path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
74063930/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data.income = [1 if each == '>50K' else 0 for each in income_data.income]
y = income_data.income
y
dup = income_data.duplicated().any()
income_data = income_data.drop_duplicates()
income_data.drop(['fnlwgt', 'native-country'], axis=1, inplace=True)
income_data = pd.get_dummies(income_data)
income_data | code |
74063930/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data.income = [1 if each == '>50K' else 0 for each in income_data.income]
y = income_data.income
y
dup = income_data.duplicated().any()
print('Gibt es doppelte Werte in den Daten? ', dup) | code |
74063930/cell_25 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train))) | code |
74063930/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.describe() | code |
74063930/cell_23 | [
"text_html_output_1.png"
] | from sklearn.neighbors import KNeighborsRegressor
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
y_pred[0:10] | code |
74063930/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum() | code |
74063930/cell_40 | [
"text_plain_output_1.png"
] | from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsRegressor
x_train.shape
y_train.shape
knn = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
score_knn = knn.score(x_test, y_test)
print('The accuracy of the KNN Model is', score_knn) | code |
74063930/cell_26 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_train)
fehler = np.sqrt(mean_squared_error(y_train, y_pred))
print('k Wert = ', k, 'Fehlerwert = ', fehler) | code |
74063930/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.head() | code |
74063930/cell_19 | [
"text_plain_output_1.png"
] | y_train.shape | code |
74063930/cell_18 | [
"text_plain_output_1.png"
] | y_test | code |
74063930/cell_32 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_train)
fehler = np.sqrt(mean_squared_error(y_train, y_pred))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_test)
fehler = np.sqrt(mean_squared_error(y_test, y_pred))
knn_werte = {'n_neighbors': np.arange(1, 7, 1)}
knn = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
knn_cv_model = GridSearchCV(knn, knn_werte, cv=10)
knn_cv_model.fit(x_train, y_train)
knn_cv_model.best_params_['n_neighbors'] | code |
74063930/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data.income = [1 if each == '>50K' else 0 for each in income_data.income]
y = income_data.income
y | code |
74063930/cell_16 | [
"text_html_output_1.png"
] | x_test | code |
74063930/cell_38 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_train)
fehler = np.sqrt(mean_squared_error(y_train, y_pred))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_test)
fehler = np.sqrt(mean_squared_error(y_test, y_pred))
knn_werte = {'n_neighbors': np.arange(1, 7, 1)}
model = KNeighborsRegressor(n_neighbors=6)
model_knn = model.fit(x_train, y_train)
np.sqrt(-1 * cross_val_score(model_knn, x_train, y_train, cv=10, scoring='neg_mean_squared_error')).mean() | code |
74063930/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.info() | code |
74063930/cell_17 | [
"text_plain_output_1.png"
] | x_train.shape | code |
74063930/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_train)
fehler = np.sqrt(mean_squared_error(y_train, y_pred))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_test)
fehler = np.sqrt(mean_squared_error(y_test, y_pred))
knn_werte = {'n_neighbors': np.arange(1, 7, 1)}
knn = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
knn_cv_model = GridSearchCV(knn, knn_werte, cv=10)
knn_cv_model.fit(x_train, y_train) | code |
74063930/cell_24 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred)) | code |
74063930/cell_27 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_train)
fehler = np.sqrt(mean_squared_error(y_train, y_pred))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_test)
fehler = np.sqrt(mean_squared_error(y_test, y_pred))
print('k Wert = ', k, 'Fehlerwert = ', fehler) | code |
74063930/cell_37 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
income_data.income = [1 if each == '>50K' else 0 for each in income_data.income]
y = income_data.income
y
dup = income_data.duplicated().any()
income_data = income_data.drop_duplicates()
income_data.drop(['fnlwgt', 'native-country'], axis=1, inplace=True)
income_data = pd.get_dummies(income_data)
income_data
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_train)
fehler = np.sqrt(mean_squared_error(y_train, y_pred))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_test)
fehler = np.sqrt(mean_squared_error(y_test, y_pred))
model = KNeighborsRegressor(n_neighbors=6)
model_knn = model.fit(x_train, y_train)
y_pred = model.predict(x_test)
v_W = pd.DataFrame({'y_test': y_test, 'vorhergesagten Werte': y_pred})
v_W
v_W['Differenz'] = v_W['y_test'] - v_W['vorhergesagten Werte']
v_W | code |
74063930/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data.income = [1 if each == '>50K' else 0 for each in income_data.income]
y = income_data.income
y
dup = income_data.duplicated().any()
income_data = income_data.drop_duplicates()
income_data.drop(['fnlwgt', 'native-country'], axis=1, inplace=True)
income_data.head() | code |
74063930/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum() | code |
74063930/cell_36 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
import numpy as np
import pandas as pd
income_data = pd.read_csv('../input/adult-income-dataset/adult.csv')
income_data.isnull().sum()
income_data.isin(['?']).sum()
income_data['workclass'] = income_data['workclass'].replace('?', np.nan)
income_data['occupation'] = income_data['occupation'].replace('?', np.nan)
income_data['native-country'] = income_data['native-country'].replace('?', np.nan)
income_data.income = [1 if each == '>50K' else 0 for each in income_data.income]
y = income_data.income
y
dup = income_data.duplicated().any()
income_data = income_data.drop_duplicates()
income_data.drop(['fnlwgt', 'native-country'], axis=1, inplace=True)
income_data = pd.get_dummies(income_data)
income_data
x_train.shape
y_train.shape
knn_model = KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)
model = knn_model.fit(x_train, y_train)
y_pred = model.predict(x_test)
np.sqrt(mean_squared_error(y_test, y_pred))
np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_train)
fehler = np.sqrt(mean_squared_error(y_train, y_pred))
for k in range(7):
k = k + 1
k_model = KNeighborsRegressor(n_neighbors=k).fit(x_train, y_train)
y_pred = k_model.predict(x_test)
fehler = np.sqrt(mean_squared_error(y_test, y_pred))
model = KNeighborsRegressor(n_neighbors=6)
model_knn = model.fit(x_train, y_train)
y_pred = model.predict(x_test)
v_W = pd.DataFrame({'y_test': y_test, 'vorhergesagten Werte': y_pred})
v_W | code |
128034546/cell_4 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
plt.figure(figsize=(20, 15))
sns.heatmap(train.corr(), annot=True, cmap='coolwarm')
plt.show() | code |
128034546/cell_6 | [
"text_plain_output_1.png"
] | from scipy.spatial.distance import mahalanobis
from scipy.stats import chi2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
features = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'AverageRainingDays', 'fruitset', 'fruitmass', 'seeds']
X = train[features]
y = train['yield']
from scipy.spatial.distance import mahalanobis
from scipy.stats import chi2
def mahalanobisR(X, meanCol, IC):
m = []
for i in range(X.shape[0]):
m.append(mahalanobis(X.iloc[i, :], meanCol, IC) ** 2)
return m
def MD_detectOutliers(x, alpha=0.001):
n = x.shape[0]
p = x.shape[1]
chi = chi2.ppf(1 - alpha, p)
print('The Chi2 val with 16 df is: ', chi)
x_minus_mean = x - np.mean(x)
S = 1 / (n - 1) * np.dot(np.transpose(x_minus_mean), x_minus_mean)
S_inv = np.linalg.inv(S)
d = mahalanobisR(x, np.mean(x), S_inv)
outliers = []
for i in range(len(d)):
if d[i] > chi:
outliers.append(i)
return {'MD': d, 'Outliers': outliers}
outliers = MD_detectOutliers(X, alpha=0.001)
print(outliers['Outliers'])
X = X.drop(outliers['Outliers'])
y = y.drop(outliers['Outliers']) | code |
128034546/cell_2 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
train.head() | code |
128034546/cell_11 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
features = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'AverageRainingDays', 'fruitset', 'fruitmass', 'seeds']
X = train[features]
y = train['yield']
test_features = test[features]
test['yield'] = grid_search.predict(test_features)
test[['id', 'yield']].to_csv('submission.csv', index=False)
display(test[['id', 'yield']]) | code |
128034546/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline | code |
128034546/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.spatial.distance import mahalanobis
from scipy.stats import chi2
from scipy.stats import shapiro
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
features = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'AverageRainingDays', 'fruitset', 'fruitmass', 'seeds']
X = train[features]
y = train['yield']
from scipy.spatial.distance import mahalanobis
from scipy.stats import chi2
def mahalanobisR(X, meanCol, IC):
m = []
for i in range(X.shape[0]):
m.append(mahalanobis(X.iloc[i, :], meanCol, IC) ** 2)
return m
def MD_detectOutliers(x, alpha=0.001):
n = x.shape[0]
p = x.shape[1]
chi = chi2.ppf(1 - alpha, p)
x_minus_mean = x - np.mean(x)
S = 1 / (n - 1) * np.dot(np.transpose(x_minus_mean), x_minus_mean)
S_inv = np.linalg.inv(S)
d = mahalanobisR(x, np.mean(x), S_inv)
outliers = []
for i in range(len(d)):
if d[i] > chi:
outliers.append(i)
return {'MD': d, 'Outliers': outliers}
outliers = MD_detectOutliers(X, alpha=0.001)
X = X.drop(outliers['Outliers'])
y = y.drop(outliers['Outliers'])
from scipy.stats import shapiro
stat, p = shapiro(y)
print('Statistics=%.3f, p=%.3f' % (stat, p))
alpha = 0.05
if p > alpha:
print('Sample looks Gaussian (fail to reject H0)')
else:
print('Sample does not look Gaussian (reject H0)') | code |
128034546/cell_3 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
train.describe(include='all')
test.describe(include='all') | code |
128034546/cell_10 | [
"text_html_output_1.png"
] | from scipy.spatial.distance import mahalanobis
from scipy.stats import chi2
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
features = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'AverageRainingDays', 'fruitset', 'fruitmass', 'seeds']
X = train[features]
y = train['yield']
from scipy.spatial.distance import mahalanobis
from scipy.stats import chi2
def mahalanobisR(X, meanCol, IC):
m = []
for i in range(X.shape[0]):
m.append(mahalanobis(X.iloc[i, :], meanCol, IC) ** 2)
return m
def MD_detectOutliers(x, alpha=0.001):
n = x.shape[0]
p = x.shape[1]
chi = chi2.ppf(1 - alpha, p)
x_minus_mean = x - np.mean(x)
S = 1 / (n - 1) * np.dot(np.transpose(x_minus_mean), x_minus_mean)
S_inv = np.linalg.inv(S)
d = mahalanobisR(x, np.mean(x), S_inv)
outliers = []
for i in range(len(d)):
if d[i] > chi:
outliers.append(i)
return {'MD': d, 'Outliers': outliers}
outliers = MD_detectOutliers(X, alpha=0.001)
X = X.drop(outliers['Outliers'])
y = y.drop(outliers['Outliers'])
xgb_pipeline = Pipeline([('scaler', StandardScaler()), ('xgb', XGBRegressor(objective='reg:squarederror', n_jobs=-1, random_state=418, colsample_bytree=0.7, learning_rate=0.01, max_depth=5, n_estimators=1000, subsample=0.7))])
xgb_pipeline.fit(X_train, y_train)
y_pred = xgb_pipeline.predict(X_val)
rmse = np.sqrt(mean_squared_error(y_val, y_pred))
r2 = r2_score(y_val, y_pred)
print('RMSE: ', rmse)
print('R2 Score: ', r2) | code |
73079465/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
raw = pd.read_csv('../input/ratings.csv')
raw.drop_duplicates(inplace=True)
raw.describe() | code |
73079465/cell_20 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import surprise
import surprise #Scikit-Learn library for recommender systems.
raw = pd.read_csv('../input/ratings.csv')
raw.drop_duplicates(inplace=True)
raw = raw[['user_id', 'book_id', 'rating']]
reader = surprise.Reader(rating_scale=(1, 5))
data = surprise.Dataset.load_from_df(raw, reader)
class ProbabilisticMatrixFactorization(surprise.AlgoBase):
def __init__(self, learning_rate, num_epochs, num_factors):
self.alpha = learning_rate
self.num_epochs = num_epochs
self.num_factors = num_factors
def fit(self, train):
P = np.random.normal(0, 0.1, (train.n_users, self.num_factors))
Q = np.random.normal(0, 0.1, (train.n_items, self.num_factors))
for epoch in range(self.num_epochs):
for u, i, r_ui in train.all_ratings():
residual = r_ui - np.dot(P[u], Q[i])
temp = P[u, :]
P[u, :] += self.alpha * residual * Q[i]
Q[i, :] += self.alpha * residual * temp
self.P = P
self.Q = Q
self.trainset = train
def estimate(self, u, i):
if self.trainset.knows_user(u) and self.trainset.knows_item(i):
nanCheck = np.dot(self.P[u], self.Q[i])
if np.isnan(nanCheck):
return self.trainset.global_mean
else:
return np.dot(self.P[u, :], self.Q[i, :])
else:
return self.trainset.global_mean
Alg1 = ProbabilisticMatrixFactorization(learning_rate=0.05, num_epochs=4, num_factors=10)
data1 = data.build_full_trainset()
Alg1.fit(data1)
Alg1.estimate(raw.user_id.iloc[4], raw.book_id.iloc[4])
gs = surprise.model_selection.GridSearchCV(ProbabilisticMatrixFactorization, param_grid={'learning_rate': [0.005, 0.01], 'num_epochs': [5, 10], 'num_factors': [10, 20]}, measures=['rmse', 'mae'], cv=2)
gs.fit(data)
print('RMSE: ', gs.best_score['rmse'], 'MAE: ', gs.best_score['mae'])
print('RMSE: ', gs.best_params['rmse'], 'MAE: ', gs.best_params['mae'])
best_params = gs.best_params['rmse'] | code |
73079465/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input'))
import surprise | code |
73079465/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
raw = pd.read_csv('../input/ratings.csv')
raw.describe() | code |
73079465/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import surprise
import surprise #Scikit-Learn library for recommender systems.
raw = pd.read_csv('../input/ratings.csv')
raw.drop_duplicates(inplace=True)
raw = raw[['user_id', 'book_id', 'rating']]
reader = surprise.Reader(rating_scale=(1, 5))
data = surprise.Dataset.load_from_df(raw, reader)
Alg1 = ProbabilisticMatrixFactorization(learning_rate=0.05, num_epochs=4, num_factors=10)
data1 = data.build_full_trainset()
Alg1.fit(data1)
print(raw.user_id.iloc[4], raw.book_id.iloc[4])
Alg1.estimate(raw.user_id.iloc[4], raw.book_id.iloc[4]) | code |
73079465/cell_24 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import surprise
import surprise #Scikit-Learn library for recommender systems.
raw = pd.read_csv('../input/ratings.csv')
raw.drop_duplicates(inplace=True)
raw = raw[['user_id', 'book_id', 'rating']]
reader = surprise.Reader(rating_scale=(1, 5))
data = surprise.Dataset.load_from_df(raw, reader)
class ProbabilisticMatrixFactorization(surprise.AlgoBase):
def __init__(self, learning_rate, num_epochs, num_factors):
self.alpha = learning_rate
self.num_epochs = num_epochs
self.num_factors = num_factors
def fit(self, train):
P = np.random.normal(0, 0.1, (train.n_users, self.num_factors))
Q = np.random.normal(0, 0.1, (train.n_items, self.num_factors))
for epoch in range(self.num_epochs):
for u, i, r_ui in train.all_ratings():
residual = r_ui - np.dot(P[u], Q[i])
temp = P[u, :]
P[u, :] += self.alpha * residual * Q[i]
Q[i, :] += self.alpha * residual * temp
self.P = P
self.Q = Q
self.trainset = train
def estimate(self, u, i):
if self.trainset.knows_user(u) and self.trainset.knows_item(i):
nanCheck = np.dot(self.P[u], self.Q[i])
if np.isnan(nanCheck):
return self.trainset.global_mean
else:
return np.dot(self.P[u, :], self.Q[i, :])
else:
return self.trainset.global_mean
Alg1 = ProbabilisticMatrixFactorization(learning_rate=0.05, num_epochs=4, num_factors=10)
data1 = data.build_full_trainset()
Alg1.fit(data1)
Alg1.estimate(raw.user_id.iloc[4], raw.book_id.iloc[4])
gs = surprise.model_selection.GridSearchCV(ProbabilisticMatrixFactorization, param_grid={'learning_rate': [0.005, 0.01], 'num_epochs': [5, 10], 'num_factors': [10, 20]}, measures=['rmse', 'mae'], cv=2)
gs.fit(data)
best_params = gs.best_params['rmse']
bestVersion = ProbabilisticMatrixFactorization(learning_rate=best_params['learning_rate'], num_epochs=best_params['num_epochs'], num_factors=best_params['num_factors'])
kSplit = surprise.model_selection.KFold(n_splits=10, shuffle=True)
for train, test in kSplit.split(data):
bestVersion.fit(train)
prediction = bestVersion.test(test)
surprise.accuracy.rmse(prediction, verbose=True)
data.df.isna().sum()
raw.isna().sum()
bestVersion.estimate(123, 42) | code |
73079465/cell_22 | [
"text_plain_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import surprise
import surprise #Scikit-Learn library for recommender systems.
raw = pd.read_csv('../input/ratings.csv')
raw.drop_duplicates(inplace=True)
raw = raw[['user_id', 'book_id', 'rating']]
reader = surprise.Reader(rating_scale=(1, 5))
data = surprise.Dataset.load_from_df(raw, reader)
class ProbabilisticMatrixFactorization(surprise.AlgoBase):
def __init__(self, learning_rate, num_epochs, num_factors):
self.alpha = learning_rate
self.num_epochs = num_epochs
self.num_factors = num_factors
def fit(self, train):
P = np.random.normal(0, 0.1, (train.n_users, self.num_factors))
Q = np.random.normal(0, 0.1, (train.n_items, self.num_factors))
for epoch in range(self.num_epochs):
for u, i, r_ui in train.all_ratings():
residual = r_ui - np.dot(P[u], Q[i])
temp = P[u, :]
P[u, :] += self.alpha * residual * Q[i]
Q[i, :] += self.alpha * residual * temp
self.P = P
self.Q = Q
self.trainset = train
def estimate(self, u, i):
if self.trainset.knows_user(u) and self.trainset.knows_item(i):
nanCheck = np.dot(self.P[u], self.Q[i])
if np.isnan(nanCheck):
return self.trainset.global_mean
else:
return np.dot(self.P[u, :], self.Q[i, :])
else:
return self.trainset.global_mean
Alg1 = ProbabilisticMatrixFactorization(learning_rate=0.05, num_epochs=4, num_factors=10)
data1 = data.build_full_trainset()
Alg1.fit(data1)
Alg1.estimate(raw.user_id.iloc[4], raw.book_id.iloc[4])
gs = surprise.model_selection.GridSearchCV(ProbabilisticMatrixFactorization, param_grid={'learning_rate': [0.005, 0.01], 'num_epochs': [5, 10], 'num_factors': [10, 20]}, measures=['rmse', 'mae'], cv=2)
gs.fit(data)
best_params = gs.best_params['rmse']
bestVersion = ProbabilisticMatrixFactorization(learning_rate=best_params['learning_rate'], num_epochs=best_params['num_epochs'], num_factors=best_params['num_factors'])
kSplit = surprise.model_selection.KFold(n_splits=10, shuffle=True)
for train, test in kSplit.split(data):
bestVersion.fit(train)
prediction = bestVersion.test(test)
surprise.accuracy.rmse(prediction, verbose=True) | code |
73079465/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
raw = pd.read_csv('../input/ratings.csv')
raw.drop_duplicates(inplace=True)
print(f'Existem {raw.shape[0]} avalações.')
print('Usuários únicos:', len(raw.user_id.unique()))
print('Livros únicos:', len(raw.book_id.unique()))
print(f'O usuário médio avalia {raw.user_id.value_counts().median()} livros.')
print(f'Avaliação mais alta: {raw.rating.max()}. Mais baixa: {raw.rating.min()}')
raw.head() | code |
1002832/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | df = pd.read_csv('../input/cameras.csv', encoding='utf-8')
print('The shape:')
print(df.shape)
print('\nThe information:')
print(df.info())
print('\nNAs:')
print(np.sum(df.isnull()))
print(np.sum(df.isnull()) / len(df) * 100)
print('\nStart and End:')
print(df['DATE'][[0, df.shape[0] - 1]])
print('\nDifferent cameras:')
print(df['CAMERA ID'].value_counts().head())
print(len(df['CAMERA ID'].value_counts())) | code |
50237715/cell_21 | [
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes | code |
50237715/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
print(indeces)
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.head() | code |
50237715/cell_25 | [
"text_html_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes
questions_interactions.drop(columns=['content_id', 'content_type_id'], inplace=True)
questions_interactions.dtypes | code |
50237715/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
question.head() | code |
50237715/cell_33 | [
"image_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes
questions_interactions.drop(columns=['content_id', 'content_type_id'], inplace=True)
questions_interactions.dtypes
continous_columns = ['timestamp', 'user_id', 'task_container_id', 'prior_question_elapsed_time', 'question_id', 'bundle_id']
df = questions_interactions.copy()
df = df.assign(tags2=df['tags'].str.split(' ')).explode('tags2')
df['tags2'] = df['tags2'].astype('int32')
df['tags2'].nunique()
df['tags2'].hist(grid=False, figsize=(10, 5)) | code |
50237715/cell_20 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
print('Memory usage of questions_interactions dataframe is :', start_mem_usg1, ' MB')
print('Memory usage of lectures_interactions dataframe is :', start_mem_usg2, ' MB') | code |
50237715/cell_29 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes
questions_interactions.drop(columns=['content_id', 'content_type_id'], inplace=True)
questions_interactions.dtypes
continous_columns = ['timestamp', 'user_id', 'task_container_id', 'prior_question_elapsed_time', 'question_id', 'bundle_id']
color = sns.color_palette()[0]
discrete_columns = ['answered_correctly', 'user_answer', 'correct_answer', 'prior_question_had_explanation', 'test_part']
for col in discrete_columns:
plt.figure(figsize=(5, 5))
sns.countplot(data=questions_interactions, x=col, color=color)
plt.show() | code |
50237715/cell_39 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes
questions_interactions.drop(columns=['content_id', 'content_type_id'], inplace=True)
questions_interactions.dtypes
continous_columns = ['timestamp', 'user_id', 'task_container_id', 'prior_question_elapsed_time', 'question_id', 'bundle_id']
color = sns.color_palette()[0]
discrete_columns = ['answered_correctly', 'user_answer', 'correct_answer', 'prior_question_had_explanation', 'test_part']
continous_cols = ['timestamp', 'user_id', 'content_id', 'task_container_id', 'lecture_id', 'tag']
color = sns.color_palette()[0]
discrete_columns = ['type_of', 'category']
for col in discrete_columns:
plt.figure(figsize=(5, 5))
sns.countplot(data=lectures_interactions, x=col, color=color)
plt.show() | code |
50237715/cell_2 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import os
import warnings
import numpy as np
import pandas as pd
import riiideducation
import seaborn as sns
import matplotlib.pyplot as plt
import gc
import os
import warnings
warnings.filterwarnings('ignore')
for dirname, _, filenames in os.walk('/kaggle/input/riiid-test-answer-prediction'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
50237715/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
print(questions_interactions.isnull().sum())
lectures_interactions.isnull().sum() | code |
50237715/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
lectures_interactions.head() | code |
50237715/cell_32 | [
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes
questions_interactions.drop(columns=['content_id', 'content_type_id'], inplace=True)
questions_interactions.dtypes
continous_columns = ['timestamp', 'user_id', 'task_container_id', 'prior_question_elapsed_time', 'question_id', 'bundle_id']
df = questions_interactions.copy()
df = df.assign(tags2=df['tags'].str.split(' ')).explode('tags2')
df['tags2'] = df['tags2'].astype('int32')
df['tags2'].nunique() | code |
50237715/cell_8 | [
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape) | code |
50237715/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
lectures_interactions.head() | code |
50237715/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
train_df.head() | code |
50237715/cell_24 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes
questions_interactions.drop(columns=['content_id', 'content_type_id'], inplace=True)
def reduce_mem_usage(props):
start_mem_usg = props.memory_usage().sum() / 1024**2
print("Memory usage of properties dataframe is :",start_mem_usg," MB")
NAlist = [] # Keeps track of columns that have missing values filled in.
for col in props.columns:
if props[col].dtype != object: # Exclude strings
# make variables for Int, max and min
IsInt = False
mx = props[col].max()
mn = props[col].min()
# Integer does not support NA, therefore, NA needs to be filled
if not np.isfinite(props[col]).all():
NAlist.append(col)
props[col].fillna(mn-1,inplace=True)
# test if column can be converted to an integer
asint = props[col].fillna(0).astype(np.int64)
result = (props[col] - asint)
result = result.sum()
if result > -0.01 and result < 0.01:
IsInt = True
# Make Integer/unsigned Integer datatypes
if IsInt:
if mn >= 0:
if mx < 255:
props[col] = props[col].astype(np.uint8)
elif mx < 65535:
props[col] = props[col].astype(np.uint16)
elif mx < 4294967295:
props[col] = props[col].astype(np.uint32)
else:
props[col] = props[col].astype(np.uint64)
else:
if mn > np.iinfo(np.int8).min and mx < np.iinfo(np.int8).max:
props[col] = props[col].astype(np.int8)
elif mn > np.iinfo(np.int16).min and mx < np.iinfo(np.int16).max:
props[col] = props[col].astype(np.int16)
elif mn > np.iinfo(np.int32).min and mx < np.iinfo(np.int32).max:
props[col] = props[col].astype(np.int32)
elif mn > np.iinfo(np.int64).min and mx < np.iinfo(np.int64).max:
props[col] = props[col].astype(np.int64)
# Make float datatypes 32 bit
else:
props[col] = props[col].astype(np.float32)
# Print new column type
# print("dtype after: ",props[col].dtype)
# print("******************************")
# Print final result
print("___MEMORY USAGE AFTER COMPLETION:___")
mem_usg = props.memory_usage().sum() / 1024**2
print("Memory usage is: ",mem_usg," MB")
print("This is ",100*mem_usg/start_mem_usg,"% of the initial size")
return props, NAlist
questions_interactions, _ = reduce_mem_usage(questions_interactions) | code |
50237715/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts() | code |
50237715/cell_27 | [
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
questions_interactions.dtypes
questions_interactions.drop(columns=['content_id', 'content_type_id'], inplace=True)
questions_interactions.dtypes
continous_columns = ['timestamp', 'user_id', 'task_container_id', 'prior_question_elapsed_time', 'question_id', 'bundle_id']
questions_interactions.hist(column=continous_columns, grid=False, figsize=(20, 15)) | code |
50237715/cell_37 | [
"text_plain_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
continous_cols = ['timestamp', 'user_id', 'content_id', 'task_container_id', 'lecture_id', 'tag']
lectures_interactions.hist(column=continous_cols, grid=False, figsize=(20, 15)) | code |
50237715/cell_5 | [
"image_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
lecture.head() | code |
50237715/cell_36 | [
"image_output_5.png",
"image_output_4.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd
train_df = pd.read_csv('/kaggle/input/riiid-test-answer-prediction/train.csv', low_memory=False, nrows=10 ** 6, dtype={'row_id': 'int64', 'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'task_container_id': 'int16', 'user_answer': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'})
question = pd.read_csv('../input/riiid-test-answer-prediction/questions.csv')
lecture = pd.read_csv('../input/riiid-test-answer-prediction/lectures.csv')
questions_interactions = train_df.merge(question, left_on='content_id', right_on='question_id', how='left')
questions_interactions = questions_interactions[questions_interactions.content_type_id == 0]
questions_interactions.rename(columns={'part': 'test_part'}, inplace=True)
lectures_interactions = train_df.merge(lecture, left_on='content_id', right_on='lecture_id', how='left')
lectures_interactions.rename(columns={'part': 'category'}, inplace=True)
lectures_interactions = lectures_interactions[lectures_interactions.content_type_id == 1]
(questions_interactions.shape, lectures_interactions.shape)
lectures_interactions.isnull().sum()
indeces = questions_interactions[questions_interactions.prior_question_had_explanation.isnull()].index
values = {'prior_question_elapsed_time': -1, 'prior_question_had_explanation': False}
questions_interactions.fillna(value=values, inplace=True)
questions_interactions.prior_question_had_explanation = questions_interactions.prior_question_had_explanation.astype('int8')
questions_interactions.loc[indeces, 'prior_question_had_explanation'] = -1
questions_interactions.prior_question_had_explanation.value_counts()
lectures_interactions.drop(columns=['content_type_id', 'user_answer', 'answered_correctly', 'prior_question_elapsed_time', 'prior_question_had_explanation'], inplace=True)
start_mem_usg1 = questions_interactions.memory_usage().sum() / 1024 ** 2
start_mem_usg2 = lectures_interactions.memory_usage().sum() / 1024 ** 2
lectures_interactions.head() | code |
74060518/cell_7 | [
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import glob
import os
INPUT_PATH = '../input/cityscapes-image-pairs/cityscapes_data'
train_files = glob.glob(os.path.join(INPUT_PATH + '/train', '*jpg'))
val_files = glob.glob(os.path.join(INPUT_PATH + '/val', '*jpg'))
print('Total train images:', len(train_files))
print('Total validation images:', len(val_files)) | code |
74060518/cell_18 | [
"text_plain_output_1.png"
] | from sklearn.cluster import KMeans
import cv2
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
INPUT_PATH = '../input/cityscapes-image-pairs/cityscapes_data'
BATCH_SIZE = 4
INPUT_IMG_SIZE = 256
OUTPUT_CLASSES = 10
LEARINING_RATE = 0.001
train_files = glob.glob(os.path.join(INPUT_PATH + '/train', '*jpg'))
val_files = glob.glob(os.path.join(INPUT_PATH + '/val', '*jpg'))
fig, axes = plt.subplots(1,2, figsize = (20,5))
for i, ax in enumerate(axes.ravel()):
img = cv2.imread(train_files[i])
ax.imshow(img)
#ax.axis('off')
plt.show()
for i in train_files[:2]:
org_img = cv2.imread(i)
img = org_img[:, 0:256, :]
msk = org_img[:, 256:, :]
kmeans_data = []
for i in train_files[:50]:
org_img = cv2.imread(i)
msk = org_img[:, INPUT_IMG_SIZE:, :]
kmeans_data.append(msk)
kmeans_data = np.array(kmeans_data)
kmeans_data = kmeans_data.reshape(-1, 3)
encoder = KMeans(n_clusters=OUTPUT_CLASSES)
encoder.fit(kmeans_data)
colors = {0: [255, 0, 0], 1: [0, 255, 0], 2: [0, 0, 255], 3: [255, 69, 0], 4: [255, 0, 255], 5: [210, 105, 30], 6: [192, 255, 62], 7: [127, 255, 0], 8: [0, 238, 238], 9: [72, 118, 255]}
for i in train_files[:3]:
org_img = cv2.imread(i)
msk = org_img[:, 256:, :]
test = msk.reshape(-1, 3)
pred = encoder.predict(test)
enc_pred = pred.reshape(INPUT_IMG_SIZE, INPUT_IMG_SIZE)
pred = np.array([colors[p] for p in pred]).reshape(256, 256, 3)
def plot_grid_imgs(img_files_list, grid_size=(1, 3), figure_size=(15, 5), show_axis=True):
fig, axes = plt.subplots(grid_size[0], grid_size[1], figsize=figure_size)
for i, ax in enumerate(axes.ravel()):
img = cv2.imread(img_files_list[i])
ax.imshow(img)
if not show_axis:
ax.axis('off')
plt.show()
plot_grid_imgs(train_files, (1, 3)) | code |
74060518/cell_8 | [
"image_output_1.png"
] | import cv2
import glob
import matplotlib.pyplot as plt
import os
INPUT_PATH = '../input/cityscapes-image-pairs/cityscapes_data'
train_files = glob.glob(os.path.join(INPUT_PATH + '/train', '*jpg'))
val_files = glob.glob(os.path.join(INPUT_PATH + '/val', '*jpg'))
fig, axes = plt.subplots(1, 2, figsize=(20, 5))
for i, ax in enumerate(axes.ravel()):
img = cv2.imread(train_files[i])
ax.imshow(img)
plt.show() | code |
74060518/cell_15 | [
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_2.png",
"image_output_1.png"
] | from sklearn.cluster import KMeans
import cv2
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
INPUT_PATH = '../input/cityscapes-image-pairs/cityscapes_data'
BATCH_SIZE = 4
INPUT_IMG_SIZE = 256
OUTPUT_CLASSES = 10
LEARINING_RATE = 0.001
train_files = glob.glob(os.path.join(INPUT_PATH + '/train', '*jpg'))
val_files = glob.glob(os.path.join(INPUT_PATH + '/val', '*jpg'))
fig, axes = plt.subplots(1,2, figsize = (20,5))
for i, ax in enumerate(axes.ravel()):
img = cv2.imread(train_files[i])
ax.imshow(img)
#ax.axis('off')
plt.show()
for i in train_files[:2]:
org_img = cv2.imread(i)
img = org_img[:, 0:256, :]
msk = org_img[:, 256:, :]
kmeans_data = []
for i in train_files[:50]:
org_img = cv2.imread(i)
msk = org_img[:, INPUT_IMG_SIZE:, :]
kmeans_data.append(msk)
kmeans_data = np.array(kmeans_data)
kmeans_data = kmeans_data.reshape(-1, 3)
encoder = KMeans(n_clusters=OUTPUT_CLASSES)
encoder.fit(kmeans_data) | code |
74060518/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.cluster import KMeans
import cv2
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
INPUT_PATH = '../input/cityscapes-image-pairs/cityscapes_data'
BATCH_SIZE = 4
INPUT_IMG_SIZE = 256
OUTPUT_CLASSES = 10
LEARINING_RATE = 0.001
train_files = glob.glob(os.path.join(INPUT_PATH + '/train', '*jpg'))
val_files = glob.glob(os.path.join(INPUT_PATH + '/val', '*jpg'))
fig, axes = plt.subplots(1,2, figsize = (20,5))
for i, ax in enumerate(axes.ravel()):
img = cv2.imread(train_files[i])
ax.imshow(img)
#ax.axis('off')
plt.show()
for i in train_files[:2]:
org_img = cv2.imread(i)
img = org_img[:, 0:256, :]
msk = org_img[:, 256:, :]
kmeans_data = []
for i in train_files[:50]:
org_img = cv2.imread(i)
msk = org_img[:, INPUT_IMG_SIZE:, :]
kmeans_data.append(msk)
kmeans_data = np.array(kmeans_data)
kmeans_data = kmeans_data.reshape(-1, 3)
encoder = KMeans(n_clusters=OUTPUT_CLASSES)
encoder.fit(kmeans_data)
colors = {0: [255, 0, 0], 1: [0, 255, 0], 2: [0, 0, 255], 3: [255, 69, 0], 4: [255, 0, 255], 5: [210, 105, 30], 6: [192, 255, 62], 7: [127, 255, 0], 8: [0, 238, 238], 9: [72, 118, 255]}
for i in train_files[:3]:
org_img = cv2.imread(i)
msk = org_img[:, 256:, :]
test = msk.reshape(-1, 3)
pred = encoder.predict(test)
enc_pred = pred.reshape(INPUT_IMG_SIZE, INPUT_IMG_SIZE)
pred = np.array([colors[p] for p in pred]).reshape(256, 256, 3)
print('No of classes in encoded mask:', np.unique(enc_pred))
plt.figure(figsize=(15, 10))
plt.subplot(1, 2, 1)
plt.imshow(msk)
plt.title('Original mask (RGB)')
plt.subplot(1, 2, 2)
plt.imshow(pred)
plt.title('Encoded mask')
plt.show() | code |
74060518/cell_14 | [
"image_output_1.png"
] | import cv2
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
INPUT_PATH = '../input/cityscapes-image-pairs/cityscapes_data'
BATCH_SIZE = 4
INPUT_IMG_SIZE = 256
OUTPUT_CLASSES = 10
LEARINING_RATE = 0.001
train_files = glob.glob(os.path.join(INPUT_PATH + '/train', '*jpg'))
val_files = glob.glob(os.path.join(INPUT_PATH + '/val', '*jpg'))
fig, axes = plt.subplots(1,2, figsize = (20,5))
for i, ax in enumerate(axes.ravel()):
img = cv2.imread(train_files[i])
ax.imshow(img)
#ax.axis('off')
plt.show()
for i in train_files[:2]:
org_img = cv2.imread(i)
img = org_img[:, 0:256, :]
msk = org_img[:, 256:, :]
kmeans_data = []
for i in train_files[:50]:
org_img = cv2.imread(i)
msk = org_img[:, INPUT_IMG_SIZE:, :]
kmeans_data.append(msk)
kmeans_data = np.array(kmeans_data)
kmeans_data = kmeans_data.reshape(-1, 3)
print(kmeans_data.shape) | code |
74060518/cell_10 | [
"text_plain_output_1.png"
] | import cv2
import glob
import matplotlib.pyplot as plt
import os
INPUT_PATH = '../input/cityscapes-image-pairs/cityscapes_data'
train_files = glob.glob(os.path.join(INPUT_PATH + '/train', '*jpg'))
val_files = glob.glob(os.path.join(INPUT_PATH + '/val', '*jpg'))
fig, axes = plt.subplots(1,2, figsize = (20,5))
for i, ax in enumerate(axes.ravel()):
img = cv2.imread(train_files[i])
ax.imshow(img)
#ax.axis('off')
plt.show()
for i in train_files[:2]:
org_img = cv2.imread(i)
img = org_img[:, 0:256, :]
msk = org_img[:, 256:, :]
print('-' * 40)
print('Original image shape:', img.shape)
print('Mask image shape:', msk.shape)
print('-' * 40)
plt.figure(figsize=(12, 8))
plt.subplot(1, 2, 1)
plt.imshow(img)
plt.title('Original image')
plt.subplot(1, 2, 2)
plt.imshow(msk)
plt.title('Mask (RGB)')
plt.show() | code |
50242460/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/credit-card-customers/BankChurners.csv', dtype={'Income_Category': 'str'}).iloc[:, :-2]
y = df['Attrition_Flag']
df.drop(['Attrition_Flag'], axis=1, inplace=True)
df.head() | code |
50242460/cell_6 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
plt.figure(1, figsize=(4, 3), dpi=100)
axes = plt.gca()
axes.set_ylim([0.5, 0.9])
plt.text(x=0.0, y=0.75, s='16%', fontsize=60, color='#ae012e', fontweight='medium')
plt.text(x=0.0, y=0.63, s='of total data points have \ncustomers who will attrit', fontsize=20, color='gray')
plt.axis('off') | code |
73077959/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from tensorflow.keras.models import load_model
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import os
import os
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import random
import seaborn as sns
import tensorflow as tf
import numpy as np
import pandas as pd
import os
model = load_model('../input/efficientnetv2transfer/model-18-fine_after.h5')
def set_seed(seed=200):
tf.random.set_seed(seed)
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
set_seed(0)
x_test = np.load('../input/pneumonia-xray-datagen-np/x_test.npy')
y_test = np.load('../input/pneumonia-xray-datagen-np/y_test.npy')
test_evalu = model.evaluate(x_test, y_test)
def check(labels, predictions):
cmx = tf.math.confusion_matrix(labels, predictions, num_classes=None, weights=None, dtype=tf.dtypes.int32, name=None)
target_names = ['Normal', 'Pneumonia']
df_cmx = pd.DataFrame(np.array(cmx), index=target_names, columns=target_names)
Y_pred = model.predict(x_test)
y_pred = Y_pred.reshape(Y_pred.shape[0]).tolist()
cut = 0.5
for i in range(len(y_pred)):
if y_pred[i] >= cut:
y_pred[i] = 1
else:
y_pred[i] = 0
check(y_test, y_pred) | code |
73077959/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
73077959/cell_7 | [
"text_plain_output_1.png"
] | from tensorflow.keras.models import load_model
import numpy as np
import numpy as np # linear algebra
import os
import os
import random
import tensorflow as tf
import numpy as np
import pandas as pd
import os
model = load_model('../input/efficientnetv2transfer/model-18-fine_after.h5')
def set_seed(seed=200):
tf.random.set_seed(seed)
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
set_seed(0)
x_test = np.load('../input/pneumonia-xray-datagen-np/x_test.npy')
y_test = np.load('../input/pneumonia-xray-datagen-np/y_test.npy')
test_evalu = model.evaluate(x_test, y_test) | code |
73077959/cell_3 | [
"text_plain_output_1.png"
] | !pip install -U git+https://github.com/GdoongMathew/EfficientNetV2 --no-deps | code |
1009415/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
1009415/cell_7 | [
"text_plain_output_1.png"
] | import glob
import glob
train_image_filenames = sorted(glob.glob('../input/train.7z'))
print('Found images:')
print(train_image_filenames) | code |
1009415/cell_5 | [
"text_plain_output_1.png"
] | from subprocess import check_output
from subprocess import check_output
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
33109223/cell_21 | [
"text_plain_output_1.png"
] | from scipy import stats
from scipy.stats import norm
data_normal = norm.rvs(size=10000, loc=0, scale=1)
stats.kstest(data_normal, 'norm') | code |
33109223/cell_29 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.stats import gamma
from scipy.stats import norm
from scipy.stats import uniform
import seaborn as sns
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc=start, scale=width)
ax = sns.distplot(data_uniform,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Uniform Distribution ', ylabel='Frequency')
data_normal = norm.rvs(size=10000, loc=0, scale=1)
ax = sns.distplot(data_normal,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Normal Distribution', ylabel='Frequency')
data_gamma = gamma.rvs(a=5, size=10000)
ax = sns.distplot(data_gamma, kde=True, bins=100, color='skyblue', hist_kws={'linewidth': 15, 'alpha': 1})
ax.set(xlabel='Gamma Distribution', ylabel='Frequency') | code |
33109223/cell_54 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.stats import bernoulli
from scipy.stats import binom
from scipy.stats import expon
from scipy.stats import gamma
from scipy.stats import norm
from scipy.stats import poisson
from scipy.stats import uniform
import seaborn as sns
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc=start, scale=width)
ax = sns.distplot(data_uniform,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Uniform Distribution ', ylabel='Frequency')
data_normal = norm.rvs(size=10000, loc=0, scale=1)
ax = sns.distplot(data_normal,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Normal Distribution', ylabel='Frequency')
data_gamma = gamma.rvs(a=5, size=10000)
ax = sns.distplot(data_gamma,
kde=True,
bins=100,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Gamma Distribution', ylabel='Frequency')
data_expon = expon.rvs(scale=1, loc=0, size=1000)
ax = sns.distplot(data_expon,
kde=True,
bins=100,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Exponential Distribution', ylabel='Frequency')
data_poisson = poisson.rvs(mu=3, size=10000)
ax = sns.distplot(data_poisson,
bins=30,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Poisson Distribution', ylabel='Frequency')
data_binom = binom.rvs(n=10, p=0.8, size=10000)
ax = sns.distplot(data_binom,
kde=False,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Binomial Distribution', ylabel='Frequency')
data_bern = bernoulli.rvs(size=10000, p=0.6)
ax = sns.distplot(data_bern, kde=False, color='skyblue', hist_kws={'linewidth': 15, 'alpha': 1})
ax.set(xlabel='Bernoulli Distribution', ylabel='Frequency') | code |
33109223/cell_19 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.stats import norm
from scipy.stats import uniform
import seaborn as sns
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc=start, scale=width)
ax = sns.distplot(data_uniform,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Uniform Distribution ', ylabel='Frequency')
data_normal = norm.rvs(size=10000, loc=0, scale=1)
ax = sns.distplot(data_normal, bins=100, kde=True, color='skyblue', hist_kws={'linewidth': 15, 'alpha': 1})
ax.set(xlabel='Normal Distribution', ylabel='Frequency') | code |
33109223/cell_49 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.stats import binom
from scipy.stats import expon
from scipy.stats import gamma
from scipy.stats import norm
from scipy.stats import poisson
from scipy.stats import uniform
import seaborn as sns
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc=start, scale=width)
ax = sns.distplot(data_uniform,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Uniform Distribution ', ylabel='Frequency')
data_normal = norm.rvs(size=10000, loc=0, scale=1)
ax = sns.distplot(data_normal,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Normal Distribution', ylabel='Frequency')
data_gamma = gamma.rvs(a=5, size=10000)
ax = sns.distplot(data_gamma,
kde=True,
bins=100,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Gamma Distribution', ylabel='Frequency')
data_expon = expon.rvs(scale=1, loc=0, size=1000)
ax = sns.distplot(data_expon,
kde=True,
bins=100,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Exponential Distribution', ylabel='Frequency')
data_poisson = poisson.rvs(mu=3, size=10000)
ax = sns.distplot(data_poisson,
bins=30,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Poisson Distribution', ylabel='Frequency')
data_binom = binom.rvs(n=10, p=0.8, size=10000)
ax = sns.distplot(data_binom, kde=False, color='skyblue', hist_kws={'linewidth': 15, 'alpha': 1})
ax.set(xlabel='Binomial Distribution', ylabel='Frequency') | code |
33109223/cell_43 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.stats import expon
from scipy.stats import gamma
from scipy.stats import norm
from scipy.stats import poisson
from scipy.stats import uniform
import seaborn as sns
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc=start, scale=width)
ax = sns.distplot(data_uniform,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Uniform Distribution ', ylabel='Frequency')
data_normal = norm.rvs(size=10000, loc=0, scale=1)
ax = sns.distplot(data_normal,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Normal Distribution', ylabel='Frequency')
data_gamma = gamma.rvs(a=5, size=10000)
ax = sns.distplot(data_gamma,
kde=True,
bins=100,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Gamma Distribution', ylabel='Frequency')
data_expon = expon.rvs(scale=1, loc=0, size=1000)
ax = sns.distplot(data_expon,
kde=True,
bins=100,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Exponential Distribution', ylabel='Frequency')
data_poisson = poisson.rvs(mu=3, size=10000)
ax = sns.distplot(data_poisson, bins=30, kde=True, color='skyblue', hist_kws={'linewidth': 15, 'alpha': 1})
ax.set(xlabel='Poisson Distribution', ylabel='Frequency') | code |
33109223/cell_22 | [
"text_plain_output_1.png"
] | from scipy import stats
from scipy.stats import norm
data_normal = norm.rvs(size=10000, loc=0, scale=1)
stats.kstest(data_normal, 'norm')
stats.anderson(data_normal, dist='norm') | code |
33109223/cell_12 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.stats import uniform
import seaborn as sns
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc=start, scale=width)
ax = sns.distplot(data_uniform, bins=100, kde=True, color='skyblue', hist_kws={'linewidth': 15, 'alpha': 1})
ax.set(xlabel='Uniform Distribution ', ylabel='Frequency') | code |
33109223/cell_36 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from scipy.stats import expon
from scipy.stats import gamma
from scipy.stats import norm
from scipy.stats import uniform
import seaborn as sns
n = 10000
start = 10
width = 20
data_uniform = uniform.rvs(size=n, loc=start, scale=width)
ax = sns.distplot(data_uniform,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Uniform Distribution ', ylabel='Frequency')
data_normal = norm.rvs(size=10000, loc=0, scale=1)
ax = sns.distplot(data_normal,
bins=100,
kde=True,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Normal Distribution', ylabel='Frequency')
data_gamma = gamma.rvs(a=5, size=10000)
ax = sns.distplot(data_gamma,
kde=True,
bins=100,
color='skyblue',
hist_kws={"linewidth": 15,'alpha':1})
ax.set(xlabel='Gamma Distribution', ylabel='Frequency')
data_expon = expon.rvs(scale=1, loc=0, size=1000)
ax = sns.distplot(data_expon, kde=True, bins=100, color='skyblue', hist_kws={'linewidth': 15, 'alpha': 1})
ax.set(xlabel='Exponential Distribution', ylabel='Frequency') | code |
32068746/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv')
submission = pd.read_csv('../input/covid19-global-forecasting-week-4/submission.csv')
train['Country_Region'] = train['Country_Region'] + ' ' + train['Province_State']
test['Country_Region'] = test['Country_Region'] + ' ' + test['Province_State']
train.drop(['Province_State'], axis=1, inplace=True)
test.drop(['Province_State'], axis=1, inplace=True)
split_data_train = train['Date'].str.split('-').to_list()
split_data_test = test['Date'].str.split('-').to_list()
train_date = pd.DataFrame(split_data_train, columns=['Year', 'Month', 'Date'])
test_date = pd.DataFrame(split_data_test, columns=['Year', 'Month', 'Date'])
del train_date['Year']
del test_date['Year']
train_date['Month'] = train_date['Month'].astype(int)
test_date['Month'] = test_date['Month'].astype(int)
train_date['Date'] = train_date['Date'].astype(int)
test_date['Date'] = test_date['Date'].astype(int)
del train['Date']
del test['Date']
train = pd.concat([train, train_date], axis=1)
test = pd.concat([test, test_date], axis=1)
train_x_full = train[['Country_Region', 'Month', 'Date']].copy()
train_y_full = train[['ConfirmedCases', 'Fatalities']].copy()
model = LinearRegression()
model.fit(x_train, y_train)
preds = model.predict(x_valid)
model = RandomForestRegressor()
model.fit(train_x_full, train_y_full)
preds = model.predict(x_valid)
print(mean_absolute_error(preds, y_valid)) | code |
32068746/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068746/cell_12 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
model = LinearRegression()
model.fit(x_train, y_train)
preds = model.predict(x_valid)
print(mean_absolute_error(preds, y_valid)) | code |
128001996/cell_9 | [
"text_plain_output_100.png",
"text_plain_output_334.png",
"application_vnd.jupyter.stderr_output_145.png",
"application_vnd.jupyter.stderr_output_289.png",
"application_vnd.jupyter.stderr_output_313.png",
"application_vnd.jupyter.stderr_output_373.png",
"text_plain_output_84.png",
"text_plain_output_322.png",
"application_vnd.jupyter.stderr_output_27.png",
"application_vnd.jupyter.stderr_output_115.png",
"application_vnd.jupyter.stderr_output_207.png",
"application_vnd.jupyter.stderr_output_341.png",
"text_plain_output_56.png",
"text_plain_output_158.png",
"text_plain_output_218.png",
"text_plain_output_264.png",
"application_vnd.jupyter.stderr_output_35.png",
"text_plain_output_282.png",
"text_plain_output_396.png",
"text_plain_output_232.png",
"text_plain_output_362.png",
"application_vnd.jupyter.stderr_output_77.png",
"text_plain_output_258.png",
"application_vnd.jupyter.stderr_output_417.png",
"text_plain_output_452.png",
"text_plain_output_130.png",
"application_vnd.jupyter.stderr_output_461.png",
"application_vnd.jupyter.stderr_output_205.png",
"application_vnd.jupyter.stderr_output_203.png",
"text_plain_output_462.png",
"text_plain_output_286.png",
"application_vnd.jupyter.stderr_output_185.png",
"application_vnd.jupyter.stderr_output_227.png",
"text_plain_output_262.png",
"application_vnd.jupyter.stderr_output_287.png",
"application_vnd.jupyter.stderr_output_9.png",
"text_plain_output_278.png",
"text_plain_output_254.png",
"application_vnd.jupyter.stderr_output_335.png",
"application_vnd.jupyter.stderr_output_215.png",
"application_vnd.jupyter.stderr_output_283.png",
"application_vnd.jupyter.stderr_output_449.png",
"text_plain_output_98.png",
"text_plain_output_236.png",
"application_vnd.jupyter.stderr_output_223.png",
"application_vnd.jupyter.stderr_output_435.png",
"application_vnd.jupyter.stderr_output_219.png",
"application_vnd.jupyter.stderr_output_279.png",
"application_vnd.jupyter.stderr_output_81.png",
"application_vnd.jupyter.stderr_output_111.png",
"text_plain_output_420.png",
"application_vnd.jupyter.stderr_output_53.png",
"application_vnd.jupyter.stderr_output_131.png",
"application_vnd.jupyter.stderr_output_437.png",
"text_plain_output_284.png",
"text_plain_output_78.png",
"application_vnd.jupyter.stderr_output_99.png",
"text_plain_output_106.png",
"text_plain_output_138.png",
"application_vnd.jupyter.stderr_output_385.png",
"text_plain_output_192.png",
"text_plain_output_426.png",
"application_vnd.jupyter.stderr_output_183.png",
"application_vnd.jupyter.stderr_output_181.png",
"application_vnd.jupyter.stderr_output_299.png",
"application_vnd.jupyter.stderr_output_141.png",
"text_plain_output_184.png",
"text_plain_output_274.png",
"text_plain_output_172.png",
"application_vnd.jupyter.stderr_output_297.png",
"application_vnd.jupyter.stderr_output_93.png",
"text_plain_output_332.png",
"text_plain_output_256.png",
"text_plain_output_90.png",
"application_vnd.jupyter.stderr_output_471.png",
"application_vnd.jupyter.stderr_output_123.png",
"application_vnd.jupyter.stderr_output_465.png",
"text_plain_output_48.png",
"text_plain_output_388.png",
"application_vnd.jupyter.stderr_output_391.png",
"text_plain_output_422.png",
"text_plain_output_116.png",
"text_plain_output_128.png",
"text_plain_output_30.png",
"text_plain_output_126.png",
"application_vnd.jupyter.stderr_output_355.png",
"application_vnd.jupyter.stderr_output_421.png",
"application_vnd.jupyter.stderr_output_431.png",
"text_plain_output_272.png",
"application_vnd.jupyter.stderr_output_73.png",
"application_vnd.jupyter.stderr_output_137.png",
"application_vnd.jupyter.stderr_output_133.png",
"application_vnd.jupyter.stderr_output_165.png",
"application_vnd.jupyter.stderr_output_381.png",
"application_vnd.jupyter.stderr_output_75.png",
"text_plain_output_316.png",
"application_vnd.jupyter.stderr_output_365.png",
"text_plain_output_390.png",
"text_plain_output_198.png",
"application_vnd.jupyter.stderr_output_321.png",
"application_vnd.jupyter.stderr_output_7.png",
"application_vnd.jupyter.stderr_output_467.png",
"application_vnd.jupyter.stderr_output_407.png",
"text_plain_output_178.png",
"text_plain_output_226.png",
"text_plain_output_154.png",
"text_plain_output_234.png",
"text_plain_output_404.png",
"text_plain_output_114.png",
"application_vnd.jupyter.stderr_output_447.png",
"application_vnd.jupyter.stderr_output_11.png",
"application_vnd.jupyter.stderr_output_361.png",
"application_vnd.jupyter.stderr_output_155.png",
"text_plain_output_470.png",
"text_plain_output_70.png",
"text_plain_output_44.png",
"application_vnd.jupyter.stderr_output_423.png",
"application_vnd.jupyter.stderr_output_277.png",
"application_vnd.jupyter.stderr_output_291.png",
"application_vnd.jupyter.stderr_output_231.png",
"application_vnd.jupyter.stderr_output_317.png",
"application_vnd.jupyter.stderr_output_65.png",
"application_vnd.jupyter.stderr_output_443.png",
"application_vnd.jupyter.stderr_output_235.png",
"text_plain_output_86.png",
"text_plain_output_244.png",
"text_plain_output_118.png",
"application_vnd.jupyter.stderr_output_453.png",
"application_vnd.jupyter.stderr_output_179.png",
"application_vnd.jupyter.stderr_output_143.png",
"application_vnd.jupyter.stderr_output_409.png",
"text_plain_output_40.png",
"text_plain_output_74.png",
"application_vnd.jupyter.stderr_output_171.png",
"text_plain_output_190.png",
"text_plain_output_302.png",
"text_plain_output_340.png",
"application_vnd.jupyter.stderr_output_351.png",
"application_vnd.jupyter.stderr_output_105.png",
"text_plain_output_20.png",
"application_vnd.jupyter.stderr_output_275.png",
"application_vnd.jupyter.stderr_output_345.png",
"text_plain_output_102.png",
"application_vnd.jupyter.stderr_output_439.png",
"text_plain_output_414.png",
"application_vnd.jupyter.stderr_output_371.png",
"text_plain_output_222.png",
"application_vnd.jupyter.stderr_output_253.png",
"text_plain_output_144.png",
"application_vnd.jupyter.stderr_output_389.png",
"application_vnd.jupyter.stderr_output_323.png",
"application_vnd.jupyter.stderr_output_387.png",
"text_plain_output_132.png",
"text_plain_output_60.png",
"application_vnd.jupyter.stderr_output_393.png",
"application_vnd.jupyter.stderr_output_31.png",
"application_vnd.jupyter.stderr_output_125.png",
"text_plain_output_330.png",
"text_plain_output_434.png",
"application_vnd.jupyter.stderr_output_113.png",
"text_plain_output_68.png",
"text_plain_output_4.png",
"text_plain_output_64.png",
"application_vnd.jupyter.stderr_output_221.png",
"application_vnd.jupyter.stderr_output_305.png",
"text_plain_output_200.png",
"application_vnd.jupyter.stderr_output_383.png",
"application_vnd.jupyter.stderr_output_33.png",
"text_plain_output_398.png",
"text_plain_output_312.png",
"text_plain_output_248.png",
"application_vnd.jupyter.stderr_output_245.png",
"text_plain_output_318.png",
"application_vnd.jupyter.stderr_output_25.png",
"text_plain_output_52.png",
"application_vnd.jupyter.stderr_output_419.png",
"text_plain_output_66.png",
"text_plain_output_446.png",
"application_vnd.jupyter.stderr_output_403.png",
"application_vnd.jupyter.stderr_output_249.png",
"application_vnd.jupyter.stderr_output_229.png",
"application_vnd.jupyter.stderr_output_263.png",
"text_plain_output_380.png",
"text_plain_output_442.png",
"application_vnd.jupyter.stderr_output_273.png",
"application_vnd.jupyter.stderr_output_135.png",
"text_plain_output_300.png",
"application_vnd.jupyter.stderr_output_211.png",
"application_vnd.jupyter.stderr_output_463.png",
"application_vnd.jupyter.stderr_output_285.png",
"application_vnd.jupyter.stderr_output_177.png",
"text_plain_output_14.png",
"text_plain_output_32.png",
"text_plain_output_304.png",
"text_plain_output_88.png",
"text_plain_output_240.png",
"application_vnd.jupyter.stderr_output_89.png",
"text_plain_output_140.png",
"application_vnd.jupyter.stderr_output_269.png",
"text_plain_output_376.png",
"text_plain_output_280.png",
"text_plain_output_242.png",
"text_plain_output_460.png",
"application_vnd.jupyter.stderr_output_189.png",
"text_plain_output_160.png",
"text_plain_output_58.png",
"application_vnd.jupyter.stderr_output_149.png",
"application_vnd.jupyter.stderr_output_91.png",
"application_vnd.jupyter.stderr_output_239.png",
"text_plain_output_260.png",
"application_vnd.jupyter.stderr_output_95.png",
"text_plain_output_294.png",
"text_plain_output_392.png",
"text_plain_output_320.png",
"application_vnd.jupyter.stderr_output_67.png",
"application_vnd.jupyter.stderr_output_237.png",
"application_vnd.jupyter.stderr_output_339.png",
"text_plain_output_386.png",
"text_plain_output_438.png",
"text_plain_output_76.png",
"text_plain_output_108.png",
"application_vnd.jupyter.stderr_output_337.png",
"text_plain_output_54.png",
"text_plain_output_142.png",
"text_plain_output_10.png",
"text_plain_output_276.png",
"text_plain_output_6.png",
"application_vnd.jupyter.stderr_output_71.png",
"text_plain_output_326.png",
"application_vnd.jupyter.stderr_output_259.png",
"text_plain_output_170.png",
"text_plain_output_92.png",
"text_plain_output_120.png",
"application_vnd.jupyter.stderr_output_293.png",
"text_plain_output_24.png",
"application_vnd.jupyter.stderr_output_257.png",
"application_vnd.jupyter.stderr_output_23.png",
"application_vnd.jupyter.stderr_output_159.png",
"text_plain_output_344.png",
"application_vnd.jupyter.stderr_output_325.png",
"application_vnd.jupyter.stderr_output_247.png",
"text_plain_output_104.png",
"text_plain_output_270.png",
"text_plain_output_466.png",
"application_vnd.jupyter.stderr_output_59.png",
"text_plain_output_134.png",
"text_plain_output_288.png",
"application_vnd.jupyter.stderr_output_197.png",
"application_vnd.jupyter.stderr_output_369.png",
"application_vnd.jupyter.stderr_output_459.png",
"text_plain_output_18.png",
"text_plain_output_266.png",
"text_plain_output_208.png",
"text_plain_output_50.png",
"text_plain_output_36.png",
"application_vnd.jupyter.stderr_output_441.png",
"application_vnd.jupyter.stderr_output_83.png",
"text_plain_output_96.png",
"application_vnd.jupyter.stderr_output_19.png",
"text_plain_output_418.png",
"text_plain_output_180.png",
"text_plain_output_210.png",
"text_plain_output_112.png",
"application_vnd.jupyter.stderr_output_281.png",
"text_plain_output_152.png",
"application_vnd.jupyter.stderr_output_13.png",
"application_vnd.jupyter.stderr_output_127.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_290.png",
"application_vnd.jupyter.stderr_output_195.png",
"application_vnd.jupyter.stderr_output_331.png",
"text_plain_output_324.png",
"text_plain_output_22.png",
"text_plain_output_188.png",
"text_plain_output_366.png",
"application_vnd.jupyter.stderr_output_327.png",
"application_vnd.jupyter.stderr_output_5.png",
"application_vnd.jupyter.stderr_output_261.png",
"text_plain_output_328.png",
"application_vnd.jupyter.stderr_output_301.png",
"text_plain_output_368.png",
"application_vnd.jupyter.stderr_output_347.png",
"text_plain_output_372.png",
"application_vnd.jupyter.stderr_output_411.png",
"text_plain_output_146.png",
"text_plain_output_454.png",
"application_vnd.jupyter.stderr_output_241.png",
"application_vnd.jupyter.stderr_output_405.png",
"application_vnd.jupyter.stderr_output_163.png",
"text_plain_output_338.png",
"application_vnd.jupyter.stderr_output_151.png",
"application_vnd.jupyter.stderr_output_103.png",
"application_vnd.jupyter.stderr_output_109.png",
"text_plain_output_382.png",
"text_plain_output_38.png",
"application_vnd.jupyter.stderr_output_367.png",
"text_plain_output_214.png",
"text_plain_output_166.png",
"text_plain_output_358.png",
"application_vnd.jupyter.stderr_output_97.png",
"application_vnd.jupyter.stderr_output_395.png",
"text_plain_output_314.png",
"text_plain_output_410.png",
"text_plain_output_432.png",
"application_vnd.jupyter.stderr_output_201.png",
"application_vnd.jupyter.stderr_output_307.png",
"text_plain_output_308.png",
"text_plain_output_16.png",
"text_plain_output_174.png",
"text_plain_output_212.png",
"text_plain_output_230.png",
"application_vnd.jupyter.stderr_output_15.png",
"text_plain_output_430.png",
"text_plain_output_378.png",
"text_plain_output_206.png",
"text_plain_output_8.png",
"text_plain_output_122.png",
"application_vnd.jupyter.stderr_output_193.png",
"text_plain_output_384.png",
"application_vnd.jupyter.stderr_output_17.png",
"application_vnd.jupyter.stderr_output_87.png",
"text_plain_output_182.png",
"text_plain_output_26.png",
"application_vnd.jupyter.stderr_output_187.png",
"text_plain_output_406.png",
"application_vnd.jupyter.stderr_output_445.png",
"text_plain_output_310.png",
"text_plain_output_456.png",
"application_vnd.jupyter.stderr_output_455.png",
"application_vnd.jupyter.stderr_output_469.png",
"text_plain_output_220.png",
"application_vnd.jupyter.stderr_output_117.png",
"application_vnd.jupyter.stderr_output_413.png",
"text_plain_output_238.png",
"application_vnd.jupyter.stderr_output_401.png",
"text_plain_output_34.png",
"text_plain_output_346.png",
"text_plain_output_168.png",
"application_vnd.jupyter.stderr_output_69.png",
"text_plain_output_394.png",
"text_plain_output_204.png",
"text_plain_output_350.png",
"application_vnd.jupyter.stderr_output_41.png",
"application_vnd.jupyter.stderr_output_157.png",
"text_plain_output_42.png",
"text_plain_output_110.png",
"text_plain_output_468.png",
"text_plain_output_370.png",
"application_vnd.jupyter.stderr_output_377.png",
"text_plain_output_224.png",
"application_vnd.jupyter.stderr_output_167.png",
"application_vnd.jupyter.stderr_output_79.png",
"application_vnd.jupyter.stderr_output_49.png",
"application_vnd.jupyter.stderr_output_333.png",
"application_vnd.jupyter.stderr_output_63.png",
"application_vnd.jupyter.stderr_output_47.png",
"application_vnd.jupyter.stderr_output_57.png",
"application_vnd.jupyter.stderr_output_363.png",
"application_vnd.jupyter.stderr_output_169.png",
"text_plain_output_450.png",
"text_plain_output_252.png",
"application_vnd.jupyter.stderr_output_415.png",
"application_vnd.jupyter.stderr_output_343.png",
"text_plain_output_296.png",
"text_plain_output_28.png",
"text_plain_output_72.png",
"application_vnd.jupyter.stderr_output_173.png",
"application_vnd.jupyter.stderr_output_319.png",
"application_vnd.jupyter.stderr_output_191.png",
"application_vnd.jupyter.stderr_output_399.png",
"text_plain_output_162.png",
"text_plain_output_136.png",
"text_plain_output_246.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_433.png",
"application_vnd.jupyter.stderr_output_213.png",
"application_vnd.jupyter.stderr_output_349.png",
"application_vnd.jupyter.stderr_output_397.png",
"application_vnd.jupyter.stderr_output_429.png",
"text_plain_output_196.png",
"text_plain_output_342.png",
"application_vnd.jupyter.stderr_output_295.png",
"application_vnd.jupyter.stderr_output_29.png",
"application_vnd.jupyter.stderr_output_101.png",
"application_vnd.jupyter.stderr_output_359.png",
"application_vnd.jupyter.stderr_output_267.png",
"application_vnd.jupyter.stderr_output_225.png",
"application_vnd.jupyter.stderr_output_209.png",
"application_vnd.jupyter.stderr_output_139.png",
"text_plain_output_150.png",
"application_vnd.jupyter.stderr_output_1.png",
"text_plain_output_176.png",
"application_vnd.jupyter.stderr_output_217.png",
"application_vnd.jupyter.stderr_output_61.png",
"text_plain_output_186.png",
"application_vnd.jupyter.stderr_output_51.png",
"application_vnd.jupyter.stderr_output_311.png",
"text_plain_output_228.png",
"text_plain_output_412.png",
"application_vnd.jupyter.stderr_output_353.png",
"text_plain_output_268.png",
"text_plain_output_436.png",
"text_plain_output_354.png",
"text_plain_output_360.png",
"text_plain_output_82.png",
"text_plain_output_356.png",
"text_plain_output_202.png",
"application_vnd.jupyter.stderr_output_161.png",
"application_vnd.jupyter.stderr_output_379.png",
"text_plain_output_336.png",
"application_vnd.jupyter.stderr_output_427.png",
"text_plain_output_80.png",
"text_plain_output_94.png",
"text_plain_output_164.png",
"application_vnd.jupyter.stderr_output_233.png",
"text_plain_output_444.png",
"application_vnd.jupyter.stderr_output_153.png",
"text_plain_output_216.png",
"text_plain_output_124.png",
"application_vnd.jupyter.stderr_output_45.png",
"text_plain_output_148.png",
"text_plain_output_402.png",
"text_plain_output_424.png",
"text_plain_output_250.png",
"application_vnd.jupyter.stderr_output_425.png",
"application_vnd.jupyter.stderr_output_175.png",
"text_plain_output_400.png",
"application_vnd.jupyter.stderr_output_457.png",
"text_plain_output_12.png",
"application_vnd.jupyter.stderr_output_39.png",
"text_plain_output_408.png",
"application_vnd.jupyter.stderr_output_119.png",
"application_vnd.jupyter.stderr_output_309.png",
"application_vnd.jupyter.stderr_output_107.png",
"text_plain_output_428.png",
"application_vnd.jupyter.stderr_output_255.png",
"application_vnd.jupyter.stderr_output_21.png",
"application_vnd.jupyter.stderr_output_43.png",
"application_vnd.jupyter.stderr_output_357.png",
"text_plain_output_416.png",
"application_vnd.jupyter.stderr_output_265.png",
"text_plain_output_194.png",
"application_vnd.jupyter.stderr_output_85.png",
"text_plain_output_62.png",
"text_plain_output_440.png",
"text_plain_output_458.png",
"application_vnd.jupyter.stderr_output_271.png",
"application_vnd.jupyter.stderr_output_55.png",
"text_plain_output_464.png",
"application_vnd.jupyter.stderr_output_303.png",
"text_plain_output_156.png",
"application_vnd.jupyter.stderr_output_147.png",
"application_vnd.jupyter.stderr_output_375.png",
"text_plain_output_298.png",
"application_vnd.jupyter.stderr_output_121.png",
"text_plain_output_348.png",
"application_vnd.jupyter.stderr_output_451.png",
"text_plain_output_448.png",
"text_plain_output_364.png",
"application_vnd.jupyter.stderr_output_329.png",
"application_vnd.jupyter.stderr_output_243.png",
"text_plain_output_352.png",
"application_vnd.jupyter.stderr_output_199.png",
"text_plain_output_374.png",
"text_plain_output_472.png",
"application_vnd.jupyter.stderr_output_129.png",
"application_vnd.jupyter.stderr_output_251.png",
"text_plain_output_292.png",
"application_vnd.jupyter.stderr_output_315.png",
"application_vnd.jupyter.stderr_output_37.png",
"text_plain_output_306.png",
"text_plain_output_46.png"
] | import pandas as pd
import seaborn as sns
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
sns.histplot(data=df, x=target, stat='density', color='b') | code |
128001996/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df.head() | code |
128001996/cell_23 | [
"image_output_1.png"
] | from sklearn.metrics import roc_auc_score, mean_absolute_error
from sklearn.model_selection import train_test_split, RepeatedKFold, StratifiedKFold
from sklearn.preprocessing import StandardScaler
from xgboost import XGBRegressor, XGBClassifier
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df.columns
if True:
num_columns = ['fruitset', 'fruitmass', 'seeds',]
ncols = 4
for n, col in enumerate(num_columns):
if n % ncols == 0:
fig, axs = plt.subplots(ncols=ncols, figsize=(24,6))
ax = axs[n % ncols]
#sns.kdeplot(data=df, x=col, hue=target, ax=ax, palette='bright', common_norm=False, warn_singular=False)
sns.histplot(data=df[col], ax=ax);
def explore_categorical_value(df, col, target='yield'):
values = df[col].unique()
values.sort()
for value in values:
select = df.loc[df[col] == value]
mn = select[target].mean()
cnt = len(select)
cnt_test = len(select[select.test == 1])
cat_columns = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange', 'RainingDays', 'AverageRainingDays']
for col in cat_columns:
explore_categorical_value(df, col)
if True:
for col in num_columns + cat_columns:
df[f'log_{col}'] = np.log(df[col] + 1e-06)
score_function = mean_absolute_error
def get_numpy_arrays(data):
X = data.drop(['id', 'test', target], axis=1).to_numpy()
y = data[target].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def ensamble_pred(clfs, X):
pred = 0
for clf in clfs:
pred += clf.predict_proba(X) if sklearn.base.is_classifier(clf) else clf.predict(X).squeeze()
return np.argmax(pred, axis=1) if sklearn.base.is_classifier(clf) else pred / len(clfs)
def print_validation_score(clfs):
pred = ensamble_pred(clfs, X_test)
score = score_function(y_test, pred)
return score
def examine_clf(X_train_val, y_train_val, clf, rkf, verbose=None):
avg_score = 0
clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = np.argmax(clf.predict_proba(X_val), axis=1) if sklearn.base.is_classifier(clf) else clf.predict(X_val)
score = score_function(y_val, pred)
avg_score += score
clfs.append(clf)
avg_score /= n + 1
return (clfs, avg_score)
def examine_clf_print(X_train_val, y_train_val, clf, rkf, verbose=None):
clfs, avg_score = examine_clf(X_train_val, y_train_val, clf, rkf, verbose=verbose)
return clfs
def adv_get_numpy_arrays(data):
X = data.drop(['id', 'test', 'gen', target], axis=1).to_numpy()
y = data['test'].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def get_CV_results(X_train_val, y_train_val, clf, rkf, verbose=None):
results = np.zeros_like(y_train_val, dtype=float)
all_clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = clf.predict_proba(X_val)[:, 1] if sklearn.base.is_classifier(clf) else clf.predict(X_val)
results[val_index] += pred
all_clfs.append(clf)
return (results / n, all_clfs)
adv_df = df.copy()
adv_X, adv_y = adv_get_numpy_arrays(adv_df)
rkf = StratifiedKFold(n_splits=5, shuffle=True, random_state=10)
tree_method = 'gpu_hist' if gpu_available else 'hist'
xgbc = XGBClassifier(n_estimators=140, max_depth=3, tree_method=tree_method)
xgbc_results, xgbc_clfs = get_CV_results(adv_X, adv_y, xgbc, rkf)
print(roc_auc_score(adv_y, xgbc_results)) | code |
128001996/cell_6 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
pd.isna(df).sum() | code |
128001996/cell_2 | [
"image_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
from sklearn.model_selection import train_test_split, RepeatedKFold, StratifiedKFold
from sklearn.metrics import roc_auc_score, mean_absolute_error
from sklearn.preprocessing import StandardScaler
import optuna
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from xgboost import XGBRegressor, XGBClassifier
from catboost import CatBoostRegressor, CatBoostClassifier
from sklearn.linear_model import Lasso, Ridge, LogisticRegression
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier
from lightgbm import LGBMClassifier, LGBMRegressor
import torch
gpu_available = torch.cuda.is_available()
TRAIN_CSV = '/kaggle/input/playground-series-s3e14/train.csv'
TEST_CSV = '/kaggle/input/playground-series-s3e14/test.csv'
EXTERNAL_CSV = '/kaggle/input/wild-blueberry-yield-prediction-dataset/WildBlueberryPollinationSimulationData.csv' | code |
128001996/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import Lasso, Ridge, LogisticRegression
from sklearn.metrics import roc_auc_score, mean_absolute_error
from sklearn.model_selection import train_test_split, RepeatedKFold, StratifiedKFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df.columns
if True:
num_columns = ['fruitset', 'fruitmass', 'seeds',]
ncols = 4
for n, col in enumerate(num_columns):
if n % ncols == 0:
fig, axs = plt.subplots(ncols=ncols, figsize=(24,6))
ax = axs[n % ncols]
#sns.kdeplot(data=df, x=col, hue=target, ax=ax, palette='bright', common_norm=False, warn_singular=False)
sns.histplot(data=df[col], ax=ax);
def explore_categorical_value(df, col, target='yield'):
values = df[col].unique()
values.sort()
for value in values:
select = df.loc[df[col] == value]
mn = select[target].mean()
cnt = len(select)
cnt_test = len(select[select.test == 1])
cat_columns = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange', 'RainingDays', 'AverageRainingDays']
for col in cat_columns:
explore_categorical_value(df, col)
if True:
for col in num_columns + cat_columns:
df[f'log_{col}'] = np.log(df[col] + 1e-06)
score_function = mean_absolute_error
def get_numpy_arrays(data):
X = data.drop(['id', 'test', target], axis=1).to_numpy()
y = data[target].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def ensamble_pred(clfs, X):
pred = 0
for clf in clfs:
pred += clf.predict_proba(X) if sklearn.base.is_classifier(clf) else clf.predict(X).squeeze()
return np.argmax(pred, axis=1) if sklearn.base.is_classifier(clf) else pred / len(clfs)
def print_validation_score(clfs):
pred = ensamble_pred(clfs, X_test)
score = score_function(y_test, pred)
return score
def examine_clf(X_train_val, y_train_val, clf, rkf, verbose=None):
avg_score = 0
clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = np.argmax(clf.predict_proba(X_val), axis=1) if sklearn.base.is_classifier(clf) else clf.predict(X_val)
score = score_function(y_val, pred)
avg_score += score
clfs.append(clf)
avg_score /= n + 1
return (clfs, avg_score)
def examine_clf_print(X_train_val, y_train_val, clf, rkf, verbose=None):
clfs, avg_score = examine_clf(X_train_val, y_train_val, clf, rkf, verbose=verbose)
return clfs
def adv_get_numpy_arrays(data):
X = data.drop(['id', 'test', 'gen', target], axis=1).to_numpy()
y = data['test'].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def get_CV_results(X_train_val, y_train_val, clf, rkf, verbose=None):
results = np.zeros_like(y_train_val, dtype=float)
all_clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = clf.predict_proba(X_val)[:, 1] if sklearn.base.is_classifier(clf) else clf.predict(X_val)
results[val_index] += pred
all_clfs.append(clf)
return (results / n, all_clfs)
adv_df = df.copy()
adv_X, adv_y = adv_get_numpy_arrays(adv_df)
rkf = StratifiedKFold(n_splits=5, shuffle=True, random_state=10)
validation_part = 0.2
adv_df['adv'] = rfc_results + xgbc_results + cbc_results
adv_df_train_val_test = adv_df[adv_df.test == 0].sort_values('adv', ascending=False).drop('adv', axis=1)
val_split = int(validation_part * len(adv_df_train_val_test))
data_train_val = adv_df_train_val_test[val_split:]
data_test = adv_df_train_val_test[:val_split]
X_train_val, y_train_val = get_numpy_arrays(data_train_val)
X_test, y_test = get_numpy_arrays(data_test)
data_submit = df[df.test == 1].copy()
X_submit, y_submit = get_numpy_arrays(data_submit)
rkf = RepeatedKFold(n_splits=5, n_repeats=3, random_state=0)
all_clfs = []
lasso_clfs = examine_clf_print(X_train_val, y_train_val, Lasso(alpha=0.01, max_iter=1000), rkf)
ridge_clfs = examine_clf_print(X_train_val, y_train_val, Ridge(alpha=2, max_iter=1000), rkf) | code |
128001996/cell_24 | [
"text_plain_output_1.png"
] | from catboost import CatBoostRegressor, CatBoostClassifier
from sklearn.metrics import roc_auc_score, mean_absolute_error
from sklearn.model_selection import train_test_split, RepeatedKFold, StratifiedKFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df.columns
if True:
num_columns = ['fruitset', 'fruitmass', 'seeds',]
ncols = 4
for n, col in enumerate(num_columns):
if n % ncols == 0:
fig, axs = plt.subplots(ncols=ncols, figsize=(24,6))
ax = axs[n % ncols]
#sns.kdeplot(data=df, x=col, hue=target, ax=ax, palette='bright', common_norm=False, warn_singular=False)
sns.histplot(data=df[col], ax=ax);
def explore_categorical_value(df, col, target='yield'):
values = df[col].unique()
values.sort()
for value in values:
select = df.loc[df[col] == value]
mn = select[target].mean()
cnt = len(select)
cnt_test = len(select[select.test == 1])
cat_columns = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange', 'RainingDays', 'AverageRainingDays']
for col in cat_columns:
explore_categorical_value(df, col)
if True:
for col in num_columns + cat_columns:
df[f'log_{col}'] = np.log(df[col] + 1e-06)
score_function = mean_absolute_error
def get_numpy_arrays(data):
X = data.drop(['id', 'test', target], axis=1).to_numpy()
y = data[target].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def ensamble_pred(clfs, X):
pred = 0
for clf in clfs:
pred += clf.predict_proba(X) if sklearn.base.is_classifier(clf) else clf.predict(X).squeeze()
return np.argmax(pred, axis=1) if sklearn.base.is_classifier(clf) else pred / len(clfs)
def print_validation_score(clfs):
pred = ensamble_pred(clfs, X_test)
score = score_function(y_test, pred)
return score
def examine_clf(X_train_val, y_train_val, clf, rkf, verbose=None):
avg_score = 0
clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = np.argmax(clf.predict_proba(X_val), axis=1) if sklearn.base.is_classifier(clf) else clf.predict(X_val)
score = score_function(y_val, pred)
avg_score += score
clfs.append(clf)
avg_score /= n + 1
return (clfs, avg_score)
def examine_clf_print(X_train_val, y_train_val, clf, rkf, verbose=None):
clfs, avg_score = examine_clf(X_train_val, y_train_val, clf, rkf, verbose=verbose)
return clfs
def adv_get_numpy_arrays(data):
X = data.drop(['id', 'test', 'gen', target], axis=1).to_numpy()
y = data['test'].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def get_CV_results(X_train_val, y_train_val, clf, rkf, verbose=None):
results = np.zeros_like(y_train_val, dtype=float)
all_clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = clf.predict_proba(X_val)[:, 1] if sklearn.base.is_classifier(clf) else clf.predict(X_val)
results[val_index] += pred
all_clfs.append(clf)
return (results / n, all_clfs)
adv_df = df.copy()
adv_X, adv_y = adv_get_numpy_arrays(adv_df)
rkf = StratifiedKFold(n_splits=5, shuffle=True, random_state=10)
catboost_params = {'task_type': 'GPU', 'devices': '0:1'} if gpu_available else {}
cbc = CatBoostClassifier(iterations=200, depth=2, learning_rate=0.1, loss_function='Logloss', **catboost_params)
cbc_results, cbc_clfs = get_CV_results(adv_X, adv_y, cbc, rkf, False)
print(roc_auc_score(adv_y, cbc_results)) | code |
128001996/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df.columns
def explore_categorical_value(df, col, target='yield'):
print(f'{col}')
values = df[col].unique()
values.sort()
for value in values:
select = df.loc[df[col] == value]
mn = select[target].mean()
cnt = len(select)
cnt_test = len(select[select.test == 1])
print(f'\t{value:16}\t{mn:.3f}\t{cnt}\t{cnt_test}')
cat_columns = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange', 'RainingDays', 'AverageRainingDays']
print(f'\t \tMean \t\tCount\tIn test')
for col in cat_columns:
explore_categorical_value(df, col) | code |
128001996/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.metrics import roc_auc_score, mean_absolute_error
from sklearn.model_selection import train_test_split, RepeatedKFold, StratifiedKFold
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df.columns
if True:
num_columns = ['fruitset', 'fruitmass', 'seeds',]
ncols = 4
for n, col in enumerate(num_columns):
if n % ncols == 0:
fig, axs = plt.subplots(ncols=ncols, figsize=(24,6))
ax = axs[n % ncols]
#sns.kdeplot(data=df, x=col, hue=target, ax=ax, palette='bright', common_norm=False, warn_singular=False)
sns.histplot(data=df[col], ax=ax);
def explore_categorical_value(df, col, target='yield'):
values = df[col].unique()
values.sort()
for value in values:
select = df.loc[df[col] == value]
mn = select[target].mean()
cnt = len(select)
cnt_test = len(select[select.test == 1])
cat_columns = ['clonesize', 'honeybee', 'bumbles', 'andrena', 'osmia', 'MaxOfUpperTRange', 'MinOfUpperTRange', 'AverageOfUpperTRange', 'MaxOfLowerTRange', 'MinOfLowerTRange', 'AverageOfLowerTRange', 'RainingDays', 'AverageRainingDays']
for col in cat_columns:
explore_categorical_value(df, col)
if True:
for col in num_columns + cat_columns:
df[f'log_{col}'] = np.log(df[col] + 1e-06)
score_function = mean_absolute_error
def get_numpy_arrays(data):
X = data.drop(['id', 'test', target], axis=1).to_numpy()
y = data[target].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def ensamble_pred(clfs, X):
pred = 0
for clf in clfs:
pred += clf.predict_proba(X) if sklearn.base.is_classifier(clf) else clf.predict(X).squeeze()
return np.argmax(pred, axis=1) if sklearn.base.is_classifier(clf) else pred / len(clfs)
def print_validation_score(clfs):
pred = ensamble_pred(clfs, X_test)
score = score_function(y_test, pred)
return score
def examine_clf(X_train_val, y_train_val, clf, rkf, verbose=None):
avg_score = 0
clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = np.argmax(clf.predict_proba(X_val), axis=1) if sklearn.base.is_classifier(clf) else clf.predict(X_val)
score = score_function(y_val, pred)
avg_score += score
clfs.append(clf)
avg_score /= n + 1
return (clfs, avg_score)
def examine_clf_print(X_train_val, y_train_val, clf, rkf, verbose=None):
clfs, avg_score = examine_clf(X_train_val, y_train_val, clf, rkf, verbose=verbose)
return clfs
def adv_get_numpy_arrays(data):
X = data.drop(['id', 'test', 'gen', target], axis=1).to_numpy()
y = data['test'].to_numpy()
scaler = StandardScaler()
X = scaler.fit_transform(X)
return (X, y)
def get_CV_results(X_train_val, y_train_val, clf, rkf, verbose=None):
results = np.zeros_like(y_train_val, dtype=float)
all_clfs = []
for n, (train_index, val_index) in enumerate(rkf.split(X_train_val, y_train_val)):
X_train = X_train_val[train_index]
y_train = y_train_val[train_index]
X_val = X_train_val[val_index]
y_val = y_train_val[val_index]
clf = sklearn.base.clone(clf)
if verbose is None:
clf.fit(X_train, y_train)
else:
clf.fit(X_train, y_train, verbose=verbose)
pred = clf.predict_proba(X_val)[:, 1] if sklearn.base.is_classifier(clf) else clf.predict(X_val)
results[val_index] += pred
all_clfs.append(clf)
return (results / n, all_clfs)
adv_df = df.copy()
adv_X, adv_y = adv_get_numpy_arrays(adv_df)
rkf = StratifiedKFold(n_splits=5, shuffle=True, random_state=10)
rfc = RandomForestClassifier(n_estimators=300, max_depth=8, n_jobs=-1)
rfc_results, rfc_clfs = get_CV_results(adv_X, adv_y, rfc, rkf)
print(roc_auc_score(adv_y, rfc_results)) | code |
128001996/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
target = 'yield'
df1 = pd.read_csv(TRAIN_CSV)
df1.rename({'Id': 'id'}, axis=1, inplace=True)
df1['test'] = 0
df1['gen'] = 1
df2 = pd.read_csv(TEST_CSV)
df2.rename({'Id': 'id'}, axis=1, inplace=True)
df2['test'] = 1
df2['gen'] = 1
df3 = pd.read_csv(EXTERNAL_CSV)
df3.rename({'Row#': 'id'}, axis=1, inplace=True)
df3['test'] = 0
df3['gen'] = 0
df = pd.concat([df1, df2, df3])
df.id.fillna(-1, inplace=True)
df.id = df.id.astype(int)
df.reset_index(inplace=True)
df.drop('index', axis=1, inplace=True)
df.columns | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.