path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128001996/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns target = 'yield' df1 = pd.read_csv(TRAIN_CSV) df1.rename({'Id': 'id'}, axis=1, inplace=True) df1['test'] = 0 df1['gen'] = 1 df2 = pd.read_csv(TEST_CSV) df2.rename({'Id': 'id'}, axis=1, inplace=True) df2['test'] = 1 df2['gen'] = 1 df3 = pd.read_csv(EXTERNAL_CSV) df3.rename({'Row#': 'id'}, axis=1, inplace=True) df3['test'] = 0 df3['gen'] = 0 df = pd.concat([df1, df2, df3]) df.id.fillna(-1, inplace=True) df.id = df.id.astype(int) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.columns if True: num_columns = ['fruitset', 'fruitmass', 'seeds'] ncols = 4 for n, col in enumerate(num_columns): if n % ncols == 0: fig, axs = plt.subplots(ncols=ncols, figsize=(24, 6)) ax = axs[n % ncols] sns.histplot(data=df[col], ax=ax)
code
105196211/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df2.head()
code
105196211/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2.head()
code
105196211/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum()
code
105196211/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('dark_background') df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) plt.figure(figsize=(10, 10)) plt.subplot(2, 2, 1) plt.scatter(df.index, df.English) plt.title('English') plt.subplot(2, 2, 2) plt.scatter(df.index, df.Logical) plt.title('Logical') plt.subplot(2, 2, 3) plt.scatter(df.index, df.Quant) plt.title('Quant') plt.show()
code
105196211/cell_4
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df
code
105196211/cell_34
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('dark_background') df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() sns.countplot(df['Gender'], palette='inferno')
code
105196211/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df3 = df2[df['collegeGPA'] >= 40] df3.shape
code
105196211/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() spec = df2['Specialization'].value_counts(ascending=False) spec specless10 = spec[spec <= 10] specless10 def remove(x): if x in specless10: return 'other' else: return x df2['Specialization'] = df2['Specialization'].apply(remove) df2['Specialization'].unique()
code
105196211/cell_26
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('dark_background') df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) plt.figure(figsize=(10, 10)) plt.subplot(2, 2, 1) plt.scatter(df.index, df.Domain) plt.title('Domain') plt.subplot(2, 2, 2) plt.scatter(df.index, df.ComputerProgramming) plt.title('ComputerProgramming') plt.subplot(2, 2, 3) plt.scatter(df.index, df.ElectronicsAndSemicon) plt.title('ElectronicsAndSemicon') plt.show()
code
105196211/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape
code
105196211/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() spec = df2['Specialization'].value_counts(ascending=False) spec specless10 = spec[spec <= 10] specless10
code
105196211/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105196211/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.head(5)
code
105196211/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() spec = df2['Specialization'].value_counts(ascending=False) spec
code
105196211/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('dark_background') df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() sns.scatterplot(df['10percentage'], df['12percentage'])
code
105196211/cell_8
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns
code
105196211/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df2.info()
code
105196211/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df2['Specialization'].value_counts()
code
105196211/cell_38
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('dark_background') df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df3 = df2[df['collegeGPA'] >= 40] df3.shape df3 = df3.replace(-1, np.nan) column_with_nan = [column for column in df3.columns if df3.isnull().sum()[column] > 0] for column in column_with_nan: df3[column] = df3[column].fillna(df3[column].mean()) df3.columns df3.columns sns.countplot(df3['Degree'])
code
105196211/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df2['Degree'].unique()
code
105196211/cell_35
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use('dark_background') df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() sns.scatterplot(df['10percentage'], df['12percentage'], hue=df.CollegeTier)
code
105196211/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df3 = df2[df['collegeGPA'] >= 40] df3.shape df3 = df3.replace(-1, np.nan) column_with_nan = [column for column in df3.columns if df3.isnull().sum()[column] > 0] for column in column_with_nan: df3[column] = df3[column].fillna(df3[column].mean()) df3.columns
code
105196211/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df2.head()
code
105196211/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() sns.scatterplot(x=df2.index, y=df['collegeGPA'])
code
105196211/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.describe()
code
105196211/cell_37
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns df2 = df.drop(columns=['ID', 'DOB', '10board', '12graduation', '12board', 'CollegeState', 'CollegeID', 'CollegeCityTier', 'CollegeCityID', 'GraduationYear']) df2 = df2.drop_duplicates() df3 = df2[df['collegeGPA'] >= 40] df3.shape df3 = df3.replace(-1, np.nan) column_with_nan = [column for column in df3.columns if df3.isnull().sum()[column] > 0] for column in column_with_nan: df3[column] = df3[column].fillna(df3[column].mean()) df3.columns df3.columns
code
105196211/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/engineering-graduate-salary-prediction/Engineering_graduate_salary.csv') df df.columns df.isnull().sum() df.shape df.columns
code
90104932/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr() sun_hlc_data = cleaned_hlc_data.copy() sun_hlc_data = sun_hlc_data[sun_hlc_data['Sunshine hours(City)'] != '-'] sun_hlc_data['Sunshine hours(City)'] = sun_hlc_data['Sunshine hours(City)'].astype(str).astype(int) sun_hlc_data.corr() pol_hlc_data = cleaned_hlc_data.copy() pol_hlc_data = pol_hlc_data[pol_hlc_data['Pollution(Index score) (City)'] != '-'] pol_hlc_data['Pollution(Index score) (City)'] = pol_hlc_data['Pollution(Index score) (City)'].astype(str).astype(float) pol_hlc_data.corr() plt.figure(figsize=(10, 5)) plt.xlabel('Happiness') plt.ylabel('Annual avg. hours worked') plt.title('Happiness and Hours Worked Viz') sns.regplot(data=hours_hlc_data, x='Happiness levels(Country)', y='Annual avg. hours worked')
code
90104932/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd print('Preview of the data: ') hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.head(5)
code
90104932/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr() sun_hlc_data = cleaned_hlc_data.copy() sun_hlc_data = sun_hlc_data[sun_hlc_data['Sunshine hours(City)'] != '-'] sun_hlc_data['Sunshine hours(City)'] = sun_hlc_data['Sunshine hours(City)'].astype(str).astype(int) sun_hlc_data.corr() pol_hlc_data = cleaned_hlc_data.copy() pol_hlc_data = pol_hlc_data[pol_hlc_data['Pollution(Index score) (City)'] != '-'] pol_hlc_data['Pollution(Index score) (City)'] = pol_hlc_data['Pollution(Index score) (City)'].astype(str).astype(float) pol_hlc_data.corr() plt.figure(figsize=(10, 5)) plt.xlabel('Happiness') plt.ylabel('Pollution(Index Score)') plt.title('Happiness and Pollution Viz') sns.regplot(data=pol_hlc_data, x='Happiness levels(Country)', y='Pollution(Index score) (City)')
code
90104932/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns print('Description of the data: ') hlc_data.describe()
code
90104932/cell_11
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr() sun_hlc_data = cleaned_hlc_data.copy() sun_hlc_data = sun_hlc_data[sun_hlc_data['Sunshine hours(City)'] != '-'] sun_hlc_data['Sunshine hours(City)'] = sun_hlc_data['Sunshine hours(City)'].astype(str).astype(int) sun_hlc_data.corr()
code
90104932/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr() sun_hlc_data = cleaned_hlc_data.copy() sun_hlc_data = sun_hlc_data[sun_hlc_data['Sunshine hours(City)'] != '-'] sun_hlc_data['Sunshine hours(City)'] = sun_hlc_data['Sunshine hours(City)'].astype(str).astype(int) sun_hlc_data.corr() pol_hlc_data = cleaned_hlc_data.copy() pol_hlc_data = pol_hlc_data[pol_hlc_data['Pollution(Index score) (City)'] != '-'] pol_hlc_data['Pollution(Index score) (City)'] = pol_hlc_data['Pollution(Index score) (City)'].astype(str).astype(float) pol_hlc_data.corr() plt.figure(figsize=(10, 5)) plt.xlabel('Happiness') plt.ylabel('Annual avg. hours worked') plt.title('Happiness and Hours Worked Viz') sns.scatterplot(data=hours_hlc_data, x='Happiness levels(Country)', y='Annual avg. hours worked')
code
90104932/cell_1
[ "text_plain_output_1.png" ]
import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import seaborn as sns import matplotlib.pyplot as plt import pandas as pd pd.plotting.register_matplotlib_converters() print('Setup Complete')
code
90104932/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr()
code
90104932/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr() sun_hlc_data = cleaned_hlc_data.copy() sun_hlc_data = sun_hlc_data[sun_hlc_data['Sunshine hours(City)'] != '-'] sun_hlc_data['Sunshine hours(City)'] = sun_hlc_data['Sunshine hours(City)'].astype(str).astype(int) sun_hlc_data.corr() pol_hlc_data = cleaned_hlc_data.copy() pol_hlc_data = pol_hlc_data[pol_hlc_data['Pollution(Index score) (City)'] != '-'] pol_hlc_data['Pollution(Index score) (City)'] = pol_hlc_data['Pollution(Index score) (City)'].astype(str).astype(float) pol_hlc_data.corr() plt.figure(figsize=(10, 5)) plt.xlabel('Happiness') plt.ylabel('Life Expectancy') plt.title('Happiness and Life Expactancy Viz') sns.scatterplot(data=cleaned_hlc_data, x='Happiness levels(Country)', y='Life expectancy(years) (Country)')
code
90104932/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr() sun_hlc_data = cleaned_hlc_data.copy() sun_hlc_data = sun_hlc_data[sun_hlc_data['Sunshine hours(City)'] != '-'] sun_hlc_data['Sunshine hours(City)'] = sun_hlc_data['Sunshine hours(City)'].astype(str).astype(int) sun_hlc_data.corr() pol_hlc_data = cleaned_hlc_data.copy() pol_hlc_data = pol_hlc_data[pol_hlc_data['Pollution(Index score) (City)'] != '-'] pol_hlc_data['Pollution(Index score) (City)'] = pol_hlc_data['Pollution(Index score) (City)'].astype(str).astype(float) pol_hlc_data.corr() plt.figure(figsize=(10, 5)) plt.xlabel('Happiness') plt.ylabel('Life Expectancy') plt.title('Happiness and Life Expactancy Viz') sns.regplot(data=cleaned_hlc_data, x='Happiness levels(Country)', y='Life expectancy(years) (Country)')
code
90104932/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr()
code
90104932/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') hlc_data.columns cleaned_hlc_data = hlc_data.copy() cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].str.replace('%', '', regex=False) cleaned_hlc_data['Obesity levels(Country)'] = cleaned_hlc_data['Obesity levels(Country)'].astype(str).astype(float) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a bottle of water(City)'] = cleaned_hlc_data['Cost of a bottle of water(City)'].astype(str).astype(float) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].str.replace('£', '', regex=False) cleaned_hlc_data['Cost of a monthly gym membership(City)'] = cleaned_hlc_data['Cost of a monthly gym membership(City)'].astype(str).astype(float) cleaned_hlc_data.corr() hours_hlc_data = cleaned_hlc_data.copy() hours_hlc_data = hours_hlc_data[hours_hlc_data['Annual avg. hours worked'] != '-'] hours_hlc_data['Annual avg. hours worked'] = hours_hlc_data['Annual avg. hours worked'].astype(str).astype(int) hours_hlc_data.corr() sun_hlc_data = cleaned_hlc_data.copy() sun_hlc_data = sun_hlc_data[sun_hlc_data['Sunshine hours(City)'] != '-'] sun_hlc_data['Sunshine hours(City)'] = sun_hlc_data['Sunshine hours(City)'].astype(str).astype(int) sun_hlc_data.corr() pol_hlc_data = cleaned_hlc_data.copy() pol_hlc_data = pol_hlc_data[pol_hlc_data['Pollution(Index score) (City)'] != '-'] pol_hlc_data['Pollution(Index score) (City)'] = pol_hlc_data['Pollution(Index score) (City)'].astype(str).astype(float) pol_hlc_data.corr()
code
90104932/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd hlc_data = pd.read_csv('../input/healthy-lifestyle-cities-report-2021/healthy_lifestyle_city_2021.csv') print('City and Rank + The 10 metrics: ') hlc_data.columns
code
34129954/cell_4
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator TRAINING_DIR = '/kaggle/input/tomato/New Plant Diseases Dataset(Augmented)/train/' VALIDATION_DIR = '/kaggle/input/tomato/New Plant Diseases Dataset(Augmented)/valid/' train_gen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=0, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') valid_gen = ImageDataGenerator(rescale=1.0 / 255) train_data = train_gen.flow_from_directory(TRAINING_DIR, target_size=(227, 227), class_mode='categorical', color_mode='rgb', batch_size=64) valid_data = valid_gen.flow_from_directory(VALIDATION_DIR, target_size=(227, 227), class_mode='categorical', color_mode='rgb') for cl_indis, cl_name in enumerate(train_data.class_indices): print(cl_indis, cl_name)
code
34129954/cell_6
[ "text_plain_output_1.png" ]
from keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense,Dropout from keras.models import Sequential model = Sequential() model.add(Convolution2D(96, 11, strides=(4, 4), padding='valid', input_shape=(227, 227, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')) model.add(Convolution2D(256, 5, strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')) model.add(Convolution2D(384, 3, strides=(1, 1), padding='same', activation='relu')) model.add(Convolution2D(384, 3, strides=(1, 1), padding='same', activation='relu')) model.add(Convolution2D(256, 3, strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')) model.add(Flatten()) model.add(Dense(units=4096, activation='relu')) model.add(Dense(units=4096, activation='relu')) model.add(Dense(units=10, activation='softmax')) model.summary()
code
34129954/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import tensorflow as tf import tensorflow as tf import tensorflow as tf tf.test.gpu_device_name() import tensorflow as tf import keras_preprocessing from tensorflow.keras.preprocessing import image import pickle from tensorflow.keras.preprocessing.image import ImageDataGenerator from keras.callbacks import TensorBoard tf.__version__
code
34129954/cell_1
[ "text_plain_output_1.png" ]
import tensorflow as tf import tensorflow as tf tf.test.gpu_device_name()
code
34129954/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense,Dropout from keras.models import Sequential from keras.optimizers import Adam from tensorflow.keras.preprocessing.image import ImageDataGenerator import keras TRAINING_DIR = '/kaggle/input/tomato/New Plant Diseases Dataset(Augmented)/train/' VALIDATION_DIR = '/kaggle/input/tomato/New Plant Diseases Dataset(Augmented)/valid/' train_gen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=0, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') valid_gen = ImageDataGenerator(rescale=1.0 / 255) train_data = train_gen.flow_from_directory(TRAINING_DIR, target_size=(227, 227), class_mode='categorical', color_mode='rgb', batch_size=64) valid_data = valid_gen.flow_from_directory(VALIDATION_DIR, target_size=(227, 227), class_mode='categorical', color_mode='rgb') model = Sequential() model.add(Convolution2D(96, 11, strides=(4, 4), padding='valid', input_shape=(227, 227, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')) model.add(Convolution2D(256, 5, strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')) model.add(Convolution2D(384, 3, strides=(1, 1), padding='same', activation='relu')) model.add(Convolution2D(384, 3, strides=(1, 1), padding='same', activation='relu')) model.add(Convolution2D(256, 3, strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='valid')) model.add(Flatten()) model.add(Dense(units=4096, activation='relu')) model.add(Dense(units=4096, activation='relu')) model.add(Dense(units=10, activation='softmax')) model.summary() from keras.optimizers import Adam import keras opt = Adam(lr=0.001) model.compile(optimizer=opt, loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) train_num = train_data.n valid_num = valid_data.n train_batch_size = train_data.batch_size valid_batch_size = valid_data.batch_size STEP_SIZE_TRAIN = train_num // train_batch_size STEP_SIZE_VALID = valid_num // valid_batch_size history = model.fit_generator(generator=train_data, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_data, validation_steps=STEP_SIZE_VALID, epochs=25)
code
34129954/cell_3
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator TRAINING_DIR = '/kaggle/input/tomato/New Plant Diseases Dataset(Augmented)/train/' VALIDATION_DIR = '/kaggle/input/tomato/New Plant Diseases Dataset(Augmented)/valid/' train_gen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=0, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') valid_gen = ImageDataGenerator(rescale=1.0 / 255) train_data = train_gen.flow_from_directory(TRAINING_DIR, target_size=(227, 227), class_mode='categorical', color_mode='rgb', batch_size=64) valid_data = valid_gen.flow_from_directory(VALIDATION_DIR, target_size=(227, 227), class_mode='categorical', color_mode='rgb')
code
16150103/cell_11
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from tensorflow.keras.layers import Conv2D, MaxPooling2D from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.models import Sequential import pickle import pickle with open('../input/X.pickle', 'rb') as fp: X_feature = pickle.load(fp) with open('../input/Y.pickle', 'rb') as fp: Y_label = pickle.load(fp) X_feature = X_feature / 255.0 model = Sequential() model.add(Conv2D(64, (3, 3), input_shape=X_feature.shape[1:])) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dense(4)) model.add(Activation('softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(x=X_feature, y=Y_label, batch_size=20, epochs=50, validation_split=0.1, shuffle=True) model.save('image_classifier_002.model') model.summary()
code
16150103/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.datasets import cifar10 from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D import os print(os.listdir('../input'))
code
16150103/cell_8
[ "text_plain_output_1.png" ]
from tensorflow.keras.layers import Conv2D, MaxPooling2D from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.keras.models import Sequential import pickle import pickle with open('../input/X.pickle', 'rb') as fp: X_feature = pickle.load(fp) with open('../input/Y.pickle', 'rb') as fp: Y_label = pickle.load(fp) X_feature = X_feature / 255.0 model = Sequential() model.add(Conv2D(64, (3, 3), input_shape=X_feature.shape[1:])) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dense(4)) model.add(Activation('softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit(x=X_feature, y=Y_label, batch_size=20, epochs=50, validation_split=0.1, shuffle=True)
code
16120502/cell_42
[ "image_output_1.png" ]
from scipy import stats from scipy.stats import norm, skew import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] null_cols = pd.DataFrame(train.isnull().sum().sort_values(ascending=False), columns=['Null Data Count']) null_cols_pct = pd.DataFrame(round(train.isnull().sum().sort_values(ascending=False) / len(train), 2) * 100, columns=['Null Data Pct']) null_cols_df = pd.DataFrame(pd.concat([null_cols, null_cols_pct], axis=1)) all_nulls = null_cols_df[null_cols_df['Null Data Pct'] > 0] all_nulls plt.xticks(rotation='90') saleprice_df = pd.concat([train.SalePrice, np.log(train.SalePrice + 1).rename('LogSalePrice')], axis=1, names=['SalePrice', 'LogSalePrice']) train = train.drop(train[train.SalePrice > 450000].index) sns.set_style("white") sns.set_color_codes(palette='deep') # Create figure space fig, ax = plt.subplots(figsize=(18,5), ncols=2, nrows=1) # Create a distribution plot ax1 = sns.distplot(saleprice_df.SalePrice, kde=False, fit=norm, ax=ax[0]) ax2 = sns.distplot(saleprice_df.LogSalePrice, kde=False, fit=norm, ax=ax[1]) # Set plot features ax1.set_title('SalePrice Distribution') ax2.set_title('LogSalePrice Distribution') mu, sigma = norm.fit(train['SalePrice']) train['LogSalePrice'] = np.log1p(train.SalePrice) stats.probplot(train['SalePrice'], plot=plt) plt.show()
code
16120502/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') test.head()
code
16120502/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] null_cols = pd.DataFrame(train.isnull().sum().sort_values(ascending=False), columns=['Null Data Count']) null_cols_pct = pd.DataFrame(round(train.isnull().sum().sort_values(ascending=False) / len(train), 2) * 100, columns=['Null Data Pct']) null_cols_df = pd.DataFrame(pd.concat([null_cols, null_cols_pct], axis=1)) all_nulls = null_cols_df[null_cols_df['Null Data Pct'] > 0] all_nulls plt.figure(figsize=(12, 8)) sns.barplot(x=all_nulls.index, y='Null Data Pct', data=all_nulls) plt.xticks(rotation='90') plt.xlabel('Features', fontsize=15) plt.ylabel('Percent of Missing Values', fontsize=15) plt.title('Percent of Missing Data by Feature', fontsize=15)
code
16120502/cell_34
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import norm, skew import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] null_cols = pd.DataFrame(train.isnull().sum().sort_values(ascending=False), columns=['Null Data Count']) null_cols_pct = pd.DataFrame(round(train.isnull().sum().sort_values(ascending=False) / len(train), 2) * 100, columns=['Null Data Pct']) null_cols_df = pd.DataFrame(pd.concat([null_cols, null_cols_pct], axis=1)) all_nulls = null_cols_df[null_cols_df['Null Data Pct'] > 0] all_nulls plt.xticks(rotation='90') saleprice_df = pd.concat([train.SalePrice, np.log(train.SalePrice + 1).rename('LogSalePrice')], axis=1, names=['SalePrice', 'LogSalePrice']) train = train.drop(train[train.SalePrice > 450000].index) sns.set_style("white") sns.set_color_codes(palette='deep') # Create figure space fig, ax = plt.subplots(figsize=(18,5), ncols=2, nrows=1) # Create a distribution plot ax1 = sns.distplot(saleprice_df.SalePrice, kde=False, fit=norm, ax=ax[0]) ax2 = sns.distplot(saleprice_df.LogSalePrice, kde=False, fit=norm, ax=ax[1]) # Set plot features ax1.set_title('SalePrice Distribution') ax2.set_title('LogSalePrice Distribution') plt.figure(figsize=(10, 5)) sns.distplot(train['SalePrice'], fit=norm) mu, sigma = norm.fit(train['SalePrice']) print('\n mu = {:.0f} and sigma = {:.0f}\n'.format(mu, sigma)) plt.legend(['Norm Dist. ($\\mu=$ {:.0f} and $\\sigma=$ {:.0f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution')
code
16120502/cell_23
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] null_cols = pd.DataFrame(train.isnull().sum().sort_values(ascending=False), columns=['Null Data Count']) null_cols_pct = pd.DataFrame(round(train.isnull().sum().sort_values(ascending=False) / len(train), 2) * 100, columns=['Null Data Pct']) null_cols_df = pd.DataFrame(pd.concat([null_cols, null_cols_pct], axis=1)) all_nulls = null_cols_df[null_cols_df['Null Data Pct'] > 0] print('There are', len(all_nulls), 'columns with missing values.') all_nulls
code
16120502/cell_29
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] null_cols = pd.DataFrame(train.isnull().sum().sort_values(ascending=False), columns=['Null Data Count']) null_cols_pct = pd.DataFrame(round(train.isnull().sum().sort_values(ascending=False) / len(train), 2) * 100, columns=['Null Data Pct']) null_cols_df = pd.DataFrame(pd.concat([null_cols, null_cols_pct], axis=1)) all_nulls = null_cols_df[null_cols_df['Null Data Pct'] > 0] all_nulls saleprice_df = pd.concat([train.SalePrice, np.log(train.SalePrice + 1).rename('LogSalePrice')], axis=1, names=['SalePrice', 'LogSalePrice']) saleprice_df.head()
code
16120502/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv')
code
16120502/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] print('*' * 40) print('********** train shape: ' + str(train.shape) + '*' * 10) print(train.info()) print('*' * 40) print('********** test shape: ' + str(test.shape) + '*' * 10)
code
16120502/cell_18
[ "text_plain_output_1.png" ]
""" Some functions to start off with: train.sample() train.describe() train.describe(include=['O']) train.describe(include='all') train.head() train.tail() train.value_counts().sum() train.isnull().sum() train.count() train.fillna() train.fillna(train[col].mode(), inplace=True) train.mean() train.median() train.mode() train.shape train.info() """
code
16120502/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import norm, skew import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] null_cols = pd.DataFrame(train.isnull().sum().sort_values(ascending=False), columns=['Null Data Count']) null_cols_pct = pd.DataFrame(round(train.isnull().sum().sort_values(ascending=False) / len(train), 2) * 100, columns=['Null Data Pct']) null_cols_df = pd.DataFrame(pd.concat([null_cols, null_cols_pct], axis=1)) all_nulls = null_cols_df[null_cols_df['Null Data Pct'] > 0] all_nulls plt.xticks(rotation='90') saleprice_df = pd.concat([train.SalePrice, np.log(train.SalePrice + 1).rename('LogSalePrice')], axis=1, names=['SalePrice', 'LogSalePrice']) sns.set_style('white') sns.set_color_codes(palette='deep') fig, ax = plt.subplots(figsize=(18, 5), ncols=2, nrows=1) ax1 = sns.distplot(saleprice_df.SalePrice, kde=False, fit=norm, ax=ax[0]) ax2 = sns.distplot(saleprice_df.LogSalePrice, kde=False, fit=norm, ax=ax[1]) ax1.set_title('SalePrice Distribution') ax2.set_title('LogSalePrice Distribution')
code
16120502/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3]
code
16120502/cell_35
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.drop(['Id'], axis=1, inplace=True) test.drop(['Id'], axis=1, inplace=True) train.iloc[0:5, :3] null_cols = pd.DataFrame(train.isnull().sum().sort_values(ascending=False), columns=['Null Data Count']) null_cols_pct = pd.DataFrame(round(train.isnull().sum().sort_values(ascending=False) / len(train), 2) * 100, columns=['Null Data Pct']) null_cols_df = pd.DataFrame(pd.concat([null_cols, null_cols_pct], axis=1)) all_nulls = null_cols_df[null_cols_df['Null Data Pct'] > 0] all_nulls saleprice_df = pd.concat([train.SalePrice, np.log(train.SalePrice + 1).rename('LogSalePrice')], axis=1, names=['SalePrice', 'LogSalePrice']) train = train.drop(train[train.SalePrice > 450000].index) print('Skewness: %f' % train['SalePrice'].skew()) print('Kurtosis: %f' % train['SalePrice'].kurt())
code
16120502/cell_10
[ "image_output_1.png" ]
import pandas_profiling import numpy as np import random as rand import datetime as dt import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import norm, skew from scipy.special import boxcox1p from scipy.stats import boxcox_normmax from scipy import stats from sklearn.metrics import mean_squared_error from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import scale from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import RobustScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score import warnings warnings.filterwarnings(action='ignore') pd.options.display.max_seq_items = 5000 pd.options.display.max_rows = 5000 flatui = ['#9b59b6', '#3498db', '#95a5a6', '#e74c3c', '#34495e', '#2ecc71'] sns.set_palette(flatui) sns.palplot(sns.color_palette(flatui))
code
16120502/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = pd.read_csv('09-house-train.csv') test = pd.read_csv('09-house-test.csv') train.head()
code
105189792/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/attackincident/1.csv', nrows=3000, skiprows=range(1, 74732)) pd.options.display.max_info_columns = 200 data.drop(index=data[(data['iday'] < 1) | (data['iday'] > 31) | (data['imonth'] < 1) | (data['imonth'] > 12) | (data['iyear'] < 1998) | (data['iyear'] > 2017)].index, inplace=True) data['date'] = data['iyear'].map(str) + '/' + data['imonth'].map(str) + '/' + data['iday'].map(str) data['date'] = pd.to_datetime(data['date']) data = data.reset_index(drop=True) miss_list = data.columns[data.isnull().sum() > data.shape[0] * 1 / 4] data.drop(miss_list, axis=1, inplace=True) data_nf = data.copy() for column in data.columns: if data.dtypes[column] == 'object': data[column] = pd.factorize(data[column])[0].astype(int) pass_list = ['latitude', 'longitude', 'scite1', 'dbsource', 'summary', 'target1', 'natlty1_txt', 'country_txt', 'region_txt', 'attacktype1_txt', 'targtype1_txt', 'targsubtype1_txt', 'weaptype1_txt', 'weapsubtype1_txt'] data.drop(['iyear', 'imonth', 'iday'], axis=1, inplace=True) data.drop(pass_list, axis=1, inplace=True) data.info()
code
105189792/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/attackincident/1.csv', nrows=3000, skiprows=range(1, 74732)) pd.options.display.max_info_columns = 200 data.info()
code
105189792/cell_6
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/attackincident/1.csv', nrows=3000, skiprows=range(1, 74732)) pd.options.display.max_info_columns = 200 data.drop(index=data[(data['iday'] < 1) | (data['iday'] > 31) | (data['imonth'] < 1) | (data['imonth'] > 12) | (data['iyear'] < 1998) | (data['iyear'] > 2017)].index, inplace=True) data['date'] = data['iyear'].map(str) + '/' + data['imonth'].map(str) + '/' + data['iday'].map(str) data['date'] = pd.to_datetime(data['date']) data = data.reset_index(drop=True) miss_list = data.columns[data.isnull().sum() > data.shape[0] * 1 / 4] print(miss_list) data.drop(miss_list, axis=1, inplace=True) data.info()
code
105189792/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/attackincident/1.csv', nrows=3000, skiprows=range(1, 74732)) pd.options.display.max_info_columns = 200 data.drop(index=data[(data['iday'] < 1) | (data['iday'] > 31) | (data['imonth'] < 1) | (data['imonth'] > 12) | (data['iyear'] < 1998) | (data['iyear'] > 2017)].index, inplace=True) data['date'] = data['iyear'].map(str) + '/' + data['imonth'].map(str) + '/' + data['iday'].map(str) data['date'] = pd.to_datetime(data['date']) data = data.reset_index(drop=True) miss_list = data.columns[data.isnull().sum() > data.shape[0] * 1 / 4] data.drop(miss_list, axis=1, inplace=True) data_nf = data.copy() for column in data.columns: if data.dtypes[column] == 'object': data[column] = pd.factorize(data[column])[0].astype(int) data.info()
code
105189792/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/attackincident/1.csv', nrows=3000, skiprows=range(1, 74732)) pd.options.display.max_info_columns = 200 data.drop(index=data[(data['iday'] < 1) | (data['iday'] > 31) | (data['imonth'] < 1) | (data['imonth'] > 12) | (data['iyear'] < 1998) | (data['iyear'] > 2017)].index, inplace=True) data['date'] = data['iyear'].map(str) + '/' + data['imonth'].map(str) + '/' + data['iday'].map(str) data['date'] = pd.to_datetime(data['date']) data = data.reset_index(drop=True) miss_list = data.columns[data.isnull().sum() > data.shape[0] * 1 / 4] data.drop(miss_list, axis=1, inplace=True) data_nf = data.copy() for column in data.columns: if data.dtypes[column] == 'object': data[column] = pd.factorize(data[column])[0].astype(int) data.iloc[:].hist(bins=100, figsize=(20, 74), layout=(29, 4))
code
105189792/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/attackincident/1.csv', nrows=3000, skiprows=range(1, 74732)) print('数据大小:', data.shape) data.head(1)
code
105189792/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/attackincident/1.csv', nrows=3000, skiprows=range(1, 74732)) pd.options.display.max_info_columns = 200 data.drop(index=data[(data['iday'] < 1) | (data['iday'] > 31) | (data['imonth'] < 1) | (data['imonth'] > 12) | (data['iyear'] < 1998) | (data['iyear'] > 2017)].index, inplace=True) data['date'] = data['iyear'].map(str) + '/' + data['imonth'].map(str) + '/' + data['iday'].map(str) data['date'] = pd.to_datetime(data['date']) data = data.reset_index(drop=True) miss_list = data.columns[data.isnull().sum() > data.shape[0] * 1 / 4] data.drop(miss_list, axis=1, inplace=True) data_nf = data.copy() for column in data.columns: if data.dtypes[column] == 'object': data[column] = pd.factorize(data[column])[0].astype(int) pass_list = ['latitude', 'longitude', 'scite1', 'dbsource', 'summary', 'target1', 'natlty1_txt', 'country_txt', 'region_txt', 'attacktype1_txt', 'targtype1_txt', 'targsubtype1_txt', 'weaptype1_txt', 'weapsubtype1_txt'] data.drop(['iyear', 'imonth', 'iday'], axis=1, inplace=True) data.drop(pass_list, axis=1, inplace=True) plt.figure(figsize=(35, 35)) plt.title('correlation heatmap of df_data') heatmap = sns.heatmap(data.copy().corr(), square=True, annot=True, fmt='.2f', linecolor='black') heatmap.set_xticklabels(heatmap.get_xticklabels(), rotation=30) heatmap.set_yticklabels(heatmap.get_yticklabels(), rotation=30) plt.show() data.drop(['INT_LOG'], axis=1, inplace=True) data.info()
code
2016018/cell_2
[ "text_plain_output_1.png" ]
from sklearn import cross_validation from sklearn.svm import SVR import numpy as np import pandas as pd import numpy as np import pandas as pd train = pd.read_table('../input/train.tsv') drpNa = train.drop(['train_id', 'name', 'category_name', 'brand_name', 'item_description'], 1) drpNa = drpNa.dropna() def rmsle(h, y): """ Compute the Root Mean Squared Log Error for hypthesis h and targets y Args: h - numpy array containing predictions with shape (n_samples, n_targets) y - numpy array containing targets with shape (n_samples, n_targets) """ return np.sqrt(np.square(np.log(h + 1) - np.log(y + 1)).mean()) from sklearn import cross_validation X_train, X_test, y_train, y_test = cross_validation.train_test_split(drpNa[['item_condition_id', 'shipping']][:10000], drpNa['price'][:10000], test_size=0.4, random_state=0) from sklearn.svm import SVR clf = SVR(C=1.0, epsilon=0.2) clf.fit(X_train, y_train) pre = clf.predict(X_test) rmsle(pre, y_test) test = pd.read_table('../input/test.tsv') TdrpNa = test.drop(['test_id', 'name', 'category_name', 'brand_name', 'item_description'], 1) TdrpNa = TdrpNa.dropna() trial_sub1 = clf.predict(TdrpNa) submission = pd.read_csv('../input/sample_submission.csv') submission['price'] = trial_sub1 submission.to_csv('fist_trial.csv', index=False) len(submission)
code
2016018/cell_1
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from sklearn import cross_validation from sklearn.svm import SVR import numpy as np import pandas as pd import numpy as np import pandas as pd train = pd.read_table('../input/train.tsv') drpNa = train.drop(['train_id', 'name', 'category_name', 'brand_name', 'item_description'], 1) drpNa = drpNa.dropna() def rmsle(h, y): """ Compute the Root Mean Squared Log Error for hypthesis h and targets y Args: h - numpy array containing predictions with shape (n_samples, n_targets) y - numpy array containing targets with shape (n_samples, n_targets) """ return np.sqrt(np.square(np.log(h + 1) - np.log(y + 1)).mean()) print(train.head()) from sklearn import cross_validation X_train, X_test, y_train, y_test = cross_validation.train_test_split(drpNa[['item_condition_id', 'shipping']][:10000], drpNa['price'][:10000], test_size=0.4, random_state=0) from sklearn.svm import SVR clf = SVR(C=1.0, epsilon=0.2) clf.fit(X_train, y_train) pre = clf.predict(X_test) rmsle(pre, y_test) test = pd.read_table('../input/test.tsv') TdrpNa = test.drop(['test_id', 'name', 'category_name', 'brand_name', 'item_description'], 1) TdrpNa = TdrpNa.dropna() trial_sub1 = clf.predict(TdrpNa) submission = pd.read_csv('../input/sample_submission.csv') submission['price'] = trial_sub1 submission.to_csv('fist_trial.csv', index=False)
code
128027453/cell_13
[ "text_html_output_1.png" ]
from sklearn.utils import resample import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts() def plot_histogram(dataset: pd.DataFrame): unique_labels, counts = np.unique(dataset.diabetes, return_counts=True) from sklearn.utils import resample df_majority = df[df.diabetes == 0] df_minority = df[df.diabetes == 1] df_majority_downsampled = resample(df_majority, replace=False, n_samples=df.diabetes.value_counts()[1], random_state=1234) df_downsampled = pd.concat([df_majority_downsampled, df_minority]) plot_histogram(df_downsampled)
code
128027453/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts()
code
128027453/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df.head()
code
128027453/cell_20
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, recall_score from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=15, n_jobs=-1) rnd_clf.fit(X_train, y_train) rnd_clf_preds = rnd_clf.predict(X_test) from xgboost import XGBClassifier xgb_clf = XGBClassifier(early_stopping_rounds=3) xgb_clf.fit(X_train, y_train, eval_set=[(X_test, y_test)]) xgb_clf_preds = xgb_clf.predict(X_test) print('Accuracy of XGBoost on validation data : ', accuracy_score(y_test, rnd_clf_preds)) print('XGBoost accuracy on validation data : ', recall_score(y_test, xgb_clf_preds))
code
128027453/cell_6
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) df.head(20)
code
128027453/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts() def plot_histogram(dataset: pd.DataFrame): unique_labels, counts = np.unique(dataset.diabetes, return_counts=True) plot_histogram(df)
code
128027453/cell_19
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, recall_score from sklearn.ensemble import RandomForestClassifier rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=15, n_jobs=-1) rnd_clf.fit(X_train, y_train) rnd_clf_preds = rnd_clf.predict(X_test) print('Accuracy of RandomForest on validation data : ', accuracy_score(y_test, rnd_clf_preds)) print('Recall of RandomForest on validation data : ', recall_score(y_test, rnd_clf_preds))
code
128027453/cell_1
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128027453/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm')
code
128027453/cell_18
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score, recall_score from sklearn.svm import SVC from sklearn.svm import SVC from sklearn.metrics import accuracy_score, recall_score svm_clf = SVC() svm_clf.fit(X_train, y_train) svm_clf_preds = svm_clf.predict(X_test) print('SVM Classifier accuracy on validation data : ', recall_score(y_test, svm_clf_preds)) print('SVM Classifier accuracy on validation data : ', accuracy_score(y_test, svm_clf_preds))
code
128027453/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.head(10)
code
128027453/cell_16
[ "text_html_output_1.png" ]
from sklearn import preprocessing from sklearn.utils import resample import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts() def plot_histogram(dataset: pd.DataFrame): unique_labels, counts = np.unique(dataset.diabetes, return_counts=True) from sklearn.utils import resample df_majority = df[df.diabetes == 0] df_minority = df[df.diabetes == 1] df_majority_downsampled = resample(df_majority, replace=False, n_samples=df.diabetes.value_counts()[1], random_state=1234) df_downsampled = pd.concat([df_majority_downsampled, df_minority]) import pandas as pd from sklearn import preprocessing x_unscaled = df_downsampled.drop('diabetes', axis=1).values min_max_scaler = preprocessing.MinMaxScaler() X = min_max_scaler.fit_transform(x_unscaled) example = pd.DataFrame(X) example.head(10)
code
128027453/cell_14
[ "text_html_output_1.png" ]
from sklearn.utils import resample import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df = df[df.gender != 'Other'] df['gender'].replace(['Female', 'Male'], [0, 1], inplace=True) df.smoking_history.replace(['No Info', 'never', 'former', 'current', 'not current', 'ever'], [0.5, 0, 0.5, 1, 0.5, 0.5], inplace=True) corr = df.corr() corr.style.background_gradient(cmap='coolwarm') df.diabetes.value_counts() def plot_histogram(dataset: pd.DataFrame): unique_labels, counts = np.unique(dataset.diabetes, return_counts=True) from sklearn.utils import resample df_majority = df[df.diabetes == 0] df_minority = df[df.diabetes == 1] df_majority_downsampled = resample(df_majority, replace=False, n_samples=df.diabetes.value_counts()[1], random_state=1234) df_downsampled = pd.concat([df_majority_downsampled, df_minority]) df_downsampled.head(10)
code
104115434/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch df = pd.read_csv('../input/mayo-clinic-strip-ai/train.csv') df_subset = df[['patient_id']][:500] pred = torch.tensor(np.linspace(0, 1, 500)) target = torch.ones(500, dtype=torch.float64) df_subset['CE'], df_subset['LAA'] = [pred.numpy(), 1 - pred.numpy()] df_subset def HingeLoss(y_pred, y_true): """Average hinge loss (non-regularized) Parameters: ---------- y_true: torch tensor of shape (n_samples,) True target, consisting of integers of two values. The positive lable must be greater than the negative label y_predicted: torch tensor of shape (n_samples,) Prediction, as output by a decision function (floats) Returns: ---------- list: tensor list of calculated loss mean: mean loss of the batch Hinge loss """ list_ = torch.Tensor([max(0, 1 - x * y) for x, y in zip(y_pred, y_true)]) return (list_, torch.mean(list_)) def BinaryCrossEntropy(y_pred, y_true): """Binary cross entropy loss Parameters: ----------- y_true: tensor of shape (n_samples,) True target, consisting of integers of two values. y_pred: tensor of shape (n_samples,) Prediction, as output by a decision function (floats) Returns: ----------- loss: float BCE loss """ term_0 = y_true * torch.log(y_pred + 1e-07) term_1 = (1 - y_true) * torch.log(1 - y_pred + 1e-07) return (-(term_0 + term_1), -torch.mean(term_0 + term_1, axis=0)) BCE_list, loss = BinaryCrossEntropy(torch.sigmoid(pred), target) pos_weight_1 = torch.tensor([0.5]) criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight_1, reduction='none') bce_weight_loss_1 = criterion(pred, target) pos_weight_2 = torch.tensor([0.75]) criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight_2, reduction='none') bce_weight_loss_2 = criterion(pred, target) plt.style.use('seaborn') plt.figure(figsize=(8, 6)) plt.plot(pred.numpy(), bce_weight_loss_1.numpy(), 'r--', label='weight = 0.5', linewidth=2.0) plt.plot(pred.numpy(), bce_weight_loss_2.numpy(), 'orange', label='weight = 0.75', linewidth=2.0) plt.plot(pred.numpy(), Hinge_list.numpy(), color='teal', label='Hinge Loss', linewidth=2.0) plt.plot(pred.numpy(), BCE_list.numpy(), color='cornflowerblue', label='Log Loss', linewidth=2.0) plt.legend(loc='upper right') plt.ylabel('$L(y=1, f(x))$') plt.ylim(0, 0.8) plt.xlim(0, 1.0) plt.xlabel('$Y_{pred}$', fontsize=15) plt.ylabel('$L(y=1, f(x))$', fontsize=15) plt.title('Convex Loss Functions', fontsize=15) plt.show()
code
104115434/cell_9
[ "image_output_1.png" ]
import numpy as np import pandas as pd import torch df = pd.read_csv('../input/mayo-clinic-strip-ai/train.csv') df_subset = df[['patient_id']][:500] pred = torch.tensor(np.linspace(0, 1, 500)) target = torch.ones(500, dtype=torch.float64) df_subset['CE'], df_subset['LAA'] = [pred.numpy(), 1 - pred.numpy()] df_subset
code
104115434/cell_6
[ "image_output_1.png" ]
from itables import init_notebook_mode import seaborn as sns from itables import init_notebook_mode init_notebook_mode(all_interactive=True) import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt from sklearn.metrics import hinge_loss import random import tensorflow as tf
code
104115434/cell_5
[ "image_output_1.png" ]
!pip install itables
code
130023373/cell_9
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
import pandas as pd #dataframe manipulation train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') train.info()
code
130023373/cell_4
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
!pip install distance -q
code
130023373/cell_34
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw, ImageEnhance #for read the image from tqdm import tqdm_notebook import cv2 #for read the image import os import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _=sns.countplot(x=train['Label'],order=train['Label'].value_counts().index); _=plt.title("Target Label Distribution",fontsize=18) def img_read(path, im, new_size=False): img = Image.open(f'{os.path.join(path, im)}') if new_size: img = img.resize((224, 224)) return img else: return img path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,label in enumerate(['Watermark','No Watermark']): _=plt.subplot(1,2,i+1) img=img_read(path,train[train['Label']==label]['Image'].head(1).values[0]) plt.imshow(img) plt.axis('off') plt.title(f"{'With Watermark' if label=='Watermark' else 'No Watermark'}") def rgb_dist_plot(img,ax): start=0 end=256 for _,color in enumerate(['Red','Green','Blue']): _=sns.kdeplot(img.histogram()[start:end],label=color,color=color) _=plt.legend(); start+=256 end+=256 for label in ['Watermark','No Watermark']: fig, axs = plt.subplots(1, 2 ,figsize=(15,5)) img_id=train[train['Label']==label].head(1)['Image'].values[0] img_file =Image.open(f"/kaggle/input/machinehack-watermark-challenge/train/{img_id}") axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id,fontsize=18) _=rgb_dist_plot(img_file,ax=axs[1]) axs[1].set_title("RGB Color Distribution For "+img_id,fontsize=18) def basic_image_info(df, path): image_name = [] img_mode = [] img_height = [] img_width = [] img_contrast = [] for file in tqdm_notebook(df['Image']): image_name.append(file) img = Image.open(f'{os.path.join(path, file)}') grey_img = cv2.imread(f'{os.path.join(path, file)}', cv2.COLOR_BGR2GRAY) img_mode.append(img.mode) img_width.append(img.width) img_height.append(img.height) img_contrast.append(grey_img.std()) return pd.DataFrame({'image_name': image_name, 'img_mode': img_mode, 'img_contrast': img_contrast, 'img_width': img_width, 'img_height': img_height}) train_image_basic_info=basic_image_info(train, "/kaggle/input/machinehack-watermark-challenge/train") path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,img in enumerate(train_image_basic_info[train_image_basic_info['img_contrast']<15]['image_name'].values): _=plt.subplot(5,2,i+1) img_file=img_read(path,img) plt.imshow(img_file) plt.axis('off') plt.title(f"{'With Watermark' if train[train['Image']==img]['Label'].values=='Watermark' else 'No Watermark'}") for img in train_image_basic_info[train_image_basic_info['img_contrast']<15]['image_name'][:10].values: fig, axs = plt.subplots(1, 2 ,figsize=(15,5)) img_file =Image.open(f"/kaggle/input/machinehack-watermark-challenge/train/{img}") axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id,fontsize=18) _=rgb_dist_plot(img_file,ax=axs[1]) axs[1].set_title("RGB Color Distribution For "+img_id,fontsize=18) path = '/kaggle/input/machinehack-watermark-challenge/train' fig = plt.figure(figsize=(8, 15)) for i, img in enumerate(train_image_basic_info[train_image_basic_info['img_contrast'] > 98]['image_name'].values): _ = plt.subplot(8, 2, i + 1) img_file = img_read(path, img) plt.imshow(img_file) plt.axis('off') plt.title(f"{('With Watermark' if train[train['Image'] == img]['Label'].values == 'Watermark' else 'No Watermark')}")
code
130023373/cell_23
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw, ImageEnhance #for read the image import os import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _=sns.countplot(x=train['Label'],order=train['Label'].value_counts().index); _=plt.title("Target Label Distribution",fontsize=18) def img_read(path, im, new_size=False): img = Image.open(f'{os.path.join(path, im)}') if new_size: img = img.resize((224, 224)) return img else: return img path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,label in enumerate(['Watermark','No Watermark']): _=plt.subplot(1,2,i+1) img=img_read(path,train[train['Label']==label]['Image'].head(1).values[0]) plt.imshow(img) plt.axis('off') plt.title(f"{'With Watermark' if label=='Watermark' else 'No Watermark'}") def rgb_dist_plot(img,ax): start=0 end=256 for _,color in enumerate(['Red','Green','Blue']): _=sns.kdeplot(img.histogram()[start:end],label=color,color=color) _=plt.legend(); start+=256 end+=256 for label in ['Watermark', 'No Watermark']: fig, axs = plt.subplots(1, 2, figsize=(15, 5)) img_id = train[train['Label'] == label].head(1)['Image'].values[0] img_file = Image.open(f'/kaggle/input/machinehack-watermark-challenge/train/{img_id}') axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id, fontsize=18) _ = rgb_dist_plot(img_file, ax=axs[1]) axs[1].set_title('RGB Color Distribution For ' + img_id, fontsize=18)
code
130023373/cell_20
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw, ImageEnhance #for read the image import os import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _=sns.countplot(x=train['Label'],order=train['Label'].value_counts().index); _=plt.title("Target Label Distribution",fontsize=18) def img_read(path, im, new_size=False): img = Image.open(f'{os.path.join(path, im)}') if new_size: img = img.resize((224, 224)) return img else: return img path = '/kaggle/input/machinehack-watermark-challenge/train' fig = plt.figure(figsize=(8, 15)) for i, label in enumerate(['Watermark', 'No Watermark']): _ = plt.subplot(1, 2, i + 1) img = img_read(path, train[train['Label'] == label]['Image'].head(1).values[0]) plt.imshow(img) plt.axis('off') plt.title(f"{('With Watermark' if label == 'Watermark' else 'No Watermark')}")
code
130023373/cell_26
[ "image_output_1.png" ]
from PIL import Image, ImageDraw, ImageEnhance #for read the image from tqdm import tqdm_notebook import cv2 #for read the image import os import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _=sns.countplot(x=train['Label'],order=train['Label'].value_counts().index); _=plt.title("Target Label Distribution",fontsize=18) def img_read(path, im, new_size=False): img = Image.open(f'{os.path.join(path, im)}') if new_size: img = img.resize((224, 224)) return img else: return img path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,label in enumerate(['Watermark','No Watermark']): _=plt.subplot(1,2,i+1) img=img_read(path,train[train['Label']==label]['Image'].head(1).values[0]) plt.imshow(img) plt.axis('off') plt.title(f"{'With Watermark' if label=='Watermark' else 'No Watermark'}") def rgb_dist_plot(img,ax): start=0 end=256 for _,color in enumerate(['Red','Green','Blue']): _=sns.kdeplot(img.histogram()[start:end],label=color,color=color) _=plt.legend(); start+=256 end+=256 for label in ['Watermark','No Watermark']: fig, axs = plt.subplots(1, 2 ,figsize=(15,5)) img_id=train[train['Label']==label].head(1)['Image'].values[0] img_file =Image.open(f"/kaggle/input/machinehack-watermark-challenge/train/{img_id}") axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id,fontsize=18) _=rgb_dist_plot(img_file,ax=axs[1]) axs[1].set_title("RGB Color Distribution For "+img_id,fontsize=18) def basic_image_info(df, path): image_name = [] img_mode = [] img_height = [] img_width = [] img_contrast = [] for file in tqdm_notebook(df['Image']): image_name.append(file) img = Image.open(f'{os.path.join(path, file)}') grey_img = cv2.imread(f'{os.path.join(path, file)}', cv2.COLOR_BGR2GRAY) img_mode.append(img.mode) img_width.append(img.width) img_height.append(img.height) img_contrast.append(grey_img.std()) return pd.DataFrame({'image_name': image_name, 'img_mode': img_mode, 'img_contrast': img_contrast, 'img_width': img_width, 'img_height': img_height}) train_image_basic_info = basic_image_info(train, '/kaggle/input/machinehack-watermark-challenge/train')
code
130023373/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd #dataframe manipulation train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') test.info()
code
130023373/cell_32
[ "text_html_output_1.png" ]
from PIL import Image, ImageDraw, ImageEnhance #for read the image from tqdm import tqdm_notebook import cv2 #for read the image import os import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _=sns.countplot(x=train['Label'],order=train['Label'].value_counts().index); _=plt.title("Target Label Distribution",fontsize=18) def img_read(path, im, new_size=False): img = Image.open(f'{os.path.join(path, im)}') if new_size: img = img.resize((224, 224)) return img else: return img path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,label in enumerate(['Watermark','No Watermark']): _=plt.subplot(1,2,i+1) img=img_read(path,train[train['Label']==label]['Image'].head(1).values[0]) plt.imshow(img) plt.axis('off') plt.title(f"{'With Watermark' if label=='Watermark' else 'No Watermark'}") def rgb_dist_plot(img,ax): start=0 end=256 for _,color in enumerate(['Red','Green','Blue']): _=sns.kdeplot(img.histogram()[start:end],label=color,color=color) _=plt.legend(); start+=256 end+=256 for label in ['Watermark','No Watermark']: fig, axs = plt.subplots(1, 2 ,figsize=(15,5)) img_id=train[train['Label']==label].head(1)['Image'].values[0] img_file =Image.open(f"/kaggle/input/machinehack-watermark-challenge/train/{img_id}") axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id,fontsize=18) _=rgb_dist_plot(img_file,ax=axs[1]) axs[1].set_title("RGB Color Distribution For "+img_id,fontsize=18) def basic_image_info(df, path): image_name = [] img_mode = [] img_height = [] img_width = [] img_contrast = [] for file in tqdm_notebook(df['Image']): image_name.append(file) img = Image.open(f'{os.path.join(path, file)}') grey_img = cv2.imread(f'{os.path.join(path, file)}', cv2.COLOR_BGR2GRAY) img_mode.append(img.mode) img_width.append(img.width) img_height.append(img.height) img_contrast.append(grey_img.std()) return pd.DataFrame({'image_name': image_name, 'img_mode': img_mode, 'img_contrast': img_contrast, 'img_width': img_width, 'img_height': img_height}) train_image_basic_info=basic_image_info(train, "/kaggle/input/machinehack-watermark-challenge/train") path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,img in enumerate(train_image_basic_info[train_image_basic_info['img_contrast']<15]['image_name'].values): _=plt.subplot(5,2,i+1) img_file=img_read(path,img) plt.imshow(img_file) plt.axis('off') plt.title(f"{'With Watermark' if train[train['Image']==img]['Label'].values=='Watermark' else 'No Watermark'}") for img in train_image_basic_info[train_image_basic_info['img_contrast'] < 15]['image_name'][:10].values: fig, axs = plt.subplots(1, 2, figsize=(15, 5)) img_file = Image.open(f'/kaggle/input/machinehack-watermark-challenge/train/{img}') axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id, fontsize=18) _ = rgb_dist_plot(img_file, ax=axs[1]) axs[1].set_title('RGB Color Distribution For ' + img_id, fontsize=18)
code
130023373/cell_28
[ "image_output_1.png" ]
from PIL import Image, ImageDraw, ImageEnhance #for read the image from tqdm import tqdm_notebook import cv2 #for read the image import os import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _=sns.countplot(x=train['Label'],order=train['Label'].value_counts().index); _=plt.title("Target Label Distribution",fontsize=18) def img_read(path, im, new_size=False): img = Image.open(f'{os.path.join(path, im)}') if new_size: img = img.resize((224, 224)) return img else: return img path="/kaggle/input/machinehack-watermark-challenge/train" fig=plt.figure(figsize=(8, 15)) for i,label in enumerate(['Watermark','No Watermark']): _=plt.subplot(1,2,i+1) img=img_read(path,train[train['Label']==label]['Image'].head(1).values[0]) plt.imshow(img) plt.axis('off') plt.title(f"{'With Watermark' if label=='Watermark' else 'No Watermark'}") def rgb_dist_plot(img,ax): start=0 end=256 for _,color in enumerate(['Red','Green','Blue']): _=sns.kdeplot(img.histogram()[start:end],label=color,color=color) _=plt.legend(); start+=256 end+=256 for label in ['Watermark','No Watermark']: fig, axs = plt.subplots(1, 2 ,figsize=(15,5)) img_id=train[train['Label']==label].head(1)['Image'].values[0] img_file =Image.open(f"/kaggle/input/machinehack-watermark-challenge/train/{img_id}") axs[0].imshow(img_file) axs[0].axis('off') axs[0].set_title(img_id,fontsize=18) _=rgb_dist_plot(img_file,ax=axs[1]) axs[1].set_title("RGB Color Distribution For "+img_id,fontsize=18) def basic_image_info(df, path): image_name = [] img_mode = [] img_height = [] img_width = [] img_contrast = [] for file in tqdm_notebook(df['Image']): image_name.append(file) img = Image.open(f'{os.path.join(path, file)}') grey_img = cv2.imread(f'{os.path.join(path, file)}', cv2.COLOR_BGR2GRAY) img_mode.append(img.mode) img_width.append(img.width) img_height.append(img.height) img_contrast.append(grey_img.std()) return pd.DataFrame({'image_name': image_name, 'img_mode': img_mode, 'img_contrast': img_contrast, 'img_width': img_width, 'img_height': img_height}) train_image_basic_info=basic_image_info(train, "/kaggle/input/machinehack-watermark-challenge/train") print(f"The image mode is:{train_image_basic_info['img_mode'].unique()}, width of images is:{train_image_basic_info['img_width'].unique()}, and the image height is:{train_image_basic_info['img_height'].unique()} ")
code
130023373/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd #dataframe manipulation import seaborn as sns #for visualization train = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/train.csv') test = pd.read_csv('/kaggle/input/machinehack-watermark-challenge/test.csv') _ = sns.countplot(x=train['Label'], order=train['Label'].value_counts().index) _ = plt.title('Target Label Distribution', fontsize=18)
code