code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
default_normcase = getattr(pattern, 'normcase', self.module.normcase) normcase = normcase or default_normcase name = normcase(self.name) pattern = normcase(pattern) return fnmatch.fnmatchcase(name, pattern)
def fnmatch(self, pattern, normcase=None)
Return ``True`` if `self.name` matches the given `pattern`. `pattern` - A filename pattern with wildcards, for example ``'*.py'``. If the pattern contains a `normcase` attribute, it is applied to the name and path prior to comparison. `normcase` - (optional) A function used to normalize the pattern and filename before matching. Defaults to :meth:`self.module`, which defaults to :meth:`os.path.normcase`. .. seealso:: :func:`fnmatch.fnmatch`
3.060301
3.325897
0.920143
cls = self._next_class return [cls(s) for s in glob.glob(self / pattern)]
def glob(self, pattern)
Return a list of Path objects that match the pattern. `pattern` - a path relative to this directory, with wildcards. For example, ``Path('/users').glob('*/bin/*')`` returns a list of all the files users have in their :file:`bin` directories. .. seealso:: :func:`glob.glob` .. note:: Glob is **not** recursive, even when using ``**``. To do recursive globbing see :func:`walk`, :func:`walkdirs` or :func:`walkfiles`.
9.422841
14.352796
0.656516
with self.open(*args, **kwargs) as f: for chunk in iter(lambda: f.read(size) or None, None): yield chunk
def chunks(self, size, *args, **kwargs)
Returns a generator yielding chunks of the file, so it can be read piece by piece with a simple for loop. Any argument you pass after `size` will be passed to :meth:`open`. :example: >>> hash = hashlib.md5() >>> for chunk in Path("CHANGES.rst").chunks(8192, mode='rb'): ... hash.update(chunk) This will read the file by chunks of 8192 bytes.
3.096494
4.537555
0.682415
if append: mode = 'ab' else: mode = 'wb' with self.open(mode) as f: f.write(bytes)
def write_bytes(self, bytes, append=False)
Open this file and write the given bytes to it. Default behavior is to overwrite any existing file. Call ``p.write_bytes(bytes, append=True)`` to append instead.
2.378758
2.385145
0.997322
r with self.open(mode='r', encoding=encoding, errors=errors) as f: return U_NEWLINE.sub('\n', f.read())
def text(self, encoding=None, errors='strict')
r""" Open this file, read it in, return the content as a string. All newline sequences are converted to ``'\n'``. Keyword arguments will be passed to :meth:`open`. .. seealso:: :meth:`lines`
6.448951
8.945302
0.720932
r return self.text(encoding, errors).splitlines(retain)
def lines(self, encoding=None, errors='strict', retain=True)
r""" Open this file, read all lines, return them in a list. Optional arguments: `encoding` - The Unicode encoding (or character set) of the file. The default is ``None``, meaning the content of the file is read as 8-bit characters and returned as a list of (non-Unicode) str objects. `errors` - How to handle Unicode errors; see help(str.decode) for the options. Default is ``'strict'``. `retain` - If ``True``, retain newline characters; but all newline character combinations (``'\r'``, ``'\n'``, ``'\r\n'``) are translated to ``'\n'``. If ``False``, newline characters are stripped off. Default is ``True``. .. seealso:: :meth:`text`
13.886086
21.870743
0.634916
r with self.open('ab' if append else 'wb') as f: for line in lines: isUnicode = isinstance(line, str) if linesep is not None: pattern = U_NL_END if isUnicode else NL_END line = pattern.sub('', line) + linesep if isUnicode: line = line.encode( encoding or sys.getdefaultencoding(), errors) f.write(line)
def write_lines(self, lines, encoding=None, errors='strict', linesep=os.linesep, append=False)
r""" Write the given lines of text to this file. By default this overwrites any existing file at this path. This puts a platform-specific newline sequence on every line. See `linesep` below. `lines` - A list of strings. `encoding` - A Unicode encoding to use. This applies only if `lines` contains any Unicode strings. `errors` - How to handle errors in Unicode encoding. This also applies only to Unicode strings. linesep - The desired line-ending. This line-ending is applied to every line. If a line already has any standard line ending (``'\r'``, ``'\n'``, ``'\r\n'``, ``u'\x85'``, ``u'\r\x85'``, ``u'\u2028'``), that will be stripped off and this will be used instead. The default is os.linesep, which is platform-dependent (``'\r\n'`` on Windows, ``'\n'`` on Unix, etc.). Specify ``None`` to write the lines as-is, like :meth:`file.writelines`. Use the keyword argument ``append=True`` to append lines to the file. The default is to overwrite the file. .. warning :: When you use this with Unicode data, if the encoding of the existing data in the file is different from the encoding you specify with the `encoding=` parameter, the result is mixed-encoding data, which can really confuse someone trying to read the file later.
4.24346
4.555377
0.931528
m = hashlib.new(hash_name) for chunk in self.chunks(8192, mode="rb"): m.update(chunk) return m
def _hash(self, hash_name)
Returns a hash object for the file at the current path. `hash_name` should be a hash algo name (such as ``'md5'`` or ``'sha1'``) that's available in the :mod:`hashlib` module.
3.737727
3.54959
1.053002
if not hasattr(self.module, 'samefile'): other = Path(other).realpath().normpath().normcase() return self.realpath().normpath().normcase() == other return self.module.samefile(self, other)
def samefile(self, other)
.. seealso:: :func:`os.path.samefile`
4.178071
3.851081
1.084909
desc = win32security.GetFileSecurity( self, win32security.OWNER_SECURITY_INFORMATION) sid = desc.GetSecurityDescriptorOwner() account, domain, typecode = win32security.LookupAccountSid(None, sid) return domain + '\\' + account
def __get_owner_windows(self)
Return the name of the owner of this file or directory. Follow symbolic links. Return a name of the form ``r'DOMAIN\\User Name'``; may be a group. .. seealso:: :attr:`owner`
3.481206
3.991841
0.87208
st = self.stat() return pwd.getpwuid(st.st_uid).pw_name
def __get_owner_unix(self)
Return the name of the owner of this file or directory. Follow symbolic links. .. seealso:: :attr:`owner`
4.692205
5.171494
0.907321
if isinstance(mode, str): mask = _multi_permission_mask(mode) mode = mask(self.stat().st_mode) os.chmod(self, mode) return self
def chmod(self, mode)
Set the mode. May be the new mode (os.chmod behavior) or a `symbolic mode <http://en.wikipedia.org/wiki/Chmod#Symbolic_modes>`_. .. seealso:: :func:`os.chmod`
5.693782
6.846197
0.831671
if hasattr(os, 'chown'): if 'pwd' in globals() and isinstance(uid, str): uid = pwd.getpwnam(uid).pw_uid if 'grp' in globals() and isinstance(gid, str): gid = grp.getgrnam(gid).gr_gid os.chown(self, uid, gid) else: msg = "Ownership not available on this platform." raise NotImplementedError(msg) return self
def chown(self, uid=-1, gid=-1)
Change the owner and group by names rather than the uid or gid numbers. .. seealso:: :func:`os.chown`
2.4876
2.61359
0.951794
os.rename(self, new) return self._next_class(new)
def rename(self, new)
.. seealso:: :func:`os.rename`
14.375381
12.398713
1.159425
os.renames(self, new) return self._next_class(new)
def renames(self, new)
.. seealso:: :func:`os.renames`
13.556458
10.835893
1.25107
with contextlib.suppress(FileExistsError): self.mkdir(mode) return self
def mkdir_p(self, mode=0o777)
Like :meth:`mkdir`, but does not raise an exception if the directory already exists.
5.04991
4.824485
1.046725
with contextlib.suppress(FileExistsError): self.makedirs(mode) return self
def makedirs_p(self, mode=0o777)
Like :meth:`makedirs`, but does not raise an exception if the directory already exists.
5.094604
4.922205
1.035025
suppressed = FileNotFoundError, FileExistsError, DirectoryNotEmpty with contextlib.suppress(suppressed): with DirectoryNotEmpty.translate(): self.rmdir() return self
def rmdir_p(self)
Like :meth:`rmdir`, but does not raise an exception if the directory is not empty or does not exist.
13.657041
11.063432
1.234431
with contextlib.suppress(FileExistsError, DirectoryNotEmpty): with DirectoryNotEmpty.translate(): self.removedirs() return self
def removedirs_p(self)
Like :meth:`removedirs`, but does not raise an exception if the directory is not empty or does not exist.
13.618075
11.707793
1.163163
fd = os.open(self, os.O_WRONLY | os.O_CREAT, 0o666) os.close(fd) os.utime(self, None) return self
def touch(self)
Set the access/modified times of this file to the current time. Create the file if it does not exist.
2.459563
2.169063
1.133929
dst = self._next_class(dst) dst.makedirs_p() if update: warnings.warn( "Update is deprecated; " "use copy_function=only_newer(shutil.copy2)", DeprecationWarning, stacklevel=2, ) copy_function = only_newer(copy_function) sources = self.listdir() _ignored = ignore(self, [item.name for item in sources]) def ignored(item): return item.name in _ignored for source in itertools.filterfalse(ignored, sources): dest = dst / source.name if symlinks and source.islink(): target = source.readlink() target.symlink(dest) elif source.isdir(): source.merge_tree( dest, symlinks=symlinks, update=update, copy_function=copy_function, ignore=ignore, ) else: copy_function(source, dest) self.copystat(dst)
def merge_tree( self, dst, symlinks=False, *, update=False, copy_function=shutil.copy2, ignore=lambda dir, contents: [])
Copy entire contents of self to dst, overwriting existing contents in dst with those in self. Pass ``symlinks=True`` to copy symbolic links as links. Accepts a ``copy_function``, similar to copytree. To avoid overwriting newer files, supply a copy function wrapped in ``only_newer``. For example:: src.merge_tree(dst, copy_function=only_newer(shutil.copy2))
2.831203
2.871249
0.986053
import io if set(mode).intersection('wa+'): raise ValueError('Only read-only file modes can be used') # move existing file to backup, create new file with same permissions # borrowed extensively from the fileinput module backup_fn = self + (backup_extension or os.extsep + 'bak') try: os.unlink(backup_fn) except os.error: pass os.rename(self, backup_fn) readable = io.open( backup_fn, mode, buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) try: perm = os.fstat(readable.fileno()).st_mode except OSError: writable = open( self, 'w' + mode.replace('r', ''), buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) else: os_mode = os.O_CREAT | os.O_WRONLY | os.O_TRUNC if hasattr(os, 'O_BINARY'): os_mode |= os.O_BINARY fd = os.open(self, os_mode, perm) writable = io.open( fd, "w" + mode.replace('r', ''), buffering=buffering, encoding=encoding, errors=errors, newline=newline, ) try: if hasattr(os, 'chmod'): os.chmod(self, perm) except OSError: pass try: yield readable, writable except Exception: # move backup back readable.close() writable.close() try: os.unlink(self) except os.error: pass os.rename(backup_fn, self) raise else: readable.close() writable.close() finally: try: os.unlink(backup_fn) except os.error: pass
def in_place( self, mode='r', buffering=-1, encoding=None, errors=None, newline=None, backup_extension=None, )
A context in which a file may be re-written in-place with new content. Yields a tuple of :samp:`({readable}, {writable})` file objects, where `writable` replaces `readable`. If an exception occurs, the old file is restored, removing the written data. Mode *must not* use ``'w'``, ``'a'``, or ``'+'``; only read-only-modes are allowed. A :exc:`ValueError` is raised on invalid modes. For example, to add line numbers to a file:: p = Path(filename) assert p.isfile() with p.in_place() as (reader, writer): for number, line in enumerate(reader, 1): writer.write('{0:3}: '.format(number))) writer.write(line) Thereafter, the file at `filename` will have line numbers in it.
2.545183
2.408268
1.056852
prop_name = '{scope}_{class_}_dir'.format(**locals()) value = getattr(self.wrapper, prop_name) MultiPath = Multi.for_class(self.path_class) return MultiPath.detect(value)
def get_dir(self, scope, class_)
Return the callable function from appdirs, but with the result wrapped in self.path_class
9.954431
8.208616
1.212681
return next( class_ for class_ in cls.__mro__ if not issubclass(class_, Multi) )
def _next_class(cls)
Multi-subclasses should use the parent class
6.261824
4.427125
1.414422
s = s.replace("&", "&amp;") # Must be done first! s = s.replace("<", "&lt;") s = s.replace(">", "&gt;") if quote: s = s.replace('"', "&quot;") s = s.replace('\'', "&#x27;") return s
def escape(s, quote=True)
Replace special characters "&", "<" and ">" to HTML-safe sequences. If the optional flag quote is true (the default), the quotation mark characters, both double quote (") and single quote (') characters are also translated.
1.604297
1.620358
0.990088
if token.content.startswith('$$'): return self.render_raw_text(token) return '${}$'.format(self.render_raw_text(token))
def render_math(self, token)
Ensure Math tokens are all enclosed in two dollar signs.
3.857963
3.422787
1.127141
with renderer() as renderer: return renderer.render(Document(iterable))
def markdown(iterable, renderer=HTMLRenderer)
Output HTML with default settings. Enables inline and block-level HTML tags.
8.058025
9.227479
0.873264
node = {} # Python 3.6 uses [ordered dicts] [1]. # Put in 'type' entry first to make the final tree format somewhat # similar to [MDAST] [2]. # # [1]: https://docs.python.org/3/whatsnew/3.6.html # [2]: https://github.com/syntax-tree/mdast node['type'] = token.__class__.__name__ node.update({key: token.__dict__[key] for key in token.__dict__}) if 'header' in node: node['header'] = get_ast(node['header']) if 'children' in node: node['children'] = [get_ast(child) for child in node['children']] return node
def get_ast(token)
Recursively unrolls token attributes into dictionaries (token.children into lists). Returns: a dictionary of token's attributes.
3.837146
3.967348
0.967182
lines = FileWrapper(iterable) parse_buffer = ParseBuffer() line = lines.peek() while line is not None: for token_type in token_types: if token_type.start(line): result = token_type.read(lines) if result is not None: parse_buffer.append((token_type, result)) break else: # unmatched newlines next(lines) parse_buffer.loose = True line = lines.peek() return parse_buffer
def tokenize_block(iterable, token_types)
Returns a list of pairs (token_type, read_result). Footnotes are parsed here, but span-level parsing has not started yet.
3.556809
3.615641
0.983728
tokens = [] for token_type, result in parse_buffer: token = token_type(result) if token is not None: tokens.append(token) return tokens
def make_tokens(parse_buffer)
Takes a list of pairs (token_type, read_result) and applies token_type(read_result). Footnotes are already parsed before this point, and span-level parsing is started here.
2.754689
2.361387
1.166555
try: with open(filename, 'r') as fin: rendered = mistletoe.markdown(fin, renderer) print(rendered, end='') except OSError: sys.exit('Cannot open file "{}".'.format(filename))
def convert_file(filename, renderer)
Parse a Markdown file and dump the output to stdout.
3.727717
3.212982
1.160205
_import_readline() _print_heading(renderer) contents = [] more = False while True: try: prompt, more = ('... ', True) if more else ('>>> ', True) contents.append(input(prompt) + '\n') except EOFError: print('\n' + mistletoe.markdown(contents, renderer), end='') more = False contents = [] except KeyboardInterrupt: print('\nExiting.') break
def interactive(renderer)
Parse user input, dump to stdout, rinse and repeat. Python REPL style.
5.080054
5.057237
1.004512
from mistletoe.block_token import List def get_indent(level): if self.omit_title: level -= 1 return ' ' * 4 * (level - 1) def build_list_item(heading): level, content = heading template = '{indent}- {content}\n' return template.format(indent=get_indent(level), content=content) return List([build_list_item(heading) for heading in self._headings])
def toc(self)
Returns table of contents as a block_token.List instance.
4.165408
3.496042
1.191464
rendered = super().render_heading(token) content = self.parse_rendered_heading(rendered) if not (self.omit_title and token.level == 1 or token.level > self.depth or any(cond(content) for cond in self.filter_conds)): self._headings.append((token.level, content)) return rendered
def render_heading(self, token)
Overrides super().render_heading; stores rendered heading first, then returns it.
5.303463
4.961745
1.068871
match_obj = cls.pattern.match(line) if match_obj is None: return None # no valid leader leader = match_obj.group(1) content = match_obj.group(0).replace(leader+'\t', leader+' ', 1) # reassign prepend and leader prepend = len(content) if prepend == len(line.rstrip('\n')): prepend = match_obj.end(1) + 1 else: spaces = match_obj.group(2) if spaces.startswith('\t'): spaces = spaces.replace('\t', ' ', 1) spaces = spaces.replace('\t', ' ') n_spaces = len(spaces) if n_spaces > 4: prepend = match_obj.end(1) + 1 return prepend, leader
def parse_marker(cls, line)
Returns a pair (prepend, leader) iff the line has a valid leader.
4.122799
3.292499
1.252179
rendered = [self.render(child) for child in token.children] return ''.join(rendered)
def render_inner(self, token)
Recursively renders child tokens. Joins the rendered strings with no space in between. If newlines / spaces are needed between tokens, add them in their respective templates, or override this function in the renderer subclass, so that whitespace won't seem to appear magically for anyone reading your program. Arguments: token: a branch node who has children attribute.
4.518612
5.217847
0.865992
# Check if string if not isinstance(signal, str): signal = list(signal) signal = np.array(signal) # Create a frequency data data_set = list(set(signal)) freq_list = [] for entry in data_set: counter = 0. for i in signal: if i == entry: counter += 1 freq_list.append(float(counter) / len(signal)) # Shannon entropy shannon_entropy = 0.0 for freq in freq_list: shannon_entropy += freq * np.log2(freq) shannon_entropy = -shannon_entropy return(shannon_entropy)
def complexity_entropy_shannon(signal)
Computes the shannon entropy. Copied from the `pyEntropy <https://github.com/nikdon/pyEntropy>`_ repo by tjugo. Parameters ---------- signal : list or array List or array of values. Returns ---------- shannon_entropy : float The Shannon Entropy as float value. Example ---------- >>> import neurokit as nk >>> >>> signal = np.sin(np.log(np.random.sample(666))) >>> shannon_entropy = nk.complexity_entropy_shannon(signal) Notes ---------- *Details* - **shannon entropy**: Entropy is a measure of unpredictability of the state, or equivalently, of its average information content. *Authors* - tjugo (https://github.com/nikdon) *Dependencies* - numpy *See Also* - pyEntropy package: https://github.com/nikdon/pyEntropy References ----------- - None
2.768691
3.128997
0.884849
signal = np.array(signal) L = [] x = [] N = signal.size km_idxs = np.triu_indices(k_max - 1) km_idxs = k_max - np.flipud(np.column_stack(km_idxs)) -1 km_idxs[:,1] -= 1 for k in range(1, k_max): Lk = 0 for m in range(0, k): #we pregenerate all idxs idxs = np.arange(1,int(np.floor((N-m)/k))) Lmk = np.sum(np.abs(signal[m+idxs*k] - signal[m+k*(idxs-1)])) Lmk = (Lmk*(N - 1)/(((N - m)/ k)* k)) / k Lk += Lmk if Lk != 0: L.append(np.log(Lk/(m+1))) x.append([np.log(1.0/ k), 1]) (p, r1, r2, s)=np.linalg.lstsq(x, L) fd_higushi = p[0] return (fd_higushi)
def complexity_fd_higushi(signal, k_max)
Computes Higuchi Fractal Dimension of a signal. Based on the `pyrem <https://github.com/gilestrolab/pyrem>`_ repo by Quentin Geissmann. Parameters ---------- signal : list or array List or array of values. k_max : int The maximal value of k. The point at which the FD plateaus is considered a saturation point and that kmax value should be selected (Gómez, 2009). Some studies use a value of 8 or 16 for ECG signal and other 48 for MEG. Returns ---------- fd_higushi : float The Higushi Fractal Dimension as float value. Example ---------- >>> import neurokit as nk >>> >>> signal = np.sin(np.log(np.random.sample(666))) >>> fd_higushi = nk.complexity_fd_higushi(signal, 8) Notes ---------- *Details* - **Higushi Fractal Dimension**: Higuchi proposed in 1988 an efficient algorithm for measuring the FD of discrete time sequences. As the reconstruction of the attractor phase space is not necessary, this algorithm is simpler and faster than D2 and other classical measures derived from chaos theory. FD can be used to quantify the complexity and self-similarity of a signal. HFD has already been used to analyse the complexity of brain recordings and other biological signals. *Authors* - Quentin Geissmann (https://github.com/qgeissmann) *Dependencies* - numpy *See Also* - pyrem package: https://github.com/gilestrolab/pyrem References ----------- - Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological cybernetics, 77(5), 339-350. - Gómez, C., Mediavilla, Á., Hornero, R., Abásolo, D., & Fernández, A. (2009). Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients. Medical engineering & physics, 31(3), 306-313.
4.840194
5.079452
0.952897
psd = np.abs(np.fft.rfft(signal))**2 psd /= np.sum(psd) # psd as a pdf (normalised to one) if bands is None: power_per_band= psd[psd>0] else: freqs = np.fft.rfftfreq(signal.size, 1/float(sampling_rate)) bands = np.asarray(bands) freq_limits_low = np.concatenate([[0.0],bands]) freq_limits_up = np.concatenate([bands, [np.Inf]]) power_per_band = [np.sum(psd[np.bitwise_and(freqs >= low, freqs<up)]) for low,up in zip(freq_limits_low, freq_limits_up)] power_per_band= np.array(power_per_band)[np.array(power_per_band) > 0] spectral = - np.sum(power_per_band * np.log2(power_per_band)) return(spectral)
def complexity_entropy_spectral(signal, sampling_rate, bands=None)
Computes Spectral Entropy of a signal. Based on the `pyrem <https://github.com/gilestrolab/pyrem>`_ repo by Quentin Geissmann. The power spectrum is computed through fft. Then, it is normalised and assimilated to a probability density function. Parameters ---------- signal : list or array List or array of values. sampling_rate : int Sampling rate (samples/second). bands : list or array A list of numbers delimiting the bins of the frequency bands. If None the entropy is computed over the whole range of the DFT (from 0 to `f_s/2`). Returns ---------- spectral_entropy : float The spectral entropy as float value. Example ---------- >>> import neurokit as nk >>> >>> signal = np.sin(np.log(np.random.sample(666))) >>> spectral_entropy = nk.complexity_entropy_spectral(signal, 1000) Notes ---------- *Details* - **Spectral Entropy**: Entropy for different frequency bands. *Authors* - Quentin Geissmann (https://github.com/qgeissmann) *Dependencies* - numpy *See Also* - pyrem package: https://github.com/gilestrolab/pyrem
2.639214
2.885669
0.914594
mat = _embed_seq(signal, tau, emb_dim) W = np.linalg.svd(mat, compute_uv = False) W /= sum(W) # normalize singular values entropy_svd = -1*sum(W * np.log2(W)) return(entropy_svd)
def complexity_entropy_svd(signal, tau=1, emb_dim=2)
Computes the Singular Value Decomposition (SVD) entropy of a signal. Based on the `pyrem <https://github.com/gilestrolab/pyrem>`_ repo by Quentin Geissmann. Parameters ---------- signal : list or array List or array of values. tau : int The delay emb_dim : int The embedding dimension (*m*, the length of vectors to compare). Returns ---------- entropy_svd : float The SVD entropy as float value. Example ---------- >>> import neurokit as nk >>> >>> signal = np.sin(np.log(np.random.sample(666))) >>> entropy_svd = nk.complexity_entropy_svd(signal, 1, 2) Notes ---------- *Details* - **SVD Entropy**: Indicator of how many vectors are needed for an adequate explanation of the data set. Measures feature-richness in the sense that the higher the entropy of the set of SVD weights, the more orthogonal vectors are required to adequately explain it. *Authors* - Quentin Geissmann (https://github.com/qgeissmann) *Dependencies* - numpy *See Also* - pyrem package: https://github.com/gilestrolab/pyrem
3.989843
4.903371
0.813694
diff = np.diff(signal) # x[i] * x[i-1] for i in t0 -> tmax prod = diff[1:-1] * diff[0:-2] # Number of sign changes in derivative of the signal N_delta = np.sum(prod < 0) n = len(signal) fd_petrosian = np.log(n)/(np.log(n)+np.log(n/(n+0.4*N_delta))) return(fd_petrosian)
def complexity_fd_petrosian(signal)
Computes the Petrosian Fractal Dimension of a signal. Based on the `pyrem <https://github.com/gilestrolab/pyrem>`_ repo by Quentin Geissmann. Parameters ---------- signal : list or array List or array of values. Returns ---------- fd_petrosian : float The Petrosian FD as float value. Example ---------- >>> import neurokit as nk >>> >>> signal = np.sin(np.log(np.random.sample(666))) >>> fd_petrosian = nk.complexity_fd_petrosian(signal, 1, 2) Notes ---------- *Details* - **Petrosian Fractal Dimension**: Provide a fast computation of the FD of a signal by translating the series into a binary sequence. *Authors* - Quentin Geissmann (https://github.com/qgeissmann) *Dependencies* - numpy *See Also* - pyrem package: https://github.com/gilestrolab/pyrem
5.2371
6.330368
0.827298
mat = _embed_seq(signal, tau, emb_dim) W = np.linalg.svd(mat, compute_uv = False) W /= sum(W) # normalize singular values FI_v = (W[1:] - W[:-1]) **2 / W[:-1] fisher_info = np.sum(FI_v) return(fisher_info)
def complexity_fisher_info(signal, tau=1, emb_dim=2)
Computes the Fisher information of a signal. Based on the `pyrem <https://github.com/gilestrolab/pyrem>`_ repo by Quentin Geissmann. Parameters ---------- signal : list or array List or array of values. tau : int The delay emb_dim : int The embedding dimension (*m*, the length of vectors to compare). Returns ---------- fisher_info : float The Fisher information as float value. Example ---------- >>> import neurokit as nk >>> >>> signal = np.sin(np.log(np.random.sample(666))) >>> fisher_info = nk.complexity_fisher_info(signal, 1, 2) Notes ---------- *Details* - **Fisher Information**: A way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ of a distribution that models X. Formally, it is the variance of the score, or the expected value of the observed information. *Authors* - Quentin Geissmann (https://github.com/qgeissmann) *Dependencies* - numpy *See Also* - pyrem package: https://github.com/gilestrolab/pyrem
4.767083
6.040404
0.789199
ntf = data.shape[0] gfp_curve = np.zeros((ntf, )) if gflp_method == 'GFPL2': for i in range(ntf): x = data[i,:] gfp_curve[i] = np.sqrt(np.sum((x - x.mean())**2 / len(x) )) elif gflp_method == 'GFPL1': for i in range(ntf): x = data[i,:] gfp_curve[i] = np.sum(np.abs(x - x.mean())) / len(x) if peak_method == "wavelet": gfp_peaks = np.asarray(scipy.signal.find_peaks_cwt(gfp_curve, np.arange(1, 10))) #we would expect a peak at about each 50 ms else: gfp_peaks = scipy.signal.argrelmax(gfp_curve)[0] if smoothing == 'hamming': gfp_curve = scipy.signal.convolve(gfp_curve, scipy.signal.hamming(smoothing_window) ) elif smoothing == 'hanning': gfp_curve = scipy.signal.convolve(gfp_curve, scipy.signal.hanning(smoothing_window) ) else: pass # Normalize if normalize is True: for i in range(len(data)): data[i,:] = data[i,:]/gfp_curve[i] return (data, gfp_curve, gfp_peaks)
def eeg_gfp_peaks(data, gflp_method='GFPL1', smoothing=False, smoothing_window=100, peak_method="wavelet", normalize=False)
The Global Field Power (GFP) is a scalar measure of the strength of the scalp potential field and is calculated as the standard deviation of all electrodes at a given time point (Lehmann and Skrandies, 1980; Michel et al., 1993; Murray et al., 2008; Brunet et al., 2011). Between two GFP troughs, the strength of the potential field varies but the topography remains generally stable. The local maxima of the GFP are thus the best representative of a given microstate in terms of signal-to-noise ratio (Pascual-Marqui et al., 1995), corresponding to moments of high global neuronal synchronization (Skrandies, 2007). Parameters ---------- X (ndarray): Array containing values for all time frames and channels. Dimension: number of time frames x number of channels method ({'GFPL1', 'GFPL2'}): `GFPL1` : use L1-Norm to compute GFP peaks `GFPL2` : use L2-Norm to compute GFP peaks smoothing ({'hamming', 'hanning'}): `hamming` : use hamming window to smooth `hanning` : use hanning window to smooth smoothing_window = int about 100 peak_method = str "relative" or "wavelet" Returns ---------- ret : ndarray GFP curve
2.207358
2.171219
1.016644
# Load data if necessary # if isinstance(raws, str): # raws = load_object(filename=raws) # Initialize empty dict gfp = {} for participant in raws: gfp[participant] = {} for run in raws[participant]: # Generate empty dic gfp[participant][run] = {} # Assign raw object to raw raw = raws[participant][run].copy() # Check if MEG or EEG data if True in set(["MEG" in ch for ch in raw.info["ch_names"]]): meg = True eeg = False else: meg = False eeg = True # Save ECG channel try: gfp[participant][run]["ecg"] = np.array(raw.copy().pick_types(meg=False, eeg=False, ecg=True).to_data_frame()) except ValueError: gfp[participant][run]["ecg"] = np.nan # Select appropriate channels data = raw.copy().pick_types(meg=meg, eeg=eeg) gfp[participant][run]["data_info"] = data.info gfp[participant][run]["data_freq"] = data.info["sfreq"] gfp[participant][run]["run_duration"] = len(data) / data.info["sfreq"] # Convert to numpy array data = np.array(data.to_data_frame()) # find GFP peaks data, gfp_curve, gfp_peaks = eeg_gfp_peaks(data, gflp_method=gflp_method, smoothing=smoothing, smoothing_window=100, peak_method="wavelet", normalize=normalize) # Store them gfp[participant][run]["microstates_times"] = gfp_peaks # Select brain state at peaks data_peaks = data[gfp_peaks] # Store the data and scale parameters if scale is True: gfp[participant][run]["data"] = z_score(data_peaks) else: gfp[participant][run]["data"] = data_peaks gfp[participant][run]["data_scale"] = scale gfp[participant][run]["data_normalize"] = normalize gfp[participant][run]["data_smoothing"] = smoothing return(gfp)
def eeg_gfp(raws, gflp_method="GFPL1", scale=True, normalize=True, smoothing=None)
Run the GFP analysis.
2.952041
2.963998
0.995966
# Create training set training_set = data.copy() if verbose is True: print("- Initializing the clustering algorithm...") if clustering_method == "kmeans": algorithm = sklearn.cluster.KMeans(init='k-means++', n_clusters=n_microstates, n_init=n_init, n_jobs=n_jobs) elif clustering_method == "spectral": algorithm = sklearn.cluster.SpectralClustering(n_clusters=n_microstates, n_init=n_init, n_jobs=n_jobs) elif clustering_method == "agglom": algorithm = sklearn.cluster.AgglomerativeClustering(n_clusters=n_microstates, linkage="complete") elif clustering_method == "dbscan": algorithm = sklearn.cluster.DBSCAN(min_samples=100) elif clustering_method == "affinity": algorithm = sklearn.cluster.AffinityPropagation(damping=0.5) else: print("NeuroKit Error: eeg_microstates(): clustering_method must be 'kmeans', 'spectral', 'dbscan', 'affinity' or 'agglom'") refitting = 0 # Initialize the number of refittings good_fit_achieved = False while good_fit_achieved is False: good_fit_achieved = True if verbose is True: print("- Fitting the classifier...") # Fit the algorithm algorithm.fit(training_set) if verbose is True: print("- Clustering back the initial data...") # Predict the more likely cluster for each observation predicted = algorithm.fit_predict(training_set) if verbose is True: print("- Check for abnormalities...") # Check for abnormalities and prune the training set until none found occurences = dict(collections.Counter(predicted)) masks = [np.array([True]*len(training_set))] for microstate in occurences: # is the frequency of one microstate inferior to a treshold if occurences[microstate] < len(data)*occurence_rejection_treshold: good_fit_achieved = False refitting += 1 # Increment the refitting print("NeuroKit Warning: eeg_microstates(): detected some outliers: refitting the classifier (n=" + str(refitting) + ").") masks.append(predicted!=microstate) mask = np.all(masks, axis=0) training_set = training_set[mask] return(algorithm)
def eeg_microstates_clustering(data, n_microstates=4, clustering_method="kmeans", n_jobs=1, n_init=25, occurence_rejection_treshold=0.05, max_refitting=5, verbose=True)
Fit the clustering algorithm.
2.666384
2.672182
0.99783
for participant in results: for run in results[participant]: if verbose is True: print("- " + participant) # Frequencies of each microstate occurences = dict(collections.Counter(results[participant][run]["microstates"])) # Compute complexity measures of the microstate sequence if nonlinearity is True: results[participant][run]["nonlinearity"] = complexity(results[participant][run]["microstates"]) # ECG coherence # results[participant][run]["ecg"] # statsmodels.tsa.stattools.grangercausalitytests([]) results[participant][run]["parameters"] = {} # Compute parameters for each microstates: for microstate in set(method["microstates"]): results[participant][run]["parameters"][microstate] = {} try: # Coverage results[participant][run]["parameters"][microstate]["coverage"] = occurences[microstate]/len(results[participant][run]["microstates"]) # Duration uniques = find_following_duplicates(results[participant][run]["microstates"]) uniques_times = results[participant][run]["microstates_times"][np.where(uniques)] uniques_ms = results[participant][run]["microstates"][np.where(uniques)] times = uniques_times[np.array(np.where(uniques_ms==microstate))] times_1 = np.take(uniques_times, np.array(np.where(uniques_ms==microstate)) + 1, mode='clip') results[participant][run]["parameters"][microstate]["duration"] = np.mean(times_1 - times)/results[participant][run]["data_sfreq"]*1000 # Occurence results[participant][run]["parameters"][microstate]["occurence"] = occurences[microstate] / results[participant][run]["run_duration"] except KeyError: results[participant][run]["parameters"][microstate]["coverage"] = 0 results[participant][run]["parameters"][microstate]["duration"] = np.nan results[participant][run]["parameters"][microstate]["occurence"] = 0 return(results)
def eeg_microstates_features(results, method, ecg=True, nonlinearity=True, verbose=True)
Compute statistics and features for/of the microstates.
2.879456
2.879443
1.000004
# Generate and store figures figures = [] names = [] # Check if microstates metrics available try: microstates = method["microstates_good_fit"] except KeyError: microstates = method["microstates"] # Create individual plot for each microstate for microstate in set(microstates): if microstate != "Bad": values = np.mean(method["data"][np.where(microstates == microstate)], axis=0) values = np.array(values, ndmin=2).T evoked = mne.EvokedArray(values, method["raw.info_example"], 0) fig = evoked.plot_topomap(times=0, title=microstate, size=6, contours=contours, time_format="", show=plot, colorbar=colorbar, show_names=show_sensors_name, sensors=show_sensors_position) figures.append(fig) # Save separate figures name = path + "microstate_%s_%s%s%s_%s%i_%s%s" %(microstate, method["data_scale"], method["data_normalize"], method["data_smoothing"], method["feature_reduction_method"], method["n_features"], method["clustering_method"], extension) fig.savefig(name, dpi=dpi) names.append(name) # Save Combined plot if save is True: # Combine all plots image_template = PIL.Image.open(names[0]) X, Y = image_template.size image_template.close() combined = PIL.Image.new('RGB', (int(X*len(set(microstates))/2), int( Y*len(set(microstates))/2))) fig = 0 for x in np.arange(0, len(set(microstates))/2*int(X), int(X)): for y in np.arange(0, len(set(microstates))/2*int(Y), int(Y)): try: newfig = PIL.Image.open(names[fig]) combined.paste(newfig, (int(x), int(y))) newfig.close() except: pass fig += 1 #combined.show() combined_name = path + "microstates_%s%s%s_%s%i_%s%s" %(method["data_scale"], method["data_normalize"], method["data_smoothing"], method["feature_reduction_method"], method["n_features"], method["clustering_method"], extension) combined.save(combined_name) # Detete separate plots in needed if separate is False or save is False: for name in names: os.remove(name) return(figures)
def eeg_microstates_plot(method, path="", extension=".png", show_sensors_position=False, show_sensors_name=False, plot=True, save=True, dpi=150, contours=0, colorbar=False, separate=False)
Plot the microstates.
3.157339
3.16104
0.998829
microstates = list(method['microstates']) for index, microstate in enumerate(method['microstates']): if microstate in list(reverse_microstates.keys()): microstates[index] = reverse_microstates[microstate] method["data"][index] = -1*method["data"][index] if microstate in list(microstates_labels.keys()): microstates[index] = microstates_labels[microstate] method['microstates'] = np.array(microstates) return(results, method)
def eeg_microstates_relabel(method, results, microstates_labels, reverse_microstates=None)
Relabel the microstates.
2.546372
2.512145
1.013625
''' This function computes the wavelet coefficients INPUT: data: DataFrame, index is a list of timestamps at 8Hz, columns include EDA, filtered_eda OUTPUT: wave1Second: DateFrame, index is a list of timestamps at 1Hz, columns include OneSecond_feature1, OneSecond_feature2, OneSecond_feature3 waveHalfSecond: DateFrame, index is a list of timestamps at 2Hz, columns include HalfSecond_feature1, HalfSecond_feature2 ''' # Create wavelet dataframes oneSecond = halfSecond = # Compute wavelets cA_n, cD_3, cD_2, cD_1 = pywt.wavedec(eda, 'Haar', level=3) #3 = 1Hz, 2 = 2Hz, 1=4Hz # Wavelet 1 second window N = int(len(eda)/sampling_rate) coeff1 = np.max(abs(np.reshape(cD_1[0:4*N],(N,4))), axis=1) coeff2 = np.max(abs(np.reshape(cD_2[0:2*N],(N,2))), axis=1) coeff3 = abs(cD_3[0:N]) wave1Second = pd.DataFrame({'OneSecond_feature1':coeff1,'OneSecond_feature2':coeff2,'OneSecond_feature3':coeff3}) wave1Second.index = oneSecond[:len(wave1Second)] # Wavelet Half second window N = int(np.floor((len(data)/8.0)*2)) coeff1 = np.max(abs(np.reshape(cD_1[0:2*N],(N,2))),axis=1) coeff2 = abs(cD_2[0:N]) waveHalfSecond = pd.DataFrame({'HalfSecond_feature1':coeff1,'HalfSecond_feature2':coeff2}) waveHalfSecond.index = halfSecond[:len(waveHalfSecond)] return wave1Second,waveHalfSecond
def getWaveletData(eda)
This function computes the wavelet coefficients INPUT: data: DataFrame, index is a list of timestamps at 8Hz, columns include EDA, filtered_eda OUTPUT: wave1Second: DateFrame, index is a list of timestamps at 1Hz, columns include OneSecond_feature1, OneSecond_feature2, OneSecond_feature3 waveHalfSecond: DateFrame, index is a list of timestamps at 2Hz, columns include HalfSecond_feature1, HalfSecond_feature2
2.922885
1.985086
1.472422
# The "Daubechies" wavelet is a rough approximation to a real, single, cardiac cycle cardiac = scipy.signal.wavelets.daub(10) # Add the gap after the pqrst when the heart is resting. cardiac = np.concatenate([cardiac, np.zeros(10)]) # Caculate the number of beats in capture time period num_heart_beats = int(duration * bpm / 60) # Concatenate together the number of heart beats needed ecg = np.tile(cardiac , num_heart_beats) # Add random (gaussian distributed) noise noise = np.random.normal(0, noise, len(ecg)) ecg = noise + ecg # Resample ecg = scipy.signal.resample(ecg, sampling_rate*duration) return(ecg)
def ecg_simulate(duration=10, sampling_rate=1000, bpm=60, noise=0.01)
Simulates an ECG signal. Parameters ---------- duration : int Desired recording length. sampling_rate : int Desired sampling rate. bpm : int Desired simulated heart rate. noise : float Desired noise level. Returns ---------- ECG_Response : dict Event-related ECG response features. Example ---------- >>> import neurokit as nk >>> import pandas as pd >>> >>> ecg = nk.ecg_simulate(duration=10, bpm=60, sampling_rate=1000, noise=0.01) >>> pd.Series(ecg).plot() Notes ---------- *Authors* - `Diarmaid O Cualain <https://github.com/diarmaidocualain>`_ - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - numpy - scipy.signal References -----------
5.615109
6.815954
0.823818
processed_rsp = {"df": pd.DataFrame({"RSP_Raw": np.array(rsp)})} biosppy_rsp = dict(biosppy.signals.resp.resp(rsp, sampling_rate=sampling_rate, show=False)) processed_rsp["df"]["RSP_Filtered"] = biosppy_rsp["filtered"] # RSP Rate # ============ rsp_rate = biosppy_rsp["resp_rate"]*60 # Get RSP rate value (in cycles per minute) rsp_times = biosppy_rsp["resp_rate_ts"] # the time (in sec) of each rsp rate value rsp_times = np.round(rsp_times*sampling_rate).astype(int) # Convert to timepoints try: rsp_rate = interpolate(rsp_rate, rsp_times, sampling_rate) # Interpolation using 3rd order spline processed_rsp["df"]["RSP_Rate"] = rsp_rate except TypeError: print("NeuroKit Warning: rsp_process(): Sequence too short to compute respiratory rate.") processed_rsp["df"]["RSP_Rate"] = np.nan # RSP Cycles # =========================== rsp_cycles = rsp_find_cycles(biosppy_rsp["filtered"]) processed_rsp["df"]["RSP_Inspiration"] = rsp_cycles["RSP_Inspiration"] processed_rsp["RSP"] = {} processed_rsp["RSP"]["Cycles_Onsets"] = rsp_cycles["RSP_Cycles_Onsets"] processed_rsp["RSP"]["Expiration_Onsets"] = rsp_cycles["RSP_Expiration_Onsets"] processed_rsp["RSP"]["Cycles_Length"] = rsp_cycles["RSP_Cycles_Length"]/sampling_rate # RSP Variability # =========================== rsp_diff = processed_rsp["RSP"]["Cycles_Length"] processed_rsp["RSP"]["Respiratory_Variability"] = {} processed_rsp["RSP"]["Respiratory_Variability"]["RSPV_SD"] = np.std(rsp_diff) processed_rsp["RSP"]["Respiratory_Variability"]["RSPV_RMSSD"] = np.sqrt(np.mean(rsp_diff ** 2)) processed_rsp["RSP"]["Respiratory_Variability"]["RSPV_RMSSD_Log"] = np.log(processed_rsp["RSP"]["Respiratory_Variability"]["RSPV_RMSSD"]) return(processed_rsp)
def rsp_process(rsp, sampling_rate=1000)
Automated processing of RSP signals. Parameters ---------- rsp : list or array Respiratory (RSP) signal array. sampling_rate : int Sampling rate (samples/second). Returns ---------- processed_rsp : dict Dict containing processed RSP features. Contains the RSP raw signal, the filtered signal, the respiratory cycles onsets, and respiratory phases (inspirations and expirations). Example ---------- >>> import neurokit as nk >>> >>> processed_rsp = nk.rsp_process(rsp_signal) Notes ---------- *Authors* - Dominique Makowski (https://github.com/DominiqueMakowski) *Dependencies* - biosppy - numpy - pandas *See Also* - BioSPPY: https://github.com/PIA-Group/BioSPPy
2.873058
2.842538
1.010737
# Compute gradient (sort of derivative) gradient = np.gradient(signal) # Find zero-crossings zeros, = biosppy.tools.zero_cross(signal=gradient, detrend=True) # Find respiratory phases phases_indices = [] for i in zeros: if gradient[i+1] > gradient[i-1]: phases_indices.append("Inspiration") else: phases_indices.append("Expiration") # Select cycles (inspiration) and expiration onsets inspiration_onsets = [] expiration_onsets = [] for index, onset in enumerate(zeros): if phases_indices[index] == "Inspiration": inspiration_onsets.append(onset) if phases_indices[index] == "Expiration": expiration_onsets.append(onset) # Create a continuous inspiration signal # --------------------------------------- # Find initial phase if phases_indices[0] == "Inspiration": phase = "Expiration" else: phase = "Inspiration" inspiration = [] phase_counter = 0 for i, value in enumerate(signal): if i == zeros[phase_counter]: phase = phases_indices[phase_counter] if phase_counter < len(zeros)-1: phase_counter += 1 inspiration.append(phase) # Find last phase if phases_indices[len(phases_indices)-1] == "Inspiration": last_phase = "Expiration" else: last_phase = "Inspiration" inspiration = np.array(inspiration) inspiration[max(zeros):] = last_phase # Convert to binary inspiration[inspiration == "Inspiration"] = 1 inspiration[inspiration == "Expiration"] = 0 inspiration = pd.to_numeric(inspiration) cycles_length = np.diff(inspiration_onsets) rsp_cycles = {"RSP_Inspiration": inspiration, "RSP_Expiration_Onsets": expiration_onsets, "RSP_Cycles_Onsets": inspiration_onsets, "RSP_Cycles_Length": cycles_length} return(rsp_cycles)
def rsp_find_cycles(signal)
Find Respiratory cycles onsets, durations and phases. Parameters ---------- signal : list or array Respiratory (RSP) signal (preferably filtered). Returns ---------- rsp_cycles : dict RSP cycles features. Example ---------- >>> import neurokit as nk >>> rsp_cycles = nk.rsp_find_cycles(signal) Notes ---------- *Authors* - Dominique Makowski (https://github.com/DominiqueMakowski) *Dependencies* - biosppy *See Also* - BioSPPY: https://github.com/PIA-Group/BioSPPy
2.802252
2.747124
1.020067
if channel_name is None: if isinstance(channel, pd.core.series.Series): if channel.name is not None: channel_name = channel.name else: channel_name = "Added_Channel" else: channel_name = "Added_Channel" # Compute the distance between the two signals diff = sync_index_channel - sync_index_eeg if diff > 0: channel = list(channel)[diff:len(channel)] channel = channel + [np.nan]*diff if diff < 0: channel = [np.nan]*diff + list(channel) channel = list(channel)[0:len(channel)] # Adjust to raw size if len(channel) < len(raw): channel = list(channel) + [np.nan]*(len(raw)-len(channel)) else: channel = list(channel)[0:len(raw)] # Crop to fit the raw data info = mne.create_info([channel_name], raw.info["sfreq"], ch_types=channel_type) channel = mne.io.RawArray([channel], info) raw.add_channels([channel], force_update_info=True) return(raw)
def eeg_add_channel(raw, channel, sync_index_eeg=0, sync_index_channel=0, channel_type=None, channel_name=None)
Add a channel to a mne's Raw m/eeg file. It will basically synchronize the channel to the eeg data following a particular index and add it. Parameters ---------- raw : mne.io.Raw Raw EEG data. channel : list or numpy.array The channel to be added. sync_index_eeg : int or list An index, in the raw data, by which to align the two inputs. sync_index_channel : int or list An index, in the channel to add, by which to align the two inputs. channel_type : str Channel type. Currently supported fields are 'ecg', 'bio', 'stim', 'eog', 'misc', 'seeg', 'ecog', 'mag', 'eeg', 'ref_meg', 'grad', 'emg', 'hbr' or 'hbo'. Returns ---------- raw : mne.io.Raw Raw data in FIF format. Example ---------- >>> import neurokit as nk >>> event_index_in_eeg = 42 >>> event_index_in_ecg = 666 >>> raw = nk.eeg_add_channel(raw, ecg, sync_index_raw=event_index_in_eeg, sync_index_channel=event_index_in_ecg, channel_type="ecg") Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - mne *See Also* - mne: http://martinos.org/mne/dev/index.html
2.571243
2.917006
0.881466
if isinstance(channel_names, list) is False: channel_names = [channel_names] channels, time_index = raw.copy().pick_channels(channel_names)[:] if len(channel_names) > 1: channels = pd.DataFrame(channels.T, columns=channel_names) else: channels = pd.Series(channels[0]) channels.name = channel_names[0] return(channels)
def eeg_select_channels(raw, channel_names)
Select one or several channels by name and returns them in a dataframe. Parameters ---------- raw : mne.io.Raw Raw EEG data. channel_names : str or list Channel's name(s). Returns ---------- channels : pd.DataFrame Channel. Example ---------- >>> import neurokit as nk >>> raw = nk.eeg_select_channel(raw, "TP7") Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - mne *See Also* - mne package: http://martinos.org/mne/dev/index.html
2.802296
3.269725
0.857043
# Get all channel names eeg = eeg.copy().pick_types(meg=False, eeg=True) channel_list = eeg.ch_names # Include if include == "all": electrodes = channel_list elif isinstance(include, str): electrodes = [s for s in channel_list if include in s] elif isinstance(include, list): electrodes = [] for i in include: electrodes += [s for s in channel_list if i in s] else: print("NeuroKit Warning: eeg_select_electrodes(): 'include' parameter must be 'all', str or list.") # Exclude if exclude is not None: if isinstance(exclude, str): to_remove = [s for s in channel_list if exclude in s] electrodes = [s for s in electrodes if s not in to_remove] elif isinstance(exclude, list): to_remove = [] for i in exclude: to_remove += [s for s in channel_list if i in s] electrodes = [s for s in electrodes if s not in to_remove] else: print("NeuroKit Warning: eeg_select_electrodes(): 'exclude' parameter must be None, str or list.") # Laterality if hemisphere != "both": if hemisphere.lower() == "left" or hemisphere.lower() == "l": hemi = [s for s in electrodes if len(re.findall(r'\d+', s)) > 0 and int(re.findall(r'\d+', s)[0])%2 > 0] elif hemisphere.lower() == "right" or hemisphere.lower() == "r": hemi = [s for s in electrodes if len(re.findall(r'\d+', s)) > 0 and int(re.findall(r'\d+', s)[0])%2 == 0] else: print("NeuroKit Warning: eeg_select_electrodes(): 'hemisphere' parameter must be 'both', 'left' or 'right'. Returning both.") if central is True: hemi += [s for s in electrodes if 'z' in s] electrodes = hemi return(electrodes)
def eeg_select_electrodes(eeg, include="all", exclude=None, hemisphere="both", central=True)
Returns electrodes/sensors names of selected region (according to a 10-20 EEG montage). Parameters ---------- eeg : mne.Raw or mne.Epochs EEG data. include : str ot list Sensor area to include. exclude : str or list or None Sensor area to exclude. hemisphere : str Select both hemispheres? "both", "left" or "right". central : bool Select the central line. Returns ---------- electrodes : list List of electrodes/sensors corresponding to the selected area. Example ---------- >>> import neurokit as nk >>> nk.eeg_select_electrodes(include="F", exclude="C") Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_
1.649186
1.664476
0.990814
event_id = {} if conditions is None: conditions = ["Event"] * len(onsets) # Sanity check if len(conditions) != len(onsets): print("NeuroKit Warning: eeg_create_events(): conditions parameter of different length than onsets. Aborting.") return() event_names = list(set(conditions)) # event_index = [1, 2, 3, 4, 5, 32, 64, 128] event_index = list(range(len(event_names))) for i in enumerate(event_names): conditions = [event_index[i[0]] if x==i[1] else x for x in conditions] event_id[i[1]] = event_index[i[0]] events = np.array([onsets, [0]*len(onsets), conditions]).T return(events, event_id)
def eeg_create_mne_events(onsets, conditions=None)
Create MNE compatible events. Parameters ---------- onsets : list or array Events onsets. conditions : list A list of equal length containing the stimuli types/conditions. Returns ---------- (events, event_id) : tuple MNE-formated events and a dictionary with event's names. Example ---------- >>> import neurokit as nk >>> events, event_id = nk.eeg_create_mne_events(events_onset, conditions) Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_
3.056284
3.471577
0.880373
# Extract the events_channel from raw if needed if isinstance(events_channel, str): try: events_channel = eeg_select_channels(raw, events_channel) except: print("NeuroKit error: eeg_add_events(): Wrong events_channel name provided.") # Find event onsets events = find_events(events_channel, treshold=treshold, cut=cut, time_index=time_index, number=number, after=after, before=before, min_duration=min_duration) # Create mne compatible events events, event_id = eeg_create_mne_events(events["onsets"], conditions) # Add them raw.add_events(events) return(raw, events, event_id)
def eeg_add_events(raw, events_channel, conditions=None, treshold="auto", cut="higher", time_index=None, number="all", after=0, before=None, min_duration=1)
Find events on a channel, convert them into an MNE compatible format, and add them to the raw data. Parameters ---------- raw : mne.io.Raw Raw EEG data. events_channel : str or array Name of the trigger channel if in the raw, or array of equal length if externally supplied. conditions : list List containing the stimuli types/conditions. treshold : float The treshold value by which to select the events. If "auto", takes the value between the max and the min. cut : str "higher" or "lower", define the events as above or under the treshold. For photosensors, a white screen corresponds usually to higher values. Therefore, if your events were signalled by a black colour, events values would be the lower ones, and you should set the cut to "lower". Add a corresponding datetime index, will return an addional array with the onsets as datetimes. number : str or int How many events should it select. after : int If number different than "all", then at what time should it start selecting the events. before : int If number different than "all", before what time should it select the events. min_duration : int The minimum duration of an event (in timepoints). Returns ---------- (raw, events, event_id) : tuple The raw file with events, the mne-formatted events and event_id. Example ---------- >>> import neurokit as nk >>> >>> raw, events, event_id = nk.eeg_add_events(raw, events_channel, conditions) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - pandas *See Also* - mne: http://martinos.org/mne/dev/index.html References ----------- - None
2.982738
3.11047
0.958935
if conditions is None: # Get event_id conditions = {} for participant, epochs in all_epochs.items(): conditions.update(epochs.event_id) all_evokeds = {} for participant, epochs in all_epochs.items(): evokeds = {} for cond in conditions: try: evokeds[cond] = epochs[cond].average() except KeyError: pass all_evokeds[participant] = evokeds return(all_evokeds)
def eeg_to_all_evokeds(all_epochs, conditions=None)
Convert all_epochs to all_evokeds. DOCS INCOMPLETE :(
2.227897
2.25433
0.988274
if isinstance(eeg, mne.Epochs): data = {} if index is None: index = range(len(eeg)) for epoch_index, epoch in zip(index, eeg.get_data()): epoch = pd.DataFrame(epoch.T) epoch.columns = eeg.ch_names epoch.index = eeg.times selection = eeg_select_electrodes(eeg, include=include, exclude=exclude, hemisphere=hemisphere, central=central) data[epoch_index] = epoch[selection] else: # it might be a Raw object data = eeg.get_data().T data = pd.DataFrame(data) data.columns = eeg.ch_names data.index = eeg.times return(data)
def eeg_to_df(eeg, index=None, include="all", exclude=None, hemisphere="both", central=True)
Convert mne Raw or Epochs object to dataframe or dict of dataframes. DOCS INCOMPLETE :(
2.420004
2.328477
1.039308
# Sanity check if isinstance(scores, dict): if labels is None: labels = list(scores.keys()) try: scores = [scores[key] for key in labels] except KeyError: print("NeuroKit Error: plot_polarbar(): labels and scores keys not matching. Recheck them.") # Parameters if colors == "default": if len(scores) < 9: colors = ["#f44336", "#9C27B0", "#3F51B5","#03A9F4", "#009688", "#8BC34A", "#FFEB3B", "#FF9800", "#795548"] else: colors = None if labels is None: labels = range(len(scores)) N = len(scores) theta = np.linspace(0.0, -2 * np.pi, N, endpoint=False) width = 2 * np.pi / N # Main plot = plt.figure(figsize=fig_size) layer1 = plot.add_subplot(111, projection="polar") bars1 = layer1.bar(theta+np.pi/len(scores), scores, width=width, bottom=0.0) layer1.yaxis.set_ticks(range(11)) layer1.yaxis.set_ticklabels([]) layer1.xaxis.set_ticks(theta+np.pi/len(scores)) layer1.xaxis.set_ticklabels(labels, fontsize=labels_size) for index, bar in enumerate(bars1): if colors is not None: bar.set_facecolor(colors[index]) bar.set_alpha(1) # Layer 2 if distribution_means is not None and distribution_sds is not None: # Sanity check if isinstance(distribution_means, int): distribution_means = [distribution_means]*N if isinstance(distribution_sds, int): distribution_sds = [distribution_sds]*N # TODO: add convertion if those parameter are dict bottoms, tops = normal_range(np.array(distribution_means), np.array(distribution_sds), treshold=treshold) tops = tops - bottoms layer2 = plot.add_subplot(111, polar=True) bars2 = layer2.bar(theta, tops, width=width, bottom=bottoms, linewidth=0) layer2.xaxis.set_ticks(theta+np.pi/len(scores)) layer2.xaxis.set_ticklabels(labels, fontsize=labels_size) for index, bar in enumerate(bars2): bar.set_facecolor("#607D8B") bar.set_alpha(0.3) return(plot)
def plot_polarbar(scores, labels=None, labels_size=15, colors="default", distribution_means=None, distribution_sds=None, treshold=1.28, fig_size=(15, 15))
Polar bar chart. Parameters ---------- scores : list or dict Scores to plot. labels : list List of labels to be used for ticks. labels_size : int Label's size. colors : list or str List of colors or "default". distribution_means : int or list List of means to add a range ribbon. distribution_sds : int or list List of SDs to add a range ribbon. treshold : float Limits of the range ribbon (in terms of standart deviation from mean). fig_size : tuple Figure size. Returns ---------- plot : matplotlig figure The figure. Example ---------- >>> import neurokit as nk >>> fig = nk.plot_polarbar(scores=[1, 2, 3, 4, 5], labels=["A", "B", "C", "D", "E"], distribution_means=3, distribution_sds=1) >>> fig.show() Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - matplotlib - numpy
2.340759
2.320334
1.008803
if method == "PCA": feature_red_method = sklearn.decomposition.PCA(n_components=n_features) data_processed = feature_red_method.fit_transform(data) elif method == "agglom": feature_red_method = sklearn.cluster.FeatureAgglomeration(n_clusters=n_features) data_processed = feature_red_method.fit_transform(data) elif method == "ica": feature_red_method = sklearn.decomposition.FastICA(n_components=n_features) data_processed = feature_red_method.fit_transform(data) elif method == "kernelPCA": feature_red_method = sklearn.decomposition.KernelPCA(n_components=n_features, kernel='linear') data_processed = feature_red_method.fit_transform(data) elif method == "kernelPCA": feature_red_method = sklearn.decomposition.KernelPCA(n_components=n_features, kernel='linear') data_processed = feature_red_method.fit_transform(data) elif method == "sparsePCA": feature_red_method = sklearn.decomposition.SparsePCA(n_components=n_features) data_processed = feature_red_method.fit_transform(data) elif method == "incrementalPCA": feature_red_method = sklearn.decomposition.IncrementalPCA(n_components=n_features) data_processed = feature_red_method.fit_transform(data) elif method == "nmf": if np.min(data) < 0: data -= np.min(data) feature_red_method = sklearn.decomposition.NMF(n_components=n_features) data_processed = feature_red_method.fit_transform(data) else: feature_red_method = None data_processed = data.copy() return(data_processed)
def feature_reduction(data, method, n_features)
Feature reduction. Parameters ---------- NA Returns ---------- NA Example ---------- NA Authors ---------- Dominique Makowski Dependencies ---------- - sklearn
1.440405
1.472418
0.978258
if treshold == "auto": treshold = (np.max(np.array(signal)) - np.min(np.array(signal)))/2 signal = list(signal) binary_signal = [] for i in range(len(signal)): if cut == "higher": if signal[i] > treshold: binary_signal.append(1) else: binary_signal.append(0) else: if signal[i] < treshold: binary_signal.append(1) else: binary_signal.append(0) return(binary_signal)
def binarize_signal(signal, treshold="auto", cut="higher")
Binarize a channel based on a continuous channel. Parameters ---------- signal = array or list The signal channel. treshold = float The treshold value by which to select the events. If "auto", takes the value between the max and the min. cut = str "higher" or "lower", define the events as above or under the treshold. For photosensors, a white screen corresponds usually to higher values. Therefore, if your events were signalled by a black colour, events values would be the lower ones, and you should set the cut to "lower". Returns ---------- list binary_signal Example ---------- >>> import neurokit as nk >>> binary_signal = nk.binarize_signal(signal, treshold=4) Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ Dependencies ---------- None
1.550149
1.79863
0.86185
events_channel = binarize_signal(events_channel, treshold=treshold, cut=cut) events = {"onsets":[], "durations":[]} if time_index is not None: events["onsets_time"] = [] index = 0 for key, g in (groupby(events_channel)): duration = len(list(g)) if key == 1: events["onsets"].append(index) events["durations"].append(duration) if time_index is not None: events["onsets_time"].append(time_index[index]) index += duration return(events)
def localize_events(events_channel, treshold="auto", cut="higher", time_index=None)
Find the onsets of all events based on a continuous signal. Parameters ---------- events_channel = array or list The trigger channel. treshold = float The treshold value by which to select the events. If "auto", takes the value between the max and the min. cut = str "higher" or "lower", define the events as above or under the treshold. For photosensors, a white screen corresponds usually to higher values. Therefore, if your events were signalled by a black colour, events values would be the lower ones, and you should set the cut to "lower". time_index = array or list Add a corresponding datetime index, will return an addional array with the onsets as datetimes. Returns ---------- dict dict containing the onsets, the duration and the time index if provided. Example ---------- >>> import neurokit as nk >>> events_onset = nk.events_onset(events_channel) Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ Dependencies ---------- None
2.838361
3.405151
0.833549
events = localize_events(events_channel, treshold=treshold, cut=cut, time_index=time_index) # Warning when no events detected if len(events["onsets"]) == 0: print("NeuroKit warning: find_events(): No events found. Check your events_channel or adjust trehsold.") return() # Remove less than duration toremove = [] for event in range(len(events["onsets"])): if events["durations"][event] < min_duration: toremove.append(False) else: toremove.append(True) events["onsets"] = np.array(events["onsets"])[np.array(toremove)] events["durations"] = np.array(events["durations"])[np.array(toremove)] if time_index is not None: events["onsets_time"] = np.array(events["onsets_time"])[np.array(toremove)] # Before and after if isinstance(number, int): after_times = [] after_onsets = [] after_length = [] before_times = [] before_onsets = [] before_length = [] if after != None: if events["onsets_time"] == []: events["onsets_time"] = np.array(events["onsets"]) else: events["onsets_time"] = np.array(events["onsets_time"]) after_onsets = list(np.array(events["onsets"])[events["onsets_time"]>after])[:number] after_times = list(np.array(events["onsets_time"])[events["onsets_time"]>after])[:number] after_length = list(np.array(events["durations"])[events["onsets_time"]>after])[:number] if before != None: if events["onsets_time"] == []: events["onsets_time"] = np.array(events["onsets"]) else: events["onsets_time"] = np.array(events["onsets_time"]) before_onsets = list(np.array(events["onsets"])[events["onsets_time"]<before])[:number] before_times = list(np.array(events["onsets_time"])[events["onsets_time"]<before])[:number] before_length = list(np.array(events["durations"])[events["onsets_time"]<before])[:number] events["onsets"] = before_onsets + after_onsets events["onsets_time"] = before_times + after_times events["durations"] = before_length + after_length return(events)
def find_events(events_channel, treshold="auto", cut="higher", time_index=None, number="all", after=0, before=None, min_duration=1)
Find and select events based on a continuous signal. Parameters ---------- events_channel : array or list The trigger channel. treshold : float The treshold value by which to select the events. If "auto", takes the value between the max and the min. cut : str "higher" or "lower", define the events as above or under the treshold. For photosensors, a white screen corresponds usually to higher values. Therefore, if your events were signalled by a black colour, events values would be the lower ones, and you should set the cut to "lower". Add a corresponding datetime index, will return an addional array with the onsets as datetimes. number : str or int How many events should it select. after : int If number different than "all", then at what time should it start selecting the events. before : int If number different than "all", before what time should it select the events. min_duration : int The minimum duration of an event (in timepoints). Returns ---------- events : dict Dict containing events onsets and durations. Example ---------- >>> import neurokit as nk >>> events = nk.select_events(events_channel) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - numpy
1.754806
1.796226
0.976941
df = pd.DataFrame(signal) ax = df.plot() def plotOnSignal(x, color, marker=None): if (marker is None): plt.axvline(x=event, color=color) else: plt.plot(x, signal[x], marker, color=color) events_onsets = np.array(events_onsets) try: len(events_onsets[0]) for index, dim in enumerate(events_onsets): for event in dim: plotOnSignal(x=event, color=color[index] if isinstance(color, list) else color, marker=marker[index] if isinstance(marker, list) else marker) except TypeError: for event in events_onsets: plotOnSignal(x=event, color=color[0] if isinstance(color, list) else color, marker=marker[0] if isinstance(marker, list) else marker) return ax
def plot_events_in_signal(signal, events_onsets, color="red", marker=None)
Plot events in signal. Parameters ---------- signal : array or DataFrame Signal array (can be a dataframe with many signals). events_onsets : list or ndarray Events location. color : int or list Marker color. marker : marker or list of markers (for possible marker values, see: https://matplotlib.org/api/markers_api.html) Marker type. Example ---------- >>> import neurokit as nk >>> bio = nk.bio_process(ecg=signal, sampling_rate=1000) >>> events_onsets = bio["ECG"]["R_Peaks"] >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], events_onsets) >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], events_onsets, color="red", marker="o") >>> plot_events_in_signal(bio["df"]["ECG_Filtered"], [bio["ECG"]["P_Waves"], bio["ECG"]["R_Peaks"]], color=["blue", "red"], marker=["d","o"]) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ - `Renatosc <https://github.com/renatosc/>`_ *Dependencies* - matplotlib - pandas
2.306681
2.55929
0.901297
# Processing # =========== if method == "slow": # Compute gradient (sort of derivative) gradient = np.gradient(signal) # Smoothing size = int(0.1 * sampling_rate) smooth, _ = biosppy.tools.smoother(signal=gradient, kernel='bartlett', size=size, mirror=True) # Find zero-crossings zeros, = biosppy.tools.zero_cross(signal=smooth, detrend=True) # Separate onsets and peaks onsets = [] peaks = [] for i in zeros: if smooth[i+1] > smooth[i-1]: onsets.append(i) else: peaks.append(i) peaks = np.array(peaks) onsets = np.array(onsets) else: # find extrema peaks, _ = biosppy.tools.find_extrema(signal=signal, mode='max') onsets, _ = biosppy.tools.find_extrema(signal=signal, mode='min') # Keep only pairs peaks = peaks[peaks > onsets[0]] onsets = onsets[onsets < peaks[-1]] # Artifact Treatment # ==================== # Compute rising times risingtimes = peaks-onsets risingtimes = risingtimes/sampling_rate*1000 peaks = peaks[risingtimes > 100] onsets = onsets[risingtimes > 100] # Compute amplitudes amplitudes = signal[peaks]-signal[onsets] # Remove low amplitude variations mask = amplitudes > np.std(signal)*treshold peaks = peaks[mask] onsets = onsets[mask] amplitudes = amplitudes[mask] # Recovery moments recoveries = [] for x, peak in enumerate(peaks): try: window = signal[peak:onsets[x+1]] except IndexError: window = signal[peak:] recovery_amp = signal[peak]-amplitudes[x]/2 try: smaller = find_closest_in_list(recovery_amp, window, "smaller") recovery_pos = peak + list(window).index(smaller) recoveries.append(recovery_pos) except ValueError: recoveries.append(np.nan) recoveries = np.array(recoveries) return(onsets, peaks, amplitudes, recoveries)
def eda_scr(signal, sampling_rate=1000, treshold=0.1, method="fast")
Skin-Conductance Responses extraction algorithm. Parameters ---------- signal : list or array EDA signal array. sampling_rate : int Sampling rate (samples/second). treshold : float SCR minimum treshold (in terms of signal standart deviation). method : str "fast" or "slow". Either use a gradient-based approach or a local extrema one. Returns ---------- onsets, peaks, amplitudes, recoveries : lists SCRs features. Example ---------- >>> import neurokit as nk >>> >>> onsets, peaks, amplitudes, recoveries = nk.eda_scr(eda_signal) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - biosppy - numpy - pandas *See Also* - BioSPPy: https://github.com/PIA-Group/BioSPPy References ----------- - Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion recognition system using short-term monitoring of physiological signals. Medical and biological engineering and computing, 42(3), 419-427. - Gamboa, H. (2008). Multi-Modal Behavioral Biometrics Based on HCI and Electrophysiology (Doctoral dissertation, PhD thesis, Universidade Técnica de Lisboa, Instituto Superior Técnico).
3.081832
2.925802
1.053329
data = eeg_to_df(eeg, index=index, include=include, exclude=exclude, hemisphere=hemisphere, central=central) # if data was Raw, make as if it was an Epoch so the following routine is only written once if isinstance(data, dict) is False: data = {0: data} # Create time windows if isinstance(times, tuple): times = list(times) if isinstance(times, list): if isinstance(times[0], list) is False: times = [times] else: times = [[0, None]] # Deal with names if isinstance(names, str): prefix = [names] * len(times) if len(times) > 1: for time_index, time_window in enumerate(times): prefix[time_index] = prefix[time_index] + "_%.2f_%.2f" %(time_window[0], time_window[1]) else: prefix = names # Iterate complexity_all = pd.DataFrame() for time_index, time_window in enumerate(times): if len(times) > 1 and verbose is True: print("Computing complexity features... window " + str(time_window) + "/" + str(len(times))) complexity_features = {} # Compute complexity for each channel for each epoch index = 0 for epoch_index, epoch in data.items(): if len(times) == 1 and verbose is True: print("Computing complexity features... " + str(round(index/len(data.items())*100, 2)) + "%") index +=1 df = epoch[time_window[0]:time_window[1]].copy() complexity_features[epoch_index] = {} for channel in df: signal = df[channel].values features = complexity(signal, sampling_rate=sampling_rate, shannon=shannon, sampen=sampen, multiscale=multiscale, spectral=spectral, svd=svd, correlation=correlation, higushi=higushi, petrosian=petrosian, fisher=fisher, hurst=hurst, dfa=dfa, lyap_r=lyap_r, lyap_e=lyap_e) for key, feature in features.items(): if key in complexity_features[epoch_index].keys(): complexity_features[epoch_index][key].append(feature) else: complexity_features[epoch_index][key] = [feature] for epoch_index, epoch in complexity_features.items(): for feature in epoch: complexity_features[epoch_index][feature] = pd.Series(complexity_features[epoch_index][feature]).mean() # Convert to dataframe complexity_features = pd.DataFrame.from_dict(complexity_features, orient="index") complexity_features.columns = [prefix[time_index] + "_" + s for s in complexity_features.columns] complexity_all = pd.concat([complexity_all, complexity_features], axis=1) return(complexity_all)
def eeg_complexity(eeg, sampling_rate, times=None, index=None, include="all", exclude=None, hemisphere="both", central=True, verbose=True, shannon=True, sampen=True, multiscale=True, spectral=True, svd=True, correlation=True, higushi=True, petrosian=True, fisher=True, hurst=True, dfa=True, lyap_r=False, lyap_e=False, names="Complexity")
Compute complexity indices of epochs or raw object. DOCS INCOMPLETE :(
2.295137
2.301192
0.997369
# Convert to array if list if isinstance(nbeats_real, list): nbeats_real = np.array(nbeats_real) nbeats_reported = np.array(nbeats_reported) # Compute accuracy accuracy = 1 - (abs(nbeats_real-nbeats_reported))/((nbeats_real+nbeats_reported)/2) return(accuracy)
def compute_interoceptive_accuracy(nbeats_real, nbeats_reported)
Computes interoceptive accuracy according to Garfinkel et al., (2015). Parameters ---------- nbeats_real : int or list Real number of heartbeats. nbeats_reported : int or list Reported number of heartbeats. Returns ---------- accuracy : float or list Objective accuracy in detecting internal bodily sensations. It is the central construct underpinning other interoceptive measures (Garfinkel et al., 2015). Example ---------- >>> import neurokit as nk >>> >>> nk.compute_interoceptive_accuracy(5, 3) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - numpy References ----------- - Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: distinguishing interoceptive accuracy from interoceptive awareness. Biological psychology, 104, 65-74.
2.408398
2.796996
0.861066
if value != "stop": self.X = pd.concat([self.X, pd.DataFrame({"Signal":[value]})]) self.y = np.array(list(self.y) + [response]) if len(set(list(self.y))) > 1: self.model = self.fit_model(self.X , self.y)
def add_response(self, response, value)
Add response to staircase. Parameters ---------- response : int or bool 0 or 1. value : int or float Signal corresponding to response.
4.473969
4.404713
1.015723
t = (builtin_time.clock()-self.clock)*1000 if reset is True: self.reset() return(t)
def get(self, reset=True)
Get time since last initialisation / reset. Parameters ---------- reset = bool, optional Should the clock be reset after returning time? Returns ---------- float Time passed in milliseconds. Example ---------- >>> import neurokit as nk >>> time_passed_since_neurobox_loading = nk.time.get() >>> nk.time.reset() >>> time_passed_since_reset = nk.time.get() Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - time
9.253175
13.77929
0.671528
# Convert ints to arrays if needed if isinstance(duration, list) or isinstance(duration, np.ndarray): duration = np.array(duration) else: duration = np.array([duration]*len(events_onsets)) if isinstance(onset, list) or isinstance(onset, np.ndarray): onset = np.array(onset) else: onset = np.array([onset]*len(events_onsets)) if isinstance(data, list) or isinstance(data, np.ndarray) or isinstance(data, pd.Series): data = pd.DataFrame({"Signal": list(data)}) # Store durations duration_in_s = duration.copy() onset_in_s = onset.copy() # Convert to timepoints duration = duration*sampling_rate onset = onset*sampling_rate # Create the index if index is None: index = list(range(len(events_onsets))) else: if len(list(set(index))) != len(index): print("NeuroKit Warning: create_epochs(): events_names does not contain uniques names, replacing them by numbers.") index = list(range(len(events_onsets))) else: index = list(index) # Create epochs epochs = {} for event, event_onset in enumerate(events_onsets): epoch_onset = int(event_onset + onset[event]) epoch_end = int(event_onset+duration[event]+1) epoch = data[epoch_onset:epoch_end].copy() epoch.index = np.linspace(start=onset_in_s[event], stop=duration_in_s[event], num=len(epoch), endpoint=True) relative_time = np.linspace(start=onset[event], stop=duration[event], num=len(epoch), endpoint=True).astype(int).tolist() absolute_time = np.linspace(start=epoch_onset, stop=epoch_end, num=len(epoch), endpoint=True).astype(int).tolist() epoch["Epoch_Relative_Time"] = relative_time epoch["Epoch_Absolute_Time"] = absolute_time epochs[index[event]] = epoch return(epochs)
def create_epochs(data, events_onsets, sampling_rate=1000, duration=1, onset=0, index=None)
Epoching a dataframe. Parameters ---------- data : pandas.DataFrame Data*time. events_onsets : list A list of event onsets indices. sampling_rate : int Sampling rate (samples/second). duration : int or list Duration(s) of each epoch(s) (in seconds). onset : int Epoch onset(s) relative to events_onsets (in seconds). index : list Events names in order that will be used as index. Must contains uniques names. If not provided, will be replaced by event number. Returns ---------- epochs : dict dict containing all epochs. Example ---------- >>> import neurokit as nk >>> epochs = nk.create_epochs(data, events_onsets) Notes ---------- *Authors* - Dominique Makowski (https://github.com/DominiqueMakowski) *Dependencies* - numpy
2.287446
2.220774
1.030022
# values=RRis.copy() # value_times=beats_times.copy() # Preprocessing initial_index = value_times[0] value_times = np.array(value_times) - initial_index # fit a 3rd degree spline on the data. spline = scipy.interpolate.splrep(x=value_times, y=values, k=3, s=0) # s=0 guarantees that it will pass through ALL the given points x = np.arange(0, value_times[-1], 1) # Get the values indexed per time signal = scipy.interpolate.splev(x=x, tck=spline, der=0) # Transform to series signal = pd.Series(signal) signal.index = np.array(np.arange(initial_index, initial_index+len(signal), 1)) return(signal)
def interpolate(values, value_times, sampling_rate=1000)
3rd order spline interpolation. Parameters ---------- values : dataframe Values. value_times : list Time indices of values. sampling_rate : int Sampling rate (samples/second). Returns ---------- signal : pd.Series An array containing the values indexed by time. Example ---------- >>> import neurokit as nk >>> signal = interpolate([800, 900, 700, 500], [1000, 2000, 3000, 4000], sampling_rate=1000) >>> pd.Series(signal).plot() Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - scipy - pandas
4.659616
4.613018
1.010101
derivative = np.gradient(signal, 2) peaks = np.where(np.diff(np.sign(derivative)))[0] return(peaks)
def find_peaks(signal)
Locate peaks based on derivative. Parameters ---------- signal : list or array Signal. Returns ---------- peaks : array An array containing the peak indices. Example ---------- >>> signal = np.sin(np.arange(0, np.pi*10, 0.05)) >>> peaks = nk.find_peaks(signal) >>> nk.plot_events_in_signal(signal, peaks) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - scipy - pandas
3.213131
5.256818
0.611231
freqs = list(freqs) freqs_names = [] for freq in freqs: if freq < 1: freqs_names.append("UltraLow") elif freq <= 3: freqs_names.append("Delta") elif freq <= 7: freqs_names.append("Theta") elif freq <= 9: freqs_names.append("Alpha1/Mu") elif freq <= 12: freqs_names.append("Alpha2/Mu") elif freq <= 13: freqs_names.append("Beta1/Mu") elif freq <= 17: freqs_names.append("Beta1") elif freq <= 30: freqs_names.append("Beta2") elif freq <= 40: freqs_names.append("Gamma1") elif freq <= 50: freqs_names.append("Gamma2") else: freqs_names.append("UltraHigh") return(freqs_names)
def eeg_name_frequencies(freqs)
Name frequencies according to standart classifications. Parameters ---------- freqs : list or numpy.array list of floats containing frequencies to classify. Returns ---------- freqs_names : list Named frequencies Example ---------- >>> import neurokit as nk >>> >>> nk.eeg_name_frequencies([0.5, 1.5, 3, 5, 7, 15]) Notes ---------- *Details* - Delta: 1-3Hz - Theta: 4-7Hz - Alpha1: 8-9Hz - Alpha2: 10-12Hz - Beta1: 13-17Hz - Beta2: 18-30Hz - Gamma1: 31-40Hz - Gamma2: 41-50Hz - Mu: 8-13Hz *Authors* - Dominique Makowski (https://github.com/DominiqueMakowski) References ------------ - None
1.839735
1.621692
1.134454
picks = mne.pick_types(raw.info, include=eeg_select_electrodes(include=sensors_include, exclude=sensors_exclude), exclude="bads") if method == "multitaper": psds, freqs = mne.time_frequency.psd_multitaper(raw, fmin=fmin, fmax=fmax, low_bias=True, proj=proj, picks=picks) else: psds, freqs = mne.time_frequency.psd_welch(raw, fmin=fmin, fmax=fmax, proj=proj, picks=picks) tf = pd.DataFrame(psds) tf.columns = eeg_name_frequencies(freqs) tf = tf.mean(axis=0) mean_psd = {} for freq in ["UltraLow", "Delta", "Theta", "Alpha", "Alpha1", "Alpha2", "Mu", "Beta", "Beta1", "Beta2", "Gamma", "Gamma1", "Gamma2", "UltraHigh"]: mean_psd[freq] = tf[[freq in s for s in tf.index]].mean() mean_psd = pd.DataFrame.from_dict(mean_psd, orient="index").T return(mean_psd)
def eeg_psd(raw, sensors_include="all", sensors_exclude=None, fmin=0.016, fmax=60, method="multitaper", proj=False)
Compute Power-Spectral Density (PSD). Parameters ---------- raw : mne.io.Raw Raw EEG data. sensors_include : str Sensor area to include. See :func:`neurokit.eeg_select_sensors()`. sensors_exclude : str Sensor area to exclude. See :func:`neurokit.eeg_select_sensors()`. fmin : float Min frequency of interest. fmax: float Max frequency of interest. method : str "multitaper" or "welch". proj : bool add projectors. Returns ---------- mean_psd : pandas.DataFrame Averaged PSDs. Example ---------- >>> import neurokit as nk Notes ---------- *Details* - Delta: 1-3Hz - Theta: 4-7Hz - Alpha1: 8-9Hz - Alpha2: 10-12Hz - Beta1: 13-17Hz - Beta2: 18-30Hz - Gamma1: 31-40Hz - Gamma2: 41-50Hz - Mu: 8-13Hz *Authors* - Dominique Makowski (https://github.com/DominiqueMakowski) References ------------ - None
2.397727
2.454231
0.976977
if bands == "all" or bands == "All": bands = ["Delta", "Theta", "Alpha", "Beta", "Gamma", "Mu"] if "Alpha" in bands: bands.remove("Alpha") bands += ["Alpha1", "Alpha2"] if "Beta" in bands: bands.remove("Beta") bands += ["Beta1", "Beta2"] if "Gamma" in bands: bands.remove("Gamma") bands += ["Gamma1", "Gamma2"] frequencies = {} for band in bands: if band == "Delta": frequencies[band] = np.arange(1, 3+0.1, step) if band == "Theta": frequencies[band] = np.arange(4, 7+0.1, step) if band == "Alpha1": frequencies[band] = np.arange(8, 9+0.1, step) if band == "Alpha2": frequencies[band] = np.arange(10, 12+0.1, step) if band == "Beta1": frequencies[band] = np.arange(13, 17+0.1, step) if band == "Beta2": frequencies[band] = np.arange(18, 30+0.1, step) if band == "Gamma1": frequencies[band] = np.arange(31, 40+0.1, step) if band == "Gamma2": frequencies[band] = np.arange(41, 50+0.1, step) if band == "Mu": frequencies[band] = np.arange(8, 13+0.1, step) return(frequencies)
def eeg_create_frequency_bands(bands="all", step=1)
Delta: 1-3Hz Theta: 4-7Hz Alpha1: 8-9Hz Alpha2: 10-12Hz Beta1: 13-17Hz Beta2: 18-30Hz Gamma1: 31-40Hz Gamma2: 41-50Hz Mu: 8-13Hz
1.492875
1.27191
1.173727
median = np.median(var) mad = np.median(np.abs(var - median)) mad = mad*constant return(mad)
def mad(var, constant=1)
Median Absolute Deviation: a "robust" version of standard deviation. Parameters ---------- var : list or ndarray Value array. constant : float Scale factor. Use 1.4826 for results similar to default R. Returns ---------- mad : float The MAD. Example ---------- >>> import neurokit as nk >>> hrv = nk.mad([2, 8, 7, 5, 4, 12, 5, 1]) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - numpy References ----------- - https://en.wikipedia.org/wiki/Median_absolute_deviation
2.778168
5.134145
0.541116
df = pd.DataFrame(raw_scores) mean = df.mean(axis=0) sd = df.std(axis=0) z_scores = (df - mean)/sd return(z_scores)
def z_score(raw_scores, center=True, scale=True)
Transform an array, serie or list into Z scores (scaled and centered scores). Parameters ---------- raw_scores : list, ndarray or pandas.Series ECG signal array. centered : bool Center the array (mean = 0). scale : bool scale the array (sd = 1). Returns ---------- z_scores : pandas.DataFrame The normalized scores. Example ---------- >>> import neurokit as nk >>> >>> nk.z_score([3, 1, 2, 4, 6]) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - pandas
2.533976
3.839158
0.660034
outliers = [] mean = np.mean(data) std = np.std(data) for i in data: if abs(i - mean)/std < treshold: outliers.append(False) else: outliers.append(True) outliers = np.array(outliers) return (outliers)
def find_outliers(data, treshold=2.58)
Identify outliers (abnormal values) using the standart deviation. Parameters ---------- data : list or ndarray Data array treshold : float Maximum deviation (in terms of standart deviation). Rule of thumb of a gaussian distribution: 2.58 = rejecting 1%, 2.33 = rejecting 2%, 1.96 = 5% and 1.28 = rejecting 10%. Returns ---------- outliers : ndarray A list of True/False with True being the outliers. Example ---------- >>> import neurokit as nk >>> outliers = nk.find_outliers([1, 2, 1, 5, 666, 4, 1 ,3, 5]) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - numpy
2.025037
2.613572
0.774816
bottom = mean - sd*treshold top = mean + sd*treshold return(bottom, top)
def normal_range(mean, sd, treshold=1.28)
Returns a bottom and a top limit on a normal distribution portion based on a treshold. Parameters ---------- treshold : float maximum deviation (in terms of standart deviation). Rule of thumb of a gaussian distribution: 2.58 = keeping 99%, 2.33 = keeping 98%, 1.96 = 95% and 1.28 = keeping 90%. Returns ---------- (bottom, top) : tuple Lower and higher range. Example ---------- >>> import neurokit as nk >>> bottom, top = nk.normal_range(mean=100, sd=15, treshold=2) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_
3.66599
7.137011
0.513659
array = array[:] uniques = [] for i in range(len(array)): if i == 0: uniques.append(True) else: if array[i] == array[i-1]: uniques.append(False) else: uniques.append(True) return(uniques)
def find_following_duplicates(array)
Find the duplicates that are following themselves. Parameters ---------- array : list or ndarray A list containing duplicates. Returns ---------- uniques : list A list containing True for each unique and False for following duplicates. Example ---------- >>> import neurokit as nk >>> mylist = ["a","a","b","a","a","a","c","c","b","b"] >>> uniques = nk.find_following_duplicates(mylist) >>> indices = np.where(uniques) # Find indices of uniques Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - numpy
2.296646
2.940961
0.780917
if direction == "both": closest = min(array, key=lambda x:abs(x-number)) if direction == "smaller": if strictly is True: closest = max(x for x in array if x < number) else: closest = max(x for x in array if x <= number) if direction == "greater": if strictly is True: closest = min(filter(lambda x: x > number, array)) else: closest = min(filter(lambda x: x >= number, array)) return(closest)
def find_closest_in_list(number, array, direction="both", strictly=False)
Find the closest number in the array from x. Parameters ---------- number : float The number. array : list The list to look in. direction : str "both" for smaller or greater, "greater" for only greater numbers and "smaller" for the closest smaller. strictly : bool False for stricly superior or inferior or True for including equal. Returns ---------- closest : int The closest number in the array. Example ---------- >>> import neurokit as nk >>> nk.find_closest_in_list(1.8, [3, 5, 6, 1, 2]) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_
2.003633
2.544549
0.787422
emg = np.asarray(emg) tkeo = np.copy(emg) # Teager–Kaiser Energy operator tkeo[1:-1] = emg[1:-1]*emg[1:-1] - emg[:-2]*emg[2:] # correct the data in the extremities tkeo[0], tkeo[-1] = tkeo[1], tkeo[-2] return(tkeo)
def emg_tkeo(emg)
Calculates the Teager–Kaiser Energy operator. Parameters ---------- emg : array raw EMG signal. Returns ------- tkeo : 1D array_like signal processed by the Teager–Kaiser Energy operator. Notes ----- *Authors* - Marcos Duarte *See Also* See this notebook [1]_. References ---------- .. [1] https://github.com/demotu/BMC/blob/master/notebooks/Electromyography.ipynb
3.566987
2.918266
1.222296
r emg = emg_tkeo(emg) if np.size(freqs) == 2: # band-pass filter b, a = scipy.signal.butter(2, np.array(freqs)/(sampling_rate/2.), btype = 'bandpass') emg = scipy.signal.filtfilt(b, a, emg) if np.size(lfreq) == 1: # full-wave rectification envelope = abs(emg) # low-pass Butterworth filter b, a = scipy.signal.butter(2, np.array(lfreq)/(sampling_rate/2.), btype = 'low') envelope = scipy.signal.filtfilt(b, a, envelope) return (envelope)
def emg_linear_envelope(emg, sampling_rate=1000, freqs=[10, 400], lfreq=4)
r"""Calculate the linear envelope of a signal. Parameters ---------- emg : array raw EMG signal. sampling_rate : int Sampling rate (samples/second). freqs : list [fc_h, fc_l], optional cutoff frequencies for the band-pass filter (in Hz). lfreq : number, optional cutoff frequency for the low-pass filter (in Hz). Returns ------- envelope : array linear envelope of the signal. Notes ----- *Authors* - Marcos Duarte *See Also* See this notebook [1]_. References ---------- .. [1] https://github.com/demotu/BMC/blob/master/notebooks/Electromyography.ipynb
2.881984
2.963137
0.972612
n_above = n_above*sampling_rate n_below = n_below*sampling_rate envelope = np.atleast_1d(envelope).astype('float64') # deal with NaN's (by definition, NaN's are not greater than threshold) envelope[np.isnan(envelope)] = -np.inf # indices of data greater than or equal to threshold inds = np.nonzero(envelope >= threshold)[0] if inds.size: # initial and final indexes of continuous data inds = np.vstack((inds[np.diff(np.hstack((-np.inf, inds))) > n_below+1], \ inds[np.diff(np.hstack((inds, np.inf))) > n_below+1])).T # indexes of continuous data longer than or equal to n_above inds = inds[inds[:, 1]-inds[:, 0] >= n_above-1, :] if not inds.size: inds = np.array([]) # standardize inds shape inds = np.array(inds) activation = np.array([0]*len(envelope)) for i in inds: activation[i[0]:i[1]] = 1 return (activation)
def emg_find_activation(envelope, sampling_rate=1000, threshold=0, n_above=0.25, n_below=1)
Detects onset in data based on amplitude threshold. Parameters ---------- envelope : array Linear envelope of EMG signal. sampling_rate : int Sampling rate (samples/second). threshold : float minimum amplitude of `x` to detect. n_above : float minimum continuous time (in s) greater than or equal to `threshold` to detect (but see the parameter `n_below`). n_below : float minimum time (in s) below `threshold` that will be ignored in the detection of `x` >= `threshold`. Returns ------- activation : array With 1 when muscle activated and 0 when not. Notes ----- You might have to tune the parameters according to the signal-to-noise characteristic of the data. See this IPython Notebook [1]_. References ---------- .. [1] http://nbviewer.ipython.org/github/demotu/BMC/blob/master/notebooks/DetectOnset.ipynb
3.535918
3.683752
0.959869
rpeaks, = biosppy.ecg.hamilton_segmenter(np.array(signal), sampling_rate=sampling_rate) rpeaks, = biosppy.ecg.correct_rpeaks(signal=np.array(signal), rpeaks=rpeaks, sampling_rate=sampling_rate, tol=0.05) return(rpeaks)
def ecg_find_peaks(signal, sampling_rate=1000)
Find R peaks indices on the ECG channel. Parameters ---------- signal : list or ndarray ECG signal (preferably filtered). sampling_rate : int Sampling rate (samples/second). Returns ---------- rpeaks : list List of R-peaks location indices. Example ---------- >>> import neurokit as nk >>> Rpeaks = nk.ecg_find_peaks(signal) Notes ---------- *Authors* - the bioSSPy dev team (https://github.com/PIA-Group/BioSPPy) *Dependencies* - biosppy *See Also* - BioSPPY: https://github.com/PIA-Group/BioSPPy
3.404642
3.985469
0.854264
waves = np.array([""]*len(ecg)) waves[rpeaks] = "R" waves[t_waves_ends] = "T" systole = [0] current = 0 for index, value in enumerate(waves[1:]): if waves[index-1] == "R": current = 1 if waves[index-1] == "T": current = 0 systole.append(current) return(systole)
def ecg_systole(ecg, rpeaks, t_waves_ends)
Returns the localization of systoles and diastoles. Parameters ---------- ecg : list or ndarray ECG signal (preferably filtered). rpeaks : list or ndarray R peaks localization. t_waves_ends : list or ndarray T waves localization. Returns ---------- systole : ndarray Array indicating where systole (1) and diastole (0). Example ---------- >>> import neurokit as nk >>> systole = nk.ecg_systole(ecg, rpeaks, t_waves_ends) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Details* - **Systole/Diastole**: One prominent channel of body and brain communication is that conveyed by baroreceptors, pressure and stretch-sensitive receptors within the heart and surrounding arteries. Within each cardiac cycle, bursts of baroreceptor afferent activity encoding the strength and timing of each heartbeat are carried via the vagus and glossopharyngeal nerve afferents to the nucleus of the solitary tract. This is the principal route that communicates to the brain the dynamic state of the heart, enabling the representation of cardiovascular arousal within viscerosensory brain regions, and influence ascending neuromodulator systems implicated in emotional and motivational behaviour. Because arterial baroreceptors are activated by the arterial pulse pressure wave, their phasic discharge is maximal during and immediately after the cardiac systole, that is, when the blood is ejected from the heart, and minimal during cardiac diastole, that is, between heartbeats (Azevedo, 2017). References ----------- - Azevedo, R. T., Garfinkel, S. N., Critchley, H. D., & Tsakiris, M. (2017). Cardiac afferent activity modulates the expression of racial stereotypes. Nature communications, 8. - Edwards, L., Ring, C., McIntyre, D., & Carroll, D. (2001). Modulation of the human nociceptive flexion reflex across the cardiac cycle. Psychophysiology, 38(4), 712-718. - Gray, M. A., Rylander, K., Harrison, N. A., Wallin, B. G., & Critchley, H. D. (2009). Following one's heart: cardiac rhythms gate central initiation of sympathetic reflexes. Journal of Neuroscience, 29(6), 1817-1825.
2.863225
3.473675
0.824264
window_size = int(window_size*sampling_rate) lowpass = scipy.signal.butter(1, hfreq/(sampling_rate/2.0), 'low') highpass = scipy.signal.butter(1, lfreq/(sampling_rate/2.0), 'high') # TODO: Could use an actual bandpass filter ecg_low = scipy.signal.filtfilt(*lowpass, x=ecg) ecg_band = scipy.signal.filtfilt(*highpass, x=ecg_low) # Square (=signal power) of the first difference of the signal decg = np.diff(ecg_band) decg_power = decg**2 # Robust threshold and normalizator estimation thresholds = [] max_powers = [] for i in range(int(len(decg_power)/window_size)): sample = slice(i*window_size, (i+1)*window_size) d = decg_power[sample] thresholds.append(0.5*np.std(d)) max_powers.append(np.max(d)) threshold = 0.5*np.std(decg_power) threshold = np.median(thresholds) max_power = np.median(max_powers) decg_power[decg_power < threshold] = 0 decg_power = decg_power/max_power decg_power[decg_power > 1.0] = 1.0 square_decg_power = decg_power**2 # shannon_energy = -square_decg_power*np.log(square_decg_power) # This errors # shannon_energy[np.where(np.isfinite(shannon_energy) == False)] = 0.0 shannon_energy = -square_decg_power*np.log(square_decg_power.clip(min=1e-6)) shannon_energy[np.where(shannon_energy <= 0)] = 0.0 mean_window_len = int(sampling_rate*0.125+1) lp_energy = np.convolve(shannon_energy, [1.0/mean_window_len]*mean_window_len, mode='same') #lp_energy = scipy.signal.filtfilt(*lowpass2, x=shannon_energy) lp_energy = scipy.ndimage.gaussian_filter1d(lp_energy, sampling_rate/8.0) lp_energy_diff = np.diff(lp_energy) rpeaks = (lp_energy_diff[:-1] > 0) & (lp_energy_diff[1:] < 0) rpeaks = np.flatnonzero(rpeaks) rpeaks -= 1 return(rpeaks)
def segmenter_pekkanen(ecg, sampling_rate, window_size=5.0, lfreq=5.0, hfreq=15.0)
ECG R peak detection based on `Kathirvel et al. (2001) <http://link.springer.com/article/10.1007/s13239-011-0065-3/fulltext.html>`_ with some tweaks (mainly robust estimation of the rectified signal cutoff threshold). Parameters ---------- ecg : list or ndarray ECG signal array. sampling_rate : int Sampling rate (samples/second). window_size : float Ransac window size. lfreq : float Low frequency of the band pass filter. hfreq : float High frequency of the band pass filter. Returns ---------- rpeaks : ndarray R peaks location. Example ---------- >>> import neurokit as nk >>> rpeaks = nk.segmenter_pekkanen(ecg_signal, 1000) *Authors* - `Jami Pekkanen <https://github.com/jampekka>`_ - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - scipy - numpy *See Also* - rpeakdetect: https://github.com/tru-hy/rpeakdetect
2.565333
2.671913
0.960111
erp = {} data = eeg_to_df(eeg, index=index, include=include, exclude=exclude, hemisphere=hemisphere, central=central) for epoch_index, epoch in data.items(): # Segment according to window if isinstance(times, list): if isinstance(times[0], list): values = {} for window_index, window in enumerate(times): df = epoch[window[0]:window[1]] value = df.mean().mean() values[window_index] = value erp[epoch_index] = values else: df = epoch[times[0]:times[1]] value = df.mean().mean() erp[epoch_index] = [value] elif isinstance(times, tuple): values = {} for window_index, window in enumerate(times): df = epoch[window[0]:window[1]] if method == "max": value = df.mean().max() elif method == "min": value = df.mean().min() else: value = df.mean().mean() values[window_index] = value erp[epoch_index] = values else: df = epoch[0:] value = df.mean().mean() erp[epoch_index] = [value] # Convert to dataframe erp = pd.DataFrame.from_dict(erp, orient="index") if isinstance(names, str): names = [names] if len(names) == len(erp.columns): erp.columns = names return(erp)
def eeg_erp(eeg, times=None, index=None, include="all", exclude=None, hemisphere="both", central=True, verbose=True, names="ERP", method="mean")
DOCS INCOMPLETE :(
1.929082
1.926727
1.001222
# Preserve original all_epochs_current = all_epochs.copy() # Filter using Savitzky-Golay polynomial method if (filter_hfreq is not None) and (isinstance(filter_hfreq, int)): for participant, epochs in all_epochs_current.items(): all_epochs_current[participant] = epochs.savgol_filter(filter_hfreq, copy=True) # Crop if isinstance(times, list) and len(times) == 2: for participant, epochs in all_epochs_current.items(): all_epochs_current[participant] = epochs.copy().crop(times[0], times[1]) # Transform to evokeds all_evokeds = eeg_to_all_evokeds(all_epochs_current, conditions=conditions) data = {} for participant, epochs in all_evokeds.items(): for condition, epoch in epochs.items(): data[condition] = [] for participant, epochs in all_evokeds.items(): for condition, epoch in epochs.items(): data[condition].append(epoch) conditions = list(data.keys()) # Line styles if isinstance(linestyle, str): linestyle = [linestyle] * len(conditions) elif isinstance(linestyle, list) and len(linestyle) >= len(conditions): pass elif isinstance(linestyle, dict) and len(linestyle.keys()) >= len(conditions): linestyle = [linestyle[cond] for cond in conditions] else: print("NeuroKit Warning: plot_eeg_erp(): linestyle must be either a str, a list or a dict.") # Colors if isinstance(colors, str): colors = {condition: colors for condition in conditions} elif isinstance(colors, list) and len(colors) >= len(conditions): colors= {condition: colors[index] for index, condition in enumerate(conditions)} elif isinstance(colors, dict) and len(colors.keys()) >= len(conditions): pass elif colors is None: pass else: print("NeuroKit Warning: plot_eeg_erp(): colors must be either a str, a list, a dict or None.") # Modify styles styles = {} for index, condition in enumerate(conditions): styles[condition] = {"linewidth": linewidth, "linestyle": linestyle[index]} # Select electrodes picks = mne.pick_types(epoch.info, eeg=True, selection=eeg_select_electrodes(epoch, include=include, exclude=exclude, hemisphere=hemisphere, central=central)) # Plot try: plot = mne.viz.plot_compare_evokeds(data, picks=picks, colors=colors, styles=styles, title=name, gfp=gfp, ci=ci, invert_y=invert_y, ci_alpha=ci_alpha) except TypeError: print("NeuroKit Warning: plot_eeg_erp(): You're using a version of mne that does not support ci_alpha or ci_method parameters. Leaving defaults.") plot = mne.viz.plot_compare_evokeds(data, picks=picks, colors=colors, styles=styles, title=name, gfp=gfp, ci=ci, invert_y=invert_y) return(plot)
def plot_eeg_erp(all_epochs, conditions=None, times=None, include="all", exclude=None, hemisphere="both", central=True, name=None, colors=None, gfp=False, ci=0.95, ci_alpha=0.333, invert_y=False, linewidth=1, linestyle="-", filter_hfreq=None)
DOCS INCOMPLETE :(
2.206293
2.199164
1.003242
all_evokeds = eeg_to_all_evokeds(all_epochs) data = {} for participant, epochs in all_evokeds.items(): for cond, epoch in epochs.items(): data[cond] = [] for participant, epochs in all_evokeds.items(): for cond, epoch in epochs.items(): data[cond].append(epoch) if colors is not None: color_list = [] else: color_list = None evokeds = [] for condition, evoked in data.items(): grand_average = mne.grand_average(evoked) grand_average.comment = condition evokeds += [grand_average] if colors is not None: color_list.append(colors[condition]) plot = mne.viz.plot_evoked_topo(evokeds, background_color="w", color=color_list) return(plot)
def plot_eeg_erp_topo(all_epochs, colors=None)
Plot butterfly plot. DOCS INCOMPLETE :(
2.57373
2.553671
1.007855
if compress is True: with gzip.open(path + filename + "." + extension, 'wb') as name: pickle.dump(obj, name, protocol=compatibility) else: with open(path + filename + "." + extension, 'wb') as name: pickle.dump(obj, name, protocol=compatibility)
def save_nk_object(obj, filename="file", path="", extension="nk", compress=False, compatibility=-1)
Save whatever python object to a pickled file. Parameters ---------- file : object Whatever python thing (list, dict, ...). filename : str File's name. path : str File's path. extension : str File's extension. Default "nk" but can be whatever. compress: bool Enable compression using gzip. compatibility : int See :func:`pickle.dump`. Example ---------- >>> import neurokit as nk >>> obj = [1, 2] >>> nk.save_nk_object(obj, filename="myobject") Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - pickle - gzip
1.91628
2.296419
0.834464
filename = path + filename try: with open(filename, 'rb') as name: file = pickle.load(name) except pickle.UnpicklingError: with gzip.open(filename, 'rb') as name: file = pickle.load(name) except ModuleNotFoundError: # In case you're trying to unpickle a dataframe made with pandas < 0.17 try: file = pd.read_pickle(filename) except: pass return(file)
def read_nk_object(filename, path="")
Read a pickled file. Parameters ---------- filename : str Full file's name (with extension). path : str File's path. Example ---------- >>> import neurokit as nk >>> obj = [1, 2] >>> nk.save_nk_object(obj, filename="myobject") >>> loaded_obj = nk.read_nk_object("myobject.nk") Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ *Dependencies* - pickle - gzip
3.70378
4.568792
0.810669
if platform.system() == 'Windows': return(os.path.getctime(path)) else: stat = os.stat(path) try: return(stat.st_birthtime) except AttributeError: print("Neuropsydia error: get_creation_date(): We're probably on Linux. No easy way to get creation dates here, so we'll settle for when its content was last modified.") return(stat.st_mtime)
def find_creation_date(path)
Try to get the date that a file was created, falling back to when it was last modified if that's not possible. Parameters ---------- path : str File's path. Returns ---------- creation_date : str Time of file creation. Example ---------- >>> import neurokit as nk >>> import datetime >>> >>> creation_date = nk.find_creation_date(file) >>> creation_date = datetime.datetime.fromtimestamp(creation_date) Notes ---------- *Authors* - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ - Mark Amery *Dependencies* - platform - os *See Also* - http://stackoverflow.com/a/39501288/1709587
3.797024
3.628842
1.046346
from . import __version__ d = OrderedDict() d['Version'] = '%s' % __version__ for key, val in PyVisaLibrary.get_session_classes().items(): key_name = '%s %s' % (key[0].name.upper(), key[1]) try: d[key_name] = getattr(val, 'session_issue').split('\n') except AttributeError: d[key_name] = 'Available ' + val.get_low_level_info() return d
def get_debug_info()
Return a list of lines with backend info.
5.355957
5.166027
1.036765
session = None while session is None or session in self.sessions: session = random.randint(1000000, 9999999) self.sessions[session] = obj return session
def _register(self, obj)
Creates a random but unique session handle for a session object, register it in the sessions dictionary and return the value :param obj: a session object. :return: session handle :rtype: int
3.349382
2.740734
1.222075
logger.debug('%s%s -> %r', func.__name__, _args_to_str(arguments), ret_value, extra=self._logging_extra) try: ret_value = StatusCode(ret_value) except ValueError: pass self._last_status = ret_value # The first argument of almost all registered visa functions is a session. # We store the error code per session session = None if func.__name__ not in ('viFindNext', ): try: session = arguments[0] except KeyError: raise Exception('Function %r does not seem to be a valid ' 'visa function (len args %d)' % (func, len(arguments))) # Functions that use the first parameter to get a session value. if func.__name__ in ('viOpenDefaultRM', ): # noinspection PyProtectedMember session = session._obj.value if isinstance(session, integer_types): self._last_status_in_session[session] = ret_value else: # Functions that might or might have a session in the first argument. if func.__name__ not in ('viClose', 'viGetAttribute', 'viSetAttribute', 'viStatusDesc'): raise Exception('Function %r does not seem to be a valid ' 'visa function (type args[0] %r)' % (func, type(session))) if ret_value < 0: raise errors.VisaIOError(ret_value) if ret_value in self.issue_warning_on: if session and ret_value not in self._ignore_warning_in_session[session]: warnings.warn(errors.VisaIOWarning(ret_value), stacklevel=2) return ret_value
def _return_handler(self, ret_value, func, arguments)
Check return values for errors and warnings. TODO: THIS IS JUST COPIED PASTED FROM NIVisaLibrary. Needs to be adapted.
4.210368
3.999854
1.05263
try: sess = self.sessions[session] except KeyError: return constants.StatusCode.error_invalid_object return sess.clear()
def clear(self, session)
Clears a device. Corresponds to viClear function of the VISA library. :param session: Unique logical identifier to a session. :return: return value of the library call. :rtype: :class:`pyvisa.constants.StatusCode`
9.11718
6.331506
1.43997
try: return self.sessions[session].gpib_command(command_byte) except KeyError: return constants.StatusCode.error_invalid_object
def gpib_command(self, session, command_byte)
Write GPIB command byte on the bus. Corresponds to viGpibCommand function of the VISA library. See: https://linux-gpib.sourceforge.io/doc_html/gpib-protocol.html#REFERENCE-COMMAND-BYTES :param command_byte: command byte to send :type command_byte: int, must be [0 255] :return: return value of the library call :rtype: :class:`pyvisa.constants.StatusCode`
6.69687
6.352597
1.054194
try: return self.sessions[session].assert_trigger(protocol) except KeyError: return constants.StatusCode.error_invalid_object
def assert_trigger(self, session, protocol)
Asserts software or hardware trigger. Corresponds to viAssertTrigger function of the VISA library. :param session: Unique logical identifier to a session. :param protocol: Trigger protocol to use during assertion. (Constants.PROT*) :return: return value of the library call. :rtype: :class:`pyvisa.constants.StatusCode`
10.127504
6.620013
1.529831