path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
18141020/cell_8
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price melb_predictors = data.drop(['Price'], axis=1) X = melb_predictors.select_dtypes(exclude=['object']) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns print('MAE from Approach 2 (Imputation):') print(score_dataset(imputed_X_train, imputed_X_valid, y_train, y_valid))
code
18141020/cell_15
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price melb_predictors = data.drop(['Price'], axis=1) X = melb_predictors.select_dtypes(exclude=['object']) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() for col in cols_with_missing: X_train_plus[col + '_was_missing'] = X_train_plus[col].isnull() X_valid_plus[col + '_was_missing'] = X_valid_plus[col].isnull() my_imputer = SimpleImputer() imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus)) imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus)) imputed_X_train_plus.columns = X_train_plus.columns imputed_X_valid_plus.columns = X_valid_plus.columns missing_val_count_by_column = X_train.isnull().sum() import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price X = data.drop(['Price'], axis=1) X_train_full, X_valid_full, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() X_train.head()
code
18141020/cell_16
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price melb_predictors = data.drop(['Price'], axis=1) X = melb_predictors.select_dtypes(exclude=['object']) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() for col in cols_with_missing: X_train_plus[col + '_was_missing'] = X_train_plus[col].isnull() X_valid_plus[col + '_was_missing'] = X_valid_plus[col].isnull() my_imputer = SimpleImputer() imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus)) imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus)) imputed_X_train_plus.columns = X_train_plus.columns imputed_X_valid_plus.columns = X_valid_plus.columns missing_val_count_by_column = X_train.isnull().sum() import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price X = data.drop(['Price'], axis=1) X_train_full, X_valid_full, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy() s = X_train.dtypes == 'object' object_cols = list(s[s].index) print('Categorical variables:') print(object_cols)
code
18141020/cell_14
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price melb_predictors = data.drop(['Price'], axis=1) X = melb_predictors.select_dtypes(exclude=['object']) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() for col in cols_with_missing: X_train_plus[col + '_was_missing'] = X_train_plus[col].isnull() X_valid_plus[col + '_was_missing'] = X_valid_plus[col].isnull() my_imputer = SimpleImputer() imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus)) imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus)) imputed_X_train_plus.columns = X_train_plus.columns imputed_X_valid_plus.columns = X_valid_plus.columns import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price X = data.drop(['Price'], axis=1) X_train_full, X_valid_full, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) cols_with_missing = [col for col in X_train_full.columns if X_train_full[col].isnull().any()] X_train_full.drop(cols_with_missing, axis=1, inplace=True) X_valid_full.drop(cols_with_missing, axis=1, inplace=True) low_cardinality_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and X_train_full[cname].dtype == 'object'] numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']] my_cols = low_cardinality_cols + numerical_cols X_train = X_train_full[my_cols].copy() X_valid = X_valid_full[my_cols].copy()
code
18141020/cell_10
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') y = data.Price melb_predictors = data.drop(['Price'], axis=1) X = melb_predictors.select_dtypes(exclude=['object']) X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error def score_dataset(X_train, X_valid, y_train, y_valid): model = RandomForestRegressor(n_estimators=10, random_state=0) model.fit(X_train, y_train) preds = model.predict(X_valid) return mean_absolute_error(y_valid, preds) cols_with_missing = [col for col in X_train.columns if X_train[col].isnull().any()] reduced_X_train = X_train.drop(cols_with_missing, axis=1) reduced_X_valid = X_valid.drop(cols_with_missing, axis=1) from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train)) imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid)) imputed_X_train.columns = X_train.columns imputed_X_valid.columns = X_valid.columns X_train_plus = X_train.copy() X_valid_plus = X_valid.copy() for col in cols_with_missing: X_train_plus[col + '_was_missing'] = X_train_plus[col].isnull() X_valid_plus[col + '_was_missing'] = X_valid_plus[col].isnull() my_imputer = SimpleImputer() imputed_X_train_plus = pd.DataFrame(my_imputer.fit_transform(X_train_plus)) imputed_X_valid_plus = pd.DataFrame(my_imputer.transform(X_valid_plus)) imputed_X_train_plus.columns = X_train_plus.columns imputed_X_valid_plus.columns = X_valid_plus.columns print(X_train.shape) missing_val_count_by_column = X_train.isnull().sum() print(missing_val_count_by_column[missing_val_count_by_column > 0])
code
33122764/cell_21
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.express as px import plotly.express as px import plotly.express as px import plotly.graph_objects as go import re import requests symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values="percentage", names="symptom", title="Symtoms of Coronavirus", template="seaborn") fig.update_traces(rotation=90, pull=0.05, textinfo="value+percent+label") fig.show() link = 'https://api.covid19india.org/csv/latest/state_wise.csv' df = pd.read_csv(link) df = df.drop(df.index[0]) Date = df['Last_Updated_Time'].values.tolist() State = df['State'].values.tolist() Confirmed = df['Confirmed'].values.tolist() Recovered = df['Recovered'].values.tolist() Active = df['Active'].values.tolist() Deaths = df['Deaths'].values.tolist() import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=State, y=Active), go.Bar(name='Recovered', x=State, y=Recovered), go.Bar(name='Deaths', x=State, y=Deaths)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10]) + ' Last Update at' + str(Date[0][10:])) fig.update_layout(barmode='stack') fig = px.pie(df, values=Confirmed, names=State, title='Statewise Confirmed Case') fig.show() import plotly.express as px fig = px.pie(df, values=Active, names=State, title='Statewise Active Case') fig.show() import plotly.express as px fig = px.pie(df, values=Deaths, names=State, title='Statewise Deaths Case') fig.show() import plotly.express as px fig = px.pie(df, values=Recovered, names=State, title='Statewise Recovered Case') #fig.update_traces(rotation=60, pull=0.01) fig.show() import requests import re link2 = 'https://api.covid19india.org/data.json' r = requests.get(link2) india_Data = r.json() india_Confirmed = [] india_Recovered = [] india_Deseased = [] timeStamp = [] for index in range(len(india_Data['cases_time_series'])): india_Confirmed.append(int(re.sub(',', '', india_Data['cases_time_series'][index]['totalconfirmed']))) india_Recovered.append(int(re.sub(',', '', india_Data['cases_time_series'][index]['totalrecovered']))) india_Deseased.append(int(re.sub(',', '', india_Data['cases_time_series'][index]['totaldeceased']))) timeStamp.append(india_Data['cases_time_series'][index]['date']) fig = go.Figure() fig = fig.add_trace(go.Scatter(x=timeStamp, y=india_Confirmed, mode='lines+markers', name='Confirmed Cases')) fig = fig.add_trace(go.Scatter(x=timeStamp, y=india_Recovered, mode='lines+markers', name='Recoverd Patients')) fig = fig.add_trace(go.Scatter(x=timeStamp, y=india_Deseased, mode='lines+markers', name='Deseased Patients')) fig = fig.update_layout(title='India COVID-19 cases on ' + str(india_Data['cases_time_series'][-1]['date']) + '2020', xaxis_title='Date', yaxis_title='Cases') fig.show()
code
33122764/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.express as px import plotly.express as px import plotly.express as px import plotly.graph_objects as go import plotly.graph_objects as go import re import requests symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values="percentage", names="symptom", title="Symtoms of Coronavirus", template="seaborn") fig.update_traces(rotation=90, pull=0.05, textinfo="value+percent+label") fig.show() link = 'https://api.covid19india.org/csv/latest/state_wise.csv' df = pd.read_csv(link) df = df.drop(df.index[0]) Date = df['Last_Updated_Time'].values.tolist() State = df['State'].values.tolist() Confirmed = df['Confirmed'].values.tolist() Recovered = df['Recovered'].values.tolist() Active = df['Active'].values.tolist() Deaths = df['Deaths'].values.tolist() import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=State, y=Active), go.Bar(name='Recovered', x=State, y=Recovered), go.Bar(name='Deaths', x=State, y=Deaths)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10]) + ' Last Update at' + str(Date[0][10:])) fig.update_layout(barmode='stack') fig = px.pie(df, values=Confirmed, names=State, title='Statewise Confirmed Case') fig.show() import plotly.express as px fig = px.pie(df, values=Active, names=State, title='Statewise Active Case') fig.show() import plotly.express as px fig = px.pie(df, values=Deaths, names=State, title='Statewise Deaths Case') fig.show() import plotly.express as px fig = px.pie(df, values=Recovered, names=State, title='Statewise Recovered Case') #fig.update_traces(rotation=60, pull=0.01) fig.show() import requests import re link2 = 'https://api.covid19india.org/data.json' r = requests.get(link2) india_Data = r.json() india_Confirmed = [] india_Recovered = [] india_Deseased = [] timeStamp = [] for index in range(len(india_Data['cases_time_series'])): india_Confirmed.append(int(re.sub(',', '', india_Data['cases_time_series'][index]['totalconfirmed']))) india_Recovered.append(int(re.sub(',', '', india_Data['cases_time_series'][index]['totalrecovered']))) india_Deseased.append(int(re.sub(',', '', india_Data['cases_time_series'][index]['totaldeceased']))) timeStamp.append(india_Data['cases_time_series'][index]['date']) fig = go.Figure() fig = fig.add_trace(go.Scatter(x=timeStamp, y=india_Confirmed, mode='lines+markers', name='Confirmed Cases')) fig = fig.add_trace(go.Scatter(x=timeStamp, y=india_Recovered, mode='lines+markers', name='Recoverd Patients')) fig = fig.add_trace(go.Scatter(x=timeStamp, y=india_Deseased, mode='lines+markers', name='Deseased Patients')) fig = fig.update_layout(title='India COVID-19 cases on ' + str(india_Data['cases_time_series'][-1]['date']) + '2020', xaxis_title='Date', yaxis_title='Cases') link3 = 'https://api.covid19india.org/v2/state_district_wise.json' r = requests.get(link3) states_Data = r.json() telangana = 27 district = [] district_Confirmed = [] district_Recovered = [] district_Deseased = [] district_Active = [] for index in range(len(states_Data[telangana]['districtData'])): district.append(str(re.sub(',', '', states_Data[telangana]['districtData'][index]['district']))) district_Confirmed.append(int(states_Data[telangana]['districtData'][index]['confirmed'])) district_Recovered.append(int(states_Data[telangana]['districtData'][index]['recovered'])) district_Deseased.append(int(states_Data[telangana]['districtData'][index]['deceased'])) district_Active.append(int(states_Data[telangana]['districtData'][index]['active'])) import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=district, y=district_Active), go.Bar(name='Recovered', x=district, y=district_Recovered), go.Bar(name='Deaths', x=district, y=district_Deseased)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10])) fig.update_layout(barmode='stack') fig.show()
code
33122764/cell_23
[ "text_html_output_1.png" ]
import requests import requests import re link2 = 'https://api.covid19india.org/data.json' r = requests.get(link2) india_Data = r.json() link3 = 'https://api.covid19india.org/v2/state_district_wise.json' r = requests.get(link3) states_Data = r.json() for i in range(len(states_Data[:])): print(states_Data[i]['state'], '>>>', i)
code
33122764/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values='percentage', names='symptom', title='Symtoms of Coronavirus', template='seaborn') fig.update_traces(rotation=90, pull=0.05, textinfo='value+percent+label') fig.show()
code
33122764/cell_2
[ "text_html_output_1.png" ]
import IPython import IPython IPython.display.HTML('<div class="flourish-embed flourish-bar-chart-race" data-src="visualisation/1977187" data-url="https://flo.uri.sh/visualisation/1977187/embed"><script src="https://public.flourish.studio/resources/embed.js"></script></div>')
code
33122764/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.express as px import plotly.express as px import plotly.express as px import plotly.graph_objects as go symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values="percentage", names="symptom", title="Symtoms of Coronavirus", template="seaborn") fig.update_traces(rotation=90, pull=0.05, textinfo="value+percent+label") fig.show() link = 'https://api.covid19india.org/csv/latest/state_wise.csv' df = pd.read_csv(link) df = df.drop(df.index[0]) Date = df['Last_Updated_Time'].values.tolist() State = df['State'].values.tolist() Confirmed = df['Confirmed'].values.tolist() Recovered = df['Recovered'].values.tolist() Active = df['Active'].values.tolist() Deaths = df['Deaths'].values.tolist() import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=State, y=Active), go.Bar(name='Recovered', x=State, y=Recovered), go.Bar(name='Deaths', x=State, y=Deaths)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10]) + ' Last Update at' + str(Date[0][10:])) fig.update_layout(barmode='stack') fig = px.pie(df, values=Confirmed, names=State, title='Statewise Confirmed Case') fig.show() import plotly.express as px fig = px.pie(df, values=Active, names=State, title='Statewise Active Case') fig.show() import plotly.express as px fig = px.pie(df, values=Deaths, names=State, title='Statewise Deaths Case') fig.show() import plotly.express as px fig = px.pie(df, values=Recovered, names=State, title='Statewise Recovered Case') fig.show()
code
33122764/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.express as px import plotly.express as px import plotly.graph_objects as go symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values="percentage", names="symptom", title="Symtoms of Coronavirus", template="seaborn") fig.update_traces(rotation=90, pull=0.05, textinfo="value+percent+label") fig.show() link = 'https://api.covid19india.org/csv/latest/state_wise.csv' df = pd.read_csv(link) df = df.drop(df.index[0]) Date = df['Last_Updated_Time'].values.tolist() State = df['State'].values.tolist() Confirmed = df['Confirmed'].values.tolist() Recovered = df['Recovered'].values.tolist() Active = df['Active'].values.tolist() Deaths = df['Deaths'].values.tolist() import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=State, y=Active), go.Bar(name='Recovered', x=State, y=Recovered), go.Bar(name='Deaths', x=State, y=Deaths)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10]) + ' Last Update at' + str(Date[0][10:])) fig.update_layout(barmode='stack') fig = px.pie(df, values=Confirmed, names=State, title='Statewise Confirmed Case') fig.show() import plotly.express as px fig = px.pie(df, values=Active, names=State, title='Statewise Active Case') fig.show() import plotly.express as px fig = px.pie(df, values=Deaths, names=State, title='Statewise Deaths Case') fig.show()
code
33122764/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.express as px import plotly.graph_objects as go symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values="percentage", names="symptom", title="Symtoms of Coronavirus", template="seaborn") fig.update_traces(rotation=90, pull=0.05, textinfo="value+percent+label") fig.show() link = 'https://api.covid19india.org/csv/latest/state_wise.csv' df = pd.read_csv(link) df = df.drop(df.index[0]) Date = df['Last_Updated_Time'].values.tolist() State = df['State'].values.tolist() Confirmed = df['Confirmed'].values.tolist() Recovered = df['Recovered'].values.tolist() Active = df['Active'].values.tolist() Deaths = df['Deaths'].values.tolist() import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=State, y=Active), go.Bar(name='Recovered', x=State, y=Recovered), go.Bar(name='Deaths', x=State, y=Deaths)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10]) + ' Last Update at' + str(Date[0][10:])) fig.update_layout(barmode='stack') fig = px.pie(df, values=Confirmed, names=State, title='Statewise Confirmed Case') fig.show() import plotly.express as px fig = px.pie(df, values=Active, names=State, title='Statewise Active Case') fig.show()
code
33122764/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objects as go symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values="percentage", names="symptom", title="Symtoms of Coronavirus", template="seaborn") fig.update_traces(rotation=90, pull=0.05, textinfo="value+percent+label") fig.show() link = 'https://api.covid19india.org/csv/latest/state_wise.csv' df = pd.read_csv(link) df = df.drop(df.index[0]) Date = df['Last_Updated_Time'].values.tolist() State = df['State'].values.tolist() Confirmed = df['Confirmed'].values.tolist() Recovered = df['Recovered'].values.tolist() Active = df['Active'].values.tolist() Deaths = df['Deaths'].values.tolist() import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=State, y=Active), go.Bar(name='Recovered', x=State, y=Recovered), go.Bar(name='Deaths', x=State, y=Deaths)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10]) + ' Last Update at' + str(Date[0][10:])) fig.update_layout(barmode='stack') fig.show()
code
33122764/cell_12
[ "text_html_output_2.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objects as go symptoms = {'symptom': ['Fever', 'Dry cough', 'Fatigue', 'Sputum production', 'Shortness of breath', 'Muscle pain', 'Sore throat', 'Headache', 'Chills', 'Nausea or vomiting', 'Nasal congestion', 'Diarrhoea', 'Haemoptysis', 'Conjunctival congestion'], 'percentage': [87.9, 67.7, 38.1, 33.4, 18.6, 14.8, 13.9, 13.6, 11.4, 5.0, 4.8, 3.7, 0.9, 0.8]} symptoms = pd.DataFrame(data=symptoms, index=range(14)) fig = px.pie(symptoms, values="percentage", names="symptom", title="Symtoms of Coronavirus", template="seaborn") fig.update_traces(rotation=90, pull=0.05, textinfo="value+percent+label") fig.show() link = 'https://api.covid19india.org/csv/latest/state_wise.csv' df = pd.read_csv(link) df = df.drop(df.index[0]) Date = df['Last_Updated_Time'].values.tolist() State = df['State'].values.tolist() Confirmed = df['Confirmed'].values.tolist() Recovered = df['Recovered'].values.tolist() Active = df['Active'].values.tolist() Deaths = df['Deaths'].values.tolist() import plotly.graph_objects as go fig = go.Figure(data=[go.Bar(name='Active', x=State, y=Active), go.Bar(name='Recovered', x=State, y=Recovered), go.Bar(name='Deaths', x=State, y=Deaths)]) fig.update_layout(autosize=False, width=950, height=700, margin=dict(l=50, r=50, b=100, t=100, pad=4), paper_bgcolor='LightSteelBlue', title='Statewise Covid19 Case on ' + str(Date[0][0:10]) + ' Last Update at' + str(Date[0][10:])) fig.update_layout(barmode='stack') fig = px.pie(df, values=Confirmed, names=State, title='Statewise Confirmed Case') fig.show()
code
105179005/cell_13
[ "text_plain_output_1.png" ]
a = "data anlytic's" a.find('data') a.split() a = 'd24%343cbdcjh' a.isalnum() a = 'i am learning python' l = len(a) r = ' ' while l > 0: r = r + a[l - 1] l = l - 1 print(r)
code
105179005/cell_9
[ "text_plain_output_1.png" ]
b = ' we_are_doing_a_good_progress ' c = b.split('_') b = b.strip() c = b.lstrip() b b = 'dfffdsf' b.isalpha()
code
105179005/cell_4
[ "text_plain_output_1.png" ]
a = "data anlytic's" print(a[-3]) print(a[-8:-1]) print(a[0:9:2]) a.find('data') a.split()
code
105179005/cell_6
[ "text_plain_output_1.png" ]
b = ' we_are_doing_a_good_progress ' c = b.split('_') print(c[5]) b = b.strip() c = b.lstrip() b
code
105179005/cell_2
[ "text_plain_output_1.png" ]
a = "data anlytic's" print(a)
code
105179005/cell_11
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
b = ' we_are_doing_a_good_progress ' c = b.split('_') b = b.strip() c = b.lstrip() b c = 'adnan k' c.islower() c = c.upper() c c = c.capitalize() c
code
105179005/cell_8
[ "text_plain_output_1.png" ]
a = "data anlytic's" a.find('data') a.split() a = 'd24%343cbdcjh' a.isalnum()
code
105179005/cell_10
[ "text_plain_output_1.png" ]
b = ' we_are_doing_a_good_progress ' c = b.split('_') b = b.strip() c = b.lstrip() b c = 'adnan k' c.islower() c = c.upper() c
code
105179005/cell_12
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
b = ' we_are_doing_a_good_progress ' c = b.split('_') b = b.strip() c = b.lstrip() b c = 'adnan k' c.islower() c = c.upper() c c = c.capitalize() c c = c.title() c
code
88081842/cell_21
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['sal'] = xdf['sal'].astype('float64') xdf.isna().sum() conversionVal = {'₹': 0.013, '$': 1, '£': 1.36, 'AFN': 0.011} conversionVal xdf['salary_usd'] = 0 for key, value in conversionVal.items(): for x, xRow in xdf.iterrows(): if key in xRow['currency']: salVal = xRow['sal'] salVal = round(int(salVal) * value, 2) xdf.at[x, 'salary_usd'] = salVal xdf
code
88081842/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf[xdf['currency'] == 'A']
code
88081842/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf[xdf['salary'].str.contains('\\$')].head()
code
88081842/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['sal'] = xdf['sal'].astype('float64') xdf.isna().sum() conversionVal = {'₹': 0.013, '$': 1, '£': 1.36, 'AFN': 0.011} conversionVal xdf['salary_usd'] = 0 for key, value in conversionVal.items(): for x, xRow in xdf.iterrows(): if key in xRow['currency']: salVal = xRow['sal'] salVal = round(int(salVal) * value, 2) xdf.at[x, 'salary_usd'] = salVal xdf xdf[xdf.index == 3876]
code
88081842/cell_20
[ "text_html_output_1.png" ]
conversionVal = {'₹': 0.013, '$': 1, '£': 1.36, 'AFN': 0.011} conversionVal
code
88081842/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns
code
88081842/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88081842/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf.head()
code
88081842/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['sal'] = xdf['sal'].astype('float64') xdf.isna().sum()
code
88081842/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['sal'] = xdf['sal'].astype('float64') xdf.isna().sum() conversionVal = {'₹': 0.013, '$': 1, '£': 1.36, 'AFN': 0.011} conversionVal xdf['salary_usd'] = 0 for key, value in conversionVal.items(): for x, xRow in xdf.iterrows(): if key in xRow['currency']: salVal = xRow['sal'] salVal = round(int(salVal) * value, 2) xdf.at[x, 'salary_usd'] = salVal xdf multiplier_per_year = {'yr': 1, 'mo': 12, 'hr': 2064} multiplier_per_year xdf[xdf.index == 3876] xdf['salary_usd_yearly'] = 0 for key, value in multiplier_per_year.items(): xdf['salary_usd_yearly'] = xdf.apply(lambda row: row['salary_usd'] * value if row['duration'] == key else row['salary_usd_yearly'] * 1, axis=1) xdf[xdf.index == 3876]
code
88081842/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf.info()
code
88081842/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['currency'] = xdf['currency'].str.replace('A', 'AFN') xdf['sal'] = xdf['sal'].str.replace('FN', '').str.strip() xdf[xdf['currency'].str.contains('A')]
code
88081842/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf.info()
code
88081842/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') print('Dataset Shape: ', df.shape, '\n--------------------------------') df.head()
code
88081842/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['sal'] = xdf['sal'].astype('float64') xdf.info()
code
88081842/cell_24
[ "text_plain_output_1.png" ]
multiplier_per_year = {'yr': 1, 'mo': 12, 'hr': 2064} multiplier_per_year
code
88081842/cell_22
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['sal'] = xdf['sal'].astype('float64') xdf.isna().sum() conversionVal = {'₹': 0.013, '$': 1, '£': 1.36, 'AFN': 0.011} conversionVal xdf['salary_usd'] = 0 for key, value in conversionVal.items(): for x, xRow in xdf.iterrows(): if key in xRow['currency']: salVal = xRow['sal'] salVal = round(int(salVal) * value, 2) xdf.at[x, 'salary_usd'] = salVal xdf xdf['duration'].unique()
code
88081842/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf['sal'] = xdf['sal'].astype('float64') xdf.isna().sum() conversionVal = {'₹': 0.013, '$': 1, '£': 1.36, 'AFN': 0.011} conversionVal xdf['salary_usd'] = 0 for key, value in conversionVal.items(): for x, xRow in xdf.iterrows(): if key in xRow['currency']: salVal = xRow['sal'] salVal = round(int(salVal) * value, 2) xdf.at[x, 'salary_usd'] = salVal xdf multiplier_per_year = {'yr': 1, 'mo': 12, 'hr': 2064} multiplier_per_year xdf[xdf.index == 3876] xdf['salary_usd_yearly'] = 0 for key, value in multiplier_per_year.items(): xdf['salary_usd_yearly'] = xdf.apply(lambda row: row['salary_usd'] * value if row['duration'] == key else row['salary_usd_yearly'] * 1, axis=1) xdf.head()
code
88081842/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns xdf = df.rename(columns={'Company Name': 'company_name', 'Job Title': 'job_title', 'Salaries Reported': 'sal_reported', 'Location': 'location', 'Salary': 'salary'}) xdf.columns xdf['currency'] = xdf['salary'].str.slice(start=0, stop=1) xdf['duration'] = xdf['salary'].str.split('/', expand=True)[1] xdf['sal'] = xdf['salary'].str.split('/', expand=True)[0].str.slice(start=1).str.replace(',', '') xdf.head()
code
88081842/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/analytics-industry-salaries-2022-india/Salary Dataset.csv') df.columns
code
18146356/cell_9
[ "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_test.describe()
code
18146356/cell_34
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import missingno as msno import pandas as pd import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) f,ax=plt.subplots(1,2,figsize=(16,6)) df_train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=False) ax[0].set_title('Survived') ax[0].set_ylabel('') sns.countplot('Survived',data=df_train,ax=ax[1]) ax[1].set_title('Survived') plt.show() df_train.groupby(['Sex', 'Survived'])['Survived'].count() f,ax=plt.subplots(1,2,figsize=(14,4)) df_train[['Sex','Survived']].groupby(['Sex']).mean().plot.bar(ax=ax[0]) ax[0].set_title('Survived vs Sex') sns.countplot('Sex',hue='Survived',data=df_train,ax=ax[1]) ax[1].set_title('Sex:Survived vs Dead') plt.show() pd.crosstab(df_train.Pclass, df_train.Survived, margins=True) f, ax = plt.subplots(1, 2, figsize=(16, 8)) df_train['Pclass'].value_counts().plot.bar(color=['black', 'silver', 'yellow'], ax=ax[0]) ax[0].set_title('Number Of Passengers By Pclass') ax[0].set_ylabel('Count') sns.countplot('Pclass', hue='Survived', data=df_train, ax=ax[1]) ax[1].set_title('Pclass:Survived vs Dead') plt.show()
code
18146356/cell_30
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) df_train.groupby(['Sex', 'Survived'])['Survived'].count() pd.crosstab(df_train.Pclass, df_train.Survived, margins=True)
code
18146356/cell_20
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) df_train.groupby(['Sex', 'Survived'])['Survived'].count()
code
18146356/cell_39
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import missingno as msno import pandas as pd import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) f,ax=plt.subplots(1,2,figsize=(16,6)) df_train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=False) ax[0].set_title('Survived') ax[0].set_ylabel('') sns.countplot('Survived',data=df_train,ax=ax[1]) ax[1].set_title('Survived') plt.show() df_train.groupby(['Sex', 'Survived'])['Survived'].count() f,ax=plt.subplots(1,2,figsize=(14,4)) df_train[['Sex','Survived']].groupby(['Sex']).mean().plot.bar(ax=ax[0]) ax[0].set_title('Survived vs Sex') sns.countplot('Sex',hue='Survived',data=df_train,ax=ax[1]) ax[1].set_title('Sex:Survived vs Dead') plt.show() pd.crosstab(df_train.Pclass, df_train.Survived, margins=True) f,ax=plt.subplots(1,2,figsize=(16,8)) df_train['Pclass'].value_counts().plot.bar(color=['black','silver','yellow'],ax=ax[0]) ax[0].set_title('Number Of Passengers By Pclass') ax[0].set_ylabel('Count') sns.countplot('Pclass',hue='Survived',data=df_train,ax=ax[1]) ax[1].set_title('Pclass:Survived vs Dead') plt.show() pd.crosstab([df_train.Sex, df_train.Survived], df_train.Pclass, margins=True) sns.factorplot('Pclass', 'Survived', hue='Sex', data=df_train) plt.show()
code
18146356/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) df_train.groupby(['Sex', 'Survived'])['Survived'].count() df_train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=True).count()
code
18146356/cell_7
[ "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.describe()
code
18146356/cell_32
[ "image_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) df_train.groupby(['Sex', 'Survived'])['Survived'].count() pd.crosstab(df_train.Pclass, df_train.Survived, margins=True) df_train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=True).mean().sort_values(by='Survived', ascending=False).plot.bar()
code
18146356/cell_28
[ "image_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) df_train.groupby(['Sex', 'Survived'])['Survived'].count() df_train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=True).sum()
code
18146356/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.info()
code
18146356/cell_15
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) msno.bar(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.2, 0.5, 0.2))
code
18146356/cell_38
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) df_train.groupby(['Sex', 'Survived'])['Survived'].count() pd.crosstab(df_train.Pclass, df_train.Survived, margins=True) pd.crosstab([df_train.Sex, df_train.Survived], df_train.Pclass, margins=True)
code
18146356/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import missingno as msno import pandas as pd import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) f, ax = plt.subplots(1, 2, figsize=(16, 6)) df_train['Survived'].value_counts().plot.pie(explode=[0, 0.1], autopct='%1.1f%%', ax=ax[0], shadow=False) ax[0].set_title('Survived') ax[0].set_ylabel('') sns.countplot('Survived', data=df_train, ax=ax[1]) ax[1].set_title('Survived') plt.show()
code
18146356/cell_14
[ "text_plain_output_1.png" ]
import missingno as msno import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2))
code
18146356/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import missingno as msno import pandas as pd import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum() msno.matrix(df=df_train.iloc[:, :], figsize=(7, 5), color=(0.5, 0.1, 0.2)) f,ax=plt.subplots(1,2,figsize=(16,6)) df_train['Survived'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow=False) ax[0].set_title('Survived') ax[0].set_ylabel('') sns.countplot('Survived',data=df_train,ax=ax[1]) ax[1].set_title('Survived') plt.show() df_train.groupby(['Sex', 'Survived'])['Survived'].count() f, ax = plt.subplots(1, 2, figsize=(14, 4)) df_train[['Sex', 'Survived']].groupby(['Sex']).mean().plot.bar(ax=ax[0]) ax[0].set_title('Survived vs Sex') sns.countplot('Sex', hue='Survived', data=df_train, ax=ax[1]) ax[1].set_title('Sex:Survived vs Dead') plt.show()
code
18146356/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_test.info()
code
18146356/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.isnull().sum()
code
18146356/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') df_train.head()
code
50210546/cell_21
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df1 = df[df['amp_or_non_amp'] == 'Amp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] df2 = df[df['amp_or_non_amp'] == 'Nonmp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] frames = [df1, df2] dff = pd.concat(frames, axis=0, ignore_index=True)
code
50210546/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1
code
50210546/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm import statsmodels.api as sm import statsmodels.api as sm df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df1 = df[df['amp_or_non_amp'] == 'Amp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] df2 = df[df['amp_or_non_amp'] == 'Nonmp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] frames = [df1, df2] dff = pd.concat(frames, axis=0, ignore_index=True) df = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df data = df data.columns data = df data = data.reindex(columns=['DAY', 'Tags_served', 'Impressions', 'Clicks', 'CTR', 'Revenue', 'eCPM', 'AD_UNIT_NAME', 'ORDER_NAME', 'ADVERTISER_NAME', 'LINE_ITEM_NAME', 'DATE']) fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(15, 20)) ax = axes.flatten() for i, val in enumerate(data.columns.values[:7]): sm.qqplot(data[val], fit=True, line='q', ax=ax[i]) ax[i].legend([val]) plt.show()
code
50210546/cell_33
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm import statsmodels.api as sm import statsmodels.api as sm df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df1 = df[df['amp_or_non_amp'] == 'Amp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] df2 = df[df['amp_or_non_amp'] == 'Nonmp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] frames = [df1, df2] dff = pd.concat(frames, axis=0, ignore_index=True) df = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df data = df data.columns data = df data = data.reindex(columns=['DAY', 'Tags_served', 'Impressions', 'Clicks', 'CTR', 'Revenue', 'eCPM', 'AD_UNIT_NAME', 'ORDER_NAME', 'ADVERTISER_NAME', 'LINE_ITEM_NAME', 'DATE']) fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(15,20)) ax= axes.flatten() for i, val in enumerate(data.columns.values[:7]): sm.qqplot(data[val], fit = True, line='q', ax=ax[i]) ax[i].legend([val]) plt.show() data.dtypes
code
50210546/cell_26
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df1 = df[df['amp_or_non_amp'] == 'Amp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] df2 = df[df['amp_or_non_amp'] == 'Nonmp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] frames = [df1, df2] dff = pd.concat(frames, axis=0, ignore_index=True) df = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df
code
50210546/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import pandas import os import gc import pylab import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr, probplot, norm, shapiro import statsmodels.api as sm pal = sns.color_palette() pd.set_option('display.max_columns', 50) import plotly.offline as py py.init_notebook_mode(connected=True) import plotly.graph_objs as go from plotly.subplots import make_subplots import plotly.tools as tls from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn import preprocessing from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, accuracy_score, f1_score from sklearn.linear_model import LinearRegression import statsmodels.api as sm from sklearn import linear_model import tkinter as tk import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt from matplotlib import style from sklearn.model_selection import train_test_split style.use('fivethirtyeight') from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier import statsmodels.api as sm from statsmodels.formula.api import ols import scipy.stats as stats from bioinfokit.analys import stat from scipy.stats import chi2_contingency import io import re import nltk from nltk.corpus import stopwords import string import sklearn from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import matplotlib.cm as cm import matplotlib.pyplot as plt import random from wordcloud import WordCloud, STOPWORDS from textblob import TextBlob import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50210546/cell_1
[ "text_plain_output_1.png" ]
!pip install bioinfokit
code
50210546/cell_7
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback'
code
50210546/cell_18
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df
code
50210546/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import statsmodels.api as sm import statsmodels.api as sm import statsmodels.api as sm df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df1 = df[df['amp_or_non_amp'] == 'Amp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] df2 = df[df['amp_or_non_amp'] == 'Nonmp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] frames = [df1, df2] dff = pd.concat(frames, axis=0, ignore_index=True) df = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df data = df data.columns data = df data = data.reindex(columns=['DAY', 'Tags_served', 'Impressions', 'Clicks', 'CTR', 'Revenue', 'eCPM', 'AD_UNIT_NAME', 'ORDER_NAME', 'ADVERTISER_NAME', 'LINE_ITEM_NAME', 'DATE']) fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(15,20)) ax= axes.flatten() for i, val in enumerate(data.columns.values[:7]): sm.qqplot(data[val], fit = True, line='q', ax=ax[i]) ax[i].legend([val]) plt.show() print(data.shape)
code
50210546/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df[df['position'] != 'top'][df['position'] != 'bottom'][df['position'] != 'middle'][df['position'] != 'leaderboard'][df['position'] != 'passback']
code
50210546/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1
code
50210546/cell_16
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM']
code
50210546/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes
code
50210546/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df1 = df[df['amp_or_non_amp'] == 'Amp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] df2 = df[df['amp_or_non_amp'] == 'Nonmp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] frames = [df1, df2] dff = pd.concat(frames, axis=0, ignore_index=True) dff
code
50210546/cell_10
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp'
code
50210546/cell_27
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df['position'] = np.nan list = ['top'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'top' list = ['bottom'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'bottom' list = ['middle'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'middle' list = ['leaderboard'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'leaderboard' list = ['passback'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['position'].iloc[my_ind] = 'passback' df['story'] = np.nan df['story'] = df.AD_UNIT_NAME.str.split('_', expand=True)[2] df['amp_or_non_amp'] = 'Nonamp' list = ['amp'] val = df['AD_UNIT_NAME'].apply(lambda x: any([k in x for k in list])) my_ind = [i for i in val.index if val[i]] df['amp_or_non_amp'].iloc[my_ind] = 'Amp' df1 = pd.read_csv('/kaggle/input/dash-assignment/Actual_eCPM.csv') df1 df = pd.merge(df, df1, on='LINE_ITEM_NAME', how='right') val = df[df['Actual_eCPM'] == '-'].index df['Actual_eCPM'].iloc[val] = 0 df['Actual_eCPM'] = df['Actual_eCPM'].astype(str).astype('float64') df['Actual_Revenue'] = 0 Total_Impr = df['Impressions'].sum() df['Actual_Revenue'] = Total_Impr * df['Actual_eCPM'] df.dtypes df1 = df[df['amp_or_non_amp'] == 'Amp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] df2 = df[df['amp_or_non_amp'] == 'Nonmp'][df['eCPM'] > 77][df['Revenue'] > 455]['position'] frames = [df1, df2] dff = pd.concat(frames, axis=0, ignore_index=True) df = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df data = df data.columns
code
50210546/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_excel('/kaggle/input/dash-assignment/DFP.xlsx', 'Data') df1 df = df1 df.head(3)
code
73096186/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr()
code
73096186/cell_30
[ "text_plain_output_1.png" ]
from category_encoders import OneHotEncoder, OrdinalEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.linear_model import Ridge, LinearRegression from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score from xgboost import XGBRegressor y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) onehot = OneHotEncoder(use_cat_names=True) onehot_fit = onehot.fit(X_train) XT_train = onehot.transform(X_train) XT_val = onehot.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_lr = LinearRegression() model_r = Ridge() model_r.fit(XT_train, y_train) model_lr.fit(XT_train, y_train) def check_metrics(model): pass model = [model_r, model_lr] for m in model: check_metrics(m) ordinal = OrdinalEncoder() ordinal_fit = ordinal.fit(X_train) XT_train = ordinal.transform(X_train) XT_val = ordinal.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_rfr = RandomForestRegressor() model_xgbr = XGBRegressor() model_rfr.fit(XT_train, y_train) model_xgbr.fit(XT_train, y_train) def check_metrics(model): print(model) print('===================================================================') print('Training MAE:', mean_absolute_error(y_train, model.predict(XT_train))) print('-------------------------------------------------------------------') print('Validation MAE:', mean_absolute_error(y_val, model.predict(XT_val))) print('-------------------------------------------------------------------') print('Validation R2 score:', model.score(XT_val, y_val)) print('===================================================================') model = [model_xgbr, model_rfr] for m in model: check_metrics(m)
code
73096186/cell_33
[ "text_plain_output_1.png" ]
from category_encoders import OneHotEncoder, OrdinalEncoder from sklearn.impute import SimpleImputer from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, RandomizedSearchCV from sklearn.pipeline import make_pipeline from xgboost import XGBRegressor import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') def wrangle(filepath): ''' ,,,,,,, (\\-"""-/) / | | / \\ 0 0 // \\_o_// /\\ / /` `\\ | \\,/ / \\ | \\ ( ) / | / \\_)-(_/ \\ | | /_____\\ | / \\ \\ N.C / / / \\ '.___.' / / .' \\-=-/ '. / /` `\\ (//./ \\.\\) `"` `"` ''' df = pd.read_csv(filepath, parse_dates=['time'], index_col='time') df.columns = df.columns.str.replace(' ', '_').str.replace('-', '_') df.index = pd.to_datetime(df.index, utc=True) df.drop(columns=['generation_fossil_oil_shale', 'generation_fossil_coal_derived_gas', 'generation_fossil_peat', 'generation_geothermal', 'generation_hydro_pumped_storage_aggregated', 'generation_marine', 'generation_wind_offshore', 'forecast_wind_offshore_eday_ahead', 'price_day_ahead', 'total_load_forecast', 'forecast_wind_onshore_day_ahead', 'forecast_solar_day_ahead'], inplace=True) df = df.drop(pd.Timestamp('2014-12-31 23:00:00+00:00')) df = df.sort_index() condition_winter = (df.index.month >= 1) & (df.index.month <= 3) condtion_spring = (df.index.month >= 4) & (df.index.month <= 6) condition_summer = (df.index.month >= 7) & (df.index.month <= 9) condition_automn = (df.index.month >= 10) @ (df.index.month <= 12) df['season'] = np.where(condition_winter, 'winter', np.where(condtion_spring, 'spring', np.where(condition_summer, 'summer', np.where(condition_automn, 'automn', np.nan)))) return df df = wrangle('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) pipe_rs_xgb = make_pipeline(OrdinalEncoder(), SimpleImputer(), XGBRegressor(random_state=42, n_jobs=-1)) paramajama = {'simpleimputer__strategy': ['meadian', 'mean'], 'xgbregressor__max_depth': range(5, 35, 5), 'xgbregressor__learning_rate': np.arange(0.2, 1, 0.1), 'xgbregressor__booster': ['gbtree', 'gblinear', 'dart'], 'xgbregressor__min_child_weight': range(1, 10, 1), 'xgbregressor__gamma': np.arange(0, 1, 0.1), 'xgbregressor__max_delta_step': np.arange(0, 1, 0.1), 'xgbregressor__subsample': np.arange(0.5, 1, 0.1)} model_rs_xgbr = RandomizedSearchCV(pipe_rs_xgb, param_distributions=paramajama, n_iter=20, n_jobs=-1) model_rs_xgbr.fit(X_train, y_train) print('Training MAE:', mean_absolute_error(y_train, model_rs_xgbr.predict(X_train))) print('-------------------------------------------------------------------') print('Validation MAE:', mean_absolute_error(y_val, model_rs_xgbr.predict(X_val))) print('-------------------------------------------------------------------') print('R2 score:', model_rs_xgbr.score(X_val, y_val)) print('===================================================================') model_rs_xgbr.best_params_
code
73096186/cell_44
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from category_encoders import OneHotEncoder, OrdinalEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.linear_model import Ridge, LinearRegression from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score from xgboost import XGBRegressor import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import shap df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') def wrangle(filepath): ''' ,,,,,,, (\\-"""-/) / | | / \\ 0 0 // \\_o_// /\\ / /` `\\ | \\,/ / \\ | \\ ( ) / | / \\_)-(_/ \\ | | /_____\\ | / \\ \\ N.C / / / \\ '.___.' / / .' \\-=-/ '. / /` `\\ (//./ \\.\\) `"` `"` ''' df = pd.read_csv(filepath, parse_dates=['time'], index_col='time') df.columns = df.columns.str.replace(' ', '_').str.replace('-', '_') df.index = pd.to_datetime(df.index, utc=True) df.drop(columns=['generation_fossil_oil_shale', 'generation_fossil_coal_derived_gas', 'generation_fossil_peat', 'generation_geothermal', 'generation_hydro_pumped_storage_aggregated', 'generation_marine', 'generation_wind_offshore', 'forecast_wind_offshore_eday_ahead', 'price_day_ahead', 'total_load_forecast', 'forecast_wind_onshore_day_ahead', 'forecast_solar_day_ahead'], inplace=True) df = df.drop(pd.Timestamp('2014-12-31 23:00:00+00:00')) df = df.sort_index() condition_winter = (df.index.month >= 1) & (df.index.month <= 3) condtion_spring = (df.index.month >= 4) & (df.index.month <= 6) condition_summer = (df.index.month >= 7) & (df.index.month <= 9) condition_automn = (df.index.month >= 10) @ (df.index.month <= 12) df['season'] = np.where(condition_winter, 'winter', np.where(condtion_spring, 'spring', np.where(condition_summer, 'summer', np.where(condition_automn, 'automn', np.nan)))) return df df = wrangle('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) onehot = OneHotEncoder(use_cat_names=True) onehot_fit = onehot.fit(X_train) XT_train = onehot.transform(X_train) XT_val = onehot.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_lr = LinearRegression() model_r = Ridge() model_r.fit(XT_train, y_train) model_lr.fit(XT_train, y_train) def check_metrics(model): pass model = [model_r, model_lr] for m in model: check_metrics(m) ordinal = OrdinalEncoder() ordinal_fit = ordinal.fit(X_train) XT_train = ordinal.transform(X_train) XT_val = ordinal.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_rfr = RandomForestRegressor() model_xgbr = XGBRegressor() model_rfr.fit(XT_train, y_train) model_xgbr.fit(XT_train, y_train) def check_metrics(model): pass model = [model_xgbr, model_rfr] for m in model: check_metrics(m) samp = pd.DataFrame(XT_val, columns=ordinal_fit.get_feature_names()) explainer = shap.TreeExplainer(model_xgbr) shap_values = explainer(samp.head(1)) shap.plots.waterfall(shap_values[0])
code
73096186/cell_6
[ "text_html_output_2.png", "text_html_output_1.png" ]
import shap import seaborn as sns import plotly.express as px import matplotlib.pyplot as plt import eli5 from eli5.sklearn import PermutationImportance import numpy as np import pandas as pd pd.set_option('display.max_columns', 50) from xgboost import XGBRegressor from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.inspection import permutation_importance from sklearn.linear_model import Ridge, LinearRegression from category_encoders import OneHotEncoder, OrdinalEncoder from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, RandomizedSearchCV from sklearn.model_selection import train_test_split, cross_val_score, validation_curve, GridSearchCV from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score import warnings warnings.filterwarnings('ignore')
code
73096186/cell_29
[ "text_html_output_2.png" ]
from category_encoders import OneHotEncoder, OrdinalEncoder from sklearn.impute import SimpleImputer from sklearn.linear_model import Ridge, LinearRegression from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) onehot = OneHotEncoder(use_cat_names=True) onehot_fit = onehot.fit(X_train) XT_train = onehot.transform(X_train) XT_val = onehot.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_lr = LinearRegression() model_r = Ridge() model_r.fit(XT_train, y_train) model_lr.fit(XT_train, y_train) def check_metrics(model): print(model) print('===================================================================') print('Training MAE:', mean_absolute_error(y_train, model.predict(XT_train))) print('-------------------------------------------------------------------') print('Validation MAE:', mean_absolute_error(y_val, model.predict(XT_val))) print('-------------------------------------------------------------------') print('Validation R2 score:', model.score(XT_val, y_val)) print('===================================================================') model = [model_r, model_lr] for m in model: check_metrics(m)
code
73096186/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') df.info()
code
73096186/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73096186/cell_45
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from category_encoders import OneHotEncoder, OrdinalEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.linear_model import Ridge, LinearRegression from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score from xgboost import XGBRegressor import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import shap df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') def wrangle(filepath): ''' ,,,,,,, (\\-"""-/) / | | / \\ 0 0 // \\_o_// /\\ / /` `\\ | \\,/ / \\ | \\ ( ) / | / \\_)-(_/ \\ | | /_____\\ | / \\ \\ N.C / / / \\ '.___.' / / .' \\-=-/ '. / /` `\\ (//./ \\.\\) `"` `"` ''' df = pd.read_csv(filepath, parse_dates=['time'], index_col='time') df.columns = df.columns.str.replace(' ', '_').str.replace('-', '_') df.index = pd.to_datetime(df.index, utc=True) df.drop(columns=['generation_fossil_oil_shale', 'generation_fossil_coal_derived_gas', 'generation_fossil_peat', 'generation_geothermal', 'generation_hydro_pumped_storage_aggregated', 'generation_marine', 'generation_wind_offshore', 'forecast_wind_offshore_eday_ahead', 'price_day_ahead', 'total_load_forecast', 'forecast_wind_onshore_day_ahead', 'forecast_solar_day_ahead'], inplace=True) df = df.drop(pd.Timestamp('2014-12-31 23:00:00+00:00')) df = df.sort_index() condition_winter = (df.index.month >= 1) & (df.index.month <= 3) condtion_spring = (df.index.month >= 4) & (df.index.month <= 6) condition_summer = (df.index.month >= 7) & (df.index.month <= 9) condition_automn = (df.index.month >= 10) @ (df.index.month <= 12) df['season'] = np.where(condition_winter, 'winter', np.where(condtion_spring, 'spring', np.where(condition_summer, 'summer', np.where(condition_automn, 'automn', np.nan)))) return df df = wrangle('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) onehot = OneHotEncoder(use_cat_names=True) onehot_fit = onehot.fit(X_train) XT_train = onehot.transform(X_train) XT_val = onehot.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_lr = LinearRegression() model_r = Ridge() model_r.fit(XT_train, y_train) model_lr.fit(XT_train, y_train) def check_metrics(model): pass model = [model_r, model_lr] for m in model: check_metrics(m) ordinal = OrdinalEncoder() ordinal_fit = ordinal.fit(X_train) XT_train = ordinal.transform(X_train) XT_val = ordinal.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_rfr = RandomForestRegressor() model_xgbr = XGBRegressor() model_rfr.fit(XT_train, y_train) model_xgbr.fit(XT_train, y_train) def check_metrics(model): pass model = [model_xgbr, model_rfr] for m in model: check_metrics(m) samp = pd.DataFrame(XT_val, columns=ordinal_fit.get_feature_names()) explainer = shap.TreeExplainer(model_xgbr) shap_values = explainer() shap.plots.waterfall(shap_values[0]) explainer = shap.TreeExplainer(model_xgbr) shap_values = explainer.shap_values(samp.head(1)) shap.initjs() shap.force_plot(base_value=explainer.expected_value, shap_values=shap_values, features=samp.head(1))
code
73096186/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') df.head(5)
code
73096186/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') plt.figure(figsize=(15, 12.5)) sns.heatmap(df.corr(), annot=True, cmap='Blues', linewidth=0.9) plt.show()
code
73096186/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') sns.pairplot(df)
code
73096186/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') plt.figure(figsize=(15, 10)) sns.histplot(df, x='price actual')
code
73096186/cell_46
[ "image_output_1.png" ]
from category_encoders import OneHotEncoder, OrdinalEncoder from eli5.sklearn import PermutationImportance from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.linear_model import Ridge, LinearRegression from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score from xgboost import XGBRegressor import eli5 import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import shap df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') def wrangle(filepath): ''' ,,,,,,, (\\-"""-/) / | | / \\ 0 0 // \\_o_// /\\ / /` `\\ | \\,/ / \\ | \\ ( ) / | / \\_)-(_/ \\ | | /_____\\ | / \\ \\ N.C / / / \\ '.___.' / / .' \\-=-/ '. / /` `\\ (//./ \\.\\) `"` `"` ''' df = pd.read_csv(filepath, parse_dates=['time'], index_col='time') df.columns = df.columns.str.replace(' ', '_').str.replace('-', '_') df.index = pd.to_datetime(df.index, utc=True) df.drop(columns=['generation_fossil_oil_shale', 'generation_fossil_coal_derived_gas', 'generation_fossil_peat', 'generation_geothermal', 'generation_hydro_pumped_storage_aggregated', 'generation_marine', 'generation_wind_offshore', 'forecast_wind_offshore_eday_ahead', 'price_day_ahead', 'total_load_forecast', 'forecast_wind_onshore_day_ahead', 'forecast_solar_day_ahead'], inplace=True) df = df.drop(pd.Timestamp('2014-12-31 23:00:00+00:00')) df = df.sort_index() condition_winter = (df.index.month >= 1) & (df.index.month <= 3) condtion_spring = (df.index.month >= 4) & (df.index.month <= 6) condition_summer = (df.index.month >= 7) & (df.index.month <= 9) condition_automn = (df.index.month >= 10) @ (df.index.month <= 12) df['season'] = np.where(condition_winter, 'winter', np.where(condtion_spring, 'spring', np.where(condition_summer, 'summer', np.where(condition_automn, 'automn', np.nan)))) return df df = wrangle('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) onehot = OneHotEncoder(use_cat_names=True) onehot_fit = onehot.fit(X_train) XT_train = onehot.transform(X_train) XT_val = onehot.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_lr = LinearRegression() model_r = Ridge() model_r.fit(XT_train, y_train) model_lr.fit(XT_train, y_train) def check_metrics(model): pass model = [model_r, model_lr] for m in model: check_metrics(m) ordinal = OrdinalEncoder() ordinal_fit = ordinal.fit(X_train) XT_train = ordinal.transform(X_train) XT_val = ordinal.transform(X_val) simp = SimpleImputer(strategy='mean') simp_fit = simp.fit(XT_train) XT_train = simp.transform(XT_train) XT_val = simp.transform(XT_val) model_rfr = RandomForestRegressor() model_xgbr = XGBRegressor() model_rfr.fit(XT_train, y_train) model_xgbr.fit(XT_train, y_train) def check_metrics(model): pass model = [model_xgbr, model_rfr] for m in model: check_metrics(m) samp = pd.DataFrame(XT_val, columns=ordinal_fit.get_feature_names()) explainer = shap.TreeExplainer(model_xgbr) shap_values = explainer() shap.plots.waterfall(shap_values[0]) explainer = shap.TreeExplainer(model_xgbr) shap_values = explainer.shap_values() shap.initjs() perm = PermutationImportance(model_xgbr, random_state=42).fit(XT_val, y_val) eli5.show_weights(perm, feature_names=samp.columns.tolist())
code
73096186/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') print(correlations['price actual'].sort_values(ascending=False).to_string())
code
73096186/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') def wrangle(filepath): ''' ,,,,,,, (\\-"""-/) / | | / \\ 0 0 // \\_o_// /\\ / /` `\\ | \\,/ / \\ | \\ ( ) / | / \\_)-(_/ \\ | | /_____\\ | / \\ \\ N.C / / / \\ '.___.' / / .' \\-=-/ '. / /` `\\ (//./ \\.\\) `"` `"` ''' df = pd.read_csv(filepath, parse_dates=['time'], index_col='time') df.columns = df.columns.str.replace(' ', '_').str.replace('-', '_') df.index = pd.to_datetime(df.index, utc=True) df.drop(columns=['generation_fossil_oil_shale', 'generation_fossil_coal_derived_gas', 'generation_fossil_peat', 'generation_geothermal', 'generation_hydro_pumped_storage_aggregated', 'generation_marine', 'generation_wind_offshore', 'forecast_wind_offshore_eday_ahead', 'price_day_ahead', 'total_load_forecast', 'forecast_wind_onshore_day_ahead', 'forecast_solar_day_ahead'], inplace=True) df = df.drop(pd.Timestamp('2014-12-31 23:00:00+00:00')) df = df.sort_index() condition_winter = (df.index.month >= 1) & (df.index.month <= 3) condtion_spring = (df.index.month >= 4) & (df.index.month <= 6) condition_summer = (df.index.month >= 7) & (df.index.month <= 9) condition_automn = (df.index.month >= 10) @ (df.index.month <= 12) df['season'] = np.where(condition_winter, 'winter', np.where(condtion_spring, 'spring', np.where(condition_summer, 'summer', np.where(condition_automn, 'automn', np.nan)))) return df df = wrangle('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') fig = px.scatter(df, x='total_load_actual', y='price_actual', facet_col='season', opacity=0.1, title='Price Per KW Hour Compaired To Total Energy Genereated Per Season', animation_frame=df.index.year) fig.update_traces(marker=dict(size=12, line=dict(width=2, color='darkslateblue')), selector=dict(mode='markers'))
code
73096186/cell_27
[ "image_output_1.png" ]
from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) print('Mean Price Per KW/h Baseline Pred:', mean_baseline_pred) print('-------------------------------------------------------------------') print('Baseline Mae:', baseline_mae) print('-------------------------------------------------------------------') print('Baseline RMSE:', baseline_rmse)
code
73096186/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2)
code
73096186/cell_36
[ "text_plain_output_1.png" ]
from category_encoders import OneHotEncoder, OrdinalEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import roc_curve, plot_roc_curve, mean_absolute_error, mean_squared_error, accuracy_score from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, RandomizedSearchCV from sklearn.pipeline import make_pipeline from xgboost import XGBRegressor import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') round(df.isnull().sum() / len(df) * 100, 2) df.corr() correlations = df.corr(method='pearson') def wrangle(filepath): ''' ,,,,,,, (\\-"""-/) / | | / \\ 0 0 // \\_o_// /\\ / /` `\\ | \\,/ / \\ | \\ ( ) / | / \\_)-(_/ \\ | | /_____\\ | / \\ \\ N.C / / / \\ '.___.' / / .' \\-=-/ '. / /` `\\ (//./ \\.\\) `"` `"` ''' df = pd.read_csv(filepath, parse_dates=['time'], index_col='time') df.columns = df.columns.str.replace(' ', '_').str.replace('-', '_') df.index = pd.to_datetime(df.index, utc=True) df.drop(columns=['generation_fossil_oil_shale', 'generation_fossil_coal_derived_gas', 'generation_fossil_peat', 'generation_geothermal', 'generation_hydro_pumped_storage_aggregated', 'generation_marine', 'generation_wind_offshore', 'forecast_wind_offshore_eday_ahead', 'price_day_ahead', 'total_load_forecast', 'forecast_wind_onshore_day_ahead', 'forecast_solar_day_ahead'], inplace=True) df = df.drop(pd.Timestamp('2014-12-31 23:00:00+00:00')) df = df.sort_index() condition_winter = (df.index.month >= 1) & (df.index.month <= 3) condtion_spring = (df.index.month >= 4) & (df.index.month <= 6) condition_summer = (df.index.month >= 7) & (df.index.month <= 9) condition_automn = (df.index.month >= 10) @ (df.index.month <= 12) df['season'] = np.where(condition_winter, 'winter', np.where(condtion_spring, 'spring', np.where(condition_summer, 'summer', np.where(condition_automn, 'automn', np.nan)))) return df df = wrangle('../input/energy-consumption-generation-prices-and-weather/energy_dataset.csv') y_pred = [y_train.mean()] * len(y_train) mean_baseline_pred = y_train.mean() baseline_mae = mean_absolute_error(y_train, y_pred) baseline_rmse = mean_squared_error(y_train, y_pred, squared=False) pipe_rs_xgb = make_pipeline(OrdinalEncoder(), SimpleImputer(), XGBRegressor(random_state=42, n_jobs=-1)) paramajama = {'simpleimputer__strategy': ['meadian', 'mean'], 'xgbregressor__max_depth': range(5, 35, 5), 'xgbregressor__learning_rate': np.arange(0.2, 1, 0.1), 'xgbregressor__booster': ['gbtree', 'gblinear', 'dart'], 'xgbregressor__min_child_weight': range(1, 10, 1), 'xgbregressor__gamma': np.arange(0, 1, 0.1), 'xgbregressor__max_delta_step': np.arange(0, 1, 0.1), 'xgbregressor__subsample': np.arange(0.5, 1, 0.1)} model_rs_xgbr = RandomizedSearchCV(pipe_rs_xgb, param_distributions=paramajama, n_iter=20, n_jobs=-1) model_rs_xgbr.fit(X_train, y_train) model_rs_xgbr.best_params_ pipe_rs_rfr = make_pipeline(OrdinalEncoder(), SimpleImputer(), RandomForestRegressor(random_state=42, n_jobs=-1)) pramajams = {'simpleimputer__strategy': ['mean', 'meadian'], 'randomforestregressor__max_depth': range(5, 35, 5), 'randomforestregressor__n_estimators': range(25, 200, 10), 'randomforestregressor__max_samples': np.arange(0.2, 1, 0.1), 'randomforestregressor__max_features': ['sqrt', 'log2'], 'randomforestregressor__min_samples_split': np.arange(2, 5, 1)} model_rs_rfr = RandomizedSearchCV(pipe_rs_rfr, param_distributions=pramajams, n_iter=20, n_jobs=-1) model_rs_rfr.fit(X_train, y_train) print('Training MAE:', mean_absolute_error(y_train, model_rs_rfr.predict(X_train))) print('-------------------------------------------------------------------') print('Validation MAE:', mean_absolute_error(y_val, model_rs_rfr.predict(X_val))) print('-------------------------------------------------------------------') print('R2 score:', model_rs_rfr.score(X_val, y_val)) print('===================================================================') model_rs_rfr.best_params_
code
74070897/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code