path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
74070897/cell_11
[ "text_plain_output_1.png" ]
from configparser import ConfigParser from dateutil import parser from pyproj import Geod from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import os import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import numpy as np import pandas as pd import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import os try: import cPickle as pickle except: import pickle # from utils import g, baseline_time from pyproj import Geod from dateutil import parser global baseline_time baseline_time = parser.parse('01/01/2013 0:0:0') g = Geod(ellps='WGS84') """ Difference between datasets.py Change the state variables from [lat (deg), lon (deg), alt (FL), spd (nmi/sec), course (rad)] to: [lat (deg), lon (deg), alt (FL), lat_dot (deg/sec), lon_dot (deg/sec)] """ class DatasetEncoderDecoder: def __init__(self, actual_track_datapath, flight_plan_datapath, flight_plan_utilize_datapath, feature_cubes_datapath, shuffle_or_not = True, split = True, batch_size = 128, **kwargs): print("State variables as in [Lat, lon, alt, cumDT, lat_spd, lon_spd]") self.actual_track_datapath = actual_track_datapath self.flight_plan_datapath = flight_plan_datapath self.flight_plan_utilize_datapath = flight_plan_utilize_datapath self.feature_cubes_datapath = feature_cubes_datapath self.shuffle_or_not = shuffle_or_not self.split = split self.batch_size = batch_size self.dep_lat = kwargs.get('dep_lat', 29.98333333) self.dep_lon = kwargs.get('dep_lon', -95.33333333) self.arr_lat = kwargs.get('arr_lat', 42.3666666667) self.arr_lon = kwargs.get('arr_lon', -70.9666666667) self.time_dim = kwargs.get('time_dim', False) self.direct_course = kwargs.get('direct_course', g.inv(self.dep_lon, self.dep_lat, self.arr_lon, self.arr_lat)[0]* np.pi/180) self.idx = kwargs.get('idx', 0) self.all_tracks, \ self.all_targets, \ self.all_targets_end, \ self.all_targets_end_neg, \ self.all_seq_lens, \ self.data_mean, \ self.data_std, \ self.all_FP_tracks, \ self.all_seq_lens_FP, \ self.FP_mean, \ self.FP_std, \ self.tracks_time_id_info = self.load_track_data() self.feature_cubes, self.feature_cubes_mean, self.feature_cubes_std = self.load_feature_cubes() self.feature_cubes = np.split(self.feature_cubes, np.cumsum(self.all_seq_lens))[:-1] if self.shuffle_or_not: self.all_tracks, \ self.all_targets,\ self.all_targets_end,\ self.all_targets_end_neg,\ self.all_seq_lens, \ self.all_FP_tracks, \ self.all_seq_lens_FP, \ self.feature_cubes,\ self.tracks_time_id_info = shuffle(self.all_tracks, self.all_targets, self.all_targets_end, self.all_targets_end_neg, self.all_seq_lens, self.all_FP_tracks, self.all_seq_lens_FP, self.feature_cubes, self.tracks_time_id_info, random_state = 101) if self.split: self.train_tracks, \ self.dev_tracks, \ self.train_targets, \ self.dev_targets, \ self.train_targets_end, \ self.dev_targets_end, \ self.train_targets_end_neg, \ self.dev_targets_end_neg, \ self.train_seq_lens, \ self.dev_seq_lens, \ self.train_FP_tracks, \ self.dev_FP_tracks, \ self.train_seq_lens_FP, \ self.dev_seq_lens_FP, \ self.train_feature_cubes, \ self.dev_feature_cubes, \ self.train_tracks_time_id_info, \ self.dev_tracks_time_id_info = train_test_split(self.all_tracks, self.all_targets, self.all_targets_end, self.all_targets_end_neg, self.all_seq_lens, self.all_FP_tracks, self.all_seq_lens_FP, self.feature_cubes, self.tracks_time_id_info, random_state = 101, train_size = 0.8, test_size = None) self.train_tracks = _pad(self.train_tracks, self.train_seq_lens) self.train_targets = _pad(self.train_targets, self.train_seq_lens) self.train_targets_end = _pad(self.train_targets_end, self.train_seq_lens) self.train_targets_end_neg = _pad(self.train_targets_end_neg, self.train_seq_lens) self.train_feature_cubes = _pad(self.train_feature_cubes, self.train_seq_lens) self.n_train_data_set = self.train_tracks.shape[0] def __str__(self): return 'Dataset Class to Conduct Training Procedure' def _calc_latlon_spd(self, track_dataframe): CenterTraj = track_dataframe[['FID', 'Lat', 'Lon', 'DT']] # CenterTraj.loc[:, 'azimuth'] = last_pnt tmp_df = CenterTraj.shift(-1) latlon_spd = np.divide((tmp_df[['Lat', 'Lon']].values - CenterTraj[['Lat', 'Lon']].values), tmp_df.DT.values.reshape(-1,1)) tmp_tail_idx = CenterTraj.groupby("FID")['Lat'].tail(1).index latlon_spd[tmp_tail_idx, :] = 0. latlon_spd[np.isnan(latlon_spd)] = 0. latlon_spd[np.isinf(latlon_spd)] = 0. return latlon_spd def load_track_data(self): track_data = pd.read_csv(self.actual_track_datapath, header = 0, index_col = 0) # FID, Elap_Time, Lat, Lon, Alt, DT, Speed (nmi/sec), Elap_Time_Diff (sec), course (rad) # calculate lat long speed latlon_spd = self._calc_latlon_spd(track_data) track_data.loc[:, 'Lat_spd'] = latlon_spd[:, 0] track_data.loc[:, 'Lon_spd'] = latlon_spd[:, 1] # merge with flight plans FP_track = pd.read_csv(self.flight_plan_datapath) FP_utlize = pd.read_csv(self.flight_plan_utilize_datapath, header = 0) # subtract departure airport's [lat, lon] from flight plan (FP) track and standardize FP_track[['LATITUDE', 'LONGITUDE']] -= np.array([self.dep_lat, self.dep_lon]) avg_FP = FP_track[['LATITUDE', 'LONGITUDE']].mean().values std_err_FP = FP_track[['LATITUDE', 'LONGITUDE']].std().values FP_track[['LATITUDE', 'LONGITUDE']] = (FP_track[['LATITUDE', 'LONGITUDE']] - avg_FP)/std_err_FP # merge track data with FP utilize data track_data_with_FP_id = track_data.merge(FP_utlize, left_on = 'FID', right_on = 'FID', how = 'inner') # process FP tracks # Long format to wide format FP_track_wide = FP_track.groupby('FLT_PLAN_ID').apply(lambda x: x[['LATITUDE', 'LONGITUDE']].values.reshape(1, -1)).reset_index() FP_track_wide.columns = ['FLT_PLAN_ID', 'FP_tracks'] FP_track_wide['seq_len'] = FP_track_wide.FP_tracks.apply(lambda x: x.shape[1]//2) # merge track data with wide form of FP tracks track_data_with_FP = track_data_with_FP_id.merge(FP_track_wide, left_on='FLT_PLAN_ID', right_on = 'FLT_PLAN_ID') seq_length_tracks = track_data_with_FP.groupby('FID').FLT_PLAN_ID.count().values.astype(np.int32) track_data_with_FP['cumDT'] = track_data_with_FP.groupby('FID').DT.transform(pd.Series.cumsum) tracks = track_data_with_FP[['Lat', 'Lon', 'Alt', 'cumDT', 'Lat_spd', 'Lon_spd']].values.astype(np.float32) print('use cumDT') # print('Use absolute time elapsed from: ', baseline_time) # use delta lat and delta lon tracks = tracks - np.array([self.dep_lat, self.dep_lon, 0., 0., 0., 0.]) avg = tracks.mean(axis = 0) std_err = tracks.std(axis = 0) tracks = (tracks - avg)/std_err tracks_split = np.split(tracks, np.cumsum(seq_length_tracks))[:-1] # add the arrival information to construct the target sequence targets_split, targets_end_split, targets_end_split_neg = self._construct_target(tracks_split, avg, std_err, self.time_dim) FP_track_order = track_data_with_FP.groupby('FID')[['FID', 'Elap_Time', 'FP_tracks', 'seq_len']].head(1) seq_length_FP = FP_track_order.seq_len.values.astype(np.int32) FP_tracks_split = FP_track_order.FP_tracks.values FP_track_order['Elap_Time'] = pd.to_datetime(FP_track_order['Elap_Time'], errors = 'coerce') tracks_time_id_info = FP_track_order[['FID', 'Elap_Time']].values FP_tracks_split = _pad_and_flip_FP(FP_tracks_split, seq_length_FP) # all standardized return tracks_split, targets_split, targets_end_split, targets_end_split_neg, seq_length_tracks, avg, std_err, FP_tracks_split, seq_length_FP, avg_FP, std_err_FP, tracks_time_id_info def _construct_target(self, splitted_tracks, avg, std_err, time_dim = False): tmp_list = [] tmp_end_list = [] tmp_end_list_neg = [] for target_seq in splitted_tracks: # print(target_seq.shape) # print(avg.shape) # print(std_err.shape) if time_dim: tmp_list.append(np.concatenate((target_seq[1:, :], (np.array([[self.arr_lat - self.dep_lat, self.arr_lon - self.dep_lon, 0, 0, 0, 0]]) - avg)/std_err), axis = 0)) else: tmp_list.append(np.concatenate((target_seq[1:, [0,1,2,4,5]], (np.array([[self.arr_lat - self.dep_lat, self.arr_lon - self.dep_lon, 0, 0, 0]]) - avg[[0,1,2,4,5]])/std_err[[0,1,2,4,5]]), axis = 0)) tmp_arr = np.zeros((target_seq.shape[0], 1)) tmp_arr[-1, 0] = 1. tmp_end_list.append(tmp_arr) tmp_end_list_neg.append(1 - tmp_arr) return tmp_list, tmp_end_list, tmp_end_list_neg def load_feature_cubes(self): feature_cubes_pointer = np.load(self.feature_cubes_datapath) # feature_grid = feature_cubes_pointer['feature_grid'] # query_idx = feature_cubes_pointer['query_idx'] feature_cubes = feature_cubes_pointer['feature_cubes'] # feature_cubes_grid = feature_cubes_pointer['feature_grid'] - np.array([self.dep_lon, self.dep_lat]) # feature_cubes_grid = feature_cubes_grid.reshape(-1, 20, 20, 2) # feature_cubes = np.concatenate((feature_cubes, feature_cubes_grid), axis = -1) # feature_cubes have shape of [N_points, 20, 20, 4] # Standardize the features feature_cubes_mean = np.mean(feature_cubes, axis = 0) feature_cubes_std = np.std(feature_cubes, axis = 0) # Do NOT standardize the binary layer! feature_cubes_mean[:, :, 0] = 0. feature_cubes_std[:, :, 0] = 1. feature_cubes_norm = (feature_cubes - feature_cubes_mean)/feature_cubes_std # shape of [N_point, 20, 20, n_channels] return feature_cubes_norm, feature_cubes_mean, feature_cubes_std def next_batch(self): # n_sample = self.n_train_data_set train_dev_test = 'train' idx_list = np.arange(self.n_train_data_set) if self.idx >= self.n_train_data_set: self.idx = 0 if self.shuffle_or_not: idx_list = shuffle(idx_list) if train_dev_test == 'train': endidx = min(self.idx + self.batch_size, self.n_train_data_set) batch_seq_lens = self.train_seq_lens[idx_list[self.idx:endidx]] batch_inputs = self.train_tracks[idx_list[self.idx:endidx], :, :] batch_targets = self.train_targets[idx_list[self.idx:endidx], :, :] batch_targets_end = self.train_targets_end[idx_list[self.idx:endidx], :, :] batch_targets_end_neg = self.train_targets_end_neg[idx_list[self.idx:endidx], :, :] batch_seq_lens_FP = self.train_seq_lens_FP[idx_list[self.idx:endidx]] batch_inputs_FP = self.train_FP_tracks[idx_list[self.idx:endidx], :, :] batch_inputs_feature_cubes = self.train_feature_cubes[self.idx:endidx, :, :, :, :] self.idx += self.batch_size return batch_inputs, batch_targets, batch_targets_end, batch_targets_end_neg, batch_seq_lens, batch_inputs_FP, batch_seq_lens_FP, batch_inputs_feature_cubes ####################################################################################################### ####################################################################################################### ####################################################################################################### ####################################################################################################### ####################################################################################################### ####################################################################################################### # from utils_features import match_wind_fname, match_ncwf_fname, flight_track_feature_generator, proxilvl from utils_features import match_wind_fname, match_ncwf_fname class DatasetSample: def __init__(self, train_track_mean, train_track_std, train_fp_mean, train_fp_std, feature_cubes_mean, feature_cubes_std, ncwf_data_rootdir = '../../DATA/NCWF/gridded_storm_hourly/', test_track_dir = '../../DATA/DeepTP/test_flight_tracks.csv', test_fp_dir = '../../DATA/DeepTP/test_flight_plans.csv', flight_plan_util_dir = '../../DATA/DeepTP/test_flight_plans_util.CSV', wind_data_rootdir = '../../DATA/filtered_weather_data/namanl_small_npz/', grbs_common_info_dir = '/media/storage/DATA/filtered_weather_data/grbs_common_info.npz', grbs_lvl_dict_dir = '/media/storage/DATA/filtered_weather_data/grbs_level_common_info.pkl', grbs_smallgrid_kdtree_dir = '/media/storage/DATA/filtered_weather_data/grbs_smallgrid_kdtree.pkl', ncwf_arr_dir = '../../DATA/NCWF/gridded_storm.npz', ncwf_alt_dict_dir = '../../DATA/NCWF/alt_dict.pkl', large_load = False, weather_feature = True, **kwargs): self.train_track_mean = train_track_mean self.train_track_std = train_track_std self.train_fp_mean = train_fp_mean self.train_fp_std = train_fp_std self.train_feature_cubes_mean = feature_cubes_mean self.train_feature_cubes_std = feature_cubes_std self.ncwf_data_rootdir = ncwf_data_rootdir self.large_load = large_load self.weather_feature = weather_feature self.dep_lat = kwargs.get('dep_lat', 29.98333333) self.dep_lon = kwargs.get('dep_lon', -95.33333333) self.arr_lat = kwargs.get('arr_lat', 42.3666666667) self.arr_lon = kwargs.get('arr_lon', -70.9666666667) self.direct_course = kwargs.get('direct_course', g.inv(self.dep_lon, self.dep_lat, self.arr_lon, self.arr_lat)[0] * np.pi/180) super().__init__(flight_track_dir = test_track_dir, flight_plan_dir = test_fp_dir, flight_plan_util_dir = flight_plan_util_dir, wind_data_rootdir = wind_data_rootdir, grbs_common_info_dir = grbs_common_info_dir, grbs_lvl_dict_dir = grbs_lvl_dict_dir, grbs_smallgrid_kdtree_dir = grbs_smallgrid_kdtree_dir, ncwf_arr_dir = ncwf_arr_dir, ncwf_alt_dict_dir = ncwf_alt_dict_dir, load_ncwf_arr = False, downsample = False) def __str__(self): return 'Dataset Class to Conduct Sampling Procedure' def _calc_latlon_spd(self, track_dataframe): CenterTraj = track_dataframe[['FID', 'Lat', 'Lon', 'DT']] # CenterTraj.loc[:, 'azimuth'] = last_pnt tmp_df = CenterTraj.shift(-1) latlon_spd = np.divide((tmp_df[['Lat', 'Lon']].values - CenterTraj[['Lat', 'Lon']].values), tmp_df.DT.values.reshape(-1,1)) tmp_tail_idx = CenterTraj.groupby("FID")['Lat'].tail(1).index latlon_spd[tmp_tail_idx, :] = 0. latlon_spd[np.isnan(latlon_spd)] = 0. latlon_spd[np.isinf(latlon_spd)] = 0. return latlon_spd def _count_unordered_seq_length(self, count_array): fp_seq_length = [] _tmp_ = [] j = -1 for i in count_array: if i not in _tmp_: _tmp_.append(i) fp_seq_length.append(1) j += 1 else: fp_seq_length[j] += 1 return np.array(fp_seq_length).astype(np.int32) def process_test_tracks(self): flight_tracks = self.flight_track_preprocess(self.ori_flight_tracks) flight_tracks['cumDT'] = flight_tracks.groupby('FID').DT.transform(pd.Series.cumsum) # calculate lat long speed latlon_spd = self._calc_latlon_spd(flight_tracks) flight_tracks.loc[:, 'Lat_spd'] = latlon_spd[:, 0] flight_tracks.loc[:, 'Lon_spd'] = latlon_spd[:, 1] flight_tracks = flight_tracks.groupby('FID').head(20).reset_index(drop = True) # multiple tracks must have the same length for now tracks = flight_tracks[['Lat', 'Lon', 'Alt', 'cumDT', 'Lat_spd', 'Lon_spd']].values.astype(np.float32) # print('Using Elap_Time_Diff as time inputs') # subtract depature's lat lon & course # normalize tracks using train mean and train std tracks = self.normalize_flight_tracks(tracks) # seq_length = flight_tracks.groupby('FID').Lat.count().values.astype(np.int32) seq_length = self._count_unordered_seq_length(flight_tracks.FID.values) tracks_split = np.split(tracks, np.cumsum(seq_length))[:-1] tracks_split = np.array(tracks_split) # flight plans fp_tracks = self.ori_flight_plans[['LATITUDE', 'LONGITUDE']].values.astype(np.float32) # first substract from the lat lon of departure airport # then normalize using the training set mean and std fp_tracks = (fp_tracks - np.array([self.dep_lat, self.dep_lon]) - self.train_fp_mean)/self.train_fp_std fp_seq_length = self._count_unordered_seq_length(self.ori_flight_plans.FLT_PLAN_ID.values) # pad and flip fp_tracks_split = _pad_and_flip_FP(np.array(np.split(fp_tracks, np.cumsum(fp_seq_length))[:-1]), fp_seq_length) return fp_tracks_split, tracks_split, fp_seq_length, seq_length, flight_tracks def normalize_flight_tracks(self, unnormalized_tracks): return (unnormalized_tracks - np.array([self.dep_lat, self.dep_lon, 0, 0, 0, 0]) - self.train_track_mean)/self.train_track_std def unnormalize_flight_tracks(self, normalized_tracks): return normalized_tracks * self.train_track_std + self.train_track_mean + np.array([self.dep_lat, self.dep_lon, 0, 0, 0, 0]) def unnormalize_flight_track_cov(self, normalize_flight_track_cov): return normalize_flight_track_cov * (self.train_track_std[[0, 1, 2, 4, 5]] ** 2) def normalize_feature_cubes(self, unnormalized_feature_cubes): return (unnormalized_feature_cubes - self.train_feature_cubes_mean)/self.train_feature_cubes_std # @Override parent method _generate_feature_cube def _generate_feature_cube(self, flight_tracks, feature_grid_query_idx, nx, ny, wx_alt_buffer = 20): """ Given the flight track data (with agumented columns), generate wind and tempr cube for each track point use groupby function to speed up return a numpy array (tensor) with shape [None, 20, 20, 4] first layer: ncwf weather second layer: temperature third layer: u wind fourth layer: v wind """ feature_cubes = np.zeros(shape = (feature_grid_query_idx.shape[0], nx, ny, 4), dtype = np.float32) ####################################################################################################### self.wx_testdata_holder = [] self.wx_gpidx_holder = [] if not self.weather_feature: feature_cubes[:, :, :, 0] = 0 else: # append all weather data into one so that later matching will be more efficient groups = flight_tracks[['FID', 'wx_fname', 'wx_alt']].groupby(['wx_fname', 'wx_alt']) ng = groups.ngroups print('Extract ncwf convective weather from %d groups ...'%ng) for gpidx, gp in groups: if gpidx[0] not in self.wx_gpidx_holder: self.wx_gpidx_holder.append(gpidx[0]) wx_data_single = self._load_ncwf_low_memory(gpidx[0]) self.wx_testdata_holder.append(wx_data_single) # each element is the ncwf array with the order of wx_fname else: wx_data_single = self.wx_testdata_holder[self.wx_gpidx_holder.index(gpidx[0])] # nan has been automatically dropped wx_alt_cover = self.wx_unique_alt[(self.wx_unique_alt >= (gpidx[1] - wx_alt_buffer)) & \ (self.wx_unique_alt <= (gpidx[1] + wx_alt_buffer))] wx_alt_idxmin = self.wx_alt_dict[wx_alt_cover.min()] wx_alt_idxmax = self.wx_alt_dict[wx_alt_cover.max()] + 1 wx_base = np.any(wx_data_single[wx_alt_idxmin: wx_alt_idxmax, :][:, feature_grid_query_idx[gp.index]], axis = 0).astype(np.float32).reshape(-1, nx, ny) feature_cubes[gp.index, :, :, 0] = wx_base print('Finished ncwf wx extraction!\n') ####################################################################################################### groups = flight_tracks[['FID', 'wind_fname', 'levels']].groupby(['wind_fname', 'levels']) ng = groups.ngroups self.uwind_testdata_holder = [] self.vwind_testdata_holder = [] self.tempr_testdata_holder = [] self.wind_gpidx_holder = [] print('Extract wind/ temperature from %d groups ...'%ng) jj = -1 for gpidx, gp in groups: jj += 1 if self.large_load: wind_npz = np.load(os.path.join(self.wind_data_rootdir, gpidx[0])) tmp_uwind = wind_npz['uwind'] tmp_vwind = wind_npz['vwind'] tmp_tempr = wind_npz['tempr'] else: if gpidx[0] not in self.wind_gpidx_holder: self.wind_gpidx_holder.append(gpidx[0]) tmp_uwind, tmp_vwind, tmp_tempr = self._load_wind_low_memory(gpidx[0]) self.tempr_testdata_holder.append(tmp_tempr) self.uwind_testdata_holder.append(tmp_uwind) self.vwind_testdata_holder.append(tmp_vwind) else: tmp_tempr = self.tempr_testdata_holder[self.wind_gpidx_holder.index(gpidx[0])] tmp_uwind = self.uwind_testdata_holder[self.wind_gpidx_holder.index(gpidx[0])] tmp_vwind = self.vwind_testdata_holder[self.wind_gpidx_holder.index(gpidx[0])] tempr_base = tmp_tempr[self.lvls_dict[gpidx[1]]][feature_grid_query_idx[gp.index]].reshape(-1, nx,ny) uwind_base = tmp_uwind[self.lvls_dict[gpidx[1]]][feature_grid_query_idx[gp.index]].reshape(-1, nx,ny) vwind_base = tmp_vwind[self.lvls_dict[gpidx[1]]][feature_grid_query_idx[gp.index]].reshape(-1, nx,ny) feature_cubes[gp.index, :, :, 1] = tempr_base feature_cubes[gp.index, :, :, 2] = uwind_base feature_cubes[gp.index, :, :, 3] = vwind_base print('Finished wind/ temperature extraction!\n') return feature_cubes def _load_ncwf_low_memory(self, ncwf_fname): return np.load(os.path.join(self.ncwf_data_rootdir, ncwf_fname))['ncwf_arr'] def generate_test_track_feature_cubes(self, flight_tracks, shift_xleft = 0, shift_xright = 2, shift_yup = 1, shift_ydown = 1, nx = 20, ny = 20): feature_cubes, feature_grid, query_idx = self.feature_arr_generator(flight_tracks = flight_tracks, shift_xleft = shift_xleft, shift_xright = shift_xright, shift_yup = shift_yup, shift_ydown = shift_ydown, nx = nx, ny = ny) # feature_grid = feature_grid - np.array([self.dep_lon, self.dep_lat]) # feature_grid = feature_grid.reshape(-1, 20, 20, 2) # feature_cubes = np.concatenate((feature_cubes, feature_grid), axis = -1) feature_cubes = self.normalize_feature_cubes(feature_cubes) return feature_cubes, feature_grid, query_idx def generate_predicted_pnt_feature_cube(self, predicted_final_track, known_flight_deptime, shift_xleft = 0, shift_xright = 2, shift_yup = 1, shift_ydown = 1, nx = 20, ny = 20): """ predicted_final_track has the shape of [n_seq * n_mixture^i, n_time + t, n_input]. The last axis coresponds to [Lat, Lon, Alt, cumDT, Speed, course] known_flight_deptime is a np array that contains FID, Elap_Time (depature time) wind_file_info is a dictionary of file time tree (kdtree) and an array of time objects """ predicted_final_track = self.unnormalize_flight_tracks(predicted_final_track[:, -2:, :]) # print(predicted_final_track[0, -1, :4]) azimuth_arr = g.inv(predicted_final_track[:, -2, 1], predicted_final_track[:, -2, 0], predicted_final_track[:, -1, 1], predicted_final_track[:, -1, 0])[0] # Step 0: construct tmp matching dataframe that contains: # elap_time_diff, azimuth, levels, wx_alt, wind_fname, wx_fname predicted_matched_info = np.empty((predicted_final_track.shape[0], 13)) predicted_matched_info = pd.DataFrame(predicted_matched_info, columns = ['FID', 'Lat', 'Lon', 'Alt', 'cumDT', 'Lat_spd', 'Lon_spd', 'Elap_Time_Diff', 'azimuth', 'levels', 'wx_alt', 'wind_fname', 'wx_fname']) predicted_matched_info.loc[:, ['Lat', 'Lon', 'Alt', 'cumDT', 'Lat_spd', 'Lon_spd']] = predicted_final_track[:, -1, :] predicted_matched_info.loc[:, 'azimuth'] = azimuth_arr * np.pi/180 # Step 1: map cumDT to Elaps_time known_flight_deptime_diff = (known_flight_deptime[:, 1] - baseline_time) known_flight_deptime_diff = np.array([item.total_seconds() for item in known_flight_deptime_diff]) multiplier = predicted_matched_info.shape[0]//known_flight_deptime_diff.shape[0] deptime = np.repeat(known_flight_deptime_diff, repeats = multiplier, axis = 0) FIDs = np.repeat(known_flight_deptime[:, 0], repeats = multiplier, axis = 0) elap_time_diff = predicted_matched_info.loc[:, 'cumDT'].values + deptime predicted_matched_info.loc[:, 'Elap_Time_Diff'] = elap_time_diff predicted_matched_info.loc[:, 'FID'] = FIDs # Step 2: Map Elaps_time with wx_fname and wind_fname # match with wind/ temperature fname wind_query_dist, wind_query_idx = self.wind_ftime_tree.query(elap_time_diff.reshape(-1, 1), p = 1, distance_upper_bound = 3600*3) wind_valid_query = wind_query_dist < self.wind_time_objs.shape[0] # binary array predicted_matched_info.loc[wind_valid_query, 'wind_fname'] = self.wind_time_objs[wind_query_idx[wind_valid_query], 0] predicted_matched_info.loc[~wind_valid_query, 'wind_fname'] = np.nan # match with ncwf idx wx_query_dist, wx_query_idx = self.wx_ftime_tree.query(elap_time_diff.reshape(-1, 1), p = 1, distance_upper_bound = 3600) wx_valid_query = wx_query_dist < self.wx_fname_hourly.shape[0] # binary array predicted_matched_info.loc[wx_valid_query, 'wx_fname'] = self.wx_fname_hourly[wx_query_idx[wx_valid_query]] predicted_matched_info.loc[~wx_valid_query, 'wx_fname'] = np.nan # Step 3: calculate wind_levels & ncwf_levels predicted_matched_info.loc[:, 'levels'] = predicted_matched_info['Alt'].apply(lambda x: proxilvl(x*100, self.lvls_dict)) predicted_matched_info.loc[:, 'wx_alt'] = predicted_matched_info['Alt']//10 # Step 4: generate feature cube feature_cubes, feature_grid, _ = self.feature_arr_generator(flight_tracks = predicted_matched_info, shift_xleft = shift_xleft, shift_xright = shift_xright, shift_yup = shift_yup, shift_ydown = shift_ydown, nx = nx, ny = ny) # feature_grid = feature_grid - np.array([self.dep_lon, self.dep_lat]) # feature_grid = feature_grid.reshape(-1, 20, 20, 2) # feature_cubes = np.concatenate((feature_cubes, feature_grid), axis = -1) feature_cubes = self.normalize_feature_cubes(feature_cubes) feature_cubes = feature_cubes.reshape(-1, 1, nx, ny, 4) return feature_cubes, feature_grid, predicted_matched_info def reshape_feature_cubes(self, feature_cubes, track_length): # track_length should be a list of integers that contains the length of each test track feature_cubes = np.array(np.split(feature_cubes, np.cumsum(track_length))[:-1]) return feature_cubes def _pad(inputs, inputs_len): # inputs is a list of np arrays # inputs_len is a np array _zero_placeholder = ((0,0),) * (len(inputs[0].shape) - 1) max_len = inputs_len.max() _inputs = [] i = 0 for _input in inputs: _tmp_zeros = ((0, max_len - inputs_len[i]), *_zero_placeholder) _inputs.append(np.pad(_input, _tmp_zeros, 'constant', constant_values = 0)) i+=1 return np.asarray(_inputs) def _pad_and_flip_FP(inputs, inputs_len): # reverse every flight plan max_len = inputs_len.max() _inputs = [] i = 0 for _input in inputs: _inputs.append(np.pad(_input.reshape(-1,2)[::-1], ((0, max_len - inputs_len[i]), (0,0)), 'constant', constant_values = 0)) i+=1 return np.asarray(_inputs) import numpy as np import tensorflow as tf import os from configparser import ConfigParser import matplotlib.pyplot as plt class visual_graph: def __init__(self, conf_path, restored_model_path): self.restored_model_path = restored_model_path self.conf_path = conf_path self.load_configs() def load_configs(self): parser = ConfigParser(os.environ) parser.read(self.conf_path) config_header = 'nn' self.n_input = parser.getint(config_header, 'n_input') self.n_channels = parser.getint('convolution', 'n_channels') self.n_controled_var = parser.getint('lstm', 'n_controled_var') self.n_encode = parser.getint(config_header, 'n_encode') self.state_size = parser.getint('lstm', 'n_cell_dim') self.n_layer = parser.getint('lstm', 'n_lstm_layers') self.batch_size = parser.getint(config_header, 'batch_size') def define_placeholder(self): self.input_encode_tensor = tf.placeholder(dtype=tf.float32, shape=[None, None, self.n_encode], name='encode_tensor') self.seq_len_encode = tf.placeholder(dtype=tf.int32, shape=[None], name='seq_length_encode') self.input_tensor = tf.placeholder(dtype=tf.float32, shape=[None, None, self.n_input, self.n_input, self.n_channels], name='decode_feature_map') self.input_decode_coords_tensor = tf.placeholder(dtype=tf.float32, shape=[None, None, self.n_controled_var], name='decode_coords') self.target = tf.placeholder(dtype=tf.float32, shape=[None, None, self.n_controled_var], name='target') self.target_end = tf.placeholder(dtype=tf.float32, shape=[None, None, 1], name='target_end') self.target_end_neg = tf.placeholder(dtype=tf.float32, shape=[None, None, 1], name='target_end_neg') self.seq_length = tf.placeholder(dtype=tf.int32, shape=[None], name='seq_length_decode') return def launchGraph(self): self.define_placeholder() self.MODEL = LSTM_model(conf_path=self.conf_path, batch_x=self.input_encode_tensor, seq_length=self.seq_len_encode, n_input=self.n_encode, batch_x_decode=self.input_tensor, batch_xcoords_decode=self.input_decode_coords_tensor, seq_length_decode=self.seq_length, n_input_decode=self.n_input, target=self.target, train=False, weight_summary=False) return def feed_fwd_convlayer(self, feed_input): with tf.device('/cpu:0'): self.graph = tf.Graph() self.launchGraph() self.sess = tf.Session() self.saver = tf.train.Saver() self.saver.restore(self.sess, self.restored_model_path) self.sess.graph.finalize() self.weights = self._return_weights() conv1_out, conv2_out, conv3_out = self._feed_fwd_convlayer(feed_input) self.sess.close() return (conv1_out, conv2_out, conv3_out) def _return_weights(self): weight_list = tf.trainable_variables() weights = {} for v in weight_list: weights[v.name] = self.sess.run(v) return weights def _feed_fwd_convlayer(self, feed_input): conv1_out = self.sess.run(self.MODEL.conv1, feed_dict={self.input_tensor: feed_input}) conv2_out = self.sess.run(self.MODEL.conv2, feed_dict={self.input_tensor: feed_input}) conv3_out = self.sess.run(self.MODEL.conv3, feed_dict={self.input_tensor: feed_input}) return (conv1_out, conv2_out, conv3_out) def visualize_raw_weights(weight_var, fig_size=(8, 4)): n_layers = weight_var.shape[3] n_channels = weight_var.shape[2] fig, axs = plt.subplots(n_channels, n_layers, figsize=fig_size, facecolor='w', edgecolor='k') axs = axs.ravel() for i in range(n_channels): for j in range(n_layers): axs[n_layers * i + j].imshow(weight_var[:, :, i, j], cmap='bwr', vmax=weight_var.max(), vmin=weight_var.min()) axs[n_layers * i + j].set_axis_off() plt.show() return fig def visualize_conv_layers(conv_layer, nrow, ncol, fig_size): print(conv_layer.shape) fig, axs = plt.subplots(nrow, ncol, figsize=fig_size, facecolor='w', edgecolor='k') fig.subplots_adjust(wspace=0.01, hspace=0.01) axs = axs.ravel() for i in range(nrow): for j in range(ncol): axs[ncol * i + j].imshow(conv_layer[j, :, :, i], cmap='bwr', vmax=conv_layer[:, :, :, i].max(), vmin=conv_layer[:, :, :, i].min(), origin='lower') axs[ncol * i + j].set_axis_off() plt.show() return fig '\nExample Code:\n' "\ntf.reset_default_graph()\nrestored_model_path = 'visual_network/model.ckpt-99'\nconfig_path = 'configs/encoder_decoder_nn.ini'\nvisual_graph_class = visual_graph(config_path, restored_model_path)\nvisual_graph_class.restore_model()\nweights = visual_graph_class.weights\nvisualize_raw_weights(weight_var=weights['wc1:0'], fig_size = (8, 2))\nvisualize_raw_weights(weight_var=weights['wc2:0'], fig_size = (8,4))\nvisualize_raw_weights(weight_var=weights['wc3:0'], fig_size = (8,4))\n"
code
32062775/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) test.fillna(test.mean(), inplace=True) test
code
32062775/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') gender_submission
code
32062775/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') test
code
32062775/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) train.fillna(train.mean(), inplace=True) train
code
32062775/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) train.fillna(train.mean(), inplace=True) X_train = train.drop(['Survived', 'Name', 'Ticket', 'Cabin'], axis=1) y_train = train['Survived'] y_train
code
32062775/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32062775/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) test.fillna(test.mean(), inplace=True) X_test = test.drop(['Name', 'Ticket', 'Cabin'], axis=1) y_test = gender_submission['Survived'] y_test
code
32062775/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) train.fillna(train.mean(), inplace=True) X_train = train.drop(['Survived', 'Name', 'Ticket', 'Cabin'], axis=1) y_train = train['Survived'] X_train.info()
code
32062775/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) test.fillna(test.mean(), inplace=True) X_test = test.drop(['Name', 'Ticket', 'Cabin'], axis=1) y_test = gender_submission['Survived'] X_test.info()
code
32062775/cell_24
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report, confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) train.fillna(train.mean(), inplace=True) test.fillna(test.mean(), inplace=True) X_train = train.drop(['Survived', 'Name', 'Ticket', 'Cabin'], axis=1) y_train = train['Survived'] X_test = test.drop(['Name', 'Ticket', 'Cabin'], axis=1) y_test = gender_submission['Survived'] steps = [('scaler', StandardScaler()), ('SVM', SVC())] pipeline = Pipeline(steps) parameters = {'SVM__C': [1, 10, 100], 'SVM__gamma': [0.1, 0.01]} cv = GridSearchCV(pipeline, parameters, cv=3) cv.fit(X_train, y_train) y_pred = cv.predict(X_test) my_submission = pd.DataFrame({'PassengerId': X_test.PassengerId, 'Survived': y_pred}) my_submission
code
32062775/cell_22
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report, confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') sex_and_embark_train = pd.get_dummies(train[['Sex', 'Embarked']]) sex_and_embark_test = pd.get_dummies(test[['Sex', 'Embarked']]) train = train.drop(['Sex', 'Embarked'], axis=1) test = test.drop(['Sex', 'Embarked'], axis=1) train = train.join(sex_and_embark_train) test = test.join(sex_and_embark_test) train.fillna(train.mean(), inplace=True) test.fillna(test.mean(), inplace=True) X_train = train.drop(['Survived', 'Name', 'Ticket', 'Cabin'], axis=1) y_train = train['Survived'] X_test = test.drop(['Name', 'Ticket', 'Cabin'], axis=1) y_test = gender_submission['Survived'] steps = [('scaler', StandardScaler()), ('SVM', SVC())] pipeline = Pipeline(steps) parameters = {'SVM__C': [1, 10, 100], 'SVM__gamma': [0.1, 0.01]} cv = GridSearchCV(pipeline, parameters, cv=3) cv.fit(X_train, y_train) y_pred = cv.predict(X_test) print('Accuracy: {}'.format(cv.score(X_test, y_test))) print(classification_report(y_test, y_pred)) print('Tuned Model Parameters: {}'.format(cv.best_params_))
code
32062775/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) gender_submission = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train = pd.read_csv('/kaggle/input/titanic/train.csv') train
code
1008349/cell_3
[ "text_html_output_1.png" ]
import pandas as pd gTemp = pd.read_csv('../input/GlobalTemperatures.csv') gTempCountry = pd.read_csv('../input/GlobalLandTemperaturesByCountry.csv') gTempState = pd.read_csv('../input/GlobalLandTemperaturesByState.csv') gTempMajorCity = pd.read_csv('../input/GlobalLandTemperaturesByMajorCity.csv') gTempCity = pd.read_csv('../input/GlobalLandTemperaturesByCity.csv') gTemp.head(5)
code
1008349/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd gTemp = pd.read_csv('../input/GlobalTemperatures.csv') gTempCountry = pd.read_csv('../input/GlobalLandTemperaturesByCountry.csv') gTempState = pd.read_csv('../input/GlobalLandTemperaturesByState.csv') gTempMajorCity = pd.read_csv('../input/GlobalLandTemperaturesByMajorCity.csv') gTempCity = pd.read_csv('../input/GlobalLandTemperaturesByCity.csv') gTemp['Year']
code
320942/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', header=0) df[df['Age'] > 60][['Sex', 'Pclass', 'Age', 'Survived']]
code
320942/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', header=0) df['Gender'] = df['Sex'].map({'female': 0, 'male': 1}).astype(int) df.head(3)
code
320942/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', header=0) df.head(3)
code
320942/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
320942/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', header=0) df['Gender'] = df['Sex'].map({'female': 0, 'male': 1}).astype(int) df.head(3)
code
320942/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', header=0) df.info()
code
320942/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pylab as P df = pd.read_csv('../input/train.csv', header=0) import pylab as P df['Age'].hist() P.show()
code
50223292/cell_9
[ "text_plain_output_100.png", "text_plain_output_334.png", "text_plain_output_770.png", "text_plain_output_743.png", "text_plain_output_673.png", "text_plain_output_445.png", "text_plain_output_640.png", "text_plain_output_201.png", "text_plain_output_586.png", "text_plain_output_261.png", "text_plain_output_775.png", "text_plain_output_565.png", "text_plain_output_522.png", "text_plain_output_84.png", "text_plain_output_624.png", "text_plain_output_521.png", "text_plain_output_322.png", "text_plain_output_769.png", "text_plain_output_205.png", "text_plain_output_693.png", "text_plain_output_511.png", "text_plain_output_608.png", "text_plain_output_271.png", "text_plain_output_56.png", "text_plain_output_475.png", "text_plain_output_158.png", "text_plain_output_455.png", "text_plain_output_223.png", "text_plain_output_218.png", "text_plain_output_264.png", "text_plain_output_715.png", "text_plain_output_282.png", "text_plain_output_579.png", "text_plain_output_629.png", "text_plain_output_396.png", "text_plain_output_287.png", "text_plain_output_232.png", "text_plain_output_181.png", "text_plain_output_137.png", "text_plain_output_139.png", "text_plain_output_362.png", "text_plain_output_35.png", "text_plain_output_697.png", "text_plain_output_501.png", "text_plain_output_593.png", "text_plain_output_258.png", "text_plain_output_685.png", "text_plain_output_452.png", "text_plain_output_130.png", "text_plain_output_598.png", "text_plain_output_490.png", "text_plain_output_449.png", "text_plain_output_462.png", "text_plain_output_117.png", "text_plain_output_286.png", "text_plain_output_367.png", "text_plain_output_750.png", "text_plain_output_262.png", "text_plain_output_278.png", "text_plain_output_588.png", "text_plain_output_395.png", "text_plain_output_617.png", "text_plain_output_254.png", "text_plain_output_307.png", "text_plain_output_570.png", "text_plain_output_674.png", "text_plain_output_98.png", "text_plain_output_399.png", "text_plain_output_671.png", "text_plain_output_718.png", "text_plain_output_236.png", "text_plain_output_195.png", "text_plain_output_756.png", "text_plain_output_678.png", "text_plain_output_688.png", "text_plain_output_471.png", "text_plain_output_219.png", "text_plain_output_614.png", "text_plain_output_768.png", "text_plain_output_420.png", "text_plain_output_514.png", "text_plain_output_485.png", "text_plain_output_237.png", "text_plain_output_43.png", "text_plain_output_284.png", "text_plain_output_187.png", "text_plain_output_309.png", "text_plain_output_576.png", "text_plain_output_78.png", "text_plain_output_143.png", "text_plain_output_106.png", "text_plain_output_37.png", "text_plain_output_138.png", "text_plain_output_670.png", "text_plain_output_544.png", "text_plain_output_192.png", "text_plain_output_426.png", "text_plain_output_184.png", "text_plain_output_477.png", "text_plain_output_274.png", "text_plain_output_172.png", "text_plain_output_664.png", "text_plain_output_716.png", "text_plain_output_627.png", "text_plain_output_613.png", "text_plain_output_736.png", "text_plain_output_332.png", "text_plain_output_147.png", "text_plain_output_443.png", "text_plain_output_327.png", "text_plain_output_684.png", "text_plain_output_774.png", "text_plain_output_256.png", "text_plain_output_90.png", "text_plain_output_79.png", "text_plain_output_331.png", "text_plain_output_5.png", "text_plain_output_642.png", "text_plain_output_550.png", "text_plain_output_75.png", "text_plain_output_48.png", "text_plain_output_388.png", "text_plain_output_422.png", "text_plain_output_116.png", "text_plain_output_128.png", "text_plain_output_30.png", "text_plain_output_167.png", "text_plain_output_213.png", "text_plain_output_73.png", "text_plain_output_126.png", "text_plain_output_676.png", "text_plain_output_704.png", "text_plain_output_687.png", "text_plain_output_776.png", "text_plain_output_492.png", "text_plain_output_321.png", "text_plain_output_272.png", "text_plain_output_115.png", "text_plain_output_748.png", "text_plain_output_474.png", "text_plain_output_407.png", "text_plain_output_482.png", "text_plain_output_316.png", "text_plain_output_634.png", "text_plain_output_656.png", "text_plain_output_355.png", "text_plain_output_15.png", "text_plain_output_390.png", "text_plain_output_133.png", "text_plain_output_771.png", "text_plain_output_651.png", "text_plain_output_437.png", "text_plain_output_198.png", "text_plain_output_699.png", "text_plain_output_387.png", "text_plain_output_555.png", "text_plain_output_548.png", "text_plain_output_759.png", "text_plain_output_178.png", "text_plain_output_226.png", "text_plain_output_154.png", "text_plain_output_234.png", "text_plain_output_375.png", "text_plain_output_404.png", "text_plain_output_114.png", "text_plain_output_659.png", "text_plain_output_515.png", "text_plain_output_157.png", "text_plain_output_773.png", "text_plain_output_494.png", "text_plain_output_317.png", "text_plain_output_251.png", "text_plain_output_470.png", "text_plain_output_496.png", "text_plain_output_423.png", "text_plain_output_70.png", "text_plain_output_9.png", "text_plain_output_712.png", "text_plain_output_484.png", "text_plain_output_44.png", "text_plain_output_633.png", "text_plain_output_325.png", "text_plain_output_203.png", "text_plain_output_603.png", "text_plain_output_655.png", "text_plain_output_119.png", "text_plain_output_546.png", "text_plain_output_540.png", "text_plain_output_373.png", "text_plain_output_504.png", "text_plain_output_86.png", "text_plain_output_244.png", "text_plain_output_741.png", "text_plain_output_118.png", "text_plain_output_551.png", "text_plain_output_583.png", "text_plain_output_131.png", "text_plain_output_40.png", "text_plain_output_343.png", "text_plain_output_123.png", "text_plain_output_74.png", "text_plain_output_734.png", "text_plain_output_190.png", "text_plain_output_302.png", "text_plain_output_604.png", "text_plain_output_31.png", "text_plain_output_340.png", "text_plain_output_379.png", "text_plain_output_281.png", "text_plain_output_639.png", "text_plain_output_20.png", "text_plain_output_557.png", "text_plain_output_273.png", "text_plain_output_706.png", "text_plain_output_263.png", "text_plain_output_102.png", "text_plain_output_229.png", "text_plain_output_111.png", "text_plain_output_686.png", "text_plain_output_753.png", "text_plain_output_669.png", "text_plain_output_414.png", "text_plain_output_461.png", "text_plain_output_510.png", "text_plain_output_222.png", "text_plain_output_589.png", "text_plain_output_101.png", "text_plain_output_530.png", "text_plain_output_169.png", "text_plain_output_531.png", "text_plain_output_144.png", "text_plain_output_161.png", "text_plain_output_489.png", "text_plain_output_305.png", "text_plain_output_275.png", "text_plain_output_779.png", "text_plain_output_725.png", "text_plain_output_301.png", "text_plain_output_132.png", "text_plain_output_60.png", "text_plain_output_691.png", "text_plain_output_764.png", "text_plain_output_467.png", "text_plain_output_502.png", "text_plain_output_221.png", "text_plain_output_596.png", "text_plain_output_564.png", "text_plain_output_552.png", "text_plain_output_720.png", "text_plain_output_654.png", "text_plain_output_330.png", "text_plain_output_155.png", "text_plain_output_638.png", "text_plain_output_434.png", "text_plain_output_68.png", "text_plain_output_4.png", "text_plain_output_65.png", "text_plain_output_618.png", "text_plain_output_64.png", "text_plain_output_419.png", "text_plain_output_215.png", "text_plain_output_532.png", "text_plain_output_189.png", "text_plain_output_415.png", "text_plain_output_637.png", "text_plain_output_13.png", "text_plain_output_200.png", "text_plain_output_666.png", "text_plain_output_107.png", "text_plain_output_746.png", "text_plain_output_567.png", "text_plain_output_628.png", "text_plain_output_398.png", "text_plain_output_312.png", "text_plain_output_248.png", "text_plain_output_695.png", "text_plain_output_318.png", "text_plain_output_417.png", "text_plain_output_707.png", "text_plain_output_690.png", "text_plain_output_52.png", "text_plain_output_545.png", "text_plain_output_393.png", "text_plain_output_758.png", "text_plain_output_572.png", "text_plain_output_594.png", "text_plain_output_66.png", "text_plain_output_446.png", "text_plain_output_243.png", "text_plain_output_611.png", "text_plain_output_45.png", "text_plain_output_380.png", "text_plain_output_599.png", "text_plain_output_692.png", "text_plain_output_442.png", "text_plain_output_665.png", "text_plain_output_300.png", "text_plain_output_660.png", "text_plain_output_257.png", "text_plain_output_405.png", "text_plain_output_353.png", "text_plain_output_476.png", "text_plain_output_277.png", "text_plain_output_457.png", "text_plain_output_739.png", "text_plain_output_740.png", "text_plain_output_361.png", "text_plain_output_171.png", "text_plain_output_518.png", "text_plain_output_561.png", "text_plain_output_431.png", "text_plain_output_14.png", "text_plain_output_159.png", "text_plain_output_32.png", "text_plain_output_516.png", "text_plain_output_304.png", "text_plain_output_88.png", "text_plain_output_240.png", "text_plain_output_713.png", "text_plain_output_29.png", "text_plain_output_359.png", "text_plain_output_529.png", "text_plain_output_347.png", "text_plain_output_140.png", "text_plain_output_606.png", "text_plain_output_763.png", "text_plain_output_376.png", "text_plain_output_280.png", "text_plain_output_783.png", "text_plain_output_129.png", "text_plain_output_728.png", "text_plain_output_349.png", "text_plain_output_242.png", "text_plain_output_483.png", "text_plain_output_460.png", "text_plain_output_363.png", "text_plain_output_289.png", "text_plain_output_255.png", "text_plain_output_160.png", "text_plain_output_58.png", "text_plain_output_680.png", "text_plain_output_622.png", "text_plain_output_329.png", "text_plain_output_49.png", "text_plain_output_708.png", "text_plain_output_63.png", "text_plain_output_260.png", "text_plain_output_294.png", "text_plain_output_27.png", "text_plain_output_392.png", "text_plain_output_320.png", "text_plain_output_177.png", "text_plain_output_607.png", "text_plain_output_386.png", "text_plain_output_438.png", "text_plain_output_76.png", "text_plain_output_681.png", "text_plain_output_333.png", "text_plain_output_108.png", "text_plain_output_581.png", "text_plain_output_54.png", "text_plain_output_142.png", "text_plain_output_10.png", "text_plain_output_700.png", "text_plain_output_269.png", "text_plain_output_276.png", "text_plain_output_6.png", "text_plain_output_326.png", "text_plain_output_744.png", "text_plain_output_503.png", "text_plain_output_578.png", "text_plain_output_735.png", "text_plain_output_153.png", "text_plain_output_170.png", "text_plain_output_92.png", "text_plain_output_658.png", "text_plain_output_57.png", "text_plain_output_120.png", "text_plain_output_469.png", "text_plain_output_24.png", "text_plain_output_357.png", "text_plain_output_21.png", "text_plain_output_344.png", "text_plain_output_104.png", "text_plain_output_784.png", "text_plain_output_270.png", "text_plain_output_47.png", "text_plain_output_623.png", "text_plain_output_466.png", "text_plain_output_568.png", "text_plain_output_121.png", "text_plain_output_25.png", "text_plain_output_134.png", "text_plain_output_523.png", "text_plain_output_401.png", "text_plain_output_77.png", "text_plain_output_421.png", "text_plain_output_288.png", "text_plain_output_535.png", "text_plain_output_527.png", "text_plain_output_488.png", "text_plain_output_18.png", "text_plain_output_183.png", "text_plain_output_266.png", "text_plain_output_149.png", "text_plain_output_208.png", "text_plain_output_50.png", "text_plain_output_36.png", "text_plain_output_646.png", "text_plain_output_383.png", "text_plain_output_207.png", "text_plain_output_766.png", "text_plain_output_391.png", "text_plain_output_413.png", "text_plain_output_709.png", "text_plain_output_96.png", "text_plain_output_663.png", "text_plain_output_87.png", "text_plain_output_3.png", "text_plain_output_217.png", "text_plain_output_418.png", "text_plain_output_657.png", "text_plain_output_427.png", "text_plain_output_180.png", "text_plain_output_556.png", "text_plain_output_141.png", "text_plain_output_210.png", "text_plain_output_112.png", "text_plain_output_152.png", "text_plain_output_225.png", "text_plain_output_701.png", "text_plain_output_191.png", "text_plain_output_609.png", "text_plain_output_737.png", "text_plain_output_259.png", "text_plain_output_447.png", "text_plain_output_290.png", "text_plain_output_506.png", "text_plain_output_283.png", "text_plain_output_495.png", "text_plain_output_247.png", "text_plain_output_113.png", "text_plain_output_371.png", "text_plain_output_479.png", "text_plain_output_324.png", "text_plain_output_22.png", "text_plain_output_188.png", "text_plain_output_366.png", "text_plain_output_328.png", "text_plain_output_81.png", "text_plain_output_730.png", "text_plain_output_69.png", "text_plain_output_368.png", "text_plain_output_667.png", "text_plain_output_372.png", "text_plain_output_175.png", "text_plain_output_165.png", "text_plain_output_767.png", "text_plain_output_542.png", "text_plain_output_146.png", "text_plain_output_145.png", "text_plain_output_125.png", "text_plain_output_754.png", "text_plain_output_454.png", "text_plain_output_487.png", "text_plain_output_595.png", "text_plain_output_643.png", "text_plain_output_338.png", "text_plain_output_575.png", "text_plain_output_197.png", "text_plain_output_512.png", "text_plain_output_777.png", "text_plain_output_738.png", "text_plain_output_382.png", "text_plain_output_315.png", "text_plain_output_429.png", "text_plain_output_38.png", "text_plain_output_517.png", "text_plain_output_682.png", "text_plain_output_433.png", "text_plain_output_7.png", "text_plain_output_528.png", "text_plain_output_648.png", "text_plain_output_214.png", "text_plain_output_166.png", "text_plain_output_358.png", "text_plain_output_726.png", "text_plain_output_513.png", "text_plain_output_714.png", "text_plain_output_314.png", "text_plain_output_745.png", "text_plain_output_592.png", "text_plain_output_410.png", "text_plain_output_432.png", "text_plain_output_645.png", "text_plain_output_411.png", "text_plain_output_91.png", "text_plain_output_308.png", "text_plain_output_245.png", "text_plain_output_16.png", "text_plain_output_497.png", "text_plain_output_174.png", "text_plain_output_212.png", "text_plain_output_652.png", "text_plain_output_644.png", "text_plain_output_230.png", "text_plain_output_265.png", "text_plain_output_430.png", "text_plain_output_742.png", "text_plain_output_630.png", "text_plain_output_778.png", "text_plain_output_435.png", "text_plain_output_689.png", "text_plain_output_378.png", "text_plain_output_59.png", "text_plain_output_580.png", "text_plain_output_409.png", "text_plain_output_206.png", "text_plain_output_103.png", "text_plain_output_71.png", "text_plain_output_732.png", "text_plain_output_751.png", "text_plain_output_539.png", "text_plain_output_8.png", "text_plain_output_122.png", "text_plain_output_384.png", "text_plain_output_498.png", "text_plain_output_211.png", "text_plain_output_662.png", "text_plain_output_780.png", "text_plain_output_182.png", "text_plain_output_26.png", "text_plain_output_601.png", "text_plain_output_554.png", "text_plain_output_536.png", "text_plain_output_620.png", "text_plain_output_406.png", "text_plain_output_310.png", "text_plain_output_760.png", "text_plain_output_456.png", "text_plain_output_541.png", "text_plain_output_558.png", "text_plain_output_668.png", "text_plain_output_702.png", "text_plain_output_724.png", "text_plain_output_220.png", "text_plain_output_749.png", "text_plain_output_653.png", "text_plain_output_543.png", "text_plain_output_781.png", "text_plain_output_451.png", "text_plain_output_109.png", "text_plain_output_459.png", "text_plain_output_238.png", "text_plain_output_520.png", "text_plain_output_616.png", "text_plain_output_615.png", "text_plain_output_41.png", "text_plain_output_34.png", "text_plain_output_612.png", "text_plain_output_253.png", "text_plain_output_346.png", "text_plain_output_723.png", "text_plain_output_291.png", "text_plain_output_168.png", "text_plain_output_394.png", "text_plain_output_204.png", "text_plain_output_241.png", "text_plain_output_231.png", "text_plain_output_533.png", "text_plain_output_345.png", "text_plain_output_649.png", "text_plain_output_350.png", "text_plain_output_209.png", "text_plain_output_185.png", "text_plain_output_85.png", "text_plain_output_765.png", "text_plain_output_636.png", "text_plain_output_42.png", "text_plain_output_110.png", "text_plain_output_605.png", "text_plain_output_549.png", "text_plain_output_67.png", "text_plain_output_508.png", "text_plain_output_573.png", "text_plain_output_468.png", "text_plain_output_370.png", "text_plain_output_297.png", "text_plain_output_53.png", "text_plain_output_313.png", "text_plain_output_224.png", "text_plain_output_635.png", "text_plain_output_703.png", "text_plain_output_711.png", "text_plain_output_193.png", "text_plain_output_441.png", "text_plain_output_403.png", "text_plain_output_696.png", "text_plain_output_23.png", "text_plain_output_761.png", "text_plain_output_610.png", "text_plain_output_173.png", "text_plain_output_683.png", "text_plain_output_235.png", "text_plain_output_151.png", "text_plain_output_89.png", "text_plain_output_299.png", "text_plain_output_632.png", "text_plain_output_51.png", "text_plain_output_677.png", "text_plain_output_626.png", "text_plain_output_450.png", "text_plain_output_252.png", "text_plain_output_296.png", "text_plain_output_525.png", "text_plain_output_731.png", "text_plain_output_672.png", "text_plain_output_705.png", "text_plain_output_28.png", "text_plain_output_72.png", "text_plain_output_99.png", "text_plain_output_381.png", "text_plain_output_571.png", "text_plain_output_163.png", "text_plain_output_179.png", "text_plain_output_537.png", "text_plain_output_162.png", "text_plain_output_136.png", "text_plain_output_602.png", "text_plain_output_246.png", "text_plain_output_2.png", "text_plain_output_569.png", "text_plain_output_772.png", "text_plain_output_239.png", "text_plain_output_127.png", "text_plain_output_559.png", "text_plain_output_311.png", "text_plain_output_710.png", "text_plain_output_500.png", "text_plain_output_719.png", "text_plain_output_295.png", "text_plain_output_279.png", "text_plain_output_507.png", "text_plain_output_590.png", "text_plain_output_509.png", "text_plain_output_337.png", "text_plain_output_562.png", "text_plain_output_499.png", "text_plain_output_196.png", "text_plain_output_342.png", "text_plain_output_563.png", "text_plain_output_97.png", "text_plain_output_729.png", "text_plain_output_717.png", "text_plain_output_227.png", "text_plain_output_453.png", "text_plain_output_1.png", "text_plain_output_33.png", "text_plain_output_650.png", "text_plain_output_150.png", "text_plain_output_631.png", "text_plain_output_39.png", "text_plain_output_752.png", "text_plain_output_176.png", "text_plain_output_584.png", "text_plain_output_335.png", "text_plain_output_186.png", "text_plain_output_233.png", "text_plain_output_228.png", "text_plain_output_473.png", "text_plain_output_385.png", "text_plain_output_478.png", "text_plain_output_762.png", "text_plain_output_55.png", "text_plain_output_412.png", "text_plain_output_293.png", "text_plain_output_268.png", "text_plain_output_436.png", "text_plain_output_199.png", "text_plain_output_354.png", "text_plain_output_463.png", "text_plain_output_360.png", "text_plain_output_319.png", "text_plain_output_82.png", "text_plain_output_356.png", "text_plain_output_202.png", "text_plain_output_93.png", "text_plain_output_698.png", "text_plain_output_336.png", "text_plain_output_19.png", "text_plain_output_439.png", "text_plain_output_341.png", "text_plain_output_105.png", "text_plain_output_465.png", "text_plain_output_80.png", "text_plain_output_491.png", "text_plain_output_679.png", "text_plain_output_641.png", "text_plain_output_94.png", "text_plain_output_164.png", "text_plain_output_249.png", "text_plain_output_534.png", "text_plain_output_444.png", "text_plain_output_619.png", "text_plain_output_216.png", "text_plain_output_124.png", "text_plain_output_17.png", "text_plain_output_148.png", "text_plain_output_323.png", "text_plain_output_694.png", "text_plain_output_402.png", "text_plain_output_755.png", "text_plain_output_722.png", "text_plain_output_424.png", "text_plain_output_486.png", "text_plain_output_597.png", "text_plain_output_250.png", "text_plain_output_11.png", "text_plain_output_481.png", "text_plain_output_560.png", "text_plain_output_526.png", "text_plain_output_400.png", "text_plain_output_524.png", "text_plain_output_538.png", "text_plain_output_12.png", "text_plain_output_267.png", "text_plain_output_553.png", "text_plain_output_408.png", "text_plain_output_425.png", "text_plain_output_591.png", "text_plain_output_428.png", "text_plain_output_416.png", "text_plain_output_625.png", "text_plain_output_194.png", "text_plain_output_577.png", "text_plain_output_727.png", "text_plain_output_747.png", "text_plain_output_782.png", "text_plain_output_519.png", "text_plain_output_62.png", "text_plain_output_733.png", "text_plain_output_721.png", "text_plain_output_480.png", "text_plain_output_757.png", "text_plain_output_303.png", "text_plain_output_621.png", "text_plain_output_377.png", "text_plain_output_440.png", "text_plain_output_95.png", "text_plain_output_339.png", "text_plain_output_458.png", "text_plain_output_464.png", "text_plain_output_156.png", "text_plain_output_547.png", "text_plain_output_298.png", "text_plain_output_369.png", "text_plain_output_348.png", "text_plain_output_587.png", "text_plain_output_448.png", "text_plain_output_364.png", "text_plain_output_365.png", "text_plain_output_61.png", "text_plain_output_585.png", "text_plain_output_352.png", "text_plain_output_83.png", "text_plain_output_374.png", "text_plain_output_647.png", "text_plain_output_472.png", "text_plain_output_566.png", "text_plain_output_397.png", "text_plain_output_600.png", "text_plain_output_661.png", "text_plain_output_389.png", "text_plain_output_292.png", "text_plain_output_351.png", "text_plain_output_135.png", "text_plain_output_285.png", "text_plain_output_574.png", "text_plain_output_582.png", "text_plain_output_306.png", "text_plain_output_675.png", "text_plain_output_493.png", "text_plain_output_46.png" ]
from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.callbacks import EarlyStopping import tensorflow as tf from tensorflow.keras.applications.inception_v3 import InceptionV3 pretrained_base = InceptionV3(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) pretrained_base.trainable = False from tensorflow.keras.callbacks import EarlyStopping early_stopping = EarlyStopping(min_delta=0.001, patience=8, restore_best_weights=True) model = tf.keras.models.Sequential([pretrained_base, tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(5, activation='softmax')]) model.summary() model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.001), metrics=['accuracy'])
code
50223292/cell_4
[ "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import cv2 image = cv2.imread('../input/cassava-leaf-disease-classification/test_images/2216849948.jpg') plt.figure(figsize=(20, 10)) plt.imshow(image) plt.axis('off') plt.show()
code
50223292/cell_6
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import os num_test_images = len(os.listdir('../input/cassava-leaf-disease-classification/test_images')) num_test_images num_train_images = len(os.listdir('../input/cassava-leaf-disease-classification/train_images')) num_train_images import cv2 image = cv2.imread('../input/cassava-leaf-disease-classification/test_images/2216849948.jpg') plt.axis('off') plant = os.listdir('../input/cassava-leaf-disease-classification/train_images') plant_dir = '../input/cassava-leaf-disease-classification/train_images' plt.figure(figsize=(20, 10)) for i in range(9): plt.subplot(3, 3, i + 1) img = plt.imread(os.path.join(plant_dir, plant[i])) plt.imshow(img) plt.axis('off') plt.tight_layout()
code
50223292/cell_2
[ "image_output_1.png" ]
import os num_test_images = len(os.listdir('../input/cassava-leaf-disease-classification/test_images')) num_test_images
code
50223292/cell_11
[ "text_plain_output_1.png" ]
from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.preprocessing.image import ImageDataGenerator,load_img import pandas as pd import tensorflow as tf sub = pd.read_csv('../input/cassava-leaf-disease-classification/sample_submission.csv') train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') train['label'] = train['label'].astype('str') from tensorflow.keras.applications.inception_v3 import InceptionV3 pretrained_base = InceptionV3(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) pretrained_base.trainable = False from tensorflow.keras.callbacks import EarlyStopping early_stopping = EarlyStopping(min_delta=0.001, patience=8, restore_best_weights=True) model = tf.keras.models.Sequential([pretrained_base, tf.keras.layers.Flatten(), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(5, activation='softmax')]) model.summary() model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.001), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) train_data = train_datagen.flow_from_dataframe(dataframe=train, directory='../input/cassava-leaf-disease-classification/train_images', x_col='image_id', y_col='label', batch_size=16, target_size=(150, 150)) validation_data = train_datagen.flow_from_dataframe(dataframe=train, directory='../input/cassava-leaf-disease-classification/train_images', x_col='image_id', y_col='label', batch_size=16, target_size=(150, 150)) history = model.fit(train_data, epochs=10, validation_data=validation_data, callbacks=[early_stopping])
code
50223292/cell_8
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.applications.inception_v3 import InceptionV3 pretrained_base = InceptionV3(weights='imagenet', include_top=False, input_shape=(150, 150, 3)) pretrained_base.trainable = False
code
50223292/cell_3
[ "text_html_output_1.png" ]
import os num_test_images = len(os.listdir('../input/cassava-leaf-disease-classification/test_images')) num_test_images num_train_images = len(os.listdir('../input/cassava-leaf-disease-classification/train_images')) num_train_images
code
50223292/cell_10
[ "text_plain_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator,load_img import pandas as pd sub = pd.read_csv('../input/cassava-leaf-disease-classification/sample_submission.csv') train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') train['label'] = train['label'].astype('str') train_datagen = ImageDataGenerator(rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) train_data = train_datagen.flow_from_dataframe(dataframe=train, directory='../input/cassava-leaf-disease-classification/train_images', x_col='image_id', y_col='label', batch_size=16, target_size=(150, 150)) validation_data = train_datagen.flow_from_dataframe(dataframe=train, directory='../input/cassava-leaf-disease-classification/train_images', x_col='image_id', y_col='label', batch_size=16, target_size=(150, 150))
code
50223292/cell_5
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "text_plain_output_13.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_8.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_plain_output_11.png", "text_plain_output_12.png" ]
import pandas as pd sub = pd.read_csv('../input/cassava-leaf-disease-classification/sample_submission.csv') train = pd.read_csv('../input/cassava-leaf-disease-classification/train.csv') train['label'] = train['label'].astype('str') train.head()
code
73095834/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) df = pd.read_csv('G:\\MS Avishkara\\winequality-red.csv', sep=';') df.head()
code
16166947/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import statsmodels.api as sm train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] import statsmodels.api as sm sample = solo_train_data.sample(n=10) sns.regplot(x='damageDealt', y='winPlacePerc', x_jitter=5, order=2, data=solo_train_data.sample(n=200)[['damageDealt', 'winPlacePerc']])
code
16166947/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from scipy import stats import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats print('pure random\n', stats.linregress(np.random.random(200), np.random.random(200)).rvalue ** 2) solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] print('20 samples\n', stats.linregress(solo_train_data.sample(n=20)[['damageDealt', 'winPlacePerc']]).rvalue ** 2) print('200 samples\n', stats.linregress(solo_train_data.sample(n=200)[['damageDealt', 'winPlacePerc']]).rvalue ** 2) print('2000 samples\n', stats.linregress(solo_train_data.sample(n=2000)[['damageDealt', 'winPlacePerc']]).rvalue ** 2) print('20000 samples\n', stats.linregress(solo_train_data.sample(n=20000)[['damageDealt', 'winPlacePerc']]).rvalue ** 2)
code
16166947/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] sns.relplot(x='damageDealt', y='winPlacePerc', data=data_to_plot)
code
16166947/cell_25
[ "text_plain_output_1.png" ]
from scipy import stats from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import statsmodels.api as sm train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] import statsmodels.api as sm sample = solo_train_data.sample(n=10) from sklearn.model_selection import train_test_split clean_train_data = train_data[['damageDealt', 'winPlacePerc']].dropna() X_train, X_test, y_train, y_test = train_test_split(clean_train_data, clean_train_data.winPlacePerc, test_size=0.2) model = sm.Logit(y_train, X_train.damageDealt) result = model.fit()
code
16166947/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import statsmodels.api as sm train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] import statsmodels.api as sm sample = solo_train_data.sample(n=10) sns.regplot(x='damageDealt', y='winPlacePerc', x_jitter=5, logistic=True, data=solo_train_data.sample(n=2000)[['damageDealt', 'winPlacePerc']])
code
16166947/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import statsmodels.api as sm train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] import statsmodels.api as sm sample = solo_train_data.sample(n=10) from sklearn.model_selection import train_test_split clean_train_data = train_data[['damageDealt', 'winPlacePerc']].dropna() X_train, X_test, y_train, y_test = train_test_split(clean_train_data, clean_train_data.winPlacePerc, test_size=0.2) model = sm.Logit(y_train, X_train.damageDealt) result = model.fit() from sklearn.metrics import mean_absolute_error predictions = result.predict(X_test.damageDealt) sns.scatterplot(y_test[:200], predictions[:200]) print(mean_absolute_error(y_test, np.random.random(len(y_test)))) print(mean_absolute_error(y_test, predictions))
code
16166947/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16166947/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] sns.relplot(x='damageDealt', y='winPlacePerc', data=data_to_plot)
code
16166947/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import statsmodels.api as sm train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] import statsmodels.api as sm sample = solo_train_data.sample(n=10) print(sample[['winPlacePerc', 'damageDealt']]) print(sm.nonparametric.lowess(sample['winPlacePerc'], sample['damageDealt']))
code
16166947/cell_1
[ "text_plain_output_1.png" ]
# https://stackoverflow.com/questions/56283294/importerror-cannot-import-name-factorial !pip install statsmodels==0.10.0rc2
code
16166947/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']]
code
16166947/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import statsmodels.api as sm train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] import statsmodels.api as sm sample = solo_train_data.sample(n=10) from sklearn.model_selection import train_test_split clean_train_data = train_data[['damageDealt', 'winPlacePerc']].dropna() X_train, X_test, y_train, y_test = train_test_split(clean_train_data, clean_train_data.winPlacePerc, test_size=0.2) model = sm.Logit(y_train, X_train.damageDealt) result = model.fit() from sklearn.metrics import mean_absolute_error predictions = result.predict(X_test.damageDealt) garbled_predictions = (predictions - 0.5) * 2.0 print(mean_absolute_error(y_test, garbled_predictions)) sns.scatterplot(y_test[:200], garbled_predictions[:200])
code
16166947/cell_15
[ "text_html_output_1.png" ]
from scipy import stats import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] sns.regplot(x='damageDealt', y='winPlacePerc', x_jitter=5, data=solo_train_data.sample(n=500)[['damageDealt', 'winPlacePerc']])
code
16166947/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy import stats import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.head(10)[['damageDealt', 'winPlacePerc']] import matplotlib.pyplot as plt import seaborn as sns sns.set(style='darkgrid') data_to_plot = train_data.sample(n=200)[['damageDealt', 'winPlacePerc']] data_to_plot = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})].sample(n=200)[['damageDealt', 'winPlacePerc']] from scipy import stats solo_train_data = train_data[train_data.matchType.isin({'solo', 'solo-fpp'})] sns.regplot(x='damageDealt', y='winPlacePerc', x_jitter=5, lowess=True, data=solo_train_data.sample(n=200)[['damageDealt', 'winPlacePerc']])
code
16166947/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/train_V2.csv') test_data = pd.read_csv('../input/test_V2.csv') train_data.info() train_data.head()
code
74041294/cell_23
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from mlxtend.frequent_patterns import fpgrowth, association_rules # MBA import numpy as np import os import pandas as pd def preDot(text): return text.rsplit('.', 1)[0] np.random.seed(73) pd.options.mode.chained_assignment = None dataDict = {} for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: with ZipFile(os.path.join(dirname, filename), 'r') as zipf: unzipped_fn = preDot(filename) with zipf.open(unzipped_fn) as f: dataDict[preDot(unzipped_fn)] = pd.read_csv(f) train_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'train'].drop('eval_set', axis=1) prior_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'prior'].drop('eval_set', axis=1) test_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'test'].drop('eval_set', axis=1) small_train = dataDict['order_products__train'][['order_id', 'product_id']] small_train_split = (small_train[:461543], small_train[461543:461543 * 2 - 1], small_train[461543 * 2 - 1:]) pivots = [] for df in small_train_split: pvt = ~df.pivot(index='order_id', columns='product_id', values='product_id').isna() pivots.append(pvt.astype(pd.SparseDtype(bool))) del pvt product_cols = sorted(small_train.product_id.unique()) for i in range(len(pivots)): pivots[i] = pivots[i].reindex(columns=product_cols, fill_value=False).astype(pd.SparseDtype(bool)) pivots[i] = sparse.csr_matrix(pivots[i]) pivots = sparse.vstack(pivots) truth_table = pd.DataFrame(pivots.todense(), index=small_train.order_id.unique(), columns=product_cols) frequent_itemsets = fpgrowth(truth_table, min_support=5 / len(truth_table), use_colnames=True) rules = association_rules(frequent_itemsets, metric='confidence', min_threshold=0.8) rules_ante_cons = rules[['antecedents', 'consequents']] baskets = small_train.groupby('order_id')['product_id'].apply(frozenset) baskets.name = 'basket' recommendations = train_orders.join(baskets, on='order_id') recommendations['recommendations'] = [frozenset() for _ in range(len(recommendations))] for idx, antecedent in enumerate(rules_ante_cons['antecedents']): lookup = (antecedent <= recommendations.basket, 'recommendations') recommendations.loc[lookup] = recommendations.loc[lookup].apply(frozenset.union, args=(rules_ante_cons.loc[idx, 'consequents'],)) recommendations.loc[:, 'recommendations'] = recommendations.recommendations - recommendations.basket non_empty_recs = recommendations[recommendations.recommendations.apply(bool)] print('1 out of approx.', round(1 / (len(non_empty_recs) / len(recommendations))), 'transactions will result in a recommendation being suggested to a customer.') def map_products(codes): if isinstance(codes, pd.Series): return codes.apply(map_products) return frozenset(map(products.get, codes)) products = dataDict['products'] products = products.set_index('product_id')['product_name'].to_dict() non_empty_recs.loc[:, ['basket', 'recommendations']] = non_empty_recs[['basket', 'recommendations']].apply(map_products) display(non_empty_recs)
code
74041294/cell_26
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from mlxtend.frequent_patterns import fpgrowth, association_rules # MBA import matplotlib.pyplot as plt import numpy as np import os import pandas as pd def preDot(text): return text.rsplit('.', 1)[0] np.random.seed(73) pd.options.mode.chained_assignment = None dataDict = {} for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: with ZipFile(os.path.join(dirname, filename), 'r') as zipf: unzipped_fn = preDot(filename) with zipf.open(unzipped_fn) as f: dataDict[preDot(unzipped_fn)] = pd.read_csv(f) train_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'train'].drop('eval_set', axis=1) prior_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'prior'].drop('eval_set', axis=1) test_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'test'].drop('eval_set', axis=1) small_train = dataDict['order_products__train'][['order_id', 'product_id']] small_train_split = (small_train[:461543], small_train[461543:461543 * 2 - 1], small_train[461543 * 2 - 1:]) pivots = [] for df in small_train_split: pvt = ~df.pivot(index='order_id', columns='product_id', values='product_id').isna() pivots.append(pvt.astype(pd.SparseDtype(bool))) del pvt product_cols = sorted(small_train.product_id.unique()) for i in range(len(pivots)): pivots[i] = pivots[i].reindex(columns=product_cols, fill_value=False).astype(pd.SparseDtype(bool)) pivots[i] = sparse.csr_matrix(pivots[i]) pivots = sparse.vstack(pivots) truth_table = pd.DataFrame(pivots.todense(), index=small_train.order_id.unique(), columns=product_cols) frequent_itemsets = fpgrowth(truth_table, min_support=5 / len(truth_table), use_colnames=True) rules = association_rules(frequent_itemsets, metric='confidence', min_threshold=0.8) rules_ante_cons = rules[['antecedents', 'consequents']] baskets = small_train.groupby('order_id')['product_id'].apply(frozenset) baskets.name = 'basket' recommendations = train_orders.join(baskets, on='order_id') recommendations['recommendations'] = [frozenset() for _ in range(len(recommendations))] for idx, antecedent in enumerate(rules_ante_cons['antecedents']): lookup = (antecedent <= recommendations.basket, 'recommendations') recommendations.loc[lookup] = recommendations.loc[lookup].apply(frozenset.union, args=(rules_ante_cons.loc[idx, 'consequents'],)) recommendations.loc[:, 'recommendations'] = recommendations.recommendations - recommendations.basket non_empty_recs = recommendations[recommendations.recommendations.apply(bool)] def map_products(codes): if isinstance(codes, pd.Series): return codes.apply(map_products) return frozenset(map(products.get, codes)) products = dataDict['products'] products = products.set_index('product_id')['product_name'].to_dict() non_empty_recs.loc[:, ['basket', 'recommendations']] = non_empty_recs[['basket', 'recommendations']].apply(map_products) def mba_diagram(sample_basket, sample_recommendation): import matplotlib.pyplot as plt def get_text_box_coords(txt): we = plt.Text.get_window_extent(txt, renderer=fig.canvas.get_renderer()) return ax.transAxes.inverted().transform(we) def get_rightmost_vmid(box): return box[1][0], (box[0][1] + box[1][1]) / 2 fig, ax = plt.subplots(figsize=(20,10)) title = ax.set_title("An illustration of a recommendation system for a sample customer basket\n(basket ← suggestion)", fontsize=18) ax.axis('off') basket_txt = ax.text(.05, .95, sample_basket, ha='left', va='top', wrap=True,size=12, bbox=dict(boxstyle='round,pad=1', fc='w', ec='lightblue')) basket_rightmost, basket_vmid = get_rightmost_vmid(get_text_box_coords(basket_txt)) arrow_txt = ax.text( basket_rightmost*1.4, basket_vmid, "Add", ha="center", va="center", size=35, bbox=dict(boxstyle="larrow,pad=0.6", fc="lightgreen", ec="g", lw=2)) arrow_rightmost, arrow_vmid = get_rightmost_vmid(get_text_box_coords(arrow_txt)) recommendation_txt = ax.text(arrow_rightmost * 1.14, arrow_vmid, sample_recommendation, ha='left', va='top', wrap=True, fontsize=25, bbox=dict(boxstyle='round,pad=1', fc='w', ec='r')) recommendation_txt_pos = recommendation_txt.get_position() recommendation_txt.set_position(( recommendation_txt_pos[0], recommendation_txt_pos[1] + (get_text_box_coords(recommendation_txt)[1][1]-get_text_box_coords(recommendation_txt)[0][1]) / 2 )) sample_index = np.random.randint(len(non_empty_recs)) sample_basket = '\n'.join(non_empty_recs.iloc[sample_index].loc['basket']) sample_recommendation = '\n'.join(non_empty_recs.iloc[sample_index].loc['recommendations']) mba_diagram(sample_basket, sample_recommendation)
code
74041294/cell_16
[ "text_html_output_1.png" ]
from mlxtend.frequent_patterns import fpgrowth, association_rules # MBA import numpy as np import os import pandas as pd def preDot(text): return text.rsplit('.', 1)[0] np.random.seed(73) pd.options.mode.chained_assignment = None dataDict = {} for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: with ZipFile(os.path.join(dirname, filename), 'r') as zipf: unzipped_fn = preDot(filename) with zipf.open(unzipped_fn) as f: dataDict[preDot(unzipped_fn)] = pd.read_csv(f) train_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'train'].drop('eval_set', axis=1) prior_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'prior'].drop('eval_set', axis=1) test_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'test'].drop('eval_set', axis=1) small_train = dataDict['order_products__train'][['order_id', 'product_id']] small_train_split = (small_train[:461543], small_train[461543:461543 * 2 - 1], small_train[461543 * 2 - 1:]) pivots = [] for df in small_train_split: pvt = ~df.pivot(index='order_id', columns='product_id', values='product_id').isna() pivots.append(pvt.astype(pd.SparseDtype(bool))) del pvt product_cols = sorted(small_train.product_id.unique()) for i in range(len(pivots)): pivots[i] = pivots[i].reindex(columns=product_cols, fill_value=False).astype(pd.SparseDtype(bool)) pivots[i] = sparse.csr_matrix(pivots[i]) pivots = sparse.vstack(pivots) truth_table = pd.DataFrame(pivots.todense(), index=small_train.order_id.unique(), columns=product_cols) frequent_itemsets = fpgrowth(truth_table, min_support=5 / len(truth_table), use_colnames=True) rules = association_rules(frequent_itemsets, metric='confidence', min_threshold=0.8) print('μ number of consequents:', rules['consequents'].apply(len).mean()) rules
code
74041294/cell_3
[ "image_output_1.png" ]
import numpy as np import os import pandas as pd def preDot(text): return text.rsplit('.', 1)[0] np.random.seed(73) pd.options.mode.chained_assignment = None dataDict = {} for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) with ZipFile(os.path.join(dirname, filename), 'r') as zipf: unzipped_fn = preDot(filename) with zipf.open(unzipped_fn) as f: dataDict[preDot(unzipped_fn)] = pd.read_csv(f) train_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'train'].drop('eval_set', axis=1) prior_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'prior'].drop('eval_set', axis=1) test_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'test'].drop('eval_set', axis=1)
code
74041294/cell_12
[ "text_plain_output_1.png" ]
from mlxtend.frequent_patterns import fpgrowth, association_rules # MBA import numpy as np import os import pandas as pd def preDot(text): return text.rsplit('.', 1)[0] np.random.seed(73) pd.options.mode.chained_assignment = None dataDict = {} for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: with ZipFile(os.path.join(dirname, filename), 'r') as zipf: unzipped_fn = preDot(filename) with zipf.open(unzipped_fn) as f: dataDict[preDot(unzipped_fn)] = pd.read_csv(f) train_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'train'].drop('eval_set', axis=1) prior_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'prior'].drop('eval_set', axis=1) test_orders = dataDict['orders'][dataDict['orders']['eval_set'] == 'test'].drop('eval_set', axis=1) small_train = dataDict['order_products__train'][['order_id', 'product_id']] small_train_split = (small_train[:461543], small_train[461543:461543 * 2 - 1], small_train[461543 * 2 - 1:]) pivots = [] for df in small_train_split: pvt = ~df.pivot(index='order_id', columns='product_id', values='product_id').isna() pivots.append(pvt.astype(pd.SparseDtype(bool))) del pvt product_cols = sorted(small_train.product_id.unique()) for i in range(len(pivots)): pivots[i] = pivots[i].reindex(columns=product_cols, fill_value=False).astype(pd.SparseDtype(bool)) pivots[i] = sparse.csr_matrix(pivots[i]) pivots = sparse.vstack(pivots) truth_table = pd.DataFrame(pivots.todense(), index=small_train.order_id.unique(), columns=product_cols) frequent_itemsets = fpgrowth(truth_table, min_support=5 / len(truth_table), use_colnames=True) frequent_itemsets
code
106206626/cell_21
[ "text_html_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) x_train = train.drop('register__sales_dollar_amt_this_hour', axis=1) (x_train.shape, test.shape)
code
106206626/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month
code
106206626/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') print(train['register__sales_dollar_amt_this_hour'].skew())
code
106206626/cell_23
[ "text_html_output_1.png", "image_output_1.png" ]
from flaml import AutoML from flaml import AutoML import numpy as np import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) x_train = train.drop('register__sales_dollar_amt_this_hour', axis=1) (x_train.shape, test.shape) from flaml import AutoML automl = AutoML() automl.fit(x_train, y_train, task='regression', metric='r2', time_budget=180, n_splits=5, ensemble=False, estimator_list=['lgbm'])
code
106206626/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) print(train.shape, test.shape) train.info()
code
106206626/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) x_train = train.drop('register__sales_dollar_amt_this_hour', axis=1) x_train.info()
code
106206626/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib import colors import xgboost as xgb import os import sys from datetime import datetime, timedelta from time import time from uuid import uuid4 from scipy.ndimage import convolve1d from sklearn.metrics import make_scorer, r2_score from sklearn.model_selection import cross_validate import warnings warnings.filterwarnings(action='ignore', category=UserWarning) !pip install flaml from flaml import AutoML
code
106206626/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import seaborn as sns train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) import seaborn as sns def target_mean(data, feature, target, decimal=2): return data.groupby(feature).agg({target: 'mean'}).sort_values(by=[target], ascending=[False]).round(decimal) target_mean(train, 'store__type_code', 'register__sales_dollar_amt_this_hour')
code
106206626/cell_16
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import seaborn as sns train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) import seaborn as sns def target_mean(data, feature, target, decimal=2): return data.groupby(feature).agg({target: 'mean'}).sort_values(by=[target], ascending=[False]).round(decimal) import seaborn as sns target_mean(train, 'hour_of_day', 'register__sales_dollar_amt_this_hour')
code
106206626/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red')
code
106206626/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import seaborn as sns train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) import seaborn as sns def target_mean(data, feature, target, decimal=2): return data.groupby(feature).agg({target: 'mean'}).sort_values(by=[target], ascending=[False]).round(decimal) target_mean(train, 'register__payment_types_accepted', 'register__sales_dollar_amt_this_hour')
code
106206626/cell_24
[ "text_html_output_1.png", "image_output_1.png" ]
from flaml import AutoML from flaml import AutoML import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) train['register__payment_types_accepted'] = np.where(train['register__payment_types_accepted'] != 'Cash+Credit+Check', 0, 1) test['register__payment_types_accepted'] = np.where(test['register__payment_types_accepted'] != 'Cash+Credit+Check', 0, 1) x_train = train.drop('register__sales_dollar_amt_this_hour', axis=1) (x_train.shape, test.shape) from flaml import AutoML automl = AutoML() automl.fit(x_train, y_train, task='regression', metric='r2', time_budget=180, n_splits=5, ensemble=False, estimator_list=['lgbm']) print('Best r2 on validation data: {0:.4g}'.format(1 - automl.best_loss)) import numpy as np feature_importance = automl.feature_importances_ sorted_idx = np.argsort(feature_importance)[-25:] import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 6)) plt.barh(range(len(sorted_idx)), feature_importance[sorted_idx], align='center') plt.yticks(range(len(sorted_idx)), np.array(x_train.columns)[sorted_idx]) plt.title('Feature Importance')
code
106206626/cell_10
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/juniper-networks-global-ai-challenge/training_dataset.csv') test = pd.read_csv('../input/juniper-networks-global-ai-challenge/test_dataset.csv') train.register__sales_dollar_amt_this_hour.plot.density(color='red') y_train = train['register__sales_dollar_amt_this_hour'] train = train.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2', 'Unnamed: 0'], axis=1) test = test.drop(['region__peak_sales_dollar_amt_per_hour_v2', 'region__peak_returns_dollar_amt_per_hour_v2'], axis=1) train['observation_timestamp'] = pd.to_datetime(train['observation_timestamp']) test['observation_timestamp'] = pd.to_datetime(test['observation_timestamp']) pd.to_datetime(train['observation_timestamp']).dt.month import datetime as dt train['weekday'] = pd.to_datetime(train['observation_timestamp']).dt.weekday train['weekend'] = np.where(train['weekday'] < 5, 0, 1) test['weekday'] = pd.to_datetime(test['observation_timestamp']).dt.weekday test['weekend'] = np.where(test['weekday'] < 5, 0, 1) train['month'] = pd.to_datetime(train['observation_timestamp']).dt.month test['month'] = pd.to_datetime(train['observation_timestamp']).dt.month train = train.drop(['observation_id', 'observation_timestamp'], axis=1) test = test.drop(['observation_id', 'observation_timestamp'], axis=1) print(train.shape, test.shape)
code
17131450/cell_4
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structures = pd.read_csv('../input/structures.csv') structures = structures.head(n=100) structures.head(n=10)
code
17131450/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.metrics import pairwise_distances from sklearn.neighbors import NearestNeighbors import os import warnings print(os.listdir('../input'))
code
17131450/cell_8
[ "text_html_output_1.png", "text_plain_output_1.png" ]
warnings.filterwarnings('ignore') structures['nearestn'] = structures.groupby('molecule_name')['x'].transform(nn_features) structures.head(n=10)
code
17131450/cell_10
[ "text_plain_output_1.png" ]
structures['nn_1'] = structures['nearestn'].apply(lambda x: x[0]) structures['nn_2'] = structures['nearestn'].apply(lambda x: x[1]) structures['nn_3'] = structures['nearestn'].apply(lambda x: x[2]) structures['nn_4'] = structures['nearestn'].apply(lambda x: x[3]) structures['nn_1_dist'] = structures['nearestn'].apply(lambda x: x[4]) structures['nn_2_dist'] = structures['nearestn'].apply(lambda x: x[5]) structures['nn_3_dist'] = structures['nearestn'].apply(lambda x: x[6]) structures['nn_4_dist'] = structures['nearestn'].apply(lambda x: x[7]) structures['nn_dx_1'] = structures['nearestn'].apply(lambda x: x[8]) - structures['x'] structures['nn_dx_2'] = structures['nearestn'].apply(lambda x: x[9]) - structures['x'] structures['nn_dx_3'] = structures['nearestn'].apply(lambda x: x[10]) - structures['x'] structures['nn_dx_4'] = structures['nearestn'].apply(lambda x: x[11]) - structures['x'] structures['nn_dy_1'] = structures['nearestn'].apply(lambda x: x[12]) - structures['y'] structures['nn_dy_2'] = structures['nearestn'].apply(lambda x: x[13]) - structures['y'] structures['nn_dy_3'] = structures['nearestn'].apply(lambda x: x[14]) - structures['y'] structures['nn_dy_4'] = structures['nearestn'].apply(lambda x: x[15]) - structures['y'] structures['nn_dz_1'] = structures['nearestn'].apply(lambda x: x[16]) - structures['z'] structures['nn_dz_2'] = structures['nearestn'].apply(lambda x: x[17]) - structures['z'] structures['nn_dz_3'] = structures['nearestn'].apply(lambda x: x[18]) - structures['z'] structures['nn_dz_4'] = structures['nearestn'].apply(lambda x: x[19]) - structures['z'] structures['pca_x'] = structures['nearestn'].apply(lambda x: x[20]) structures['pca_y'] = structures['nearestn'].apply(lambda x: x[21]) structures = structures.drop(columns='nearestn', axis=0) structures.head(n=10)
code
16154605/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import torch.nn as nn import torch.nn as nn import torchvision.models as models model_v = models.resnet18() model_c = models.resnet18() model_c.fc = nn.Linear(512, 10, bias=True) model_v.fc = nn.Linear(512, 10, bias=True) print(model_c)
code
16154605/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from torch.utils.data import DataLoader, Dataset, random_split import os import os import torch import torch import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import pandas as pd import os import os from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torch.utils.data import DataLoader, Dataset, random_split import torchvision.transforms as transforms class VowelConsonantDataset(Dataset): def __init__(self, file_path, train=True, transform=None): self.transform = transform self.file_path = file_path self.train = train self.file_names = [file for _, _, files in os.walk(self.file_path) for file in files] self.len = len(self.file_names) if self.train: self.classes_mapping = self.get_classes() def __len__(self): return len(self.file_names) def __getitem__(self, index): file_name = self.file_names[index] image_data = self.pil_loader(self.file_path + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.train: file_name_splitted = file_name.split('_') Y1 = self.classes_mapping[file_name_splitted[0]] Y2 = self.classes_mapping[file_name_splitted[1]] z1, z2 = (torch.zeros(10), torch.zeros(10)) z1[Y1 - 10], z2[Y2] = (1, 1) label = torch.stack([z1, z2]) return (image_data, label) else: return (image_data, file_name) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def get_classes(self): classes = [] for name in self.file_names: name_splitted = name.split('_') classes.extend([name_splitted[0], name_splitted[1]]) classes = list(set(classes)) classes_mapping = {} for i, cl in enumerate(sorted(classes)): classes_mapping[cl] = i return classes_mapping import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import matplotlib.pyplot as plt from torchvision import datasets import torchvision.transforms as transforms import numpy as np import pandas as pd train_on_gpu = torch.cuda.is_available() transform = transforms.Compose([transforms.ToTensor()]) full_data = VowelConsonantDataset('../input/train/train', train=True, transform=transform) train_size = int(0.9 * len(full_data)) test_size = len(full_data) - train_size train_data, validation_data = random_split(full_data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=60, shuffle=True) full_data.get_classes()
code
16154605/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from torch.utils.data import DataLoader, Dataset, random_split import os import os import torch import torch import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import pandas as pd import os import os from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torch.utils.data import DataLoader, Dataset, random_split import torchvision.transforms as transforms class VowelConsonantDataset(Dataset): def __init__(self, file_path, train=True, transform=None): self.transform = transform self.file_path = file_path self.train = train self.file_names = [file for _, _, files in os.walk(self.file_path) for file in files] self.len = len(self.file_names) if self.train: self.classes_mapping = self.get_classes() def __len__(self): return len(self.file_names) def __getitem__(self, index): file_name = self.file_names[index] image_data = self.pil_loader(self.file_path + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.train: file_name_splitted = file_name.split('_') Y1 = self.classes_mapping[file_name_splitted[0]] Y2 = self.classes_mapping[file_name_splitted[1]] z1, z2 = (torch.zeros(10), torch.zeros(10)) z1[Y1 - 10], z2[Y2] = (1, 1) label = torch.stack([z1, z2]) return (image_data, label) else: return (image_data, file_name) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def get_classes(self): classes = [] for name in self.file_names: name_splitted = name.split('_') classes.extend([name_splitted[0], name_splitted[1]]) classes = list(set(classes)) classes_mapping = {} for i, cl in enumerate(sorted(classes)): classes_mapping[cl] = i return classes_mapping import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import matplotlib.pyplot as plt from torchvision import datasets import torchvision.transforms as transforms import numpy as np import pandas as pd train_on_gpu = torch.cuda.is_available() transform = transforms.Compose([transforms.ToTensor()]) full_data = VowelConsonantDataset('../input/train/train', train=True, transform=transform) train_size = int(0.9 * len(full_data)) test_size = len(full_data) - train_size train_data, validation_data = random_split(full_data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=60, shuffle=True) len(train_loader)
code
16154605/cell_19
[ "text_plain_output_5.png", "text_plain_output_15.png", "text_plain_output_9.png", "text_plain_output_20.png", "text_plain_output_4.png", "text_plain_output_13.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_18.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_16.png", "text_plain_output_8.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_plain_output_19.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png" ]
from PIL import Image from torch.utils.data import DataLoader, Dataset, random_split from tqdm import tqdm_notebook import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import os import torch import torch import torch.nn as nn import torch.nn as nn import torch.optim as optim import torch.optim as optim import torchvision.models as models import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import pandas as pd import os import os from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torch.utils.data import DataLoader, Dataset, random_split import torchvision.transforms as transforms class VowelConsonantDataset(Dataset): def __init__(self, file_path, train=True, transform=None): self.transform = transform self.file_path = file_path self.train = train self.file_names = [file for _, _, files in os.walk(self.file_path) for file in files] self.len = len(self.file_names) if self.train: self.classes_mapping = self.get_classes() def __len__(self): return len(self.file_names) def __getitem__(self, index): file_name = self.file_names[index] image_data = self.pil_loader(self.file_path + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.train: file_name_splitted = file_name.split('_') Y1 = self.classes_mapping[file_name_splitted[0]] Y2 = self.classes_mapping[file_name_splitted[1]] z1, z2 = (torch.zeros(10), torch.zeros(10)) z1[Y1 - 10], z2[Y2] = (1, 1) label = torch.stack([z1, z2]) return (image_data, label) else: return (image_data, file_name) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def get_classes(self): classes = [] for name in self.file_names: name_splitted = name.split('_') classes.extend([name_splitted[0], name_splitted[1]]) classes = list(set(classes)) classes_mapping = {} for i, cl in enumerate(sorted(classes)): classes_mapping[cl] = i return classes_mapping import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import matplotlib.pyplot as plt from torchvision import datasets import torchvision.transforms as transforms import numpy as np import pandas as pd train_on_gpu = torch.cuda.is_available() transform = transforms.Compose([transforms.ToTensor()]) full_data = VowelConsonantDataset('../input/train/train', train=True, transform=transform) train_size = int(0.9 * len(full_data)) test_size = len(full_data) - train_size train_data, validation_data = random_split(full_data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=60, shuffle=True) test_data = VowelConsonantDataset('../input/test/test', train=False, transform=transform) test_loader = torch.utils.data.DataLoader(test_data, batch_size=60, shuffle=False) for data in train_loader: img, lab = data im = np.transpose(img[0].numpy(), (1, 2, 0)) im = np.squeeze(im) break model_v = models.resnet18() model_c = models.resnet18() model_c.fc = nn.Linear(512, 10, bias=True) model_v.fc = nn.Linear(512, 10, bias=True) opt_v = optim.Adam(model_v.parameters()) opt_c = optim.Adam(model_c.parameters()) loss_fn_v = nn.CrossEntropyLoss() loss_fn_c = nn.CrossEntropyLoss() max_epochs = 20 loss_arr = [] st = 'cuda:0' model_v.to(st) model_c.to(st) for i in tqdm_notebook(range(max_epochs), total=max_epochs, unit='epochs'): for data in tqdm_notebook(train_loader, total=len(train_loader), unit='batch'): img, lab = data img, lab = (img.to(st), lab.to(st)) out_v = model_v(img) out_c = model_c(img) opt_v.zero_grad() opt_c.zero_grad() val, ind = torch.max(lab[:, 0, :], 1) val, ind1 = torch.max(lab[:, 1, :], 1) lab_v = ind lab_c = ind1 loss = loss_fn_v(out_v, lab_v) + loss_fn_c(out_c, lab_c) loss.backward() opt_v.step() opt_c.step() del img, lab loss_arr.append(loss) torch.max(lab[:, 0, :]).int() def evaluation(dataloader, model): total = 0 v = 0 c = 0 for data in tqdm_notebook(dataloader, total=len(dataloader), unit='batch'): img, lab = data _, out_v = torch.max(model.VowForward(img), 1) _, out_c = torch.max(model.ConForward(img), 1) _, lab1 = torch.max(lab[:, 0, :], 1) _, lab2 = torch.max(lab[:, 1, :], 1) total += 64 v += (out_v == lab1).sum().item() c += (out_c == lab2).sum().item() print(total, v, c) print(v / total, c / total) evaluation(train_loader, model)
code
16154605/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16154605/cell_18
[ "text_plain_output_1.png" ]
from PIL import Image from torch.utils.data import DataLoader, Dataset, random_split from tqdm import tqdm_notebook import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import os import torch import torch import torch.nn as nn import torch.nn as nn import torch.optim as optim import torch.optim as optim import torchvision.models as models import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import pandas as pd import os import os from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torch.utils.data import DataLoader, Dataset, random_split import torchvision.transforms as transforms class VowelConsonantDataset(Dataset): def __init__(self, file_path, train=True, transform=None): self.transform = transform self.file_path = file_path self.train = train self.file_names = [file for _, _, files in os.walk(self.file_path) for file in files] self.len = len(self.file_names) if self.train: self.classes_mapping = self.get_classes() def __len__(self): return len(self.file_names) def __getitem__(self, index): file_name = self.file_names[index] image_data = self.pil_loader(self.file_path + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.train: file_name_splitted = file_name.split('_') Y1 = self.classes_mapping[file_name_splitted[0]] Y2 = self.classes_mapping[file_name_splitted[1]] z1, z2 = (torch.zeros(10), torch.zeros(10)) z1[Y1 - 10], z2[Y2] = (1, 1) label = torch.stack([z1, z2]) return (image_data, label) else: return (image_data, file_name) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def get_classes(self): classes = [] for name in self.file_names: name_splitted = name.split('_') classes.extend([name_splitted[0], name_splitted[1]]) classes = list(set(classes)) classes_mapping = {} for i, cl in enumerate(sorted(classes)): classes_mapping[cl] = i return classes_mapping import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import matplotlib.pyplot as plt from torchvision import datasets import torchvision.transforms as transforms import numpy as np import pandas as pd train_on_gpu = torch.cuda.is_available() transform = transforms.Compose([transforms.ToTensor()]) full_data = VowelConsonantDataset('../input/train/train', train=True, transform=transform) train_size = int(0.9 * len(full_data)) test_size = len(full_data) - train_size train_data, validation_data = random_split(full_data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=60, shuffle=True) test_data = VowelConsonantDataset('../input/test/test', train=False, transform=transform) test_loader = torch.utils.data.DataLoader(test_data, batch_size=60, shuffle=False) for data in train_loader: img, lab = data im = np.transpose(img[0].numpy(), (1, 2, 0)) im = np.squeeze(im) break model_v = models.resnet18() model_c = models.resnet18() model_c.fc = nn.Linear(512, 10, bias=True) model_v.fc = nn.Linear(512, 10, bias=True) opt_v = optim.Adam(model_v.parameters()) opt_c = optim.Adam(model_c.parameters()) loss_fn_v = nn.CrossEntropyLoss() loss_fn_c = nn.CrossEntropyLoss() max_epochs = 20 loss_arr = [] st = 'cuda:0' model_v.to(st) model_c.to(st) for i in tqdm_notebook(range(max_epochs), total=max_epochs, unit='epochs'): for data in tqdm_notebook(train_loader, total=len(train_loader), unit='batch'): img, lab = data img, lab = (img.to(st), lab.to(st)) out_v = model_v(img) out_c = model_c(img) opt_v.zero_grad() opt_c.zero_grad() val, ind = torch.max(lab[:, 0, :], 1) val, ind1 = torch.max(lab[:, 1, :], 1) lab_v = ind lab_c = ind1 loss = loss_fn_v(out_v, lab_v) + loss_fn_c(out_c, lab_c) loss.backward() opt_v.step() opt_c.step() del img, lab loss_arr.append(loss) torch.max(lab[:, 0, :]).int()
code
16154605/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from torch.utils.data import DataLoader, Dataset, random_split import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import os import torch import torch import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import pandas as pd import os import os from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torch.utils.data import DataLoader, Dataset, random_split import torchvision.transforms as transforms class VowelConsonantDataset(Dataset): def __init__(self, file_path, train=True, transform=None): self.transform = transform self.file_path = file_path self.train = train self.file_names = [file for _, _, files in os.walk(self.file_path) for file in files] self.len = len(self.file_names) if self.train: self.classes_mapping = self.get_classes() def __len__(self): return len(self.file_names) def __getitem__(self, index): file_name = self.file_names[index] image_data = self.pil_loader(self.file_path + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.train: file_name_splitted = file_name.split('_') Y1 = self.classes_mapping[file_name_splitted[0]] Y2 = self.classes_mapping[file_name_splitted[1]] z1, z2 = (torch.zeros(10), torch.zeros(10)) z1[Y1 - 10], z2[Y2] = (1, 1) label = torch.stack([z1, z2]) return (image_data, label) else: return (image_data, file_name) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def get_classes(self): classes = [] for name in self.file_names: name_splitted = name.split('_') classes.extend([name_splitted[0], name_splitted[1]]) classes = list(set(classes)) classes_mapping = {} for i, cl in enumerate(sorted(classes)): classes_mapping[cl] = i return classes_mapping import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import matplotlib.pyplot as plt from torchvision import datasets import torchvision.transforms as transforms import numpy as np import pandas as pd train_on_gpu = torch.cuda.is_available() transform = transforms.Compose([transforms.ToTensor()]) full_data = VowelConsonantDataset('../input/train/train', train=True, transform=transform) train_size = int(0.9 * len(full_data)) test_size = len(full_data) - train_size train_data, validation_data = random_split(full_data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=60, shuffle=True) for data in train_loader: img, lab = data print(img.shape) im = np.transpose(img[0].numpy(), (1, 2, 0)) print(im.shape) im = np.squeeze(im) print(im.shape) plt.imshow(im) break
code
16154605/cell_15
[ "text_plain_output_1.png" ]
from PIL import Image from torch.utils.data import DataLoader, Dataset, random_split import os import os import torch import torch import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import pandas as pd import os import os from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torch.utils.data import DataLoader, Dataset, random_split import torchvision.transforms as transforms class VowelConsonantDataset(Dataset): def __init__(self, file_path, train=True, transform=None): self.transform = transform self.file_path = file_path self.train = train self.file_names = [file for _, _, files in os.walk(self.file_path) for file in files] self.len = len(self.file_names) if self.train: self.classes_mapping = self.get_classes() def __len__(self): return len(self.file_names) def __getitem__(self, index): file_name = self.file_names[index] image_data = self.pil_loader(self.file_path + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.train: file_name_splitted = file_name.split('_') Y1 = self.classes_mapping[file_name_splitted[0]] Y2 = self.classes_mapping[file_name_splitted[1]] z1, z2 = (torch.zeros(10), torch.zeros(10)) z1[Y1 - 10], z2[Y2] = (1, 1) label = torch.stack([z1, z2]) return (image_data, label) else: return (image_data, file_name) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def get_classes(self): classes = [] for name in self.file_names: name_splitted = name.split('_') classes.extend([name_splitted[0], name_splitted[1]]) classes = list(set(classes)) classes_mapping = {} for i, cl in enumerate(sorted(classes)): classes_mapping[cl] = i return classes_mapping import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import matplotlib.pyplot as plt from torchvision import datasets import torchvision.transforms as transforms import numpy as np import pandas as pd train_on_gpu = torch.cuda.is_available() transform = transforms.Compose([transforms.ToTensor()]) full_data = VowelConsonantDataset('../input/train/train', train=True, transform=transform) train_size = int(0.9 * len(full_data)) test_size = len(full_data) - train_size train_data, validation_data = random_split(full_data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=60, shuffle=True) test_data = VowelConsonantDataset('../input/test/test', train=False, transform=transform) test_loader = torch.utils.data.DataLoader(test_data, batch_size=60, shuffle=False) print(lab[:, 0, :], torch.max(lab[:, 0, :], 1))
code
16154605/cell_16
[ "text_plain_output_1.png" ]
from PIL import Image from torch.utils.data import DataLoader, Dataset, random_split from tqdm import tqdm_notebook import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import os import torch import torch import torch.nn as nn import torch.nn as nn import torch.optim as optim import torch.optim as optim import torchvision.models as models import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import pandas as pd import os import os from PIL import Image import matplotlib.pyplot as plt import torch import torchvision from torch.utils.data import DataLoader, Dataset, random_split import torchvision.transforms as transforms class VowelConsonantDataset(Dataset): def __init__(self, file_path, train=True, transform=None): self.transform = transform self.file_path = file_path self.train = train self.file_names = [file for _, _, files in os.walk(self.file_path) for file in files] self.len = len(self.file_names) if self.train: self.classes_mapping = self.get_classes() def __len__(self): return len(self.file_names) def __getitem__(self, index): file_name = self.file_names[index] image_data = self.pil_loader(self.file_path + '/' + file_name) if self.transform: image_data = self.transform(image_data) if self.train: file_name_splitted = file_name.split('_') Y1 = self.classes_mapping[file_name_splitted[0]] Y2 = self.classes_mapping[file_name_splitted[1]] z1, z2 = (torch.zeros(10), torch.zeros(10)) z1[Y1 - 10], z2[Y2] = (1, 1) label = torch.stack([z1, z2]) return (image_data, label) else: return (image_data, file_name) def pil_loader(self, path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def get_classes(self): classes = [] for name in self.file_names: name_splitted = name.split('_') classes.extend([name_splitted[0], name_splitted[1]]) classes = list(set(classes)) classes_mapping = {} for i, cl in enumerate(sorted(classes)): classes_mapping[cl] = i return classes_mapping import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import matplotlib.pyplot as plt from torchvision import datasets import torchvision.transforms as transforms import numpy as np import pandas as pd train_on_gpu = torch.cuda.is_available() transform = transforms.Compose([transforms.ToTensor()]) full_data = VowelConsonantDataset('../input/train/train', train=True, transform=transform) train_size = int(0.9 * len(full_data)) test_size = len(full_data) - train_size train_data, validation_data = random_split(full_data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True) validation_loader = torch.utils.data.DataLoader(validation_data, batch_size=60, shuffle=True) test_data = VowelConsonantDataset('../input/test/test', train=False, transform=transform) test_loader = torch.utils.data.DataLoader(test_data, batch_size=60, shuffle=False) for data in train_loader: img, lab = data im = np.transpose(img[0].numpy(), (1, 2, 0)) im = np.squeeze(im) break model_v = models.resnet18() model_c = models.resnet18() model_c.fc = nn.Linear(512, 10, bias=True) model_v.fc = nn.Linear(512, 10, bias=True) opt_v = optim.Adam(model_v.parameters()) opt_c = optim.Adam(model_c.parameters()) loss_fn_v = nn.CrossEntropyLoss() loss_fn_c = nn.CrossEntropyLoss() max_epochs = 20 loss_arr = [] st = 'cuda:0' model_v.to(st) model_c.to(st) for i in tqdm_notebook(range(max_epochs), total=max_epochs, unit='epochs'): for data in tqdm_notebook(train_loader, total=len(train_loader), unit='batch'): img, lab = data img, lab = (img.to(st), lab.to(st)) out_v = model_v(img) out_c = model_c(img) opt_v.zero_grad() opt_c.zero_grad() val, ind = torch.max(lab[:, 0, :], 1) val, ind1 = torch.max(lab[:, 1, :], 1) lab_v = ind lab_c = ind1 loss = loss_fn_v(out_v, lab_v) + loss_fn_c(out_c, lab_c) loss.backward() opt_v.step() opt_c.step() del img, lab print(loss) loss_arr.append(loss)
code
16154605/cell_17
[ "text_plain_output_1.png" ]
print(net)
code
16154605/cell_12
[ "text_plain_output_1.png" ]
import torchvision.models as models model_v = models.resnet18() model_c = models.resnet18() print(model_c)
code
73059749/cell_30
[ "image_output_1.png" ]
from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping checkpoint_callback = ModelCheckpoint(monitor='val_loss', filename='model-{epoch:02d}-{val_loss:.2f}', save_top_k=1, mode='min') early_stop_callback = EarlyStopping(monitor='val_loss', patience=3, verbose=False, mode='min') print(f'Best Model: {checkpoint_callback.best_model_path}') inference_model = CountModel.load_from_checkpoint(checkpoint_callback.best_model_path)
code
73059749/cell_44
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping from sklearn.model_selection import train_test_split from torch import nn from torch.utils.data import Dataset, DataLoader, random_split from torchmetrics.functional import accuracy, auroc from torchmetrics.functional import mean_absolute_error, mean_squared_error from torchvision import transforms from tqdm import tqdm import pandas as pd import pytorch_lightning as pl import torch import torch.nn.functional as F RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE) class CountBoxes(Dataset): def __init__(self, df, transform=None): super().__init__() self.df = df self.transform = transform self.num_workers = 2 def __len__(self): return self.df.shape[0] def __getitem__(self, index): img_id, label = (self.df.iloc[index]['image_id'], self.df.iloc[index]['count']) img_path = f'../input/count-the-blue-boxes/train/train/{label}/{label}_{img_id}.png' image = Image.open(img_path) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) return (image, label) class CountBoxesDataModule(pl.LightningDataModule): def __init__(self, path, batch_size=64, num_workers=4): super().__init__() self.path = Path(path) self.batch_size = batch_size self.num_workers = num_workers self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def prepare_data(self): df = pd.read_csv(self.path / 'train.csv') df = df.loc[df['count'] < MAX_HOURS] X_train, X_valid, y_train, y_valid = train_test_split(df['image_id'], df['count'], stratify=df['count'], test_size=0.2) train_df = pd.concat([X_train, y_train], axis=1) valid_df = pd.concat([X_valid, y_valid], axis=1) train_df.to_pickle('train_df.pkl') valid_df.to_pickle('valid_df.pkl') def setup(self): self.train_df = pd.read_pickle('train_df.pkl') self.valid_df = pd.read_pickle('valid_df.pkl') self.train_transform = self.transform self.valid_transform = self.transform def train_dataloader(self): train_dataset = CountBoxes(df=self.train_df, transform=self.train_transform) return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): valid_dataset = CountBoxes(df=self.valid_df, transform=self.valid_transform) return DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=True) class CountModel(pl.LightningModule): def __init__(self, input_shape, num_classes, learning_rate=0.0002): super().__init__() self.save_hyperparameters() self.num_classes = num_classes self.learning_rate = learning_rate self.conv1 = nn.Conv2d(3, 16, 5, 1) self.conv2 = nn.Conv2d(16, 32, 5, 1) self.conv3 = nn.Conv2d(32, 64, 5, 1) self.conv4 = nn.Conv2d(64, 128, 5, 1) self.pool1 = torch.nn.MaxPool2d(2) self.pool2 = torch.nn.MaxPool2d(2) self.pool3 = torch.nn.MaxPool2d(2) n_sizes = self._get_conv_output(input_shape) self.fc1 = nn.Linear(n_sizes, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, self.num_classes) def _get_conv_output(self, shape): batch_size = 1 input = torch.autograd.Variable(torch.rand(batch_size, *shape)) output_feat = self._forward_features(input) n_size = output_feat.data.view(batch_size, -1).size(1) return n_size def _forward_features(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.pool1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.pool2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.pool3(x)) x = F.relu(self.conv4(x)) return x def forward(self, x): x = self._forward_features(x) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.log_softmax(self.fc3(x), dim=1) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('train_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('train_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('train_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('val_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('val_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('val_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('val_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer checkpoint_callback = ModelCheckpoint(monitor='val_loss', filename='model-{epoch:02d}-{val_loss:.2f}', save_top_k=1, mode='min') early_stop_callback = EarlyStopping(monitor='val_loss', patience=3, verbose=False, mode='min') inference_model = CountModel.load_from_checkpoint(checkpoint_callback.best_model_path) inference_model = inference_model.to('cuda') inference_model.eval() inference_model.freeze() def get_predictions(dataloader): y_preds, y_actuals = ([], []) for imgs, labels in tqdm(dataloader): logits = inference_model(imgs.to('cuda')) preds = torch.argmax(logits, dim=1) y_actuals.extend(labels.numpy().tolist()) y_preds.extend(preds.cpu().detach().numpy().tolist()) return (y_preds, y_actuals) class TestDataset(torch.utils.data.Dataset): def __init__(self, image_paths): self.image_paths = image_paths self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def __len__(self): return len(self.image_paths) def __getitem__(self, idx): img_loc = self.image_paths[idx] image = Image.open(img_loc) image = image.convert('RGB') image = self.transform(image) return image submission = pd.read_csv('../input/count-the-blue-boxes/sample_submission.csv') submission['image_path'] = submission['image_id'].apply(lambda x: f'../input/count-the-blue-boxes/test/test/{x}.png') test_dataset = TestDataset(submission['image_path'].tolist()) test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE, num_workers=2) print(f'Test Dataset: {len(test_dataset)}\tTest DataLoader: {len(test_dataloader)}')
code
73059749/cell_20
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from sklearn.model_selection import train_test_split from torch.utils.data import Dataset, DataLoader, random_split from torchvision import transforms import matplotlib.pyplot as plt import pandas as pd import pytorch_lightning as pl RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE) class CountBoxes(Dataset): def __init__(self, df, transform=None): super().__init__() self.df = df self.transform = transform self.num_workers = 2 def __len__(self): return self.df.shape[0] def __getitem__(self, index): img_id, label = (self.df.iloc[index]['image_id'], self.df.iloc[index]['count']) img_path = f'../input/count-the-blue-boxes/train/train/{label}/{label}_{img_id}.png' image = Image.open(img_path) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) return (image, label) class CountBoxesDataModule(pl.LightningDataModule): def __init__(self, path, batch_size=64, num_workers=4): super().__init__() self.path = Path(path) self.batch_size = batch_size self.num_workers = num_workers self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def prepare_data(self): df = pd.read_csv(self.path / 'train.csv') df = df.loc[df['count'] < MAX_HOURS] X_train, X_valid, y_train, y_valid = train_test_split(df['image_id'], df['count'], stratify=df['count'], test_size=0.2) train_df = pd.concat([X_train, y_train], axis=1) valid_df = pd.concat([X_valid, y_valid], axis=1) train_df.to_pickle('train_df.pkl') valid_df.to_pickle('valid_df.pkl') def setup(self): self.train_df = pd.read_pickle('train_df.pkl') self.valid_df = pd.read_pickle('valid_df.pkl') self.train_transform = self.transform self.valid_transform = self.transform def train_dataloader(self): train_dataset = CountBoxes(df=self.train_df, transform=self.train_transform) return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): valid_dataset = CountBoxes(df=self.valid_df, transform=self.valid_transform) return DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=True) datamodule = CountBoxesDataModule(path='../input/count-the-blue-boxes/', batch_size=BATCH_SIZE) datamodule.prepare_data() datamodule.setup() train_dataloader = datamodule.train_dataloader() for data in train_dataloader: images, labels = data f, ax = plt.subplots(5, 5, figsize=(30, 30)) for i in range(5*5): ax[i // 5, i % 5].imshow(images[i].permute(1, 2, 0)) ax[i // 5, i % 5].axis("off") ax[i // 5, i % 5].set_title(labels[i], fontdict={"fontsize": 20}) plt.tight_layout() plt.show() break valid_dataloader = datamodule.val_dataloader() for data in valid_dataloader: images, labels = data f, ax = plt.subplots(5, 5, figsize=(30, 30)) for i in range(5 * 5): ax[i // 5, i % 5].imshow(images[i].permute(1, 2, 0)) ax[i // 5, i % 5].axis('off') ax[i // 5, i % 5].set_title(labels[i], fontdict={'fontsize': 20}) plt.tight_layout() plt.show() break
code
73059749/cell_6
[ "text_plain_output_1.png" ]
from kaggle_secrets import UserSecretsClient import wandb from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() wandb_api = user_secrets.get_secret('wandb-key') wandb.login(key=wandb_api)
code
73059749/cell_40
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from sklearn import metrics from sklearn.model_selection import train_test_split from torch import nn from torch.utils.data import Dataset, DataLoader, random_split from torchmetrics.functional import accuracy, auroc from torchmetrics.functional import mean_absolute_error, mean_squared_error from torchvision import transforms import pandas as pd import pytorch_lightning as pl import torch import torch.nn.functional as F RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE) class CountBoxes(Dataset): def __init__(self, df, transform=None): super().__init__() self.df = df self.transform = transform self.num_workers = 2 def __len__(self): return self.df.shape[0] def __getitem__(self, index): img_id, label = (self.df.iloc[index]['image_id'], self.df.iloc[index]['count']) img_path = f'../input/count-the-blue-boxes/train/train/{label}/{label}_{img_id}.png' image = Image.open(img_path) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) return (image, label) class CountBoxesDataModule(pl.LightningDataModule): def __init__(self, path, batch_size=64, num_workers=4): super().__init__() self.path = Path(path) self.batch_size = batch_size self.num_workers = num_workers self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def prepare_data(self): df = pd.read_csv(self.path / 'train.csv') df = df.loc[df['count'] < MAX_HOURS] X_train, X_valid, y_train, y_valid = train_test_split(df['image_id'], df['count'], stratify=df['count'], test_size=0.2) train_df = pd.concat([X_train, y_train], axis=1) valid_df = pd.concat([X_valid, y_valid], axis=1) train_df.to_pickle('train_df.pkl') valid_df.to_pickle('valid_df.pkl') def setup(self): self.train_df = pd.read_pickle('train_df.pkl') self.valid_df = pd.read_pickle('valid_df.pkl') self.train_transform = self.transform self.valid_transform = self.transform def train_dataloader(self): train_dataset = CountBoxes(df=self.train_df, transform=self.train_transform) return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): valid_dataset = CountBoxes(df=self.valid_df, transform=self.valid_transform) return DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=True) class CountModel(pl.LightningModule): def __init__(self, input_shape, num_classes, learning_rate=0.0002): super().__init__() self.save_hyperparameters() self.num_classes = num_classes self.learning_rate = learning_rate self.conv1 = nn.Conv2d(3, 16, 5, 1) self.conv2 = nn.Conv2d(16, 32, 5, 1) self.conv3 = nn.Conv2d(32, 64, 5, 1) self.conv4 = nn.Conv2d(64, 128, 5, 1) self.pool1 = torch.nn.MaxPool2d(2) self.pool2 = torch.nn.MaxPool2d(2) self.pool3 = torch.nn.MaxPool2d(2) n_sizes = self._get_conv_output(input_shape) self.fc1 = nn.Linear(n_sizes, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, self.num_classes) def _get_conv_output(self, shape): batch_size = 1 input = torch.autograd.Variable(torch.rand(batch_size, *shape)) output_feat = self._forward_features(input) n_size = output_feat.data.view(batch_size, -1).size(1) return n_size def _forward_features(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.pool1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.pool2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.pool3(x)) x = F.relu(self.conv4(x)) return x def forward(self, x): x = self._forward_features(x) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.log_softmax(self.fc3(x), dim=1) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('train_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('train_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('train_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('val_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('val_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('val_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('val_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer def print_metrics(stage, y_true, y_pred): acc = metrics.accuracy_score(y_true, y_pred) mae = metrics.mean_absolute_error(y_true, y_pred) mse = metrics.mean_squared_error(y_true, y_pred) print_metrics('Training', train_pred, train_act)
code
73059749/cell_39
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping from sklearn.model_selection import train_test_split from torch import nn from torch.utils.data import Dataset, DataLoader, random_split from torchmetrics.functional import accuracy, auroc from torchmetrics.functional import mean_absolute_error, mean_squared_error from torchvision import transforms from tqdm import tqdm import pandas as pd import pytorch_lightning as pl import torch import torch.nn.functional as F RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE) class CountBoxes(Dataset): def __init__(self, df, transform=None): super().__init__() self.df = df self.transform = transform self.num_workers = 2 def __len__(self): return self.df.shape[0] def __getitem__(self, index): img_id, label = (self.df.iloc[index]['image_id'], self.df.iloc[index]['count']) img_path = f'../input/count-the-blue-boxes/train/train/{label}/{label}_{img_id}.png' image = Image.open(img_path) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) return (image, label) class CountBoxesDataModule(pl.LightningDataModule): def __init__(self, path, batch_size=64, num_workers=4): super().__init__() self.path = Path(path) self.batch_size = batch_size self.num_workers = num_workers self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def prepare_data(self): df = pd.read_csv(self.path / 'train.csv') df = df.loc[df['count'] < MAX_HOURS] X_train, X_valid, y_train, y_valid = train_test_split(df['image_id'], df['count'], stratify=df['count'], test_size=0.2) train_df = pd.concat([X_train, y_train], axis=1) valid_df = pd.concat([X_valid, y_valid], axis=1) train_df.to_pickle('train_df.pkl') valid_df.to_pickle('valid_df.pkl') def setup(self): self.train_df = pd.read_pickle('train_df.pkl') self.valid_df = pd.read_pickle('valid_df.pkl') self.train_transform = self.transform self.valid_transform = self.transform def train_dataloader(self): train_dataset = CountBoxes(df=self.train_df, transform=self.train_transform) return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): valid_dataset = CountBoxes(df=self.valid_df, transform=self.valid_transform) return DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=True) datamodule = CountBoxesDataModule(path='../input/count-the-blue-boxes/', batch_size=BATCH_SIZE) datamodule.prepare_data() datamodule.setup() train_dataloader = datamodule.train_dataloader() valid_dataloader = datamodule.val_dataloader() class CountModel(pl.LightningModule): def __init__(self, input_shape, num_classes, learning_rate=0.0002): super().__init__() self.save_hyperparameters() self.num_classes = num_classes self.learning_rate = learning_rate self.conv1 = nn.Conv2d(3, 16, 5, 1) self.conv2 = nn.Conv2d(16, 32, 5, 1) self.conv3 = nn.Conv2d(32, 64, 5, 1) self.conv4 = nn.Conv2d(64, 128, 5, 1) self.pool1 = torch.nn.MaxPool2d(2) self.pool2 = torch.nn.MaxPool2d(2) self.pool3 = torch.nn.MaxPool2d(2) n_sizes = self._get_conv_output(input_shape) self.fc1 = nn.Linear(n_sizes, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, self.num_classes) def _get_conv_output(self, shape): batch_size = 1 input = torch.autograd.Variable(torch.rand(batch_size, *shape)) output_feat = self._forward_features(input) n_size = output_feat.data.view(batch_size, -1).size(1) return n_size def _forward_features(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.pool1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.pool2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.pool3(x)) x = F.relu(self.conv4(x)) return x def forward(self, x): x = self._forward_features(x) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.log_softmax(self.fc3(x), dim=1) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('train_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('train_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('train_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('val_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('val_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('val_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('val_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer checkpoint_callback = ModelCheckpoint(monitor='val_loss', filename='model-{epoch:02d}-{val_loss:.2f}', save_top_k=1, mode='min') early_stop_callback = EarlyStopping(monitor='val_loss', patience=3, verbose=False, mode='min') inference_model = CountModel.load_from_checkpoint(checkpoint_callback.best_model_path) inference_model = inference_model.to('cuda') inference_model.eval() inference_model.freeze() def get_predictions(dataloader): y_preds, y_actuals = ([], []) for imgs, labels in tqdm(dataloader): logits = inference_model(imgs.to('cuda')) preds = torch.argmax(logits, dim=1) y_actuals.extend(labels.numpy().tolist()) y_preds.extend(preds.cpu().detach().numpy().tolist()) return (y_preds, y_actuals) valid_dataloader = datamodule.val_dataloader() train_dataloader = datamodule.train_dataloader() train_pred, train_act = get_predictions(train_dataloader)
code
73059749/cell_2
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
!pip install -q wandb
code
73059749/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from kaggle_secrets import UserSecretsClient from pytorch_lightning.loggers import WandbLogger import wandb from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() wandb_api = user_secrets.get_secret('wandb-key') wandb.login(key=wandb_api) wandb.init(project='count-the-green-boxes') wandb_logger = WandbLogger(project='count-green-boxes-lightning', job_type='train')
code
73059749/cell_28
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from PIL import Image from kaggle_secrets import UserSecretsClient from pathlib import Path from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping from pytorch_lightning.loggers import WandbLogger from sklearn.model_selection import train_test_split from torch import nn from torch.utils.data import Dataset, DataLoader, random_split from torchmetrics.functional import accuracy, auroc from torchmetrics.functional import mean_absolute_error, mean_squared_error from torchvision import transforms import pandas as pd import pytorch_lightning as pl import torch import torch.nn.functional as F import wandb from kaggle_secrets import UserSecretsClient user_secrets = UserSecretsClient() wandb_api = user_secrets.get_secret('wandb-key') wandb.login(key=wandb_api) wandb.init(project='count-the-green-boxes') wandb_logger = WandbLogger(project='count-green-boxes-lightning', job_type='train') RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE) class CountBoxes(Dataset): def __init__(self, df, transform=None): super().__init__() self.df = df self.transform = transform self.num_workers = 2 def __len__(self): return self.df.shape[0] def __getitem__(self, index): img_id, label = (self.df.iloc[index]['image_id'], self.df.iloc[index]['count']) img_path = f'../input/count-the-blue-boxes/train/train/{label}/{label}_{img_id}.png' image = Image.open(img_path) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) return (image, label) class CountBoxesDataModule(pl.LightningDataModule): def __init__(self, path, batch_size=64, num_workers=4): super().__init__() self.path = Path(path) self.batch_size = batch_size self.num_workers = num_workers self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def prepare_data(self): df = pd.read_csv(self.path / 'train.csv') df = df.loc[df['count'] < MAX_HOURS] X_train, X_valid, y_train, y_valid = train_test_split(df['image_id'], df['count'], stratify=df['count'], test_size=0.2) train_df = pd.concat([X_train, y_train], axis=1) valid_df = pd.concat([X_valid, y_valid], axis=1) train_df.to_pickle('train_df.pkl') valid_df.to_pickle('valid_df.pkl') def setup(self): self.train_df = pd.read_pickle('train_df.pkl') self.valid_df = pd.read_pickle('valid_df.pkl') self.train_transform = self.transform self.valid_transform = self.transform def train_dataloader(self): train_dataset = CountBoxes(df=self.train_df, transform=self.train_transform) return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): valid_dataset = CountBoxes(df=self.valid_df, transform=self.valid_transform) return DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=True) datamodule = CountBoxesDataModule(path='../input/count-the-blue-boxes/', batch_size=BATCH_SIZE) datamodule.prepare_data() datamodule.setup() train_dataloader = datamodule.train_dataloader() valid_dataloader = datamodule.val_dataloader() class CountModel(pl.LightningModule): def __init__(self, input_shape, num_classes, learning_rate=0.0002): super().__init__() self.save_hyperparameters() self.num_classes = num_classes self.learning_rate = learning_rate self.conv1 = nn.Conv2d(3, 16, 5, 1) self.conv2 = nn.Conv2d(16, 32, 5, 1) self.conv3 = nn.Conv2d(32, 64, 5, 1) self.conv4 = nn.Conv2d(64, 128, 5, 1) self.pool1 = torch.nn.MaxPool2d(2) self.pool2 = torch.nn.MaxPool2d(2) self.pool3 = torch.nn.MaxPool2d(2) n_sizes = self._get_conv_output(input_shape) self.fc1 = nn.Linear(n_sizes, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, self.num_classes) def _get_conv_output(self, shape): batch_size = 1 input = torch.autograd.Variable(torch.rand(batch_size, *shape)) output_feat = self._forward_features(input) n_size = output_feat.data.view(batch_size, -1).size(1) return n_size def _forward_features(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.pool1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.pool2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.pool3(x)) x = F.relu(self.conv4(x)) return x def forward(self, x): x = self._forward_features(x) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.log_softmax(self.fc3(x), dim=1) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('train_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('train_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('train_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('val_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('val_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('val_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('val_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer checkpoint_callback = ModelCheckpoint(monitor='val_loss', filename='model-{epoch:02d}-{val_loss:.2f}', save_top_k=1, mode='min') early_stop_callback = EarlyStopping(monitor='val_loss', patience=3, verbose=False, mode='min') model = CountModel((3, 250, 500), NUM_CLASSES) trainer = pl.Trainer(max_epochs=3, progress_bar_refresh_rate=5, gpus=1, callbacks=[checkpoint_callback, early_stop_callback], logger=wandb_logger) trainer.fit(model, datamodule)
code
73059749/cell_17
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from pathlib import Path from sklearn.model_selection import train_test_split from torch.utils.data import Dataset, DataLoader, random_split from torchvision import transforms import matplotlib.pyplot as plt import pandas as pd import pytorch_lightning as pl RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE) class CountBoxes(Dataset): def __init__(self, df, transform=None): super().__init__() self.df = df self.transform = transform self.num_workers = 2 def __len__(self): return self.df.shape[0] def __getitem__(self, index): img_id, label = (self.df.iloc[index]['image_id'], self.df.iloc[index]['count']) img_path = f'../input/count-the-blue-boxes/train/train/{label}/{label}_{img_id}.png' image = Image.open(img_path) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) return (image, label) class CountBoxesDataModule(pl.LightningDataModule): def __init__(self, path, batch_size=64, num_workers=4): super().__init__() self.path = Path(path) self.batch_size = batch_size self.num_workers = num_workers self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def prepare_data(self): df = pd.read_csv(self.path / 'train.csv') df = df.loc[df['count'] < MAX_HOURS] X_train, X_valid, y_train, y_valid = train_test_split(df['image_id'], df['count'], stratify=df['count'], test_size=0.2) train_df = pd.concat([X_train, y_train], axis=1) valid_df = pd.concat([X_valid, y_valid], axis=1) train_df.to_pickle('train_df.pkl') valid_df.to_pickle('valid_df.pkl') def setup(self): self.train_df = pd.read_pickle('train_df.pkl') self.valid_df = pd.read_pickle('valid_df.pkl') self.train_transform = self.transform self.valid_transform = self.transform def train_dataloader(self): train_dataset = CountBoxes(df=self.train_df, transform=self.train_transform) return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): valid_dataset = CountBoxes(df=self.valid_df, transform=self.valid_transform) return DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=True) datamodule = CountBoxesDataModule(path='../input/count-the-blue-boxes/', batch_size=BATCH_SIZE) datamodule.prepare_data() datamodule.setup() train_dataloader = datamodule.train_dataloader() for data in train_dataloader: images, labels = data f, ax = plt.subplots(5, 5, figsize=(30, 30)) for i in range(5 * 5): ax[i // 5, i % 5].imshow(images[i].permute(1, 2, 0)) ax[i // 5, i % 5].axis('off') ax[i // 5, i % 5].set_title(labels[i], fontdict={'fontsize': 20}) plt.tight_layout() plt.show() break
code
73059749/cell_10
[ "text_plain_output_1.png" ]
import pytorch_lightning as pl RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE)
code
73059749/cell_37
[ "text_plain_output_1.png" ]
from PIL import Image from pathlib import Path from sklearn import metrics from sklearn.model_selection import train_test_split from torch import nn from torch.utils.data import Dataset, DataLoader, random_split from torchmetrics.functional import accuracy, auroc from torchmetrics.functional import mean_absolute_error, mean_squared_error from torchvision import transforms import pandas as pd import pytorch_lightning as pl import torch import torch.nn.functional as F RANDOM_STATE = 42 NUM_CLASSES = 98 MAX_HOURS = 90 BATCH_SIZE = 128 pl.seed_everything(RANDOM_STATE) class CountBoxes(Dataset): def __init__(self, df, transform=None): super().__init__() self.df = df self.transform = transform self.num_workers = 2 def __len__(self): return self.df.shape[0] def __getitem__(self, index): img_id, label = (self.df.iloc[index]['image_id'], self.df.iloc[index]['count']) img_path = f'../input/count-the-blue-boxes/train/train/{label}/{label}_{img_id}.png' image = Image.open(img_path) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) return (image, label) class CountBoxesDataModule(pl.LightningDataModule): def __init__(self, path, batch_size=64, num_workers=4): super().__init__() self.path = Path(path) self.batch_size = batch_size self.num_workers = num_workers self.transform = transforms.Compose([transforms.Resize(size=(250, 500)), transforms.ToTensor()]) def prepare_data(self): df = pd.read_csv(self.path / 'train.csv') df = df.loc[df['count'] < MAX_HOURS] X_train, X_valid, y_train, y_valid = train_test_split(df['image_id'], df['count'], stratify=df['count'], test_size=0.2) train_df = pd.concat([X_train, y_train], axis=1) valid_df = pd.concat([X_valid, y_valid], axis=1) train_df.to_pickle('train_df.pkl') valid_df.to_pickle('valid_df.pkl') def setup(self): self.train_df = pd.read_pickle('train_df.pkl') self.valid_df = pd.read_pickle('valid_df.pkl') self.train_transform = self.transform self.valid_transform = self.transform def train_dataloader(self): train_dataset = CountBoxes(df=self.train_df, transform=self.train_transform) return DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): valid_dataset = CountBoxes(df=self.valid_df, transform=self.valid_transform) return DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, pin_memory=True) class CountModel(pl.LightningModule): def __init__(self, input_shape, num_classes, learning_rate=0.0002): super().__init__() self.save_hyperparameters() self.num_classes = num_classes self.learning_rate = learning_rate self.conv1 = nn.Conv2d(3, 16, 5, 1) self.conv2 = nn.Conv2d(16, 32, 5, 1) self.conv3 = nn.Conv2d(32, 64, 5, 1) self.conv4 = nn.Conv2d(64, 128, 5, 1) self.pool1 = torch.nn.MaxPool2d(2) self.pool2 = torch.nn.MaxPool2d(2) self.pool3 = torch.nn.MaxPool2d(2) n_sizes = self._get_conv_output(input_shape) self.fc1 = nn.Linear(n_sizes, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, self.num_classes) def _get_conv_output(self, shape): batch_size = 1 input = torch.autograd.Variable(torch.rand(batch_size, *shape)) output_feat = self._forward_features(input) n_size = output_feat.data.view(batch_size, -1).size(1) return n_size def _forward_features(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.pool1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.pool2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.pool3(x)) x = F.relu(self.conv4(x)) return x def forward(self, x): x = self._forward_features(x) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.log_softmax(self.fc3(x), dim=1) return x def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('train_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('train_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('train_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('train_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) mae = mean_absolute_error(preds, y) mse = mean_squared_error(preds, y) self.log('val_loss', loss, on_step=True, on_epoch=True, logger=True) self.log('val_acc', acc, on_step=True, on_epoch=True, logger=True) self.log('val_mae', mae, on_step=True, on_epoch=True, logger=True) self.log('val_mse', mse, on_step=True, on_epoch=True, logger=True) return loss def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer def print_metrics(stage, y_true, y_pred): acc = metrics.accuracy_score(y_true, y_pred) mae = metrics.mean_absolute_error(y_true, y_pred) mse = metrics.mean_squared_error(y_true, y_pred) print_metrics('Validation', valid_pred, valid_act)
code
72101516/cell_21
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot, plot import pandas as pd import plotly.graph_objs as go medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) gender['male_ratio'] = gender['Male'] / gender['Total'] gender['female_ratio'] = gender['Female'] / gender['Total'] gender['Discipline'] = gender.index from plotly.offline import init_notebook_mode, iplot, plot import plotly as py init_notebook_mode(connected=True) import plotly.graph_objs as go fig = go.Figure() fig.add_trace(go.Bar(y=gender.Discipline, x=gender.female_ratio, orientation='h', name='Females')) fig.add_trace(go.Bar(y=gender.Discipline, x=gender.male_ratio, orientation='h', name='Males')) template = dict(layout=go.Layout(title_font=dict(family='Rockwell', size=30))) fig.update_layout(title='Distribution of disciplines based on gender', template=template, barmode='stack', autosize=False, width=680, height=900, margin=dict(l=150, r=100, b=30, t=100, pad=4)) fig.layout.xaxis.tickformat = ',.0%' fig.show()
code
72101516/cell_9
[ "text_html_output_1.png" ]
import pandas as pd medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) def miss(data): missing_value = data.isnull().sum().sort_values(ascending=False) missing_perc = (data.isnull().sum() * 100 / data.shape[0]).sort_values(ascending=False) value = pd.concat([missing_value, missing_perc], axis=1, keys=['Count', '%']) miss(gender)
code
72101516/cell_2
[ "text_html_output_1.png" ]
!pip install openpyxl # Solving Kaggle error while importing the data
code
72101516/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) def miss(data): missing_value = data.isnull().sum().sort_values(ascending=False) missing_perc = (data.isnull().sum() * 100 / data.shape[0]).sort_values(ascending=False) value = pd.concat([missing_value, missing_perc], axis=1, keys=['Count', '%']) miss(coach)
code
72101516/cell_1
[ "text_plain_output_1.png" ]
import nltk import os import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression import seaborn as sns sns.set() from sklearn.cluster import KMeans from mpl_toolkits.mplot3d import Axes3D import tensorflow as tf import tensorflow_datasets as tfds from sklearn.model_selection import train_test_split, cross_val_score from sklearn.feature_extraction.text import CountVectorizer from nltk.corpus import stopwords from collections import Counter import nltk nltk.download('stopwords') import re from collections import defaultdict from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder, OrdinalEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline from xgboost import XGBRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from scipy import stats from scipy.stats import norm, skew from scipy.special import boxcox1p from sklearn.preprocessing import RobustScaler import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72101516/cell_7
[ "image_output_1.png" ]
import pandas as pd medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) def miss(data): missing_value = data.isnull().sum().sort_values(ascending=False) missing_perc = (data.isnull().sum() * 100 / data.shape[0]).sort_values(ascending=False) value = pd.concat([missing_value, missing_perc], axis=1, keys=['Count', '%']) miss(medal)
code
72101516/cell_8
[ "text_html_output_2.png" ]
import pandas as pd medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) def miss(data): missing_value = data.isnull().sum().sort_values(ascending=False) missing_perc = (data.isnull().sum() * 100 / data.shape[0]).sort_values(ascending=False) value = pd.concat([missing_value, missing_perc], axis=1, keys=['Count', '%']) miss(athlete)
code
72101516/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import nltk import os import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.linear_model import LinearRegression import seaborn as sns sns.set() from sklearn.cluster import KMeans from mpl_toolkits.mplot3d import Axes3D import tensorflow as tf import tensorflow_datasets as tfds from sklearn.model_selection import train_test_split, cross_val_score from sklearn.feature_extraction.text import CountVectorizer from nltk.corpus import stopwords from collections import Counter import nltk nltk.download('stopwords') import re from collections import defaultdict from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder, OrdinalEncoder from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline from xgboost import XGBRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from scipy import stats from scipy.stats import norm, skew from scipy.special import boxcox1p from sklearn.preprocessing import RobustScaler import os medal = pd.read_excel('../input/2021-olympics-in-tokyo/Medals.xlsx', index_col=0) athlete = pd.read_excel('../input/2021-olympics-in-tokyo/Athletes.xlsx', index_col=0) gender = pd.read_excel('../input/2021-olympics-in-tokyo/EntriesGender.xlsx', index_col=0) team = pd.read_excel('../input/2021-olympics-in-tokyo/Teams.xlsx', index_col=0) coach = pd.read_excel('../input/2021-olympics-in-tokyo/Coaches.xlsx', index_col=0) count1 = athlete['NOC'].value_counts().head(10) sns.barplot(x=count1.index,y = count1.values) plt.xticks(rotation = 90) plt.show() count = athlete['Discipline'].value_counts().head(10) sns.barplot(x=count.index, y=count.values) plt.xticks(rotation=90) plt.show()
code