path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
72101516/cell_3
[ "image_output_1.png" ]
import pandas as pd medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0)
code
72101516/cell_24
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot, plot import pandas as pd import plotly.graph_objs as go medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) gender['male_ratio'] = gender['Male'] / gender['Total'] gender['female_ratio'] = gender['Female'] / gender['Total'] gender['Discipline'] = gender.index from plotly.offline import init_notebook_mode, iplot, plot import plotly as py init_notebook_mode(connected=True) import plotly.graph_objs as go fig = go.Figure() fig.add_trace(go.Bar(y=gender.Discipline, x=gender.female_ratio, orientation='h', name='Females')) fig.add_trace(go.Bar(y=gender.Discipline, x=gender.male_ratio, orientation='h', name='Males')) template = dict(layout=go.Layout(title_font=dict(family='Rockwell', size=30))) fig.update_layout(title='Distribution of disciplines based on gender', template=template, barmode='stack', autosize=False, width=680, height=900, margin=dict(l=150, r=100, b=30, t=100, pad=4)) fig.layout.xaxis.tickformat = ',.0%' medal.rename(columns={'Team/NOC': 'NOC'}, inplace=True) medalf = medal.sort_values(by='Rank by Total', ascending=True).head(10) fig = go.Figure() fig.add_trace(go.Bar(y=medalf.Gold, x=medalf.NOC, name='Gold')) fig.add_trace(go.Bar(y=medalf.Silver, x=medalf.NOC, name='Silver')) fig.add_trace(go.Bar(y=medalf.Bronze, x=medalf.NOC, name='Bronze')) template = dict(layout=go.Layout(title_font=dict(family='Rockwell', size=30))) fig.update_layout(title='Medal Distribution', template=template, barmode='stack', autosize=False, width=680, height=650, margin=dict(l=30, r=30, b=180, t=100, pad=4)) fig.layout.xaxis.tickformat = ',.0%' fig.show()
code
72101516/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import nltk import os import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression import seaborn as sns sns.set() from sklearn.cluster import KMeans from mpl_toolkits.mplot3d import Axes3D import tensorflow as tf import tensorflow_datasets as tfds from sklearn.model_selection import train_test_split, cross_val_score from sklearn.feature_extraction.text import CountVectorizer from nltk.corpus import stopwords from collections import Counter import nltk nltk.download('stopwords') import re from collections import defaultdict from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder, OrdinalEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline from xgboost import XGBRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from scipy import stats from scipy.stats import norm, skew from scipy.special import boxcox1p from sklearn.preprocessing import RobustScaler import os medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) count1 = athlete['NOC'].value_counts().head(10) sns.barplot(x=count1.index, y=count1.values) plt.xticks(rotation=90) plt.show()
code
72101516/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) def miss(data): missing_value = data.isnull().sum().sort_values(ascending=False) missing_perc = (data.isnull().sum() * 100 / data.shape[0]).sort_values(ascending=False) value = pd.concat([missing_value, missing_perc], axis=1, keys=['Count', '%']) miss(team)
code
2021927/cell_13
[ "text_plain_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df = df[['CompensationAmount', 'Age']] df['CompensationAmount'] = df['CompensationAmount'].str.replace('[^\\w\\s]', '') df['CompensationAmount'].fillna(0, inplace=True) df['Age'].fillna(0, inplace=True) df['CompensationAmount'] = pd.to_numeric(df['CompensationAmount']) df = df[df['CompensationAmount'] > 0] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid_deviance) fig = QQ.qqplot(alpha=0.5, markersize=5); model_g = sm.OLS(y, x).fit() model_leverage = model_g.get_influence().hat_matrix_diag model_cooks = model_g.get_influence().cooks_distance[0] plt.xlim(xmin=-0.005, xmax=0.02) df = df[df['CompensationAmount'] <= 150000] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() model_g = sm.OLS(y, x).fit() QQ = ProbPlot(model.resid_deviance) fig = QQ.qqplot(alpha=0.5, markersize=5)
code
2021927/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df = df[['CompensationAmount', 'Age']] df['CompensationAmount'] = df['CompensationAmount'].str.replace('[^\\w\\s]', '') df['CompensationAmount'].fillna(0, inplace=True) df['Age'].fillna(0, inplace=True) df['CompensationAmount'] = pd.to_numeric(df['CompensationAmount']) df = df[df['CompensationAmount'] > 0] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() model_g = sm.OLS(y, x).fit() model_leverage = model_g.get_influence().hat_matrix_diag model_cooks = model_g.get_influence().cooks_distance[0] sns.regplot(model_leverage, model_cooks, fit_reg=False) plt.xlim(xmin=-0.005, xmax=0.02) plt.xlabel('Leverage') plt.ylabel("Cook's distance") plt.title("Cook's vs Leverage")
code
2021927/cell_2
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df.head()
code
2021927/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm from statsmodels.graphics.gofplots import ProbPlot
code
2021927/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df = df[['CompensationAmount', 'Age']] df['CompensationAmount'] = df['CompensationAmount'].str.replace('[^\\w\\s]', '') df['CompensationAmount'].fillna(0, inplace=True) df['Age'].fillna(0, inplace=True) df['CompensationAmount'] = pd.to_numeric(df['CompensationAmount']) df = df[df['CompensationAmount'] > 0] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() sns.regplot(df['Age'], model.resid_deviance, fit_reg=False) plt.title('Residual plot') plt.xlabel('Age') plt.ylabel('Residuals')
code
2021927/cell_8
[ "image_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df = df[['CompensationAmount', 'Age']] df['CompensationAmount'] = df['CompensationAmount'].str.replace('[^\\w\\s]', '') df['CompensationAmount'].fillna(0, inplace=True) df['Age'].fillna(0, inplace=True) df['CompensationAmount'] = pd.to_numeric(df['CompensationAmount']) df = df[df['CompensationAmount'] > 0] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() QQ = ProbPlot(model.resid_deviance) fig = QQ.qqplot(alpha=0.5, markersize=5)
code
2021927/cell_16
[ "image_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df = df[['CompensationAmount', 'Age']] df['CompensationAmount'] = df['CompensationAmount'].str.replace('[^\\w\\s]', '') df['CompensationAmount'].fillna(0, inplace=True) df['Age'].fillna(0, inplace=True) df['CompensationAmount'] = pd.to_numeric(df['CompensationAmount']) df = df[df['CompensationAmount'] > 0] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid_deviance) fig = QQ.qqplot(alpha=0.5, markersize=5); model_g = sm.OLS(y, x).fit() model_leverage = model_g.get_influence().hat_matrix_diag model_cooks = model_g.get_influence().cooks_distance[0] plt.xlim(xmin=-0.005, xmax=0.02) df = df[df['CompensationAmount'] <= 150000] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() model_g = sm.OLS(y, x).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid_deviance) fig = QQ.qqplot(alpha=0.5, markersize=5); model_leverage = model_g.get_influence().hat_matrix_diag model_cooks = model_g.get_influence().cooks_distance[0] plt.xlim(xmin=-0.005, xmax=0.02) df['reg_fit'] = model.fittedvalues df.sort_values('Age', inplace=True) sns.regplot(df['Age'], df['CompensationAmount'], fit_reg=False) plt.plot(df['Age'], df['reg_fit'])
code
2021927/cell_3
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df[['CompensationAmount', 'Age']].info()
code
2021927/cell_14
[ "image_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df = df[['CompensationAmount', 'Age']] df['CompensationAmount'] = df['CompensationAmount'].str.replace('[^\\w\\s]', '') df['CompensationAmount'].fillna(0, inplace=True) df['Age'].fillna(0, inplace=True) df['CompensationAmount'] = pd.to_numeric(df['CompensationAmount']) df = df[df['CompensationAmount'] > 0] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid_deviance) fig = QQ.qqplot(alpha=0.5, markersize=5); model_g = sm.OLS(y, x).fit() model_leverage = model_g.get_influence().hat_matrix_diag model_cooks = model_g.get_influence().cooks_distance[0] plt.xlim(xmin=-0.005, xmax=0.02) df = df[df['CompensationAmount'] <= 150000] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() model_g = sm.OLS(y, x).fit() model_leverage = model_g.get_influence().hat_matrix_diag model_cooks = model_g.get_influence().cooks_distance[0] sns.regplot(model_leverage, model_cooks, fit_reg=False) plt.xlim(xmin=-0.005, xmax=0.02) plt.xlabel('Leverage') plt.ylabel("Cook's distance") plt.title("Cook's vs Leverage")
code
2021927/cell_12
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from statsmodels.graphics.gofplots import ProbPlot import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import statsmodels.api as sm df = pd.read_csv('../input/multipleChoiceResponses.csv', encoding='ISO-8859-1') df = df[['CompensationAmount', 'Age']] df['CompensationAmount'] = df['CompensationAmount'].str.replace('[^\\w\\s]', '') df['CompensationAmount'].fillna(0, inplace=True) df['Age'].fillna(0, inplace=True) df['CompensationAmount'] = pd.to_numeric(df['CompensationAmount']) df = df[df['CompensationAmount'] > 0] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() # statsmodels Q-Q plot on model residuals QQ = ProbPlot(model.resid_deviance) fig = QQ.qqplot(alpha=0.5, markersize=5); model_g = sm.OLS(y, x).fit() model_leverage = model_g.get_influence().hat_matrix_diag model_cooks = model_g.get_influence().cooks_distance[0] plt.xlim(xmin=-0.005, xmax=0.02) df = df[df['CompensationAmount'] <= 150000] y = df['CompensationAmount'] x = df['Age'] x = sm.add_constant(x) model = sm.GLM(y, x, family=sm.families.Poisson()).fit() model_g = sm.OLS(y, x).fit() sns.regplot(df['Age'], model.resid_deviance, fit_reg=False) plt.title('Residual plot') plt.xlabel('Age') plt.ylabel('Residuals')
code
129018141/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' submission.head()
code
129018141/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' train.describe()
code
129018141/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' train.head()
code
129018141/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' print(f'\x1b[94m') print(test.isna().sum().sort_values(ascending=False))
code
129018141/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129018141/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' print(f'\x1b[94mNumber of rows in train data: {train.shape[0]}') print(f'\x1b[94mNumber of columns in train data: {train.shape[1]}') print(f'\x1b[94mNumber of values in train data: {train.count().sum()}') print(f'\x1b[94mNumber missing values in train data: {sum(train.isna().sum())}')
code
129018141/cell_8
[ "text_html_output_2.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' print(f'\x1b[94m') print(train.isna().sum().sort_values(ascending=False))
code
129018141/cell_15
[ "text_html_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' train.drop(['PassengerId'], axis=1, inplace=True) test.drop(['PassengerId'], axis=1, inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test_null = pd.DataFrame(test.isna().sum()) test_null = test_null.sort_values(by=0, ascending=False) train_null = pd.DataFrame(train.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] fig = make_subplots(rows=1, cols=2, column_titles=['Train Data', 'Test Data'], x_title='Missing Values') fig.add_trace(go.Bar(x=train_null[0], y=train_null.index, orientation='h', marker=dict(color=[n for n in range(12)], line_color='rgb(0,0,0)', line_width=2, coloraxis='coloraxis')), 1, 1) fig.add_trace(go.Bar(x=test_null[0], y=test_null.index, orientation='h', marker=dict(color=[n for n in range(12)], line_color='rgb(0,0,0)', line_width=2, coloraxis='coloraxis')), 1, 2) fig.update_layout(showlegend=False, title_text='Column wise Null Value Distribution', title_x=0.5)
code
129018141/cell_16
[ "text_plain_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' train.drop(['PassengerId'], axis=1, inplace=True) test.drop(['PassengerId'], axis=1, inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test_null = pd.DataFrame(test.isna().sum()) test_null = test_null.sort_values(by = 0 ,ascending = False) # test data의 null값들을 뽑아서 값을 정렬한다. train_null = pd.DataFrame(train.isna().sum()) train_null = train_null.sort_values(by = 0 ,ascending = False)[:-1] # train data의 null값들을 뽑아서 값을 정렬한다. # subplots를 활용해서 그래프 2개를 나란히 출력할수 있게 한다. fig = make_subplots(rows=1, cols=2, column_titles = ["Train Data", "Test Data"] , x_title="Missing Values") # 각각 그래프 추가 fig.add_trace(go.Bar(x=train_null[0], y=train_null.index, orientation="h", marker=dict(color=[n for n in range(12)], line_color='rgb(0,0,0)' , line_width = 2, coloraxis="coloraxis")), 1, 1) # 각각 그래프 추가 fig.add_trace(go.Bar(x=test_null[0], y=test_null.index, orientation="h", marker=dict(color=[n for n in range(12)], line_color='rgb(0,0,0)', line_width = 2, coloraxis="coloraxis")), 1, 2) fig.update_layout(showlegend=False, title_text="Column wise Null Value Distribution", title_x=0.5) missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() missing_test_row = test.isna().sum(axis=1) missing_test_row = pd.DataFrame(missing_test_row.value_counts() / test.shape[0]).reset_index() missing_train_row.columns = ['no', 'count'] missing_test_row.columns = ['no', 'count'] missing_train_row['count'] = missing_train_row['count'] * 100 missing_test_row['count'] = missing_test_row['count'] * 100 fig = make_subplots(rows=1, cols=2, column_titles=['Train Data', 'Test Data'], x_title='Missing Values') fig.add_trace(go.Bar(x=missing_train_row['no'], y=missing_train_row['count'], marker=dict(color=[n for n in range(4)], line_color='rgb(0,0,0)', line_width=3, coloraxis='coloraxis')), 1, 1) fig.add_trace(go.Bar(x=missing_test_row['no'], y=missing_test_row['count'], marker=dict(color=[n for n in range(4)], line_color='rgb(0,0,0)', line_width=3, coloraxis='coloraxis')), 1, 2) fig.update_layout(showlegend=False, title_text='Row wise Null Value Distribution', title_x=0.5)
code
129018141/cell_3
[ "text_plain_output_1.png" ]
import pandas import pandas pandas.__version__
code
129018141/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' print(f'\x1b[94mNumber of rows in test data: {test.shape[0]}') print(f'\x1b[94mNumber of columns in test data: {test.shape[1]}') print(f'\x1b[94mNumber of values in train data: {test.count().sum()}') print(f'\x1b[94mNo of rows with missing values in test data: {sum(test.isna().sum())}')
code
129018141/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') submission = pd.read_csv('/kaggle/input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 FOLDS = 5 STRATEGY = 'median' test.describe()
code
73078708/cell_21
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_selection import chi2 import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id N = 3 for intent, intent_id in sorted(intent_to_id.items()): features_chi2 = chi2(features, labels == intent_id) indices = np.argsort(features_chi2[0]) feature_names = np.array(tfidf.get_feature_names())[indices] unigrams = [v for v in feature_names if len(v.split(' ')) == 1] bigrams = [v for v in feature_names if len(v.split(' ')) == 2] print('\n==> %s:' % intent) print(' * Most Correlated Unigrams are: %s' % ', '.join(unigrams[-N:])) print(' * Most Correlated Bigrams are: %s' % ', '.join(bigrams[-N:]))
code
73078708/cell_25
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import matplotlib.pyplot as plt # ploting library import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') pd.set_option('display.max_rows', 10000) pd.set_option('display.max_columns', 500) pd.set_option('display.precision', 150) pd.options.display.float_format = '{:,.3f}'.format classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) counts = df['intent'].value_counts() base_color = sns.color_palette()[0] plt.xticks(size=12) totale = len(df) locs, labels = plt.yticks(size=14) for loc, label in zip(locs, labels): count = counts[label.get_text()] pct_string = '{:0.1f}%'.format(100 * count / totale) plt.text(count + 8, loc + 0.3, pct_string, ha='center', color='black', fontsize=12) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id models = [RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0), LinearSVC(), MultinomialNB(), LogisticRegression(random_state=0)] CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, labels, scoring='accuracy', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy']) mean_accuracy = cv_df.groupby('model_name').accuracy.mean() std_accuracy = cv_df.groupby('model_name').accuracy.std() acc = pd.concat([mean_accuracy, std_accuracy], axis=1, ignore_index=True) acc.columns = ['Mean Accuracy', 'Standard deviation'] acc plt.figure(figsize=(8, 5)) sns.boxplot(x='model_name', y='accuracy', data=cv_df, color='lightblue', showmeans=True) plt.title('MEAN ACCURACY (cv = 5)\n', size=14)
code
73078708/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') df.info()
code
73078708/cell_23
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') pd.set_option('display.max_rows', 10000) pd.set_option('display.max_columns', 500) pd.set_option('display.precision', 150) pd.options.display.float_format = '{:,.3f}'.format classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id models = [RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0), LinearSVC(), MultinomialNB(), LogisticRegression(random_state=0)] CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, labels, scoring='accuracy', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy'])
code
73078708/cell_30
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') pd.set_option('display.max_rows', 10000) pd.set_option('display.max_columns', 500) pd.set_option('display.precision', 150) pd.options.display.float_format = '{:,.3f}'.format classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id models = [RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0), LinearSVC(), MultinomialNB(), LogisticRegression(random_state=0)] CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, labels, scoring='accuracy', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy']) mean_accuracy = cv_df.groupby('model_name').accuracy.mean() std_accuracy = cv_df.groupby('model_name').accuracy.std() acc = pd.concat([mean_accuracy, std_accuracy], axis=1, ignore_index=True) acc.columns = ['Mean Accuracy', 'Standard deviation'] acc df_test = pd.read_csv('../input/machathon-20-final-round/test.csv') df_test.head()
code
73078708/cell_20
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id print('Each of the %d intents is represented by %d features (TF-IDF score of unigrams and bigrams)' % features.shape)
code
73078708/cell_26
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') pd.set_option('display.max_rows', 10000) pd.set_option('display.max_columns', 500) pd.set_option('display.precision', 150) pd.options.display.float_format = '{:,.3f}'.format classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id models = [RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0), LinearSVC(), MultinomialNB(), LogisticRegression(random_state=0)] CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, labels, scoring='accuracy', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy']) model = LinearSVC() model.fit(features, labels)
code
73078708/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') for i in df['intent'].value_counts().index: print(i) print(df[df['intent'] == i]['clean_text'])
code
73078708/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # ploting library import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) plt.figure(figsize=(15, 10)) counts = df['intent'].value_counts() base_color = sns.color_palette()[0] sns.countplot(data=df, y='intent', order=counts.index, orient='v', color=base_color, linewidth=100) plt.ylabel('Count', fontsize=14) plt.xlabel('intents', fontsize=14) plt.title('Most Frequent intents', fontsize=20) plt.xticks(size=12) totale = len(df) locs, labels = plt.yticks(size=14) for loc, label in zip(locs, labels): count = counts[label.get_text()] pct_string = '{:0.1f}%'.format(100 * count / totale) plt.text(count + 8, loc + 0.3, pct_string, ha='center', color='black', fontsize=12)
code
73078708/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') for i, row in df.iterrows(): print(row['text'], ' -> ', row['intent'])
code
73078708/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) print(intent_to_id) print(id_to_intent) df.head()
code
73078708/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') df[df['intent'] == 'warm weather']
code
73078708/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') classes = df.intent.unique() classes
code
73078708/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') df.head()
code
73078708/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') classes = df.intent.unique() classes len(classes)
code
73078708/cell_24
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') pd.set_option('display.max_rows', 10000) pd.set_option('display.max_columns', 500) pd.set_option('display.precision', 150) pd.options.display.float_format = '{:,.3f}'.format classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id models = [RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0), LinearSVC(), MultinomialNB(), LogisticRegression(random_state=0)] CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, labels, scoring='accuracy', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy']) mean_accuracy = cv_df.groupby('model_name').accuracy.mean() std_accuracy = cv_df.groupby('model_name').accuracy.std() acc = pd.concat([mean_accuracy, std_accuracy], axis=1, ignore_index=True) acc.columns = ['Mean Accuracy', 'Standard deviation'] acc
code
73078708/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') df
code
73078708/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') for i, row in df.iterrows(): print(row['text'], ' -> ', row['clean_text'], ' -> ', row['intent'])
code
73078708/cell_27
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') pd.set_option('display.max_rows', 10000) pd.set_option('display.max_columns', 500) pd.set_option('display.precision', 150) pd.options.display.float_format = '{:,.3f}'.format classes = df.intent.unique() classes df['intent_id'] = df['intent'].factorize()[0] intent_id_df = df[['intent', 'intent_id']].drop_duplicates() intent_to_id = dict(intent_id_df.values) id_to_intent = dict(intent_id_df[['intent_id', 'intent']].values) tfidf = TfidfVectorizer(sublinear_tf=True, ngram_range=(1, 2)) features = tfidf.fit_transform(df['lem']).toarray() labels = df.intent_id models = [RandomForestClassifier(n_estimators=100, max_depth=5, random_state=0), LinearSVC(), MultinomialNB(), LogisticRegression(random_state=0)] CV = 5 cv_df = pd.DataFrame(index=range(CV * len(models))) entries = [] for model in models: model_name = model.__class__.__name__ accuracies = cross_val_score(model, features, labels, scoring='accuracy', cv=CV) for fold_idx, accuracy in enumerate(accuracies): entries.append((model_name, fold_idx, accuracy)) cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy']) mean_accuracy = cv_df.groupby('model_name').accuracy.mean() std_accuracy = cv_df.groupby('model_name').accuracy.std() acc = pd.concat([mean_accuracy, std_accuracy], axis=1, ignore_index=True) acc.columns = ['Mean Accuracy', 'Standard deviation'] acc df_test = pd.read_csv('../input/machathon-20-final-round/test.csv') df_test.head()
code
73078708/cell_12
[ "text_plain_output_1.png" ]
from nltk.stem.isri import ISRIStemmer import re import string def remove_punc(s): punctuations = '`÷×؛ʿˇ<>(‚)*&^%][،/:ღ"┈؟.,\'{}~¦+ ، 》《|﴾»«﴿!”…“–❒ـ۞✦✩☜ ̷ ﮼☻\U000fe334❥*،“¸.•°``°•.`•.¸.•♫♡—' + string.punctuation punctuations = ''.join(set(punctuations) - {'ـ'}) for c in punctuations: s = s.replace(c, ' ') return s def clean_text(text): arabic_diacritics = re.compile(' ّ| َ| ً| ُ| ٌ| ِ| ٍ| ْ| ۖ| ۠| ۘ| ۙ| ۚ| ۛ| ۜ| ۗ| ۡ| ۟| ۤ|ۥ| ۧ', re.VERBOSE) weridPatterns = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰Ⓜ-🉑🤦-🤷𐀀-\U0010ffff\u200d♀-♂☀-⭕⏏⏩⌚〰️\u2069\u2066\u200c\u2068\u2067]+', flags=re.UNICODE) text = weridPatterns.sub(' ', text) text = re.sub(arabic_diacritics, '', text) text = re.sub('\\d+', ' ', text) text = re.sub('ﷺ', 'صلى الله عليه وسلم', text) text = re.sub('[كق][رو]+ن[اهة]*', 'كورونا', text) text = re.sub('_', ' ', text) text = re.sub('\n', ' ', text) text = re.sub('ـ', '', text) text = re.sub('،', ' ', text) text = re.sub('وو', 'و', text) text = re.sub('يي', 'ي', text) text = re.sub('اا', 'ا', text) text = re.sub('أأ', 'أ', text) text = re.sub('URL', '', text) text = re.sub('USER', '', text) text = re.sub('[ٱٲٳٵ]', 'ا', text) text = re.sub('[پ]', 'ب', text) text = re.sub('[ٺټ]', 'ت', text) text = re.sub('[چ]', 'ج', text) text = re.sub('[ډڊ]', 'د', text) text = re.sub('[ڏ]', 'ذ', text) text = re.sub('[ڒړڕ]', 'ر', text) text = re.sub('[ژ]', 'ز', text) text = re.sub('[کڪګگڰڱڳڴؼػ]', 'ك', text) text = re.sub('[؏]', 'ع', text) text = re.sub('[ڛ]', 'س', text) text = re.sub('[ێېیێېےۓؽؾؿ]', 'ي', text) text = re.sub('[ڣڤڨᓅ]', 'ف', text) text = re.sub('[ۆۈۉۊۋ]', 'و', text) text = re.sub('[ھہۂۿ]', 'ه', text) text = re.sub('[ںڼݩ]', 'ن', text) text = re.sub('[۾ᓄ]', 'م', text) text = re.sub('[ڵ]', 'ل', text) text = re.sub('[ۃ]', 'ة', text) text = remove_punc(text) text = re.compile('(.)\\1{2,}', re.IGNORECASE).sub('\\1', text) text = re.sub('\\s+', ' ', text) return text from nltk.stem.isri import ISRIStemmer s = u'كم عدد مستشفيات العزل فى مصر وما هى اماكنها' def stem(sentence): stemmed_sentence = [] for i in sentence.split(' '): i = re.sub('^ال', '', i) stemmed_sentence.append(ISRIStemmer().suf32(i)) return ' '.join(stemmed_sentence) stem(s)
code
73078708/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/machathon-20-final-round/train_ara.csv') df['intent'].value_counts()
code
33110896/cell_13
[ "text_plain_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3) df.groupby('Country')['No. of confirmed deaths'].sum().nlargest(3) plt.tight_layout() df.groupby('Country')['No. of suspected cases'].sum().nlargest(3)
code
33110896/cell_9
[ "text_plain_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() print('The date of the data is from', df.Dates.min(), 'to', df.Dates.max(), ',a total amount of', delta) print('The total number of confirmed cases is', df['No. of confirmed cases'].sum()) print('The total number of confirmed deaths is', df['No. of confirmed deaths'].sum()) print('The total number of suspected cases is', df['No. of suspected cases'].sum()) print('The total number of suspected deaths is', df['No. of suspected deaths'].sum()) print('The total number of probable cases is', df['No. of probable cases'].sum()) print('The total number of probable deaths is', df['No. of probable deaths'].sum())
code
33110896/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear df.head()
code
33110896/cell_11
[ "text_plain_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3) df.groupby('Country')['No. of confirmed deaths'].sum().nlargest(3)
code
33110896/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33110896/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear df.shape
code
33110896/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum()
code
33110896/cell_15
[ "text_plain_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3) df.groupby('Country')['No. of confirmed deaths'].sum().nlargest(3) plt.tight_layout() df.groupby('Country')['No. of suspected cases'].sum().nlargest(3) df.groupby('Country')['No. of suspected deaths'].sum().nlargest(3) plt.subplot(1, 2, 1) df.groupby('Country')['No. of suspected cases'].sum().nlargest(3).plot(kind='bar', grid=True) plt.title('Suspected cases (3)') plt.xlabel('Countries') plt.ylabel('No of suspected cases') plt.subplot(1, 2, 2) df.groupby('Country')['No. of suspected deaths'].sum().nlargest(3).plot(kind='bar', grid=True, color='red') plt.title('Suspected deaths (3)') plt.xlabel('Countries') plt.ylabel('No of suspected deaths') plt.tight_layout() plt.show()
code
33110896/cell_16
[ "text_plain_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3) df.groupby('Country')['No. of confirmed deaths'].sum().nlargest(3) plt.tight_layout() df.groupby('Country')['No. of suspected cases'].sum().nlargest(3) df.groupby('Country')['No. of suspected deaths'].sum().nlargest(3) plt.tight_layout() df.groupby('Country')['No. of probable cases'].sum().nlargest(3)
code
33110896/cell_3
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') df.head()
code
33110896/cell_14
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3) df.groupby('Country')['No. of confirmed deaths'].sum().nlargest(3) plt.tight_layout() df.groupby('Country')['No. of suspected cases'].sum().nlargest(3) df.groupby('Country')['No. of suspected deaths'].sum().nlargest(3)
code
33110896/cell_10
[ "text_html_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3)
code
33110896/cell_12
[ "text_html_output_1.png" ]
from datetime import date import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ebola-outbreak-20142016-complete-dataset/ebola_2014_2016_clean.csv') import datetime as dt from datetime import date df['Dates'] = pd.to_datetime(df['Date']) df['Year'] = df.Dates.dt.year df['Month_name'] = df.Dates.dt.month_name() df['Day_name'] = df.Dates.dt.day_name() df['Month'] = df.Dates.dt.month df['Week'] = df.Dates.dt.week df['Day_of_year'] = df.Dates.dt.dayofyear d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 df.shape df.groupby('Country')['No. of confirmed cases', 'No. of confirmed deaths'].sum() df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3) df.groupby('Country')['No. of confirmed deaths'].sum().nlargest(3) plt.subplot(1, 2, 1) df.groupby('Country')['No. of confirmed cases'].sum().nlargest(3).plot(kind='bar', grid=True) plt.title('Confirmed cases (3)') plt.xlabel('Countries') plt.ylabel('No of confirmed cases') plt.subplot(1, 2, 2) df.groupby('Country')['No. of confirmed deaths'].sum().nlargest(3).plot(kind='bar', grid=True, color='red') plt.title('Confirmed deaths (3)') plt.xlabel('Countries') plt.ylabel('No of confirmed deaths') plt.tight_layout() plt.show()
code
33110896/cell_5
[ "text_plain_output_1.png" ]
from datetime import date d0 = date(2014, 8, 29) d1 = date(2016, 3, 23) delta = d1 - d0 print(delta)
code
89138170/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) sns.countplot(x='quality', data=df)
code
89138170/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.describe()
code
89138170/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True)
code
89138170/cell_29
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) scaler = MinMaxScaler() norm_df = scaler.fit_transform(df.drop('quality', axis=1)) norm_df = pd.DataFrame(norm_df, columns=df.columns[:-1]) X = norm_df y = df.quality X.shape y.shape
code
89138170/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.info()
code
89138170/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts()
code
89138170/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89138170/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.head(7)
code
89138170/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique()
code
89138170/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique()
code
89138170/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) scaler = MinMaxScaler() norm_df = scaler.fit_transform(df.drop('quality', axis=1)) norm_df = pd.DataFrame(norm_df, columns=df.columns[:-1]) norm_df.head()
code
89138170/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique()
code
89138170/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape
code
89138170/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum()
code
50211041/cell_13
[ "image_output_1.png" ]
import lightgbm import lightgbm lgbreg = lightgbm.LGBMRegressor(boosting_type='gbdt', num_leaves=31, learning_rate=0.1, n_estimators=100) lgbreg.fit(X_train, Y_train) print('train score', lgbreg.score(X_train, Y_train)) print('test score', lgbreg.score(X_test, Y_test))
code
50211041/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') df.info()
code
50211041/cell_11
[ "image_output_1.png" ]
import catboost import catboost cboost = catboost.CatBoostRegressor(loss_function='RMSE', verbose=False) cboost.fit(X_train, Y_train) print('train score', cboost.score(X_train, Y_train)) print('test score', cboost.score(X_test, Y_test))
code
50211041/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50211041/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') def NanColums(df): percent_nan = 100 * df.isnull().sum() / len(df) percent_nan = percent_nan[percent_nan > 0].sort_values() return percent_nan nanColums = NanColums(df) plt.xticks(rotation=90) del df['Alley'] del df['PoolQC'] del df['MiscFeature'] df['MasVnrType'].fillna(value='0', inplace=True) df['MasVnrArea'].fillna(value=0.0, inplace=True) df['BsmtQual'].fillna(value='0', inplace=True) df['BsmtCond'].fillna(value='0', inplace=True) df['BsmtExposure'].fillna(value='0', inplace=True) df['BsmtFinType1'].fillna(value='0', inplace=True) df['BsmtFinType2'].fillna(value='0', inplace=True) df['FireplaceQu'].fillna(value='0', inplace=True) df['Electrical'].fillna(value='0', inplace=True) df['GarageType'].fillna(value='0', inplace=True) df['GarageYrBlt'].fillna(value=0.0, inplace=True) df['GarageFinish'].fillna(value='0', inplace=True) df['GarageQual'].fillna(value='0', inplace=True) df['GarageCond'].fillna(value='0', inplace=True) df['Fence'].fillna(value='0', inplace=True) df['LotFrontage'] = df.groupby('Neighborhood')['LotFrontage'].transform(lambda val: val.fillna(val.mean())) df = pd.get_dummies(df) plt.figure(figsize=(10, 8)) sns.distplot(df['SalePrice']) plt.show()
code
50211041/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') def NanColums(df): percent_nan = 100 * df.isnull().sum() / len(df) percent_nan = percent_nan[percent_nan > 0].sort_values() return percent_nan nanColums = NanColums(df) plt.xticks(rotation=90) del df['Alley'] del df['PoolQC'] del df['MiscFeature'] df['MasVnrType'].fillna(value='0', inplace=True) df['MasVnrArea'].fillna(value=0.0, inplace=True) df['BsmtQual'].fillna(value='0', inplace=True) df['BsmtCond'].fillna(value='0', inplace=True) df['BsmtExposure'].fillna(value='0', inplace=True) df['BsmtFinType1'].fillna(value='0', inplace=True) df['BsmtFinType2'].fillna(value='0', inplace=True) df['FireplaceQu'].fillna(value='0', inplace=True) df['Electrical'].fillna(value='0', inplace=True) df['GarageType'].fillna(value='0', inplace=True) df['GarageYrBlt'].fillna(value=0.0, inplace=True) df['GarageFinish'].fillna(value='0', inplace=True) df['GarageQual'].fillna(value='0', inplace=True) df['GarageCond'].fillna(value='0', inplace=True) df['Fence'].fillna(value='0', inplace=True) df['LotFrontage'] = df.groupby('Neighborhood')['LotFrontage'].transform(lambda val: val.fillna(val.mean())) df = pd.get_dummies(df) sns.heatmap(df.corr(), xticklabels=True, yticklabels=True) plt.show()
code
50211041/cell_15
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor Begging = RandomForestRegressor(max_depth=30, n_estimators=300) Begging.fit(X_train, Y_train) print('train score', Begging.score(X_train, Y_train)) print('test score', Begging.score(X_test, Y_test))
code
50211041/cell_14
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import StackingRegressor from sklearn.linear_model import RidgeCV from sklearn.svm import LinearSVR import warnings from sklearn.linear_model import RidgeCV from sklearn.svm import LinearSVR from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import StackingRegressor import warnings warnings.filterwarnings('ignore') estimators = [('lr', RidgeCV()), ('svr', LinearSVR(random_state=42, max_iter=1000))] regStack = StackingRegressor(estimators=estimators, final_estimator=RandomForestRegressor(n_estimators=10, random_state=42)) regStack.fit(X_train, Y_train) print('train score', regStack.score(X_train, Y_train)) print('test score', regStack.score(X_test, Y_test))
code
50211041/cell_10
[ "text_plain_output_1.png" ]
from sklearn import ensemble import sklearn sklearn_boost = ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100) sklearn_boost.fit(X_train, Y_train) print('train score', sklearn_boost.score(X_train, Y_train)) print('test score', sklearn_boost.score(X_test, Y_test))
code
50211041/cell_12
[ "image_output_1.png" ]
import xgboost import xgboost xgBoost = xgboost.XGBRegressor(max_depth=3, learning_rate=0.1, n_estimators=100, booster='gbtree') xgBoost.fit(X_train, Y_train) print('train score', xgBoost.score(X_train, Y_train)) print('test score', xgBoost.score(X_test, Y_test))
code
50211041/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') def NanColums(df): percent_nan = 100 * df.isnull().sum() / len(df) percent_nan = percent_nan[percent_nan > 0].sort_values() return percent_nan nanColums = NanColums(df) sns.barplot(x=nanColums.index, y=nanColums) plt.xticks(rotation=90)
code
122255715/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/temp2021/Temp2021.csv', skiprows=[i for i in range(1, 98)], parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.loc['2021-06-01':'2021-09-30'] df = df.replace(0, np.nan) dict = {'datax_ 1': '1', 'datax_ 2': '2', 'datax_ 3': '3', 'datax_ 4': '4', 'datax_ 5': '5', 'datax_ 6': '6', 'datax_ 7': '7', 'datax_ 8': '8', 'datax_ 9': '9', 'datax_10': '10', 'datax_11': '11', 'datax_12': '12', 'datax_13': '13', 'datax_14': '14', 'datax_15': '15', 'datax_16': '16', 'datax_17': '17', 'datax_18': '18', 'datax_19': '20', 'datax_20': '21', 'datax_21': '23', 'datax_22': '24', 'datax_23': '25', 'datax_24': '26', 'datax_25': '27', 'datax_26': '28', 'datax_27': '29', 'datax_28': '30', 'datax_29': '31', 'datax_30': '32', 'datax_31': '33', 'datax_32': '34', 'datax_33': '35', 'datax_34': '36', 'datax_35': '37', 'datax_36': '38', 'datax_37': '40', 'datax_38': '41', 'datax_39': '42', 'datax_40': '43', 'datax_41': '45', 'datax_42': '46', 'datax_43': '47', 'datax_44': '48', 'datax_45': '49', 'datax_46': '50', 'datax_47': '51', 'datax_48': '52', 'datax_49': '53', 'datax_50': '54', 'datax_51': '55', 'datax_52': '56', 'datax_53': '57', 'datax_54': '58', 'datax_55': '59', 'datax_56': '60'} df.rename(columns=dict, inplace=True) rowmean = df.mean(axis=1).copy() rowmean.groupby(rowmean.index.hour).mean().plot() def diurnal_cycle(df, station): df[station].groupby(df[station].index.hour).mean().plot(label=station, c='r', marker='o', markersize=4) rowmean.groupby(rowmean.index.hour).mean().plot(label='All buttons', c='k') diurnal_cycle(df, '51') diurnal_cycle(df, '33') diurnal_cycle(df, '45') diurnal_cycle(df, '30') diurnal_cycle(df, '42') diurnal_cycle(df, '60') diurnal_cycle(df, '29') diurnal_cycle(df, '49') diurnal_cycle(df, '12') diurnal_cycle(df, '4') diurnal_cycle(df, '2') diurnal_cycle(df, '46') diurnal_cycle(df, '56') diurnal_cycle(df, '3') plt.show() diurnal_cycle(df, '11') plt.show() diurnal_cycle(df, '32') plt.show() diurnal_cycle(df, '54') plt.show() diurnal_cycle(df, '28') plt.show() diurnal_cycle(df, '17') plt.show()
code
122255715/cell_9
[ "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/temp2021/Temp2021.csv', skiprows=[i for i in range(1, 98)], parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.loc['2021-06-01':'2021-09-30'] df = df.replace(0, np.nan) dict = {'datax_ 1': '1', 'datax_ 2': '2', 'datax_ 3': '3', 'datax_ 4': '4', 'datax_ 5': '5', 'datax_ 6': '6', 'datax_ 7': '7', 'datax_ 8': '8', 'datax_ 9': '9', 'datax_10': '10', 'datax_11': '11', 'datax_12': '12', 'datax_13': '13', 'datax_14': '14', 'datax_15': '15', 'datax_16': '16', 'datax_17': '17', 'datax_18': '18', 'datax_19': '20', 'datax_20': '21', 'datax_21': '23', 'datax_22': '24', 'datax_23': '25', 'datax_24': '26', 'datax_25': '27', 'datax_26': '28', 'datax_27': '29', 'datax_28': '30', 'datax_29': '31', 'datax_30': '32', 'datax_31': '33', 'datax_32': '34', 'datax_33': '35', 'datax_34': '36', 'datax_35': '37', 'datax_36': '38', 'datax_37': '40', 'datax_38': '41', 'datax_39': '42', 'datax_40': '43', 'datax_41': '45', 'datax_42': '46', 'datax_43': '47', 'datax_44': '48', 'datax_45': '49', 'datax_46': '50', 'datax_47': '51', 'datax_48': '52', 'datax_49': '53', 'datax_50': '54', 'datax_51': '55', 'datax_52': '56', 'datax_53': '57', 'datax_54': '58', 'datax_55': '59', 'datax_56': '60'} df.rename(columns=dict, inplace=True) rowmean = df.mean(axis=1).copy() rowmean.groupby(rowmean.index.hour).mean().plot() def diurnal_cycle(df, station): df[station].groupby(df[station].index.hour).mean().plot(label=station, c='r', marker='o', markersize=4) rowmean.groupby(rowmean.index.hour).mean().plot(label='All buttons', c='k') diurnal_cycle(df, '51') plt.show() diurnal_cycle(df, '33') plt.show() diurnal_cycle(df, '45') plt.show() diurnal_cycle(df, '30') plt.show() diurnal_cycle(df, '42') plt.show() diurnal_cycle(df, '60') plt.show() diurnal_cycle(df, '29') plt.show()
code
122255715/cell_4
[ "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/temp2021/Temp2021.csv', skiprows=[i for i in range(1, 98)], parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.loc['2021-06-01':'2021-09-30'] df = df.replace(0, np.nan) dict = {'datax_ 1': '1', 'datax_ 2': '2', 'datax_ 3': '3', 'datax_ 4': '4', 'datax_ 5': '5', 'datax_ 6': '6', 'datax_ 7': '7', 'datax_ 8': '8', 'datax_ 9': '9', 'datax_10': '10', 'datax_11': '11', 'datax_12': '12', 'datax_13': '13', 'datax_14': '14', 'datax_15': '15', 'datax_16': '16', 'datax_17': '17', 'datax_18': '18', 'datax_19': '20', 'datax_20': '21', 'datax_21': '23', 'datax_22': '24', 'datax_23': '25', 'datax_24': '26', 'datax_25': '27', 'datax_26': '28', 'datax_27': '29', 'datax_28': '30', 'datax_29': '31', 'datax_30': '32', 'datax_31': '33', 'datax_32': '34', 'datax_33': '35', 'datax_34': '36', 'datax_35': '37', 'datax_36': '38', 'datax_37': '40', 'datax_38': '41', 'datax_39': '42', 'datax_40': '43', 'datax_41': '45', 'datax_42': '46', 'datax_43': '47', 'datax_44': '48', 'datax_45': '49', 'datax_46': '50', 'datax_47': '51', 'datax_48': '52', 'datax_49': '53', 'datax_50': '54', 'datax_51': '55', 'datax_52': '56', 'datax_53': '57', 'datax_54': '58', 'datax_55': '59', 'datax_56': '60'} df.rename(columns=dict, inplace=True) df.head()
code
122255715/cell_6
[ "image_output_5.png", "image_output_4.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/temp2021/Temp2021.csv', skiprows=[i for i in range(1, 98)], parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.loc['2021-06-01':'2021-09-30'] df = df.replace(0, np.nan) dict = {'datax_ 1': '1', 'datax_ 2': '2', 'datax_ 3': '3', 'datax_ 4': '4', 'datax_ 5': '5', 'datax_ 6': '6', 'datax_ 7': '7', 'datax_ 8': '8', 'datax_ 9': '9', 'datax_10': '10', 'datax_11': '11', 'datax_12': '12', 'datax_13': '13', 'datax_14': '14', 'datax_15': '15', 'datax_16': '16', 'datax_17': '17', 'datax_18': '18', 'datax_19': '20', 'datax_20': '21', 'datax_21': '23', 'datax_22': '24', 'datax_23': '25', 'datax_24': '26', 'datax_25': '27', 'datax_26': '28', 'datax_27': '29', 'datax_28': '30', 'datax_29': '31', 'datax_30': '32', 'datax_31': '33', 'datax_32': '34', 'datax_33': '35', 'datax_34': '36', 'datax_35': '37', 'datax_36': '38', 'datax_37': '40', 'datax_38': '41', 'datax_39': '42', 'datax_40': '43', 'datax_41': '45', 'datax_42': '46', 'datax_43': '47', 'datax_44': '48', 'datax_45': '49', 'datax_46': '50', 'datax_47': '51', 'datax_48': '52', 'datax_49': '53', 'datax_50': '54', 'datax_51': '55', 'datax_52': '56', 'datax_53': '57', 'datax_54': '58', 'datax_55': '59', 'datax_56': '60'} df.rename(columns=dict, inplace=True) rowmean = df.mean(axis=1).copy() rowmean.groupby(rowmean.index.hour).mean().plot() plt.title('Summer 2021 Diurnal Cycle') plt.ylabel('Temperature ℃') plt.xlabel('Hour of the day')
code
122255715/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/temp2021/Temp2021.csv', skiprows=[i for i in range(1, 98)], parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.loc['2021-06-01':'2021-09-30'] df = df.replace(0, np.nan) dict = {'datax_ 1': '1', 'datax_ 2': '2', 'datax_ 3': '3', 'datax_ 4': '4', 'datax_ 5': '5', 'datax_ 6': '6', 'datax_ 7': '7', 'datax_ 8': '8', 'datax_ 9': '9', 'datax_10': '10', 'datax_11': '11', 'datax_12': '12', 'datax_13': '13', 'datax_14': '14', 'datax_15': '15', 'datax_16': '16', 'datax_17': '17', 'datax_18': '18', 'datax_19': '20', 'datax_20': '21', 'datax_21': '23', 'datax_22': '24', 'datax_23': '25', 'datax_24': '26', 'datax_25': '27', 'datax_26': '28', 'datax_27': '29', 'datax_28': '30', 'datax_29': '31', 'datax_30': '32', 'datax_31': '33', 'datax_32': '34', 'datax_33': '35', 'datax_34': '36', 'datax_35': '37', 'datax_36': '38', 'datax_37': '40', 'datax_38': '41', 'datax_39': '42', 'datax_40': '43', 'datax_41': '45', 'datax_42': '46', 'datax_43': '47', 'datax_44': '48', 'datax_45': '49', 'datax_46': '50', 'datax_47': '51', 'datax_48': '52', 'datax_49': '53', 'datax_50': '54', 'datax_51': '55', 'datax_52': '56', 'datax_53': '57', 'datax_54': '58', 'datax_55': '59', 'datax_56': '60'} df.rename(columns=dict, inplace=True) rowmean = df.mean(axis=1).copy() rowmean.groupby(rowmean.index.hour).mean().plot() def diurnal_cycle(df, station): df[station].groupby(df[station].index.hour).mean().plot(label=station, c='r', marker='o', markersize=4) rowmean.groupby(rowmean.index.hour).mean().plot(label='All buttons', c='k') diurnal_cycle(df, '51') diurnal_cycle(df, '33') diurnal_cycle(df, '45') diurnal_cycle(df, '30') diurnal_cycle(df, '42') diurnal_cycle(df, '60') diurnal_cycle(df, '29') diurnal_cycle(df, '49') plt.show() diurnal_cycle(df, '12') plt.show() diurnal_cycle(df, '4') plt.show() diurnal_cycle(df, '2') plt.show() diurnal_cycle(df, '46') plt.show() diurnal_cycle(df, '56') plt.show()
code
122255715/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122255715/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/temp2021/Temp2021.csv', skiprows=[i for i in range(1, 98)], parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.loc['2021-06-01':'2021-09-30'] df = df.replace(0, np.nan) df.head()
code
122255715/cell_5
[ "image_output_5.png", "image_output_4.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/temp2021/Temp2021.csv', skiprows=[i for i in range(1, 98)], parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.loc['2021-06-01':'2021-09-30'] df = df.replace(0, np.nan) dict = {'datax_ 1': '1', 'datax_ 2': '2', 'datax_ 3': '3', 'datax_ 4': '4', 'datax_ 5': '5', 'datax_ 6': '6', 'datax_ 7': '7', 'datax_ 8': '8', 'datax_ 9': '9', 'datax_10': '10', 'datax_11': '11', 'datax_12': '12', 'datax_13': '13', 'datax_14': '14', 'datax_15': '15', 'datax_16': '16', 'datax_17': '17', 'datax_18': '18', 'datax_19': '20', 'datax_20': '21', 'datax_21': '23', 'datax_22': '24', 'datax_23': '25', 'datax_24': '26', 'datax_25': '27', 'datax_26': '28', 'datax_27': '29', 'datax_28': '30', 'datax_29': '31', 'datax_30': '32', 'datax_31': '33', 'datax_32': '34', 'datax_33': '35', 'datax_34': '36', 'datax_35': '37', 'datax_36': '38', 'datax_37': '40', 'datax_38': '41', 'datax_39': '42', 'datax_40': '43', 'datax_41': '45', 'datax_42': '46', 'datax_43': '47', 'datax_44': '48', 'datax_45': '49', 'datax_46': '50', 'datax_47': '51', 'datax_48': '52', 'datax_49': '53', 'datax_50': '54', 'datax_51': '55', 'datax_52': '56', 'datax_53': '57', 'datax_54': '58', 'datax_55': '59', 'datax_56': '60'} df.rename(columns=dict, inplace=True) rowmean = df.mean(axis=1).copy() print(rowmean)
code
90119657/cell_4
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sub1 = pd.read_csv('../input/ncaam-2022/stage2_seeds_sample_submission.csv') sub1.sort_values(by=['ID'], inplace=True) sub2 = pd.read_csv('../input/mens-march-mania-2022/MDataFiles_Stage2/MSampleSubmissionStage2.csv') sub2.sort_values(by=['ID'], inplace=True) prob = 0.5 + 0.03 * (sub1['T2_seed'] - sub1['T1_seed']) prob = np.round(prob, decimals=2) sub2['Pred'] = np.clip(prob, 0.05, 0.95) sub2.to_csv('submission.csv', index=False) sub2.head()
code
90119657/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
1007485/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt data.shape Color_Count = data.color.value_counts() idx = range(2) labels = ['Color', 'Black & White'] plt.xticks(idx, labels) Director = data.director_name.value_counts() D_Name = Director.head(n=10).index New_D = data[(data['director_name'].isin(D_Name))] New_D.pivot_table(index=['director_name','imdb_score'],aggfunc='mean') plt.figure(1,figsize=(12,6)) plt.subplot(1,2,1) Director.head(n=10).sort_index().plot(kind='bar') plt.title('Top 10 directors that have most volume movies') plt.subplot(1,2,2) New_D.groupby(['director_name'])['imdb_score'].mean().plot(kind='bar') plt.xlabel("") plt.title("Top 10 direcotors' average IMDB scores") plt.show() Language = data.language.value_counts() Country = data.country.value_counts() score_by_content = data.pivot_table(index=['content_rating'], values='imdb_score', aggfunc='mean') Contents = data.content_rating.value_counts().sort_index() plt.figure(1, figsize=(12, 6)) plt.subplot(1, 2, 1) plt.ylabel('Score') plt.title('Average IMDB Socre by Movie Content') score_by_content.plot(kind='bar') plt.xlabel('') plt.subplot(1, 2, 2) Contents.plot(kind='bar') plt.xlabel('Contents') plt.ylabel('Volume') plt.title('Movie amounts by content') plt.show()
code
1007485/cell_4
[ "image_output_1.png" ]
data.shape for i in data.columns: print(i, end='; ')
code
1007485/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt data.shape Color_Count = data.color.value_counts() idx = range(2) labels = ['Color', 'Black & White'] plt.xticks(idx, labels) Director = data.director_name.value_counts() D_Name = Director.head(n=10).index New_D = data[data['director_name'].isin(D_Name)] New_D.pivot_table(index=['director_name', 'imdb_score'], aggfunc='mean') plt.figure(1, figsize=(12, 6)) plt.subplot(1, 2, 1) Director.head(n=10).sort_index().plot(kind='bar') plt.title('Top 10 directors that have most volume movies') plt.subplot(1, 2, 2) New_D.groupby(['director_name'])['imdb_score'].mean().plot(kind='bar') plt.xlabel('') plt.title("Top 10 direcotors' average IMDB scores") plt.show()
code
1007485/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data.shape Color_Count = data.color.value_counts() idx = range(2) labels = ['Color', 'Black & White'] plt.xticks(idx, labels) Director = data.director_name.value_counts() D_Name = Director.head(n=10).index New_D = data[(data['director_name'].isin(D_Name))] New_D.pivot_table(index=['director_name','imdb_score'],aggfunc='mean') plt.figure(1,figsize=(12,6)) plt.subplot(1,2,1) Director.head(n=10).sort_index().plot(kind='bar') plt.title('Top 10 directors that have most volume movies') plt.subplot(1,2,2) New_D.groupby(['director_name'])['imdb_score'].mean().plot(kind='bar') plt.xlabel("") plt.title("Top 10 direcotors' average IMDB scores") plt.show() Language = data.language.value_counts() Country = data.country.value_counts() score_by_content = data.pivot_table(index=['content_rating'], values='imdb_score', aggfunc='mean') Contents = data.content_rating.value_counts().sort_index() Year = data.title_year.value_counts().sort_index().tail(50) year = range(50) loc = range(3, 49, 5) ticks = range(1970, 2017, 5) plt.xticks(loc, ticks) Gen = data['genres'].str.split('|') New_Gen = [] Gen_Dict = {} for item in Gen: for i in item: New_Gen.append(i) if i not in Gen_Dict: Gen_Dict[i] = 1 else: Gen_Dict[i] += 1 Gen = pd.DataFrame.from_dict(Gen_Dict, orient='index') Gen.columns = ['Counts'] Gen = Gen.sort_values('Counts', ascending=1) Gen.plot(kind='barh', legend=False, figsize=(12, 6)) plt.title('Movie amounts by different genres') plt.show()
code