path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
18157731/cell_20 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001)
lr = 1e-05
learn.fit_one_cycle(5, max_lr=lr)
interp = ClassificationInterpretation.from_learner(learn)
losses, idxs = interp.top_losses()
len(data.valid_ds) == len(losses) == len(idxs)
doc(interp.plot_top_losses)
interp.plot_confusion_matrix(figsize=(8, 8)) | code |
18157731/cell_11 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate) | code |
18157731/cell_19 | [
"image_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001)
lr = 1e-05
learn.fit_one_cycle(5, max_lr=lr)
interp = ClassificationInterpretation.from_learner(learn)
losses, idxs = interp.top_losses()
len(data.valid_ds) == len(losses) == len(idxs)
interp.plot_top_losses(9, figsize=(15, 11)) | code |
18157731/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
18157731/cell_18 | [
"image_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001)
lr = 1e-05
learn.fit_one_cycle(5, max_lr=lr)
interp = ClassificationInterpretation.from_learner(learn)
losses, idxs = interp.top_losses()
len(data.valid_ds) == len(losses) == len(idxs) | code |
18157731/cell_8 | [
"image_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes | code |
18157731/cell_15 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001)
learn.recorder.plot() | code |
18157731/cell_16 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001)
learn.recorder.plot_losses() | code |
18157731/cell_17 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001)
lr = 1e-05
learn.fit_one_cycle(5, max_lr=lr) | code |
18157731/cell_14 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50)
learn.model_dir = '/kaggle/working'
learn.save('resnet50_224', return_path=True)
learn.unfreeze()
learn.lr_find(start_lr=1e-06, end_lr=0.0001) | code |
18157731/cell_10 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds)) | code |
18157731/cell_12 | [
"image_output_1.png"
] | import numpy as np # linear algebra
path = Path('../input/dataset')
train = path / 'training_set'
test = path / 'test_set'
np.random.seed(42)
data = ImageDataBunch.from_folder(train, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=True), size=224, num_workers=4).normalize(imagenet_stats)
data.classes
(data.classes, data.c, len(data.train_ds), len(data.valid_ds))
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(50) | code |
18157731/cell_5 | [
"image_output_1.png"
] | path = Path('../input/dataset')
path.ls() | code |
74056828/cell_4 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
df = pd.read_csv('../input/california-housing-prices/housing.csv')
df1 = pd.DataFrame()
for location in df['ocean_proximity'].unique():
df1 = df1.append(df.loc[df['ocean_proximity'] == location][:4])
df1 = df1.reset_index()
df = df1.drop(columns='index')
df
for i, c in zip(df.index, df.columns[:-1]):
df.at[i, c] = df.at[i + len(df.columns) - 1, c] = np.nan
df | code |
74056828/cell_11 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
df = pd.read_csv('../input/california-housing-prices/housing.csv')
df1 = pd.DataFrame()
for location in df['ocean_proximity'].unique():
df1 = df1.append(df.loc[df['ocean_proximity'] == location][:4])
df1 = df1.reset_index()
df = df1.drop(columns='index')
df
for i, c in zip(df.index, df.columns[:-1]):
df.at[i, c] = df.at[i + len(df.columns) - 1, c] = np.nan
df
class Imputer_p:
def __init__(self, strategy_='median', f=1):
"""
Imputer_p (Pandas):
strategy_:{"median", tbd} default=’median’
Specifies the strategy to calucate the statistics for replacing NaNs
f: int, default=1
Factor to multiply the first column
"""
self.strategy_ = strategy_
self.factor = f
def fit(self, df):
if self.strategy_ == 'median':
self.statistics_ = df.median()
def transform(self, df_):
df = df_.copy()
if self.strategy_ == 'median':
for column_ in df.columns:
df.loc[df[column_].isna(), column_] = self.statistics_[column_]
elif self.strategy_ == 'mult':
df[df.columns[0]] *= self.factor
return df
imput_p = Imputer_p()
imput_p.fit(df)
p1 = imput_p.transform(df[df.columns[:-1]])
p1
class Group_Imputer_p(Imputer_p):
def __init__(self, strategy_='median', f=None):
super().__init__(strategy_='median', f=None)
def fit(self, df_, y=-1):
""" y index of column with depended variabls default -1 (last one)"""
df = df_[df_.columns[:y]].copy()
self.categories = df_[df_.columns[y]].copy()
self.stack = []
for category in self.categories.unique():
self.stack.append(df.loc[self.categories == category])
def transform(self):
df = pd.DataFrame()
for astack in self.stack:
super().fit(astack)
df = df.append(super().transform(astack))
return df
group_imput_p = Group_Imputer_p(strategy_='median')
group_imput_p.fit(df)
p2 = group_imput_p.transform()
p2 - p1 | code |
74056828/cell_7 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
df = pd.read_csv('../input/california-housing-prices/housing.csv')
df1 = pd.DataFrame()
for location in df['ocean_proximity'].unique():
df1 = df1.append(df.loc[df['ocean_proximity'] == location][:4])
df1 = df1.reset_index()
df = df1.drop(columns='index')
df
for i, c in zip(df.index, df.columns[:-1]):
df.at[i, c] = df.at[i + len(df.columns) - 1, c] = np.nan
df
class Imputer_p:
def __init__(self, strategy_='median', f=1):
"""
Imputer_p (Pandas):
strategy_:{"median", tbd} default=’median’
Specifies the strategy to calucate the statistics for replacing NaNs
f: int, default=1
Factor to multiply the first column
"""
self.strategy_ = strategy_
self.factor = f
def fit(self, df):
if self.strategy_ == 'median':
self.statistics_ = df.median()
def transform(self, df_):
df = df_.copy()
if self.strategy_ == 'median':
for column_ in df.columns:
df.loc[df[column_].isna(), column_] = self.statistics_[column_]
elif self.strategy_ == 'mult':
df[df.columns[0]] *= self.factor
return df
imput_p = Imputer_p()
imput_p.fit(df)
p1 = imput_p.transform(df[df.columns[:-1]])
p1 | code |
74056828/cell_16 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
df = pd.read_csv('../input/california-housing-prices/housing.csv')
df1 = pd.DataFrame()
for location in df['ocean_proximity'].unique():
df1 = df1.append(df.loc[df['ocean_proximity'] == location][:4])
df1 = df1.reset_index()
df = df1.drop(columns='index')
df
for i, c in zip(df.index, df.columns[:-1]):
df.at[i, c] = df.at[i + len(df.columns) - 1, c] = np.nan
df
class Imputer_p:
def __init__(self, strategy_='median', f=1):
"""
Imputer_p (Pandas):
strategy_:{"median", tbd} default=’median’
Specifies the strategy to calucate the statistics for replacing NaNs
f: int, default=1
Factor to multiply the first column
"""
self.strategy_ = strategy_
self.factor = f
def fit(self, df):
if self.strategy_ == 'median':
self.statistics_ = df.median()
def transform(self, df_):
df = df_.copy()
if self.strategy_ == 'median':
for column_ in df.columns:
df.loc[df[column_].isna(), column_] = self.statistics_[column_]
elif self.strategy_ == 'mult':
df[df.columns[0]] *= self.factor
return df
imput_p = Imputer_p()
imput_p.fit(df)
p1 = imput_p.transform(df[df.columns[:-1]])
p1
class Group_Imputer_p(Imputer_p):
def __init__(self, strategy_='median', f=None):
super().__init__(strategy_='median', f=None)
def fit(self, df_, y=-1):
""" y index of column with depended variabls default -1 (last one)"""
df = df_[df_.columns[:y]].copy()
self.categories = df_[df_.columns[y]].copy()
self.stack = []
for category in self.categories.unique():
self.stack.append(df.loc[self.categories == category])
def transform(self):
df = pd.DataFrame()
for astack in self.stack:
super().fit(astack)
df = df.append(super().transform(astack))
return df
X = df[df.columns[:-1]].to_numpy()
y = df[df.columns[-1]].to_numpy()
class Imputer_n:
def __init__(self, stategy_='median', f=1):
self.stategy_ = stategy_
self.factor = f
def fit(self, X):
if self.stategy_ == 'median':
self.statistics_ = np.nanmedian(X, axis=0)
def transform(self, X):
X_ = X.copy()
if self.stategy_ == 'median':
X_ = np.where(np.isnan(X_), self.statistics_, X_)
elif self.stategy_ == 'mult':
X_[:, 0] *= self.factor
return X_
imput_n = Imputer_n('median', 90)
imput_n.fit(X)
n1 = imput_n.transform(X)
n1 - p1.to_numpy() | code |
74056828/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/california-housing-prices/housing.csv')
df1 = pd.DataFrame()
for location in df['ocean_proximity'].unique():
df1 = df1.append(df.loc[df['ocean_proximity'] == location][:4])
df1 = df1.reset_index()
df = df1.drop(columns='index')
df | code |
105200540/cell_25 | [
"image_output_1.png"
] | from tensorflow.keras.utils import to_categorical
import h5py
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.utils import to_categorical
import numpy as np
import h5py
class HDF5DatasetGenerator:
def __init__(self, db_path, batch_size, preprocessors=None, aug=None, binarize=True, classes=2):
self.batch_size = batch_size
self.preprocessors = preprocessors
self.aug = aug
self.binarize = binarize
self.classes = classes
self.db = h5py.File(db_path, 'r')
self.num_images = self.db['labels'].shape[0]
def generator(self, passes=np.inf):
epochs = 0
while epochs < passes:
for i in np.arange(0, self.num_images, self.batch_size):
images = self.db['images'][i:i + self.batch_size]
labels = self.db['labels'][i:i + self.batch_size]
if self.binarize:
labels = to_categorical(labels, self.classes)
if self.preprocessors is not None:
proc_images = []
for image in images:
for p in self.preprocessors:
image = p.preprocess(image)
proc_images.append(image)
images = np.array(proc_images)
if self.aug is not None:
images, labels = next(self.aug.flow(images, labels, batch_size=self.batch_size))
yield (images, labels)
epochs += 1
def close(self):
self.db.close()
plt.style.use('ggplot')
plt.figure(figsize=(16, 10))
plt.plot(np.arange(0, NUM_EPOCHS), H.history['loss'], label='loss')
plt.title('Loss on super resolution training')
plt.xlabel('Epoch #')
plt.ylabel('Loss')
plt.legend()
plt.show() | code |
105200540/cell_34 | [
"text_plain_output_1.png"
] | from tensorflow.keras.utils import to_categorical
import cv2
import h5py
import numpy as np
import numpy as np
import numpy as np
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.utils import to_categorical
import numpy as np
import h5py
class HDF5DatasetGenerator:
def __init__(self, db_path, batch_size, preprocessors=None, aug=None, binarize=True, classes=2):
self.batch_size = batch_size
self.preprocessors = preprocessors
self.aug = aug
self.binarize = binarize
self.classes = classes
self.db = h5py.File(db_path, 'r')
self.num_images = self.db['labels'].shape[0]
def generator(self, passes=np.inf):
epochs = 0
while epochs < passes:
for i in np.arange(0, self.num_images, self.batch_size):
images = self.db['images'][i:i + self.batch_size]
labels = self.db['labels'][i:i + self.batch_size]
if self.binarize:
labels = to_categorical(labels, self.classes)
if self.preprocessors is not None:
proc_images = []
for image in images:
for p in self.preprocessors:
image = p.preprocess(image)
proc_images.append(image)
images = np.array(proc_images)
if self.aug is not None:
images, labels = next(self.aug.flow(images, labels, batch_size=self.batch_size))
yield (images, labels)
epochs += 1
def close(self):
self.db.close()
args = {'image': '../input/sample-images/jemma.png', 'baseline': 'output/baseline.png', 'output': 'output/output.png'}
print('[INFO] generating image...')
image = cv2.imread(args['image'])
h, w = image.shape[:2]
print('(h, w): ', (h, w))
w -= int(w % SCALE)
h -= int(h % SCALE)
image = image[0:h, 0:w]
print('image.shape: ', image.shape) | code |
105200540/cell_20 | [
"text_plain_output_1.png"
] | from tensorflow.keras import backend
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import plot_model
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Activation
from tensorflow.keras import backend
class SRCNN:
@staticmethod
def build(width, height, depth):
model = Sequential()
input_shape = (height, width, depth)
if backend.image_data_format() == 'channels_first':
input_shape = (depth, height, width)
model.add(Conv2D(64, (9, 9), kernel_initializer='he_normal', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (1, 1), kernel_initializer='he_normal'))
model.add(Activation('relu'))
model.add(Conv2D(depth, (5, 5), kernel_initializer='he_normal'))
model.add(Activation('relu'))
return model
from tensorflow.keras.utils import plot_model
model = SRCNN.build(33, 33, 3)
print('[INFO] compiling model...')
opt = Adam(learning_rate=0.001, decay=0.001 / NUM_EPOCHS)
model = SRCNN.build(width=INPUT_DIM, height=INPUT_DIM, depth=3)
model.compile(loss='mse', optimizer=opt) | code |
105200540/cell_40 | [
"text_plain_output_1.png"
] | from PIL import Image
from tensorflow.keras.utils import to_categorical
import PIL
import cv2
import h5py
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import numpy as np
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.utils import to_categorical
import numpy as np
import h5py
class HDF5DatasetGenerator:
def __init__(self, db_path, batch_size, preprocessors=None, aug=None, binarize=True, classes=2):
self.batch_size = batch_size
self.preprocessors = preprocessors
self.aug = aug
self.binarize = binarize
self.classes = classes
self.db = h5py.File(db_path, 'r')
self.num_images = self.db['labels'].shape[0]
def generator(self, passes=np.inf):
epochs = 0
while epochs < passes:
for i in np.arange(0, self.num_images, self.batch_size):
images = self.db['images'][i:i + self.batch_size]
labels = self.db['labels'][i:i + self.batch_size]
if self.binarize:
labels = to_categorical(labels, self.classes)
if self.preprocessors is not None:
proc_images = []
for image in images:
for p in self.preprocessors:
image = p.preprocess(image)
proc_images.append(image)
images = np.array(proc_images)
if self.aug is not None:
images, labels = next(self.aug.flow(images, labels, batch_size=self.batch_size))
yield (images, labels)
epochs += 1
def close(self):
self.db.close()
plt.style.use('ggplot')
args = {'image': '../input/sample-images/jemma.png', 'baseline': 'output/baseline.png', 'output': 'output/output.png'}
image = cv2.imread(args['image'])
h, w = image.shape[:2]
w -= int(w % SCALE)
h -= int(h % SCALE)
image = image[0:h, 0:w]
lowW = int(w * (1.0 / SCALE))
lowH = int(h * (1.0 / SCALE))
highW = int(lowW * (SCALE / 1.0))
highH = int(lowH * (SCALE / 1.0))
scaled = np.array(Image.fromarray(image).resize((lowW, lowH), resample=PIL.Image.BICUBIC))
scaled = np.array(Image.fromarray(scaled).resize((highW, highH), resample=PIL.Image.BICUBIC))
cv2.imwrite(args['baseline'], scaled)
output = np.zeros(scaled.shape)
h, w = output.shape[:2]
output = output[PAD:h - (h % INPUT_DIM + PAD), PAD:w - (w % INPUT_DIM + PAD)]
output = np.clip(output, 0, 255).astype('uint8')
cv2.imwrite(args['output'], output) | code |
105200540/cell_41 | [
"image_output_1.png"
] | from tensorflow.keras.utils import to_categorical
from typing import List
import cv2
import h5py
import matplotlib.image as img
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import numpy as np
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.utils import to_categorical
import numpy as np
import h5py
class HDF5DatasetGenerator:
def __init__(self, db_path, batch_size, preprocessors=None, aug=None, binarize=True, classes=2):
self.batch_size = batch_size
self.preprocessors = preprocessors
self.aug = aug
self.binarize = binarize
self.classes = classes
self.db = h5py.File(db_path, 'r')
self.num_images = self.db['labels'].shape[0]
def generator(self, passes=np.inf):
epochs = 0
while epochs < passes:
for i in np.arange(0, self.num_images, self.batch_size):
images = self.db['images'][i:i + self.batch_size]
labels = self.db['labels'][i:i + self.batch_size]
if self.binarize:
labels = to_categorical(labels, self.classes)
if self.preprocessors is not None:
proc_images = []
for image in images:
for p in self.preprocessors:
image = p.preprocess(image)
proc_images.append(image)
images = np.array(proc_images)
if self.aug is not None:
images, labels = next(self.aug.flow(images, labels, batch_size=self.batch_size))
yield (images, labels)
epochs += 1
def close(self):
self.db.close()
plt.style.use('ggplot')
args = {'image': '../input/sample-images/jemma.png', 'baseline': 'output/baseline.png', 'output': 'output/output.png'}
image = cv2.imread(args['image'])
h, w = image.shape[:2]
w -= int(w % SCALE)
h -= int(h % SCALE)
image = image[0:h, 0:w]
from typing import List
import matplotlib.pyplot as plt
import matplotlib.image as img
images = {'origin': args['image'], 'baseline': args['baseline'], 'output': args['output']}
f: plt.Figure
axes: List[plt.Axes]
f, axes = plt.subplots(1, len(images))
f.set_size_inches((16, 9))
for i, (name, path) in enumerate(images.items()):
image = img.imread(path)
axes[i].axis('off')
axes[i].set_title(name)
axes[i].imshow(image)
plt.show() | code |
105200540/cell_32 | [
"text_plain_output_1.png"
] | from tensorflow.keras.models import load_model
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
print('[INFO] loading model...')
model = load_model(MODEL_PATH) | code |
105200540/cell_38 | [
"text_plain_output_1.png"
] | for y in range(0, h - INPUT_DIM + 1, LABEL_SIZE):
for x in range(0, w - INPUT_DIM + 1, LABEL_SIZE):
crop = scaled[y:y + INPUT_DIM, x:x + INPUT_DIM].astype('float32')
P = model.predict(np.expand_dims(crop, axis=0))
P = P.reshape((LABEL_SIZE, LABEL_SIZE, 3))
output[y + PAD:y + PAD + LABEL_SIZE, x + PAD:x + PAD + LABEL_SIZE] = P | code |
105200540/cell_35 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from PIL import Image
from tensorflow.keras.utils import to_categorical
import PIL
import cv2
import h5py
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import numpy as np
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.utils import to_categorical
import numpy as np
import h5py
class HDF5DatasetGenerator:
def __init__(self, db_path, batch_size, preprocessors=None, aug=None, binarize=True, classes=2):
self.batch_size = batch_size
self.preprocessors = preprocessors
self.aug = aug
self.binarize = binarize
self.classes = classes
self.db = h5py.File(db_path, 'r')
self.num_images = self.db['labels'].shape[0]
def generator(self, passes=np.inf):
epochs = 0
while epochs < passes:
for i in np.arange(0, self.num_images, self.batch_size):
images = self.db['images'][i:i + self.batch_size]
labels = self.db['labels'][i:i + self.batch_size]
if self.binarize:
labels = to_categorical(labels, self.classes)
if self.preprocessors is not None:
proc_images = []
for image in images:
for p in self.preprocessors:
image = p.preprocess(image)
proc_images.append(image)
images = np.array(proc_images)
if self.aug is not None:
images, labels = next(self.aug.flow(images, labels, batch_size=self.batch_size))
yield (images, labels)
epochs += 1
def close(self):
self.db.close()
plt.style.use('ggplot')
args = {'image': '../input/sample-images/jemma.png', 'baseline': 'output/baseline.png', 'output': 'output/output.png'}
image = cv2.imread(args['image'])
h, w = image.shape[:2]
w -= int(w % SCALE)
h -= int(h % SCALE)
image = image[0:h, 0:w]
lowW = int(w * (1.0 / SCALE))
lowH = int(h * (1.0 / SCALE))
highW = int(lowW * (SCALE / 1.0))
highH = int(lowH * (SCALE / 1.0))
scaled = np.array(Image.fromarray(image).resize((lowW, lowH), resample=PIL.Image.BICUBIC))
scaled = np.array(Image.fromarray(scaled).resize((highW, highH), resample=PIL.Image.BICUBIC))
cv2.imwrite(args['baseline'], scaled) | code |
105200540/cell_24 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from tensorflow.keras import backend
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import plot_model
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Activation
from tensorflow.keras import backend
class SRCNN:
@staticmethod
def build(width, height, depth):
model = Sequential()
input_shape = (height, width, depth)
if backend.image_data_format() == 'channels_first':
input_shape = (depth, height, width)
model.add(Conv2D(64, (9, 9), kernel_initializer='he_normal', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (1, 1), kernel_initializer='he_normal'))
model.add(Activation('relu'))
model.add(Conv2D(depth, (5, 5), kernel_initializer='he_normal'))
model.add(Activation('relu'))
return model
from tensorflow.keras.utils import plot_model
model = SRCNN.build(33, 33, 3)
opt = Adam(learning_rate=0.001, decay=0.001 / NUM_EPOCHS)
model = SRCNN.build(width=INPUT_DIM, height=INPUT_DIM, depth=3)
model.compile(loss='mse', optimizer=opt)
print('[INFO] serializing model...')
model.save(MODEL_PATH, overwrite=True) | code |
105200540/cell_22 | [
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | H = model.fit_generator(super_res_generator(inputs.generator(), targets.generator()), steps_per_epoch=inputs.num_images // BATCH_SIZE, epochs=NUM_EPOCHS, verbose=1) | code |
105200540/cell_12 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from tensorflow.keras import backend
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import plot_model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Activation
from tensorflow.keras import backend
class SRCNN:
@staticmethod
def build(width, height, depth):
model = Sequential()
input_shape = (height, width, depth)
if backend.image_data_format() == 'channels_first':
input_shape = (depth, height, width)
model.add(Conv2D(64, (9, 9), kernel_initializer='he_normal', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (1, 1), kernel_initializer='he_normal'))
model.add(Activation('relu'))
model.add(Conv2D(depth, (5, 5), kernel_initializer='he_normal'))
model.add(Activation('relu'))
return model
from tensorflow.keras.utils import plot_model
model = SRCNN.build(33, 33, 3)
plot_model(model, to_file='srcnn.png', show_shapes=True) | code |
105200540/cell_36 | [
"text_plain_output_1.png"
] | from PIL import Image
from tensorflow.keras.utils import to_categorical
import PIL
import cv2
import h5py
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import numpy as np
INPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/inputs.hdf5'
OUTPUTS_DB = '../input/ukbench100-patches-for-sr-hdf5/output/outputs.hdf5'
MODEL_PATH = 'output/srcnn.model'
PLOT_PATH = 'output/plot.png'
BATCH_SIZE = 128
NUM_EPOCHS = 10
SCALE = 2.0
INPUT_DIM = 33
LABEL_SIZE = 21
PAD = int((INPUT_DIM - LABEL_SIZE) / 2.0)
STRIDE = 14
from tensorflow.keras.utils import to_categorical
import numpy as np
import h5py
class HDF5DatasetGenerator:
def __init__(self, db_path, batch_size, preprocessors=None, aug=None, binarize=True, classes=2):
self.batch_size = batch_size
self.preprocessors = preprocessors
self.aug = aug
self.binarize = binarize
self.classes = classes
self.db = h5py.File(db_path, 'r')
self.num_images = self.db['labels'].shape[0]
def generator(self, passes=np.inf):
epochs = 0
while epochs < passes:
for i in np.arange(0, self.num_images, self.batch_size):
images = self.db['images'][i:i + self.batch_size]
labels = self.db['labels'][i:i + self.batch_size]
if self.binarize:
labels = to_categorical(labels, self.classes)
if self.preprocessors is not None:
proc_images = []
for image in images:
for p in self.preprocessors:
image = p.preprocess(image)
proc_images.append(image)
images = np.array(proc_images)
if self.aug is not None:
images, labels = next(self.aug.flow(images, labels, batch_size=self.batch_size))
yield (images, labels)
epochs += 1
def close(self):
self.db.close()
plt.style.use('ggplot')
args = {'image': '../input/sample-images/jemma.png', 'baseline': 'output/baseline.png', 'output': 'output/output.png'}
image = cv2.imread(args['image'])
h, w = image.shape[:2]
w -= int(w % SCALE)
h -= int(h % SCALE)
image = image[0:h, 0:w]
lowW = int(w * (1.0 / SCALE))
lowH = int(h * (1.0 / SCALE))
highW = int(lowW * (SCALE / 1.0))
highH = int(lowH * (SCALE / 1.0))
scaled = np.array(Image.fromarray(image).resize((lowW, lowH), resample=PIL.Image.BICUBIC))
scaled = np.array(Image.fromarray(scaled).resize((highW, highH), resample=PIL.Image.BICUBIC))
cv2.imwrite(args['baseline'], scaled)
output = np.zeros(scaled.shape)
h, w = output.shape[:2]
print('(h, w): ', (h, w)) | code |
74070177/cell_2 | [
"text_plain_output_1.png"
] | !apt install libasound2-dev portaudio19-dev libportaudio2 libportaudiocpp0 ffmpeg -y libasound2-dev | code |
74070177/cell_1 | [
"text_plain_output_1.png"
] | !git clone https://github.com/mcdermottLab/pycochleagram.git | code |
74070177/cell_7 | [
"text_plain_output_1.png"
] | from distutils.dir_util import copy_tree
from distutils.dir_util import copy_tree
copy_tree('../input/cochleagramfile', '../working/') | code |
74070177/cell_3 | [
"text_plain_output_1.png"
] | !pip install pqdm | code |
74070177/cell_22 | [
"text_plain_output_1.png"
] | from pqdm.processes import pqdm
from scipy import signal
import cochleagram as cgram
import cv2
import erbfilter as erb
import glob
import librosa
import librosa
import librosa
import numpy as np
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torch
os.chdir('/kaggle/working')
output_dir = './data'
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
os.mkdir('./data/nocall')
path_to_json = '../input/freefield1010/freefield1010/*/*'
json_pattern = os.path.join(path_to_json, '*.json')
file_list = glob.glob(json_pattern)
import pandas as pd
dfs = []
for file in file_list:
with open(file) as f:
json_data = pd.json_normalize(json.loads(f.read()))
dfs.append(json_data)
df = pd.concat(dfs, sort=False)
df['hasbird'] = df.apply(lambda x: 'bird' in x['tags'], axis=1).astype(int)
train_ff1010 = df.sort_values(by='id').reset_index(drop=True)
train_ff1010 = train_ff1010[train_ff1010.hasbird == 0].reset_index(drop=True)
def get_clip(path):
clip, sr_native = librosa.load(path, sr=None, mono=True, dtype=np.float32)
sr = 32000
if sr_native != 0:
clip = librosa.resample(clip, sr_native, sr, res_type='kaiser_best')
return (clip, sr, sr_native)
class cochleagram:
IMAGE_HEIGHT = 256
IMAGE_WIDTH = 576
SR = 32000
hi_lim = SR // 2
low_lim = 10
n_filters = int(np.floor(erb.freq2erb(hi_lim) - erb.freq2erb(low_lim)) - 1)
nonlinearity = 'db'
ret_mode = ('envs',)
sample_factor = 2
def cochlea(signal):
human_co = cgram.human_cochleagram(signal, sr=cochleagram.SR, n=cochleagram.n_filters, low_lim=cochleagram.low_lim, hi_lim=cochleagram.hi_lim, sample_factor=cochleagram.sample_factor, nonlinearity=cochleagram.nonlinearity)
return human_co
config_patch = {'use_inv_stem': True, 'use_patch': [True, 16]}
def inv_stem(x):
x1 = x.transpose(0, 1).view(24, 24, 16, 16)
y = torch.zeros(384, 384, dtype=x.dtype)
for i in range(24):
for j in range(24):
y[i * 16:(i + 1) * 16, j * 16:(j + 1) * 16] = x1[i, j]
return y
def image_patch(mel_spect):
if config_patch.get('use_inv_stem'):
spect = torch.from_numpy(mel_spect)
spect = inv_stem(spect)
else:
if config_patch.get('use_patch')[0]:
patch_size = config_patch.get('use_patch')[1]
spect = np.zeros((384, 384), dtype=np.float32)
for i in range(0, 192, patch_size):
spect[2 * i:2 * i + patch_size, :] = mel_spect[i:i + patch_size, :384]
spect[2 * i + patch_size:2 * i + 2 * patch_size, :] = mel_spect[i:i + patch_size, 384:]
mel_spect = spect
return spect.cpu().detach().numpy()
def work_sub(path):
output_path = './data/nocall'
clip, sr, sr_native = get_clip(path)
clip = clip.astype('float32')
length = clip.shape[0]
head, tail = os.path.split(path[:-4])
spect = cochlea(clip)
res = cv2.resize(np.flipud(spect), dsize=(576, 256), interpolation=cv2.INTER_CUBIC)
filename = 'ff1010_%d_0.jpg' % int(tail)
img_patch = image_patch(res)
cv2.imwrite(os.path.join(output_path, filename), img_patch * 255)
return (sr, sr_native, length)
path_to_wav = '../input/freefield1010/freefield1010/*/*'
json_pattern = os.path.join(path_to_wav, '*.wav')
file_list_wav = glob.glob(json_pattern)
check = []
for file in file_list_wav:
head, tail = os.path.split(file[:-4])
check.append(int(tail))
list_remove = file_list_wav.copy()
for file in file_list_wav:
head, tail = os.path.split(file[:-4])
if not int(tail) in list(train_ff1010['id']):
list_remove.remove(file)
res = pqdm(list_remove, work_sub, n_jobs=8) | code |
74070177/cell_12 | [
"text_plain_output_1.png"
] | import glob
import pandas as pd
import pandas as pd
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
os.chdir('/kaggle/working')
output_dir = './data'
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
os.mkdir('./data/nocall')
path_to_json = '../input/freefield1010/freefield1010/*/*'
json_pattern = os.path.join(path_to_json, '*.json')
file_list = glob.glob(json_pattern)
import pandas as pd
dfs = []
for file in file_list:
with open(file) as f:
json_data = pd.json_normalize(json.loads(f.read()))
dfs.append(json_data)
df = pd.concat(dfs, sort=False)
df['hasbird'] = df.apply(lambda x: 'bird' in x['tags'], axis=1).astype(int)
train_ff1010 = df.sort_values(by='id').reset_index(drop=True)
train_ff1010 = train_ff1010[train_ff1010.hasbird == 0].reset_index(drop=True)
train_ff1010.head(2) | code |
74070177/cell_5 | [
"text_html_output_1.png"
] | print(os.getcwd())
os.chdir('./pycochleagram')
print(os.getcwd())
!python setup.py install | code |
128016087/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
sns.scatterplot(data=train, x='Duration', y='Calories_Burned', hue='Gender', hue_order=['male', 'female']) | code |
128016087/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
plt.figure(figsize=(10, 10))
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
sns.heatmap(train.corr(), mask=mask, annot=True, cmap='Blues')
plt.show() | code |
128016087/cell_23 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
def GenderEncoder(df):
df.loc[df['Gender'] == 'male', 'Gender'] = 0
df.loc[df['Gender'] == 'female', 'Gender'] = 1
return df
train = GenderEncoder(train).reset_index(drop=True)
test = GenderEncoder(test).reset_index(drop=True)
train | code |
128016087/cell_20 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
sns.scatterplot(data=train, x='Height', y='Weight', hue='Gender', hue_order=['male', 'female']) | code |
128016087/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
exercise = pd.read_csv('/kaggle/input/fmendesdat263xdemos/exercise.csv')
calories = pd.read_csv('/kaggle/input/fmendesdat263xdemos/calories.csv')
exercise['Calories_Burned'] = calories['Calories']
exercise = exercise.drop(['User_ID'], axis=1)
exercise | code |
128016087/cell_2 | [
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import warnings
import pandas as pd
import numpy as np
import random
import os
import gc
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore') | code |
128016087/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
import seaborn as sns
fig, axes = plt.subplots(2, 3, figsize=(10, 10))
sns.boxplot(y=train['Age'], ax=axes[0][0])
sns.boxplot(y=train['Height'], ax=axes[0][1])
sns.boxplot(y=train['Weight'], ax=axes[0][2])
sns.boxplot(y=train['Duration'], ax=axes[1][0])
sns.boxplot(y=train['Heart_Rate'], ax=axes[1][1])
sns.boxplot(y=train['Body_Temp'], ax=axes[1][2])
plt.tight_layout()
plt.show() | code |
128016087/cell_19 | [
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
sns.scatterplot(data=train, x='Weight', y='Calories_Burned', hue='Gender', hue_order=['male', 'female']) | code |
128016087/cell_16 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
plt.plot(train['Age'], train['Calories_Burned'], 'g*')
plt.title('Age vs Calories Burned')
plt.xlabel('Age')
plt.ylabel('Calories Burned')
plt.show()
plt.plot(train['Height'], train['Calories_Burned'], 'g*')
plt.title('Height vs Calories Burned')
plt.xlabel('Height')
plt.ylabel('Calories Burned')
plt.show()
plt.plot(train['Weight'], train['Calories_Burned'], 'g*')
plt.title('Weight vs Calories Burned')
plt.xlabel('Weight')
plt.ylabel('Calories Burned')
plt.show() | code |
128016087/cell_17 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
plt.plot(train['Heart_Rate'], train['Calories_Burned'], 'go')
plt.title('Heart_Rate vs Calories Burned')
plt.xlabel('Heart_Rate')
plt.ylabel('Calories Burned')
plt.show()
plt.plot(train['Body_Temp'], train['Calories_Burned'], 'go')
plt.title('Body Temp vs Calories Burned')
plt.xlabel('Body Temp')
plt.ylabel('Calories Burned')
plt.show()
plt.plot(train['Duration'], train['Calories_Burned'], 'go')
plt.title('Duration vs Calories Burned')
plt.xlabel('Duration')
plt.ylabel('Calories Burned')
plt.show() | code |
128016087/cell_24 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
def GenderEncoder(df):
df.loc[df['Gender'] == 'male', 'Gender'] = 0
df.loc[df['Gender'] == 'female', 'Gender'] = 1
return df
train = GenderEncoder(train).reset_index(drop=True)
test = GenderEncoder(test).reset_index(drop=True)
train
train_x = train[['Exercise_Duration', 'Gender', 'BPM', 'Age', 'Weight(lb)']]
train_y = train['Calories_Burned'] | code |
128016087/cell_14 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import random
import seaborn as sns
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
seed_everything(42)
fig, axes = plt.subplots(2,3, figsize = (10,10))
sns.boxplot(y = train['Age'], ax = axes[0][0])
sns.boxplot(y = train['Height'], ax = axes[0][1])
sns.boxplot(y = train['Weight'], ax = axes[0][2])
sns.boxplot(y = train['Duration'], ax = axes[1][0])
sns.boxplot(y = train['Heart_Rate'], ax = axes[1][1])
sns.boxplot(y = train['Body_Temp'],ax = axes[1][2])
plt.tight_layout()
plt.show()
mask = np.zeros_like(train.corr())
mask[np.triu_indices_from(mask)] = True
plt.figure(figsize=(10, 10))
sns.heatmap(train.corr(), annot=True, cmap='YlOrRd')
plt.show() | code |
90120014/cell_4 | [
"image_output_1.png"
] | import cv2
import matplotlib.pyplot as plt
path = '../input/ham1000-segmentation-and-classification/images/ISIC_0024306.jpg'
img = cv2.imread(path)
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = (img2[:, :, 0], img2[:, :, 1], img2[:, :, 2])
hist_h = cv2.calcHist([h], [0], None, [256], [0, 256])
hist_h = cv2.normalize(hist_h, hist_h)
hist_s = cv2.calcHist([s], [0], None, [256], [0, 256])
hist_s = cv2.normalize(hist_s, hist_s)
hist_v = cv2.calcHist([v], [0], None, [256], [0, 256])
hist_v = cv2.normalize(hist_v, hist_v)
plt.plot(hist_h, color='r', label='h')
plt.plot(hist_s, color='g', label='s')
plt.plot(hist_v, color='b', label='v')
plt.legend()
plt.show() | code |
90120014/cell_14 | [
"image_output_1.png"
] | import cv2
import glob
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_labels = pd.read_csv('../input/ham1000-segmentation-and-classification/GroundTruth.csv')
df_labels['image'] = df_labels['image'] + '.jpg'
labels = ['MEL', 'NV', 'BCC', 'AKIEC', 'BKL', 'DF', 'VASC']
label_list = []
for i in range(len(df_labels)):
row = list(df_labels.iloc[i])
del row[0]
index = np.argmax(row)
label = labels[index]
label_list.append(label)
df_labels['label'] = label_list
df_labels = df_labels.drop(labels, axis=1)
path = '../input/ham1000-segmentation-and-classification/images/ISIC_0024306.jpg'
img = cv2.imread(path)
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = (img2[:, :, 0], img2[:, :, 1], img2[:, :, 2])
hist_h = cv2.calcHist([h], [0], None, [256], [0, 256])
hist_h = cv2.normalize(hist_h, hist_h)
hist_s = cv2.calcHist([s], [0], None, [256], [0, 256])
hist_s = cv2.normalize(hist_s, hist_s)
hist_v = cv2.calcHist([v], [0], None, [256], [0, 256])
hist_v = cv2.normalize(hist_v, hist_v)
class HSVHistogram:
def __init__(self, bins):
self.bins = bins
def describe(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([image], [0, 1, 2], None, self.bins, [0, 256, 0, 256, 0, 256])
hist = cv2.normalize(hist, hist)
return hist.flatten()
desc = HSVHistogram([8, 8, 8])
features_names = ['feature_' + str(i) for i in range(8 ** 3)]
df_features = pd.DataFrame(columns=features_names)
img_list = glob.glob('../input/ham1000-segmentation-and-classification/images/' + "/*.jpg")
for idx,img_path in enumerate(sorted(img_list[:1000])):
k = img_path[img_path.rfind("/") + 1:]
image = cv2.imread(img_path)
features = desc.describe(image)
df_features.loc[k,:] = features
np_features = df_features[features_names].values
query_path = '../input/ham1000-segmentation-and-classification/images/ISIC_0024306.jpg'
query_image = cv2.imread(query_path)
RGB_im = cv2.cvtColor(query_image, cv2.COLOR_BGR2RGB)
label = df_labels[df_labels['image'] == 'ISIC_0024306.jpg']['label'].iloc[0]
plt.imshow(RGB_im)
plt.title(label)
query_features = desc.describe(query_image)
query_features = np.array(query_features)
results = {}
for idx in range(0, len(np_features)):
dist = np.linalg.norm(query_features - np_features[idx])
results[idx] = dist
results = {k: v for k, v in sorted(results.items(), key=lambda item: item[1])}
top_10 = list(results.keys())[:10]
top_10_dist = list(results.values())[:10]
fig, axes = plt.subplots(2, 5, figsize=(14, 5), sharey=True, sharex=True)
results_img = df_features.iloc[top_10].index
for idx, img_path in enumerate(results_img):
ax = axes.flat[idx]
path = '../input/ham1000-segmentation-and-classification/images/' + img_path
label = df_labels[df_labels['image'] == img_path]['label'].iloc[0]
image = cv2.imread(path)
RGB_im = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
ax.imshow(RGB_im)
ax.set_title(str(round(top_10_dist[idx], 2)) + '(' + label + ')') | code |
90120014/cell_10 | [
"image_output_1.png"
] | import cv2
import glob
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_labels = pd.read_csv('../input/ham1000-segmentation-and-classification/GroundTruth.csv')
df_labels['image'] = df_labels['image'] + '.jpg'
labels = ['MEL', 'NV', 'BCC', 'AKIEC', 'BKL', 'DF', 'VASC']
label_list = []
for i in range(len(df_labels)):
row = list(df_labels.iloc[i])
del row[0]
index = np.argmax(row)
label = labels[index]
label_list.append(label)
df_labels['label'] = label_list
df_labels = df_labels.drop(labels, axis=1)
path = '../input/ham1000-segmentation-and-classification/images/ISIC_0024306.jpg'
img = cv2.imread(path)
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = (img2[:, :, 0], img2[:, :, 1], img2[:, :, 2])
hist_h = cv2.calcHist([h], [0], None, [256], [0, 256])
hist_h = cv2.normalize(hist_h, hist_h)
hist_s = cv2.calcHist([s], [0], None, [256], [0, 256])
hist_s = cv2.normalize(hist_s, hist_s)
hist_v = cv2.calcHist([v], [0], None, [256], [0, 256])
hist_v = cv2.normalize(hist_v, hist_v)
class HSVHistogram:
def __init__(self, bins):
self.bins = bins
def describe(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
hist = cv2.calcHist([image], [0, 1, 2], None, self.bins, [0, 256, 0, 256, 0, 256])
hist = cv2.normalize(hist, hist)
return hist.flatten()
desc = HSVHistogram([8, 8, 8])
features_names = ['feature_' + str(i) for i in range(8 ** 3)]
df_features = pd.DataFrame(columns=features_names)
img_list = glob.glob('../input/ham1000-segmentation-and-classification/images/' + "/*.jpg")
for idx,img_path in enumerate(sorted(img_list[:1000])):
k = img_path[img_path.rfind("/") + 1:]
image = cv2.imread(img_path)
features = desc.describe(image)
df_features.loc[k,:] = features
np_features = df_features[features_names].values
query_path = '../input/ham1000-segmentation-and-classification/images/ISIC_0024306.jpg'
query_image = cv2.imread(query_path)
RGB_im = cv2.cvtColor(query_image, cv2.COLOR_BGR2RGB)
label = df_labels[df_labels['image'] == 'ISIC_0024306.jpg']['label'].iloc[0]
plt.imshow(RGB_im)
plt.title(label)
query_features = desc.describe(query_image)
query_features = np.array(query_features) | code |
130005921/cell_9 | [
"text_html_output_1.png",
"application_vnd.jupyter.stderr_output_1.png"
] | def data_exploration(df):
return
data_exploration(greeks)
data_exploration(train) | code |
130005921/cell_6 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | def data_exploration(df):
print(f'Shape of this set:', df.shape)
print('*' * 90)
print(f'Columns of this set:', df.columns)
print('*' * 90)
print(f'Missing rows in this set:', df.info())
print('*' * 90)
return df.head()
data_exploration(greeks) | code |
130005921/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | def data_exploration(df):
return
data_exploration(greeks)
data_exploration(sample_submission) | code |
130005921/cell_8 | [
"text_plain_output_1.png"
] | def data_exploration(df):
return
data_exploration(greeks)
data_exploration(test) | code |
130005921/cell_14 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import numpy as np
import seaborn as sns
def data_exploration(df):
return
data_exploration(greeks)
def impute_and_replace(df):
numerical_columns = df.select_dtypes(include=[np.number]).columns
df[numerical_columns] = df[numerical_columns].fillna(df[numerical_columns].mean())
categorical_column = 'EJ'
df[categorical_column] = df[categorical_column].replace({'A': 0, 'B': 1})
return df
train1 = impute_and_replace(train.copy())
X = train1.drop(['Id', 'Class'], axis=1)
y = train1['Class']
scaler = StandardScaler()
X_train = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=True, stratify=y)
clf = LazyClassifier(verbose=0, ignore_warnings=True, custom_metric=None)
models, predictions = clf.fit(X_train, X_test, y_train, y_test)
models | code |
130005921/cell_10 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import seaborn as sns
sns.heatmap(train.isnull(), cmap='cool') | code |
130005921/cell_12 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import numpy as np
import seaborn as sns
def data_exploration(df):
return
data_exploration(greeks)
def impute_and_replace(df):
numerical_columns = df.select_dtypes(include=[np.number]).columns
df[numerical_columns] = df[numerical_columns].fillna(df[numerical_columns].mean())
categorical_column = 'EJ'
df[categorical_column] = df[categorical_column].replace({'A': 0, 'B': 1})
return df
train1 = impute_and_replace(train.copy())
train1.info() | code |
2041217/cell_13 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
from statsmodels.graphics.gofplots import ProbPlot
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs
x = df[nonzero_coefs]
x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
# statsmodels Q-Q plot on model residuals
QQ = ProbPlot(model.resid)
fig = QQ.qqplot(alpha=0.5, markersize=5, line='s')
plt.title('QQ plot');
model_norm_resid = model.get_influence().resid_studentized_internal
model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid))
model_leverage = model.get_influence().hat_matrix_diag
plt.xlim(xmin=0, xmax=0.037)
model.summary() | code |
2041217/cell_9 | [
"image_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs
x = df[nonzero_coefs]
x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
sns.residplot(model.fittedvalues, df['Income'], lowess=True, line_kws={'color': 'r', 'lw': 1})
plt.title('Residual plot')
plt.xlabel('Predicted values')
plt.ylabel('Residuals') | code |
2041217/cell_4 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
print('Number of data points: ', len(y))
print('Mean of our predicted value: ', y.mean()) | code |
2041217/cell_6 | [
"text_html_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
import pandas as pd
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
print('Intercept: ', elnet.intercept_)
coefs = list(zip(x.columns, elnet.coef_))
coefs | code |
2041217/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
from statsmodels.graphics.gofplots import ProbPlot
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs
x = df[nonzero_coefs]
x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
# statsmodels Q-Q plot on model residuals
QQ = ProbPlot(model.resid)
fig = QQ.qqplot(alpha=0.5, markersize=5, line='s')
plt.title('QQ plot');
model_norm_resid = model.get_influence().resid_studentized_internal
model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid))
sns.regplot(model.fittedvalues, model_norm_resid_abs_sqrt, lowess=True, line_kws={'color': 'r', 'lw': 1})
plt.xlabel('Fitted values')
plt.ylabel('Sqrt abs standardized residuals')
plt.title('Scale-location') | code |
2041217/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
from statsmodels.graphics.gofplots import ProbPlot
from sklearn.linear_model import ElasticNetCV | code |
2041217/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
import pandas as pd
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs | code |
2041217/cell_15 | [
"image_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
from statsmodels.graphics.gofplots import ProbPlot
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs
x = df[nonzero_coefs]
x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
# statsmodels Q-Q plot on model residuals
QQ = ProbPlot(model.resid)
fig = QQ.qqplot(alpha=0.5, markersize=5, line='s')
plt.title('QQ plot');
model_norm_resid = model.get_influence().resid_studentized_internal
model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid))
model_leverage = model.get_influence().hat_matrix_diag
plt.xlim(xmin=0, xmax=0.037)
model.summary()
model2 = sm.GLM(y, x, family=sm.families.Gaussian()).fit()
fig = plt.figure(figsize=(12, 8))
fig = sm.graphics.plot_partregress_grid(model, fig=fig) | code |
2041217/cell_3 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
df.head() | code |
2041217/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
import pandas as pd
import statsmodels.api as sm
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs
x = df[nonzero_coefs]
x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
model2 = sm.GLM(y, x, family=sm.families.Gaussian()).fit()
print('Null deviance: {:.1f}'.format(model2.null_deviance))
print('Residual deviance: {:.1f}'.format(model2.deviance)) | code |
2041217/cell_10 | [
"text_html_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
from statsmodels.graphics.gofplots import ProbPlot
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs
x = df[nonzero_coefs]
x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
QQ = ProbPlot(model.resid)
fig = QQ.qqplot(alpha=0.5, markersize=5, line='s')
plt.title('QQ plot') | code |
2041217/cell_12 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
from statsmodels.graphics.gofplots import ProbPlot
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y)
coefs = list(zip(x.columns, elnet.coef_))
coefs
nonzero_coefs = [i[0] for i in coefs if i[1] != 0]
nonzero_coefs
x = df[nonzero_coefs]
x = sm.add_constant(x)
model = sm.OLS(y, x).fit()
# statsmodels Q-Q plot on model residuals
QQ = ProbPlot(model.resid)
fig = QQ.qqplot(alpha=0.5, markersize=5, line='s')
plt.title('QQ plot');
model_norm_resid = model.get_influence().resid_studentized_internal
model_norm_resid_abs_sqrt = np.sqrt(np.abs(model_norm_resid))
model_leverage = model.get_influence().hat_matrix_diag
sns.regplot(model_leverage, model.resid_pearson, fit_reg=False)
plt.xlim(xmin=0, xmax=0.037)
plt.xlabel('Leverage')
plt.ylabel('Pearson residuals')
plt.title('Residuals vs leverage') | code |
2041217/cell_5 | [
"image_output_1.png"
] | from sklearn.linear_model import ElasticNetCV
import pandas as pd
df = pd.read_csv('../input/2016-FCC-New-Coders-Survey-Data.csv', usecols=['Gender', 'Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'HasDebt', 'HoursLearning', 'MonthsProgramming', 'Income'])
df.rename(columns={'Gender': 'IsWoman'}, inplace=True)
df['IsWoman'] = df['IsWoman'] == 'female'
df.dropna(inplace=True)
x = df[['Age', 'CommuteTime', 'HasChildren', 'AttendedBootcamp', 'IsWoman', 'HasDebt', 'HoursLearning', 'MonthsProgramming']]
y = df['Income']
elnet = ElasticNetCV(cv=10)
elnet.fit(x, y) | code |
34136171/cell_42 | [
"text_html_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes
cleaned_data.dtypes | code |
34136171/cell_21 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum() | code |
34136171/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes | code |
34136171/cell_34 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data[cleaned_data['Age'] < 0] | code |
34136171/cell_30 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
cleaned_data.head(2) | code |
34136171/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
34136171/cell_54 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes
cleaned_data.dtypes
cleaned_data.dtypes
appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']]
patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']]
patient_df.duplicated().sum()
patient_df.drop_duplicates(inplace=True)
patient_df.reset_index(drop=True, inplace=True)
patient_df.duplicated().sum() | code |
34136171/cell_60 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes
cleaned_data.dtypes
cleaned_data.dtypes
appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']]
patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']]
patient_df.duplicated().sum()
patient_df.drop_duplicates(inplace=True)
patient_df.reset_index(drop=True, inplace=True)
patient_df.duplicated().sum()
appointment_df.to_csv('Appointment_Data.csv', index=False)
patient_df.to_csv('Patient_Data.csv', index=False)
patient_df['Age'].hist(bins=100)
plt.xlabel('Patient Age (years)')
plt.ylabel('Count')
plt.title("Histogram of Patients' Age")
plt.show() | code |
34136171/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df['Neighbourhood'].unique() | code |
34136171/cell_50 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes
cleaned_data.dtypes
cleaned_data.dtypes
appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']]
patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']]
patient_df.duplicated().sum() | code |
34136171/cell_52 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes
cleaned_data.dtypes
cleaned_data.dtypes
appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']]
patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']]
patient_df.duplicated().sum()
patient_df.drop_duplicates(inplace=True)
patient_df.reset_index(drop=True, inplace=True) | code |
34136171/cell_7 | [
"image_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.head(2) | code |
34136171/cell_62 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
base_color = sns.color_palette()[0]
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes
cleaned_data.dtypes
cleaned_data.dtypes
appointment_df = cleaned_data[['AppointmentID', 'PatientId', 'ScheduledDay', 'AppointmentDay', 'SMS_received', 'No-show']]
patient_df = cleaned_data[['PatientId', 'Gender', 'Age', 'Neighbourhood', 'Scholarship', 'Hypertension', 'Diabetes', 'Alcoholism', 'Handcap']]
patient_df.duplicated().sum()
patient_df.drop_duplicates(inplace=True)
patient_df.reset_index(drop=True, inplace=True)
patient_df.duplicated().sum()
appointment_df.to_csv('Appointment_Data.csv', index=False)
patient_df.to_csv('Patient_Data.csv', index=False)
sns.catplot(x='Gender', data=patient_df, kind='count', color=base_color)
plt.xlabel("Patient's Gender")
plt.ylabel('Count')
plt.title("Patient's Gender Distribution")
plt.show() | code |
34136171/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df['Age'].describe() | code |
34136171/cell_38 | [
"text_html_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes | code |
34136171/cell_46 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum()
cleaned_data = data_df.copy()
cleaned_data.rename(columns={'Hipertension': 'Hypertension'}, inplace=True)
neg_age_idx = cleaned_data[cleaned_data['Age'] < 0].index.tolist()
cleaned_data.drop(neg_age_idx, inplace=True)
cleaned_data.reset_index(drop=True, inplace=True)
cleaned_data.dtypes
cleaned_data.dtypes
cleaned_data.dtypes | code |
34136171/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('/kaggle/input/noshowappointments/KaggleV2-May-2016.csv')
data_df.isnull().sum() | code |
72080001/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_train = pd.read_csv('../input/30-days-of-ml/train.csv')
df_test = pd.read_csv('../input/30-days-of-ml/test.csv')
submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
df_train
df_train.describe() | code |
72080001/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_train = pd.read_csv('../input/30-days-of-ml/train.csv')
df_test = pd.read_csv('../input/30-days-of-ml/test.csv')
submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
print(submission.shape)
submission | code |
72080001/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
72080001/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_train = pd.read_csv('../input/30-days-of-ml/train.csv')
df_test = pd.read_csv('../input/30-days-of-ml/test.csv')
submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
print(df_train.shape)
df_train | code |
72080001/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_train = pd.read_csv('../input/30-days-of-ml/train.csv')
df_test = pd.read_csv('../input/30-days-of-ml/test.csv')
submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
df_train
df_train.info() | code |
72080001/cell_15 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from lightgbm import LGBMRegressor
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_train = pd.read_csv('../input/30-days-of-ml/train.csv')
df_test = pd.read_csv('../input/30-days-of-ml/test.csv')
submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
df_train
X_train = df_train.copy().drop('target', axis=1)
y_train = df_train['target'].copy()
df_cols = [col for col in X_train.columns if 'cat' in col]
lgbm_model = LGBMRegressor()
lgbm_model.fit(X_train, y_train)
y_pred = lgbm_model.predict(df_test)
y_pred | code |
72080001/cell_16 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from lightgbm import LGBMRegressor
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_train = pd.read_csv('../input/30-days-of-ml/train.csv')
df_test = pd.read_csv('../input/30-days-of-ml/test.csv')
submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv')
submission
df_train
X_train = df_train.copy().drop('target', axis=1)
y_train = df_train['target'].copy()
df_cols = [col for col in X_train.columns if 'cat' in col]
lgbm_model = LGBMRegressor()
lgbm_model.fit(X_train, y_train)
y_pred = lgbm_model.predict(df_test)
y_pred
submission['target'] = y_pred
submission.to_csv('submission01.csv', index=False)
submission | code |
72080001/cell_3 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split
from lightgbm import LGBMRegressor | code |
32063423/cell_21 | [
"text_plain_output_1.png"
] | from xgboost import XGBRegressor
model2 = XGBRegressor(n_estimators=1000)
model2.fit(X_train, y_train[:, 1]) | code |
32063423/cell_13 | [
"text_plain_output_1.png"
] | from fastai.tabular import add_datepart
from sklearn.preprocessing import OrdinalEncoder
import pandas as pd
df_train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
df_test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
df_train['Date'] = pd.to_datetime(df_train['Date'], format='%Y-%m-%d')
df_test['Date'] = pd.to_datetime(df_test['Date'], format='%Y-%m-%d')
def categoricalToInteger(df):
df.Province_State.fillna('NaN', inplace=True)
oe = OrdinalEncoder()
df[['Province_State', 'Country_Region']] = oe.fit_transform(df.loc[:, ['Province_State', 'Country_Region']])
return df
add_datepart(df_train, 'Date', drop=False)
df_train.drop('Elapsed', axis=1, inplace=True)
df_train = categoricalToInteger(df_train)
def lag_feature(df, lags, col):
tmp = df[['Dayofyear', 'Country_Region', 'Province_State', col]]
for i in lags:
shifted = tmp.copy()
shifted.columns = ['Dayofyear', 'Country_Region', 'Province_State', col + '_lag_' + str(i)]
shifted['Dayofyear'] += i
df = pd.merge(df, shifted, on=['Dayofyear', 'Country_Region', 'Province_State'], how='left')
return df
df_train = lag_feature(df_train, [1, 2, 3, 6, 11], 'ConfirmedCases')
df_train = lag_feature(df_train, [1, 2, 3, 6, 11], 'Fatalities')
df_train.columns | code |
32063423/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
df_train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
df_test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_date_min = df_train['Date'].min()
train_date_max = df_train['Date'].max()
print('Minimum date from training set: {}'.format(train_date_min))
print('Maximum date from training set: {}'.format(train_date_max)) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.