path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
17141744/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.tsv', sep='\t') test = pd.read_csv('../input/test.tsv', sep='\t') train['Sentiment'] = train['Sentiment'].apply(str) train['Sentiment'].unique()
code
17141744/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.tsv', sep='\t') test = pd.read_csv('../input/test.tsv', sep='\t') train['Sentiment'] = train['Sentiment'].apply(str) data = TextList.from_df(train, cols='Phrase').split_by_rand_pct(0.2).label_for_lm().databunch(bs=48) test_datalist = TextList.from_df(test, cols='Phrase', vocab=data.vocab) data_clas = TextList.from_df(train, cols='Phrase', vocab=data.vocab).split_by_rand_pct(0.2).label_from_df(cols='Sentiment', classes=['1', '2', '3', '4', '0'], label_cls=CategoryList).add_test(test_datalist).databunch(bs=32) data_clas.show_batch()
code
17141744/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.tsv', sep='\t') test = pd.read_csv('../input/test.tsv', sep='\t') train['Sentiment'] = train['Sentiment'].apply(str) data = TextList.from_df(train, cols='Phrase').split_by_rand_pct(0.2).label_for_lm().databunch(bs=48) test_datalist = TextList.from_df(test, cols='Phrase', vocab=data.vocab) data_clas = TextList.from_df(train, cols='Phrase', vocab=data.vocab).split_by_rand_pct(0.2).label_from_df(cols='Sentiment', classes=['1', '2', '3', '4', '0'], label_cls=CategoryList).add_test(test_datalist).databunch(bs=32) learn_classifier = text_classifier_learner(data_clas, AWD_LSTM, drop_mult=0.5) learn_classifier.load_encoder('fine_tuned_enc') learn_classifier.freeze() learn_classifier.lr_find()
code
17141744/cell_22
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.tsv', sep='\t') test = pd.read_csv('../input/test.tsv', sep='\t') train['Sentiment'] = train['Sentiment'].apply(str) test_id = test['PhraseId'] data = TextList.from_df(train, cols='Phrase').split_by_rand_pct(0.2).label_for_lm().databunch(bs=48) test_datalist = TextList.from_df(test, cols='Phrase', vocab=data.vocab) data_clas = TextList.from_df(train, cols='Phrase', vocab=data.vocab).split_by_rand_pct(0.2).label_from_df(cols='Sentiment', classes=['1', '2', '3', '4', '0'], label_cls=CategoryList).add_test(test_datalist).databunch(bs=32) learn_classifier = text_classifier_learner(data_clas, AWD_LSTM, drop_mult=0.5) learn_classifier.load_encoder('fine_tuned_enc') learn_classifier.freeze() learn_classifier.lr_find() learn_classifier.fit_one_cycle(10, 0.01) preds, target = learn_classifier.get_preds(DatasetType.Test, ordered=True) labels = np.argmax(preds, axis=1) submission = pd.DataFrame({'PhraseId': test_id, 'Sentiment': labels}) submission.to_csv('submission.csv', index=False) submission.head()
code
17141744/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.tsv', sep='\t') test = pd.read_csv('../input/test.tsv', sep='\t') train['Sentiment'] = train['Sentiment'].apply(str) data = TextList.from_df(train, cols='Phrase').split_by_rand_pct(0.2).label_for_lm().databunch(bs=48) learn = language_model_learner(data, AWD_LSTM, drop_mult=0.3) learn.lr_find() learn.recorder.plot()
code
17141744/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.tsv', sep='\t') test = pd.read_csv('../input/test.tsv', sep='\t') train['Sentiment'] = train['Sentiment'].apply(str) test.head()
code
121150745/cell_42
[ "text_plain_output_1.png" ]
from category_encoders import TargetEncoder from lightgbm import LGBMClassifier from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler X_num = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] X_cat = ['race', 'gender', 'age', 'admission_type_id', 'discharge_disposition_id', 'admission_source_id', 'max_glu_serum', 'A1Cresult', 'metformin', 'repaglinide', 'nateglinide', 'glimepiride', 'glipizide', 'glyburide', 'pioglitazone', 'rosiglitazone', 'insulin', 'change', 'diabetesMed', 'payer_code', 'medical_specialty'] X_diag = ['diag_1', 'diag_2', 'diag_3'] X_id = ['encounter_id', 'patient_nbr'] cat_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) num_pipeline = Pipeline([('median imputer', SimpleImputer(strategy='median')), ('scaler', MinMaxScaler())]) diag_pipeline = Pipeline([('diag_pipeline', MapDiagnosis()), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) id_pipeline = Pipeline([('encoder', patient_nbr_transformer()), ('scaler', MinMaxScaler())]) full_pipeline = ColumnTransformer(transformers=[('num', num_pipeline, X_num), ('cat', cat_pipeline, X_cat), ('id', id_pipeline, X_id), ('diag', diag_pipeline, X_diag)], remainder='drop') le = LabelEncoder() y_train_prepared = le.fit_transform(y_train) y_test_prepared = le.transform(y_test) X_train_prepared = full_pipeline.fit_transform(X_train, y_train_prepared) X_test_prepared = full_pipeline.transform(X_test) final_model = LGBMClassifier(random_state=42, max_depth=1) final_model.fit(X_train_prepared, y_train_prepared) preds_class1 = final_model.predict(X_train_prepared) preds_class2 = final_model.predict(X_test_prepared) print('test f1 score:', f1_score(preds_class2, y_test_prepared, average='micro'))
code
121150745/cell_4
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv'), na_values='?') print('The shape of the dataset is {}.\n\n'.format(df.shape)) df.head()
code
121150745/cell_30
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y_train_prepared = le.fit_transform(y_train) y_test_prepared = le.transform(y_test) print(y_test_prepared.shape)
code
121150745/cell_6
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv'), na_values='?') df.describe()
code
121150745/cell_29
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y_train_prepared = le.fit_transform(y_train) print(y_train_prepared.shape)
code
121150745/cell_39
[ "text_plain_output_1.png" ]
from category_encoders import TargetEncoder from lightgbm import LGBMClassifier from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.metrics import f1_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler X_num = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] X_cat = ['race', 'gender', 'age', 'admission_type_id', 'discharge_disposition_id', 'admission_source_id', 'max_glu_serum', 'A1Cresult', 'metformin', 'repaglinide', 'nateglinide', 'glimepiride', 'glipizide', 'glyburide', 'pioglitazone', 'rosiglitazone', 'insulin', 'change', 'diabetesMed', 'payer_code', 'medical_specialty'] X_diag = ['diag_1', 'diag_2', 'diag_3'] X_id = ['encounter_id', 'patient_nbr'] cat_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) num_pipeline = Pipeline([('median imputer', SimpleImputer(strategy='median')), ('scaler', MinMaxScaler())]) diag_pipeline = Pipeline([('diag_pipeline', MapDiagnosis()), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) id_pipeline = Pipeline([('encoder', patient_nbr_transformer()), ('scaler', MinMaxScaler())]) full_pipeline = ColumnTransformer(transformers=[('num', num_pipeline, X_num), ('cat', cat_pipeline, X_cat), ('id', id_pipeline, X_id), ('diag', diag_pipeline, X_diag)], remainder='drop') le = LabelEncoder() y_train_prepared = le.fit_transform(y_train) X_train_prepared = full_pipeline.fit_transform(X_train, y_train_prepared) final_model = LGBMClassifier(random_state=42, max_depth=1) final_model.fit(X_train_prepared, y_train_prepared) preds_class1 = final_model.predict(X_train_prepared) print('train f1 score:', f1_score(preds_class1, y_train_prepared, average='micro'))
code
121150745/cell_2
[ "text_html_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', None) import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import re from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import cross_val_score from sklearn.model_selection import StratifiedKFold from sklearn.metrics import f1_score from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import StackingClassifier from sklearn.ensemble import VotingClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from category_encoders import TargetEncoder from category_encoders import CatBoostEncoder from category_encoders import CountEncoder from xgboost import XGBClassifier from catboost import CatBoostClassifier from lightgbm import LGBMClassifier
code
121150745/cell_19
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv'), na_values='?') train_data = pd.concat([X_train, y_train], axis=1) train_data = train_data.drop(['encounter_id', 'patient_nbr'], axis=1) num_cols = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] train_data[num_cols].hist(figsize=(20, 20), bins=50)
code
121150745/cell_18
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv'), na_values='?') train_data = pd.concat([X_train, y_train], axis=1) train_data = train_data.drop(['encounter_id', 'patient_nbr'], axis=1) num_cols = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] train_data[num_cols].describe().T
code
121150745/cell_32
[ "text_plain_output_1.png" ]
from category_encoders import TargetEncoder from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler X_num = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] X_cat = ['race', 'gender', 'age', 'admission_type_id', 'discharge_disposition_id', 'admission_source_id', 'max_glu_serum', 'A1Cresult', 'metformin', 'repaglinide', 'nateglinide', 'glimepiride', 'glipizide', 'glyburide', 'pioglitazone', 'rosiglitazone', 'insulin', 'change', 'diabetesMed', 'payer_code', 'medical_specialty'] X_diag = ['diag_1', 'diag_2', 'diag_3'] X_id = ['encounter_id', 'patient_nbr'] cat_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) num_pipeline = Pipeline([('median imputer', SimpleImputer(strategy='median')), ('scaler', MinMaxScaler())]) diag_pipeline = Pipeline([('diag_pipeline', MapDiagnosis()), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) id_pipeline = Pipeline([('encoder', patient_nbr_transformer()), ('scaler', MinMaxScaler())]) full_pipeline = ColumnTransformer(transformers=[('num', num_pipeline, X_num), ('cat', cat_pipeline, X_cat), ('id', id_pipeline, X_id), ('diag', diag_pipeline, X_diag)], remainder='drop') le = LabelEncoder() y_train_prepared = le.fit_transform(y_train) X_train_prepared = full_pipeline.fit_transform(X_train, y_train_prepared) X_test_prepared = full_pipeline.transform(X_test) print(X_test_prepared.shape)
code
121150745/cell_47
[ "text_plain_output_1.png" ]
from collections import Counter import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv'), na_values='?') X = df.drop(['readmitted'], axis=1) y = df['readmitted'].copy() train_data = pd.concat([X_train, y_train], axis=1) class patient_nbr_transformer: def transform(self, X, y=None): new_data = X[['encounter_id', 'patient_nbr']].copy(deep=True) self.history = pd.concat([self.history, new_data]).drop_duplicates('encounter_id').reset_index(drop=True) countDat = self.history['patient_nbr'].value_counts() X_copy = X.copy(deep=True) X_copy['Count'] = X_copy['patient_nbr'].apply(lambda x: countDat[x]) history_copy = self.history.copy(deep=True) patient_nbr_array = history_copy['patient_nbr'].unique() history_copy['visit_number'] = history_copy['patient_nbr'] for i in patient_nbr_array: index_list = history_copy[history_copy['patient_nbr'] == i].sort_values(['patient_nbr', 'encounter_id'], axis=0, ascending=True, inplace=False).index.tolist() for j in range(1, len(index_list) + 1): history_copy['visit_number'][index_list[j - 1]] = j X_copy['visit_number'] = X_copy['encounter_id'] X_copy['visit_number'] = X_copy['visit_number'].apply(lambda x: history_copy.loc[history_copy['encounter_id'] == x, 'visit_number'].iloc[0]) return X_copy def fit(self, X, y=None): self.history = X[['encounter_id', 'patient_nbr']].copy(deep=True) return self test_df = pd.read_csv(os.path.join(dataset_path, 'test.csv'), na_values='?') from collections import Counter Counter(test_df['readmitted'])
code
121150745/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
from category_encoders import TargetEncoder from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler X_num = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] X_cat = ['race', 'gender', 'age', 'admission_type_id', 'discharge_disposition_id', 'admission_source_id', 'max_glu_serum', 'A1Cresult', 'metformin', 'repaglinide', 'nateglinide', 'glimepiride', 'glipizide', 'glyburide', 'pioglitazone', 'rosiglitazone', 'insulin', 'change', 'diabetesMed', 'payer_code', 'medical_specialty'] X_diag = ['diag_1', 'diag_2', 'diag_3'] X_id = ['encounter_id', 'patient_nbr'] cat_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) num_pipeline = Pipeline([('median imputer', SimpleImputer(strategy='median')), ('scaler', MinMaxScaler())]) diag_pipeline = Pipeline([('diag_pipeline', MapDiagnosis()), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) id_pipeline = Pipeline([('encoder', patient_nbr_transformer()), ('scaler', MinMaxScaler())]) full_pipeline = ColumnTransformer(transformers=[('num', num_pipeline, X_num), ('cat', cat_pipeline, X_cat), ('id', id_pipeline, X_id), ('diag', diag_pipeline, X_diag)], remainder='drop') le = LabelEncoder() y_train_prepared = le.fit_transform(y_train) X_train_prepared = full_pipeline.fit_transform(X_train, y_train_prepared) print(X_train_prepared.shape)
code
121150745/cell_5
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv'), na_values='?') df.info()
code
121150745/cell_36
[ "text_plain_output_1.png" ]
from category_encoders import TargetEncoder from lightgbm import LGBMClassifier from sklearn.compose import ColumnTransformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import MinMaxScaler X_num = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] X_cat = ['race', 'gender', 'age', 'admission_type_id', 'discharge_disposition_id', 'admission_source_id', 'max_glu_serum', 'A1Cresult', 'metformin', 'repaglinide', 'nateglinide', 'glimepiride', 'glipizide', 'glyburide', 'pioglitazone', 'rosiglitazone', 'insulin', 'change', 'diabetesMed', 'payer_code', 'medical_specialty'] X_diag = ['diag_1', 'diag_2', 'diag_3'] X_id = ['encounter_id', 'patient_nbr'] cat_pipeline = Pipeline([('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) num_pipeline = Pipeline([('median imputer', SimpleImputer(strategy='median')), ('scaler', MinMaxScaler())]) diag_pipeline = Pipeline([('diag_pipeline', MapDiagnosis()), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', TargetEncoder())]) id_pipeline = Pipeline([('encoder', patient_nbr_transformer()), ('scaler', MinMaxScaler())]) full_pipeline = ColumnTransformer(transformers=[('num', num_pipeline, X_num), ('cat', cat_pipeline, X_cat), ('id', id_pipeline, X_id), ('diag', diag_pipeline, X_diag)], remainder='drop') le = LabelEncoder() y_train_prepared = le.fit_transform(y_train) X_train_prepared = full_pipeline.fit_transform(X_train, y_train_prepared) final_model = LGBMClassifier(random_state=42, max_depth=1) final_model.fit(X_train_prepared, y_train_prepared)
code
89123748/cell_30
[ "text_plain_output_1.png" ]
!pip uninstall tensorflow -y
code
89123748/cell_45
[ "text_plain_output_1.png" ]
"""gc.collect() dataloader = Dataloader(train = train_idx, val = val_idx, batchsize=BATCHSIZE, buffersize=BUFFERSIZE) train_loader_tf, val_loader_tf = dataloader.return_loaders()"""
code
89123748/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
import warnings import tensorflow as tf import warnings warnings.filterwarnings('ignore')
code
89123748/cell_28
[ "text_plain_output_1.png" ]
!nvidia-smi
code
89123748/cell_35
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tqdm import tqdm import gc import glob import numpy as np import os import pandas as pd import tensorflow as tf import pandas as pd import numpy as np from tqdm import tqdm import os import glob tqdm.pandas() import matplotlib.pyplot as plt import gc train_path = '../input/ubiquant-market-prediction/train.csv' test_path = '../input/ubiquant-market-prediction/example_test.csv' # Lets first try to reduce the size of the dataframe by bringing it to right dtype and saving those chunks. def reduce_memory_usage(df, chunk): start_mem = df.memory_usage().sum() / 1024 ** 2 print("Initial Memory chunk: {:.3f}".format(start_mem)) for col in df.columns: type_ = df[col].dtype if str(type_) != "object": if str(type_)[:3] == "int": min_ = df[col].min() max_ = df[col].max() if min_ > np.iinfo(np.int8).min and max_ < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif min_ > np.iinfo(np.int16).min and max_ < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif min_ > np.iinfo(np.int32).min and max_ < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) else: df[col] = df[col].astype(np.int64) else: if min_ > np.finfo(np.float16).min and max_ < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif min_ > np.finfo(np.float32).min and max_ < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype("category") end_mem = df.memory_usage().sum() / 1024 ** 2 print("Final Memory chunk: {:.3f}".format(end_mem)) print("Reduced by: {:.2f}".format((start_mem - end_mem) / start_mem)) df.to_pickle(f"chunk_{chunk}.pkl") print(f"chunk_{chunk}.pkl","saved!") gc.collect() chunksize = 10 ** 6 for chunk_id, chunk in enumerate(pd.read_csv(train_path, chunksize=chunksize)): reduce_memory_usage(chunk, chunk_id) appended_list = [] path = glob.glob(os.path.join(os.curdir, 'chunk_*.pkl'), recursive=True) for item in tqdm(path): df = pd.read_pickle(item) appended_list.append(df) final_frame = pd.concat(appended_list, axis=0, ignore_index=True) int_col = [col for col in final_frame.columns if 'int' in str(final_frame[col].dtype)] int_col final_frame.drop(['row_id'], axis=1, inplace=True) target = final_frame['target'].values final_frame.drop(['target'], axis=1, inplace=True) important_features = [] for col in tqdm(final_frame.columns): pearson_relation = np.corrcoef(target, final_frame[col])[0, 1] if np.abs(pearson_relation) >= 0.6: important_features.append(col) def split_set_index(data, size): train_size = int(len(data) * size) index = tf.random.shuffle(tf.range(len(data))) return (index[:train_size], index[train_size:]) train_idx, val_idx = split_set_index(final_frame.values, size=0.8)
code
89123748/cell_31
[ "text_plain_output_1.png" ]
!pip install tensorflow-gpu==2.4.0
code
89123748/cell_14
[ "text_plain_output_1.png" ]
from tqdm import tqdm import gc import glob import numpy as np import os import pandas as pd import pandas as pd import numpy as np from tqdm import tqdm import os import glob tqdm.pandas() import matplotlib.pyplot as plt import gc train_path = '../input/ubiquant-market-prediction/train.csv' test_path = '../input/ubiquant-market-prediction/example_test.csv' # Lets first try to reduce the size of the dataframe by bringing it to right dtype and saving those chunks. def reduce_memory_usage(df, chunk): start_mem = df.memory_usage().sum() / 1024 ** 2 print("Initial Memory chunk: {:.3f}".format(start_mem)) for col in df.columns: type_ = df[col].dtype if str(type_) != "object": if str(type_)[:3] == "int": min_ = df[col].min() max_ = df[col].max() if min_ > np.iinfo(np.int8).min and max_ < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif min_ > np.iinfo(np.int16).min and max_ < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif min_ > np.iinfo(np.int32).min and max_ < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) else: df[col] = df[col].astype(np.int64) else: if min_ > np.finfo(np.float16).min and max_ < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif min_ > np.finfo(np.float32).min and max_ < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype("category") end_mem = df.memory_usage().sum() / 1024 ** 2 print("Final Memory chunk: {:.3f}".format(end_mem)) print("Reduced by: {:.2f}".format((start_mem - end_mem) / start_mem)) df.to_pickle(f"chunk_{chunk}.pkl") print(f"chunk_{chunk}.pkl","saved!") gc.collect() chunksize = 10 ** 6 for chunk_id, chunk in enumerate(pd.read_csv(train_path, chunksize=chunksize)): reduce_memory_usage(chunk, chunk_id) appended_list = [] path = glob.glob(os.path.join(os.curdir, 'chunk_*.pkl'), recursive=True) for item in tqdm(path): df = pd.read_pickle(item) appended_list.append(df) final_frame = pd.concat(appended_list, axis=0, ignore_index=True) final_frame.info()
code
89123748/cell_10
[ "text_plain_output_1.png" ]
import gc import numpy as np import pandas as pd train_path = '../input/ubiquant-market-prediction/train.csv' test_path = '../input/ubiquant-market-prediction/example_test.csv' # Lets first try to reduce the size of the dataframe by bringing it to right dtype and saving those chunks. def reduce_memory_usage(df, chunk): start_mem = df.memory_usage().sum() / 1024 ** 2 print("Initial Memory chunk: {:.3f}".format(start_mem)) for col in df.columns: type_ = df[col].dtype if str(type_) != "object": if str(type_)[:3] == "int": min_ = df[col].min() max_ = df[col].max() if min_ > np.iinfo(np.int8).min and max_ < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif min_ > np.iinfo(np.int16).min and max_ < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif min_ > np.iinfo(np.int32).min and max_ < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) else: df[col] = df[col].astype(np.int64) else: if min_ > np.finfo(np.float16).min and max_ < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif min_ > np.finfo(np.float32).min and max_ < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype("category") end_mem = df.memory_usage().sum() / 1024 ** 2 print("Final Memory chunk: {:.3f}".format(end_mem)) print("Reduced by: {:.2f}".format((start_mem - end_mem) / start_mem)) df.to_pickle(f"chunk_{chunk}.pkl") print(f"chunk_{chunk}.pkl","saved!") gc.collect() chunksize = 10 ** 6 for chunk_id, chunk in enumerate(pd.read_csv(train_path, chunksize=chunksize)): reduce_memory_usage(chunk, chunk_id)
code
89123748/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tqdm import tqdm import gc import glob import numpy as np import os import pandas as pd import pandas as pd import numpy as np from tqdm import tqdm import os import glob tqdm.pandas() import matplotlib.pyplot as plt import gc train_path = '../input/ubiquant-market-prediction/train.csv' test_path = '../input/ubiquant-market-prediction/example_test.csv' # Lets first try to reduce the size of the dataframe by bringing it to right dtype and saving those chunks. def reduce_memory_usage(df, chunk): start_mem = df.memory_usage().sum() / 1024 ** 2 print("Initial Memory chunk: {:.3f}".format(start_mem)) for col in df.columns: type_ = df[col].dtype if str(type_) != "object": if str(type_)[:3] == "int": min_ = df[col].min() max_ = df[col].max() if min_ > np.iinfo(np.int8).min and max_ < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif min_ > np.iinfo(np.int16).min and max_ < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif min_ > np.iinfo(np.int32).min and max_ < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) else: df[col] = df[col].astype(np.int64) else: if min_ > np.finfo(np.float16).min and max_ < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif min_ > np.finfo(np.float32).min and max_ < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype("category") end_mem = df.memory_usage().sum() / 1024 ** 2 print("Final Memory chunk: {:.3f}".format(end_mem)) print("Reduced by: {:.2f}".format((start_mem - end_mem) / start_mem)) df.to_pickle(f"chunk_{chunk}.pkl") print(f"chunk_{chunk}.pkl","saved!") gc.collect() chunksize = 10 ** 6 for chunk_id, chunk in enumerate(pd.read_csv(train_path, chunksize=chunksize)): reduce_memory_usage(chunk, chunk_id) appended_list = [] path = glob.glob(os.path.join(os.curdir, 'chunk_*.pkl'), recursive=True) for item in tqdm(path): df = pd.read_pickle(item) appended_list.append(df) final_frame = pd.concat(appended_list, axis=0, ignore_index=True)
code
2016761/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from pandas import DataFrame from pandas import Series import matplotlib.pyplot as plt data = pd.read_csv('../input/Top_hashtag.csv') data.shape
code
2016761/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2016761/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from pandas import DataFrame from pandas import Series import matplotlib.pyplot as plt data = pd.read_csv('../input/Top_hashtag.csv') data.shape x1 = data['Hashtag'] y1 = data['Posts'] l = data['Likes'] c = data['Comments'] xv = np.array(x1) yv = np.array(y1) plt.plot(xv, yv) plt.show()
code
130014911/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes thai_accident_df.describe().T import matplotlib.pyplot as plt import seaborn as sns thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df['year'], thai_accident_df['month'], thai_accident_df['day'] = (thai_accident_df['accident_date'].dt.year, thai_accident_df['accident_date'].dt.month, thai_accident_df['accident_date'].dt.day) def thai_accident_from_to(from_date=thai_accident_df['accident_date'].min(), to_date=thai_accident_df['accident_date'].max()): df = thai_accident_df[(thai_accident_df['accident_date'] >= from_date) & (thai_accident_df['accident_date'] < to_date)] return df counts = thai_accident_df.groupby(['year', 'month']).size().reset_index(name='count') this_data = thai_accident_from_to("2019-01-01", "2021-05-31") fig, ax = plt.subplots(2,2, figsize=(14,10)) fig.suptitle("Road Accident [2011-2022]") # 00 sns.histplot(ax=ax[0,0], x=this_data["year"], discrete=True) ax[0,0].set_title("Accident by year", y=1.05) ax[0,0].bar_label(ax[0,0].containers[1]) # 01 this_data["province_en"].value_counts()[:10].sort_values().plot(kind="barh", ax=ax[0,1]) ax[0,1].set_title("Top 10 accident by province") ax[0,1].bar_label(ax[0,1].containers[0], label_type="center", color="white") # 10 this_data["vehicle_type"].value_counts().sort_values().plot(kind="barh", ax=ax[1,0]) ax[1,0].set_title("Top accident by vehicle type") ax[1,0].bar_label(ax[1,0].containers[0]) # 11 ax[1,1] = sns.histplot(data=this_data, x="age",hue="gender", element="poly",discrete=True) ax[1,1].set_title("Accident by age and gender") plt.show() gender_df = this_data['gender'].value_counts().reset_index() gender_df heat_group = this_data.groupby(['month', 'day']).size().reset_index(name='count') heat = heat_group.pivot_table(index='month', columns='day', values='count', fill_value=0) fig, ax = plt.subplots(figsize=(15, 8)) sns.heatmap(heat, annot=True, ax=ax, fmt='.3g') ax.set_title('Accident by day and month', y=1.03) plt.show()
code
130014911/cell_9
[ "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes thai_accident_df.describe().T import matplotlib.pyplot as plt import seaborn as sns thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df['year'], thai_accident_df['month'], thai_accident_df['day'] = (thai_accident_df['accident_date'].dt.year, thai_accident_df['accident_date'].dt.month, thai_accident_df['accident_date'].dt.day) def thai_accident_from_to(from_date=thai_accident_df['accident_date'].min(), to_date=thai_accident_df['accident_date'].max()): df = thai_accident_df[(thai_accident_df['accident_date'] >= from_date) & (thai_accident_df['accident_date'] < to_date)] return df counts = thai_accident_df.groupby(['year', 'month']).size().reset_index(name='count') print(counts.tail()) plt.figure(figsize=(14, 7)) sns.lineplot(data=counts, x='month', y='count', hue='year') plt.show()
code
130014911/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() print(thai_accident_df.shape)
code
130014911/cell_6
[ "text_html_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes print(thai_accident_df.isnull().sum()) thai_accident_df.describe().T
code
130014911/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df.tail()
code
130014911/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes thai_accident_df.describe().T import matplotlib.pyplot as plt import seaborn as sns thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df['year'], thai_accident_df['month'], thai_accident_df['day'] = (thai_accident_df['accident_date'].dt.year, thai_accident_df['accident_date'].dt.month, thai_accident_df['accident_date'].dt.day) def thai_accident_from_to(from_date=thai_accident_df['accident_date'].min(), to_date=thai_accident_df['accident_date'].max()): df = thai_accident_df[(thai_accident_df['accident_date'] >= from_date) & (thai_accident_df['accident_date'] < to_date)] return df counts = thai_accident_df.groupby(['year', 'month']).size().reset_index(name='count') this_data = thai_accident_from_to('2019-01-01', '2021-05-31') fig, ax = plt.subplots(2, 2, figsize=(14, 10)) fig.suptitle('Road Accident [2011-2022]') sns.histplot(ax=ax[0, 0], x=this_data['year'], discrete=True) ax[0, 0].set_title('Accident by year', y=1.05) ax[0, 0].bar_label(ax[0, 0].containers[1]) this_data['province_en'].value_counts()[:10].sort_values().plot(kind='barh', ax=ax[0, 1]) ax[0, 1].set_title('Top 10 accident by province') ax[0, 1].bar_label(ax[0, 1].containers[0], label_type='center', color='white') this_data['vehicle_type'].value_counts().sort_values().plot(kind='barh', ax=ax[1, 0]) ax[1, 0].set_title('Top accident by vehicle type') ax[1, 0].bar_label(ax[1, 0].containers[0]) ax[1, 1] = sns.histplot(data=this_data, x='age', hue='gender', element='poly', discrete=True) ax[1, 1].set_title('Accident by age and gender') plt.show()
code
130014911/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import geopandas as gpd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130014911/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes thai_accident_df.describe().T import matplotlib.pyplot as plt import seaborn as sns thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df['year'], thai_accident_df['month'], thai_accident_df['day'] = (thai_accident_df['accident_date'].dt.year, thai_accident_df['accident_date'].dt.month, thai_accident_df['accident_date'].dt.day) def thai_accident_from_to(from_date=thai_accident_df['accident_date'].min(), to_date=thai_accident_df['accident_date'].max()): df = thai_accident_df[(thai_accident_df['accident_date'] >= from_date) & (thai_accident_df['accident_date'] < to_date)] return df print('Ready for Data visualization')
code
130014911/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') print(f'Chech Datatype\n{df.dtypes}') print('\nShape check') print(df.shape) print() print(df.isnull().sum()) df['official_death_date'] = pd.to_datetime(df['official_death_date'])
code
130014911/cell_10
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes thai_accident_df.describe().T import matplotlib.pyplot as plt import seaborn as sns thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df['year'], thai_accident_df['month'], thai_accident_df['day'] = (thai_accident_df['accident_date'].dt.year, thai_accident_df['accident_date'].dt.month, thai_accident_df['accident_date'].dt.day) def thai_accident_from_to(from_date=thai_accident_df['accident_date'].min(), to_date=thai_accident_df['accident_date'].max()): df = thai_accident_df[(thai_accident_df['accident_date'] >= from_date) & (thai_accident_df['accident_date'] < to_date)] return df counts = thai_accident_df.groupby(['year', 'month']).size().reset_index(name='count') print('Simple data below\n') print(f"All accident data from {thai_accident_df['accident_date'].min().date()} to {thai_accident_df['accident_date'].max().date()} \n{thai_accident_df.shape[0]} cases\n") print('# By Gender') gender_count = thai_accident_df['gender'].value_counts().reset_index() gender_count.columns = ['gender', 'g_count'] gender_count['%'] = gender_count['g_count'] / gender_count['g_count'].sum() * 100 print(gender_count) print('\n# By Vehicle type') print(thai_accident_df['vehicle_type'].value_counts()) print('\n# By province') print(thai_accident_df['province_en'].value_counts()) print(thai_accident_df['province_en'].value_counts().describe())
code
130014911/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import seaborn as sns df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes thai_accident_df.describe().T import matplotlib.pyplot as plt import seaborn as sns thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df['year'], thai_accident_df['month'], thai_accident_df['day'] = (thai_accident_df['accident_date'].dt.year, thai_accident_df['accident_date'].dt.month, thai_accident_df['accident_date'].dt.day) def thai_accident_from_to(from_date=thai_accident_df['accident_date'].min(), to_date=thai_accident_df['accident_date'].max()): df = thai_accident_df[(thai_accident_df['accident_date'] >= from_date) & (thai_accident_df['accident_date'] < to_date)] return df counts = thai_accident_df.groupby(['year', 'month']).size().reset_index(name='count') this_data = thai_accident_from_to("2019-01-01", "2021-05-31") fig, ax = plt.subplots(2,2, figsize=(14,10)) fig.suptitle("Road Accident [2011-2022]") # 00 sns.histplot(ax=ax[0,0], x=this_data["year"], discrete=True) ax[0,0].set_title("Accident by year", y=1.05) ax[0,0].bar_label(ax[0,0].containers[1]) # 01 this_data["province_en"].value_counts()[:10].sort_values().plot(kind="barh", ax=ax[0,1]) ax[0,1].set_title("Top 10 accident by province") ax[0,1].bar_label(ax[0,1].containers[0], label_type="center", color="white") # 10 this_data["vehicle_type"].value_counts().sort_values().plot(kind="barh", ax=ax[1,0]) ax[1,0].set_title("Top accident by vehicle type") ax[1,0].bar_label(ax[1,0].containers[0]) # 11 ax[1,1] = sns.histplot(data=this_data, x="age",hue="gender", element="poly",discrete=True) ax[1,1].set_title("Accident by age and gender") plt.show() gender_df = this_data['gender'].value_counts().reset_index() plt.pie(gender_df['gender'], labels=gender_df['index'], autopct='%1.1f%%', explode=(0.1, 0, 0)) plt.show() gender_df
code
130014911/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/thailand-fatal-road-accident/thailand_fatal_raod_accident_2011_2022.csv') df['official_death_date'] = pd.to_datetime(df['official_death_date']) thai_accident_df = df.dropna(subset='accident_date').copy() thai_accident_df['accident_date'] = pd.to_datetime(thai_accident_df['accident_date']) thai_accident_df.dtypes
code
90105207/cell_13
[ "text_plain_output_1.png" ]
list3 = [1, 3, 45, 67, 89, 0, 'five', 'six'] print(list3) list3.pop(4) print(list3, 'the element at index no 4 is removed') list3.pop(5) print(list3, ' the element at index 8 is removed')
code
90105207/cell_9
[ "text_plain_output_1.png" ]
lst = [4, 6, 4, 78, 32, 0, 1] print('unsorted lst', lst) lst.sort() print('sorted lst', lst)
code
90105207/cell_4
[ "text_plain_output_1.png" ]
MyList = ('This is my lis of fruits', 'Strawbery', 'Mango', 'Grapes', 'Malta') print(len(MyList))
code
90105207/cell_6
[ "text_plain_output_1.png" ]
Listtypes = ('Mudassir ID=', 27129, 'CGPA=', 3.14, 'Promoted=', True, 'Failed in any subjec?=', False) print(Listtypes)
code
90105207/cell_2
[ "text_plain_output_1.png" ]
MyList = ('This is my lis of fruits', 'Strawbery', 'Mango', 'Grapes', 'Malta') print(MyList)
code
90105207/cell_11
[ "text_plain_output_1.png" ]
lst2 = [2, 6, 90, 30, 5] print(lst2, 'Non appended') lst2.append(5) print(lst2, 'Appended') lst2.append('Digits') print(lst2, 'Appended') lst3 = [2, 6, 90, 30, 5, 'Mudassir', 'Khan'] lst3.append('Digits') print(lst3, 'Appended')
code
90105207/cell_7
[ "text_plain_output_1.png" ]
Listtypes = ('Mudassir ID=', 27129, 'CGPA=', 3.14, 'Promoted=', True, 'Failed in any subjec?=', False) print(Listtypes[-4:9]) print(Listtypes[7])
code
90105207/cell_14
[ "text_plain_output_1.png" ]
list4 = [10, 20, 30, 40, 50, 'Alpha', 'Beta', 'Gama'] print(list4) list4.remove('Gama') print(list4)
code
90105207/cell_10
[ "text_plain_output_1.png" ]
lst = [4, 6, 4, 78, 32, 0, 1] lst.sort() print('Unreversed', lst) lst.reverse() print('Reversed list', lst)
code
90105207/cell_12
[ "text_plain_output_1.png" ]
listt = [90, 3, 45, 67, 86, 89, 90, 100] print('uninserted', listt) listt.insert(1, 5) print('inserted=', listt, '5 element inserted at index 1') listt2 = [1, 2, 3, 4, 5, 6, 7, 'Sunday', 'Monday', 8, 9, 10] print(listt2, 'Without insertion') listt2.insert(7, 'Saturday') print(listt2, "With insertion of 'Saturday at the place of '7'")
code
128046373/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
library(tidyverse) library(here) library(skimr) library(janitor) library(lubridate) library(ggrepel) library(ggplot2)
code
88104085/cell_4
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_train.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] valid_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] images_path_dir = '../input/my-pre-data' datagen = ImageDataGenerator(samplewise_center=True, samplewise_std_normalization=True, rotation_range=30, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True, vertical_flip=True) valid_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=30) targetsize = (224, 224) classmode = 'binary' batchsize = 32 train_generator = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, shuffle=True) valid_generator = valid_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, shuffle=True)
code
88104085/cell_6
[ "text_plain_output_1.png" ]
from keras.models import Sequential,Model,load_model,Input from keras.preprocessing.image import ImageDataGenerator import math import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow as tf import tensorflow_addons as tfa import tensorflow_addons as tfa train_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_train.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] valid_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] images_path_dir = '../input/my-pre-data' datagen = ImageDataGenerator(samplewise_center=True, samplewise_std_normalization=True, rotation_range=30, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True, vertical_flip=True) valid_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=30) targetsize = (224, 224) classmode = 'binary' batchsize = 32 train_generator = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, shuffle=True) valid_generator = valid_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, shuffle=True) input_image = Input(shape=(224, 224, 3), name='original_img') dense_model_1 = tf.keras.applications.DenseNet169(include_top=False, weights='imagenet') x = dense_model_1(input_image, training=True) x = tf.keras.layers.Conv2D(20, (1, 1), activation='relu')(x) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dropout(0.3)(x) x = tf.keras.layers.Dense(42, activation='relu')(x) x = tf.keras.layers.Dropout(0.3)(x) preds_dense_net = tf.keras.layers.Dense(1, activation='sigmoid')(x) dense_model_2 = tf.keras.applications.ResNet50(weights='imagenet', include_top=False) y = dense_model_2(input_image, training=True) y = tf.keras.layers.Conv2D(20, (1, 1), activation='relu')(y) y = tf.keras.layers.GlobalAveragePooling2D()(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dropout(0.3)(y) y = tf.keras.layers.Dense(42, activation='relu')(y) y = tf.keras.layers.Dropout(0.3)(y) preds_resnet_net = tf.keras.layers.Dense(1, activation='sigmoid')(y) dense_model_3 = tf.keras.applications.MobileNet(include_top=False, weights='imagenet') z = dense_model_3(input_image, training=True) z = tf.keras.layers.Conv2D(20, (1, 1), activation='relu')(z) z = tf.keras.layers.GlobalAveragePooling2D()(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dropout(0.3)(z) z = tf.keras.layers.Dense(42, activation='relu')(z) z = tf.keras.layers.Dropout(0.3)(z) preds_mobi_net = tf.keras.layers.Dense(1, activation='sigmoid')(z) mean_nn_only = tf.reduce_mean(tf.stack([preds_mobi_net, preds_resnet_net, preds_dense_net], axis=0), axis=0) ensemble_model = tf.keras.models.Model(input_image, mean_nn_only) ensemble_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), loss='binary_crossentropy', metrics=[tfa.metrics.CohenKappa(num_classes=2), 'accuracy']) STEP_SIZE_TRAIN = math.ceil(train_generator.n / train_generator.batch_size) STEP_SIZE_VALID = math.ceil(valid_generator.n / valid_generator.batch_size) ensemble_model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=15, verbose=1) _, cohen, acc = ensemble_model.evaluate(train_generator, verbose=1) print(' accuracy overall: %.3f' % acc, end=' ') print('kappa overall: %.3f' % cohen)
code
88104085/cell_1
[ "text_plain_output_1.png" ]
import pandas as pd import os from glob import glob import tensorflow as tf import keras_tuner as kt from tensorflow import keras print('TensorFlow version is ', tf.__version__) import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import tensorflow_addons as tfa import numpy as np import pandas as pd import matplotlib.pyplot as plt from skimage.io import imread import os from glob import glob from sklearn.metrics import classification_report import numpy as np from sklearn.utils import shuffle from keras import regularizers from keras.models import Sequential, Model, load_model, Input from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, GlobalAveragePooling2D, MaxPooling2D from keras.preprocessing.image import ImageDataGenerator import keras.layers as Layers from keras.callbacks import EarlyStopping, ModelCheckpoint import keras.optimizers as Optimizer print(tf.__version__) from keras import applications from tensorflow import keras import math import tensorflow_addons as tfa import tensorflow as tf from sklearn.metrics import confusion_matrix, cohen_kappa_score from imblearn.metrics import sensitivity_specificity_support from sklearn.metrics import classification_report, roc_auc_score from imblearn.metrics import geometric_mean_score import seaborn as sn import pandas as pd from sklearn.datasets import make_blobs from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from keras.models import load_model from numpy import dstack
code
88104085/cell_8
[ "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from keras.models import Sequential,Model,load_model,Input from keras.preprocessing.image import ImageDataGenerator import math import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow as tf import tensorflow_addons as tfa import tensorflow_addons as tfa train_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_train.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] valid_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] images_path_dir = '../input/my-pre-data' datagen = ImageDataGenerator(samplewise_center=True, samplewise_std_normalization=True, rotation_range=30, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, horizontal_flip=True, vertical_flip=True) valid_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=30) targetsize = (224, 224) classmode = 'binary' batchsize = 32 train_generator = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, shuffle=True) valid_generator = valid_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, shuffle=True) input_image = Input(shape=(224, 224, 3), name='original_img') dense_model_1 = tf.keras.applications.DenseNet169(include_top=False, weights='imagenet') x = dense_model_1(input_image, training=True) x = tf.keras.layers.Conv2D(20, (1, 1), activation='relu')(x) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dropout(0.3)(x) x = tf.keras.layers.Dense(42, activation='relu')(x) x = tf.keras.layers.Dropout(0.3)(x) preds_dense_net = tf.keras.layers.Dense(1, activation='sigmoid')(x) dense_model_2 = tf.keras.applications.ResNet50(weights='imagenet', include_top=False) y = dense_model_2(input_image, training=True) y = tf.keras.layers.Conv2D(20, (1, 1), activation='relu')(y) y = tf.keras.layers.GlobalAveragePooling2D()(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dropout(0.3)(y) y = tf.keras.layers.Dense(42, activation='relu')(y) y = tf.keras.layers.Dropout(0.3)(y) preds_resnet_net = tf.keras.layers.Dense(1, activation='sigmoid')(y) dense_model_3 = tf.keras.applications.MobileNet(include_top=False, weights='imagenet') z = dense_model_3(input_image, training=True) z = tf.keras.layers.Conv2D(20, (1, 1), activation='relu')(z) z = tf.keras.layers.GlobalAveragePooling2D()(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dropout(0.3)(z) z = tf.keras.layers.Dense(42, activation='relu')(z) z = tf.keras.layers.Dropout(0.3)(z) preds_mobi_net = tf.keras.layers.Dense(1, activation='sigmoid')(z) mean_nn_only = tf.reduce_mean(tf.stack([preds_mobi_net, preds_resnet_net, preds_dense_net], axis=0), axis=0) ensemble_model = tf.keras.models.Model(input_image, mean_nn_only) ensemble_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), loss='binary_crossentropy', metrics=[tfa.metrics.CohenKappa(num_classes=2), 'accuracy']) STEP_SIZE_TRAIN = math.ceil(train_generator.n / train_generator.batch_size) STEP_SIZE_VALID = math.ceil(valid_generator.n / valid_generator.batch_size) ensemble_model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=15, verbose=1) _, cohen, acc = ensemble_model.evaluate(train_generator, verbose=1) train_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_test.csv' test_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) test_images_paths.columns = ['image_path'] test_images_paths['label'] = test_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') test_images_paths['category'] = test_images_paths['image_path'].apply(lambda x: x.split('/')[2]) datagen = ImageDataGenerator(rescale=1.0 / 255) test_images_paths_XR_FINGER = test_images_paths[test_images_paths['category'] == 'XR_FINGER'] test_generator_XR_FINGER = datagen.flow_from_dataframe(dataframe=test_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, shuffle=True) _, cohen, acc = ensemble_model.evaluate(test_generator_XR_FINGER, verbose=1) print(' accuracy XR_FINGER: %.3f' % acc, end=' ') print('kappa XR_FINGER: %.3f' % cohen)
code
88104085/cell_3
[ "text_plain_output_1.png" ]
import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_train.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] valid_img_csv = '../input/my-pre-data/MURA-v1.1/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] print('\n\npositive casses:', len(train_images_paths_XR_FINGER[train_images_paths_XR_FINGER['label'] == '1'])) print('\n\nnegative casses:', len(train_images_paths_XR_FINGER[train_images_paths_XR_FINGER['label'] == '0'])) valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] print('\n\npositive casses:', len(valid_images_paths_XR_FINGER[valid_images_paths_XR_FINGER['label'] == '1'])) print('\n\nnegative casses:', len(valid_images_paths_XR_FINGER[valid_images_paths_XR_FINGER['label'] == '0']))
code
34147702/cell_13
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, ReduceLROnPlateau from tensorflow.keras.layers import BatchNormalization,Activation,Dropout,Dense from tensorflow.keras.layers import Flatten, Conv2D, MaxPooling2D from tensorflow.keras.models import Sequential import cv2 import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import re import tensorflow as tf import numpy as np import pandas as pd import os def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) def load_images(path): images = [] bedroom = [] bathroom = [] frontal = [] kitchen = [] pattern = re.compile('([0-9]{1,3})_(bathroom|bedroom|frontal|kitchen).jpg$') files = os.listdir(path=path) files.sort() for filename in files: if pattern.match(filename) is None: continue img = cv2.imread(path + filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) if 'bedroom' in filename: bedroom.append(img) if 'bathroom' in filename: bathroom.append(img) if 'front' in filename: frontal.append(img) if 'kitchen' in filename: kitchen.append(img) for i in range(len(bedroom)): tiles = [[bedroom[i], bathroom[i]], [frontal[i], kitchen[i]]] image_concat = cv2.vconcat([cv2.hconcat(v_list) for v_list in tiles]) images.append(image_concat) return np.array(images) / 255.0 def create_cnn(): model = Sequential() inputShape = (IMAGE_SIZE * 2, IMAGE_SIZE * 2, 3) '\n 演習:kernel_sizeを変更してみてください\n ' kernel_size = (5, 5) model.add(Conv2D(filters=32, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal', input_shape=inputShape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=128, kernel_size=(2, 2), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) '\n 演習:もう一層Conv2D->MaxPooling2D->BatchNormalization->Dropoutを追加してください\n ' model.add(Flatten()) model.add(Dense(units=256, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=32, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=1, activation='linear')) model.compile(loss='mape', optimizer='adam', metrics=['mape']) return model def kfold(train_images_x, train_y, valid_images_x, valid_y): k = 1 train_x = train_images_x valid_x = valid_images_x num_val_samples = len(train_x) // k num_epochs = 32 all_scores = [] all_mape_histories = [] filepath = 'cnn_best_model.hdf5' es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=filepath, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') for i in range(k): val_data = train_x[i * num_val_samples:(i + 1) * num_val_samples] val_targets = train_y[i * num_val_samples:(i + 1) * num_val_samples] partial_train_data = np.concatenate([train_x[:i * num_val_samples], train_x[(i + 1) * num_val_samples:]], axis=0) partial_train_targets = np.concatenate([train_y[:i * num_val_samples], train_y[(i + 1) * num_val_samples:]], axis=0) model = create_cnn() history = model.fit(partial_train_data, partial_train_targets, validation_data=(valid_x, valid_y), epochs=num_epochs, batch_size=1, verbose=0, callbacks=[es, checkpoint, reduce_lr_loss]) val_mse, val_mape = model.evaluate(valid_x, valid_y, verbose=0) all_scores.append(val_mape) mape_history = history.history['val_mape'] all_mape_histories.append(mape_history) return (all_scores, all_mape_histories) def leave_one_out(train_image_x, train_y, valid_images_x, valid_y): es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=PATH_TO_HDF5, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') inputShape = (IMAGE_SIZE * 2, IMAGE_SIZE * 2, 3) model = create_cnn() model.fit(train_images_x, train_y, validation_data=(valid_images_x, valid_y), epochs=50, batch_size=16, callbacks=[es, checkpoint, reduce_lr_loss]) return model train = pd.read_csv(PATH_TO_TRAIN) train_images = load_images(PATH_TO_TRAIN_IMAGE) test_images = load_images(PATH_TO_TEST_IMAGE) train_x, valid_x, train_images_x, valid_images_x = train_test_split(train, train_images, test_size=PER_TEST) train_y = train_x['price'].values valid_y = valid_x['price'].values mean = train_x.mean(axis=0) train_x -= mean std = train_x.std(axis=0) train_x /= std valid_x -= mean valid_x /= std model = leave_one_out(train_images_x, train_y, valid_images_x, valid_y)
code
34147702/cell_11
[ "text_plain_output_1.png" ]
import cv2 import numpy as np import numpy as np # linear algebra import os import os import random import re import tensorflow as tf import numpy as np import pandas as pd import os def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) def load_images(path): images = [] bedroom = [] bathroom = [] frontal = [] kitchen = [] pattern = re.compile('([0-9]{1,3})_(bathroom|bedroom|frontal|kitchen).jpg$') files = os.listdir(path=path) files.sort() for filename in files: if pattern.match(filename) is None: continue img = cv2.imread(path + filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) if 'bedroom' in filename: bedroom.append(img) if 'bathroom' in filename: bathroom.append(img) if 'front' in filename: frontal.append(img) if 'kitchen' in filename: kitchen.append(img) for i in range(len(bedroom)): tiles = [[bedroom[i], bathroom[i]], [frontal[i], kitchen[i]]] image_concat = cv2.vconcat([cv2.hconcat(v_list) for v_list in tiles]) images.append(image_concat) return np.array(images) / 255.0 train_images = load_images(PATH_TO_TRAIN_IMAGE) test_images = load_images(PATH_TO_TEST_IMAGE) display(train_images.shape)
code
34147702/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34147702/cell_15
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, ReduceLROnPlateau from tensorflow.keras.layers import BatchNormalization,Activation,Dropout,Dense from tensorflow.keras.layers import Flatten, Conv2D, MaxPooling2D from tensorflow.keras.models import Sequential import cv2 import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import re import tensorflow as tf import numpy as np import pandas as pd import os def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) def load_images(path): images = [] bedroom = [] bathroom = [] frontal = [] kitchen = [] pattern = re.compile('([0-9]{1,3})_(bathroom|bedroom|frontal|kitchen).jpg$') files = os.listdir(path=path) files.sort() for filename in files: if pattern.match(filename) is None: continue img = cv2.imread(path + filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) if 'bedroom' in filename: bedroom.append(img) if 'bathroom' in filename: bathroom.append(img) if 'front' in filename: frontal.append(img) if 'kitchen' in filename: kitchen.append(img) for i in range(len(bedroom)): tiles = [[bedroom[i], bathroom[i]], [frontal[i], kitchen[i]]] image_concat = cv2.vconcat([cv2.hconcat(v_list) for v_list in tiles]) images.append(image_concat) return np.array(images) / 255.0 def create_cnn(): model = Sequential() inputShape = (IMAGE_SIZE * 2, IMAGE_SIZE * 2, 3) '\n 演習:kernel_sizeを変更してみてください\n ' kernel_size = (5, 5) model.add(Conv2D(filters=32, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal', input_shape=inputShape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=128, kernel_size=(2, 2), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) '\n 演習:もう一層Conv2D->MaxPooling2D->BatchNormalization->Dropoutを追加してください\n ' model.add(Flatten()) model.add(Dense(units=256, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=32, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=1, activation='linear')) model.compile(loss='mape', optimizer='adam', metrics=['mape']) return model def kfold(train_images_x, train_y, valid_images_x, valid_y): k = 1 train_x = train_images_x valid_x = valid_images_x num_val_samples = len(train_x) // k num_epochs = 32 all_scores = [] all_mape_histories = [] filepath = 'cnn_best_model.hdf5' es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=filepath, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') for i in range(k): val_data = train_x[i * num_val_samples:(i + 1) * num_val_samples] val_targets = train_y[i * num_val_samples:(i + 1) * num_val_samples] partial_train_data = np.concatenate([train_x[:i * num_val_samples], train_x[(i + 1) * num_val_samples:]], axis=0) partial_train_targets = np.concatenate([train_y[:i * num_val_samples], train_y[(i + 1) * num_val_samples:]], axis=0) model = create_cnn() history = model.fit(partial_train_data, partial_train_targets, validation_data=(valid_x, valid_y), epochs=num_epochs, batch_size=1, verbose=0, callbacks=[es, checkpoint, reduce_lr_loss]) val_mse, val_mape = model.evaluate(valid_x, valid_y, verbose=0) all_scores.append(val_mape) mape_history = history.history['val_mape'] all_mape_histories.append(mape_history) return (all_scores, all_mape_histories) def leave_one_out(train_image_x, train_y, valid_images_x, valid_y): es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=PATH_TO_HDF5, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') inputShape = (IMAGE_SIZE * 2, IMAGE_SIZE * 2, 3) model = create_cnn() model.fit(train_images_x, train_y, validation_data=(valid_images_x, valid_y), epochs=50, batch_size=16, callbacks=[es, checkpoint, reduce_lr_loss]) return model train = pd.read_csv(PATH_TO_TRAIN) train_images = load_images(PATH_TO_TRAIN_IMAGE) test_images = load_images(PATH_TO_TEST_IMAGE) train_x, valid_x, train_images_x, valid_images_x = train_test_split(train, train_images, test_size=PER_TEST) train_y = train_x['price'].values valid_y = valid_x['price'].values mean = train_x.mean(axis=0) train_x -= mean std = train_x.std(axis=0) train_x /= std valid_x -= mean valid_x /= std model = leave_one_out(train_images_x, train_y, valid_images_x, valid_y) y_pred = model.predict(test_images, batch_size=32) def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = (np.array(y_true), np.array(y_pred)) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 model.load_weights(PATH_TO_HDF5) valid_pred = model.predict(valid_images_x, batch_size=32).reshape((-1, 1)) mape_score = mean_absolute_percentage_error(valid_y, valid_pred) print(mape_score)
code
34147702/cell_16
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, ReduceLROnPlateau from tensorflow.keras.layers import BatchNormalization,Activation,Dropout,Dense from tensorflow.keras.layers import Flatten, Conv2D, MaxPooling2D from tensorflow.keras.models import Sequential import cv2 import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import re import tensorflow as tf import numpy as np import pandas as pd import os def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) def load_images(path): images = [] bedroom = [] bathroom = [] frontal = [] kitchen = [] pattern = re.compile('([0-9]{1,3})_(bathroom|bedroom|frontal|kitchen).jpg$') files = os.listdir(path=path) files.sort() for filename in files: if pattern.match(filename) is None: continue img = cv2.imread(path + filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) if 'bedroom' in filename: bedroom.append(img) if 'bathroom' in filename: bathroom.append(img) if 'front' in filename: frontal.append(img) if 'kitchen' in filename: kitchen.append(img) for i in range(len(bedroom)): tiles = [[bedroom[i], bathroom[i]], [frontal[i], kitchen[i]]] image_concat = cv2.vconcat([cv2.hconcat(v_list) for v_list in tiles]) images.append(image_concat) return np.array(images) / 255.0 def create_cnn(): model = Sequential() inputShape = (IMAGE_SIZE * 2, IMAGE_SIZE * 2, 3) '\n 演習:kernel_sizeを変更してみてください\n ' kernel_size = (5, 5) model.add(Conv2D(filters=32, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal', input_shape=inputShape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=128, kernel_size=(2, 2), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) '\n 演習:もう一層Conv2D->MaxPooling2D->BatchNormalization->Dropoutを追加してください\n ' model.add(Flatten()) model.add(Dense(units=256, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=32, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=1, activation='linear')) model.compile(loss='mape', optimizer='adam', metrics=['mape']) return model def kfold(train_images_x, train_y, valid_images_x, valid_y): k = 1 train_x = train_images_x valid_x = valid_images_x num_val_samples = len(train_x) // k num_epochs = 32 all_scores = [] all_mape_histories = [] filepath = 'cnn_best_model.hdf5' es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=filepath, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') for i in range(k): val_data = train_x[i * num_val_samples:(i + 1) * num_val_samples] val_targets = train_y[i * num_val_samples:(i + 1) * num_val_samples] partial_train_data = np.concatenate([train_x[:i * num_val_samples], train_x[(i + 1) * num_val_samples:]], axis=0) partial_train_targets = np.concatenate([train_y[:i * num_val_samples], train_y[(i + 1) * num_val_samples:]], axis=0) model = create_cnn() history = model.fit(partial_train_data, partial_train_targets, validation_data=(valid_x, valid_y), epochs=num_epochs, batch_size=1, verbose=0, callbacks=[es, checkpoint, reduce_lr_loss]) val_mse, val_mape = model.evaluate(valid_x, valid_y, verbose=0) all_scores.append(val_mape) mape_history = history.history['val_mape'] all_mape_histories.append(mape_history) return (all_scores, all_mape_histories) def leave_one_out(train_image_x, train_y, valid_images_x, valid_y): es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=PATH_TO_HDF5, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') inputShape = (IMAGE_SIZE * 2, IMAGE_SIZE * 2, 3) model = create_cnn() model.fit(train_images_x, train_y, validation_data=(valid_images_x, valid_y), epochs=50, batch_size=16, callbacks=[es, checkpoint, reduce_lr_loss]) return model train = pd.read_csv(PATH_TO_TRAIN) train_images = load_images(PATH_TO_TRAIN_IMAGE) test_images = load_images(PATH_TO_TEST_IMAGE) train_x, valid_x, train_images_x, valid_images_x = train_test_split(train, train_images, test_size=PER_TEST) train_y = train_x['price'].values valid_y = valid_x['price'].values mean = train_x.mean(axis=0) train_x -= mean std = train_x.std(axis=0) train_x /= std valid_x -= mean valid_x /= std model = leave_one_out(train_images_x, train_y, valid_images_x, valid_y) y_pred = model.predict(test_images, batch_size=32) print(y_pred)
code
34147702/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv(PATH_TO_TRAIN) display(train.shape) display(train.head())
code
34147702/cell_12
[ "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, ReduceLROnPlateau from tensorflow.keras.layers import BatchNormalization,Activation,Dropout,Dense from tensorflow.keras.layers import Flatten, Conv2D, MaxPooling2D from tensorflow.keras.models import Sequential import cv2 import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import re import tensorflow as tf import numpy as np import pandas as pd import os def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) def load_images(path): images = [] bedroom = [] bathroom = [] frontal = [] kitchen = [] pattern = re.compile('([0-9]{1,3})_(bathroom|bedroom|frontal|kitchen).jpg$') files = os.listdir(path=path) files.sort() for filename in files: if pattern.match(filename) is None: continue img = cv2.imread(path + filename) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) if 'bedroom' in filename: bedroom.append(img) if 'bathroom' in filename: bathroom.append(img) if 'front' in filename: frontal.append(img) if 'kitchen' in filename: kitchen.append(img) for i in range(len(bedroom)): tiles = [[bedroom[i], bathroom[i]], [frontal[i], kitchen[i]]] image_concat = cv2.vconcat([cv2.hconcat(v_list) for v_list in tiles]) images.append(image_concat) return np.array(images) / 255.0 def create_cnn(): model = Sequential() inputShape = (IMAGE_SIZE * 2, IMAGE_SIZE * 2, 3) '\n 演習:kernel_sizeを変更してみてください\n ' kernel_size = (5, 5) model.add(Conv2D(filters=32, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal', input_shape=inputShape)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=64, kernel_size=kernel_size, strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Conv2D(filters=128, kernel_size=(2, 2), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.1)) '\n 演習:もう一層Conv2D->MaxPooling2D->BatchNormalization->Dropoutを追加してください\n ' model.add(Flatten()) model.add(Dense(units=256, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=32, activation='relu', kernel_initializer='he_normal')) model.add(Dense(units=1, activation='linear')) model.compile(loss='mape', optimizer='adam', metrics=['mape']) return model def kfold(train_images_x, train_y, valid_images_x, valid_y): k = 1 train_x = train_images_x valid_x = valid_images_x num_val_samples = len(train_x) // k num_epochs = 32 all_scores = [] all_mape_histories = [] filepath = 'cnn_best_model.hdf5' es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=filepath, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') for i in range(k): val_data = train_x[i * num_val_samples:(i + 1) * num_val_samples] val_targets = train_y[i * num_val_samples:(i + 1) * num_val_samples] partial_train_data = np.concatenate([train_x[:i * num_val_samples], train_x[(i + 1) * num_val_samples:]], axis=0) partial_train_targets = np.concatenate([train_y[:i * num_val_samples], train_y[(i + 1) * num_val_samples:]], axis=0) model = create_cnn() history = model.fit(partial_train_data, partial_train_targets, validation_data=(valid_x, valid_y), epochs=num_epochs, batch_size=1, verbose=0, callbacks=[es, checkpoint, reduce_lr_loss]) val_mse, val_mape = model.evaluate(valid_x, valid_y, verbose=0) all_scores.append(val_mape) mape_history = history.history['val_mape'] all_mape_histories.append(mape_history) return (all_scores, all_mape_histories) train = pd.read_csv(PATH_TO_TRAIN) train_images = load_images(PATH_TO_TRAIN_IMAGE) test_images = load_images(PATH_TO_TEST_IMAGE) train_x, valid_x, train_images_x, valid_images_x = train_test_split(train, train_images, test_size=PER_TEST) train_y = train_x['price'].values valid_y = valid_x['price'].values display(train_images_x.shape) display(valid_images_x.shape) display(train_y.shape) display(valid_y.shape) mean = train_x.mean(axis=0) train_x -= mean std = train_x.std(axis=0) train_x /= std valid_x -= mean valid_x /= std
code
128045913/cell_9
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw from xml.dom import minidom import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xml.etree.ElementTree as ET import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) tree = ET.parse(xmls[4]) rough_string = ET.tostring(tree.getroot(), 'utf') reparsed = minidom.parseString(rough_string) data = {'Number': [], 'Age': [], 'Sex': [], 'Composition': [], 'Echogenicity': [], 'Margins': [], 'Calcifications': [], 'Tirads': [], 'Reportbacaf': [], 'Reporteco': []} svg_strings = {} for xml in xmls: tree = ET.parse(xml) root = tree.getroot() case_number = int(root.find('number').text) data['Number'].append(case_number) if root.find('age').text: data['Age'].append(int(root.find('age').text)) else: data['Age'].append(root.find('age').text) data['Sex'].append(root.find('sex').text) data['Composition'].append(root.find('composition').text) data['Echogenicity'].append(root.find('echogenicity').text) data['Margins'].append(root.find('margins').text) data['Calcifications'].append(root.find('calcifications').text) data['Tirads'].append(root.find('tirads').text) data['Reportbacaf'].append(root.find('reportbacaf').text) data['Reporteco'].append(root.find('reporteco').text) for mark in root.findall('mark'): image_idx = mark.find('image').text svg_strings[f'{case_number}_{image_idx}'] = mark.find('svg').text df = pd.DataFrame(data) df.sort_values(by='Number', inplace=True) df.set_index('Number', inplace=True) Image.open(jpgs[0]) unique_dims = [] for jpg in jpgs: dims = Image.open(jpg).size if dims not in unique_dims: unique_dims.append(dims) image_size = unique_dims[0] list(svg_strings.items())[0]
code
128045913/cell_4
[ "text_plain_output_1.png" ]
from xml.dom import minidom import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xml.etree.ElementTree as ET import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) tree = ET.parse(xmls[4]) rough_string = ET.tostring(tree.getroot(), 'utf') reparsed = minidom.parseString(rough_string) data = {'Number': [], 'Age': [], 'Sex': [], 'Composition': [], 'Echogenicity': [], 'Margins': [], 'Calcifications': [], 'Tirads': [], 'Reportbacaf': [], 'Reporteco': []} svg_strings = {} for xml in xmls: tree = ET.parse(xml) root = tree.getroot() case_number = int(root.find('number').text) data['Number'].append(case_number) if root.find('age').text: data['Age'].append(int(root.find('age').text)) else: data['Age'].append(root.find('age').text) data['Sex'].append(root.find('sex').text) data['Composition'].append(root.find('composition').text) data['Echogenicity'].append(root.find('echogenicity').text) data['Margins'].append(root.find('margins').text) data['Calcifications'].append(root.find('calcifications').text) data['Tirads'].append(root.find('tirads').text) data['Reportbacaf'].append(root.find('reportbacaf').text) data['Reporteco'].append(root.find('reporteco').text) for mark in root.findall('mark'): image_idx = mark.find('image').text svg_strings[f'{case_number}_{image_idx}'] = mark.find('svg').text df = pd.DataFrame(data) df.sort_values(by='Number', inplace=True) df.set_index('Number', inplace=True) df.count()
code
128045913/cell_2
[ "text_plain_output_1.png" ]
from xml.dom import minidom import os import xml.etree.ElementTree as ET import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) tree = ET.parse(xmls[4]) rough_string = ET.tostring(tree.getroot(), 'utf') reparsed = minidom.parseString(rough_string) print(reparsed.toprettyxml(indent=' '))
code
128045913/cell_11
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw from xml.dom import minidom import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xml.etree.ElementTree as ET import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) tree = ET.parse(xmls[4]) rough_string = ET.tostring(tree.getroot(), 'utf') reparsed = minidom.parseString(rough_string) data = {'Number': [], 'Age': [], 'Sex': [], 'Composition': [], 'Echogenicity': [], 'Margins': [], 'Calcifications': [], 'Tirads': [], 'Reportbacaf': [], 'Reporteco': []} svg_strings = {} for xml in xmls: tree = ET.parse(xml) root = tree.getroot() case_number = int(root.find('number').text) data['Number'].append(case_number) if root.find('age').text: data['Age'].append(int(root.find('age').text)) else: data['Age'].append(root.find('age').text) data['Sex'].append(root.find('sex').text) data['Composition'].append(root.find('composition').text) data['Echogenicity'].append(root.find('echogenicity').text) data['Margins'].append(root.find('margins').text) data['Calcifications'].append(root.find('calcifications').text) data['Tirads'].append(root.find('tirads').text) data['Reportbacaf'].append(root.find('reportbacaf').text) data['Reporteco'].append(root.find('reporteco').text) for mark in root.findall('mark'): image_idx = mark.find('image').text svg_strings[f'{case_number}_{image_idx}'] = mark.find('svg').text df = pd.DataFrame(data) df.sort_values(by='Number', inplace=True) df.set_index('Number', inplace=True) Image.open(jpgs[0]) unique_dims = [] for jpg in jpgs: dims = Image.open(jpg).size if dims not in unique_dims: unique_dims.append(dims) image_size = unique_dims[0] list(svg_strings.items())[0] count = 0 corrupted_xmls = [] for svg_name, svg_str in svg_strings.items(): count += 1 img = Image.new('1', image_size) draw = ImageDraw.Draw(img) if svg_str is not None: try: svg_content = eval(svg_str) except SyntaxError: corrupted_xmls.append(svg_name) for area in svg_content: points = [(point['x'], point['y']) for point in area['points']] draw.polygon(points, fill='white') img.save(f'/kaggle/working/mask_{svg_name}.jpg') corrupted_xmls
code
128045913/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) print(f'{len(xmls)} xmls + {len(jpgs)} jpgs = {len(paths)} paths)')
code
128045913/cell_7
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw import os import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) Image.open(jpgs[0])
code
128045913/cell_8
[ "text_plain_output_1.png" ]
from PIL import Image, ImageDraw import os import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) Image.open(jpgs[0]) unique_dims = [] for jpg in jpgs: dims = Image.open(jpg).size if dims not in unique_dims: unique_dims.append(dims) print(unique_dims)
code
128045913/cell_3
[ "image_output_1.png" ]
from xml.dom import minidom import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import xml.etree.ElementTree as ET import numpy as np import pandas as pd import xml.etree.ElementTree as ET from xml.dom import minidom import os paths = [] for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: paths.append(os.path.join(dirname, filename)) xmls = [] jpgs = [] for path in paths: if path.split('.')[-1] == 'xml': xmls.append(path) if path.split('.')[-1] == 'jpg': jpgs.append(path) tree = ET.parse(xmls[4]) rough_string = ET.tostring(tree.getroot(), 'utf') reparsed = minidom.parseString(rough_string) data = {'Number': [], 'Age': [], 'Sex': [], 'Composition': [], 'Echogenicity': [], 'Margins': [], 'Calcifications': [], 'Tirads': [], 'Reportbacaf': [], 'Reporteco': []} svg_strings = {} for xml in xmls: tree = ET.parse(xml) root = tree.getroot() case_number = int(root.find('number').text) data['Number'].append(case_number) if root.find('age').text: data['Age'].append(int(root.find('age').text)) else: data['Age'].append(root.find('age').text) data['Sex'].append(root.find('sex').text) data['Composition'].append(root.find('composition').text) data['Echogenicity'].append(root.find('echogenicity').text) data['Margins'].append(root.find('margins').text) data['Calcifications'].append(root.find('calcifications').text) data['Tirads'].append(root.find('tirads').text) data['Reportbacaf'].append(root.find('reportbacaf').text) data['Reporteco'].append(root.find('reporteco').text) for mark in root.findall('mark'): image_idx = mark.find('image').text svg_strings[f'{case_number}_{image_idx}'] = mark.find('svg').text df = pd.DataFrame(data) df.sort_values(by='Number', inplace=True) df.set_index('Number', inplace=True) df.head()
code
128045913/cell_12
[ "text_html_output_1.png" ]
(197, 205)
code
105211362/cell_21
[ "text_html_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df['Rating'].sort_values(ascending=False)
code
105211362/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df['Type'].unique()
code
105211362/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_genres.sort_values(ascending=False, inplace=True) print(df_genres)
code
105211362/cell_25
[ "image_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df_rated8_movie = df[(df['Rating'] > 8) & (df['Type'] == 'Movie')] df_rated8_movie[['Title', 'Rating']].sort_values(by='Rating', ascending=False)
code
105211362/cell_4
[ "text_html_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.info()
code
105211362/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df_rated8_tv = df[(df['Rating'] > 8) & (df['Type'] == 'TV')] df_rated8_tv[['Title', 'Rating']].sort_values(by='Rating', ascending=False)
code
105211362/cell_29
[ "text_html_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df_rated8_special = df[(df['Rating'] > 8) & (df['Type'] == 'Special')] df_rated8_special[['Title', 'Rating']].sort_values(by='Rating', ascending=False)
code
105211362/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_genres.sort_values(ascending=False, inplace=True) df_genres = df_genres[df_genres > 100] fig = plt.figure(figsize=(10, 6)) ax = sns.barplot(x=df_genres.values, y=df_genres.index) ax.set(ylabel='theme') plt.show()
code
105211362/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_genres.sort_values(ascending=False, inplace=True) df_genres = df_genres[df_genres > 100] fig = plt.figure(figsize=(10,6)) ax = sns.barplot(x=df_genres.values, y=df_genres.index) ax.set(ylabel='theme') plt.show() df_types = df['Type'].value_counts() df_types df_types = df_types[df_types > 100] fig = plt.figure(figsize=(10, 4)) sns.barplot(x=df_types.values, y=df_types.index) plt.show()
code
105211362/cell_45
[ "image_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df_fans = df[['Title', 'Studio', 'Members']] df_fans['Members'].unique()
code
105211362/cell_18
[ "image_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df_types = df['Type'].value_counts() df_types
code
105211362/cell_32
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_genres.sort_values(ascending=False, inplace=True) df_genres = df_genres[df_genres > 100] fig = plt.figure(figsize=(10,6)) ax = sns.barplot(x=df_genres.values, y=df_genres.index) ax.set(ylabel='theme') plt.show() df_types = df['Type'].value_counts() df_types df_types = df_types[df_types > 100] fig = plt.figure(figsize=(10,4)) sns.barplot(x=df_types.values, y=df_types.index) plt.show() df_rated8_tv = df[(df['Rating'] > 8) & (df['Type'] == 'TV')] df_rated8_tv[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_movie = df[(df['Rating'] > 8) & (df['Type'] == 'Movie')] df_rated8_movie[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_ova = df[(df['Rating'] > 8) & (df['Type'] == 'OVA')] df_rated8_ova[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_special = df[(df['Rating'] > 8) & (df['Type'] == 'Special')] df_rated8_special[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_tv_genres = df_rated8_tv[genres].sum().sort_values(ascending=False) df_rated8_movie_genres = df_rated8_movie[genres].sum().sort_values(ascending=False) df_rated8_ova_genres = df_rated8_ova[genres].sum().sort_values(ascending=False) df_rated8_special_genres = df_rated8_special[genres].sum().sort_values(ascending=False) df_rated8_genre_count = pd.DataFrame({'TV': df_rated8_tv_genres, 'Movie': df_rated8_movie_genres, 'OVA': df_rated8_ova_genres, 'Special': df_rated8_special_genres}) df_rated8_genre_count fig = plt.figure(figsize=(9, 7)) sns.heatmap(df_rated8_genre_count, vmax=14, cmap='Blues', annot=True) plt.show()
code
105211362/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df[df['Type'] == '-']
code
105211362/cell_38
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_genres.sort_values(ascending=False, inplace=True) df_genres = df_genres[df_genres > 100] fig = plt.figure(figsize=(10,6)) ax = sns.barplot(x=df_genres.values, y=df_genres.index) ax.set(ylabel='theme') plt.show() df_types = df['Type'].value_counts() df_types df_types = df_types[df_types > 100] fig = plt.figure(figsize=(10,4)) sns.barplot(x=df_types.values, y=df_types.index) plt.show() df_rated8_tv = df[(df['Rating'] > 8) & (df['Type'] == 'TV')] df_rated8_tv[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_movie = df[(df['Rating'] > 8) & (df['Type'] == 'Movie')] df_rated8_movie[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_ova = df[(df['Rating'] > 8) & (df['Type'] == 'OVA')] df_rated8_ova[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_special = df[(df['Rating'] > 8) & (df['Type'] == 'Special')] df_rated8_special[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_tv_genres = df_rated8_tv[genres].sum().sort_values(ascending=False) df_rated8_movie_genres = df_rated8_movie[genres].sum().sort_values(ascending=False) df_rated8_ova_genres = df_rated8_ova[genres].sum().sort_values(ascending=False) df_rated8_special_genres = df_rated8_special[genres].sum().sort_values(ascending=False) df_rated8_genre_count = pd.DataFrame({'TV': df_rated8_tv_genres, 'Movie': df_rated8_movie_genres, 'OVA': df_rated8_ova_genres, 'Special': df_rated8_special_genres}) df_rated8_genre_count fig = plt.figure(figsize=(9,7)) sns.heatmap(df_rated8_genre_count, vmax=14, cmap="Blues", annot=True) plt.show() df_members = df[['Title', 'Rating', 'Studio', 'Members'] + genres] df_members = df_members[df_members['Members'] >= 100000] df_members.sort_values(by='Members', ascending=False).head(10) df_members_rated8 = df_members[df_members['Rating'] > 8] df_members_rated8.sort_values(by='Members', ascending=False).head(10) df_members_rated8_genres = df_members_rated8[genres].sum().sort_values(ascending=False) df_members_rated8_genres = df_members_rated8_genres[df_members_rated8_genres > 5] fig = plt.figure(figsize=(10, 6)) ax = sns.barplot(x=df_members_rated8_genres.values, y=df_members_rated8_genres.index) ax.set(ylabel='theme') plt.show()
code
105211362/cell_43
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_genres.sort_values(ascending=False, inplace=True) df_genres = df_genres[df_genres > 100] fig = plt.figure(figsize=(10,6)) ax = sns.barplot(x=df_genres.values, y=df_genres.index) ax.set(ylabel='theme') plt.show() df_types = df['Type'].value_counts() df_types df_types = df_types[df_types > 100] fig = plt.figure(figsize=(10,4)) sns.barplot(x=df_types.values, y=df_types.index) plt.show() df_rated8_tv = df[(df['Rating'] > 8) & (df['Type'] == 'TV')] df_rated8_tv[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_movie = df[(df['Rating'] > 8) & (df['Type'] == 'Movie')] df_rated8_movie[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_ova = df[(df['Rating'] > 8) & (df['Type'] == 'OVA')] df_rated8_ova[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_special = df[(df['Rating'] > 8) & (df['Type'] == 'Special')] df_rated8_special[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_tv_genres = df_rated8_tv[genres].sum().sort_values(ascending=False) df_rated8_movie_genres = df_rated8_movie[genres].sum().sort_values(ascending=False) df_rated8_ova_genres = df_rated8_ova[genres].sum().sort_values(ascending=False) df_rated8_special_genres = df_rated8_special[genres].sum().sort_values(ascending=False) df_rated8_genre_count = pd.DataFrame({'TV': df_rated8_tv_genres, 'Movie': df_rated8_movie_genres, 'OVA': df_rated8_ova_genres, 'Special': df_rated8_special_genres}) df_rated8_genre_count fig = plt.figure(figsize=(9,7)) sns.heatmap(df_rated8_genre_count, vmax=14, cmap="Blues", annot=True) plt.show() df_members = df[['Title', 'Rating', 'Studio', 'Members'] + genres] df_members = df_members[df_members['Members'] >= 100000] df_members.sort_values(by='Members', ascending=False).head(10) df_members_rated8 = df_members[df_members['Rating'] > 8] df_members_rated8.sort_values(by='Members', ascending=False).head(10) df_members_rated8_genres = df_members_rated8[genres].sum().sort_values(ascending=False) df_members_rated8_genres = df_members_rated8_genres[df_members_rated8_genres>5] fig = plt.figure(figsize=(10,6)) ax = sns.barplot(x=df_members_rated8_genres.values, y=df_members_rated8_genres.index) ax.set(ylabel='theme') plt.show() df_studio = df['Studio'].value_counts() df_studio = df_studio[df_studio > 10] df_studio.drop(['Detective', 'Adult Cast'], inplace=True) fig = plt.figure(figsize=(10, 6)) sns.barplot(x=df_studio.values, y=df_studio.index) plt.show()
code
105211362/cell_31
[ "text_html_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_rated8_tv = df[(df['Rating'] > 8) & (df['Type'] == 'TV')] df_rated8_tv[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_movie = df[(df['Rating'] > 8) & (df['Type'] == 'Movie')] df_rated8_movie[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_ova = df[(df['Rating'] > 8) & (df['Type'] == 'OVA')] df_rated8_ova[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_special = df[(df['Rating'] > 8) & (df['Type'] == 'Special')] df_rated8_special[['Title', 'Rating']].sort_values(by='Rating', ascending=False) df_rated8_tv_genres = df_rated8_tv[genres].sum().sort_values(ascending=False) df_rated8_movie_genres = df_rated8_movie[genres].sum().sort_values(ascending=False) df_rated8_ova_genres = df_rated8_ova[genres].sum().sort_values(ascending=False) df_rated8_special_genres = df_rated8_special[genres].sum().sort_values(ascending=False) df_rated8_genre_count = pd.DataFrame({'TV': df_rated8_tv_genres, 'Movie': df_rated8_movie_genres, 'OVA': df_rated8_ova_genres, 'Special': df_rated8_special_genres}) df_rated8_genre_count
code
105211362/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns df_rated8_ova = df[(df['Rating'] > 8) & (df['Type'] == 'OVA')] df_rated8_ova[['Title', 'Rating']].sort_values(by='Rating', ascending=False)
code
105211362/cell_37
[ "text_html_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_members = df[['Title', 'Rating', 'Studio', 'Members'] + genres] df_members = df_members[df_members['Members'] >= 100000] df_members.sort_values(by='Members', ascending=False).head(10) df_members_rated8 = df_members[df_members['Rating'] > 8] df_members_rated8.sort_values(by='Members', ascending=False).head(10)
code
105211362/cell_5
[ "image_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns
code
105211362/cell_36
[ "text_html_output_1.png" ]
import pandas as pd filepath = '../input/mysteryanimemanga/myanimelist-anime-mystery-detective-cleaned.csv' df = pd.read_csv(filepath) df.columns genres = ['Gourmet', 'Sports', 'Adventure', 'Avant Garde', 'Supernatural', 'Suspense', 'Slice of Life', 'Sci-Fi', 'Horror', 'Comedy', 'Drama', 'Fantasy', 'Action'] df_genres = df[genres].sum() df_members = df[['Title', 'Rating', 'Studio', 'Members'] + genres] df_members = df_members[df_members['Members'] >= 100000] df_members.sort_values(by='Members', ascending=False).head(10)
code
17118075/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/heart.csv') df.shape df.target.value_counts() dataset = pd.get_dummies(df, columns=['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal']) X = dataset.drop('target', axis=1) y = df['target'] cross_val_score(KNeighborsClassifier(n_neighbors=15), X, y)
code
17118075/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/heart.csv') df.shape df.target.value_counts()
code
17118075/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/heart.csv') df.head()
code
17118075/cell_34
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression lr = LogisticRegression() lr.fit(X_train, y_train) pred = lr.predict(X_test) pred lr.score(X_test, y_test)
code