/cell_4
[ "image_output_1.png" ]
import pandas as pd cityTable = pd.read_csv('../input/city_attributes.csv') temperatureDF = pd.read_csv('../input/temperature.csv', index_col=0) temperatureDF.index = pd.to_datetime(temperatureDF.index) cityTable
code
2002739/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd cityTable = pd.read_csv('../input/city_attributes.csv') temperatureDF = pd.read_csv('../input/temperature.csv', index_col=0) temperatureDF.index = pd.to_datetime(temperatureDF.index) cityTable citiesToShow = ['Los Angeles', 'Chicago', 'Montreal', 'Houston'] t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015', dayfirst=True), pd.to_datetime('1/10/2016', dayfirst=True), freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015', dayfirst=True), pd.to_datetime('1/9/2015', dayfirst=True), freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015', dayfirst=True), pd.to_datetime('21/7/2015', dayfirst=True), freq='H') fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(20, 15)) temperatureDF.loc[t0, citiesToShow].plot(ax=ax[0]) temperatureDF.loc[t1, citiesToShow].plot(ax=ax[1], legend=False) temperatureDF.loc[t2, citiesToShow].plot(ax=ax[2], legend=False) temperatureDF.loc[t3, citiesToShow].plot(ax=ax[3], legend=False) ax[0].legend(loc='upper left', fontsize=20, bbox_to_anchor=(0.02, 1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\\circ$K]', fontsize=15) plt.tight_layout()
code
2002739/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas.plotting import autocorrelation_plot, lag_plot import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd cityTable = pd.read_csv('../input/city_attributes.csv') temperatureDF = pd.read_csv('../input/temperature.csv', index_col=0) temperatureDF.index = pd.to_datetime(temperatureDF.index) cityTable #%% show several temperature plots to get a feel for the dataset citiesToShow = ['Los Angeles','Chicago','Montreal','Houston'] t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/10/2016',dayfirst=True),freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/9/2015' ,dayfirst=True),freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('21/7/2015',dayfirst=True),freq='H') fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) temperatureDF.loc[t0,citiesToShow].plot(ax=ax[0]); temperatureDF.loc[t1,citiesToShow].plot(ax=ax[1],legend=False); temperatureDF.loc[t2,citiesToShow].plot(ax=ax[2],legend=False); temperatureDF.loc[t3,citiesToShow].plot(ax=ax[3],legend=False); ax[0].legend(loc='upper left',fontsize=20,bbox_to_anchor=(0.02,1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\circ$K]', fontsize=15) plt.tight_layout() cityToShow = 'Los Angeles' selectedLagPoints = [1, 3, 6, 9, 12, 24, 36, 48, 60] maxLagDays = 7 originalSignal = temperatureDF[cityToShow] plt.figure(figsize=(12, 6)) gs = gridspec.GridSpec(2, len(selectedLagPoints)) axTopRow = plt.subplot(gs[0, :]) axBottomRow = [] for i in range(len(selectedLagPoints)): axBottomRow.append(plt.subplot(gs[1, i])) allTimeLags = np.arange(1, maxLagDays * 24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in allTimeLags] axTopRow.plot(allTimeLags, autoCorr) axTopRow.set_title('Autocorrelation Plot of Temperature Signal') axTopRow.set_xlabel('time lag [hours]') axTopRow.set_ylabel('correlation coefficient') selectedAutoCorr = [originalSignal.autocorr(lag=dt) for dt in selectedLagPoints] axTopRow.scatter(x=selectedLagPoints, y=selectedAutoCorr, s=50, c='r') for i in range(len(selectedLagPoints)): lag_plot(originalSignal, lag=selectedLagPoints[i], s=5, ax=axBottomRow[i]) if i >= 1: axBottomRow[i].set_yticks([], []) plt.tight_layout()
code
2002739/cell_15
[ "image_output_1.png" ]
from pandas.plotting import autocorrelation_plot, lag_plot import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd cityTable = pd.read_csv('../input/city_attributes.csv') temperatureDF = pd.read_csv('../input/temperature.csv', index_col=0) temperatureDF.index = pd.to_datetime(temperatureDF.index) cityTable #%% show several temperature plots to get a feel for the dataset citiesToShow = ['Los Angeles','Chicago','Montreal','Houston'] t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/10/2016',dayfirst=True),freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/9/2015' ,dayfirst=True),freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('21/7/2015',dayfirst=True),freq='H') fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) temperatureDF.loc[t0,citiesToShow].plot(ax=ax[0]); temperatureDF.loc[t1,citiesToShow].plot(ax=ax[1],legend=False); temperatureDF.loc[t2,citiesToShow].plot(ax=ax[2],legend=False); temperatureDF.loc[t3,citiesToShow].plot(ax=ax[3],legend=False); ax[0].legend(loc='upper left',fontsize=20,bbox_to_anchor=(0.02,1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\circ$K]', fontsize=15) plt.tight_layout() #%% show autocorr and lag plots cityToShow = 'Los Angeles' selectedLagPoints = [1,3,6,9,12,24,36,48,60] maxLagDays = 7 originalSignal = temperatureDF[cityToShow] # set grid spec of the subplots plt.figure(figsize=(12,6)) gs = gridspec.GridSpec(2, len(selectedLagPoints)) axTopRow = plt.subplot(gs[0, :]) axBottomRow = [] for i in range(len(selectedLagPoints)): axBottomRow.append(plt.subplot(gs[1, i])) # plot autocorr allTimeLags = np.arange(1,maxLagDays*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in allTimeLags] axTopRow.plot(allTimeLags,autoCorr); axTopRow.set_title('Autocorrelation Plot of Temperature Signal') axTopRow.set_xlabel('time lag [hours]'); axTopRow.set_ylabel('correlation coefficient') selectedAutoCorr = [originalSignal.autocorr(lag=dt) for dt in selectedLagPoints] axTopRow.scatter(x=selectedLagPoints, y=selectedAutoCorr, s=50, c='r') # plot scatter plot of selected points for i in range(len(selectedLagPoints)): lag_plot(originalSignal, lag=selectedLagPoints[i], s=5, ax=axBottomRow[i]) if i >= 1: axBottomRow[i].set_yticks([],[]) plt.tight_layout() #%% zoom in and out on the autocorr plot fig, ax = plt.subplots(nrows=4,ncols=1, figsize=(13,11)) timeLags = np.arange(1,25*24*30) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[0].plot(1.0/(24*30)*timeLags, autoCorr); ax[0].set_title('Autocorrelation Plot') ax[0].set_xlabel('time lag [months]'); ax[0].set_ylabel('correlation coeff') timeLags = np.arange(1,20*24*7) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[1].plot(1.0/(24*7)*timeLags, autoCorr); ax[1].set_xlabel('time lag [weeks]'); ax[1].set_ylabel('correlation coeff') timeLags = np.arange(1,20*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[2].plot(1.0/24*timeLags, autoCorr); ax[2].set_xlabel('time lag [days]'); ax[2].set_ylabel('correlation coeff') timeLags = np.arange(1,3*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[3].plot(timeLags, autoCorr); ax[3].set_xlabel('time lag [hours]'); ax[3].set_ylabel('correlation coeff') #%% apply rolling mean and plot the signal (low pass filter) windowSize = 5*24 lowPassFilteredSignal = originalSignal.rolling(windowSize, center=True).mean() t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/10/2016',dayfirst=True),freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/9/2015' ,dayfirst=True),freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('21/7/2015',dayfirst=True),freq='H') fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) ax[0].plot(t0,originalSignal) ax[0].plot(t0,lowPassFilteredSignal) ax[1].plot(t1,originalSignal[t1]) ax[1].plot(t1,lowPassFilteredSignal[t1]) ax[2].plot(t2,originalSignal[t2]) ax[2].plot(t2,lowPassFilteredSignal[t2]) ax[3].plot(t3,originalSignal[t3]) ax[3].plot(t3,lowPassFilteredSignal[t3]) ax[0].legend(['original','filtered'],fontsize=20,loc='upper left',bbox_to_anchor=(0.02,1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\circ$K]') highPassFilteredSignal = originalSignal - lowPassFilteredSignal fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(20, 15)) ax[0].plot(t0, highPassFilteredSignal) ax[1].plot(t1, highPassFilteredSignal[t1]) ax[2].plot(t2, highPassFilteredSignal[t2]) ax[3].plot(t3, highPassFilteredSignal[t3]) ax[0].set_title('deflection of temperature from local mean', fontsize=20) for i in range(len(ax)): ax[i].set_ylabel('$\\Delta$ Temperature [$^\\circ$K]')
code
2002739/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas.plotting import autocorrelation_plot, lag_plot import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd cityTable = pd.read_csv('../input/city_attributes.csv') temperatureDF = pd.read_csv('../input/temperature.csv', index_col=0) temperatureDF.index = pd.to_datetime(temperatureDF.index) cityTable #%% show several temperature plots to get a feel for the dataset citiesToShow = ['Los Angeles','Chicago','Montreal','Houston'] t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/10/2016',dayfirst=True),freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/9/2015' ,dayfirst=True),freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('21/7/2015',dayfirst=True),freq='H') fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) temperatureDF.loc[t0,citiesToShow].plot(ax=ax[0]); temperatureDF.loc[t1,citiesToShow].plot(ax=ax[1],legend=False); temperatureDF.loc[t2,citiesToShow].plot(ax=ax[2],legend=False); temperatureDF.loc[t3,citiesToShow].plot(ax=ax[3],legend=False); ax[0].legend(loc='upper left',fontsize=20,bbox_to_anchor=(0.02,1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\circ$K]', fontsize=15) plt.tight_layout() #%% show autocorr and lag plots cityToShow = 'Los Angeles' selectedLagPoints = [1,3,6,9,12,24,36,48,60] maxLagDays = 7 originalSignal = temperatureDF[cityToShow] # set grid spec of the subplots plt.figure(figsize=(12,6)) gs = gridspec.GridSpec(2, len(selectedLagPoints)) axTopRow = plt.subplot(gs[0, :]) axBottomRow = [] for i in range(len(selectedLagPoints)): axBottomRow.append(plt.subplot(gs[1, i])) # plot autocorr allTimeLags = np.arange(1,maxLagDays*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in allTimeLags] axTopRow.plot(allTimeLags,autoCorr); axTopRow.set_title('Autocorrelation Plot of Temperature Signal') axTopRow.set_xlabel('time lag [hours]'); axTopRow.set_ylabel('correlation coefficient') selectedAutoCorr = [originalSignal.autocorr(lag=dt) for dt in selectedLagPoints] axTopRow.scatter(x=selectedLagPoints, y=selectedAutoCorr, s=50, c='r') # plot scatter plot of selected points for i in range(len(selectedLagPoints)): lag_plot(originalSignal, lag=selectedLagPoints[i], s=5, ax=axBottomRow[i]) if i >= 1: axBottomRow[i].set_yticks([],[]) plt.tight_layout() #%% zoom in and out on the autocorr plot fig, ax = plt.subplots(nrows=4,ncols=1, figsize=(13,11)) timeLags = np.arange(1,25*24*30) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[0].plot(1.0/(24*30)*timeLags, autoCorr); ax[0].set_title('Autocorrelation Plot') ax[0].set_xlabel('time lag [months]'); ax[0].set_ylabel('correlation coeff') timeLags = np.arange(1,20*24*7) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[1].plot(1.0/(24*7)*timeLags, autoCorr); ax[1].set_xlabel('time lag [weeks]'); ax[1].set_ylabel('correlation coeff') timeLags = np.arange(1,20*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[2].plot(1.0/24*timeLags, autoCorr); ax[2].set_xlabel('time lag [days]'); ax[2].set_ylabel('correlation coeff') timeLags = np.arange(1,3*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[3].plot(timeLags, autoCorr); ax[3].set_xlabel('time lag [hours]'); ax[3].set_ylabel('correlation coeff') #%% apply rolling mean and plot the signal (low pass filter) windowSize = 5*24 lowPassFilteredSignal = originalSignal.rolling(windowSize, center=True).mean() t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/10/2016',dayfirst=True),freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/9/2015' ,dayfirst=True),freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('21/7/2015',dayfirst=True),freq='H') fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) ax[0].plot(t0,originalSignal) ax[0].plot(t0,lowPassFilteredSignal) ax[1].plot(t1,originalSignal[t1]) ax[1].plot(t1,lowPassFilteredSignal[t1]) ax[2].plot(t2,originalSignal[t2]) ax[2].plot(t2,lowPassFilteredSignal[t2]) ax[3].plot(t3,originalSignal[t3]) ax[3].plot(t3,lowPassFilteredSignal[t3]) ax[0].legend(['original','filtered'],fontsize=20,loc='upper left',bbox_to_anchor=(0.02,1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\circ$K]') #%% subtract the low pass filtered singal from the original to get high pass filtered signal highPassFilteredSignal = originalSignal - lowPassFilteredSignal fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) ax[0].plot(t0,highPassFilteredSignal) ax[1].plot(t1,highPassFilteredSignal[t1]) ax[2].plot(t2,highPassFilteredSignal[t2]) ax[3].plot(t3,highPassFilteredSignal[t3]) ax[0].set_title('deflection of temperature from local mean',fontsize=20) for i in range(len(ax)): ax[i].set_ylabel('$\Delta$ Temperature [$^\circ$K]') fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(13, 11)) timeLags = np.arange(1, 25 * 24 * 30) autoCorr = [lowPassFilteredSignal.autocorr(lag=dt) for dt in timeLags] ax[0].plot(1.0 / (24 * 30) * timeLags, autoCorr) ax[0].set_title('Autocorrelation Plot of low Pass Filtered Signal') ax[0].set_xlabel('time lag [months]') ax[0].set_ylabel('correlation coeff') timeLags = np.arange(1, 20 * 24 * 7) autoCorr = [lowPassFilteredSignal.autocorr(lag=dt) for dt in timeLags] ax[1].plot(1.0 / (24 * 7) * timeLags, autoCorr) ax[1].set_xlabel('time lag [weeks]') ax[1].set_ylabel('correlation coeff') timeLags = np.arange(1, 20 * 24) autoCorr = [lowPassFilteredSignal.autocorr(lag=dt) for dt in timeLags] ax[2].plot(1.0 / 24 * timeLags, autoCorr) ax[2].set_xlabel('time lag [days]') ax[2].set_ylabel('correlation coeff') timeLags = np.arange(1, 3 * 24) autoCorr = [lowPassFilteredSignal.autocorr(lag=dt) for dt in timeLags] ax[3].plot(timeLags, autoCorr) ax[3].set_xlabel('time lag [hours]') ax[3].set_ylabel('correlation coeff')
code
2002739/cell_10
[ "text_html_output_1.png" ]
from pandas.plotting import autocorrelation_plot, lag_plot import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd cityTable = pd.read_csv('../input/city_attributes.csv') temperatureDF = pd.read_csv('../input/temperature.csv', index_col=0) temperatureDF.index = pd.to_datetime(temperatureDF.index) cityTable #%% show several temperature plots to get a feel for the dataset citiesToShow = ['Los Angeles','Chicago','Montreal','Houston'] t0 = temperatureDF.index t1 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/10/2016',dayfirst=True),freq='H') t2 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('1/9/2015' ,dayfirst=True),freq='H') t3 = pd.date_range(pd.to_datetime('1/7/2015',dayfirst=True),pd.to_datetime('21/7/2015',dayfirst=True),freq='H') fig, ax = plt.subplots(nrows=4,ncols=1,figsize=(20,15)) temperatureDF.loc[t0,citiesToShow].plot(ax=ax[0]); temperatureDF.loc[t1,citiesToShow].plot(ax=ax[1],legend=False); temperatureDF.loc[t2,citiesToShow].plot(ax=ax[2],legend=False); temperatureDF.loc[t3,citiesToShow].plot(ax=ax[3],legend=False); ax[0].legend(loc='upper left',fontsize=20,bbox_to_anchor=(0.02,1.3), ncol=len(citiesToShow)) for i in range(len(ax)): ax[i].set_ylabel('Temperature [$^\circ$K]', fontsize=15) plt.tight_layout() #%% show autocorr and lag plots cityToShow = 'Los Angeles' selectedLagPoints = [1,3,6,9,12,24,36,48,60] maxLagDays = 7 originalSignal = temperatureDF[cityToShow] # set grid spec of the subplots plt.figure(figsize=(12,6)) gs = gridspec.GridSpec(2, len(selectedLagPoints)) axTopRow = plt.subplot(gs[0, :]) axBottomRow = [] for i in range(len(selectedLagPoints)): axBottomRow.append(plt.subplot(gs[1, i])) # plot autocorr allTimeLags = np.arange(1,maxLagDays*24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in allTimeLags] axTopRow.plot(allTimeLags,autoCorr); axTopRow.set_title('Autocorrelation Plot of Temperature Signal') axTopRow.set_xlabel('time lag [hours]'); axTopRow.set_ylabel('correlation coefficient') selectedAutoCorr = [originalSignal.autocorr(lag=dt) for dt in selectedLagPoints] axTopRow.scatter(x=selectedLagPoints, y=selectedAutoCorr, s=50, c='r') # plot scatter plot of selected points for i in range(len(selectedLagPoints)): lag_plot(originalSignal, lag=selectedLagPoints[i], s=5, ax=axBottomRow[i]) if i >= 1: axBottomRow[i].set_yticks([],[]) plt.tight_layout() fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(13, 11)) timeLags = np.arange(1, 25 * 24 * 30) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[0].plot(1.0 / (24 * 30) * timeLags, autoCorr) ax[0].set_title('Autocorrelation Plot') ax[0].set_xlabel('time lag [months]') ax[0].set_ylabel('correlation coeff') timeLags = np.arange(1, 20 * 24 * 7) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[1].plot(1.0 / (24 * 7) * timeLags, autoCorr) ax[1].set_xlabel('time lag [weeks]') ax[1].set_ylabel('correlation coeff') timeLags = np.arange(1, 20 * 24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[2].plot(1.0 / 24 * timeLags, autoCorr) ax[2].set_xlabel('time lag [days]') ax[2].set_ylabel('correlation coeff') timeLags = np.arange(1, 3 * 24) autoCorr = [originalSignal.autocorr(lag=dt) for dt in timeLags] ax[3].plot(timeLags, autoCorr) ax[3].set_xlabel('time lag [hours]') ax[3].set_ylabel('correlation coeff')
code
88100476/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator from keras.preprocessing.image import ImageDataGenerator val_batch = 10 train_batch = 32 train_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.4, zoom_range=0.3, validation_split=0.3, horizontal_flip=True) train_generator = train_datagen.flow_from_directory('/kaggle/working/train', target_size=(130, 130), batch_size=train_batch, class_mode='binary', subset='training', color_mode='rgb', shuffle=True) validation_generator = train_datagen.flow_from_directory('/kaggle/working/train', target_size=(130, 130), batch_size=val_batch, class_mode='binary', subset='validation', color_mode='rgb', shuffle=True)
code
88100476/cell_31
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_generator = test_datagen.flow_from_directory('/kaggle/input/dogsvscatsmytestdata/training_set/', target_size=(130, 130), batch_size=32, class_mode='binary', color_mode='rgb')
code
88099900/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('/kaggle/input/titanic/train.csv') raw_test = pd.read_csv('/kaggle/input/titanic/test.csv') train_copy = raw_data.copy() train_copy.set_index('PassengerId', inplace=True, drop=True) test_copy = raw_test.copy() test_copy.set_index('PassengerId', inplace=True, drop=True) train_copy.isnull().sum()
code
88099900/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('/kaggle/input/titanic/train.csv') raw_test = pd.read_csv('/kaggle/input/titanic/test.csv') train_copy = raw_data.copy() train_copy.set_index('PassengerId', inplace=True, drop=True) test_copy = raw_test.copy() test_copy.set_index('PassengerId', inplace=True, drop=True) train_copy.info()
code
88099900/cell_19
[ "text_html_output_1.png" ]
list(prefixes)
code
88099900/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88099900/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('/kaggle/input/titanic/train.csv') raw_test = pd.read_csv('/kaggle/input/titanic/test.csv') train_copy = raw_data.copy() train_copy.set_index('PassengerId', inplace=True, drop=True) test_copy = raw_test.copy() test_copy.set_index('PassengerId', inplace=True, drop=True) train_copy.isnull().sum() test_data = test_copy.copy() train_data = train_copy.copy() train_data['modified_name'] = train_data.Name.str.split(',', expand=True)[1] train_data['prefix'] = train_data['modified_name'].str.split('.', expand=True)[0] test_data['modified_name'] = test_data.Name.str.split(',', expand=True)[1] test_data['prefix'] = test_data['modified_name'].str.split('.', expand=True)[0] fill = train_data[train_data.Age.isnull()]['prefix'].unique() criteria = train_data[train_data['prefix'].isin(fill)] train_age_summary = criteria.groupby(['prefix', 'Pclass'])['Age'].agg(['mean', 'count']) train_age_summary fillt = test_data[test_data.Age.isnull()]['prefix'].unique() criteria1 = test_data[test_data['prefix'].isin(fill)] test_age_summary = criteria.groupby(['prefix', 'Pclass'])['Age'].agg(['mean', 'count']) test_age_summary
code
88099900/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('/kaggle/input/titanic/train.csv') raw_test = pd.read_csv('/kaggle/input/titanic/test.csv') train_copy = raw_data.copy() train_copy.set_index('PassengerId', inplace=True, drop=True) test_copy = raw_test.copy() test_copy.set_index('PassengerId', inplace=True, drop=True) print('Train Df- ', train_copy.shape) print('Test Df- ', test_copy.shape)
code
88099900/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('/kaggle/input/titanic/train.csv') raw_test = pd.read_csv('/kaggle/input/titanic/test.csv') train_copy = raw_data.copy() train_copy.set_index('PassengerId', inplace=True, drop=True) test_copy = raw_test.copy() test_copy.set_index('PassengerId', inplace=True, drop=True) train_copy.isnull().sum() test_data = test_copy.copy() train_data = train_copy.copy() train_data['modified_name'] = train_data.Name.str.split(',', expand=True)[1] train_data['prefix'] = train_data['modified_name'].str.split('.', expand=True)[0] fill = train_data[train_data.Age.isnull()]['prefix'].unique() criteria = train_data[train_data['prefix'].isin(fill)] train_age_summary = criteria.groupby(['prefix', 'Pclass'])['Age'].agg(['mean', 'count']) train_age_summary
code
88099900/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('/kaggle/input/titanic/train.csv') raw_test = pd.read_csv('/kaggle/input/titanic/test.csv') train_copy = raw_data.copy() train_copy.set_index('PassengerId', inplace=True, drop=True) test_copy = raw_test.copy() test_copy.set_index('PassengerId', inplace=True, drop=True) train_copy.describe()
code
88099900/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) raw_data = pd.read_csv('/kaggle/input/titanic/train.csv') raw_test = pd.read_csv('/kaggle/input/titanic/test.csv') raw_data.head(10)
code
130002559/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from PIL import Image from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, ConfusionMatrixDisplay, confusion_matrix, roc_curve, auc from torch import nn from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import matplotlib.pyplot as plt import os import pandas as pd import timm import torch import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision import transforms from torch.optim import Adam import glob from tqdm.notebook import tqdm from PIL import Image import torchvision from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, ConfusionMatrixDisplay, confusion_matrix, roc_curve, auc device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') class BreastCancerDataset(Dataset): def __init__(self, data_path_file, train=True): super(Dataset, self).__init__() self.data = pd.read_csv(data_path_file, index_col=0) self.global_path = '/kaggle/input/meta-data/Data_image' if train: self.transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.Resize(size=(224, 224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) else: self.transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.Resize(size=(224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) def __len__(self): return len(self.data) def __getitem__(self, idx): row = self.data.iloc[idx] label = row['status'] img_path = os.path.join(self.global_path, row['Path']) labels = torch.tensor(label) image = Image.open(img_path) if self.transform: image = self.transform(image) return (image, labels) path_train_fold_0 = '/kaggle/input/data-ddsm-cdd-mias/DDSM/DDSM/DDSM_Fold_4/train_DDSM_fold_3.csv' path_val_fold_0 = '/kaggle/input/data-ddsm-cdd-mias/DDSM/DDSM/DDSM_Fold_4/valid_DDSM_fold_3.csv' path_test_DDSM = '/kaggle/input/data-ddsm-cdd-mias/Data_Test/Data_Test/Test_ddsm.csv' train_dataset = BreastCancerDataset(path_train_fold_0, train=True) val_dataset = BreastCancerDataset(path_val_fold_0, train=False) test_dataset_DDSM = BreastCancerDataset(path_test_DDSM, train=False) batch_size = 64 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) test_loader_DDSM = DataLoader(test_dataset_DDSM, batch_size=batch_size, shuffle=True) def save_model(epochs, model, optimizer, criterion, pretrained='True'): """ Function to save the trained model to disk. """ torch.save({'epoch': epochs, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': criterion}, f'/kaggle/working/model_pretrained_{pretrained}_{epochs}.pth') def save_plots(train_acc, valid_acc, train_loss, valid_loss, pretrained='True'): """ Function to save the loss and accuracy plots to disk. """ import timm model = timm.create_model('hrnet_w18', pretrained=True, num_classes=3) criterion = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=0.001) list_acc_train, list_acc_val, list_loss_train, list_loss_val = ([], [], [], []) num_epochs = 100 best_f1 = 0.0 print('Begin Training') for epoch in tqdm(range(1, num_epochs + 1)): model.train() train_loss = 0.0 train_acc = 0.0 total = 0 for inputs, labels in tqdm(train_loader): optimizer.zero_grad() model.to(device) inputs, labels = (inputs.to(device), labels.to(device)) outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() predicted = torch.max(outputs, 1)[1].to(device) total += labels.size(0) train_acc += (predicted == labels).sum().item() train_acc /= total train_loss /= len(train_loader) list_loss_train.append(train_loss) list_acc_train.append(train_acc) model.eval() with torch.no_grad(): val_loss = 0.0 val_acc = 0.0 f1_scr = 0.0 total = 0.0 label_list, label_pred_list = ([], []) for inputs, labels in val_loader: inputs, labels = (inputs.to(device), labels.to(device)) outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() predicted = torch.max(outputs, 1)[1].to(device) total += labels.size(0) val_acc += (predicted == labels).sum().item() label_list.append(labels) label_pred_list.append(predicted) val_acc = val_acc / total label_list, label_pred_list = (torch.cat(label_list, 0), torch.cat(label_pred_list, 0)) f1_scr = f1_score(label_list.cpu(), label_pred_list.cpu(), average='macro') val_loss /= len(val_loader) list_loss_val.append(val_loss) list_acc_val.append(val_acc) print(f'Epoch {epoch + 1:2d}/{num_epochs}: train_loss = {train_loss:.3f}, train_acc = {train_acc:.3f}, val_loss = {val_loss:.3f}, val_acc = {val_acc:.3f}') if f1_scr > best_f1: best_f1 = f1_scr save_model(epoch, model, optimizer, criterion) history = {'loss_train': list_loss_train, 'acc_train': list_acc_train, 'loss_val': list_loss_val, 'acc_val': list_acc_val} save_plots(list_acc_train, list_acc_val, list_loss_train, list_loss_val) df_history = pd.DataFrame(history) df_history.to_csv('/kaggle/working/history.csv')
code
130002559/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import torch import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision import transforms from torch.optim import Adam import glob from tqdm.notebook import tqdm from PIL import Image import torchvision from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, ConfusionMatrixDisplay, confusion_matrix, roc_curve, auc device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('The model will be running on', device, 'device')
code
130002559/cell_8
[ "text_plain_output_100.png", "text_plain_output_84.png", "text_plain_output_56.png", "text_plain_output_35.png", "text_plain_output_98.png", "text_plain_output_43.png", "text_plain_output_78.png", "text_plain_output_37.png", "text_plain_output_90.png", "text_plain_output_79.png", "text_plain_output_5.png", "text_plain_output_75.png", "text_plain_output_48.png", "text_plain_output_30.png", "text_plain_output_73.png", "text_plain_output_15.png", "text_plain_output_70.png", "text_plain_output_9.png", "text_plain_output_44.png", "text_plain_output_86.png", "text_plain_output_40.png", "text_plain_output_74.png", "text_plain_output_31.png", "text_plain_output_20.png", "text_plain_output_101.png", "text_plain_output_60.png", "text_plain_output_68.png", "text_plain_output_4.png", "text_plain_output_65.png", "text_plain_output_64.png", "text_plain_output_13.png", "text_plain_output_52.png", "text_plain_output_66.png", "text_plain_output_45.png", "text_plain_output_14.png", "text_plain_output_32.png", "text_plain_output_88.png", "text_plain_output_29.png", "text_plain_output_58.png", "text_plain_output_49.png", "text_plain_output_63.png", "text_plain_output_27.png", "text_plain_output_76.png", "text_plain_output_54.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_92.png", "text_plain_output_57.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_47.png", "text_plain_output_25.png", "text_plain_output_77.png", "text_plain_output_18.png", "text_plain_output_50.png", "text_plain_output_36.png", "text_plain_output_96.png", "text_plain_output_87.png", "text_plain_output_3.png", "text_plain_output_22.png", "text_plain_output_81.png", "text_plain_output_69.png", "text_plain_output_38.png", "text_plain_output_7.png", "text_plain_output_91.png", "text_plain_output_16.png", "text_plain_output_59.png", "text_plain_output_71.png", "text_plain_output_8.png", "text_plain_output_26.png", "text_plain_output_41.png", "text_plain_output_34.png", "text_plain_output_85.png", "text_plain_output_42.png", "text_plain_output_67.png", "text_plain_output_53.png", "text_plain_output_23.png", "text_plain_output_89.png", "text_plain_output_51.png", "text_plain_output_28.png", "text_plain_output_72.png", "text_plain_output_99.png", "text_plain_output_2.png", "text_plain_output_97.png", "text_plain_output_1.png", "text_plain_output_33.png", "text_plain_output_39.png", "text_plain_output_55.png", "text_plain_output_82.png", "text_plain_output_93.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "text_plain_output_80.png", "text_plain_output_94.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "text_plain_output_62.png", "text_plain_output_95.png", "text_plain_output_61.png", "text_plain_output_83.png", "text_plain_output_46.png" ]
from PIL import Image from torch import nn from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from torchvision import transforms import os import pandas as pd import timm import torch import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision import transforms from torch.optim import Adam import glob from tqdm.notebook import tqdm from PIL import Image import torchvision from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, ConfusionMatrixDisplay, confusion_matrix, roc_curve, auc device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') class BreastCancerDataset(Dataset): def __init__(self, data_path_file, train=True): super(Dataset, self).__init__() self.data = pd.read_csv(data_path_file, index_col=0) self.global_path = '/kaggle/input/meta-data/Data_image' if train: self.transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.Resize(size=(224, 224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) else: self.transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.Resize(size=(224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) def __len__(self): return len(self.data) def __getitem__(self, idx): row = self.data.iloc[idx] label = row['status'] img_path = os.path.join(self.global_path, row['Path']) labels = torch.tensor(label) image = Image.open(img_path) if self.transform: image = self.transform(image) return (image, labels) def save_model(epochs, model, optimizer, criterion, pretrained='True'): """ Function to save the trained model to disk. """ torch.save({'epoch': epochs, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': criterion}, f'/kaggle/working/model_pretrained_{pretrained}_{epochs}.pth') import timm model = timm.create_model('hrnet_w18', pretrained=True, num_classes=3) criterion = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=0.001)
code
130002559/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, ConfusionMatrixDisplay, confusion_matrix, roc_curve, auc from sklearn.metrics import confusion_matrix, roc_curve, auc from torch import nn from torch.optim import Adam from torch.utils.data import Dataset, DataLoader from torchvision import transforms from tqdm.notebook import tqdm import matplotlib.pyplot as plt import os import pandas as pd import timm import torch import numpy as np import pandas as pd import os import cv2 import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torchvision import transforms from torch.optim import Adam import glob from tqdm.notebook import tqdm from PIL import Image import torchvision from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, ConfusionMatrixDisplay, confusion_matrix, roc_curve, auc device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') class BreastCancerDataset(Dataset): def __init__(self, data_path_file, train=True): super(Dataset, self).__init__() self.data = pd.read_csv(data_path_file, index_col=0) self.global_path = '/kaggle/input/meta-data/Data_image' if train: self.transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.Resize(size=(224, 224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) else: self.transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.Resize(size=(224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) def __len__(self): return len(self.data) def __getitem__(self, idx): row = self.data.iloc[idx] label = row['status'] img_path = os.path.join(self.global_path, row['Path']) labels = torch.tensor(label) image = Image.open(img_path) if self.transform: image = self.transform(image) return (image, labels) path_train_fold_0 = '/kaggle/input/data-ddsm-cdd-mias/DDSM/DDSM/DDSM_Fold_4/train_DDSM_fold_3.csv' path_val_fold_0 = '/kaggle/input/data-ddsm-cdd-mias/DDSM/DDSM/DDSM_Fold_4/valid_DDSM_fold_3.csv' path_test_DDSM = '/kaggle/input/data-ddsm-cdd-mias/Data_Test/Data_Test/Test_ddsm.csv' train_dataset = BreastCancerDataset(path_train_fold_0, train=True) val_dataset = BreastCancerDataset(path_val_fold_0, train=False) test_dataset_DDSM = BreastCancerDataset(path_test_DDSM, train=False) batch_size = 64 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True) test_loader_DDSM = DataLoader(test_dataset_DDSM, batch_size=batch_size, shuffle=True) def save_model(epochs, model, optimizer, criterion, pretrained='True'): """ Function to save the trained model to disk. """ torch.save({'epoch': epochs, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': criterion}, f'/kaggle/working/model_pretrained_{pretrained}_{epochs}.pth') def save_plots(train_acc, valid_acc, train_loss, valid_loss, pretrained='True'): """ Function to save the loss and accuracy plots to disk. """ import timm model = timm.create_model('hrnet_w18', pretrained=True, num_classes=3) criterion = nn.CrossEntropyLoss() optimizer = Adam(model.parameters(), lr=0.001) list_acc_train, list_acc_val, list_loss_train, list_loss_val = ([], [], [], []) num_epochs = 100 best_f1 = 0.0 for epoch in tqdm(range(1, num_epochs + 1)): model.train() train_loss = 0.0 train_acc = 0.0 total = 0 for inputs, labels in tqdm(train_loader): optimizer.zero_grad() model.to(device) inputs, labels = (inputs.to(device), labels.to(device)) outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() predicted = torch.max(outputs, 1)[1].to(device) total += labels.size(0) train_acc += (predicted == labels).sum().item() train_acc /= total train_loss /= len(train_loader) list_loss_train.append(train_loss) list_acc_train.append(train_acc) model.eval() with torch.no_grad(): val_loss = 0.0 val_acc = 0.0 f1_scr = 0.0 total = 0.0 label_list, label_pred_list = ([], []) for inputs, labels in val_loader: inputs, labels = (inputs.to(device), labels.to(device)) outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() predicted = torch.max(outputs, 1)[1].to(device) total += labels.size(0) val_acc += (predicted == labels).sum().item() label_list.append(labels) label_pred_list.append(predicted) val_acc = val_acc / total label_list, label_pred_list = (torch.cat(label_list, 0), torch.cat(label_pred_list, 0)) f1_scr = f1_score(label_list.cpu(), label_pred_list.cpu(), average='macro') val_loss /= len(val_loader) list_loss_val.append(val_loss) list_acc_val.append(val_acc) if f1_scr > best_f1: best_f1 = f1_scr save_model(epoch, model, optimizer, criterion) history = {'loss_train': list_loss_train, 'acc_train': list_acc_train, 'loss_val': list_loss_val, 'acc_val': list_acc_val} df_history = pd.DataFrame(history) df_history.to_csv('/kaggle/working/history.csv') from sklearn.metrics import confusion_matrix, roc_curve, auc with torch.no_grad(): y_true = [] y_pred = [] for inputs, labels in tqdm(test_loader_DDSM): inputs = inputs.to(device) labels = labels.to(device) model.to(device) outputs = model(inputs) predicted = torch.max(outputs, dim=1)[1] y_true += labels.tolist() y_pred += predicted.tolist() accuracy = accuracy_score(y_true, y_pred) precision = precision_score(y_true, y_pred, average='weighted') recall = recall_score(y_true, y_pred, average='weighted') f1 = f1_score(y_true, y_pred, average='weighted') fpr, tpr, thresholds = roc_curve(y_true, y_pred, pos_label=3) auc_score = auc(fpr, tpr) print(f'Accuracy: {accuracy:.2f}') print(f'Precision: {precision:.2f}') print(f'Recall: {recall:.2f}') print(f'F1 score: {f1:.2f}') print(f'AUC score : {f1:.2f}') cm = confusion_matrix(y_true, y_pred) cr = classification_report(y_true, y_pred) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['normal', 'benign', 'malignant']) disp.plot() plt.savefig('confusion_matrix_DDSM.png') plt.show()
code
2003266/cell_42
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) log_loss(y_val[:, 2], val_prediction[:, 2])
code
2003266/cell_25
[ "text_html_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)])
code
2003266/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') test.head()
code
2003266/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') submission.head()
code
2003266/cell_33
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True)
code
2003266/cell_40
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import OrderedDict from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) def show_confustion_matrix(y_true, y_pred): tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() df = pd.DataFrame(OrderedDict([('true-class', ['negative', 'positive']), ('negative-classified', [tn, fn]), ('positive-classified', [fp, tp])])) return df.set_index('true-class') show_confustion_matrix(y_val[:, 1], val_prediction[:, 1] > 0.5)
code
2003266/cell_29
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) for i, label in enumerate(['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']): submission[label] = test_prediction[:, i]
code
2003266/cell_39
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) log_loss(y_val[:, 1], val_prediction[:, 1])
code
2003266/cell_26
[ "text_plain_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5')
code
2003266/cell_48
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) log_loss(y_val[:, 4], val_prediction[:, 4])
code
2003266/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np from itertools import chain from nltk.tokenize import wordpunct_tokenize from keras.preprocessing import text, sequence from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.callbacks import EarlyStopping, ModelCheckpoint from sklearn.model_selection import train_test_split from subprocess import call from sklearn.utils import compute_sample_weight from sklearn.metrics import confusion_matrix, log_loss from collections import OrderedDict
code
2003266/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
!fasttext print-word-vectors embedding-model.bin < fasttext-words.txt > fasttext-vectors.txt
code
2003266/cell_52
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import OrderedDict from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) def show_confustion_matrix(y_true, y_pred): tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() df = pd.DataFrame(OrderedDict([('true-class', ['negative', 'positive']), ('negative-classified', [tn, fn]), ('positive-classified', [fp, tp])])) return df.set_index('true-class') show_confustion_matrix(y_val[:, 5], val_prediction[:, 5] > 0.5)
code
2003266/cell_45
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) log_loss(y_val[:, 3], val_prediction[:, 3])
code
2003266/cell_49
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import OrderedDict from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) def show_confustion_matrix(y_true, y_pred): tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() df = pd.DataFrame(OrderedDict([('true-class', ['negative', 'positive']), ('negative-classified', [tn, fn]), ('positive-classified', [fp, tp])])) return df.set_index('true-class') show_confustion_matrix(y_val[:, 4], val_prediction[:, 4] > 0.5)
code
2003266/cell_51
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) log_loss(y_val[:, 5], val_prediction[:, 5])
code
2003266/cell_28
[ "text_plain_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True)
code
2003266/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') train.head()
code
2003266/cell_43
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import OrderedDict from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) def show_confustion_matrix(y_true, y_pred): tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() df = pd.DataFrame(OrderedDict([('true-class', ['negative', 'positive']), ('negative-classified', [tn, fn]), ('positive-classified', [fp, tp])])) return df.set_index('true-class') show_confustion_matrix(y_val[:, 2], val_prediction[:, 2] > 0.5)
code
2003266/cell_46
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import OrderedDict from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) def show_confustion_matrix(y_true, y_pred): tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() df = pd.DataFrame(OrderedDict([('true-class', ['negative', 'positive']), ('negative-classified', [tn, fn]), ('positive-classified', [fp, tp])])) return df.set_index('true-class') show_confustion_matrix(y_val[:, 3], val_prediction[:, 3] > 0.5)
code
2003266/cell_24
[ "text_html_output_1.png" ]
from itertools import chain from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary()
code
2003266/cell_37
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import OrderedDict from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) def show_confustion_matrix(y_true, y_pred): tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() df = pd.DataFrame(OrderedDict([('true-class', ['negative', 'positive']), ('negative-classified', [tn, fn]), ('positive-classified', [fp, tp])])) return df.set_index('true-class') show_confustion_matrix(y_val[:, 0], val_prediction[:, 0] > 0.5)
code
2003266/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') submission = pd.read_csv('../input/sample_submission.csv') submission.head()
code
2003266/cell_36
[ "text_html_output_1.png" ]
from itertools import chain from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers import Dense, Embedding, Dropout, LSTM, Bidirectional, GlobalMaxPool1D, InputLayer, BatchNormalization, Activation from keras.models import Sequential from keras.preprocessing import text, sequence from nltk.tokenize import wordpunct_tokenize from sklearn.metrics import confusion_matrix, log_loss from sklearn.model_selection import train_test_split import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') train.fillna('nan') test = pd.read_csv('../input/test.csv') test.fillna('nan') targets = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] y = np.array(train[targets]) texts = np.array(train['comment_text']) texts_test = np.array(test['comment_text']) label_mapping = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1], [0, 0, 0, 1, 1, 0], [0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 1], [0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 0, 1], [0, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1], [0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1], [0, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1], [1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0], [1, 0, 0, 1, 1, 1], [1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0], [1, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1], [1, 0, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1], [1, 1, 0, 0, 1, 0], [1, 1, 0, 0, 1, 1], [1, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 1], [1, 1, 1, 0, 1, 0], [1, 1, 1, 0, 1, 1], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1]]) y_converted = np.zeros([len(y)]) for i in range(len(label_mapping)): idx = (y == label_mapping[i]).sum(axis=1) == 6 y_converted[idx] = i train_indices, val_indices, _, _ = train_test_split(np.fromiter(range(len(y)), dtype=np.int32), y_converted, test_size=0.1, stratify=y_converted) with open('fasttext-embedding-train.txt', 'w', encoding='utf-8') as target: for text in texts_train: target.write('__label__0\t{0}\n'.format(text.strip())) train_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) test_texts_tokenized = map(wordpunct_tokenize, train['comment_text']) train_text_tokens = set(chain(*train_texts_tokenized)) test_text_tokens = set(chain(*test_texts_tokenized)) text_tokens = sorted(train_text_tokens | test_text_tokens) with open('fasttext-words.txt', 'w', encoding='utf-8') as target: for word in text_tokens: target.write('{0}\n'.format(word.strip())) embedding_matrix = np.zeros([len(text_tokens) + 1, 100]) word2index = {} with open('fasttext-vectors.txt', 'r', encoding='utf-8') as src: for i, line in enumerate(src): parts = line.strip().split(' ') word = parts[0] vector = map(float, parts[1:]) word2index[word] = len(word2index) embedding_matrix[i] = np.fromiter(vector, dtype=np.float) def text2sequence(text): return list(map(lambda token: word2index.get(token, len(word2index) - 1), wordpunct_tokenize(str(text)))) X_train = sequence.pad_sequences(list(map(text2sequence, texts_train)), maxlen=100) X_val = sequence.pad_sequences(list(map(text2sequence, texts_val)), maxlen=100) X_test = sequence.pad_sequences(list(map(text2sequence, texts_test)), maxlen=100) embed_size = 100 model = Sequential([InputLayer(input_shape=(100,), dtype='int32'), Embedding(len(embedding_matrix), embed_size), Bidirectional(LSTM(50, return_sequences=True)), GlobalMaxPool1D(), Dropout(0.3), Dense(50, activation='relu'), Dropout(0.3), Dense(6, activation='sigmoid')]) embedding = model.layers[1] embedding.set_weights([embedding_matrix]) embedding.trainable = False model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, batch_size=64, epochs=10, validation_data=(X_val, y_val), verbose=True, callbacks=[ModelCheckpoint('model.h5', save_best_only=True), EarlyStopping(patience=3)]) model.load_weights('model.h5') test_prediction = model.predict(X_test, verbose=True) val_prediction = model.predict(X_val, verbose=True) log_loss(y_val[:, 0], val_prediction[:, 0])
code
90123657/cell_13
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] np.around(df['adr'].mean(), 2) np.around((df['stays_in_week_nights'] + df['stays_in_weekend_nights']).mean(), 2)
code
90123657/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] print(f'name: {name}\namount = {amount}')
code
90123657/cell_25
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] df['last name'] = df['name'].apply(lambda x: x[x.index(' ') + 1:]) idx = (df['children'] + df['babies']).idxmax() maximum = (df['children'] + df['babies']).iloc[idx] df['phone-number'].apply(lambda x: x[:3]).value_counts()[:5]
code
90123657/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape
code
90123657/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] idx = (df['children'] + df['babies']).idxmax() maximum = (df['children'] + df['babies']).iloc[idx] maximum
code
90123657/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) df['country'].value_counts()[:5]
code
90123657/cell_29
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style='whitegrid') df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] idx = (df['children'] + df['babies']).idxmax() maximum = (df['children'] + df['babies']).iloc[idx] fig = plt.figure ( figsize = (10,5)) ax1 = fig.add_axes ([0,0,1,1]) ax2 = fig.add_axes ([0.75,0,1,1]) sns.countplot(data=df, x='arrival_date_month', ax=ax1, hue='arrival_date_year', order=df['arrival_date_month'].value_counts().index, palette="Set1") years = dict(df['arrival_date_year'].value_counts()) ax2.pie(x=list(years.values()), labels=list(years.keys()), explode=[0.03]*3, autopct='%1.1f', shadow=True); plt.figure(figsize=(13, 8)) sns.countplot(data=df, x='agent', order=df['agent'].value_counts().keys(), palette='Set1').set_xlim(0, 9) plt.show()
code
90123657/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.head()
code
90123657/cell_11
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] np.around(df['adr'].mean(), 2)
code
90123657/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] df['last name'].value_counts()[:5]
code
90123657/cell_7
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind
code
90123657/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] df.head()
code
90123657/cell_28
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style='whitegrid') df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] idx = (df['children'] + df['babies']).idxmax() maximum = (df['children'] + df['babies']).iloc[idx] fig = plt.figure ( figsize = (10,5)) ax1 = fig.add_axes ([0,0,1,1]) ax2 = fig.add_axes ([0.75,0,1,1]) sns.countplot(data=df, x='arrival_date_month', ax=ax1, hue='arrival_date_year', order=df['arrival_date_month'].value_counts().index, palette="Set1") years = dict(df['arrival_date_year'].value_counts()) ax2.pie(x=list(years.values()), labels=list(years.keys()), explode=[0.03]*3, autopct='%1.1f', shadow=True); plt.figure(figsize=(13, 8)) sns.countplot(data=df, x='country', order=df['country'].value_counts().keys(), palette='Set2').set_xlim(0, 9) plt.show()
code
90123657/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] df[df['total_of_special_requests'] == 5][['name', 'email']]
code
90123657/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.info()
code
90123657/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] idx = (df['children'] + df['babies']).idxmax() maximum = (df['children'] + df['babies']).iloc[idx] for i in range(idx, 119390): if df.iloc[i]['babies'] + df.iloc[i]['children'] == maximum: print(f"name: {df.iloc[i]['name']}\nindex = {i}\n")
code
90123657/cell_27
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_theme(style='whitegrid') df = pd.read_csv('../input/hotel-booking/hotel_booking.csv') df.shape df = df.drop('company', axis=1) ind = df['adr'].idxmax() ind name = df.iloc[ind]['name'] amount = df.iloc[ind]['adr'] idx = (df['children'] + df['babies']).idxmax() maximum = (df['children'] + df['babies']).iloc[idx] fig = plt.figure(figsize=(10, 5)) ax1 = fig.add_axes([0, 0, 1, 1]) ax2 = fig.add_axes([0.75, 0, 1, 1]) sns.countplot(data=df, x='arrival_date_month', ax=ax1, hue='arrival_date_year', order=df['arrival_date_month'].value_counts().index, palette='Set1') years = dict(df['arrival_date_year'].value_counts()) ax2.pie(x=list(years.values()), labels=list(years.keys()), explode=[0.03] * 3, autopct='%1.1f', shadow=True)
code