path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
32068245/cell_16 | [
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data
from sklearn.linear_model import LinearRegression
linear_reg = LinearRegression()
x = data.deneyim.values.reshape(-1, 1)
y = data.maas.values.reshape(-1, 1)
linear_reg.fit(x, y)
import numpy as np
a = linear_reg.predict([[0]])
print('a: ', a)
a_ = linear_reg.intercept_
print('a_: ', a_) | code |
32068245/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data
from sklearn.linear_model import LinearRegression
linear_reg = LinearRegression()
x = data.deneyim.values.reshape(-1, 1)
y = data.maas.values.reshape(-1, 1)
linear_reg.fit(x, y) | code |
32068245/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data
from sklearn.linear_model import LinearRegression
linear_reg = LinearRegression()
x = data.deneyim.values.reshape(-1, 1)
y = data.maas.values.reshape(-1, 1)
linear_reg.fit(x, y)
import numpy as np
a = linear_reg.predict([[0]])
a_ = linear_reg.intercept_
b = linear_reg.coef_
maas_yeni = 1663 + 1138 * 11
array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]).reshape(-1, 1)
plt.scatter(x, y)
y_head = linear_reg.predict(array)
plt.plot(array, y_head, color='red')
plt.show() | code |
32068245/cell_12 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/sinan-dataset/multiple_linear_regression_dataset.csv', sep=';')
data
plt.scatter(data.deneyim, data.maas)
plt.xlabel('deneyim')
plt.ylabel('maas')
plt.show() | code |
128037874/cell_21 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
class_categories = set(coasts['classes_array'])
class_categories | code |
128037874/cell_13 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
data['image'].shape | code |
128037874/cell_9 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
print(type(coasts.iloc[0]))
coasts.shape | code |
128037874/cell_25 | [
"text_plain_output_1.png"
] | import shutil
import shutil
shutil.make_archive('coast_images', 'zip', 'coast_images')
shutil.make_archive('coast_labels', 'zip', 'coast_labels')
shutil.make_archive('coast_info', 'zip', 'coast_info') | code |
128037874/cell_4 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.describe() | code |
128037874/cell_23 | [
"image_output_1.png"
] | !mkdir coast_images
!mkdir coast_labels
!mkdir coast_info | code |
128037874/cell_6 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0] | code |
128037874/cell_2 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape | code |
128037874/cell_11 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
for l in lst:
print(l, type(data[l])) | code |
128037874/cell_19 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
coasts['classes_array'].value_counts() | code |
128037874/cell_1 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
from PIL import Image
import matplotlib.pyplot as plt
import os
"\nfor dirname, _, filenames in os.walk('/kaggle/input'):\n for filename in filenames:\n print(os.path.join(dirname, filename))\n" | code |
128037874/cell_7 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
print(coasts.index)
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
print(len(class_index))
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n' | code |
128037874/cell_18 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
np.argmax(data['label'], axis=2)
label = data['label']
new_label = np.argmax(label, axis=2)
print(new_label.shape)
print(new_label[0, 500])
print(data['0label'][0, 500])
print(new_label) | code |
128037874/cell_8 | [
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.describe() | code |
128037874/cell_15 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
np.argmax(data['label'], axis=2) | code |
128037874/cell_16 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
print(data['classes'])
print(first_coast['classes_array']) | code |
128037874/cell_3 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.head() | code |
128037874/cell_17 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
print(data['label'].shape) | code |
128037874/cell_24 | [
"text_plain_output_1.png"
] | from tqdm import tqdm
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pickle
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
np.argmax(data['label'], axis=2)
label = data['label']
new_label = np.argmax(label, axis=2)
def get_mapping(classes):
mapping = dict()
if classes == "'water', 'herbaceous vegetation', 'woody vegetation', 'non-vegetated-dry', 'non-vegetated-wet', 'surf', 'developed'":
mapping = {0: 0, 1: 4, 2: 4, 3: 3, 4: 3, 5: 1, 6: 5}
elif classes == "'water', 'sand', 'gravel', 'cobble_boulder', 'vegetated', 'coastal_defense', 'buildings', 'pavement_road', 'vehicles', 'people', 'other_anthro', 'nodata'":
mapping = {0: 0, 1: 2, 2: 2, 3: 3, 4: 4, 5: 5, 6: 5, 7: 5, 8: 5, 9: 5, 10: 5, 11: 6}
elif classes == "'water', 'sand', 'gravel', 'cobble_boulder', 'vegetated', 'development', 'nodata', 'unusual'":
mapping = {0: 0, 1: 2, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 6}
elif classes == "'water', 'surf', 'bare_ground', 'vegetated_ground', 'development', 'no_data'":
mapping = {0: 0, 1: 1, 2: 3, 3: 4, 4: 5, 5: 6}
elif classes == "'water', 'surf', 'bare_ground', 'vegtated_ground', 'development', 'nodata'":
mapping = {0: 0, 1: 1, 2: 3, 3: 4, 4: 5, 5: 6}
elif classes == "'water', 'surf', 'sand', 'dev'":
mapping = {0: 0, 1: 1, 2: 2, 3: 5}
elif classes == "'water', 'whitewater', 'mud_silt', 'sand', 'gravel_shell', 'cobble_boulder', 'bedrock', 'ice_snow', 'vegetated', 'development', 'other'":
mapping = {0: 0, 1: 4, 2: 3, 3: 2, 4: 2, 5: 3, 6: 3, 7: 3, 8: 4, 9: 5, 10: 6}
elif classes == "'water', 'whitewater', 'sediment', 'other_bare_natural_terrain', 'marsh_vegetation', 'terrestrial_vegetation', 'agricultural', 'development', 'nodata', 'unusual', 'unknown'":
mapping = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 4, 6: 4, 7: 5, 8: 6, 9: 6, 10: 6}
elif classes == "'water', 'whitewater', 'sediment', 'other_natural_terrain', 'vegetated_surface', 'agricultural', 'development', 'cloud', 'nodata', 'unusual', 'unknown'":
mapping = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 4, 6: 5, 7: 6, 8: 6, 9: 6, 10: 6}
elif classes == "'water', 'whitewater', 'sediment', 'sediment_plume', 'other_natural_terrain', 'vegetated_surface', 'agricultural', 'development', 'cloud', 'nodata', 'unusual', 'unknown'":
mapping = {0: 0, 1: 1, 2: 2, 3: 2, 4: 3, 5: 4, 6: 4, 7: 5, 8: 6, 9: 6, 10: 6, 11: 6}
elif classes == "'water', 'whitewater', 'sediment', 'terrestrial_vegetation', 'marsh_vegetation', 'development', 'unusual', 'unknown', 'nodata'":
mapping = {0: 0, 1: 1, 2: 2, 3: 4, 4: 4, 5: 5, 6: 6, 7: 6, 8: 6}
return mapping
import pickle
classes_list = ['water', 'whitewater', 'sediment', 'other_natural_terrain', 'vegetation', 'development', 'unknown']
from tqdm import tqdm
count = 0
for i in tqdm(range(coasts.shape[0])):
coast = coasts.iloc[i]
classes_array = coast['classes_array']
directory = coast['name'].split('.')[0]
dir_names = coast['images'].split('/')[-1].split('.')[:-1]
filename = ''
for s in dir_names:
filename += s + '.'
filename = filename + 'npz'
if os.path.exists(os.path.join(base_dir, directory, filename)):
data = np.load(os.path.join(base_dir, directory, filename))
elif os.path.exists(os.path.join(base_dir, directory, filename[:-10] + '.npz')):
data = np.load(os.path.join(base_dir, directory, filename[:-10] + '.npz'))
else:
print(directory)
print(filename)
continue
try:
image = data['orig_image'][:, :, [0, 1, 2]]
except:
image = data['image'][:, :, [0, 1, 2]]
if not (image.shape[0] == 1024 and image.shape[1] == 1024) and (not (image.shape[0] == 2048 and image.shape[1] == 2048)):
continue
count += 1
label = data['label']
if len(label.shape) != 3:
print(directory)
print(filename)
label = np.argmax(label, axis=2)
mapping = get_mapping(classes_array)
normalized_label = label
for x in range(label.shape[0]):
for y in range(label.shape[1]):
normalized_label[x, y] = mapping[normalized_label[x, y]]
class_count = {c: 0 for c in classes_list}
for class_index in range(len(classes_list)):
class_count[classes_list[class_index]] = int(np.count_nonzero(normalized_label == class_index))
assert int(sum(list(class_count.values()))) == label.shape[0] * label.shape[1]
with open('coast_images/image_' + str(count) + '.npy', 'wb') as f:
np.save(f, image)
with open('coast_labels/image_' + str(count) + '_label.npy', 'wb') as fl:
np.save(fl, normalized_label)
with open('coast_info/image_' + str(count) + '_info.pkl', 'wb') as fi:
pickle.dump(class_count, fi)
print(count) | code |
128037874/cell_14 | [
"text_plain_output_1.png"
] | from PIL import Image
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
img = Image.fromarray(data['orig_image'][:, :, [0, 1, 2]])
plt.imshow(img, interpolation='nearest')
plt.show() | code |
128037874/cell_10 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
print(first_coast['name'])
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz')) | code |
128037874/cell_12 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts()
coasts.iloc[0]
class_set = set()
class_index = []
coasts_df = coasts
for i in range(coasts.shape[0]):
if coasts.loc[i, 'name'].startswith('Ortho'):
class_index.append(i)
'\n if (coasts.loc[i, "name"].startswith("Ortho") or coasts.loc[i, "name"].startswith("NAIP")) and not coasts.loc[i, "name"].startswith("Orthophoto_8_001"):# or coasts.loc[i, "name"].startswith("Quad"):\n class_index.append(i)\n '
coasts_df = coasts.iloc[class_index]
coasts = coasts_df
'\ncoasts.set_index(range(coasts.shape[0]))\nprint(coasts_df.shape)\ncoasts_df["classes_array"].value_counts()\n'
coasts.shape
first_coast = coasts.iloc[3]
directory = first_coast['name'].split('.')[0]
filename = first_coast['images'].split('/')[-1].split('.')[-2]
data = np.load(os.path.join(base_dir, directory, filename + '.npz'))
lst = data.files
list(data['classes']) | code |
128037874/cell_5 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
base_dir = '/kaggle/input/coast-data'
coasts = pd.read_csv(os.path.join(base_dir, 'CoastTrain_imagery_details.csv'))
coasts.shape
coasts.name.value_counts() | code |
106202263/cell_13 | [
"text_plain_output_1.png"
] | another_list = [5, True, 'tree', 'tree']
print(another_list) | code |
106202263/cell_15 | [
"text_plain_output_1.png"
] | mylist = ['banana', 'cherry', 'apple']
print(mylist)
print(mylist[0])
print(mylist[1])
print(mylist[2])
print(mylist[-1])
print(mylist[-2]) | code |
106202263/cell_17 | [
"application_vnd.jupyter.stderr_output_1.png"
] | mylist = ['banana', 'cherry', 'apple']
print(mylist[4]) | code |
106202263/cell_10 | [
"text_plain_output_1.png"
] | mylist = ['banana', 'cherry', 'apple']
print(mylist) | code |
106202263/cell_12 | [
"text_plain_output_1.png"
] | newlist = list()
print(newlist) | code |
17115822/cell_13 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from sklearn import preprocessing
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn import preprocessing
x = data[feature_columns].values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
data[feature_columns] = pd.DataFrame(x_scaled)
fig = plt.figure(figsize=(30, 20))
ax = fig.gca()
hist = test_data[feature_columns].hist(ax=ax) | code |
17115822/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize=(30, 20))
ax = fig.gca()
hist = data.hist(ax=ax) | code |
17115822/cell_30 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sn
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
log_reg = LogisticRegression(solver='sag', random_state=0)
log_reg.fit(X_train, y_train)
n_net = MLPClassifier(hidden_layer_sizes=(4, 4, 4), max_iter=500)
n_net.fit(X_train, y_train)
svmC = svm.SVC(kernel='linear')
svmC.fit(X_train, y_train)
k_NN = KNeighborsClassifier(n_neighbors=3)
k_NN.fit(X_train, y_train)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
if y_test is not None:
y_pred_log_reg = log_reg.predict(X_test)
confusion_matrix_log_reg = confusion_matrix(y_test, y_pred_log_reg)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_n_net = n_net.predict(X_test)
confusion_matrix_n_net = confusion_matrix(y_test, y_pred_n_net)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_svm = svmC.predict(X_test)
confusion_matrix_svm = confusion_matrix(y_test, y_pred_svm)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_k_NN = k_NN.predict(X_test)
confusion_matrix_k_NN = confusion_matrix(y_test, y_pred_k_NN)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_rfc = rfc.predict(X_test)
confusion_matrix_rfc = confusion_matrix(y_test, y_pred_rfc)
sn.heatmap(confusion_matrix_rfc, annot=True, cmap='Blues', fmt='g')
target_names = ['Survived', 'Not Survived']
print(classification_report(y_test, y_pred_rfc, target_names=target_names)) | code |
17115822/cell_26 | [
"image_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sn
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
log_reg = LogisticRegression(solver='sag', random_state=0)
log_reg.fit(X_train, y_train)
n_net = MLPClassifier(hidden_layer_sizes=(4, 4, 4), max_iter=500)
n_net.fit(X_train, y_train)
svmC = svm.SVC(kernel='linear')
svmC.fit(X_train, y_train)
k_NN = KNeighborsClassifier(n_neighbors=3)
k_NN.fit(X_train, y_train)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
if y_test is not None:
y_pred_log_reg = log_reg.predict(X_test)
confusion_matrix_log_reg = confusion_matrix(y_test, y_pred_log_reg)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_n_net = n_net.predict(X_test)
confusion_matrix_n_net = confusion_matrix(y_test, y_pred_n_net)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_svm = svmC.predict(X_test)
confusion_matrix_svm = confusion_matrix(y_test, y_pred_svm)
sn.heatmap(confusion_matrix_svm, annot=True, cmap='Blues', fmt='g')
target_names = ['Survived', 'Not Survived']
print(classification_report(y_test, y_pred_svm, target_names=target_names)) | code |
17115822/cell_11 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
data[feature_columns].head() | code |
17115822/cell_19 | [
"text_html_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
log_reg = LogisticRegression(solver='sag', random_state=0)
log_reg.fit(X_train, y_train)
n_net = MLPClassifier(hidden_layer_sizes=(4, 4, 4), max_iter=500)
n_net.fit(X_train, y_train)
svmC = svm.SVC(kernel='linear')
svmC.fit(X_train, y_train)
k_NN = KNeighborsClassifier(n_neighbors=3)
k_NN.fit(X_train, y_train)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train) | code |
17115822/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
import os
print(os.listdir('../input')) | code |
17115822/cell_7 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Cabin'].head() | code |
17115822/cell_32 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sn
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
log_reg = LogisticRegression(solver='sag', random_state=0)
log_reg.fit(X_train, y_train)
n_net = MLPClassifier(hidden_layer_sizes=(4, 4, 4), max_iter=500)
n_net.fit(X_train, y_train)
svmC = svm.SVC(kernel='linear')
svmC.fit(X_train, y_train)
k_NN = KNeighborsClassifier(n_neighbors=3)
k_NN.fit(X_train, y_train)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
if y_test is not None:
y_pred_log_reg = log_reg.predict(X_test)
confusion_matrix_log_reg = confusion_matrix(y_test, y_pred_log_reg)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_n_net = n_net.predict(X_test)
confusion_matrix_n_net = confusion_matrix(y_test, y_pred_n_net)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_svm = svmC.predict(X_test)
confusion_matrix_svm = confusion_matrix(y_test, y_pred_svm)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_k_NN = k_NN.predict(X_test)
confusion_matrix_k_NN = confusion_matrix(y_test, y_pred_k_NN)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_rfc = rfc.predict(X_test)
confusion_matrix_rfc = confusion_matrix(y_test, y_pred_rfc)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
print('Accuracy Logistic Regression:', accuracy_score(y_test, y_pred_log_reg))
print('Accuracy Neural Net:', accuracy_score(y_test, y_pred_n_net))
print('Accuracy Support Vector Machine:', accuracy_score(y_test, y_pred_svm))
print('Accuracy kNN:', accuracy_score(y_test, y_pred_k_NN))
print('Accuracy Random Forest:', accuracy_score(y_test, y_pred_rfc)) | code |
17115822/cell_28 | [
"text_plain_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sn
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
log_reg = LogisticRegression(solver='sag', random_state=0)
log_reg.fit(X_train, y_train)
n_net = MLPClassifier(hidden_layer_sizes=(4, 4, 4), max_iter=500)
n_net.fit(X_train, y_train)
svmC = svm.SVC(kernel='linear')
svmC.fit(X_train, y_train)
k_NN = KNeighborsClassifier(n_neighbors=3)
k_NN.fit(X_train, y_train)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
if y_test is not None:
y_pred_log_reg = log_reg.predict(X_test)
confusion_matrix_log_reg = confusion_matrix(y_test, y_pred_log_reg)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_n_net = n_net.predict(X_test)
confusion_matrix_n_net = confusion_matrix(y_test, y_pred_n_net)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_svm = svmC.predict(X_test)
confusion_matrix_svm = confusion_matrix(y_test, y_pred_svm)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_k_NN = k_NN.predict(X_test)
confusion_matrix_k_NN = confusion_matrix(y_test, y_pred_k_NN)
sn.heatmap(confusion_matrix_k_NN, annot=True, cmap='Blues', fmt='g')
target_names = ['Survived', 'Not Survived']
print(classification_report(y_test, y_pred_k_NN, target_names=target_names)) | code |
17115822/cell_8 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
data.head() | code |
17115822/cell_15 | [
"text_html_output_1.png"
] | from sklearn import preprocessing
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn import preprocessing
#Training Data
x = data[feature_columns].values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
data[feature_columns] = pd.DataFrame(x_scaled)
#Submission Data
# x = test_data[feature_columns].values
# min_max_scaler = preprocessing.MinMaxScaler()
# x_scaled = min_max_scaler.fit_transform(x)
# test_data[feature_columns] = pd.DataFrame(x_scaled)
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = test_data[feature_columns].hist(ax=ax)
f = plt.figure(figsize=(19, 15))
plt.matshow(data[feature_columns].corr(), fignum=f.number)
plt.xticks(range(data[feature_columns].shape[1]), data[feature_columns].columns, fontsize=14, rotation=45)
plt.yticks(range(data[feature_columns].shape[1]), data[feature_columns].columns, fontsize=14)
cb = plt.colorbar()
cb.ax.tick_params(labelsize=14)
plt.title('Correlation Matrix', fontsize=16) | code |
17115822/cell_3 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
data.head()
test_data.head() | code |
17115822/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape | code |
17115822/cell_24 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sn
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
log_reg = LogisticRegression(solver='sag', random_state=0)
log_reg.fit(X_train, y_train)
n_net = MLPClassifier(hidden_layer_sizes=(4, 4, 4), max_iter=500)
n_net.fit(X_train, y_train)
svmC = svm.SVC(kernel='linear')
svmC.fit(X_train, y_train)
k_NN = KNeighborsClassifier(n_neighbors=3)
k_NN.fit(X_train, y_train)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
if y_test is not None:
y_pred_log_reg = log_reg.predict(X_test)
confusion_matrix_log_reg = confusion_matrix(y_test, y_pred_log_reg)
target_names = ['Survived', 'Not Survived']
if y_test is not None:
y_pred_n_net = n_net.predict(X_test)
confusion_matrix_n_net = confusion_matrix(y_test, y_pred_n_net)
sn.heatmap(confusion_matrix_n_net, annot=True, cmap='Blues', fmt='g')
target_names = ['Survived', 'Not Survived']
print(classification_report(y_test, y_pred_n_net, target_names=target_names))
print('Accuracy:', accuracy_score(y_test, y_pred_log_reg)) | code |
17115822/cell_22 | [
"text_html_output_1.png"
] | from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sn
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data['Sex'] = data['Sex'].map({'female': 1, 'male': 0})
data['Age'].fillna(data['Age'].mean(), inplace=True)
data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(data['Embarked'], prefix=None)
data = pd.concat([data, one_hot_columns], axis=1)
data.drop(['Embarked'], axis=1, inplace=True)
import re
def ticket_to_float(ticket_str):
ticket_numbers_only = ''.join((i for i in ticket_str if i.isdigit()))
if ticket_numbers_only is '':
return 0
return int(ticket_numbers_only)
data['Ticket'] = data['Ticket'].apply(ticket_to_float)
test_data['Sex'] = test_data['Sex'].map({'female': 1, 'male': 0})
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
test_data['Embarked'].fillna(method='ffill', inplace=True)
one_hot_columns = pd.get_dummies(test_data['Embarked'], prefix=None)
test_data = pd.concat([test_data, one_hot_columns], axis=1)
test_data.drop(['Embarked'], axis=1, inplace=True)
test_data['Ticket'] = test_data['Ticket'].apply(ticket_to_float)
feature_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'C', 'Q', 'S']
from sklearn.model_selection import train_test_split
X = data[feature_columns]
y = data['Survived']
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
X_train.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
log_reg = LogisticRegression(solver='sag', random_state=0)
log_reg.fit(X_train, y_train)
n_net = MLPClassifier(hidden_layer_sizes=(4, 4, 4), max_iter=500)
n_net.fit(X_train, y_train)
svmC = svm.SVC(kernel='linear')
svmC.fit(X_train, y_train)
k_NN = KNeighborsClassifier(n_neighbors=3)
k_NN.fit(X_train, y_train)
rfc = RandomForestClassifier(n_estimators=100)
rfc.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
if y_test is not None:
y_pred_log_reg = log_reg.predict(X_test)
confusion_matrix_log_reg = confusion_matrix(y_test, y_pred_log_reg)
sn.heatmap(confusion_matrix_log_reg, annot=True, cmap='Blues', fmt='g')
target_names = ['Survived', 'Not Survived']
print(classification_report(y_test, y_pred_log_reg, target_names=target_names)) | code |
17115822/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/train.csv')
test_data = pd.read_csv('../input/test.csv')
fig = plt.figure(figsize = (30,20))
ax = fig.gca()
hist = data.hist(ax=ax)
data.describe() | code |
88101152/cell_4 | [
"text_plain_output_1.png"
] | import math
class Panorama:
"""Class that represents a picture returned by Google Street View Static API"""
def __init__(self, width=640, height=640, fov=120, heading=0, pitch=0):
self.width = width
self.height = height
self.fov = fov
self.heading = heading
self.pitch = pitch
def unmap(self, heading, pitch):
"""Returns the pixel coordinates corresponding to the given heading and pitch offsets"""
fov = self.fov * math.pi / 180.0
width = self.width
height = self.height
f = 0.5 * width / math.tan(0.5 * fov)
h = heading * math.pi / 180.0
p = pitch * math.pi / 180.0
x = f * math.cos(p) * math.sin(h)
y = f * math.cos(p) * math.cos(h)
z = f * math.sin(p)
h0 = self.heading * math.pi / 180.0
p0 = self.pitch * math.pi / 180.0
x0 = f * math.cos(p0) * math.sin(h0)
y0 = f * math.cos(p0) * math.cos(h0)
z0 = f * math.sin(p0)
t = f * f / (x0 * x + y0 * y + z0 * z)
ux = math.copysign(math.cos(h0), math.cos(p0))
uy = -math.copysign(math.sin(h0), math.cos(p0))
uz = 0
vx = -math.sin(p0) * math.sin(h0)
vy = -math.sin(p0) * math.cos(h0)
vz = math.cos(p0)
x1 = t * x
y1 = t * y
z1 = t * z
dx10 = x1 - x0
dy10 = y1 - y0
dz10 = z1 - z0
du = ux * dx10 + uy * dy10 + uz * dz10
dv = vx * dx10 + vy * dy10 + vz * dz10
return (du + width / 2, height / 2 - dv)
def map(self, u, v):
"""Returns a (heading, pitch) tuple corresponding to the given (x, y) offset in pixels"""
fov = self.fov * math.pi / 180.0
width = self.width
height = self.height
h0 = self.heading * math.pi / 180.0
p0 = self.pitch * math.pi / 180.0
f = 0.5 * width / math.tan(0.5 * fov)
x0 = f * math.cos(p0) * math.sin(h0)
y0 = f * math.cos(p0) * math.cos(h0)
z0 = f * math.sin(p0)
du = u - width / 2
dv = height / 2 - v
ux = math.copysign(math.cos(h0), math.cos(p0))
uy = -math.copysign(math.sin(h0), math.cos(p0))
uz = 0
vx = -math.sin(p0) * math.sin(h0)
vy = -math.sin(p0) * math.cos(h0)
vz = math.cos(p0)
x = x0 + du * ux + dv * vx
y = y0 + du * uy + dv * vy
z = z0 + du * uz + dv * vz
R = math.sqrt(x * x + y * y + z * z)
h = math.atan2(x, y)
p = math.asin(z / R)
return (h * 180.0 / math.pi, p * 180.0 / math.pi)
p = Panorama()
print(p.unmap(-17, 16))
print(p.map(264, 264))
print(p.unmap(-57, 40))
print(p.map(40, 40)) | code |
122251788/cell_13 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix
import numpy as np # linear algebra
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary()
from keras.optimizers import Adam
epochs = 10
learning_rate = 0.0001
opt = Adam(learning_rate=learning_rate, decay=learning_rate / (epochs * 0.5))
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, validation_steps=validation_generator.n // validation_generator.batch_size, epochs=10)
score = model.evaluate(test_generator)
predict = np.argmax(model.predict(test_generator), axis=1)
cnf_matrix = confusion_matrix(test_generator.labels, predict)
print(cnf_matrix) | code |
122251788/cell_9 | [
"image_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary()
from keras.optimizers import Adam
epochs = 10
learning_rate = 0.0001
opt = Adam(learning_rate=learning_rate, decay=learning_rate / (epochs * 0.5))
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, validation_steps=validation_generator.n // validation_generator.batch_size, epochs=10) | code |
122251788/cell_4 | [
"text_plain_output_1.png"
] | from PIL import ImageFile
from keras.preprocessing.image import ImageDataGenerator
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42) | code |
122251788/cell_11 | [
"text_plain_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary()
from keras.optimizers import Adam
epochs = 10
learning_rate = 0.0001
opt = Adam(learning_rate=learning_rate, decay=learning_rate / (epochs * 0.5))
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, validation_steps=validation_generator.n // validation_generator.batch_size, epochs=10)
score = model.evaluate(test_generator)
print('Test loss:', score[0])
print('Test accuracy:', score[1]) | code |
122251788/cell_1 | [
"text_plain_output_1.png"
] | from os import walk
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
import os
from os import walk
for dirpath, dirnames, filenames in walk('../input/yoga-poses-dataset/DATASET'):
print('Directory path: ', dirpath) | code |
122251788/cell_7 | [
"text_plain_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.preprocessing.image import ImageDataGenerator
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary() | code |
122251788/cell_15 | [
"text_plain_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary()
from keras.optimizers import Adam
epochs = 10
learning_rate = 0.0001
opt = Adam(learning_rate=learning_rate, decay=learning_rate / (epochs * 0.5))
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, validation_steps=validation_generator.n // validation_generator.batch_size, epochs=10)
plt.gca().set_ylim(0, 1)
score = model.evaluate(test_generator)
predict = np.argmax(model.predict(test_generator), axis=1)
cnf_matrix = confusion_matrix(test_generator.labels, predict)
ax = plt.subplot()
sns.heatmap(cnf_matrix, annot=True, fmt='g', ax=ax)
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix')
ax.xaxis.set_ticklabels(['downdog', 'goddess', 'plank', 'tree', 'warrior2'])
ax.yaxis.set_ticklabels(['downdog', 'goddess', 'plank', 'tree', 'warrior2']) | code |
122251788/cell_14 | [
"image_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix
import numpy as np # linear algebra
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary()
from keras.optimizers import Adam
epochs = 10
learning_rate = 0.0001
opt = Adam(learning_rate=learning_rate, decay=learning_rate / (epochs * 0.5))
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, validation_steps=validation_generator.n // validation_generator.batch_size, epochs=10)
score = model.evaluate(test_generator)
predict = np.argmax(model.predict(test_generator), axis=1)
cnf_matrix = confusion_matrix(test_generator.labels, predict)
test_generator.class_indices | code |
122251788/cell_10 | [
"text_plain_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary()
from keras.optimizers import Adam
epochs = 10
learning_rate = 0.0001
opt = Adam(learning_rate=learning_rate, decay=learning_rate / (epochs * 0.5))
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, validation_steps=validation_generator.n // validation_generator.batch_size, epochs=10)
pd.DataFrame(history.history).plot(figsize=(21, 10))
plt.grid(True)
plt.gca().set_ylim(0, 1)
plt.show() | code |
122251788/cell_12 | [
"text_plain_output_1.png"
] | from PIL import ImageFile
from keras.applications import vgg16
from keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import Model
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import numpy as np # linear algebra
train_path = '../input/yoga-poses-dataset/DATASET/TRAIN'
test_path = '../input/yoga-poses-dataset/DATASET/TEST'
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255.0, rotation_range=10, zoom_range=0.3, shear_range=0.3, fill_mode='nearest', validation_split=0.2)
test_datagen = ImageDataGenerator(rescale=1 / 255.0)
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
batch_size = 8
train_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='training', shuffle=True, seed=42)
validation_generator = train_datagen.flow_from_directory(directory=train_path, color_mode='rgb', target_size=(224, 224), batch_size=batch_size, class_mode='sparse', subset='validation', shuffle=True, seed=42)
test_generator = test_datagen.flow_from_directory(directory=test_path, target_size=(224, 224), color_mode='rgb', batch_size=batch_size, class_mode='sparse', shuffle=False, seed=42)
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max')
for layer in base_model.layers[:-5]:
layer.trainable = False
from keras.models import Model
from keras.layers import Activation, Dropout, Flatten, Dense
last_output = base_model.output
x = Dense(train_generator.num_classes, activation='softmax', name='softmax')(last_output)
model = Model(inputs=base_model.input, outputs=x)
model.summary()
from keras.optimizers import Adam
epochs = 10
learning_rate = 0.0001
opt = Adam(learning_rate=learning_rate, decay=learning_rate / (epochs * 0.5))
model.compile(loss='sparse_categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
history = model.fit(train_generator, validation_data=validation_generator, steps_per_epoch=train_generator.n // train_generator.batch_size, validation_steps=validation_generator.n // validation_generator.batch_size, epochs=10)
score = model.evaluate(test_generator)
predict = np.argmax(model.predict(test_generator), axis=1) | code |
122251788/cell_5 | [
"text_plain_output_1.png"
] | from keras.applications import vgg16
from keras.applications import vgg16
base_model = vgg16.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3), pooling='max') | code |
89126900/cell_4 | [
"text_plain_output_1.png"
] | import datetime
import pandas as pd
import numpy as np
import pandas as pd
import re
import datetime
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
input_dir = '/kaggle/input/tabular-playground-series-mar-2022/'
def handle_dates(df):
df['datetime'] = pd.to_datetime(df['time'])
df['time'] = [datetime.datetime.time(d) for d in df.loc[:, 'datetime']]
time_mapping = {t: ii for ii, t in enumerate(train.time.unique())}
df['time_number'] = [time_mapping[d] for d in df.loc[:, 'time']]
df['date'] = [datetime.datetime.date(d) for d in df.loc[:, 'datetime']]
df['weekday'] = [d.weekday() for d in df.datetime]
return df
train = pd.read_csv(input_dir + 'train.csv')
test = pd.read_csv(input_dir + 'test.csv')
train = handle_dates(train)
test = handle_dates(test)
print('Train shape: ' + str(train.shape) + ', Test shape:' + str(test.shape)) | code |
89126900/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import datetime
import pandas as pd
import numpy as np
import pandas as pd
import re
import datetime
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
input_dir = '/kaggle/input/tabular-playground-series-mar-2022/'
def handle_dates(df):
df['datetime'] = pd.to_datetime(df['time'])
df['time'] = [datetime.datetime.time(d) for d in df.loc[:, 'datetime']]
time_mapping = {t: ii for ii, t in enumerate(train.time.unique())}
df['time_number'] = [time_mapping[d] for d in df.loc[:, 'time']]
df['date'] = [datetime.datetime.date(d) for d in df.loc[:, 'datetime']]
df['weekday'] = [d.weekday() for d in df.datetime]
return df
train = pd.read_csv(input_dir + 'train.csv')
test = pd.read_csv(input_dir + 'test.csv')
train = handle_dates(train)
test = handle_dates(test)
train.loc[:, 'loc_dir_time'] = [str(x) + str(y) + direction + str(t) for _, x, y, direction, t in train.loc[:, ['x', 'y', 'direction', 'time_number']].itertuples()]
test.loc[:, 'loc_dir_time'] = [str(x) + str(y) + direction + str(t) for _, x, y, direction, t in test.loc[:, ['x', 'y', 'direction', 'time_number']].itertuples()]
Xy = train.loc[:, ['loc_dir_time', 'weekday', 'congestion', 'date']]
Xy = pd.pivot_table(Xy, values='congestion', index=['date', 'weekday'], columns=['loc_dir_time']).reset_index()
FINAL = Xy.query('date==datetime.date(1991,9,30)')
Xy = Xy.query('date<datetime.date(1991,9,30)')
Xy = Xy.fillna(Xy.groupby('weekday').transform('median')).set_index('date') | code |
50224683/cell_13 | [
"text_plain_output_1.png"
] | import cv2
import matplotlib.image as mpimg
import numpy as np
import os
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
IMAGE_WIDTH = 128
IMAGE_HEIGHT = 128
IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
IMAGE_CHANNELS = 3
filenames = os.listdir('/kaggle/working/train')
filenames
def load_data(filenames):
i = 50
X = []
y = []
for name in filenames:
img = mpimg.imread(os.path.join('/kaggle/working/train', name))
X.append(cv2.resize(img, IMAGE_SIZE))
cat = name.split('.')[0]
if cat == 'dog':
y.append(0)
else:
y.append(1)
i -= 1
if i <= 0:
break
return (X, y)
def refine_data(X):
X = np.array(X)
X = X.reshape(X.shape[0], -1)
X = X.T
return X
X = refine_data(X)
X.shape
layer_dims = [X.shape[0], 20, 7, 5, 1]
def initialize_parameters(layer_dims):
parameters = {}
L = len(layer_dims)
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1])
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
return parameters
parameters = initialize_parameters(layer_dims)
parameters | code |
50224683/cell_4 | [
"text_plain_output_1.png"
] | import zipfile
def extract_files(source_path, target_path):
zip_ref = zipfile.ZipFile(source_path, 'r')
zip_ref.extractall(target_path)
zip_ref.close()
extract_files('/kaggle/input/dogs-vs-cats/test1.zip', '/kaggle/working/')
extract_files('/kaggle/input/dogs-vs-cats/train.zip', '/kaggle/working/') | code |
50224683/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
print(os.listdir('../input/dogs-vs-cats')) | code |
50224683/cell_18 | [
"text_plain_output_1.png"
] | import cv2
import matplotlib.image as mpimg
import numpy as np
import os
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
IMAGE_WIDTH = 128
IMAGE_HEIGHT = 128
IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
IMAGE_CHANNELS = 3
filenames = os.listdir('/kaggle/working/train')
filenames
def load_data(filenames):
i = 50
X = []
y = []
for name in filenames:
img = mpimg.imread(os.path.join('/kaggle/working/train', name))
X.append(cv2.resize(img, IMAGE_SIZE))
cat = name.split('.')[0]
if cat == 'dog':
y.append(0)
else:
y.append(1)
i -= 1
if i <= 0:
break
return (X, y)
def refine_data(X):
X = np.array(X)
X = X.reshape(X.shape[0], -1)
X = X.T
return X
X = refine_data(X)
X.shape
layer_dims = [X.shape[0], 20, 7, 5, 1]
def initialize_parameters(layer_dims):
parameters = {}
L = len(layer_dims)
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1])
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
return parameters
parameters = initialize_parameters(layer_dims)
parameters
def linear_fwd(A, W, b):
Z = np.dot(W, A) + b
cache = (A, W, b)
return (Z, cache)
Z, cache = linear_fwd(X, parameters['W1'], parameters['b1'])
Z.shape
def sigmoid(Z):
A = 1 / (1 + np.exp(-Z))
cache = Z
return (A, Z)
def relu(Z):
A = np.maximum(Z, 0)
cache = Z
return (A, Z)
sigmoid(np.array([0, 2]))
relu(np.array([-50, 50])) | code |
50224683/cell_8 | [
"text_plain_output_1.png"
] | import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import os
import random
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
IMAGE_WIDTH = 128
IMAGE_HEIGHT = 128
IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
IMAGE_CHANNELS = 3
filenames = os.listdir('/kaggle/working/train')
filenames
def load_data(filenames):
i = 50
X = []
y = []
for name in filenames:
img = mpimg.imread(os.path.join('/kaggle/working/train', name))
X.append(cv2.resize(img, IMAGE_SIZE))
cat = name.split('.')[0]
if cat == 'dog':
y.append(0)
else:
y.append(1)
i -= 1
if i <= 0:
break
return (X, y)
sample = random.choice(filenames)
print(sample)
plt.imshow(mpimg.imread('/kaggle/working/train/' + sample))
plt.show() | code |
50224683/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import cv2
import matplotlib.image as mpimg
import numpy as np
import os
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
IMAGE_WIDTH = 128
IMAGE_HEIGHT = 128
IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
IMAGE_CHANNELS = 3
filenames = os.listdir('/kaggle/working/train')
filenames
def load_data(filenames):
i = 50
X = []
y = []
for name in filenames:
img = mpimg.imread(os.path.join('/kaggle/working/train', name))
X.append(cv2.resize(img, IMAGE_SIZE))
cat = name.split('.')[0]
if cat == 'dog':
y.append(0)
else:
y.append(1)
i -= 1
if i <= 0:
break
return (X, y)
def refine_data(X):
X = np.array(X)
X = X.reshape(X.shape[0], -1)
X = X.T
return X
X = refine_data(X)
X.shape
layer_dims = [X.shape[0], 20, 7, 5, 1]
def initialize_parameters(layer_dims):
parameters = {}
L = len(layer_dims)
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1])
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
return parameters
parameters = initialize_parameters(layer_dims)
parameters
def linear_fwd(A, W, b):
Z = np.dot(W, A) + b
cache = (A, W, b)
return (Z, cache)
Z, cache = linear_fwd(X, parameters['W1'], parameters['b1'])
Z.shape | code |
50224683/cell_17 | [
"text_plain_output_1.png"
] | import cv2
import matplotlib.image as mpimg
import numpy as np
import os
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
IMAGE_WIDTH = 128
IMAGE_HEIGHT = 128
IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
IMAGE_CHANNELS = 3
filenames = os.listdir('/kaggle/working/train')
filenames
def load_data(filenames):
i = 50
X = []
y = []
for name in filenames:
img = mpimg.imread(os.path.join('/kaggle/working/train', name))
X.append(cv2.resize(img, IMAGE_SIZE))
cat = name.split('.')[0]
if cat == 'dog':
y.append(0)
else:
y.append(1)
i -= 1
if i <= 0:
break
return (X, y)
def refine_data(X):
X = np.array(X)
X = X.reshape(X.shape[0], -1)
X = X.T
return X
X = refine_data(X)
X.shape
layer_dims = [X.shape[0], 20, 7, 5, 1]
def initialize_parameters(layer_dims):
parameters = {}
L = len(layer_dims)
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1])
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
return parameters
parameters = initialize_parameters(layer_dims)
parameters
def linear_fwd(A, W, b):
Z = np.dot(W, A) + b
cache = (A, W, b)
return (Z, cache)
Z, cache = linear_fwd(X, parameters['W1'], parameters['b1'])
Z.shape
def sigmoid(Z):
A = 1 / (1 + np.exp(-Z))
cache = Z
return (A, Z)
def relu(Z):
A = np.maximum(Z, 0)
cache = Z
return (A, Z)
sigmoid(np.array([0, 2])) | code |
50224683/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import cv2
import matplotlib.image as mpimg
import numpy as np
import os
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
IMAGE_WIDTH = 128
IMAGE_HEIGHT = 128
IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT)
IMAGE_CHANNELS = 3
filenames = os.listdir('/kaggle/working/train')
filenames
def load_data(filenames):
i = 50
X = []
y = []
for name in filenames:
img = mpimg.imread(os.path.join('/kaggle/working/train', name))
X.append(cv2.resize(img, IMAGE_SIZE))
cat = name.split('.')[0]
if cat == 'dog':
y.append(0)
else:
y.append(1)
i -= 1
if i <= 0:
break
return (X, y)
def refine_data(X):
X = np.array(X)
X = X.reshape(X.shape[0], -1)
X = X.T
return X
X = refine_data(X)
X.shape | code |
50224683/cell_5 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import zipfile
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import random
import os
filenames = os.listdir('/kaggle/working/train')
filenames | code |
2001025/cell_4 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
def get_xyz_data(filename):
pos_data = []
lat_data = []
with open(filename) as f:
for line in f.readlines():
x = line.split()
if x[0] == 'atom':
pos_data.append([np.array(x[1:4], dtype=np.float), x[4]])
elif x[0] == 'lattice_vector':
lat_data.append(np.array(x[1:4], dtype=np.float))
A = np.transpose(lat_data)
B = np.linalg.inv(A)
R = pos_data[0][0]
return np.matmul(B, R)
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
for c in train.columns:
if c.find('angle') != -1:
print(c)
train[c] = np.radians(train[c])
test[c] = np.radians(test[c])
traindata = np.zeros((train.shape[0], 3))
for i, idx in enumerate(train.id.values):
fn = '../input/train/{}/geometry.xyz'.format(idx)
data = get_xyz_data(fn)
traindata[i, :] = data
testdata = np.zeros((test.shape[0], 3))
for i, idx in enumerate(test.id.values):
fn = '../input/test/{}/geometry.xyz'.format(idx)
data = get_xyz_data(fn)
testdata[i, :] = data
train['a0'] = 0
train['a1'] = 0
train['a2'] = 0
train[['a0', 'a1', 'a2']] = traindata
test['a0'] = 0
test['a1'] = 0
test['a2'] = 0
test[['a0', 'a1', 'a2']] = testdata
train.number_of_total_atoms = np.log(train.number_of_total_atoms)
test.number_of_total_atoms = np.log(test.number_of_total_atoms)
alldata = pd.concat([train, test])
alldata = pd.concat([alldata.drop(['spacegroup'], axis=1), pd.get_dummies(alldata['spacegroup'], prefix='SG')], axis=1)
train = alldata[:train.shape[0]].copy()
test = alldata[train.shape[0]:].copy()
target_fe = np.log1p(train.formation_energy_ev_natom)
target_be = np.log1p(train.bandgap_energy_ev)
del train['formation_energy_ev_natom'], train['bandgap_energy_ev'], train['id'], test['id'] | code |
18100300/cell_4 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
label = ['a', 'b', 'c']
my_data = [10, 20, 30]
arr = np.array(my_data)
d = {'a': 10, 'b': 20, 'c': 30}
pd.Series(data=my_data) | code |
18100300/cell_5 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
label = ['a', 'b', 'c']
my_data = [10, 20, 30]
arr = np.array(my_data)
d = {'a': 10, 'b': 20, 'c': 30}
pd.Series(data=my_data)
pd.Series(data=my_data, index=label) | code |
33099888/cell_13 | [
"text_html_output_1.png"
] | import os
import pandas as pd
import requests
import unidecode
INPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
INPUT_DIR = '../input'
OUTPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
OUTPUT_DIR = '../output'
URL_OFFICIAL_DATASET = 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'
URL_SAMPLES_PROCESSED = 'https://e.infogram.com/api/live/flex/638d656c-c77b-4326-97d3-e50cb410c6ab/8188140c-8352-4994-85e3-2100a4dbd9db?'
with requests.get(URL_OFFICIAL_DATASET) as official_dataset:
with open(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'), 'wb') as dataset_file:
dataset_file.write(official_dataset.content)
covid19co = pd.read_csv(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'))
covid19co.shape
list(covid19co.columns.values)
covid19co.columns = [unidecode.unidecode(value).upper() for value in covid19co.columns]
covid19co.head() | code |
33099888/cell_11 | [
"text_html_output_1.png"
] | import os
import pandas as pd
import requests
INPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
INPUT_DIR = '../input'
OUTPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
OUTPUT_DIR = '../output'
URL_OFFICIAL_DATASET = 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'
URL_SAMPLES_PROCESSED = 'https://e.infogram.com/api/live/flex/638d656c-c77b-4326-97d3-e50cb410c6ab/8188140c-8352-4994-85e3-2100a4dbd9db?'
with requests.get(URL_OFFICIAL_DATASET) as official_dataset:
with open(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'), 'wb') as dataset_file:
dataset_file.write(official_dataset.content)
covid19co = pd.read_csv(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'))
covid19co.shape
covid19co.tail() | code |
33099888/cell_15 | [
"text_html_output_1.png"
] | import os
import pandas as pd
import requests
import unidecode
INPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
INPUT_DIR = '../input'
OUTPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
OUTPUT_DIR = '../output'
URL_OFFICIAL_DATASET = 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'
URL_SAMPLES_PROCESSED = 'https://e.infogram.com/api/live/flex/638d656c-c77b-4326-97d3-e50cb410c6ab/8188140c-8352-4994-85e3-2100a4dbd9db?'
with requests.get(URL_OFFICIAL_DATASET) as official_dataset:
with open(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'), 'wb') as dataset_file:
dataset_file.write(official_dataset.content)
covid19co = pd.read_csv(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'))
covid19co.shape
list(covid19co.columns.values)
covid19co.columns = [unidecode.unidecode(value).upper() for value in covid19co.columns]
# Update texto to title text format
for attr in covid19co.columns:
if covid19co[attr].dtypes == 'object':
covid19co[attr] = covid19co[attr].transform(lambda value: str(value).title())
# Show dataframe
covid19co.head()
if covid19co.isna().sum().sum() > 0:
covid19co.fillna(value='-', inplace=True)
covid19co.head() | code |
33099888/cell_16 | [
"text_html_output_1.png"
] | import os
import pandas as pd
import requests
import unidecode
INPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
INPUT_DIR = '../input'
OUTPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
OUTPUT_DIR = '../output'
URL_OFFICIAL_DATASET = 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'
URL_SAMPLES_PROCESSED = 'https://e.infogram.com/api/live/flex/638d656c-c77b-4326-97d3-e50cb410c6ab/8188140c-8352-4994-85e3-2100a4dbd9db?'
with requests.get(URL_OFFICIAL_DATASET) as official_dataset:
with open(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'), 'wb') as dataset_file:
dataset_file.write(official_dataset.content)
covid19co = pd.read_csv(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'))
covid19co.shape
list(covid19co.columns.values)
covid19co.columns = [unidecode.unidecode(value).upper() for value in covid19co.columns]
# Update texto to title text format
for attr in covid19co.columns:
if covid19co[attr].dtypes == 'object':
covid19co[attr] = covid19co[attr].transform(lambda value: str(value).title())
# Show dataframe
covid19co.head()
if covid19co.isna().sum().sum() > 0:
covid19co.fillna(value='-', inplace=True)
def setup_date(value):
try:
value = value.split('T')[0].split('-')
if len(value) == 3:
value = value[2] + '/' + value[1] + '/' + value[0]
else:
value = '-'
except IndexError:
value = '-'
if len(value) != 10 and len(value) != 1:
value = '-'
return value
date_columns = list(filter(lambda value: value.find('FECHA') != -1 or value.find('FIS') != -1, covid19co.columns))
for date_column in date_columns:
covid19co[date_column] = covid19co[date_column].transform(lambda value: setup_date(value))
covid19co.head() | code |
33099888/cell_14 | [
"text_html_output_1.png"
] | import os
import pandas as pd
import requests
import unidecode
INPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
INPUT_DIR = '../input'
OUTPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
OUTPUT_DIR = '../output'
URL_OFFICIAL_DATASET = 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'
URL_SAMPLES_PROCESSED = 'https://e.infogram.com/api/live/flex/638d656c-c77b-4326-97d3-e50cb410c6ab/8188140c-8352-4994-85e3-2100a4dbd9db?'
with requests.get(URL_OFFICIAL_DATASET) as official_dataset:
with open(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'), 'wb') as dataset_file:
dataset_file.write(official_dataset.content)
covid19co = pd.read_csv(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'))
covid19co.shape
list(covid19co.columns.values)
covid19co.columns = [unidecode.unidecode(value).upper() for value in covid19co.columns]
for attr in covid19co.columns:
if covid19co[attr].dtypes == 'object':
covid19co[attr] = covid19co[attr].transform(lambda value: str(value).title())
covid19co.head() | code |
33099888/cell_10 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import requests
INPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
INPUT_DIR = '../input'
OUTPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
OUTPUT_DIR = '../output'
URL_OFFICIAL_DATASET = 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'
URL_SAMPLES_PROCESSED = 'https://e.infogram.com/api/live/flex/638d656c-c77b-4326-97d3-e50cb410c6ab/8188140c-8352-4994-85e3-2100a4dbd9db?'
with requests.get(URL_OFFICIAL_DATASET) as official_dataset:
with open(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'), 'wb') as dataset_file:
dataset_file.write(official_dataset.content)
covid19co = pd.read_csv(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'))
covid19co.shape | code |
33099888/cell_12 | [
"text_plain_output_1.png"
] | import os
import pandas as pd
import requests
INPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
INPUT_DIR = '../input'
OUTPUT_DIR = './'
if os.path.split(os.path.abspath('.'))[-1] == 'src':
OUTPUT_DIR = '../output'
URL_OFFICIAL_DATASET = 'https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD'
URL_SAMPLES_PROCESSED = 'https://e.infogram.com/api/live/flex/638d656c-c77b-4326-97d3-e50cb410c6ab/8188140c-8352-4994-85e3-2100a4dbd9db?'
with requests.get(URL_OFFICIAL_DATASET) as official_dataset:
with open(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'), 'wb') as dataset_file:
dataset_file.write(official_dataset.content)
covid19co = pd.read_csv(os.path.join(OUTPUT_DIR, 'covid19co_official.csv'))
covid19co.shape
list(covid19co.columns.values) | code |
16115465/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_original = pd.read_csv('../input/train.csv')
structures_original = pd.read_csv('../input/structures.csv')
test_original = pd.read_csv('../input/test.csv')
tmp_merge = pd.DataFrame.merge(train_original, structures_original, how='left', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index'])
tmp_merge = tmp_merge.merge(structures_original, how='left', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index'])
tmp_merge.drop(columns=['atom_index_x', 'atom_index_y'], inplace=True)
tmp_merge.columns = ['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'scalar_coupling_constant', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1']
train = tmp_merge[['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1', 'scalar_coupling_constant']]
train.sort_values(by=['id', 'molecule_name'], inplace=True)
train.reset_index(inplace=True, drop=True)
tmp_merge = None
tmp_merge = pd.DataFrame.merge(test_original, structures_original, how='inner', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index'])
tmp_merge = tmp_merge.merge(structures_original, how='inner', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index'])
tmp_merge.drop(columns=['atom_index_x', 'atom_index_y'], inplace=True)
tmp_merge.columns = ['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1']
test = tmp_merge[['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1']]
test.sort_values(by=['id', 'molecule_name'], inplace=True)
test.reset_index(inplace=True, drop=True)
tmp_merge = None
del tmp_merge
moleculeCount = train.groupby(['molecule_name'])['atom_0'].nunique()
hydrogen = pd.DataFrame()
hydrogen['molecule_name'] = moleculeCount.index
hydrogen['hydrogenCnt'] = moleculeCount.values
moleculeCount = train[train['atom_nm_1'] == 'C'].groupby(['molecule_name'])['atom_1'].nunique()
carbon = pd.DataFrame()
carbon['molecule_name'] = moleculeCount.index
carbon['carbonCnt'] = moleculeCount.values
moleculeCount = train[train['atom_nm_1'] == 'N'].groupby(['molecule_name'])['atom_1'].nunique()
nitrogen = pd.DataFrame()
nitrogen['molecule_name'] = moleculeCount.index
nitrogen['nitrogenCnt'] = moleculeCount.values
moleculeCount = None
del moleculeCount
train = pd.DataFrame.merge(train, hydrogen, how='left', on='molecule_name')
train = train.merge(carbon, how='left', on='molecule_name')
train = train.merge(nitrogen, how='left', on='molecule_name')
train.carbonCnt.fillna(0, inplace=True)
train.nitrogenCnt.fillna(0, inplace=True)
train.head() | code |
16115465/cell_2 | [
"text_html_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16115465/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_original = pd.read_csv('../input/train.csv')
structures_original = pd.read_csv('../input/structures.csv')
test_original = pd.read_csv('../input/test.csv')
tmp_merge = pd.DataFrame.merge(train_original, structures_original, how='left', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index'])
tmp_merge = tmp_merge.merge(structures_original, how='left', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index'])
tmp_merge.drop(columns=['atom_index_x', 'atom_index_y'], inplace=True)
tmp_merge.columns = ['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'scalar_coupling_constant', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1']
train = tmp_merge[['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1', 'scalar_coupling_constant']]
train.sort_values(by=['id', 'molecule_name'], inplace=True)
train.reset_index(inplace=True, drop=True)
tmp_merge = None
tmp_merge = pd.DataFrame.merge(test_original, structures_original, how='inner', left_on=['molecule_name', 'atom_index_0'], right_on=['molecule_name', 'atom_index'])
tmp_merge = tmp_merge.merge(structures_original, how='inner', left_on=['molecule_name', 'atom_index_1'], right_on=['molecule_name', 'atom_index'])
tmp_merge.drop(columns=['atom_index_x', 'atom_index_y'], inplace=True)
tmp_merge.columns = ['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1']
test = tmp_merge[['id', 'molecule_name', 'atom_0', 'atom_1', 'type', 'atom_nm_0', 'x_0', 'y_0', 'z_0', 'atom_nm_1', 'x_1', 'y_1', 'z_1']]
test.sort_values(by=['id', 'molecule_name'], inplace=True)
test.reset_index(inplace=True, drop=True)
tmp_merge = None
del tmp_merge
moleculeCount = train.groupby(['molecule_name'])['atom_0'].nunique()
hydrogen = pd.DataFrame()
hydrogen['molecule_name'] = moleculeCount.index
hydrogen['hydrogenCnt'] = moleculeCount.values
moleculeCount = train[train['atom_nm_1'] == 'C'].groupby(['molecule_name'])['atom_1'].nunique()
carbon = pd.DataFrame()
carbon['molecule_name'] = moleculeCount.index
carbon['carbonCnt'] = moleculeCount.values
moleculeCount = train[train['atom_nm_1'] == 'N'].groupby(['molecule_name'])['atom_1'].nunique()
nitrogen = pd.DataFrame()
nitrogen['molecule_name'] = moleculeCount.index
nitrogen['nitrogenCnt'] = moleculeCount.values
moleculeCount = None
del moleculeCount
train = pd.DataFrame.merge(train, hydrogen, how='left', on='molecule_name')
train = train.merge(carbon, how='left', on='molecule_name')
train = train.merge(nitrogen, how='left', on='molecule_name')
train.carbonCnt.fillna(0, inplace=True)
train.nitrogenCnt.fillna(0, inplace=True)
moleculeCount = test.groupby(['molecule_name'])['atom_0'].nunique()
hydrogen = pd.DataFrame()
hydrogen['molecule_name'] = moleculeCount.index
hydrogen['hydrogenCnt'] = moleculeCount.values
moleculeCount = test[test['atom_nm_1'] == 'C'].groupby(['molecule_name'])['atom_1'].nunique()
carbon = pd.DataFrame()
carbon['molecule_name'] = moleculeCount.index
carbon['carbonCnt'] = moleculeCount.values
moleculeCount = test[test['atom_nm_1'] == 'N'].groupby(['molecule_name'])['atom_1'].nunique()
nitrogen = pd.DataFrame()
nitrogen['molecule_name'] = moleculeCount.index
nitrogen['nitrogenCnt'] = moleculeCount.values
moleculeCount = None
del moleculeCount
test = pd.DataFrame.merge(test, hydrogen, how='left', on='molecule_name')
test = test.merge(carbon, how='left', on='molecule_name')
test = test.merge(nitrogen, how='left', on='molecule_name')
test.carbonCnt.fillna(0, inplace=True)
test.nitrogenCnt.fillna(0, inplace=True)
test.head() | code |
32062535/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
pd.set_option('display.max_columns', 1000)
pd.set_option('display.max_rows', 1000)
train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv', parse_dates=['Date'])
test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv', parse_dates=['Date'])
countryinfo = pd.read_csv('../input/countryinfo/covid19countryinfo.csv', parse_dates=['quarantine', 'schools', 'publicplace', 'nonessential', 'gathering'])
states = pd.read_csv('../input/covid19-in-usa/us_states_covid19_daily.csv')
state_pops = pd.read_csv('../input/us-state-populations-2018/State Populations.csv')
dataset = train[train['Date'] == '2020-04-12'].sort_values(by=['ConfirmedCases'], ascending=False).head(100)
merged = dataset.merge(countryinfo, left_on=['Country_Region', 'Province_State'], right_on=['country', 'region'], how='left').merge(state_pops, left_on=['Province_State'], right_on=['State'], how='left')[['Id', 'Country_Region', 'Province_State', 'Date', 'ConfirmedCases', 'Fatalities', 'pop', 'density', 'quarantine', 'schools', 'publicplace', 'nonessential', 'gathering', '2018 Population']]
merged.head(20)
merged.dtypes | code |
32062535/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
pd.set_option('display.max_columns', 1000)
pd.set_option('display.max_rows', 1000)
train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv', parse_dates=['Date'])
test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv', parse_dates=['Date'])
countryinfo = pd.read_csv('../input/countryinfo/covid19countryinfo.csv', parse_dates=['quarantine', 'schools', 'publicplace', 'nonessential', 'gathering'])
states = pd.read_csv('../input/covid19-in-usa/us_states_covid19_daily.csv')
state_pops = pd.read_csv('../input/us-state-populations-2018/State Populations.csv')
state_pops.head() | code |
50240297/cell_21 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df.drop(main_df[main_df['Embarked'].isnull()].index, inplace=True, axis=0)
main_df_sex1 = main_df[['Survived', 'Sex']]
main_df_sex1 = main_df_sex1.value_counts().to_frame()
main_df_sex1.reset_index(drop=False, inplace=True)
main_df_sex1.rename(columns={0: 'Counts'}, inplace=True)
main_df_sex1['Survived'] = main_df_sex1['Survived'].replace([0, 1], ['Not-Survived', 'Survived'])
main_df_sex1.set_index(['Survived', 'Sex'], drop=True, inplace=True)
main_df_sex1
main_df_sex1.reset_index(drop=False, inplace=True)
for i in main_df_sex1.index:
if main_df_sex1.iloc[i]['Sex'] == 'male':
main_df_sex1.loc[i, '%'] = main_df_sex1.iloc[i]['Counts'] / 577 * 100
if main_df_sex1.iloc[i]['Sex'] == 'female':
main_df_sex1.loc[i, '%'] = main_df_sex1.iloc[i]['Counts'] / 312 * 100
main_df_sex1
male_stats = main_df_sex1[main_df_sex1['Sex'] == 'male']
male_stats.drop(['Counts'], axis=1, inplace=True)
male_stats.set_index(['Survived', 'Sex'], drop=True, inplace=True)
female_stats = main_df_sex1[main_df_sex1['Sex'] == 'female']
female_stats.drop(['Counts'], axis=1, inplace=True)
female_stats.set_index(['Survived', 'Sex'], drop=True, inplace=True) | code |
50240297/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df.drop(main_df[main_df['Embarked'].isnull()].index, inplace=True, axis=0)
main_df_sex = main_df['Sex'].value_counts()
main_df_sex | code |
50240297/cell_9 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df['Cabin'].unique | code |
50240297/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
main_df.info() | code |
50240297/cell_23 | [
"text_html_output_1.png"
] | import matplotlib as mpl
import matplotlib.pyplot as plt
final_sx_df.plot(kind='bar', rot=90, color='#FF0000')
plt.xlabel('Survival % based on sex')
plt.ylabel('% of Survived')
plt.title('Impact of sex of a passenger on their survival rate on Titanic')
plt.show() | code |
50240297/cell_30 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df.drop(main_df[main_df['Embarked'].isnull()].index, inplace=True, axis=0)
working_df = main_df
working_df.drop(['Name', 'Cabin', 'Ticket'], inplace=True, axis=1)
working_class_df = working_df[['Pclass', 'Survived']]
working_class_df
working_class_df_plot = working_class_df.groupby(['Pclass', 'Survived'])['Pclass'].count().to_frame()
working_class_df_plot.rename(columns={'Pclass': 'Count'}, inplace=True)
working_class_df_plot
working_class_df_plot.reset_index(inplace=True)
working_class_df_plot | code |
50240297/cell_20 | [
"text_html_output_1.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df.drop(main_df[main_df['Embarked'].isnull()].index, inplace=True, axis=0)
main_df_sex1 = main_df[['Survived', 'Sex']]
main_df_sex1 = main_df_sex1.value_counts().to_frame()
main_df_sex1.reset_index(drop=False, inplace=True)
main_df_sex1.rename(columns={0: 'Counts'}, inplace=True)
main_df_sex1['Survived'] = main_df_sex1['Survived'].replace([0, 1], ['Not-Survived', 'Survived'])
main_df_sex1.set_index(['Survived', 'Sex'], drop=True, inplace=True)
main_df_sex1
main_df_sex1.reset_index(drop=False, inplace=True)
for i in main_df_sex1.index:
if main_df_sex1.iloc[i]['Sex'] == 'male':
main_df_sex1.loc[i, '%'] = main_df_sex1.iloc[i]['Counts'] / 577 * 100
if main_df_sex1.iloc[i]['Sex'] == 'female':
main_df_sex1.loc[i, '%'] = main_df_sex1.iloc[i]['Counts'] / 312 * 100
main_df_sex1
final_sx_df = main_df_sex1[['Survived', 'Sex', '%']].sort_values(by=['Survived', 'Sex'])
final_sx_df.set_index(['Survived', 'Sex'], inplace=True, drop=True)
final_sx_df | code |
50240297/cell_26 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df.drop(main_df[main_df['Embarked'].isnull()].index, inplace=True, axis=0)
working_df = main_df
working_df.drop(['Name', 'Cabin', 'Ticket'], inplace=True, axis=1)
working_df | code |
50240297/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
print('Files Imported!') | code |
50240297/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df['Embarked'].unique | code |
50240297/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
main_df.drop(main_df[main_df['Embarked'].isnull()].index, inplace=True, axis=0)
main_df_sex1 = main_df[['Survived', 'Sex']]
main_df_sex1 = main_df_sex1.value_counts().to_frame()
main_df_sex1.reset_index(drop=False, inplace=True)
main_df_sex1.rename(columns={0: 'Counts'}, inplace=True)
main_df_sex1['Survived'] = main_df_sex1['Survived'].replace([0, 1], ['Not-Survived', 'Survived'])
main_df_sex1.set_index(['Survived', 'Sex'], drop=True, inplace=True)
main_df_sex1
main_df_sex1.reset_index(drop=False, inplace=True)
for i in main_df_sex1.index:
print(str(i))
if main_df_sex1.iloc[i]['Sex'] == 'male':
main_df_sex1.loc[i, '%'] = main_df_sex1.iloc[i]['Counts'] / 577 * 100
if main_df_sex1.iloc[i]['Sex'] == 'female':
main_df_sex1.loc[i, '%'] = main_df_sex1.iloc[i]['Counts'] / 312 * 100
main_df_sex1 | code |
50240297/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
50240297/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_file_path = '../input/titanic/train.csv'
gs_file_path = '../input/titanic/gender_submission.csv'
main_df = pd.read_csv(train_file_path)
gender_sub_df = pd.read_csv(gs_file_path)
cols1 = main_df.columns.to_list()
cols2 = gender_sub_df.columns.to_list()
print('************** Train Dataset *************************')
for i in cols1:
print('Column :' + i + ' count : ' + str(main_df[i].isnull().sum()))
print('************** Gender submission Dataset *************************')
for i in cols2:
print('Column :' + i + ' count : ' + str(gender_sub_df[i].isnull().sum())) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.