path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
106191525/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/breast-cancer/breast-cancer - breast-cancer.csv')
print(data.shape)
data.head() | code |
106191525/cell_29 | [
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
from sklearn.neighbors import LocalOutlierFactor
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import seaborn as sns
import time
data = pd.read_csv('../input/breast-cancer/breast-cancer - breast-cancer.csv')
C = data['diagnosis'].value_counts()
corr = data.corr()
top_feature = corr.index[abs(corr['diagnosis']) > 0.5]
Important_Data = data[top_feature.values]
top_corr = data[top_feature].corr()
radius = data[['radius_mean', 'radius_se', 'radius_worst', 'diagnosis']]
texture = data[['texture_mean', 'texture_se', 'texture_worst', 'diagnosis']]
perimeter = data[['perimeter_mean', 'perimeter_se', 'perimeter_worst', 'diagnosis']]
area = data[['area_mean', 'area_se', 'area_worst', 'diagnosis']]
smoothness = data[['smoothness_mean', 'smoothness_se', 'smoothness_worst', 'diagnosis']]
compactness = data[['compactness_mean', 'compactness_se', 'compactness_worst', 'diagnosis']]
concavity = data[['concavity_mean', 'concavity_se', 'concavity_worst', 'diagnosis']]
concave_points = data[['concave points_mean', 'concave points_se', 'concave points_worst', 'diagnosis']]
symmetry = data[['symmetry_mean', 'symmetry_se', 'symmetry_worst', 'diagnosis']]
fractal_dimension = data[['fractal_dimension_mean', 'fractal_dimension_se', 'fractal_dimension_worst', 'diagnosis']]
X = Important_Data.drop(['diagnosis'], axis=1)
Y = Important_Data.diagnosis
columns = Important_Data.columns.tolist()
lof = LocalOutlierFactor()
y_pred = lof.fit_predict(X)
y_pred[0:30]
x_score = lof.negative_outlier_factor_
outlier_score = pd.DataFrame()
outlier_score['score'] = x_score
lofthreshold = -2.5
loffilter = outlier_score['score'] < lofthreshold
outlier_index = outlier_score[loffilter].index.tolist()
radius = (x_score.max() - x_score) / (x_score.max() - x_score.min())
outlier_score['radius'] = radius
X = X.drop(outlier_index)
Y = Y.drop(outlier_index).values
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=10)
MM = StandardScaler()
x_train = MM.fit_transform(x_train)
x_test = MM.fit_transform(x_test)
ACC = []
TM = []
SVC = SVC(kernel='linear', C=0.01)
time1 = time.time()
SVC.fit(x_train, y_train)
time2 = time.time()
time_interval = time2 - time1
print(' Training Time :', time_interval, 'Seconds')
y_predicted_svm = SVC.predict(x_test)
print('Testing accurency :', metrics.accuracy_score(y_test, y_predicted_svm) * 100, ' %')
y_predicted_svm1 = SVC.predict(x_train)
print('Training accurency :', metrics.accuracy_score(y_train, y_predicted_svm1) * 100, ' %')
ACC.append(metrics.accuracy_score(y_test, y_predicted_svm) * 100)
TM.append(time_interval) | code |
106191525/cell_26 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.neighbors import LocalOutlierFactor
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import seaborn as sns
data = pd.read_csv('../input/breast-cancer/breast-cancer - breast-cancer.csv')
C = data['diagnosis'].value_counts()
corr = data.corr()
top_feature = corr.index[abs(corr['diagnosis']) > 0.5]
Important_Data = data[top_feature.values]
top_corr = data[top_feature].corr()
radius = data[['radius_mean', 'radius_se', 'radius_worst', 'diagnosis']]
texture = data[['texture_mean', 'texture_se', 'texture_worst', 'diagnosis']]
perimeter = data[['perimeter_mean', 'perimeter_se', 'perimeter_worst', 'diagnosis']]
area = data[['area_mean', 'area_se', 'area_worst', 'diagnosis']]
smoothness = data[['smoothness_mean', 'smoothness_se', 'smoothness_worst', 'diagnosis']]
compactness = data[['compactness_mean', 'compactness_se', 'compactness_worst', 'diagnosis']]
concavity = data[['concavity_mean', 'concavity_se', 'concavity_worst', 'diagnosis']]
concave_points = data[['concave points_mean', 'concave points_se', 'concave points_worst', 'diagnosis']]
symmetry = data[['symmetry_mean', 'symmetry_se', 'symmetry_worst', 'diagnosis']]
fractal_dimension = data[['fractal_dimension_mean', 'fractal_dimension_se', 'fractal_dimension_worst', 'diagnosis']]
X = Important_Data.drop(['diagnosis'], axis=1)
Y = Important_Data.diagnosis
columns = Important_Data.columns.tolist()
lof = LocalOutlierFactor()
y_pred = lof.fit_predict(X)
y_pred[0:30]
x_score = lof.negative_outlier_factor_
outlier_score = pd.DataFrame()
outlier_score['score'] = x_score
lofthreshold = -2.5
loffilter = outlier_score['score'] < lofthreshold
outlier_index = outlier_score[loffilter].index.tolist()
radius = (x_score.max() - x_score) / (x_score.max() - x_score.min())
outlier_score['radius'] = radius
X = X.drop(outlier_index)
Y = Y.drop(outlier_index).values
Important_Data.isna().sum() | code |
106191525/cell_11 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import pandas as pd
data = pd.read_csv('../input/breast-cancer/breast-cancer - breast-cancer.csv')
le = LabelEncoder()
data['diagnosis'] = le.fit_transform(data['diagnosis'])
data['diagnosis'].head() | code |
106191525/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/breast-cancer/breast-cancer - breast-cancer.csv')
data.info() | code |
106191525/cell_16 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import seaborn as sns
data = pd.read_csv('../input/breast-cancer/breast-cancer - breast-cancer.csv')
C = data['diagnosis'].value_counts()
corr = data.corr()
top_feature = corr.index[abs(corr['diagnosis']) > 0.5]
Important_Data = data[top_feature.values]
top_corr = data[top_feature].corr()
print(Important_Data.shape)
Important_Data.describe() | code |
106191525/cell_14 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import seaborn as sns
data = pd.read_csv('../input/breast-cancer/breast-cancer - breast-cancer.csv')
C = data['diagnosis'].value_counts()
corr = data.corr()
top_feature = corr.index[abs(corr['diagnosis']) > 0.5]
Important_Data = data[top_feature.values]
top_corr = data[top_feature].corr()
radius = data[['radius_mean', 'radius_se', 'radius_worst', 'diagnosis']]
sns.pairplot(radius, hue='diagnosis', palette='husl', markers=['o', 's'])
texture = data[['texture_mean', 'texture_se', 'texture_worst', 'diagnosis']]
sns.pairplot(texture, hue='diagnosis', palette='Blues_d')
perimeter = data[['perimeter_mean', 'perimeter_se', 'perimeter_worst', 'diagnosis']]
sns.pairplot(perimeter, hue='diagnosis')
area = data[['area_mean', 'area_se', 'area_worst', 'diagnosis']]
sns.pairplot(area, hue='diagnosis')
smoothness = data[['smoothness_mean', 'smoothness_se', 'smoothness_worst', 'diagnosis']]
sns.pairplot(smoothness, hue='diagnosis')
compactness = data[['compactness_mean', 'compactness_se', 'compactness_worst', 'diagnosis']]
sns.pairplot(compactness, hue='diagnosis')
concavity = data[['concavity_mean', 'concavity_se', 'concavity_worst', 'diagnosis']]
sns.pairplot(concavity, hue='diagnosis')
concave_points = data[['concave points_mean', 'concave points_se', 'concave points_worst', 'diagnosis']]
sns.pairplot(concave_points, hue='diagnosis')
symmetry = data[['symmetry_mean', 'symmetry_se', 'symmetry_worst', 'diagnosis']]
sns.pairplot(symmetry, hue='diagnosis')
fractal_dimension = data[['fractal_dimension_mean', 'fractal_dimension_se', 'fractal_dimension_worst', 'diagnosis']]
sns.pairplot(fractal_dimension, hue='diagnosis') | code |
128026526/cell_21 | [
"text_plain_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum()
parch_missed_age = titanic_train[titanic_train.Age.isna()].Parch.value_counts()
parch_missed_age
age_pivot = titanic_train.pivot_table(index='Parch', values='Age', aggfunc=('mean', 'median'))
age_pivot
titanic_train.Age = titanic_train.groupby('Parch')['Age'].transform(lambda Age_grouped: Age_grouped.fillna(Age_grouped.median()))
titanic_train.Cabin = titanic_train.Cabin.fillna('unknown')
titanic_train[titanic_train.Embarked.isna()] | code |
128026526/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
titanic_test.head() | code |
128026526/cell_2 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import seaborn as sns
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
128026526/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
titanic_train.info() | code |
128026526/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
titanic_train.describe() | code |
128026526/cell_15 | [
"text_html_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum()
parch_missed_age = titanic_train[titanic_train.Age.isna()].Parch.value_counts()
parch_missed_age
age_pivot = titanic_train.pivot_table(index='Parch', values='Age', aggfunc=('mean', 'median'))
age_pivot | code |
128026526/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum()
parch_missed_age = titanic_train[titanic_train.Age.isna()].Parch.value_counts()
parch_missed_age
age_pivot = titanic_train.pivot_table(index='Parch', values='Age', aggfunc=('mean', 'median'))
age_pivot
titanic_train.Age = titanic_train.groupby('Parch')['Age'].transform(lambda Age_grouped: Age_grouped.fillna(Age_grouped.median()))
print(f'Количество пропусков в столбце "Age" после заполнения - {titanic_train.Age.isna().sum()}') | code |
128026526/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
titanic_train.head() | code |
128026526/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum()
parch_missed_age = titanic_train[titanic_train.Age.isna()].Parch.value_counts()
parch_missed_age
age_pivot = titanic_train.pivot_table(index='Parch', values='Age', aggfunc=('mean', 'median'))
age_pivot
titanic_train.Age = titanic_train.groupby('Parch')['Age'].transform(lambda Age_grouped: Age_grouped.fillna(Age_grouped.median()))
titanic_train.Cabin.value_counts(dropna=False).head(15) | code |
128026526/cell_24 | [
"text_html_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum()
parch_missed_age = titanic_train[titanic_train.Age.isna()].Parch.value_counts()
parch_missed_age
age_pivot = titanic_train.pivot_table(index='Parch', values='Age', aggfunc=('mean', 'median'))
age_pivot
titanic_train.Age = titanic_train.groupby('Parch')['Age'].transform(lambda Age_grouped: Age_grouped.fillna(Age_grouped.median()))
titanic_train.Cabin = titanic_train.Cabin.fillna('unknown')
titanic_train[titanic_train.Embarked.isna()]
ticket_embarked = titanic_train[titanic_train.Embarked.isna()]['Ticket'].values[0]
titanic_train.query('Ticket == @ticket_embarked')
titanic_train.Embarked.value_counts() | code |
128026526/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum()
parch_missed_age = titanic_train[titanic_train.Age.isna()].Parch.value_counts()
parch_missed_age | code |
128026526/cell_22 | [
"text_plain_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum()
parch_missed_age = titanic_train[titanic_train.Age.isna()].Parch.value_counts()
parch_missed_age
age_pivot = titanic_train.pivot_table(index='Parch', values='Age', aggfunc=('mean', 'median'))
age_pivot
titanic_train.Age = titanic_train.groupby('Parch')['Age'].transform(lambda Age_grouped: Age_grouped.fillna(Age_grouped.median()))
titanic_train.Cabin = titanic_train.Cabin.fillna('unknown')
titanic_train[titanic_train.Embarked.isna()]
ticket_embarked = titanic_train[titanic_train.Embarked.isna()]['Ticket'].values[0]
titanic_train.query('Ticket == @ticket_embarked') | code |
128026526/cell_10 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
print(f'Количество строк-дубликатов в обучающей выборке - {titanic_train.duplicated().sum()}')
print(f'Количество строк-дубликатов в тестовой выборке - {titanic_train.duplicated().sum()}')
print()
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
print(f'Количество дубликатов в столбце {column} - {duplicated_qty}') | code |
128026526/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
columns_to_look = ['PassengerId', 'Name', 'Ticket']
for column in columns_to_look:
duplicated_qty = titanic_train[column].duplicated().sum()
titanic_train.isna().sum() | code |
128026526/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
titanic_train = pd.read_csv('/kaggle/input/titanic/train.csv')
titanic_test = pd.read_csv('/kaggle/input/titanic/test.csv')
titanic_gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv').head(10)
titanic_gender_submission.head() | code |
322554/cell_21 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
df = df.fillna('0', axis=0)
df_test = df_test.fillna('0', axis=0)
class MultiColumnLabelEncoder:
def __init__(self, columns=None):
self.columns = columns
def fit(self, X, y=None):
return self
def transform(self, X):
output = X.copy()
if self.columns is not None:
for col in self.columns:
output[col] = LabelEncoder().fit_transform(output[col])
else:
for colname, col in output.iteritems():
output[colname] = LabelEncoder().fit_transform(col)
return output
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X)
def processor(data):
data = MultiColumnLabelEncoder(columns=['people_id', 'activity_id', 'activity_category', 'date_x', 'char_1_x', 'char_2_x', 'char_3_x', 'char_4_x', 'char_5_x', 'char_6_x', 'char_7_x', 'char_8_x', 'char_9_x', 'char_10_x', 'char_1_y', 'group_1', 'char_2_y', 'date_y', 'char_3_y', 'char_4_y', 'char_5_y', 'char_6_y', 'char_7_y', 'char_8_y', 'char_9_y']).fit_transform(df)
bool_map = {True: 1, False: 0}
data = data.applymap(lambda x: bool_map.get(x, x))
return data
df_encoded = processor(df)
df_encoded.dtypes
X = df_encoded
y = X.pop('outcome')
print(X.shape)
print(y.shape) | code |
322554/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
df = df.fillna('0', axis=0)
df_test = df_test.fillna('0', axis=0)
df_test.head() | code |
322554/cell_23 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(77, n_jobs=-1, random_state=7)
model.fit(X_train, y_train)
print('model score ', model.score(X_test, y_test)) | code |
322554/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
print(df.shape)
print(df_test.shape) | code |
322554/cell_18 | [
"text_html_output_1.png"
] | import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
df = df.fillna('0', axis=0)
df_test = df_test.fillna('0', axis=0)
def processor(data):
data = MultiColumnLabelEncoder(columns=['people_id', 'activity_id', 'activity_category', 'date_x', 'char_1_x', 'char_2_x', 'char_3_x', 'char_4_x', 'char_5_x', 'char_6_x', 'char_7_x', 'char_8_x', 'char_9_x', 'char_10_x', 'char_1_y', 'group_1', 'char_2_y', 'date_y', 'char_3_y', 'char_4_y', 'char_5_y', 'char_6_y', 'char_7_y', 'char_8_y', 'char_9_y']).fit_transform(df)
bool_map = {True: 1, False: 0}
data = data.applymap(lambda x: bool_map.get(x, x))
return data
df_test_encoded = processor(df_test)
df_test_encoded.dtypes | code |
322554/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
df = df.fillna('0', axis=0)
df_test = df_test.fillna('0', axis=0)
df.head() | code |
322554/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
df = df.fillna('0', axis=0)
df_test = df_test.fillna('0', axis=0)
def processor(data):
data = MultiColumnLabelEncoder(columns=['people_id', 'activity_id', 'activity_category', 'date_x', 'char_1_x', 'char_2_x', 'char_3_x', 'char_4_x', 'char_5_x', 'char_6_x', 'char_7_x', 'char_8_x', 'char_9_x', 'char_10_x', 'char_1_y', 'group_1', 'char_2_y', 'date_y', 'char_3_y', 'char_4_y', 'char_5_y', 'char_6_y', 'char_7_y', 'char_8_y', 'char_9_y']).fit_transform(df)
bool_map = {True: 1, False: 0}
data = data.applymap(lambda x: bool_map.get(x, x))
return data
df_encoded = processor(df)
df_encoded.dtypes | code |
322554/cell_3 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
from IPython.display import display, HTML
from sklearn.preprocessing import LabelEncoder
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier | code |
322554/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
df = df.fillna('0', axis=0)
df_test = df_test.fillna('0', axis=0)
def processor(data):
data = MultiColumnLabelEncoder(columns=['people_id', 'activity_id', 'activity_category', 'date_x', 'char_1_x', 'char_2_x', 'char_3_x', 'char_4_x', 'char_5_x', 'char_6_x', 'char_7_x', 'char_8_x', 'char_9_x', 'char_10_x', 'char_1_y', 'group_1', 'char_2_y', 'date_y', 'char_3_y', 'char_4_y', 'char_5_y', 'char_6_y', 'char_7_y', 'char_8_y', 'char_9_y']).fit_transform(df)
bool_map = {True: 1, False: 0}
data = data.applymap(lambda x: bool_map.get(x, x))
return data
df_test_encoded = processor(df_test)
df_test_encoded.head() | code |
322554/cell_24 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(77, n_jobs=-1, random_state=7)
model.fit(X_train, y_train)
pred = model.predict(X_test)
pred | code |
322554/cell_14 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
people = pd.read_csv('../input/people.csv')
activity_train = pd.read_csv('../input/act_train.csv')
activity_test = pd.read_csv('../input/act_test.csv')
df = activity_train.merge(people, how='left', on='people_id')
df_test = activity_test.merge(people, how='left', on='people_id')
df = df.fillna('0', axis=0)
df_test = df_test.fillna('0', axis=0)
def processor(data):
data = MultiColumnLabelEncoder(columns=['people_id', 'activity_id', 'activity_category', 'date_x', 'char_1_x', 'char_2_x', 'char_3_x', 'char_4_x', 'char_5_x', 'char_6_x', 'char_7_x', 'char_8_x', 'char_9_x', 'char_10_x', 'char_1_y', 'group_1', 'char_2_y', 'date_y', 'char_3_y', 'char_4_y', 'char_5_y', 'char_6_y', 'char_7_y', 'char_8_y', 'char_9_y']).fit_transform(df)
bool_map = {True: 1, False: 0}
data = data.applymap(lambda x: bool_map.get(x, x))
return data
df_encoded = processor(df)
df_encoded.head() | code |
2034706/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.plotly as py
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8'))
foot = pd.read_csv('../input/epldata_final.csv') | code |
2034706/cell_3 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.plotly as py
from subprocess import check_output
foot = pd.read_csv('../input/epldata_final.csv')
under_21_big6 = foot[np.logical_and(foot['age'] <= 21, foot['big_club'] == 1)]
for lab, row in under_21_big6.iterrows():
print(row['name'] + ' play in ' + row['club']) | code |
2034706/cell_5 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | from subprocess import check_output
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.plotly as py
from subprocess import check_output
foot = pd.read_csv('../input/epldata_final.csv')
pl_under = foot[foot['age'] <= 21]
def count_u21(pl_under, *args):
u21_dir = {}
for col_name in args:
col = pl_under[col_name]
for entry in col:
if entry in u21_dir.keys():
u21_dir[entry] += 1
else:
u21_dir[entry] = 1
return u21_dir
clubs_ = count_u21(pl_under, 'club')
print(clubs_)
plt.hist(clubs_)
plt.xlabel('Clubs')
plt.ylabel('No. of players')
plt.title('U21 distribution - Clubs')
plt.show() | code |
90135317/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
# Data Exploration
# Convert timestamp to datetime. it will be easier to read (especially the time-delta's)
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary)
# From results, we see that the time range is 2009-01-09 -> 2018-09-10
# Also, the greatest block delay was 1 day and 4:47:00!
# Note that 75th percentile of block times is only 00:12:54. Clearly block times of 02:00:00 are rare.
df.diff().plot(kind='line')
maxidx = df.idxmax()
print(df['timestamp'][maxidx['timestamp']]) | code |
90135317/cell_6 | [
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from datetime import datetime, timedelta
from google.cloud import bigquery
from scipy.stats import norm
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
# Data Exploration
# Convert timestamp to datetime. it will be easier to read (especially the time-delta's)
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary)
# From results, we see that the time range is 2009-01-09 -> 2018-09-10
# Also, the greatest block delay was 1 day and 4:47:00!
# Note that 75th percentile of block times is only 00:12:54. Clearly block times of 02:00:00 are rare.
maxidx = df.idxmax()
from scipy.stats import norm
from datetime import datetime, timedelta
import numpy as np
# More data processing
df = df.diff()
df = df.dropna() # since we have a column of diffs, the first entry will need to be ignored
print(df.head())
print(df.describe())
print(df.dtypes)
# convert timedelta type to a float (seconds)
print(df['timestamp'][2].total_seconds())
df['timestamp'] = df['timestamp'].apply(lambda x: x.total_seconds())
float_summary = df.describe()
print(float_summary)
time_threshold = timedelta(hours=2).total_seconds()
print(float_summary["timestamp"][1]) # mean
print(float_summary["timestamp"][2]) # standard dev
df_cdf = norm.cdf(time_threshold, float_summary['timestamp'][1], float_summary['timestamp'][2])
print((1 - df_cdf) * df.shape[0])
print(df.shape[0])
print(1 - df_cdf)
print(df.timestamp.quantile(0.99))
print(len(df[df['timestamp'] > time_threshold])) | code |
90135317/cell_1 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_html_output_1.png",
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
print('Size of dataframe: {} Bytes'.format(int(df.memory_usage(index=True, deep=True).sum())))
df.head(10) | code |
90135317/cell_3 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary) | code |
90135317/cell_5 | [
"text_plain_output_1.png"
] | from bq_helper import BigQueryHelper
from datetime import datetime
from datetime import datetime, timedelta
from google.cloud import bigquery
import numpy as np
import pandas as pd
from google.cloud import bigquery
from bq_helper import BigQueryHelper
client = bigquery.Client()
query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n '
bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain')
df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000)
original = df.copy()
from datetime import datetime
df = original.copy()
df = df.sort_values(by=['timestamp'], ascending=True)
# Data Exploration
# Convert timestamp to datetime. it will be easier to read (especially the time-delta's)
ts_col = df['timestamp'].div(1000.0)
df['timestamp'] = ts_col.apply(datetime.fromtimestamp)
print(df.describe())
summary = df.diff().describe()
print(summary)
# From results, we see that the time range is 2009-01-09 -> 2018-09-10
# Also, the greatest block delay was 1 day and 4:47:00!
# Note that 75th percentile of block times is only 00:12:54. Clearly block times of 02:00:00 are rare.
maxidx = df.idxmax()
from scipy.stats import norm
from datetime import datetime, timedelta
import numpy as np
df = df.diff()
df = df.dropna()
print(df.head())
print(df.describe())
print(df.dtypes)
print(df['timestamp'][2].total_seconds())
df['timestamp'] = df['timestamp'].apply(lambda x: x.total_seconds())
float_summary = df.describe()
print(float_summary)
time_threshold = timedelta(hours=2).total_seconds()
print(float_summary['timestamp'][1])
print(float_summary['timestamp'][2]) | code |
324023/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv')
data.columns.values | code |
324023/cell_2 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
324023/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv') | code |
18129560/cell_21 | [
"application_vnd.jupyter.stderr_output_1.png"
] | score = model.evaluate(x_test, y_test, batch_size=BATCH_SIZE)
print()
print('ACCURACY:', score[1])
print('LOSS:', score[0]) | code |
18129560/cell_13 | [
"text_html_output_1.png"
] | print('train w2v ....')
w2v_model.train(documents, total_examples=len(documents), epochs=W2V_EPOCH)
print('done') | code |
18129560/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | documents = [_text.split() for _text in df_train.text]
print('training tweets count', len(documents)) | code |
18129560/cell_25 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
import numpy as np
import numpy as np # linear algebra
import time
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
documents = [_text.split() for _text in df_train.text]
words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
w2v_model.most_similar('love')
labels = df_train.target.unique().tolist()
labels.append(NEUTRAL)
encoder = LabelEncoder()
encoder.fit(df_train.target.tolist())
y_train = encoder.transform(df_train.target.tolist())
y_test = encoder.transform(df_test.target.tolist())
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
embedding_matrix = np.zeros((vocab_size, W2V_SIZE))
for word, i in tokenizer.word_index.items():
if word in w2v_model.wv:
embedding_matrix[i] = w2v_model.wv[word]
embedding_layer = Embedding(vocab_size, W2V_SIZE, weights=[embedding_matrix], input_length=SEQUENCE_LENGTH, trainable=False)
model = Sequential()
model.add(embedding_layer)
model.add(Dropout(0.5))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
def decode_sentiment(score, include_neutral=True):
if include_neutral:
label = NEUTRAL
if score <= SENTIMENT_THRESHOLDS[0]:
label = NEGATIVE
elif score >= SENTIMENT_THRESHOLDS[1]:
label = POSITIVE
return label
else:
return NEGATIVE if score < 0.5 else POSITIVE
def predict(text, include_neutral=True):
start_at = time.time()
x_test = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=SEQUENCE_LENGTH)
score = model.predict([x_test])[0]
label = decode_sentiment(score, include_neutral=include_neutral)
return {'label': label, 'score': float(score), 'elapsed_time': time.time() - start_at}
predict('I hate the rain') | code |
18129560/cell_30 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
import numpy as np
import numpy as np # linear algebra
import pickle
import time
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
documents = [_text.split() for _text in df_train.text]
words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
w2v_model.most_similar('love')
labels = df_train.target.unique().tolist()
labels.append(NEUTRAL)
encoder = LabelEncoder()
encoder.fit(df_train.target.tolist())
y_train = encoder.transform(df_train.target.tolist())
y_test = encoder.transform(df_test.target.tolist())
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
embedding_matrix = np.zeros((vocab_size, W2V_SIZE))
for word, i in tokenizer.word_index.items():
if word in w2v_model.wv:
embedding_matrix[i] = w2v_model.wv[word]
embedding_layer = Embedding(vocab_size, W2V_SIZE, weights=[embedding_matrix], input_length=SEQUENCE_LENGTH, trainable=False)
model = Sequential()
model.add(embedding_layer)
model.add(Dropout(0.5))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
def decode_sentiment(score, include_neutral=True):
if include_neutral:
label = NEUTRAL
if score <= SENTIMENT_THRESHOLDS[0]:
label = NEGATIVE
elif score >= SENTIMENT_THRESHOLDS[1]:
label = POSITIVE
return label
else:
return NEGATIVE if score < 0.5 else POSITIVE
def predict(text, include_neutral=True):
start_at = time.time()
x_test = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=SEQUENCE_LENGTH)
score = model.predict([x_test])[0]
label = decode_sentiment(score, include_neutral=include_neutral)
return {'label': label, 'score': float(score), 'elapsed_time': time.time() - start_at}
model.save(KERAS_MODEL)
w2v_model.save(WORD2VEC_MODEL)
pickle.dump(tokenizer, open(TOKENIZER_MODEL, 'wb'), protocol=0)
pickle.dump(encoder, open(ENCODER_MODEL, 'wb'), protocol=0) | code |
18129560/cell_20 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | callbacks = [ReduceLROnPlateau(monitor='val_loss', patience=5, cooldown=0), EarlyStopping(monitor='val_acc', min_delta=0.0001, patience=5)]
history = model.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_split=0.1, verbose=1, callbacks=callbacks) | code |
18129560/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
"""
Dataset details
target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)
ids: The id of the tweet ( 2087)
date: the date of the tweet (Sat May 16 23:58:44 UTC 2009)
flag: The query (lyx). If there is no query, then this value is NO_QUERY.
user: the user that tweeted (robotickilldozr)
text: the text of the tweet (Lyx is cool)
"""
dataset_filename = os.listdir('../input')[0]
dataset_path = os.path.join('..', 'input', dataset_filename)
df = pd.read_csv(dataset_path, encoding=DATASET_ENCODING, names=DATASET_COLUMNS)
df.head(5) | code |
18129560/cell_29 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
accuracy_score(y_test_1d, y_pred_1d) | code |
18129560/cell_26 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
import numpy as np
import numpy as np # linear algebra
import time
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
documents = [_text.split() for _text in df_train.text]
words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
w2v_model.most_similar('love')
labels = df_train.target.unique().tolist()
labels.append(NEUTRAL)
encoder = LabelEncoder()
encoder.fit(df_train.target.tolist())
y_train = encoder.transform(df_train.target.tolist())
y_test = encoder.transform(df_test.target.tolist())
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
embedding_matrix = np.zeros((vocab_size, W2V_SIZE))
for word, i in tokenizer.word_index.items():
if word in w2v_model.wv:
embedding_matrix[i] = w2v_model.wv[word]
embedding_layer = Embedding(vocab_size, W2V_SIZE, weights=[embedding_matrix], input_length=SEQUENCE_LENGTH, trainable=False)
model = Sequential()
model.add(embedding_layer)
model.add(Dropout(0.5))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
def decode_sentiment(score, include_neutral=True):
if include_neutral:
label = NEUTRAL
if score <= SENTIMENT_THRESHOLDS[0]:
label = NEGATIVE
elif score >= SENTIMENT_THRESHOLDS[1]:
label = POSITIVE
return label
else:
return NEGATIVE if score < 0.5 else POSITIVE
def predict(text, include_neutral=True):
start_at = time.time()
x_test = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=SEQUENCE_LENGTH)
score = model.predict([x_test])[0]
label = decode_sentiment(score, include_neutral=include_neutral)
return {'label': label, 'score': float(score), 'elapsed_time': time.time() - start_at}
predict("i don't know what i'm doing") | code |
18129560/cell_2 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.manifold import TSNE
from sklearn.feature_extraction.text import TfidfVectorizer
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM
from keras import utils
from keras.callbacks import ReduceLROnPlateau, EarlyStopping
import nltk
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
import gensim
import re
import numpy as np
import os
from collections import Counter
import logging
import time
import pickle
import itertools
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
print(os.listdir('../input')) | code |
18129560/cell_11 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | w2v_model.build_vocab(documents) | code |
18129560/cell_19 | [
"text_plain_output_1.png"
] | from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM
from keras.models import Sequential
import numpy as np
import numpy as np # linear algebra
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
w2v_model.most_similar('love')
embedding_matrix = np.zeros((vocab_size, W2V_SIZE))
for word, i in tokenizer.word_index.items():
if word in w2v_model.wv:
embedding_matrix[i] = w2v_model.wv[word]
embedding_layer = Embedding(vocab_size, W2V_SIZE, weights=[embedding_matrix], input_length=SEQUENCE_LENGTH, trainable=False)
model = Sequential()
model.add(embedding_layer)
model.add(Dropout(0.5))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) | code |
18129560/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | decode_map = {0: 'NEGATIVE', 2: 'NEUTRAL', 4: 'POSITIVE'}
def decode_sentiment(label):
return decode_map[int(label)]
df.target = df.target.apply(lambda x: decode_sentiment(x)) | code |
18129560/cell_18 | [
"text_plain_output_1.png"
] | from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM
import numpy as np
import numpy as np # linear algebra
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
w2v_model.most_similar('love')
embedding_matrix = np.zeros((vocab_size, W2V_SIZE))
for word, i in tokenizer.word_index.items():
if word in w2v_model.wv:
embedding_matrix[i] = w2v_model.wv[word]
print(embedding_matrix.shape)
embedding_layer = Embedding(vocab_size, W2V_SIZE, weights=[embedding_matrix], input_length=SEQUENCE_LENGTH, trainable=False) | code |
18129560/cell_28 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
print(classification_report(y_test_1d, y_pred_1d)) | code |
18129560/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.model_selection import train_test_split
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
"""
Dataset details
target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)
ids: The id of the tweet ( 2087)
date: the date of the tweet (Sat May 16 23:58:44 UTC 2009)
flag: The query (lyx). If there is no query, then this value is NO_QUERY.
user: the user that tweeted (robotickilldozr)
text: the text of the tweet (Lyx is cool)
"""
dataset_filename = os.listdir('../input')[0]
dataset_path = os.path.join('..', 'input', dataset_filename)
df = pd.read_csv(dataset_path, encoding=DATASET_ENCODING, names=DATASET_COLUMNS)
df_train, df_test = train_test_split(df, test_size=1 - TRAIN_SIZE, random_state=42)
print('TRAIN size:', len(df_train))
print('TEST size:', len(df_test)) | code |
18129560/cell_15 | [
"text_plain_output_1.png"
] | tokenizer = Tokenizer()
tokenizer.fit_on_texts(df_train.text)
vocab_size = len(tokenizer.word_index) + 1
print('Total words', vocab_size) | code |
18129560/cell_16 | [
"text_plain_output_1.png"
] | x_train = pad_sequences(tokenizer.texts_to_sequences(df_train.text), maxlen=SEQUENCE_LENGTH)
x_test = pad_sequences(tokenizer.texts_to_sequences(df_test.text), maxlen=SEQUENCE_LENGTH) | code |
18129560/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import nltk
nltk.download('stopwords') | code |
18129560/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
documents = [_text.split() for _text in df_train.text]
labels = df_train.target.unique().tolist()
labels.append(NEUTRAL)
encoder = LabelEncoder()
encoder.fit(df_train.target.tolist())
y_train = encoder.transform(df_train.target.tolist())
y_test = encoder.transform(df_test.target.tolist())
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
print('x_train', x_train.shape)
print('y_train', y_train.shape)
print()
print('x_test', x_test.shape)
print('y_test', y_test.shape) | code |
18129560/cell_24 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Activation, Dense, Dropout, Embedding, Flatten, Conv1D, MaxPooling1D, LSTM
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
import numpy as np
import numpy as np # linear algebra
import time
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
documents = [_text.split() for _text in df_train.text]
words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
w2v_model.most_similar('love')
labels = df_train.target.unique().tolist()
labels.append(NEUTRAL)
encoder = LabelEncoder()
encoder.fit(df_train.target.tolist())
y_train = encoder.transform(df_train.target.tolist())
y_test = encoder.transform(df_test.target.tolist())
y_train = y_train.reshape(-1, 1)
y_test = y_test.reshape(-1, 1)
embedding_matrix = np.zeros((vocab_size, W2V_SIZE))
for word, i in tokenizer.word_index.items():
if word in w2v_model.wv:
embedding_matrix[i] = w2v_model.wv[word]
embedding_layer = Embedding(vocab_size, W2V_SIZE, weights=[embedding_matrix], input_length=SEQUENCE_LENGTH, trainable=False)
model = Sequential()
model.add(embedding_layer)
model.add(Dropout(0.5))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
def decode_sentiment(score, include_neutral=True):
if include_neutral:
label = NEUTRAL
if score <= SENTIMENT_THRESHOLDS[0]:
label = NEGATIVE
elif score >= SENTIMENT_THRESHOLDS[1]:
label = POSITIVE
return label
else:
return NEGATIVE if score < 0.5 else POSITIVE
def predict(text, include_neutral=True):
start_at = time.time()
x_test = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=SEQUENCE_LENGTH)
score = model.predict([x_test])[0]
label = decode_sentiment(score, include_neutral=include_neutral)
return {'label': label, 'score': float(score), 'elapsed_time': time.time() - start_at}
predict('I love the music') | code |
18129560/cell_14 | [
"text_plain_output_1.png"
] | words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
w2v_model.most_similar('love') | code |
18129560/cell_22 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'b', label='Training acc')
plt.plot(epochs, val_acc, 'r', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'b', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show() | code |
18129560/cell_10 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | w2v_model = gensim.models.word2vec.Word2Vec(size=W2V_SIZE, window=W2V_WINDOW, min_count=W2V_MIN_COUNT, workers=8) | code |
18129560/cell_27 | [
"application_vnd.jupyter.stderr_output_1.png"
] | y_pred_1d = []
y_test_1d = list(df_test.target)
scores = model.predict(x_test, verbose=1, batch_size=8000)
y_pred_1d = [decode_sentiment(score, include_neutral=False) for score in scores]
def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=30)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90, fontsize=22)
plt.yticks(tick_marks, classes, fontsize=22)
fmt = '.2f'
thresh = cm.max() / 2.0
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center', color='white' if cm[i, j] > thresh else 'black')
plt.ylabel('True label', fontsize=25)
plt.xlabel('Predicted label', fontsize=25)
cnf_matrix = confusion_matrix(y_test_1d, y_pred_1d)
plt.figure(figsize=(12, 12))
plot_confusion_matrix(cnf_matrix, classes=df_train.target.unique(), title='Confusion matrix')
plt.show() | code |
18129560/cell_12 | [
"text_plain_output_1.png"
] | words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
print('Vocab size', vocab_size) | code |
18129560/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
DATASET_COLUMNS = ['target', 'ids', 'date', 'flag', 'user', 'text']
DATASET_ENCODING = 'ISO-8859-1'
TRAIN_SIZE = 0.8
TEXT_CLEANING_RE = '@\\S+|https?:\\S+|http?:\\S|[^A-Za-z0-9]+'
W2V_SIZE = 300
W2V_WINDOW = 7
W2V_EPOCH = 32
W2V_MIN_COUNT = 10
SEQUENCE_LENGTH = 300
EPOCHS = 8
BATCH_SIZE = 1024
POSITIVE = 'POSITIVE'
NEGATIVE = 'NEGATIVE'
NEUTRAL = 'NEUTRAL'
SENTIMENT_THRESHOLDS = (0.4, 0.7)
KERAS_MODEL = 'model.h5'
WORD2VEC_MODEL = 'model.w2v'
TOKENIZER_MODEL = 'tokenizer.pkl'
ENCODER_MODEL = 'encoder.pkl'
"""
Dataset details
target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)
ids: The id of the tweet ( 2087)
date: the date of the tweet (Sat May 16 23:58:44 UTC 2009)
flag: The query (lyx). If there is no query, then this value is NO_QUERY.
user: the user that tweeted (robotickilldozr)
text: the text of the tweet (Lyx is cool)
"""
dataset_filename = os.listdir('../input')[0]
dataset_path = os.path.join('..', 'input', dataset_filename)
print('Open file:', dataset_path)
df = pd.read_csv(dataset_path, encoding=DATASET_ENCODING, names=DATASET_COLUMNS)
print('Dataset size:', len(df)) | code |
106211916/cell_21 | [
"text_html_output_1.png"
] | from sklearn import preprocessing
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
scaler = preprocessing.StandardScaler()
scaler.fit(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
X_train = scaler.transform(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
X_test = scaler.transform(test[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
X_test | code |
106211916/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum() | code |
106211916/cell_25 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
scaler = preprocessing.StandardScaler()
scaler.fit(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
X_train = scaler.transform(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
from sklearn.linear_model import LogisticRegression
algo = LogisticRegression(C=90000, solver='sag', max_iter=15000)
algo.fit(X_train, train['Survived'])
algo.score(X_train, train['Survived']) | code |
106211916/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train['Embarked'].value_counts() | code |
106211916/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
106211916/cell_18 | [
"text_html_output_1.png"
] | from sklearn import preprocessing
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
scaler = preprocessing.StandardScaler()
scaler.fit(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']]) | code |
106211916/cell_28 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
scaler = preprocessing.StandardScaler()
scaler.fit(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
X_train = scaler.transform(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
X_test = scaler.transform(test[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
from sklearn.linear_model import LogisticRegression
algo = LogisticRegression(C=90000, solver='sag', max_iter=15000)
algo.fit(X_train, train['Survived'])
algo.score(X_train, train['Survived'])
ans = algo.predict(X_test)
id1 = list(test['PassengerId'])
type(id1)
data = []
for i in range(len(ans)):
temp = {}
temp['PassengerId'] = id1[i]
temp['Survived'] = ans[i]
data.append(temp)
data | code |
106211916/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
test | code |
106211916/cell_24 | [
"text_plain_output_1.png"
] | from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
scaler = preprocessing.StandardScaler()
scaler.fit(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
X_train = scaler.transform(train[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']])
from sklearn.linear_model import LogisticRegression
algo = LogisticRegression(C=90000, solver='sag', max_iter=15000)
algo.fit(X_train, train['Survived']) | code |
106211916/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
train | code |
106211916/cell_27 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/titanic/train.csv').copy()
test = pd.read_csv('../input/titanic/test.csv').copy()
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
train.drop('Ticket', axis=1, inplace=True)
test.drop('Ticket', axis=1, inplace=True)
train.isnull().sum()
train.drop('Cabin', axis=1, inplace=True)
test.drop('Cabin', axis=1, inplace=True)
id1 = list(test['PassengerId'])
type(id1) | code |
129035406/cell_4 | [
"text_plain_output_1.png"
] | !python3 /content/OIDv4_ToolKit/main.py downloader --classes Car --type_csv train --limit 100 --multiclasses 1 -y
!python3 /content/OIDv4_ToolKit/main.py downloader --classes Car --type_csv validation --limit 30 --multiclasses 1 -y
!python3 /content/OIDv4_ToolKit/main.py downloader --classes Car --type_csv test --limit 30 --multiclasses 1 -y | code |
129035406/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | file_path = '/content/OIDv4_ToolKit/classes.txt'
with open(file_path, mode='w') as f:
f.write('Car')
print(f'File {file_path} has been updated.') | code |
129035406/cell_2 | [
"text_plain_output_1.png"
] | !git clone https://github.com/EscVM/OIDv4_ToolKit.git | code |
129035406/cell_3 | [
"text_plain_output_1.png"
] | !pip3 install -r /content/OIDv4_ToolKit/requirements.txt | code |
2019859/cell_25 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
train.isnull().sum(axis=0)
def replace_titles(x):
title = x['Title']
if title in ['Don', 'Major', 'Capt', 'Jonkheer', 'Rev', 'Col']:
return 'Mr'
elif title in ['Countess', 'Mme']:
return 'Mrs'
elif title in ['Mlle', 'Ms']:
return 'Miss'
elif title == 'Dr':
if x['Sex'] == 'Male':
return 'Mr'
else:
return 'Mrs'
else:
return title
train['Title'] = train.apply(replace_titles, axis=1)
test['Title'] = test.apply(replace_titles, axis=1)
train = train.drop(['Name', 'PassengerId', 'Survived', 'Ticket', 'Cabin'], axis=1)
test = test.drop(['Name', 'PassengerId', 'Ticket', 'Cabin'], axis=1)
corrmat = train.corr()
f, ax = plt.subplots(figsize=(5, 5))
sns.heatmap(corrmat, vmax=0.8, square=True) | code |
2019859/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
train.isnull().sum(axis=0) | code |
2019859/cell_6 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
test['Sex'].value_counts() | code |
2019859/cell_26 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
train.isnull().sum(axis=0)
def replace_titles(x):
title = x['Title']
if title in ['Don', 'Major', 'Capt', 'Jonkheer', 'Rev', 'Col']:
return 'Mr'
elif title in ['Countess', 'Mme']:
return 'Mrs'
elif title in ['Mlle', 'Ms']:
return 'Miss'
elif title == 'Dr':
if x['Sex'] == 'Male':
return 'Mr'
else:
return 'Mrs'
else:
return title
train['Title'] = train.apply(replace_titles, axis=1)
test['Title'] = test.apply(replace_titles, axis=1)
train = train.drop(['Name', 'PassengerId', 'Survived', 'Ticket', 'Cabin'], axis=1)
test = test.drop(['Name', 'PassengerId', 'Ticket', 'Cabin'], axis=1)
#correlation matrix
corrmat = train.corr()
f, ax = plt.subplots(figsize=(5, 5))
sns.heatmap(corrmat, vmax=.8, square=True);
train.head() | code |
2019859/cell_1 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC, SVC
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, ExtraTreesClassifier, AdaBoostClassifier, BaggingClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.cross_validation import cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
from scipy import stats
from scipy.stats import norm, skew
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2019859/cell_7 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
train.isnull().sum(axis=0)
train['Survived'].plot(kind='hist') | code |
2019859/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
train.head() | code |
2019859/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import cross_val_score
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier, ExtraTreesClassifier, AdaBoostClassifier, BaggingClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.metrics import accuracy_score, make_scorer
from sklearn.naive_bayes import MultinomialNB, BernoulliNB, GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC,SVC
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import xgboost as xgb
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
train.isnull().sum(axis=0)
test_id = test['PassengerId']
target = train['Survived']
def replace_titles(x):
title = x['Title']
if title in ['Don', 'Major', 'Capt', 'Jonkheer', 'Rev', 'Col']:
return 'Mr'
elif title in ['Countess', 'Mme']:
return 'Mrs'
elif title in ['Mlle', 'Ms']:
return 'Miss'
elif title == 'Dr':
if x['Sex'] == 'Male':
return 'Mr'
else:
return 'Mrs'
else:
return title
train['Title'] = train.apply(replace_titles, axis=1)
test['Title'] = test.apply(replace_titles, axis=1)
train = train.drop(['Name', 'PassengerId', 'Survived', 'Ticket', 'Cabin'], axis=1)
test = test.drop(['Name', 'PassengerId', 'Ticket', 'Cabin'], axis=1)
#correlation matrix
corrmat = train.corr()
f, ax = plt.subplots(figsize=(5, 5))
sns.heatmap(corrmat, vmax=.8, square=True);
vote_est = [('ada', AdaBoostClassifier()), ('bc', BaggingClassifier()), ('etc', ExtraTreesClassifier()), ('gbc', GradientBoostingClassifier()), ('rfc', RandomForestClassifier()), ('gpc', GaussianProcessClassifier()), ('lr', LogisticRegressionCV()), ('bnb', BernoulliNB()), ('gnb', GaussianNB()), ('knn', KNeighborsClassifier()), ('svc', SVC(probability=True)), ('xgb', xgb.XGBClassifier())]
model = VotingClassifier(estimators=vote_est, voting='hard')
from sklearn.cross_validation import cross_val_score
from sklearn.metrics import accuracy_score, make_scorer
print(cross_val_score(model, train, target, cv=5, scoring=make_scorer(accuracy_score))) | code |
2019859/cell_5 | [
"image_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train = pd.read_csv('../input/train.csv', dtype={'Age': np.float64})
test = pd.read_csv('../input/test.csv', dtype={'Age': np.float64})
train.isnull().sum(axis=0)
sns.distplot(train['Fare']) | code |
32068245/cell_9 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data
data.info() | code |
32068245/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data
from sklearn.linear_model import LinearRegression
linear_reg = LinearRegression()
x = data.deneyim.values.reshape(-1, 1)
y = data.maas.values.reshape(-1, 1)
linear_reg.fit(x, y)
import numpy as np
a = linear_reg.predict([[0]])
a_ = linear_reg.intercept_
b = linear_reg.coef_
maas_yeni = 1663 + 1138 * 11
print(maas_yeni)
print(linear_reg.predict([[11]])) | code |
32068245/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068245/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data | code |
32068245/cell_18 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data
from sklearn.linear_model import LinearRegression
linear_reg = LinearRegression()
x = data.deneyim.values.reshape(-1, 1)
y = data.maas.values.reshape(-1, 1)
linear_reg.fit(x, y)
import numpy as np
a = linear_reg.predict([[0]])
a_ = linear_reg.intercept_
b = linear_reg.coef_
print('b: ', b) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.