path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
88079861/cell_26 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
from keras.models import Sequential, Model
from keras.regularizers import l2
from tensorflow.keras import Sequential
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Flatten, Dense,BatchNormalization,Dropout,Input
cnn_model = Sequential()
cnn_model = models.Sequential()
cnn_model.add(layers.Conv2D(300, (5, 5), kernel_regularizer=l2(5e-05), padding='Same', activation='relu', input_shape=(150, 150, 3)))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(200, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(100, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(64, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2)) | code |
88079861/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
image_path = '../input/chest-xray-pneumonia/chest_xray/'
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
test_images, test_labels = load_images_from_directory(image_path, 'test') | code |
88079861/cell_19 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
seed = 42
np.random.seed = seed
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images = np.asarray(train_images, np.float32) / 255
train_labels = np.asarray(train_labels)
for i in range(30):
plt.xticks([])
plt.yticks([])
plt.title('Train Labels Visualization')
sns.countplot(x=train_labels, palette='flare')
plt.show() | code |
88079861/cell_18 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images = np.asarray(train_images, np.float32) / 255
train_labels = np.asarray(train_labels)
plt.figure(figsize=(15, 10))
plt.suptitle('Train Images', fontsize=20)
for i in range(30):
plt.subplot(5, 6, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.xlabel(get_Label(train_labels[i]))
plt.imshow(train_images[i], cmap=plt.cm.binary) | code |
88079861/cell_32 | [
"text_plain_output_1.png"
] | from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
from keras.models import Sequential, Model
from keras.regularizers import l2
from sklearn.utils import shuffle
from tensorflow.keras import Sequential
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.callbacks import EarlyStopping,ReduceLROnPlateau
from tensorflow.keras.layers import Flatten, Dense,BatchNormalization,Dropout,Input
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images = np.asarray(train_images, np.float32) / 255
train_labels = np.asarray(train_labels)
test_images = np.asarray(test_images, np.float32) / 255
test_labels = np.asarray(test_labels)
train_labels = to_categorical(train_labels, 2)
test_labels = to_categorical(test_labels, 2)
batch_size = 16
image_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.2, height_shift_range=0.2, width_shift_range=0.2, horizontal_flip=True, rotation_range=20)
test_data_gen = ImageDataGenerator()
val_data_gen = ImageDataGenerator()
train = image_gen.flow(train_images, train_labels, shuffle=True, batch_size=batch_size)
test = test_data_gen.flow(test_images, test_labels, shuffle=True, batch_size=batch_size)
cnn_model = Sequential()
cnn_model = models.Sequential()
cnn_model.add(layers.Conv2D(300, (5, 5), kernel_regularizer=l2(5e-05), padding='Same', activation='relu', input_shape=(150, 150, 3)))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(200, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(100, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(64, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Flatten())
cnn_model.add(layers.Dense(100, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Dense(64, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.3))
cnn_model.add(layers.Dense(2, activation='sigmoid'))
cnn_model.summary()
cnn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
early = EarlyStopping(monitor='loss', mode='min', min_delta=0, patience=10, verbose=1, restore_best_weights=True)
learning_rate_reduction = ReduceLROnPlateau(monitor='loss', patience=2, verbose=1, factor=0.3, min_lr=1e-06)
callbacks_list = [early, learning_rate_reduction]
n_training_samples = len(train)
n_validation_samples = len(test)
history = cnn_model.fit(train, epochs=50, validation_data=test, validation_steps=n_validation_samples // batch_size, shuffle=True, callbacks=callbacks_list)
score, acc = cnn_model.evaluate(test, batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc) | code |
88079861/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images = np.asarray(train_images, np.float32) / 255
train_labels = np.asarray(train_labels)
test_images = np.asarray(test_images, np.float32) / 255
test_labels = np.asarray(test_labels)
print('test Images shape is : ', test_images.shape)
print('test Labels shape is : ', test_labels.shape) | code |
88079861/cell_31 | [
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
from keras.models import Sequential, Model
from keras.regularizers import l2
from sklearn.utils import shuffle
from tensorflow.keras import Sequential
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.callbacks import EarlyStopping,ReduceLROnPlateau
from tensorflow.keras.layers import Flatten, Dense,BatchNormalization,Dropout,Input
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images = np.asarray(train_images, np.float32) / 255
train_labels = np.asarray(train_labels)
test_images = np.asarray(test_images, np.float32) / 255
test_labels = np.asarray(test_labels)
train_labels = to_categorical(train_labels, 2)
test_labels = to_categorical(test_labels, 2)
batch_size = 16
image_gen = ImageDataGenerator(shear_range=0.2, zoom_range=0.2, height_shift_range=0.2, width_shift_range=0.2, horizontal_flip=True, rotation_range=20)
test_data_gen = ImageDataGenerator()
val_data_gen = ImageDataGenerator()
train = image_gen.flow(train_images, train_labels, shuffle=True, batch_size=batch_size)
test = test_data_gen.flow(test_images, test_labels, shuffle=True, batch_size=batch_size)
cnn_model = Sequential()
cnn_model = models.Sequential()
cnn_model.add(layers.Conv2D(300, (5, 5), kernel_regularizer=l2(5e-05), padding='Same', activation='relu', input_shape=(150, 150, 3)))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(200, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(100, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(64, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Flatten())
cnn_model.add(layers.Dense(100, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Dense(64, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.3))
cnn_model.add(layers.Dense(2, activation='sigmoid'))
cnn_model.summary()
cnn_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
early = EarlyStopping(monitor='loss', mode='min', min_delta=0, patience=10, verbose=1, restore_best_weights=True)
learning_rate_reduction = ReduceLROnPlateau(monitor='loss', patience=2, verbose=1, factor=0.3, min_lr=1e-06)
callbacks_list = [early, learning_rate_reduction]
n_training_samples = len(train)
n_validation_samples = len(test)
history = cnn_model.fit(train, epochs=50, validation_data=test, validation_steps=n_validation_samples // batch_size, shuffle=True, callbacks=callbacks_list) | code |
88079861/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images = np.asarray(train_images, np.float32) / 255
train_labels = np.asarray(train_labels)
print('train Images shape is : ', train_images.shape)
print('train Labels shape is : ', train_labels.shape) | code |
88079861/cell_22 | [
"image_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
seed = 42
np.random.seed = seed
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images = np.asarray(train_images, np.float32) / 255
train_labels = np.asarray(train_labels)
test_images = np.asarray(test_images, np.float32) / 255
test_labels = np.asarray(test_labels)
for i in range(30):
plt.xticks([])
plt.yticks([])
for i in range(30):
plt.xticks([])
plt.yticks([])
plt.title('Test Labels Visualization')
sns.countplot(x=test_labels, palette='flare')
plt.show() | code |
88079861/cell_10 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
image_path = '../input/chest-xray-pneumonia/chest_xray/'
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
train_images, train_labels = load_images_from_directory(image_path, 'train') | code |
88079861/cell_27 | [
"text_plain_output_1.png"
] | from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout, Lambda
from keras.models import Sequential, Model
from keras.regularizers import l2
from tensorflow.keras import Sequential
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Flatten, Dense,BatchNormalization,Dropout,Input
cnn_model = Sequential()
cnn_model = models.Sequential()
cnn_model.add(layers.Conv2D(300, (5, 5), kernel_regularizer=l2(5e-05), padding='Same', activation='relu', input_shape=(150, 150, 3)))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(200, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(100, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Conv2D(64, (3, 3), kernel_regularizer=l2(5e-05), padding='same', activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.2))
cnn_model.add(layers.MaxPooling2D(2, 2))
cnn_model.add(layers.Flatten())
cnn_model.add(layers.Dense(100, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(layers.Dense(64, activation='relu'))
cnn_model.add(BatchNormalization())
cnn_model.add(Dropout(0.3))
cnn_model.add(layers.Dense(2, activation='sigmoid'))
cnn_model.summary() | code |
88079861/cell_12 | [
"text_plain_output_1.png"
] | from sklearn.utils import shuffle
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
seed = 42
np.random.seed = seed
image_path = '../input/chest-xray-pneumonia/chest_xray/'
labels = ['NORMAL', 'PNEUMONIA']
folders = ['train', 'test', 'val']
def load_images_from_directory(main_dirictory, foldername):
total_labels = []
images = []
total_normal = 0
total_pneumonia = 0
path = os.path.join(main_dirictory, foldername)
for lab in labels:
full_path = os.path.join(path, lab)
for image in os.listdir(full_path):
img = cv2.imread(full_path + '/' + image)
img = cv2.resize(img, (150, 150))
images.append(img)
if lab == 'NORMAL':
label = 0
total_normal += 1
elif lab == 'PNEUMONIA':
label = 1
total_pneumonia += 1
total_labels.append(label)
return shuffle(images, total_labels, random_state=756349782)
def get_Label(number):
labels = {0: 'NORMAL', 1: 'PNEUMONIA'}
return labels[number]
def plot_predection(model_name):
images = []
count = 0
for i, files in enumerate(val_images):
img = cv2.resize(files, (150, 150))
img = np.expand_dims(files, axis=0)
feature = model_name.predict(img)
predection = np.argmax(feature, axis=1)
plt.xticks([])
plt.yticks([])
count += 1
if count == 30:
break
def freezing_layers(model_name):
for layer in model_name.layers:
layer.trainable = False
val_images, val_labels = load_images_from_directory(image_path, 'val') | code |
17118345/cell_21 | [
"application_vnd.jupyter.stderr_output_1.png"
] | print('Salvando modelo em arquivo \n')
mp = '.\\boston_model.h5'
model.save(mp) | code |
17118345/cell_23 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import numpy as np
import tensorflow as tf
np.random.seed(4)
tf.set_random_seed(13)
mp = '.\\boston_model.h5'
model.save(mp)
np.set_printoptions(precision=4)
unknown = np.full(shape=(1, 13), fill_value=0.6, dtype=np.float32)
unknown[0][3] = -1.0
predicted = model.predict(unknown)
print('Usando o modelo para previsão de preço médio de casa para as caracteristicas: ')
print(unknown)
print('\nO preço médio será [dolares]: ')
print(predicted * 10000) | code |
17118345/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import keras as K
import tensorflow as tf
import pandas as pd
import seaborn as sns
import os
from matplotlib import pyplot as plt
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | code |
105212265/cell_4 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
files.append(fp)
dfs = [pd.read_csv(f, sep=',', encoding='utf-8') for f in files]
[df.shape for df in dfs] | code |
105212265/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
print(fp)
files.append(fp) | code |
105212265/cell_18 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
files.append(fp)
dfs = [pd.read_csv(f, sep=',', encoding='utf-8') for f in files]
[df.shape for df in dfs]
for i, df in enumerate(dfs):
dfs[i] = df.drop(columns=['SourceIP', 'DestinationIP', 'SourcePort', 'DestinationPort', 'TimeStamp'])
for df in dfs:
df.replace([np.inf, -np.inf], np.nan, inplace=True)
df.dropna(inplace=True)
[df.shape for df in dfs]
for df in dfs:
df.drop_duplicates(inplace=True)
df.reset_index(inplace=True, drop=True)
[df.shape for df in dfs]
pd.concat(objs=[dfs[0], dfs[1]], ignore_index=True, copy=False).to_parquet('L1-DoH-NonDoH.parquet')
pd.concat(objs=[dfs[2], dfs[3]], ignore_index=True, copy=False).to_parquet('L2-BenignDoH-MaliciousDoH.parquet')
df = pd.read_parquet('/kaggle/working/L1-DoH-NonDoH.parquet')
df.Label.value_counts()
df = pd.read_parquet('/kaggle/working/L2-BenignDoH-MaliciousDoH.parquet')
df.Label.value_counts() | code |
105212265/cell_17 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
files.append(fp)
dfs = [pd.read_csv(f, sep=',', encoding='utf-8') for f in files]
[df.shape for df in dfs]
for i, df in enumerate(dfs):
dfs[i] = df.drop(columns=['SourceIP', 'DestinationIP', 'SourcePort', 'DestinationPort', 'TimeStamp'])
for df in dfs:
df.replace([np.inf, -np.inf], np.nan, inplace=True)
df.dropna(inplace=True)
[df.shape for df in dfs]
for df in dfs:
df.drop_duplicates(inplace=True)
df.reset_index(inplace=True, drop=True)
[df.shape for df in dfs]
pd.concat(objs=[dfs[0], dfs[1]], ignore_index=True, copy=False).to_parquet('L1-DoH-NonDoH.parquet')
pd.concat(objs=[dfs[2], dfs[3]], ignore_index=True, copy=False).to_parquet('L2-BenignDoH-MaliciousDoH.parquet')
df = pd.read_parquet('/kaggle/working/L1-DoH-NonDoH.parquet')
df.Label.value_counts() | code |
105212265/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
files.append(fp)
dfs = [pd.read_csv(f, sep=',', encoding='utf-8') for f in files]
[df.shape for df in dfs]
for i, df in enumerate(dfs):
dfs[i] = df.drop(columns=['SourceIP', 'DestinationIP', 'SourcePort', 'DestinationPort', 'TimeStamp'])
for df in dfs:
df.replace([np.inf, -np.inf], np.nan, inplace=True)
df.dropna(inplace=True)
[df.shape for df in dfs]
for df in dfs:
print(df.duplicated().sum(), 'fully duplicate rows to remove')
df.drop_duplicates(inplace=True)
df.reset_index(inplace=True, drop=True)
[df.shape for df in dfs] | code |
105212265/cell_10 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
files.append(fp)
dfs = [pd.read_csv(f, sep=',', encoding='utf-8') for f in files]
[df.shape for df in dfs]
dfs[0].dtypes | code |
105212265/cell_12 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
files.append(fp)
dfs = [pd.read_csv(f, sep=',', encoding='utf-8') for f in files]
[df.shape for df in dfs]
for i, df in enumerate(dfs):
dfs[i] = df.drop(columns=['SourceIP', 'DestinationIP', 'SourcePort', 'DestinationPort', 'TimeStamp'])
for df in dfs:
df.replace([np.inf, -np.inf], np.nan, inplace=True)
print(df.isna().any(axis=1).sum(), 'rows with at least one NaN to remove')
df.dropna(inplace=True)
[df.shape for df in dfs] | code |
105212265/cell_5 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
files = []
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
fp = os.path.join(dirname, filename)
files.append(fp)
dfs = [pd.read_csv(f, sep=',', encoding='utf-8') for f in files]
[df.shape for df in dfs]
dfs[0].columns | code |
2001614/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import cvxpy as cvx
import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
import cvxpy as cvx
import pylab as plt
import networkx as nx
def prepare_data(data, suffix):
data = data.drop(data.columns[range(3, 8)], axis=1)
data = data.drop(data.columns[range(0, 2)], axis=1)
data = data.groupby('settlement_name_english').sum()
data = data.add_suffix(suffix)
return data
def join_data(x_data, y_data, x_title, y_title):
M1 = x_data.shape[1]
M2 = y_data.shape[1]
n_votes_x = np.sum(x_data.values)
n_votes_y = np.sum(y_data.values)
data_joint = pd.merge(x_data, y_data, how='inner', left_index=True, right_index=True)
x_data = data_joint[data_joint.columns[range(1, M1)]]
y_data = data_joint[data_joint.columns[M1 + 1:]]
retained_votes_x = np.int(100 * np.round(np.sum(x_data.values) / n_votes_x, 2))
retained_votes_y = np.int(100 * np.round(np.sum(y_data.values) / n_votes_y, 2))
x_data = x_data.div(x_data.sum(axis=1), axis=0)
x_data = x_data.mul(y_data.sum(axis=1), axis=0)
avg_growth_factor = np.int(100 * np.round(np.sum(x_data.values) / n_votes_x - 1, 2))
return (x_data, y_data)
x_data = pd.read_csv('../input/results_by_booth_2013 - english - v2.csv', encoding='iso-8859-1')
y_data = pd.read_csv('../input/results_by_booth_2015 - english - v3.csv', encoding='iso-8859-1')
x_data = prepare_data(x_data, '_2013')
y_data = prepare_data(y_data, '_2015')
[x_data, y_data] = join_data(x_data, y_data, '2013', '2015')
M1 = x_data.shape[1]
M2 = y_data.shape[1]
def solve_transfer_coefficients(x_data, y_data):
C = cvx.Variable(x_data.shape[1], y_data.shape[1])
constraints = [0 <= C, C <= 1, cvx.sum_entries(C, axis=1) == 1]
objective = cvx.Minimize(cvx.sum_entries(cvx.square(x_data.values * C - y_data.values)))
prob = cvx.Problem(objective, constraints)
prob.solve()
C_mat = C.value
misplaced_votes = np.sum(np.abs(x_data.values * C_mat - y_data.values))
properly_placed_votes = np.int(100 * np.round(1 - misplaced_votes / np.sum(y_data.values), 2))
return C_mat
def major_parties(data, threshold, title):
party_is_major = data.sum(axis=0) / sum(data.sum(axis=0)) > threshold
major_party_votes = np.sum(data.values[:, party_is_major], axis=0)
votes_in_major_parties = np.int(100 * np.round(np.sum(major_party_votes) / np.sum(data.values), 2))
major_party_votes = major_party_votes / sum(major_party_votes)
M = sum(party_is_major)
major_party_titles = [party_is_major.index.values[party_is_major == True][n][:-5] for n in range(0, M)]
return (party_is_major, major_party_votes, major_party_titles)
C_mat = solve_transfer_coefficients(x_data, y_data)
party_threshold = 0.02
transfer_threshold = 0.01
[major_x, major_party_votes_x, major_party_titles_x] = major_parties(x_data, party_threshold, '2013')
M1 = major_party_votes_x.shape[0]
[major_y, major_party_votes_y, major_party_titles_y] = major_parties(y_data, party_threshold, '2015')
M2 = major_party_votes_y.shape[0]
C_mat = C_mat[:, major_y.values]
C_mat = C_mat[major_x.values, :]
vote_transfers = np.diag(major_party_votes_x) * C_mat
predicted_y = major_party_votes_x * C_mat
major_parties_error = np.sum(np.abs(major_party_votes_y - predicted_y))
major_parties_proper_votes = np.int(100 * np.round(1 - major_parties_error, 2))
print('Transfer model properly accounts for ' + str(major_parties_proper_votes) + '% of the votes for major parties') | code |
2001614/cell_3 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import numpy as np
import pandas as pd
import cvxpy as cvx
import pylab as plt
import networkx as nx
def prepare_data(data, suffix):
data = data.drop(data.columns[range(3, 8)], axis=1)
data = data.drop(data.columns[range(0, 2)], axis=1)
data = data.groupby('settlement_name_english').sum()
data = data.add_suffix(suffix)
return data
def join_data(x_data, y_data, x_title, y_title):
M1 = x_data.shape[1]
M2 = y_data.shape[1]
n_votes_x = np.sum(x_data.values)
n_votes_y = np.sum(y_data.values)
data_joint = pd.merge(x_data, y_data, how='inner', left_index=True, right_index=True)
x_data = data_joint[data_joint.columns[range(1, M1)]]
y_data = data_joint[data_joint.columns[M1 + 1:]]
retained_votes_x = np.int(100 * np.round(np.sum(x_data.values) / n_votes_x, 2))
retained_votes_y = np.int(100 * np.round(np.sum(y_data.values) / n_votes_y, 2))
x_data = x_data.div(x_data.sum(axis=1), axis=0)
x_data = x_data.mul(y_data.sum(axis=1), axis=0)
avg_growth_factor = np.int(100 * np.round(np.sum(x_data.values) / n_votes_x - 1, 2))
return (x_data, y_data)
x_data = pd.read_csv('../input/results_by_booth_2013 - english - v2.csv', encoding='iso-8859-1')
y_data = pd.read_csv('../input/results_by_booth_2015 - english - v3.csv', encoding='iso-8859-1')
x_data = prepare_data(x_data, '_2013')
y_data = prepare_data(y_data, '_2015')
[x_data, y_data] = join_data(x_data, y_data, '2013', '2015')
M1 = x_data.shape[1]
M2 = y_data.shape[1] | code |
105206225/cell_9 | [
"text_plain_output_5.png",
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Dense, LSTM, Dropout, Conv1D, Conv2D, MaxPooling2D, Flatten
from keras.models import Sequential
from os import listdir
from os.path import isfile, join
import numpy
import numpy as np
import pandas as pd
import scipy.io as sio
number_of_classes = 4
def change(x):
answer = np.zeros(np.shape(x)[0])
for i in range(np.shape(x)[0]):
max_value = max(x[i, :])
max_index = list(x[i, :]).index(max_value)
answer[i] = max_index
return answer.astype(int)
mypath = '../input/mitbihecgtraining2017/training2017/'
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f)) and f[0] == 'A']
bats = [f for f in onlyfiles if f[7] == 'm']
mats = [f for f in bats if np.shape(sio.loadmat(mypath + f)['val'])[1] >= 9000]
check = np.shape(sio.loadmat(mypath + mats[0])['val'])[1]
check = 9000
X = np.zeros((len(mats), check))
for i in range(len(mats)):
X[i, :] = sio.loadmat(mypath + mats[i])['val'][0, :9000]
target_train = np.zeros((len(mats), 1))
Train_data = pd.read_csv(mypath + 'REFERENCE.csv', sep=',', header=None, names=None)
for i in range(len(mats)):
if Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'N':
target_train[i] = 0
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'A':
target_train[i] = 1
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'O':
target_train[i] = 2
else:
target_train[i] = 3
Label_set = np.zeros((len(mats), number_of_classes))
for i in range(np.shape(target_train)[0]):
dummy = np.zeros(number_of_classes)
dummy[int(target_train[i])] = 1
Label_set[i, :] = dummy
train_len = 0.8
X_train = X[:int(train_len * len(mats)), :]
Y_train = Label_set[:int(train_len * len(mats)), :]
X_val = X[int(train_len * len(mats)):, :]
Y_val = Label_set[int(train_len * len(mats)):, :]
n = 20
m = 450
c = 1
X_train = numpy.reshape(X_train, (X_train.shape[0], n, m, c))
X_val = numpy.reshape(X_val, (X_val.shape[0], n, m, c))
image_size = (n, m, c)
batch_size = 32
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', input_shape=image_size, padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='relu'))
model.add(Dense(number_of_classes, activation='softmax'))
model.summary()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, Y_train, epochs=25, batch_size=batch_size, validation_split=0.3, verbose=1, shuffle=False)
model.evaluate(X_val, Y_val) | code |
105206225/cell_4 | [
"text_plain_output_1.png"
] | from os import listdir
from os.path import isfile, join
import numpy as np
import scipy.io as sio
number_of_classes = 4
def change(x):
answer = np.zeros(np.shape(x)[0])
for i in range(np.shape(x)[0]):
max_value = max(x[i, :])
max_index = list(x[i, :]).index(max_value)
answer[i] = max_index
return answer.astype(int)
mypath = '../input/mitbihecgtraining2017/training2017/'
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f)) and f[0] == 'A']
bats = [f for f in onlyfiles if f[7] == 'm']
mats = [f for f in bats if np.shape(sio.loadmat(mypath + f)['val'])[1] >= 9000]
check = np.shape(sio.loadmat(mypath + mats[0])['val'])[1]
check = 9000
X = np.zeros((len(mats), check))
print(len(mats), check, X.shape)
for i in range(len(mats)):
X[i, :] = sio.loadmat(mypath + mats[i])['val'][0, :9000] | code |
105206225/cell_6 | [
"text_plain_output_1.png"
] | from os import listdir
from os.path import isfile, join
import numpy
import numpy as np
import pandas as pd
import scipy.io as sio
number_of_classes = 4
def change(x):
answer = np.zeros(np.shape(x)[0])
for i in range(np.shape(x)[0]):
max_value = max(x[i, :])
max_index = list(x[i, :]).index(max_value)
answer[i] = max_index
return answer.astype(int)
mypath = '../input/mitbihecgtraining2017/training2017/'
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f)) and f[0] == 'A']
bats = [f for f in onlyfiles if f[7] == 'm']
mats = [f for f in bats if np.shape(sio.loadmat(mypath + f)['val'])[1] >= 9000]
check = np.shape(sio.loadmat(mypath + mats[0])['val'])[1]
check = 9000
X = np.zeros((len(mats), check))
for i in range(len(mats)):
X[i, :] = sio.loadmat(mypath + mats[i])['val'][0, :9000]
target_train = np.zeros((len(mats), 1))
Train_data = pd.read_csv(mypath + 'REFERENCE.csv', sep=',', header=None, names=None)
for i in range(len(mats)):
if Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'N':
target_train[i] = 0
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'A':
target_train[i] = 1
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'O':
target_train[i] = 2
else:
target_train[i] = 3
Label_set = np.zeros((len(mats), number_of_classes))
for i in range(np.shape(target_train)[0]):
dummy = np.zeros(number_of_classes)
dummy[int(target_train[i])] = 1
Label_set[i, :] = dummy
train_len = 0.8
X_train = X[:int(train_len * len(mats)), :]
Y_train = Label_set[:int(train_len * len(mats)), :]
X_val = X[int(train_len * len(mats)):, :]
Y_val = Label_set[int(train_len * len(mats)):, :]
n = 20
m = 450
c = 1
X_train = numpy.reshape(X_train, (X_train.shape[0], n, m, c))
X_val = numpy.reshape(X_val, (X_val.shape[0], n, m, c))
image_size = (n, m, c)
print(Y_train.shape) | code |
105206225/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.layers import Dense, LSTM, Dropout, Conv1D, Conv2D, MaxPooling2D, Flatten
from keras.models import Sequential
from os import listdir
from os.path import isfile, join
import numpy
import numpy as np
import pandas as pd
import scipy.io as sio
number_of_classes = 4
def change(x):
answer = np.zeros(np.shape(x)[0])
for i in range(np.shape(x)[0]):
max_value = max(x[i, :])
max_index = list(x[i, :]).index(max_value)
answer[i] = max_index
return answer.astype(int)
mypath = '../input/mitbihecgtraining2017/training2017/'
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f)) and f[0] == 'A']
bats = [f for f in onlyfiles if f[7] == 'm']
mats = [f for f in bats if np.shape(sio.loadmat(mypath + f)['val'])[1] >= 9000]
check = np.shape(sio.loadmat(mypath + mats[0])['val'])[1]
check = 9000
X = np.zeros((len(mats), check))
for i in range(len(mats)):
X[i, :] = sio.loadmat(mypath + mats[i])['val'][0, :9000]
target_train = np.zeros((len(mats), 1))
Train_data = pd.read_csv(mypath + 'REFERENCE.csv', sep=',', header=None, names=None)
for i in range(len(mats)):
if Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'N':
target_train[i] = 0
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'A':
target_train[i] = 1
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'O':
target_train[i] = 2
else:
target_train[i] = 3
Label_set = np.zeros((len(mats), number_of_classes))
for i in range(np.shape(target_train)[0]):
dummy = np.zeros(number_of_classes)
dummy[int(target_train[i])] = 1
Label_set[i, :] = dummy
train_len = 0.8
X_train = X[:int(train_len * len(mats)), :]
Y_train = Label_set[:int(train_len * len(mats)), :]
X_val = X[int(train_len * len(mats)):, :]
Y_val = Label_set[int(train_len * len(mats)):, :]
n = 20
m = 450
c = 1
X_train = numpy.reshape(X_train, (X_train.shape[0], n, m, c))
X_val = numpy.reshape(X_val, (X_val.shape[0], n, m, c))
image_size = (n, m, c)
batch_size = 32
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', input_shape=image_size, padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) | code |
105206225/cell_8 | [
"text_plain_output_1.png"
] | from keras.layers import Dense, LSTM, Dropout, Conv1D, Conv2D, MaxPooling2D, Flatten
from keras.models import Sequential
from os import listdir
from os.path import isfile, join
import numpy
import numpy as np
import pandas as pd
import scipy.io as sio
number_of_classes = 4
def change(x):
answer = np.zeros(np.shape(x)[0])
for i in range(np.shape(x)[0]):
max_value = max(x[i, :])
max_index = list(x[i, :]).index(max_value)
answer[i] = max_index
return answer.astype(int)
mypath = '../input/mitbihecgtraining2017/training2017/'
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f)) and f[0] == 'A']
bats = [f for f in onlyfiles if f[7] == 'm']
mats = [f for f in bats if np.shape(sio.loadmat(mypath + f)['val'])[1] >= 9000]
check = np.shape(sio.loadmat(mypath + mats[0])['val'])[1]
check = 9000
X = np.zeros((len(mats), check))
for i in range(len(mats)):
X[i, :] = sio.loadmat(mypath + mats[i])['val'][0, :9000]
target_train = np.zeros((len(mats), 1))
Train_data = pd.read_csv(mypath + 'REFERENCE.csv', sep=',', header=None, names=None)
for i in range(len(mats)):
if Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'N':
target_train[i] = 0
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'A':
target_train[i] = 1
elif Train_data.loc[Train_data[0] == mats[i][:6], 1].values == 'O':
target_train[i] = 2
else:
target_train[i] = 3
Label_set = np.zeros((len(mats), number_of_classes))
for i in range(np.shape(target_train)[0]):
dummy = np.zeros(number_of_classes)
dummy[int(target_train[i])] = 1
Label_set[i, :] = dummy
train_len = 0.8
X_train = X[:int(train_len * len(mats)), :]
Y_train = Label_set[:int(train_len * len(mats)), :]
X_val = X[int(train_len * len(mats)):, :]
Y_val = Label_set[int(train_len * len(mats)):, :]
n = 20
m = 450
c = 1
X_train = numpy.reshape(X_train, (X_train.shape[0], n, m, c))
X_val = numpy.reshape(X_val, (X_val.shape[0], n, m, c))
image_size = (n, m, c)
batch_size = 32
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', input_shape=image_size, padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='relu'))
model.add(Dense(number_of_classes, activation='softmax'))
print(Y_train[5:10])
model.summary() | code |
105206225/cell_3 | [
"text_plain_output_1.png"
] | import keras
keras.backend.image_data_format() | code |
72071717/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/google-play-store-dataset/googleplaystore1.csv')
df.head() | code |
72071717/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/google-play-store-dataset/googleplaystore1.csv')
df = df[df.Installs != 'Free']
df.Installs = df.Installs.astype(int) | code |
74049467/cell_9 | [
"text_plain_output_1.png"
] | from optuna.integration import LightGBMPruningCallback
from sklearn.impute import SimpleImputer
from sklearn.metrics import log_loss, mean_squared_error
from sklearn.model_selection import KFold ,StratifiedKFold,cross_validate,train_test_split
import lightgbm as lgbm
import numpy as np
import optuna
import pandas as pd
train = pd.read_csv('../input/tabular-playground-series-sep-2021/train.csv')
test = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv')
sub = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv')
X = train.drop(['id', 'claim'], axis=1)
X_test = test.drop('id', axis=1)
y = train['claim']
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
X = imputer.fit_transform(X)
X_test = imputer.transform(X_test)
from optuna.integration import LightGBMPruningCallback
def objective(trial, X, y):
param_grid = {'device_type': trial.suggest_categorical('device_type', ['gpu']), 'n_estimators': trial.suggest_categorical('n_estimators', [10000]), 'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3), 'num_leaves': trial.suggest_int('num_leaves', 20, 3000, step=20), 'max_depth': trial.suggest_int('max_depth', 3, 12), 'min_data_in_leaf': trial.suggest_int('min_data_in_leaf', 200, 10000, step=100), 'lambda_l1': trial.suggest_int('lambda_l1', 0, 100, step=5), 'lambda_l2': trial.suggest_int('lambda_l2', 0, 100, step=5), 'min_gain_to_split': trial.suggest_float('min_gain_to_split', 0, 15), 'bagging_fraction': trial.suggest_float('bagging_fraction', 0.2, 0.95, step=0.1), 'bagging_freq': trial.suggest_categorical('bagging_freq', [1]), 'feature_fraction': trial.suggest_float('feature_fraction', 0.2, 0.95, step=0.1)}
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1121218)
cv_scores = np.empty(5)
for idx, (train_idx, test_idx) in enumerate(cv.split(X, y)):
X_train, X_test = (X[train_idx], X[test_idx])
y_train, y_test = (y[train_idx], y[test_idx])
model = lgbm.LGBMClassifier(objective='binary', **param_grid)
model.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric='binary_logloss', early_stopping_rounds=100, callbacks=[LightGBMPruningCallback(trial, 'binary_logloss')], verbose=2)
preds = model.predict_proba(X_test)
cv_scores[idx] = log_loss(y_test, preds)
return np.mean(cv_scores)
study = optuna.create_study(direction='minimize', study_name='LGBM Classifier')
func = lambda trial: objective(trial, X, y)
study.optimize(func, n_trials=20)
print(f'\tBest value (rmse): {study.best_value:.5f}')
print(f'\tBest params:')
for key, value in study.best_params.items():
print(f'\t\t{key}: {value}') | code |
74049467/cell_2 | [
"text_plain_output_1.png"
] | print('Hello') | code |
74049467/cell_8 | [
"application_vnd.jupyter.stderr_output_27.png",
"application_vnd.jupyter.stderr_output_35.png",
"application_vnd.jupyter.stderr_output_9.png",
"text_plain_output_30.png",
"application_vnd.jupyter.stderr_output_7.png",
"application_vnd.jupyter.stderr_output_11.png",
"text_plain_output_40.png",
"text_plain_output_20.png",
"application_vnd.jupyter.stderr_output_31.png",
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_33.png",
"application_vnd.jupyter.stderr_output_25.png",
"text_plain_output_14.png",
"text_plain_output_32.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"text_plain_output_24.png",
"application_vnd.jupyter.stderr_output_23.png",
"text_plain_output_18.png",
"text_plain_output_36.png",
"application_vnd.jupyter.stderr_output_19.png",
"application_vnd.jupyter.stderr_output_13.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_22.png",
"application_vnd.jupyter.stderr_output_5.png",
"text_plain_output_38.png",
"text_plain_output_16.png",
"application_vnd.jupyter.stderr_output_15.png",
"text_plain_output_8.png",
"application_vnd.jupyter.stderr_output_17.png",
"text_plain_output_26.png",
"text_plain_output_34.png",
"application_vnd.jupyter.stderr_output_41.png",
"text_plain_output_28.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_29.png",
"application_vnd.jupyter.stderr_output_1.png",
"text_plain_output_12.png",
"application_vnd.jupyter.stderr_output_39.png",
"application_vnd.jupyter.stderr_output_21.png",
"application_vnd.jupyter.stderr_output_37.png"
] | from optuna.integration import LightGBMPruningCallback
from sklearn.impute import SimpleImputer
from sklearn.metrics import log_loss, mean_squared_error
from sklearn.model_selection import KFold ,StratifiedKFold,cross_validate,train_test_split
import lightgbm as lgbm
import numpy as np
import optuna
import pandas as pd
train = pd.read_csv('../input/tabular-playground-series-sep-2021/train.csv')
test = pd.read_csv('../input/tabular-playground-series-sep-2021/test.csv')
sub = pd.read_csv('../input/tabular-playground-series-sep-2021/sample_solution.csv')
X = train.drop(['id', 'claim'], axis=1)
X_test = test.drop('id', axis=1)
y = train['claim']
imputer = SimpleImputer(missing_values=np.nan, strategy='median')
X = imputer.fit_transform(X)
X_test = imputer.transform(X_test)
from optuna.integration import LightGBMPruningCallback
def objective(trial, X, y):
param_grid = {'device_type': trial.suggest_categorical('device_type', ['gpu']), 'n_estimators': trial.suggest_categorical('n_estimators', [10000]), 'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3), 'num_leaves': trial.suggest_int('num_leaves', 20, 3000, step=20), 'max_depth': trial.suggest_int('max_depth', 3, 12), 'min_data_in_leaf': trial.suggest_int('min_data_in_leaf', 200, 10000, step=100), 'lambda_l1': trial.suggest_int('lambda_l1', 0, 100, step=5), 'lambda_l2': trial.suggest_int('lambda_l2', 0, 100, step=5), 'min_gain_to_split': trial.suggest_float('min_gain_to_split', 0, 15), 'bagging_fraction': trial.suggest_float('bagging_fraction', 0.2, 0.95, step=0.1), 'bagging_freq': trial.suggest_categorical('bagging_freq', [1]), 'feature_fraction': trial.suggest_float('feature_fraction', 0.2, 0.95, step=0.1)}
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1121218)
cv_scores = np.empty(5)
for idx, (train_idx, test_idx) in enumerate(cv.split(X, y)):
X_train, X_test = (X[train_idx], X[test_idx])
y_train, y_test = (y[train_idx], y[test_idx])
model = lgbm.LGBMClassifier(objective='binary', **param_grid)
model.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric='binary_logloss', early_stopping_rounds=100, callbacks=[LightGBMPruningCallback(trial, 'binary_logloss')], verbose=2)
preds = model.predict_proba(X_test)
cv_scores[idx] = log_loss(y_test, preds)
return np.mean(cv_scores)
study = optuna.create_study(direction='minimize', study_name='LGBM Classifier')
func = lambda trial: objective(trial, X, y)
study.optimize(func, n_trials=20) | code |
18139674/cell_13 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
import seaborn as sns
import matplotlib.pyplot as plt
cardTypes = ['discover', 'mastercard', 'visa', 'american express']
for i, i_card in enumerate(cardTypes):
cardData = eval('train_transaction_data.loc[train_transaction_data["card4"]=="' + i_card + '"]')
normalDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 0]
fraudDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 1]
prodTypes = train_transaction_data['ProductCD'].unique()
for i,i_prod in enumerate(prodTypes):
productData = eval('train_transaction_data.loc[train_transaction_data["ProductCD"]=="'+i_prod+'"]')
plt.figure(i)
ax = sns.barplot(x="isFraud", y="isFraud", data=productData, estimator=lambda x: len(x) / len(productData) * 100)
ax.set(ylabel="Percent")
ax.set_title(i_prod)
sns.countplot(train_identity_data['DeviceType']) | code |
18139674/cell_9 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
normalDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 0]
normalDataTransaction.TransactionAmt.describe() | code |
18139674/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
print(train_transaction_data.head(10)) | code |
18139674/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(train_transaction_data['card4']) | code |
18139674/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
import seaborn as sns
import matplotlib.pyplot as plt
cardTypes = ['discover', 'mastercard', 'visa', 'american express']
for i, i_card in enumerate(cardTypes):
cardData = eval('train_transaction_data.loc[train_transaction_data["card4"]=="' + i_card + '"]')
normalDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 0]
fraudDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 1]
prodTypes = train_transaction_data['ProductCD'].unique()
for i, i_prod in enumerate(prodTypes):
productData = eval('train_transaction_data.loc[train_transaction_data["ProductCD"]=="' + i_prod + '"]')
plt.figure(i)
ax = sns.barplot(x='isFraud', y='isFraud', data=productData, estimator=lambda x: len(x) / len(productData) * 100)
ax.set(ylabel='Percent')
ax.set_title(i_prod) | code |
18139674/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
18139674/cell_7 | [
"image_output_5.png",
"image_output_4.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
import seaborn as sns
import matplotlib.pyplot as plt
cardTypes = ['discover', 'mastercard', 'visa', 'american express']
for i, i_card in enumerate(cardTypes):
cardData = eval('train_transaction_data.loc[train_transaction_data["card4"]=="' + i_card + '"]')
plt.figure(i)
sns.countplot(cardData['isFraud']).set_title(i_card) | code |
18139674/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
print('The average transaction amount for non fraudulent transactions is: ', np.mean(train_transaction_data.loc[train_transaction_data['isFraud'] == 0]['TransactionAmt']))
print('The average transaction amount for fraudulent transactions is: ', np.mean(train_transaction_data.loc[train_transaction_data['isFraud'] == 1]['TransactionAmt'])) | code |
18139674/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
normalDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 0]
fraudDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 1]
raw_train_data = pd.merge(train_transaction_data, train_identity_data, on='TransactionID', how='left')
print(raw_train_data.head(5)) | code |
18139674/cell_3 | [
"image_output_4.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
print(train_identity_data.head(10)) | code |
18139674/cell_10 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
normalDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 0]
fraudDataTransaction = train_transaction_data.loc[train_transaction_data['isFraud'] == 1]
fraudDataTransaction.TransactionAmt.describe() | code |
18139674/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_identity_data = pd.read_csv('../input/train_identity.csv')
train_transaction_data = pd.read_csv('../input/train_transaction.csv')
test_identity_data = pd.read_csv('../input/test_identity.csv')
test_transaction_data = pd.read_csv('../input/test_transaction.csv')
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(train_transaction_data['isFraud']) | code |
17139836/cell_21 | [
"image_output_11.png",
"image_output_14.png",
"image_output_13.png",
"image_output_5.png",
"image_output_7.png",
"image_output_4.png",
"image_output_8.png",
"image_output_16.png",
"image_output_6.png",
"image_output_12.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_15.png",
"image_output_9.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import median_absolute_error
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import make_scorer
from sklearn.metrics import r2_score
from sklearn.metrics import median_absolute_error
X_train, X_test, y_train, y_test = train_test_split(train['acoustic_data'].values[::25].reshape(-1, 1), train['time_to_failure'].values[::25], test_size=0.2)
quake_linear_model = LinearRegression()
quake_linear_model.fit(X_train, y_train)
y_train_pred = quake_linear_model.predict(X_train)
y_test_pred = quake_linear_model.predict(X_test)
r2_train_score = r2_score(y_train, y_train_pred)
mae_train_score = median_absolute_error(y_train, y_train_pred)
r2_test_score = r2_score(y_test, y_test_pred)
mae_test_score = median_absolute_error(y_test, y_test_pred)
print('R2 score for training data: {} and for the test data: {}'.format(r2_train_score, r2_test_score))
print('Mean Absolute Error score for training data: {} and for the test data: {}'.format(mae_train_score, mae_test_score)) | code |
17139836/cell_9 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
fig, ax = plt.subplots(2,1, figsize=(20,10))
ax[0].plot(train['acoustic_data'].values[::100], color='g')
ax[0].set_title("Acoustic data for 1% sample data")
ax[0].set_xlabel("Index")
ax[0].set_ylabel("Acoustic Data Signal");
ax[1].plot(train['time_to_failure'].values[::100], color='b')
ax[1].set_title("Time to Failure for 1% sample data")
ax[1].set_xlabel("Index")
ax[1].set_ylabel("Time to Failure in ms");
def plotAroundPoints(start, end, ith):
fig, ax1 = plt.subplots(figsize=(8, 4))
plt.title('Trends of acoustic_data and time_to_failure around the {} earthquake'.format(ith))
plt.plot(train['acoustic_data'].values[start:end:50], color='b')
ax1.set_ylabel('acoustic_data', color='b')
plt.legend(['acoustic_data'])
ax2 = ax1.twinx()
plt.plot(train['time_to_failure'].values[start:end:50], color='g')
ax2.set_ylabel('time_to_failure', color='g')
plt.legend(['time_to_failure'], loc=(0.75, 0.1))
plotAroundPoints(0, 30000000, 'first')
plotAroundPoints(30000000, 60000000, 'second')
plotAroundPoints(90000000, 120000000, 'third')
plotAroundPoints(125000000, 155000000, 'fourth')
plotAroundPoints(170000000, 200000000, 'fifth')
plotAroundPoints(200000000, 230000000, 'sixth')
plotAroundPoints(225000000, 255000000, 'seventh')
plotAroundPoints(285000000, 315000000, 'eigth')
plotAroundPoints(325000000, 355000000, 'ninth')
plotAroundPoints(360000000, 390000000, 'tenth')
plotAroundPoints(405000000, 455000000, 'eleventh')
plotAroundPoints(440000000, 470000000, 'twelvth')
plotAroundPoints(480000000, 510000000, 'thirteenth')
plotAroundPoints(510000000, 540000000, 'fourteenth')
plotAroundPoints(560000000, 590000000, 'fifteenth')
plotAroundPoints(605000000, 635000000, 'sixteenth') | code |
17139836/cell_4 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | train = pd.read_csv('../input/train.csv', dtype={'acoustic_data': np.int16, 'time_to_failure': np.float32}) | code |
17139836/cell_34 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from keras.callbacks import ModelCheckpoint
from keras.callbacks import ModelCheckpoint
from keras.layers import Dense, Dropout, CuDNNGRU, CuDNNLSTM, Flatten
from keras.models import Sequential
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
chunk_size = 150000
chunks = int(np.floor(train.shape[0] / chunk_size))
X_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['min', 'max', 'std', 'avg', 'sum', 'median', 'mean_diff', 'q05', 'q25', 'q75', 'q95'])
y_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['ttf'])
def create_features(data_chunk, X_df, chunk_no, col_name='acoustic_data'):
x = data_chunk[col_name]
X_df.loc[chunk_no, 'min'] = x.min()
X_df.loc[chunk_no, 'max'] = x.max()
X_df.loc[chunk_no, 'std'] = x.std()
X_df.loc[chunk_no, 'avg'] = x.mean()
X_df.loc[chunk_no, 'sum'] = x.sum()
X_df.loc[chunk_no, 'median'] = x.median()
X_df.loc[chunk_no, 'mean_diff'] = np.mean(np.diff(x))
X_df.loc[chunk_no, 'q05'] = np.quantile(x, 0.05)
X_df.loc[chunk_no, 'q25'] = np.quantile(x, 0.25)
X_df.loc[chunk_no, 'q75'] = np.quantile(x, 0.75)
X_df.loc[chunk_no, 'q95'] = np.quantile(x, 0.95)
return X_df
for chunk_no in tqdm(range(chunks)):
data_chunk = train.iloc[chunk_no * chunk_size:chunk_no * chunk_size + chunk_size]
X_data = create_features(data_chunk, X_data, chunk_no)
y = data_chunk['time_to_failure'].values[-1]
y_data.loc[chunk_no, 'ttf'] = y
X_train, X_test, y_train, y_test = train_test_split(X_data.values, y_data.values, test_size=0.2)
X_train.shape
from keras.models import Sequential
from keras.layers import Dense, Dropout, CuDNNGRU, CuDNNLSTM, Flatten
from keras.optimizers import adam
from keras.callbacks import ModelCheckpoint
model = Sequential()
model.add(CuDNNGRU(64, kernel_initializer='RandomUniform', input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model.summary()
from keras.callbacks import ModelCheckpoint
X_train_array = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
y_train_array = np.reshape(y_train, (y_train.shape[0], y_train.shape[1], 1))
model.compile(loss='mean_absolute_error', optimizer='rmsprop', metrics=['mae'])
checkpointer = ModelCheckpoint('model.weights.hdf5', save_best_only=True, verbose=1)
build = model.fit(X_train_array, y_train, epochs=200, batch_size=30, validation_split=0.2, callbacks=[checkpointer], verbose=1)
print(build.history.keys()) | code |
17139836/cell_30 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from tqdm import tqdm
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
chunk_size = 150000
chunks = int(np.floor(train.shape[0] / chunk_size))
X_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['min', 'max', 'std', 'avg', 'sum', 'median', 'mean_diff', 'q05', 'q25', 'q75', 'q95'])
y_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['ttf'])
def create_features(data_chunk, X_df, chunk_no, col_name='acoustic_data'):
x = data_chunk[col_name]
X_df.loc[chunk_no, 'min'] = x.min()
X_df.loc[chunk_no, 'max'] = x.max()
X_df.loc[chunk_no, 'std'] = x.std()
X_df.loc[chunk_no, 'avg'] = x.mean()
X_df.loc[chunk_no, 'sum'] = x.sum()
X_df.loc[chunk_no, 'median'] = x.median()
X_df.loc[chunk_no, 'mean_diff'] = np.mean(np.diff(x))
X_df.loc[chunk_no, 'q05'] = np.quantile(x, 0.05)
X_df.loc[chunk_no, 'q25'] = np.quantile(x, 0.25)
X_df.loc[chunk_no, 'q75'] = np.quantile(x, 0.75)
X_df.loc[chunk_no, 'q95'] = np.quantile(x, 0.95)
return X_df
for chunk_no in tqdm(range(chunks)):
data_chunk = train.iloc[chunk_no * chunk_size:chunk_no * chunk_size + chunk_size]
X_data = create_features(data_chunk, X_data, chunk_no)
y = data_chunk['time_to_failure'].values[-1]
y_data.loc[chunk_no, 'ttf'] = y
X_train, X_test, y_train, y_test = train_test_split(X_data.values, y_data.values, test_size=0.2)
X_train.shape | code |
17139836/cell_33 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.callbacks import ModelCheckpoint
from keras.callbacks import ModelCheckpoint
from keras.layers import Dense, Dropout, CuDNNGRU, CuDNNLSTM, Flatten
from keras.models import Sequential
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
chunk_size = 150000
chunks = int(np.floor(train.shape[0] / chunk_size))
X_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['min', 'max', 'std', 'avg', 'sum', 'median', 'mean_diff', 'q05', 'q25', 'q75', 'q95'])
y_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['ttf'])
def create_features(data_chunk, X_df, chunk_no, col_name='acoustic_data'):
x = data_chunk[col_name]
X_df.loc[chunk_no, 'min'] = x.min()
X_df.loc[chunk_no, 'max'] = x.max()
X_df.loc[chunk_no, 'std'] = x.std()
X_df.loc[chunk_no, 'avg'] = x.mean()
X_df.loc[chunk_no, 'sum'] = x.sum()
X_df.loc[chunk_no, 'median'] = x.median()
X_df.loc[chunk_no, 'mean_diff'] = np.mean(np.diff(x))
X_df.loc[chunk_no, 'q05'] = np.quantile(x, 0.05)
X_df.loc[chunk_no, 'q25'] = np.quantile(x, 0.25)
X_df.loc[chunk_no, 'q75'] = np.quantile(x, 0.75)
X_df.loc[chunk_no, 'q95'] = np.quantile(x, 0.95)
return X_df
for chunk_no in tqdm(range(chunks)):
data_chunk = train.iloc[chunk_no * chunk_size:chunk_no * chunk_size + chunk_size]
X_data = create_features(data_chunk, X_data, chunk_no)
y = data_chunk['time_to_failure'].values[-1]
y_data.loc[chunk_no, 'ttf'] = y
X_train, X_test, y_train, y_test = train_test_split(X_data.values, y_data.values, test_size=0.2)
X_train.shape
from keras.models import Sequential
from keras.layers import Dense, Dropout, CuDNNGRU, CuDNNLSTM, Flatten
from keras.optimizers import adam
from keras.callbacks import ModelCheckpoint
model = Sequential()
model.add(CuDNNGRU(64, kernel_initializer='RandomUniform', input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model.summary()
from keras.callbacks import ModelCheckpoint
X_train_array = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
y_train_array = np.reshape(y_train, (y_train.shape[0], y_train.shape[1], 1))
model.compile(loss='mean_absolute_error', optimizer='rmsprop', metrics=['mae'])
checkpointer = ModelCheckpoint('model.weights.hdf5', save_best_only=True, verbose=1)
build = model.fit(X_train_array, y_train, epochs=200, batch_size=30, validation_split=0.2, callbacks=[checkpointer], verbose=1) | code |
17139836/cell_6 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
fig, ax = plt.subplots(2, 1, figsize=(20, 10))
ax[0].plot(train['acoustic_data'].values[::100], color='g')
ax[0].set_title('Acoustic data for 1% sample data')
ax[0].set_xlabel('Index')
ax[0].set_ylabel('Acoustic Data Signal')
ax[1].plot(train['time_to_failure'].values[::100], color='b')
ax[1].set_title('Time to Failure for 1% sample data')
ax[1].set_xlabel('Index')
ax[1].set_ylabel('Time to Failure in ms') | code |
17139836/cell_26 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from tqdm import tqdm
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
chunk_size = 150000
chunks = int(np.floor(train.shape[0] / chunk_size))
X_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['min', 'max', 'std', 'avg', 'sum', 'median', 'mean_diff', 'q05', 'q25', 'q75', 'q95'])
y_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['ttf'])
def create_features(data_chunk, X_df, chunk_no, col_name='acoustic_data'):
x = data_chunk[col_name]
X_df.loc[chunk_no, 'min'] = x.min()
X_df.loc[chunk_no, 'max'] = x.max()
X_df.loc[chunk_no, 'std'] = x.std()
X_df.loc[chunk_no, 'avg'] = x.mean()
X_df.loc[chunk_no, 'sum'] = x.sum()
X_df.loc[chunk_no, 'median'] = x.median()
X_df.loc[chunk_no, 'mean_diff'] = np.mean(np.diff(x))
X_df.loc[chunk_no, 'q05'] = np.quantile(x, 0.05)
X_df.loc[chunk_no, 'q25'] = np.quantile(x, 0.25)
X_df.loc[chunk_no, 'q75'] = np.quantile(x, 0.75)
X_df.loc[chunk_no, 'q95'] = np.quantile(x, 0.95)
return X_df
for chunk_no in tqdm(range(chunks)):
data_chunk = train.iloc[chunk_no * chunk_size:chunk_no * chunk_size + chunk_size]
X_data = create_features(data_chunk, X_data, chunk_no)
y = data_chunk['time_to_failure'].values[-1]
y_data.loc[chunk_no, 'ttf'] = y | code |
17139836/cell_1 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import time
from tqdm import tqdm
import matplotlib.pyplot as plt
import os
print(os.listdir('../input')) | code |
17139836/cell_32 | [
"text_plain_output_1.png"
] | from keras.layers import Dense, Dropout, CuDNNGRU, CuDNNLSTM, Flatten
from keras.models import Sequential
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
chunk_size = 150000
chunks = int(np.floor(train.shape[0] / chunk_size))
X_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['min', 'max', 'std', 'avg', 'sum', 'median', 'mean_diff', 'q05', 'q25', 'q75', 'q95'])
y_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['ttf'])
def create_features(data_chunk, X_df, chunk_no, col_name='acoustic_data'):
x = data_chunk[col_name]
X_df.loc[chunk_no, 'min'] = x.min()
X_df.loc[chunk_no, 'max'] = x.max()
X_df.loc[chunk_no, 'std'] = x.std()
X_df.loc[chunk_no, 'avg'] = x.mean()
X_df.loc[chunk_no, 'sum'] = x.sum()
X_df.loc[chunk_no, 'median'] = x.median()
X_df.loc[chunk_no, 'mean_diff'] = np.mean(np.diff(x))
X_df.loc[chunk_no, 'q05'] = np.quantile(x, 0.05)
X_df.loc[chunk_no, 'q25'] = np.quantile(x, 0.25)
X_df.loc[chunk_no, 'q75'] = np.quantile(x, 0.75)
X_df.loc[chunk_no, 'q95'] = np.quantile(x, 0.95)
return X_df
for chunk_no in tqdm(range(chunks)):
data_chunk = train.iloc[chunk_no * chunk_size:chunk_no * chunk_size + chunk_size]
X_data = create_features(data_chunk, X_data, chunk_no)
y = data_chunk['time_to_failure'].values[-1]
y_data.loc[chunk_no, 'ttf'] = y
X_train, X_test, y_train, y_test = train_test_split(X_data.values, y_data.values, test_size=0.2)
X_train.shape
from keras.models import Sequential
from keras.layers import Dense, Dropout, CuDNNGRU, CuDNNLSTM, Flatten
from keras.optimizers import adam
from keras.callbacks import ModelCheckpoint
model = Sequential()
model.add(CuDNNGRU(64, kernel_initializer='RandomUniform', input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model.summary() | code |
17139836/cell_15 | [
"image_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
len(submission) | code |
17139836/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
submission.head() | code |
17139836/cell_27 | [
"text_html_output_1.png"
] | from tqdm import tqdm
import numpy as np # linear algebra
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
submission = pd.read_csv('../input/sample_submission.csv', index_col='seg_id', dtype={'time_to_failure': np.float32})
chunk_size = 150000
chunks = int(np.floor(train.shape[0] / chunk_size))
X_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['min', 'max', 'std', 'avg', 'sum', 'median', 'mean_diff', 'q05', 'q25', 'q75', 'q95'])
y_data = pd.DataFrame(index=range(chunks), dtype=np.float32, columns=['ttf'])
def create_features(data_chunk, X_df, chunk_no, col_name='acoustic_data'):
x = data_chunk[col_name]
X_df.loc[chunk_no, 'min'] = x.min()
X_df.loc[chunk_no, 'max'] = x.max()
X_df.loc[chunk_no, 'std'] = x.std()
X_df.loc[chunk_no, 'avg'] = x.mean()
X_df.loc[chunk_no, 'sum'] = x.sum()
X_df.loc[chunk_no, 'median'] = x.median()
X_df.loc[chunk_no, 'mean_diff'] = np.mean(np.diff(x))
X_df.loc[chunk_no, 'q05'] = np.quantile(x, 0.05)
X_df.loc[chunk_no, 'q25'] = np.quantile(x, 0.25)
X_df.loc[chunk_no, 'q75'] = np.quantile(x, 0.75)
X_df.loc[chunk_no, 'q95'] = np.quantile(x, 0.95)
return X_df
for chunk_no in tqdm(range(chunks)):
data_chunk = train.iloc[chunk_no * chunk_size:chunk_no * chunk_size + chunk_size]
X_data = create_features(data_chunk, X_data, chunk_no)
y = data_chunk['time_to_failure'].values[-1]
y_data.loc[chunk_no, 'ttf'] = y
print(X_data.shape)
print(y_data.shape)
print(X_data.shape[1])
X_data.head() | code |
17139836/cell_12 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test_dir = '../input/test'
test_files = os.listdir(test_dir)
print(test_files[0:5])
print('Number of test files: {}'.format(len(test_files)))
test_file_0 = pd.read_csv('../input/test/' + test_files[0])
print('Dimensions of the first test file: {}'.format(test_file_0.shape))
test_file_0.head() | code |
17139836/cell_5 | [
"text_plain_output_1.png"
] | print(train.shape)
print(train.head()) | code |
128019465/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
ax = sns.barplot(
y = 'Skills',
x='Total Value',
data = total.sort_values(
'Total Value',
ascending = False
)
)
plt.title('Summation of Values per Skill')
plt.show()
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills
pie_data = ave_skills.drop(index=['Student Performance Rating'], axis=0)
pie_data
palette_color = sns.color_palette(palette = 'deep')
fig = plt.figure(figsize=(20,10))
fig.patch.set_facecolor('ghostwhite')
plt.pie(
pie_data['Average Score'],
labels = pie_data.index,
colors = palette_color,
autopct = '%.0f%%'
)
centre_circle = plt.Circle((0, 0), 0.72, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Percentage Distribution of Skills for Employable on Average')
plt.show()
fig = plt.figure(figsize=(15, 7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style='darkgrid', palette='deep')
sns.barplot(y=ave_skills.index, x='Average Score', data=ave_skills.sort_values('Average Score', ascending=False))
plt.xticks(np.arange(0, 5.25, 0.25))
plt.title('Average Score of the Employable Students per Category')
plt.show() | code |
128019465/cell_9 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills
df_employed.head() | code |
128019465/cell_4 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
df.head() | code |
128019465/cell_6 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
fig = plt.figure(figsize=(15, 7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style='darkgrid', palette='deep')
ax = sns.barplot(y='Skills', x='Total Value', data=total.sort_values('Total Value', ascending=False))
plt.title('Summation of Values per Skill')
plt.show() | code |
128019465/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape | code |
128019465/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
ax = sns.barplot(
y = 'Skills',
x='Total Value',
data = total.sort_values(
'Total Value',
ascending = False
)
)
plt.title('Summation of Values per Skill')
plt.show()
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills
pie_data = ave_skills.drop(index=['Student Performance Rating'], axis=0)
pie_data
palette_color = sns.color_palette(palette='deep')
fig = plt.figure(figsize=(20, 10))
fig.patch.set_facecolor('ghostwhite')
plt.pie(pie_data['Average Score'], labels=pie_data.index, colors=palette_color, autopct='%.0f%%')
centre_circle = plt.Circle((0, 0), 0.72, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Percentage Distribution of Skills for Employable on Average')
plt.show() | code |
128019465/cell_19 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
ax = sns.barplot(
y = 'Skills',
x='Total Value',
data = total.sort_values(
'Total Value',
ascending = False
)
)
plt.title('Summation of Values per Skill')
plt.show()
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills
pie_data = ave_skills.drop(index=['Student Performance Rating'], axis=0)
pie_data
palette_color = sns.color_palette(palette = 'deep')
fig = plt.figure(figsize=(20,10))
fig.patch.set_facecolor('ghostwhite')
plt.pie(
pie_data['Average Score'],
labels = pie_data.index,
colors = palette_color,
autopct = '%.0f%%'
)
centre_circle = plt.Circle((0, 0), 0.72, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Percentage Distribution of Skills for Employable on Average')
plt.show()
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
sns.barplot(
y = ave_skills.index,
x= 'Average Score',
data = ave_skills.sort_values(
'Average Score',
ascending = False
)
)
plt.xticks(np.arange(0,5.25,0.25))
plt.title('Average Score of the Employable Students per Category')
plt.show()
df_ave = pd.DataFrame({'Student': df['Name of Student'].loc[df['CLASS'] == 'Employable'], 'Average Score': df.loc[df['CLASS'] == 'Employable']._get_numeric_data().mean(axis=1)})
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style='darkgrid', palette = 'dark')
ax = sns.histplot(
x = 'Average Score',
data = df_ave
)
df_ave.plot(
kind='kde',
ax=ax,
secondary_y=True,
color = 'orange'
)
plt.xticks(np.arange(2,6.25,0.25))
plt.title('Mean Scores per Student Histogram for Employable')
plt.show()
df_less = df.loc[df['CLASS'] == 'LessEmployable'].drop(columns=['CLASS', 'Name of Student'])
fig = plt.figure(figsize=(15, 7.5))
fig.patch.set_facecolor('ghostwhite')
less_ave_skills = pd.DataFrame({'Average': df_less.mean()})
sns.set_theme(style='darkgrid', palette='deep')
sns.barplot(y=less_ave_skills.index, x='Average', data=less_ave_skills.sort_values('Average', ascending=False))
plt.xticks(np.arange(0, 5.25, 0.25))
plt.title('Average Score of the LESS Employable Students per Category')
plt.show() | code |
128019465/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills | code |
128019465/cell_16 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
ax = sns.barplot(
y = 'Skills',
x='Total Value',
data = total.sort_values(
'Total Value',
ascending = False
)
)
plt.title('Summation of Values per Skill')
plt.show()
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills
pie_data = ave_skills.drop(index=['Student Performance Rating'], axis=0)
pie_data
palette_color = sns.color_palette(palette = 'deep')
fig = plt.figure(figsize=(20,10))
fig.patch.set_facecolor('ghostwhite')
plt.pie(
pie_data['Average Score'],
labels = pie_data.index,
colors = palette_color,
autopct = '%.0f%%'
)
centre_circle = plt.Circle((0, 0), 0.72, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Percentage Distribution of Skills for Employable on Average')
plt.show()
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
sns.barplot(
y = ave_skills.index,
x= 'Average Score',
data = ave_skills.sort_values(
'Average Score',
ascending = False
)
)
plt.xticks(np.arange(0,5.25,0.25))
plt.title('Average Score of the Employable Students per Category')
plt.show()
df_ave = pd.DataFrame({'Student': df['Name of Student'].loc[df['CLASS'] == 'Employable'], 'Average Score': df.loc[df['CLASS'] == 'Employable']._get_numeric_data().mean(axis=1)})
fig = plt.figure(figsize=(15, 7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style='darkgrid', palette='dark')
ax = sns.histplot(x='Average Score', data=df_ave)
df_ave.plot(kind='kde', ax=ax, secondary_y=True, color='orange')
plt.xticks(np.arange(2, 6.25, 0.25))
plt.title('Mean Scores per Student Histogram for Employable')
plt.show() | code |
128019465/cell_3 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
df.info() | code |
128019465/cell_22 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
ax = sns.barplot(
y = 'Skills',
x='Total Value',
data = total.sort_values(
'Total Value',
ascending = False
)
)
plt.title('Summation of Values per Skill')
plt.show()
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills
pie_data = ave_skills.drop(index=['Student Performance Rating'], axis=0)
pie_data
palette_color = sns.color_palette(palette = 'deep')
fig = plt.figure(figsize=(20,10))
fig.patch.set_facecolor('ghostwhite')
plt.pie(
pie_data['Average Score'],
labels = pie_data.index,
colors = palette_color,
autopct = '%.0f%%'
)
centre_circle = plt.Circle((0, 0), 0.72, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.title('Percentage Distribution of Skills for Employable on Average')
plt.show()
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style="darkgrid", palette="deep")
sns.barplot(
y = ave_skills.index,
x= 'Average Score',
data = ave_skills.sort_values(
'Average Score',
ascending = False
)
)
plt.xticks(np.arange(0,5.25,0.25))
plt.title('Average Score of the Employable Students per Category')
plt.show()
df_ave = pd.DataFrame({'Student': df['Name of Student'].loc[df['CLASS'] == 'Employable'], 'Average Score': df.loc[df['CLASS'] == 'Employable']._get_numeric_data().mean(axis=1)})
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
sns.set_theme(style='darkgrid', palette = 'dark')
ax = sns.histplot(
x = 'Average Score',
data = df_ave
)
df_ave.plot(
kind='kde',
ax=ax,
secondary_y=True,
color = 'orange'
)
plt.xticks(np.arange(2,6.25,0.25))
plt.title('Mean Scores per Student Histogram for Employable')
plt.show()
df_less = df.loc[df['CLASS'] == 'LessEmployable'].drop(columns=['CLASS', 'Name of Student'])
fig = plt.figure(figsize=(15,7.5))
fig.patch.set_facecolor('ghostwhite')
less_ave_skills = pd.DataFrame({
'Average' : df_less.mean()
})
sns.set_theme(style="darkgrid", palette="deep")
sns.barplot(
y = less_ave_skills.index,
x= 'Average',
data = less_ave_skills.sort_values(
'Average',
ascending = False
)
)
plt.xticks(np.arange(0,5.25,0.25))
plt.title('Average Score of the LESS Employable Students per Category')
plt.show()
df_ave_less = pd.DataFrame({'Student': df['Name of Student'].loc[df['CLASS'] == 'LessEmployable'], 'Average Score': df.loc[df['CLASS'] == 'LessEmployable']._get_numeric_data().mean(axis=1)})
df_ave_less.head() | code |
128019465/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_excel('/kaggle/input/students-employability-dataset/Student-Employability-Datasets.xlsx')
df.shape
new_df = df.drop(columns=['CLASS', 'Name of Student', 'Student Performance Rating'])
total = pd.DataFrame({'Skills': new_df.columns, 'Total Value': new_df.sum()})
df_employed = df.loc[df['CLASS'] == 'Employable']
df_employed = df_employed.drop(columns=['Name of Student', 'CLASS'])
ave_skills = pd.DataFrame({'Average Score': df_employed.mean()})
ave_skills
pie_data = ave_skills.drop(index=['Student Performance Rating'], axis=0)
pie_data | code |
328101/cell_9 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='left')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['diff'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10) | code |
328101/cell_4 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
plt.legend()
plt.show() | code |
328101/cell_6 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
goods = act_train[act_train['outcome'] == 1]
bads = act_train[act_train['outcome'] == 0]
goods['date'].groupby(goods.date.dt.date).count().plot(figsize=(10, 5), label='Good')
bads['date'].groupby(bads.date.dt.date).count().plot(figsize=(10, 5), c='r', label='Bad')
plt.legend()
plt.show() | code |
328101/cell_10 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date'])
act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date'])
act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train')
act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test')
positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index()
negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index()
hstry = positive_counts.merge(negative_counts, on='people_id', how='left')
hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64)
hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64)
hstry['diff'] = hstry['positive_counts'] - hstry['negative_counts']
hstry.sort_values(by='positive_counts', ascending=False).head(10)
hstry.sort_values(by='negative_counts', ascending=False).head(10) | code |
17119106/cell_21 | [
"text_plain_output_1.png"
] | max_seq_len | code |
17119106/cell_9 | [
"text_plain_output_1.png"
] | import string
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
print(clean_text('Questions for: ‘Colleges Discover the Rural St..')) | code |
17119106/cell_34 | [
"text_plain_output_1.png"
] | from keras.layers import Embedding, Dense, Dropout, LSTM
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
import keras.utils as ku
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
tokenizer = Tokenizer()
def get_sequence_of_tokens(corpus):
q = 0
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
q = 1
return (input_sequences, total_words)
def generate_padded_sequences(input_sequence):
max_sequence_len = max([len(x) for x in input_sequence])
input_sequences = np.array(pad_sequences(input_sequence, maxlen=max_sequence_len, padding='pre'))
predictors, labels = (input_sequences[:, :-1], input_sequences[:, -1])
labels = ku.to_categorical(labels, num_classes=total_words)
return (predictors, labels, max_sequence_len)
def create_model(max_seq_len, total_words):
input_len = max_seq_len - 1
model = Sequential()
model.add(Embedding(total_words, 10, input_length=input_len))
model.add(LSTM(100))
model.add(Dropout(0.1))
model.add(Dense(total_words, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
model = create_model(max_seq_len, total_words)
model.summary()
model.fit(predictors, labels, epochs=100, verbose=5)
def generate_text(seed_text, next_words, model, max_seq_len):
w = 0
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
predicted = model.predict_classes(token_list, verbose=0)
output_word = ''
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text = seed_text + ' ' + output_word
w = 1
return
print(generate_text('united states', 5, model, max_seq_len))
print(generate_text('preident trump', 4, model, max_seq_len))
print(generate_text('donald trump', 4, model, max_seq_len))
print(generate_text('india and china', 4, model, max_seq_len))
print(generate_text('new york', 4, model, max_seq_len))
print(generate_text('science and technology', 5, model, max_seq_len)) | code |
17119106/cell_30 | [
"text_plain_output_1.png"
] | from keras.layers import Embedding, Dense, Dropout, LSTM
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
import keras.utils as ku
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
tokenizer = Tokenizer()
def get_sequence_of_tokens(corpus):
q = 0
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
q = 1
return (input_sequences, total_words)
def generate_padded_sequences(input_sequence):
max_sequence_len = max([len(x) for x in input_sequence])
input_sequences = np.array(pad_sequences(input_sequence, maxlen=max_sequence_len, padding='pre'))
predictors, labels = (input_sequences[:, :-1], input_sequences[:, -1])
labels = ku.to_categorical(labels, num_classes=total_words)
return (predictors, labels, max_sequence_len)
def create_model(max_seq_len, total_words):
input_len = max_seq_len - 1
model = Sequential()
model.add(Embedding(total_words, 10, input_length=input_len))
model.add(LSTM(100))
model.add(Dropout(0.1))
model.add(Dense(total_words, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
model = create_model(max_seq_len, total_words)
model.summary()
model.fit(predictors, labels, epochs=100, verbose=5) | code |
17119106/cell_33 | [
"text_plain_output_1.png"
] | from keras.layers import Embedding, Dense, Dropout, LSTM
from keras.models import Sequential
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
import keras.utils as ku
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
tokenizer = Tokenizer()
def get_sequence_of_tokens(corpus):
q = 0
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
q = 1
return (input_sequences, total_words)
def generate_padded_sequences(input_sequence):
max_sequence_len = max([len(x) for x in input_sequence])
input_sequences = np.array(pad_sequences(input_sequence, maxlen=max_sequence_len, padding='pre'))
predictors, labels = (input_sequences[:, :-1], input_sequences[:, -1])
labels = ku.to_categorical(labels, num_classes=total_words)
return (predictors, labels, max_sequence_len)
def create_model(max_seq_len, total_words):
input_len = max_seq_len - 1
model = Sequential()
model.add(Embedding(total_words, 10, input_length=input_len))
model.add(LSTM(100))
model.add(Dropout(0.1))
model.add(Dense(total_words, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
model = create_model(max_seq_len, total_words)
model.summary()
model.fit(predictors, labels, epochs=100, verbose=5)
def generate_text(seed_text, next_words, model, max_seq_len):
w = 0
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_seq_len - 1, padding='pre')
predicted = model.predict_classes(token_list, verbose=0)
output_word = ''
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text = seed_text + ' ' + output_word
w = 1
return
print(generate_text('united states', 5, model, max_seq_len)) | code |
17119106/cell_20 | [
"text_plain_output_1.png"
] | from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
import keras.utils as ku
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
tokenizer = Tokenizer()
def get_sequence_of_tokens(corpus):
q = 0
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
q = 1
return (input_sequences, total_words)
def generate_padded_sequences(input_sequence):
max_sequence_len = max([len(x) for x in input_sequence])
input_sequences = np.array(pad_sequences(input_sequence, maxlen=max_sequence_len, padding='pre'))
predictors, labels = (input_sequences[:, :-1], input_sequences[:, -1])
labels = ku.to_categorical(labels, num_classes=total_words)
return (predictors, labels, max_sequence_len)
len(labels) | code |
17119106/cell_6 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
if x == 0:
print(filename)
article_df = pd.read_csv(currr_dir + filename)
if x == 0:
print(article_df.shape)
print(article_df.columns)
print(article_df.head(5))
print(article_df.tail(5))
all_headlines.extend(list(article_df.headline.values))
if x == 0:
print(article_df.headline)
print(article_df.headline.values)
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
print(len(all_headlines))
print(all_headlines[:5]) | code |
17119106/cell_29 | [
"text_plain_output_1.png"
] | from keras.layers import Embedding, Dense, Dropout, LSTM
from keras.models import Sequential
from keras.preprocessing.text import Tokenizer
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
tokenizer = Tokenizer()
def get_sequence_of_tokens(corpus):
q = 0
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
q = 1
return (input_sequences, total_words)
def create_model(max_seq_len, total_words):
input_len = max_seq_len - 1
model = Sequential()
model.add(Embedding(total_words, 10, input_length=input_len))
model.add(LSTM(100))
model.add(Dropout(0.1))
model.add(Dense(total_words, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
model = create_model(max_seq_len, total_words)
model.summary() | code |
17119106/cell_2 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
17119106/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
print(corpus[:10]) | code |
17119106/cell_19 | [
"text_plain_output_1.png"
] | len(predictors) | code |
17119106/cell_15 | [
"text_plain_output_1.png"
] | input_sequence[:10] | code |
17119106/cell_14 | [
"text_plain_output_1.png"
] | from keras.preprocessing.text import Tokenizer
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
tokenizer = Tokenizer()
def get_sequence_of_tokens(corpus):
q = 0
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
q = 1
return (input_sequences, total_words)
input_sequence, total_words = get_sequence_of_tokens(corpus)
print(total_words) | code |
17119106/cell_22 | [
"text_plain_output_1.png"
] | from keras.preprocessing.text import Tokenizer
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
import numpy as np
import pandas as pd
import os
currr_dir = '../input/'
all_headlines = []
x = 0
for filename in os.listdir(currr_dir):
if 'Articles' in filename:
article_df = pd.read_csv(currr_dir + filename)
all_headlines.extend(list(article_df.headline.values))
x = 1
break
all_headlines = [h for h in all_headlines if h != 'Unknown']
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
corpus = [clean_text(x) for x in all_headlines]
tokenizer = Tokenizer()
def get_sequence_of_tokens(corpus):
q = 0
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
n_gram_sequence = token_list[:i + 1]
input_sequences.append(n_gram_sequence)
q = 1
return (input_sequences, total_words)
print(total_words) | code |
17119106/cell_10 | [
"text_plain_output_1.png"
] | import string
def clean_text(txt):
txt = ''.join((w for w in txt if w not in string.punctuation)).lower()
txt = txt.encode('utf8').decode('ascii', 'ignore')
return txt
print(string.punctuation) | code |
17119106/cell_5 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from numpy.random import seed
from tensorflow import set_random_seed
import warnings
from keras.models import Sequential
from keras.layers import Embedding, Dense, Dropout, LSTM
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import keras.utils as ku
from keras.callbacks import EarlyStopping
from tensorflow import set_random_seed
from numpy.random import seed
set_random_seed(2)
seed(1)
import string
import os
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter(action='ignore', category=FutureWarning) | code |
1009465/cell_7 | [
"text_plain_output_1.png"
] | train < -read.table('../input/train.csv', sep=',')
test < -read.table('../input/test.csv', sep=',')
train < -read.table('../input/train.csv', sep=',', header=TRUE)
test < -read.table('../input/test.csv', sep=',', header=TRUE)
str(train) | code |
1009465/cell_5 | [
"text_plain_output_1.png"
] | str(train) | code |
18157731/cell_21 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001)
lr = 1e-05
learn.fit_one_cycle(5, max_lr=lr)
interp = ClassificationInterpretation.from_learner(learn)
losses, idxs = interp.top_losses()
len(data.valid_ds) == len(losses) == len(idxs)
doc(interp.plot_top_losses)
interp.most_confused(min_val=2) | code |
18157731/cell_13 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True) | code |
18157731/cell_9 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
data.show_batch(rows=3, figsize=(7, 8)) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.