code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
handler = WSGIHandler()
try:
from django.contrib.staticfiles.handlers import StaticFilesHandler
except ImportError:
return handler
use_static_handler = options.get('use_static_handler', True)
insecure_serving = options.get('insecure_serving', False)
if (settings.DEBUG and use_static_handler or
(use_static_handler and insecure_serving)):
handler = StaticFilesHandler(handler)
return handler
|
def get_handler(self, *args, **options)
|
Returns the django.contrib.staticfiles handler.
| 2.648917 | 2.407609 | 1.100227 |
for handler, pattern in self.handlers:
no_channel = not pattern and not socket.channels
if self.name.endswith("subscribe") and pattern:
matches = [pattern.match(args[0])]
else:
matches = [pattern.match(c) for c in socket.channels if pattern]
if no_channel or filter(None, matches):
handler(request, socket, context, *args)
|
def send(self, request, socket, context, *args)
|
When an event is sent, run all relevant handlers. Relevant
handlers are those without a channel pattern when the given
socket is not subscribed to any particular channel, or the
handlers with a channel pattern that matches any of the
channels that the given socket is subscribed to.
In the case of subscribe/unsubscribe, match the channel arg
being sent to the channel pattern.
| 4.847256 | 4.148442 | 1.168452 |
context = {"rooms": ChatRoom.objects.all()}
return render(request, template, context)
|
def rooms(request, template="rooms.html")
|
Homepage - lists all rooms.
| 3.14245 | 2.81094 | 1.117936 |
context = {"room": get_object_or_404(ChatRoom, slug=slug)}
return render(request, template, context)
|
def room(request, slug, template="room.html")
|
Show a room.
| 2.43496 | 2.222161 | 1.095762 |
name = request.POST.get("name")
if name:
room, created = ChatRoom.objects.get_or_create(name=name)
return redirect(room)
return redirect(rooms)
|
def create(request)
|
Handles post from the "Add room" form on the homepage, and
redirects to the new room.
| 3.269981 | 3.127995 | 1.045392 |
if isinstance(color, tuple) and len(color) == 3: # already a tuple of RGB values
return color
try:
import matplotlib.colors as mplcolors
except:
raise ImportError("Error importing matplotlib. If running from within a jupyter notebook, try calling '%matplotlib inline' beforehand.")
try:
hexcolor = mplcolors.cnames[color]
except KeyError:
raise AttributeError("Color not recognized in matplotlib.")
hexcolor = hexcolor.lstrip('#')
lv = len(hexcolor)
return tuple(int(hexcolor[i:i + lv // 3], 16)/255. for i in range(0, lv, lv // 3))
|
def get_color(color)
|
Takes a string for a color name defined in matplotlib and returns of a 3-tuple of RGB values.
Will simply return passed value if it's a tuple of length three.
Parameters
----------
color : str
Name of matplotlib color to calculate RGB values for.
| 3.211849 | 3.15154 | 1.019136 |
try:
from matplotlib.collections import LineCollection
from matplotlib.colors import LinearSegmentedColormap
import numpy as np
except:
raise ImportError("Error importing matplotlib and/or numpy. Plotting functions not available. If running from within a jupyter notebook, try calling '%matplotlib inline' beforehand.")
if glow:
glow = False
kwargs["lw"] = 1
fl1 = fading_line(x, y, color, alpha_initial, alpha_final, glow=False, **kwargs)
kwargs["lw"] = 2
alpha_initial *= 0.5
alpha_final *= 0.5
fl2 = fading_line(x, y, color, alpha_initial, alpha_final, glow=False, **kwargs)
kwargs["lw"] = 6
alpha_initial *= 0.5
alpha_final *= 0.5
fl3 = fading_line(x, y, color, alpha_initial, alpha_final, glow=False, **kwargs)
return [fl3,fl2,fl1]
color = get_color(color)
cdict = {'red': ((0.,color[0],color[0]),(1.,color[0],color[0])),
'green': ((0.,color[1],color[1]),(1.,color[1],color[1])),
'blue': ((0.,color[2],color[2]),(1.,color[2],color[2])),
'alpha': ((0.,alpha_initial, alpha_initial), (1., alpha_final, alpha_final))}
Npts = len(x)
if len(y) != Npts:
raise AttributeError("x and y must have same dimension.")
segments = np.zeros((Npts-1,2,2))
segments[0][0] = [x[0], y[0]]
for i in range(1,Npts-1):
pt = [x[i], y[i]]
segments[i-1][1] = pt
segments[i][0] = pt
segments[-1][1] = [x[-1], y[-1]]
individual_cm = LinearSegmentedColormap('indv1', cdict)
lc = LineCollection(segments, cmap=individual_cm, **kwargs)
lc.set_array(np.linspace(0.,1.,len(segments)))
return lc
|
def fading_line(x, y, color='black', alpha_initial=1., alpha_final=0., glow=False, **kwargs)
|
Returns a matplotlib LineCollection connecting the points in the x and y lists, with a single color and alpha varying from alpha_initial to alpha_final along the line.
Can pass any kwargs you can pass to LineCollection, like linewidgth.
Parameters
----------
x : list or array of floats for the positions on the (plot's) x axis
y : list or array of floats for the positions on the (plot's) y axis
color : matplotlib color for the line. Can also pass a 3-tuple of RGB values (default: 'black')
alpha_initial: Limiting value of alpha to use at the beginning of the arrays.
alpha_final: Limiting value of alpha to use at the end of the arrays.
| 2.127546 | 2.159368 | 0.985263 |
if t>self.tmax or t<self.tmin:
raise ValueError("Requested time outside of baseline stored in binary file.")
# Bisection method
l = 0
r = len(self)
while True:
bi = l+(r-l)//2
if self.t[bi]>t:
r = bi
else:
l = bi
if r-1<=l:
bi = l
break
return bi, self.t[bi]
|
def _getSnapshotIndex(self, t)
|
Return the index for the snapshot just before t
| 4.552226 | 4.4973 | 1.012213 |
if mode not in ['snapshot', 'close', 'exact']:
raise AttributeError("Unknown mode.")
bi, bt = self._getSnapshotIndex(t)
sim = Simulation()
w = c_int(0)
clibrebound.reb_create_simulation_from_simulationarchive_with_messages(byref(sim),byref(self),bi,byref(w))
# Restore function pointers and any additional setup required by the user/reboundx provided functions
if self.setup:
self.setup(sim, *self.setup_args)
if self.rebxfilename:
import reboundx
rebx = reboundx.Extras.from_file(sim, self.rebxfilename)
if mode=='snapshot':
if sim.integrator=="whfast" and sim.ri_whfast.safe_mode == 1:
keep_unsynchronized = 0
sim.ri_whfast.keep_unsynchronized = keep_unsynchronized
sim.integrator_synchronize()
return sim
else:
if mode=='exact':
keep_unsynchronized==0
if sim.integrator=="whfast" and sim.ri_whfast.safe_mode == 1:
keep_unsynchronized = 0
sim.ri_whfast.keep_unsynchronized = keep_unsynchronized
exact_finish_time = 1 if mode=='exact' else 0
sim.integrate(t,exact_finish_time=exact_finish_time)
return sim
|
def getSimulation(self, t, mode='snapshot', keep_unsynchronized=1)
|
This function returns a simulation object at (or close to) the requested time `t`.
Everytime this function is called a new simulation object is created.
Arguments
---------
t : float
Requested time. Needs to be within tmin and tmax of this Simulation Archive.
mode : str
This argument determines how close the simulation should be to the requested time.
There are three options.
- 'snapshot' This loads a nearby snapshot such that sim.t<t. This is the default.
- 'close' This integrates the simulation to get to the time t but may overshoot by at most one timestep sim.dt.
- 'exact' This integrates the simulation to exactly time t. This is not compatible with keep_unsynchronized=1.
keep_unsynchronized : int
By default this argument is 1. This means that if the simulation had to be synchronized to generate this output, then it will nevertheless use the unsynchronized values if one integrates the simulation further in time. This is important for exact (bit-by-bit) reproducibility. If the value of this argument is 0, then one can modify the particles coordinates and these changes are taken into account when integrating the simulation further in time.
Returns
-------
A rebound.Simulation object. Everytime the function gets called
a new object gets created.
Examples
--------
Here is a simple example on how to load a simulation from a
Simulation Archive file with the `getSimulation` method.
As the `mode` argument is set to `close`, the simulation
will be integrated from the nearest snapshot to the request time.
>>> sa = rebound.SimulationArchive("archive.bin")
>>> sim = sa.getSimulation(t=1e6, mode="close")
>>> print(sim.particles[1])
>>> for sim in sa:
>>> print(sim.t, sim.particles[1].e)
| 5.395493 | 5.544243 | 0.97317 |
for t in times:
yield self.getSimulation(t, **kwargs)
|
def getSimulations(self, times, **kwargs)
|
A generator to quickly access many simulations.
The arguments are the same as for `getSimulation`.
| 4.173199 | 3.288859 | 1.268889 |
import numpy as np
Npoints = len(self)*3-2
if len(self)<=1:
raise Runtim
Nparticles = self[0].N
verts = np.zeros((Npoints,Nparticles,2))
xy = np.zeros((len(self),Nparticles,2))
if origin=="com":
origin = -2
elif origin is not None:
try:
origin = int(origin)
except:
raise AttributeError("Cannot parse origin")
if origin<0 or origin>=Nparticles:
raise AttributeError("Origin index out of range")
for i, sim in enumerate(self):
if origin is None:
shift = (0,0,0,0)
elif origin == -2:
sp = sim.calculate_com()
shift = (sp.x,sp.y,sp.vx,sp.vy)
else:
sp = sim.particles[origin]
shift = (sp.x,sp.y,sp.vx,sp.vy)
for j in range(sim.N):
p = sim.particles[j]
if i==0:
verts[0,j] = p.x-shift[0],p.y-shift[1]
verts[1,j] = p.vx-shift[2], p.vy-shift[3]
else:
dt = sim.t-tlast # time since last snapshot
verts[-2+i*3,j] = verts[-2+i*3,j]*dt/3.+verts[-3+i*3,j]
verts[ 0+i*3,j] = p.x-shift[0],p.y-shift[1]
verts[-1+i*3,j] = -p.vx+shift[2], -p.vy+shift[3]
verts[-1+i*3,j] = verts[-1+i*3+0,j]*dt/3.+verts[ 0+i*3,j]
if i!=len(self)-1:
verts[+1+i*3,j] = p.vx-shift[2], p.vy-shift[3]
xy[i,j] = p.x,p.y
tlast = sim.t
codes = np.full(Npoints,4,dtype=np.uint8) # Hardcoded 4 = matplotlib.path.Path.CURVE4
codes[0] = 1 # Hardcoded 1 = matplotlib.path.Path.MOVETO
return verts, codes
|
def getBezierPaths(self,origin=None)
|
This function returns array that can be used as a Cubic Bezier
Path in matplotlib.
The function returns two arrays, the first one contains
the verticies for each particles and has the shape
(Nvert, Nparticles, 2) where Nvert is the number of verticies.
The second array returned describes the type of verticies to be
used with matplotlib's Patch class.
Arguments
---------
origin : multiple, optional
If `origin` is None (default), then none of the
coordinates are shifted. If `origin` is an integer
then the particle with that index is used as the
origin. if `origin` is equal to `com`, then the
centre of mass is used as the origin.
Examples
--------
The following example reads in a SimulationArchive and plots
the trajectories as Cubic Bezier Curves. It also plots the
actual datapoints stored in the SimulationArchive.
Note that the SimulationArchive needs to have enough
datapoints to allow for smooth and reasonable orbits.
>>> from matplotlib.path import Path
>>> import matplotlib.patches as patches
>>> sa = rebound.SimulationArchive("test.bin")
>>> verts, codes = sa.getBezierPaths(origin=0)
>>> fig, ax = plt.subplots()
>>> for j in range(sa[0].N):
>>> path = Path(verts[:,j,:], codes)
>>> patch = patches.PathPatch(path, facecolor='none')
>>> ax.add_patch(patch)
>>> ax.scatter(verts[::3,j,0],verts[::3,j,1])
>>> ax.set_aspect('equal')
>>> ax.autoscale_view()
| 2.932801 | 2.791596 | 1.050582 |
np = Particle()
memmove(byref(np), byref(self), sizeof(self))
return np
|
def copy(self)
|
Returns a deep copy of the particle. The particle is not added to any simulation by default.
| 9.116388 | 5.591738 | 1.630332 |
if not self._sim:
# Particle not in a simulation
if primary is None:
raise ValueError("Particle does not belong to any simulation and no primary given. Cannot calculate orbit.")
if G is None:
raise ValueError("Particle does not belong to any simulation and G not given. Cannot calculate orbit.")
else:
G = c_double(G)
else:
# First check whether this is particles[0]
clibrebound.reb_get_particle_index.restype = c_int
index = clibrebound.reb_get_particle_index(byref(self)) # first check this isn't particles[0]
if index == 0 and primary is None:
raise ValueError("Orbital elements for particle[0] not implemented unless primary is provided")
if primary is None: # Use default, i.e., Jacobi coordinates
clibrebound.reb_get_jacobi_com.restype = Particle # now return jacobi center of mass
primary = clibrebound.reb_get_jacobi_com(byref(self))
G = c_double(self._sim.contents.G)
err = c_int()
clibrebound.reb_tools_particle_to_orbit_err.restype = rebound.Orbit
o = clibrebound.reb_tools_particle_to_orbit_err(G, self, primary, byref(err))
if err.value == 1:
raise ValueError("Primary has no mass.")
if err.value == 2:
raise ValueError("Particle and primary positions are the same.")
return o
|
def calculate_orbit(self, primary=None, G=None)
|
Returns a rebound.Orbit object with the keplerian orbital elements
corresponding to the particle around the passed primary
(rebound.Particle) If no primary is passed, defaults to Jacobi coordinates
(with mu = G*Minc, where Minc is the total mass from index 0 to the particle's index, inclusive).
Examples
--------
>>> sim = rebound.Simulation()
>>> sim.add(m=1.)
>>> sim.add(x=1.,vy=1.)
>>> orbit = sim.particles[1].calculate_orbit(sim.particles[0])
>>> print(orbit.e) # gives the eccentricity
Parameters
----------
primary : rebound.Particle
Central body (Optional. Default uses Jacobi coordinates)
G : float
Gravitational constant (Optional. Default takes G from simulation in which particle is in)
Returns
-------
A rebound.Orbit object
| 4.81449 | 4.313882 | 1.116046 |
pts = []
if primary is None:
primary = self.jacobi_com
o = self.calculate_orbit(primary=primary)
if timespan is None:
if o.a < 0.: # hyperbolic orbit
timespan = 2*math.pi*o.d/o.v # rough time to cross display box
else:
timespan = o.P
lim_phase = abs(o.n)*timespan # n is negative for hyperbolic orbits
if trailing is True:
lim_phase *= -1 # sample phase backwards from current value
phase = [lim_phase*i/(Npts-1) for i in range(Npts)]
for i,ph in enumerate(phase):
if useTrueAnomaly is True:
newp = Particle(a=o.a, f=o.f+ph, inc=o.inc, omega=o.omega, Omega=o.Omega, e=o.e, m=self.m, primary=primary, simulation=self._sim.contents)
else:
newp = Particle(a=o.a, M=o.M+ph, inc=o.inc, omega=o.omega, Omega=o.Omega, e=o.e, m=self.m, primary=primary, simulation=self._sim.contents)
pts.append(newp.xyz)
return pts
|
def sample_orbit(self, Npts=100, primary=None, trailing=True, timespan=None, useTrueAnomaly=True)
|
Returns a nested list of xyz positions along the osculating orbit of the particle.
If primary is not passed, returns xyz positions along the Jacobi osculating orbit
(with mu = G*Minc, where Minc is the total mass from index 0 to the particle's index, inclusive).
Parameters
----------
Npts : int, optional
Number of points along the orbit to return (default: 100)
primary : rebound.Particle, optional
Primary to use for the osculating orbit (default: Jacobi center of mass)
trailing: bool, optional
Whether to return points stepping backwards in time (True) or forwards (False). (default: True)
timespan: float, optional
Return points (for the osculating orbit) from the current position to timespan (forwards or backwards in time depending on trailing keyword).
Defaults to the orbital period for bound orbits, and to the rough time it takes the orbit to move by the current distance from the primary for a hyperbolic orbit. Implementation currently only supports this option if useTrueAnomaly=False.
useTrueAnomaly: bool, optional
Will sample equally spaced points in true anomaly if True, otherwise in mean anomaly.
Latter might be better for hyperbolic orbits, where true anomaly can stay near the limiting value for a long time, and then switch abruptly at pericenter. (Default: True)
| 4.303813 | 3.911779 | 1.100219 |
if simp==None:
simp = self.simp
if self.autorefresh==0 and isauto==1:
return
sim = simp.contents
size_changed = clibrebound.reb_display_copy_data(simp)
clibrebound.reb_display_prepare_data(simp,c_int(self.orbits))
if sim.N>0:
self.particle_data = (c_char * (4*7*sim.N)).from_address(sim.display_data.contents.particle_data).raw
if self.orbits:
self.orbit_data = (c_char * (4*9*(sim.N-1))).from_address(sim.display_data.contents.orbit_data).raw
if size_changed:
#TODO: Implement better GPU size change
pass
if self.useroverlay==True:
self.overlay = "REBOUND (%s), N=%d, t=%g"%(sim.integrator,sim.N,sim.t)
elif self.useroverlay==None or self.useroverlay==False:
self.overlay = ""
else:
self.overlay = self.useroverlay + ", N=%d, t=%g"%(sim.N,sim.t)
self.N = sim.N
self.t = sim.t
self.count += 1
|
def refresh(self, simp=None, isauto=0)
|
Manually refreshes a widget.
Note that this function can also be called using the wrapper function of
the Simulation object: sim.refreshWidgets().
| 4.456234 | 4.43067 | 1.00577 |
self.archive = archive
if resetCounter:
self.screenshotcountall = 0
self.screenshotprefix = prefix
self.screenshotcount = 0
self.overlay = "REBOUND"
self.screenshot = ""
if archive is None:
if times is None:
times = self.simp.contents.t
try:
# List
len(times)
except:
# Float:
times = [times]
self.times = times
self.observe(savescreenshot,names="screenshot")
self.simp.contents.integrate(times[0])
self.screenshotcount += 1 # triggers first screenshot
else:
if times is None:
raise ValueError("Need times argument for archive mode.")
try:
len(times)
except:
raise ValueError("Need a list of times for archive mode.")
self.times = times
self.mode = mode
self.observe(savescreenshot,names="screenshot")
sim = archive.getSimulation(times[0],mode=mode)
self.refresh(pointer(sim))
self.screenshotcount += 1
|
def takeScreenshot(self, times=None, prefix="./screenshot", resetCounter=False, archive=None,mode="snapshot")
|
Take one or more screenshots of the widget and save the images to a file.
The images can be used to create a video.
This function cannot be called multiple times within one cell.
Note: this is a new feature and might not work on all systems.
It was tested on python 2.7.10 and 3.5.2 on MacOSX.
Parameters
----------
times : (float, list), optional
If this argument is not given a screenshot of the widget will be made
as it is (without integrating the simulation). If a float is given, then the
simulation will be integrated to that time and then a screenshot will
be taken. If a list of floats is given, the simulation will be integrated
to each time specified in the array. A separate screenshot for
each time will be saved.
prefix : (str), optional
This string will be part of the output filename for each image.
Follow by a five digit integer and the suffix .png. By default the
prefix is './screenshot' which outputs images in the current
directory with the filnames screenshot00000.png, screenshot00001.png...
Note that the prefix can include a directory.
resetCounter : (bool), optional
Resets the output counter to 0.
archive : (rebound.SimulationArchive), optional
Use a REBOUND SimulationArchive. Thus, instead of integratating the
Simulation from the current time, it will use the SimulationArchive
to load a snapshot. See examples for usage.
mode : (string), optional
Mode to use when querying the SimulationArchive. See SimulationArchive
documentation for details. By default the value is "snapshot".
Examples
--------
First, create a simulation and widget. All of the following can go in
one cell.
>>> sim = rebound.Simulation()
>>> sim.add(m=1.)
>>> sim.add(m=1.e-3,x=1.,vy=1.)
>>> w = sim.getWidget()
>>> w
The widget should show up. To take a screenshot, simply call
>>> w.takeScreenshot()
A new file with the name screenshot00000.png will appear in the
current directory.
Note that the takeScreenshot command needs to be in a separate cell,
i.e. after you see the widget.
You can pass an array of times to the function. This allows you to
take multiple screenshots, for example to create a movie,
>>> times = [0,10,100]
>>> w.takeScreenshot(times)
| 5.470926 | 5.624726 | 0.972657 |
i = self._coordinates
for name, _i in COORDINATES.items():
if i==_i:
return name
return i
|
def coordinates(self)
|
Get or set the internal coordinate system.
Available coordinate systems are:
- ``'jacobi'`` (default)
- ``'democraticheliocentric'``
- ``'whds'``
| 9.348881 | 10.450334 | 0.894601 |
warnings.warn( "rebound.Simulation.from_archive(filename,snapshot) is deprecated and will be removed in the future. Use rebound.Simulation(filename,snapshot) instead", FutureWarning)
return cls(filename=filename,snapshot=snapshot)
|
def from_archive(cls, filename,snapshot=-1)
|
rebound.Simulation.from_archive(filename,snapshot) is deprecated and will be removed in the futute. Use rebound.Simulation(filename,snapshot) instead
| 3.988977 | 2.234042 | 1.785543 |
w = c_int(0)
sim = Simulation()
clibrebound._reb_copy_simulation_with_messages(byref(sim),byref(self),byref(w))
for majorerror, value, message in BINARY_WARNINGS:
if w.value & value:
if majorerror:
raise RuntimeError(message)
else:
# Just a warning
warnings.warn(message, RuntimeWarning)
return sim
|
def copy(self)
|
Returns a deep copy of a REBOUND simulation. You need to reset
any function pointers on the copy.
Returns
-------
A rebound.Simulation object.
| 9.344072 | 8.416058 | 1.110267 |
from .widget import Widget # ondemand
from ipywidgets import DOMWidget
from IPython.display import display, HTML
if not hasattr(self, '_widgets'):
self._widgets = []
def display_heartbeat(simp):
for w in self._widgets:
w.refresh(simp,isauto=1)
self.visualization = VISUALIZATIONS["webgl"]
clibrebound.reb_display_init_data(byref(self));
self._dhbf = AFF(display_heartbeat)
self._display_heartbeat = self._dhbf
display(HTML(Widget.getClientCode())) # HACK! Javascript should go into custom.js
newWidget = Widget(self,**kwargs)
self._widgets.append(newWidget)
newWidget.refresh(isauto=0)
return newWidget
|
def getWidget(self,**kwargs)
|
Wrapper function that returns a new widget attached to this simulation.
Widgets provide real-time 3D visualizations from within an Jupyter notebook.
See the Widget class for more details on the possible arguments.
Arguments
---------
All arguments passed to this wrapper function will be passed to /Widget class.
Returns
-------
A rebound.Widget object.
Examples
--------
>>> sim = rebound.Simulation()
>>> sim.add(m=1.)
>>> sim.add(m=1.e-3,x=1.,vy=1.)
>>> sim.getWidget()
| 11.118963 | 11.472612 | 0.969174 |
if hasattr(self, '_widgets'):
for w in self._widgets:
w.refresh(isauto=0)
else:
raise RuntimeError("No widgets found")
|
def refreshWidgets(self)
|
This function manually refreshed all widgets attached to this simulation.
You want to call this function if any particle data has been manually changed.
| 6.784305 | 6.732412 | 1.007708 |
modes = sum(1 for i in [interval, walltime,step] if i != None)
if modes != 1:
raise AttributeError("Need to specify either interval, walltime, or step")
if deletefile and os.path.isfile(filename):
os.remove(filename)
if interval:
clibrebound.reb_simulationarchive_automate_interval(byref(self), c_char_p(filename.encode("ascii")), c_double(interval))
if walltime:
clibrebound.reb_simulationarchive_automate_walltime(byref(self), c_char_p(filename.encode("ascii")), c_double(walltime))
if step:
clibrebound.reb_simulationarchive_automate_step(byref(self), c_char_p(filename.encode("ascii")), c_ulonglong(step))
self.process_messages()
|
def automateSimulationArchive(self, filename, interval=None, walltime=None, step=None, deletefile=False)
|
This function automates taking snapshots during a simulationusing the Simulation Archive.
Instead of using this function, one can also call simulationarchive_snapshot() manually
to create snapshots.
Arguments
---------
filename : str
Filename of the binary file.
interval : float
Interval between outputs in code units.
walltime : float
Interval between outputs in wall time (seconds).
Useful when using IAS15 with adaptive timesteps.
step : int
Interval between outputs in number of timesteps.
Useful when outputs need to be spaced exactly.
Examples
--------
The following example creates a simulation, then
initializes the Simulation Archive and integrates
it forward in time.
>>> sim = rebound.Simulation()
>>> sim.add(m=1.)
>>> sim.add(m=1.e-3,x=1.,vy=1.)
>>> sim.automateSimulationArchive("sa.bin",interval=1000.)
>>> sim.integrate(1e8)
The SimulationArchive can later be read in using the following syntax:
>>> sa = rebound.SimulationArchive("sa.bin")
>>> sim = sa[0] # get the first snapshot in the SA file (initial conditions)
>>> sim = sa[-1] # get the last snapshot in the SA file
| 2.426007 | 2.971781 | 0.816348 |
clibrebound.reb_simulationarchive_snapshot(byref(self), c_char_p(filename.encode("ascii")))
|
def simulationarchive_snapshot(self, filename)
|
Take a snapshot and save it to a SimulationArchive file.
If the file does not exist yet, a new one will be created.
If the file does exist, a snapshot will be appended.
Arguments
---------
filename : str
Filename of the binary file.
| 7.288963 | 10.762334 | 0.677266 |
from rebound import __version__, __build__
s= ""
s += "---------------------------------\n"
s += "REBOUND version: \t%s\n" %__version__
s += "REBOUND built on: \t%s\n" %__build__
s += "Number of particles: \t%d\n" %self.N
s += "Selected integrator: \t" + self.integrator + "\n"
s += "Simulation time: \t%.16e\n" %self.t
s += "Current timestep: \t%f\n" %self.dt
if self.N>0:
s += "---------------------------------\n"
for p in self.particles:
s += str(p) + "\n"
s += "---------------------------------"
print(s)
|
def status(self)
|
Prints a summary of the current status
of the simulation.
| 3.139601 | 2.988282 | 1.050637 |
i = self._integrator
for name, _i in INTEGRATORS.items():
if i==_i:
return name
return i
|
def integrator(self)
|
Get or set the intergrator module.
Available integrators are:
- ``'ias15'`` (default)
- ``'whfast'``
- ``'sei'``
- ``'leapfrog'``
- ``'janus'``
- ``'mercurius'``
- ``'bs'``
- ``'none'``
Check the online documentation for a full description of each of the integrators.
| 7.266043 | 7.537865 | 0.963939 |
i = self._boundary
for name, _i in BOUNDARIES.items():
if i==_i:
return name
return i
|
def boundary(self)
|
Get or set the boundary module.
Available boundary modules are:
- ``'none'`` (default)
- ``'open'``
- ``'periodic'``
- ``'shear'``
Check the online documentation for a full description of each of the modules.
| 9.508259 | 11.815009 | 0.804761 |
i = self._gravity
for name, _i in GRAVITIES.items():
if i==_i:
return name
return i
|
def gravity(self)
|
Get or set the gravity module.
Available gravity modules are:
- ``'none'``
- ``'basic'`` (default)
- ``'compensated'``
- ``'tree'``
Check the online documentation for a full description of each of the modules.
| 9.675379 | 10.675131 | 0.906348 |
i = self._collision
for name, _i in COLLISIONS.items():
if i==_i:
return name
return i
|
def collision(self)
|
Get or set the collision module.
Available collision modules are:
- ``'none'`` (default)
- ``'direct'``
- ``'tree'``
- ``'mercurius'``
- ``'direct'``
Check the online documentation for a full description of each of the modules.
| 8.77113 | 10.134928 | 0.865436 |
return {'length':hash_to_unit(self.python_unit_l), 'mass':hash_to_unit(self.python_unit_m), 'time':hash_to_unit(self.python_unit_t)}
|
def units(self)
|
Tuple of the units for length, time and mass. Can be set in any order, and strings are not case-sensitive. See ipython_examples/Units.ipynb for more information. You can check the units' exact values and add Additional units in rebound/rebound/units.py. Units should be set before adding particles to the simulation (will give error otherwise).
Currently supported Units
-------------------------
Times:
Hr : Hours
Yr : Julian years
Jyr : Julian years
Sidereal_yr : Sidereal year
Yr2pi : Year divided by 2pi, with year defined as orbital period of planet at 1AU around 1Msun star
Kyr : Kiloyears (Julian)
Myr : Megayears (Julian)
Gyr : Gigayears (Julian)
Lengths:
M : Meters
Cm : Centimeters
Km : Kilometers
AU : Astronomical Units
Masses:
Kg : Kilograms
Msun : Solar masses
Mmercury : Mercury masses
Mvenus : Venus masses
Mearth : Earth masses
Mmars : Mars masses
Mjupiter : Jupiter masses
Msaturn : Saturn masses
Muranus : Neptune masses
Mpluto : Pluto masses
Examples
--------
>>> sim = rebound.Simulation()
>>> sim.units = ('yr', 'AU', 'Msun')
| 5.048948 | 4.85325 | 1.040323 |
raise AttributeError("Must set sim.units before calling convert_particle_units in order to know what units to convert from.")
new_l, new_t, new_m = check_units(args)
for p in self.particles:
units_convert_particle(p, hash_to_unit(self.python_unit_l), hash_to_unit(self.python_unit_t), hash_to_unit(self.python_unit_m), new_l, new_t, new_m)
self.update_units((new_l, new_t, new_m))
|
def convert_particle_units(self, *args):
if self.python_unit_l == 0 or self.python_unit_m == 0 or self.python_unit_t == 0
|
Will convert the units for the simulation (i.e. convert G) as well as the particles' cartesian elements.
Must have set sim.units ahead of calling this function so REBOUND knows what units to convert from.
Parameters
----------
3 strings corresponding to units of time, length and mass. Can be in any order and aren't case sensitive. You can add new units to rebound/rebound/units.py
| 3.815821 | 3.421046 | 1.115396 |
cur_var_config_N = self.var_config_N
if order==1:
index = clibrebound.reb_add_var_1st_order(byref(self),c_int(testparticle))
elif order==2:
if first_order is None:
raise AttributeError("Please specify corresponding first order variational equations when initializing second order variational equations.")
if first_order_2 is None:
first_order_2 = first_order
index = clibrebound.reb_add_var_2nd_order(byref(self),c_int(testparticle),c_int(first_order.index),c_int(first_order_2.index))
else:
raise AttributeError("Only variational equations of first and second order are supported.")
# Need a copy because location of original might shift if more variations added
s = Variation.from_buffer_copy(self.var_config[cur_var_config_N])
return s
|
def add_variation(self,order=1,first_order=None, first_order_2=None, testparticle=-1)
|
This function adds a set of variational particles to the simulation.
If there are N real particles in the simulation, this functions adds N additional variational
particles. To see how many particles (real and variational) are in a simulation, use ``'sim.N'``.
To see how many variational particles are in a simulation use ``'sim.N_var'``.
Currently Leapfrog, WHFast and IAS15 support first order variational equations. IAS15 also
supports second order variational equations.
Parameters
----------
order : integer, optional
By default the function adds a set of first order variational particles to the simulation. Set this flag to 2 for second order.
first_order : Variation, optional
Second order variational equations depend on their corresponding first order variational equations.
This parameter expects the Variation object corresponding to the first order variational equations.
first_order_2 : Variation, optional
Same as first_order. But allows to set two different indicies to calculate off-diagonal elements.
If omitted, then first_order will be used for both first order equations.
testparticle : int, optional
If set to a value >= 0, then only one variational particle will be added and be treated as a test particle.
Returns
-------
Returns Variation object (a copy--you can only modify it through its particles property or vary method).
| 4.868663 | 4.417874 | 1.102038 |
if seed is None:
clibrebound.reb_tools_megno_init(byref(self))
else:
clibrebound.reb_tools_megno_init_seed(byref(self), c_uint(seed))
|
def init_megno(self, seed=None)
|
This function initialises the chaos indicator MEGNO particles and enables their integration.
MEGNO is short for Mean Exponential Growth of Nearby orbits. It can be used to test
if a system is chaotic or not. In the backend, the integrator is integrating an additional set
of particles using the variational equation. Note that variational equations are better
suited for this than shadow particles. MEGNO is currently only supported in the IAS15
and WHFast integrators.
This function also needs to be called if you are interested in the Lyapunov exponent as it is
calculate with the help of MEGNO. See Rein and Tamayo 2015 for details on the implementation.
For more information on MENGO see e.g. http://dx.doi.org/10.1051/0004-6361:20011189
| 4.788415 | 4.614296 | 1.037735 |
if self._calculate_megno==0:
raise RuntimeError("MEGNO cannot be calculated. Make sure to call init_megno() after adding all particles but before integrating the simulation.")
clibrebound.reb_tools_calculate_megno.restype = c_double
return clibrebound.reb_tools_calculate_megno(byref(self))
|
def calculate_megno(self)
|
Return the current MEGNO value.
Note that you need to call init_megno() before the start of the simulation.
| 7.901402 | 5.945397 | 1.328995 |
if self._calculate_megno==0:
raise RuntimeError("Lyapunov Characteristic Number cannot be calculated. Make sure to call init_megno() after adding all particles but before integrating the simulation.")
clibrebound.reb_tools_calculate_lyapunov.restype = c_double
return clibrebound.reb_tools_calculate_lyapunov(byref(self))
|
def calculate_lyapunov(self)
|
Return the current Lyapunov Characteristic Number (LCN).
Note that you need to call init_megno() before the start of the simulation.
To get a timescale (the Lyapunov timescale), take the inverse of this quantity.
| 11.080628 | 6.148474 | 1.802175 |
if isinstance(particle, Particle):
if (self.gravity == "tree" or self.collision == "tree") and self.root_size <=0.:
raise ValueError("The tree code for gravity and/or collision detection has been selected. However, the simulation box has not been configured yet. You cannot add particles until the the simulation box has a finite size.")
clibrebound.reb_add(byref(self), particle)
elif isinstance(particle, list):
for p in particle:
self.add(p, **kwargs)
elif isinstance(particle,str):
if self.python_unit_l == 0 or self.python_unit_m == 0 or self.python_unit_t == 0:
self.units = ('AU', 'yr2pi', 'Msun')
self.add(horizons.getParticle(particle, **kwargs), hash=particle)
units_convert_particle(self.particles[-1], 'km', 's', 'kg', hash_to_unit(self.python_unit_l), hash_to_unit(self.python_unit_t), hash_to_unit(self.python_unit_m))
else:
raise ValueError("Argument passed to add() not supported.")
else:
self.add(Particle(simulation=self, **kwargs))
if hasattr(self, '_widgets'):
self._display_heartbeat(pointer(self))
|
def add(self, particle=None, **kwargs):
if particle is not None
|
Adds a particle to REBOUND. Accepts one of the following:
1) A single Particle structure.
2) The particle's mass and a set of cartesian coordinates: m,x,y,z,vx,vy,vz.
3) The primary as a Particle structure, the particle's mass and a set of orbital elements: primary,m,a,anom,e,omega,inv,Omega,MEAN (see :class:`.Orbit` for the definition of orbital elements).
4) A name of an object (uses NASA Horizons to look up coordinates)
5) A list of particles or names.
| 7.203328 | 6.749108 | 1.067301 |
if index is not None:
clibrebound.reb_remove(byref(self), index, keepSorted)
if hash is not None:
hash_types = c_uint32, c_uint, c_ulong
PY3 = sys.version_info[0] == 3
if PY3:
string_types = str,
int_types = int,
else:
string_types = basestring,
int_types = int, long
if isinstance(hash, string_types):
clibrebound.reb_remove_by_hash(byref(self), rebhash(hash), keepSorted)
elif isinstance(hash, int_types):
clibrebound.reb_remove_by_hash(byref(self), c_uint32(hash), keepSorted)
elif isinstance(hash, hash_types):
clibrebound.reb_remove_by_hash(byref(self), hash, keepSorted)
if hasattr(self, '_widgets'):
self._display_heartbeat(pointer(self))
self.process_messages()
|
def remove(self, index=None, hash=None, keepSorted=True)
|
Removes a particle from the simulation.
Parameters
----------
index : int, optional
Specify particle to remove by index.
hash : c_uint32 or string, optional
Specifiy particle to remove by hash (if a string is passed, the corresponding hash is calculated).
keepSorted : bool, optional
By default, remove preserves the order of particles in the particles array.
Might set it to zero in cases with many particles and many removals to speed things up.
| 2.880172 | 2.809786 | 1.02505 |
s = ""
for p in self.particles:
s += (("%%.%de "%prec) * 8)%(p.m, p.r, p.x, p.y, p.z, p.vx, p.vy, p.vz) + "\n"
if len(s):
s = s[:-1]
return s
|
def particles_ascii(self, prec=8)
|
Returns an ASCII string with all particles' masses, radii, positions and velocities.
Parameters
----------
prec : int, optional
Number of digits after decimal point. Default 8.
| 3.465431 | 3.341079 | 1.037219 |
for l in s.split("\n"):
r = l.split()
if len(r):
try:
r = [float(x) for x in r]
p = Particle(simulation=self, m=r[0], r=r[1], x=r[2], y=r[3], z=r[4], vx=r[5], vy=r[6], vz=r[7])
self.add(p)
except:
raise AttributeError("Each line requires 8 floats corresponding to mass, radius, position (x,y,z) and velocity (x,y,z).")
|
def add_particles_ascii(self, s)
|
Adds particles from an ASCII string.
Parameters
----------
s : string
One particle per line. Each line should include particle's mass, radius, position and velocity.
| 2.696072 | 2.520487 | 1.069663 |
orbits = []
if heliocentric is not None or barycentric is not None:
raise AttributeError('heliocentric and barycentric keywords in calculate_orbits are deprecated. Pass primary keyword instead (sim.particles[0] for heliocentric and sim.calculate_com() for barycentric)')
if primary is None:
jacobi = True
primary = self.particles[0]
clibrebound.reb_get_com_of_pair.restype = Particle
else:
jacobi = False
for p in self.particles[1:self.N_real]:
if jacobi_masses is True:
interior_mass = primary.m
# orbit conversion uses mu=G*(p.m+primary.m) so set prim.m=Mjac-m so mu=G*Mjac
primary.m = self.particles[0].m*(p.m + interior_mass)/interior_mass - p.m
orbits.append(p.calculate_orbit(primary=primary))
primary.m = interior_mass # back to total mass of interior bodies to update com
else:
orbits.append(p.calculate_orbit(primary=primary))
if jacobi is True: # update com to include current particle for next iteration
primary = clibrebound.reb_get_com_of_pair(primary, p)
return orbits
|
def calculate_orbits(self, primary=None, jacobi_masses=False, heliocentric=None, barycentric=None)
|
Calculate orbital parameters for all partices in the simulation.
By default this functions returns the orbits in Jacobi coordinates.
If MEGNO is enabled, variational particles will be ignored.
Parameters
----------
primary : rebound.Particle, optional
Set the primary against which to reference the osculating orbit. Default(use Jacobi center of mass)
jacobi_masses: bool
Whether to use jacobi primary mass in orbit calculation. (Default: False)
heliocentric: bool, DEPRECATED
To calculate heliocentric elements, pass primary=sim.particles[0]
barycentric : bool, DEPRECATED
To calculate barycentric elements, pass primary=sim.calculate_com()
Returns
-------
Returns an array of Orbits of length N-1.
| 5.380496 | 4.782621 | 1.12501 |
if last is None:
last = self.N_real
clibrebound.reb_get_com_range.restype = Particle
return clibrebound.reb_get_com_range(byref(self), c_int(first), c_int(last))
|
def calculate_com(self, first=0, last=None)
|
Returns the center of momentum for all particles in the simulation.
Parameters
----------
first: int, optional
If ``first`` is specified, only calculate the center of momentum starting
from index=``first``.
last : int or None, optional
If ``last`` is specified only calculate the center of momentum up to
(but excluding) index=``last``. Same behavior as Python's range function.
Examples
--------
>>> sim = rebound.Simulation()
>>> sim.add(m=1, x=-20)
>>> sim.add(m=1, x=-10)
>>> sim.add(m=1, x=0)
>>> sim.add(m=1, x=10)
>>> sim.add(m=1, x=20)
>>> com = sim.calculate_com()
>>> com.x
0.0
>>> com = sim.calculate_com(first=2,last=4) # Considers indices 2,3
>>> com.x
5.0
| 5.302313 | 6.464428 | 0.820229 |
N = self.N
possible_keys = ["hash","m","r","xyz","vxvyvz","xyzvxvyvz"]
d = {x:None for x in possible_keys}
for k,v in kwargs.items():
if k in d:
if k == "hash":
if v.dtype!= "uint32":
raise AttributeError("Expected 'uint32' data type for '%s' array."%k)
if v.size<N:
raise AttributeError("Array '%s' is not large enough."%k)
d[k] = v.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
else:
if v.dtype!= "float64":
raise AttributeError("Expected 'float64' data type for %s array."%k)
if k in ["xyz", "vxvyvz"]:
minsize = 3*N
elif k in ["xyzvxvyvz"]:
minsize = 6*N
else:
minsize = N
if v.size<minsize:
raise AttributeError("Array '%s' is not large enough."%k)
d[k] = v.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
else:
raise AttributeError("Only '%s' are currently supported attributes for serialization." % "', '".join(d.keys()))
clibrebound.reb_serialize_particle_data(byref(self), d["hash"], d["m"], d["r"], d["xyz"], d["vxvyvz"], d["xyzvxvyvz"])
|
def serialize_particle_data(self,**kwargs)
|
Fast way to access serialized particle data via numpy arrays.
This function can directly set the values of numpy arrays to
current particle data. This is significantly faster than accessing
particle data via `sim.particles` as all the copying is done
on the C side.
No memory is allocated by this function.
It expects correctly sized numpy arrays as arguments. The argument
name indicates what kind of particle data is written to the array.
Possible argument names are "hash", "m", "r", "xyz", "vxvyvz", and
"xyzvxvyvz". The datatype for the "hash" array needs to be uint32.
The other arrays expect a datatype of float64. The lengths of
"hash", "m", "r" arrays need to be at least sim.N. The lengths of
xyz and vxvyvz need to be at least 3*sim.N. The length of
"xyzvxvyvz" arrays need to be 6*sim.N. Exceptions are raised
otherwise.
Note that this routine is only intended for special use cases
where speed is an issue. For normal use, it is recommended to
access particle data via the `sim.particles` array. Be aware of
potential issues that arrise by directly accesing the memory of
numpy arrays (see numpy documentation for more details).
Examples
--------
This sets an array to the xyz positions of all particles:
>>> import numpy as np
>>> a = np.zeros((sim.N,3),dtype="float64")
>>> sim.serialize_particle_data(xyz=a)
>>> print(a)
To get all current radii of particles:
>>> a = np.zeros(sim.N,dtype="float64")
>>> sim.serialize_particle_data(r=a)
>>> print(a)
To get all current radii and hashes of particles:
>>> a = np.zeros(sim.N,dtype="float64")
>>> b = np.zeros(sim.N,dtype="uint32")
>>> sim.serialize_particle_data(r=a,hash=b)
>>> print(a,b)
| 2.614686 | 2.320778 | 1.126642 |
clibrebound.reb_tools_energy.restype = c_double
return clibrebound.reb_tools_energy(byref(self))
|
def calculate_energy(self)
|
Returns the sum of potential and kinetic energy of all particles in the simulation.
| 10.186749 | 7.862191 | 1.295663 |
clibrebound.reb_tools_angular_momentum.restype = reb_vec3d
L = clibrebound.reb_tools_angular_momentum(byref(self))
return [L.x, L.y, L.z]
|
def calculate_angular_momentum(self)
|
Returns a list of the three (x,y,z) components of the total angular momentum of all particles in the simulation.
| 6.314867 | 5.430882 | 1.16277 |
clibrebound.reb_configure_box(byref(self), c_double(boxsize), c_int(root_nx), c_int(root_ny), c_int(root_nz))
return
|
def configure_box(self, boxsize, root_nx=1, root_ny=1, root_nz=1)
|
Initialize the simulation box.
This function only needs to be called it boundary conditions other than "none"
are used. In such a case the boxsize must be known and is set with this function.
Parameters
----------
boxsize : float, optional
The size of one root box.
root_nx, root_ny, root_nz : int, optional
The number of root boxes in each direction. The total size of the simulation box
will be ``root_nx * boxsize``, ``root_ny * boxsize`` and ``root_nz * boxsize``.
By default there will be exactly one root box in each direction.
| 3.617522 | 4.421557 | 0.818155 |
clibrebound.nghostx = c_int(nghostx)
clibrebound.nghosty = c_int(nghosty)
clibrebound.nghostz = c_int(nghostz)
return
|
def configure_ghostboxes(self, nghostx=0, nghosty=0, nghostz=0)
|
Initialize the ghost boxes.
This function only needs to be called it boundary conditions other than "none" or
"open" are used. In such a case the number of ghostboxes must be known and is set
with this function.
Parameters
----------
nghostx, nghosty, nghostz : int
The number of ghost boxes in each direction. All values default to 0 (no ghost boxes).
| 3.024731 | 3.337265 | 0.90635 |
clibrebound.reb_output_binary(byref(self), c_char_p(filename.encode("ascii")))
|
def save(self, filename)
|
Save the entire REBOUND simulation to a binary file.
| 18.240425 | 7.856945 | 2.321567 |
if debug.integrator_package =="REBOUND":
self.exact_finish_time = c_int(exact_finish_time)
ret_value = clibrebound.reb_integrate(byref(self), c_double(tmax))
if ret_value == 1:
self.process_messages()
raise SimulationError("An error occured during the integration.")
if ret_value == 2:
raise NoParticles("No more particles left in simulation.")
if ret_value == 3:
raise Encounter("Two particles had a close encounter (d<exit_min_distance).")
if ret_value == 4:
raise Escape("A particle escaped (r>exit_max_distance).")
if ret_value == 5:
raise Escape("User caused exit. Simulation did not finish.") # should not occur in python
if ret_value == 6:
raise KeyboardInterrupt
if ret_value == 7:
raise Collision("Two particles collided (d < r1+r2)")
else:
debug.integrate_other_package(tmax,exact_finish_time)
self.process_messages()
|
def integrate(self, tmax, exact_finish_time=1)
|
Main integration function. Call this function when you have setup your simulation and want to integrate it forward (or backward) in time. The function might be called many times to integrate the simulation in steps and create outputs in-between steps.
Parameters
----------
tmax : float
The final time of your simulation. If the current time is 100, and tmax=200, then after the calling the integrate routine, the time has advanced to t=200. If tmax is larger than or equal to the current time, no integration will be performed.
exact_finish_time: int, optional
This argument determines whether REBOUND should try to finish at the exact time (tmax) you give it or if it is allowed to overshoot. Overshooting could happen if one starts at t=0, has a timestep of dt=10 and wants to integrate to tmax=25. With ``exact_finish_time=1``, the integrator will choose the last timestep such that t is exactly 25 after the integration, otherwise t=30. Note that changing the timestep does affect the accuracy of symplectic integrators negatively.
Exceptions
----------
Exceptions are thrown when no more particles are left in the simulation or when a generic integration error occured.
If you specified exit_min_distance or exit_max_distance, then additional exceptions might thrown for escaping particles or particles that undergo a clos encounter.
Examples
--------
The typical usage is as follows. Note the use of ``np.linspace`` to create equally spaced outputs.
Using ``np.logspace`` can be used to easily produce logarithmically spaced outputs.
>>> import numpy as np
>>> for time in np.linspace(0,100.,10):
>>> sim.integrate(time)
>>> perform_output(sim)
| 5.96017 | 5.004393 | 1.190988 |
if self.order==2 and variation2 is None:
variation2 = variation
if self._sim is not None:
sim = self._sim.contents
particles = sim.particles
else:
raise RuntimeError("Something went wrong. Cannot seem to find simulation corresponding to variation.")
if self.testparticle >= 0:
particles[self.index] = Particle(simulation=sim,particle=particles[particle_index], variation=variation, variation2=variation2, primary=primary)
else:
particles[self.index + particle_index] = Particle(simulation=sim,particle=particles[particle_index], variation=variation, variation2=variation2, primary=primary)
|
def vary(self, particle_index, variation, variation2=None, primary=None)
|
This function can be used to initialize the variational particles that are
part of a Variation.
Note that rather than using this convenience function, one can
also directly manipulate the particles' coordinate using the following
syntax:
>>> var = sim.add_variation()
>>> var.particles[0].x = 1.
The ``vary()`` function is useful for initializing variations corresponding to
changes in one of the orbital parameters for a particle on a bound
Keplerian orbit.
The function supports both first and second order variations in the following
classical orbital parameters:
a, e, inc, omega, Omega, f
as well as the Pal (2009) coordinates:
a, h, k, ix, iy, lambda
and in both cases the mass m of the particle. The advantage of the Pal coordinate
system is that all derivatives are well behaved (infinitely differentiable).
Classical orbital parameters on the other hand exhibit coordinate singularities,
for example when e=0.
The following example initializes the variational particles corresponding to a
change in the semi-major axis of the particle with index 1:
>>> var = sim.add_variation()
>>> var.vary(1,"a")
Parameters
----------
particle_index : int
The index of the particle that should be varied. The index starts at 0 and runs through N-1. The first particle added to a simulation receives the index 0, the second 1, and the on.
variation : string
This parameter determines which orbital parameter is varied.
variation2: string, optional
This is only used for second order variations which can depend on two varying parameters. If omitted, then it is assumed that the parameter variation is variation2.
primary: Particle, optional
By default variational particles are created in the Heliocentric frame.
Set this parameter to use any other particles as a primary (e.g. the center of mass).
| 4.356681 | 4.532327 | 0.961246 |
sim = self._sim.contents
ps = []
if self.testparticle>=0:
N = 1
else:
N = sim.N-sim.N_var
ParticleList = Particle*N
ps = ParticleList.from_address(ctypes.addressof(sim._particles.contents)+self.index*ctypes.sizeof(Particle))
return ps
|
def particles(self)
|
Access the variational particles corresponding to this set of variational equations.
The function returns a list of particles which are sorted in the same way as those in
sim.particles
The particles are pointers and thus can be modified.
If there are N real particles, this function will also return a list of N particles (all of which are
variational particles).
| 8.399372 | 9.014688 | 0.931743 |
link_object = {}
if not getattr(instance, 'pk', None):
# If instance doesn't have a `pk` field, we'll assume it doesn't
# have a canonical resource URL to hang a link off of.
# This generally only affectes Ephemeral Objects.
return data
link_fields = serializer.get_link_fields()
for name, field in six.iteritems(link_fields):
# For included fields, omit link if there's no data.
if name in data and not data[name]:
continue
link = getattr(field, 'link', None)
if link is None:
base_url = ''
if settings.ENABLE_HOST_RELATIVE_LINKS:
# if the resource isn't registered, this will default back to
# using resource-relative urls for links.
base_url = DynamicRouter.get_canonical_path(
serializer.get_resource_key(),
instance.pk
) or ''
link = '%s%s/' % (base_url, name)
# Default to DREST-generated relation endpoints.
elif callable(link):
link = link(name, field, data, instance)
link_object[name] = link
if link_object:
data['links'] = link_object
return data
|
def merge_link_object(serializer, data, instance)
|
Add a 'links' attribute to the data that maps field names to URLs.
NOTE: This is the format that Ember Data supports, but alternative
implementations are possible to support other formats.
| 6.034217 | 5.794843 | 1.041308 |
global POST_PROCESSORS
key = func.__name__
POST_PROCESSORS[key] = func
return func
|
def register_post_processor(func)
|
Register a post processor function to be run as the final step in
serialization. The data passed in will already have gone through the
sideloading processor.
Usage:
@register_post_processor
def my_post_processor(data):
# do stuff with `data`
return data
| 4.741318 | 5.278626 | 0.898211 |
if isinstance(obj, list):
for key, o in enumerate(obj):
# traverse into lists of objects
self.process(o, parent=obj, parent_key=key, depth=depth)
elif isinstance(obj, dict):
dynamic = self.is_dynamic(obj)
returned = isinstance(obj, ReturnDict)
if dynamic or returned:
# recursively check all fields
for key, o in six.iteritems(obj):
if isinstance(o, list) or isinstance(o, dict):
# lists or dicts indicate a relation
self.process(
o,
parent=obj,
parent_key=key,
depth=depth +
1
)
if not dynamic or getattr(obj, 'embed', False):
return
serializer = obj.serializer
name = serializer.get_plural_name()
instance = getattr(obj, 'instance', serializer.instance)
instance_pk = instance.pk if instance else None
pk = getattr(obj, 'pk_value', instance_pk) or instance_pk
# For polymorphic relations, `pk` can be a dict, so use the
# string representation (dict isn't hashable).
pk_key = repr(pk)
# sideloading
seen = True
# if this object has not yet been seen
if pk_key not in self.seen[name]:
seen = False
self.seen[name].add(pk_key)
# prevent sideloading the primary objects
if depth == 0:
return
# TODO: spec out the exact behavior for secondary instances of
# the primary resource
# if the primary resource is embedded, add it to a prefixed key
if name == self.plural_name:
name = '%s%s' % (
settings.ADDITIONAL_PRIMARY_RESOURCE_PREFIX,
name
)
if not seen:
# allocate a top-level key in the data for this resource
# type
if name not in self.data:
self.data[name] = []
# move the object into a new top-level bucket
# and mark it as seen
self.data[name].append(obj)
else:
# obj sideloaded, but maybe with other fields
for o in self.data.get(name, []):
if o.instance.pk == pk:
o.update(obj)
break
# replace the object with a reference
if parent is not None and parent_key is not None:
parent[parent_key] = pk
|
def process(self, obj, parent=None, parent_key=None, depth=0)
|
Recursively process the data for sideloading.
Converts the nested representation into a sideloaded representation.
| 4.745172 | 4.733169 | 1.002536 |
if not self.parent:
return None
if not getattr(self.parent, 'request_fields'):
return None
if not isinstance(self.parent.request_fields, dict):
return None
return self.parent.request_fields.get(self.field_name)
|
def _get_request_fields_from_parent(self)
|
Get request fields from the parent serializer.
| 2.49554 | 2.113918 | 1.180528 |
import copy
import django
def prefetch_one_level(instances, prefetcher, lookup, level):
rel_qs, rel_obj_attr, instance_attr, single, cache_name = (
prefetcher.get_prefetch_queryset(
instances, lookup.get_current_queryset(level)))
additional_lookups = [
copy.copy(additional_lookup) for additional_lookup
in getattr(rel_qs, '_prefetch_related_lookups', [])
]
if additional_lookups:
rel_qs._prefetch_related_lookups = []
all_related_objects = list(rel_qs)
rel_obj_cache = {}
for rel_obj in all_related_objects:
rel_attr_val = rel_obj_attr(rel_obj)
rel_obj_cache.setdefault(rel_attr_val, []).append(rel_obj)
for obj in instances:
instance_attr_val = instance_attr(obj)
vals = rel_obj_cache.get(instance_attr_val, [])
to_attr, as_attr = lookup.get_current_to_attr(level)
if single:
val = vals[0] if vals else None
to_attr = to_attr if as_attr else cache_name
setattr(obj, to_attr, val)
else:
if as_attr:
setattr(obj, to_attr, vals)
else:
qs = getattr(obj, to_attr).all()
qs._result_cache = vals
qs._prefetch_done = True
obj._prefetched_objects_cache[cache_name] = qs
return all_related_objects, additional_lookups
# apply the patch
from django.db.models import query
if django.VERSION < (2, 0, 0):
query.prefetch_one_level = prefetch_one_level
|
def patch_prefetch_one_level()
|
This patch address Django bug https://code.djangoproject.com/ticket/24873,
which was merged into Django master
in commit 025c6553771a09b80563baedb5b8300a8b01312f
into django.db.models.query.
The code that follows is identical to the code in the above commit,
with all comments stripped out.
| 3.02306 | 2.921202 | 1.034868 |
metadata = super(
DynamicMetadata,
self).determine_metadata(
request,
view)
metadata['features'] = getattr(view, 'features', [])
if hasattr(view, 'get_serializer'):
serializer = view.get_serializer(dynamic=False)
if hasattr(serializer, 'get_name'):
metadata['resource_name'] = serializer.get_name()
if hasattr(serializer, 'get_plural_name'):
metadata['resource_name_plural'] = serializer.get_plural_name()
metadata['properties'] = self.get_serializer_info(serializer)
return metadata
|
def determine_metadata(self, request, view)
|
Adds `properties` and `features` to the metadata response.
| 2.767339 | 2.446041 | 1.131354 |
field_info = OrderedDict()
for attr in ('required', 'read_only', 'default', 'label'):
field_info[attr] = getattr(field, attr)
if field_info['default'] is empty:
field_info['default'] = None
if hasattr(field, 'immutable'):
field_info['immutable'] = field.immutable
field_info['nullable'] = field.allow_null
if hasattr(field, 'choices'):
field_info['choices'] = [
{
'value': choice_value,
'display_name': force_text(choice_name, strings_only=True)
}
for choice_value, choice_name in field.choices.items()
]
many = False
if isinstance(field, DynamicRelationField):
field = field.serializer
if isinstance(field, ListSerializer):
field = field.child
many = True
if isinstance(field, ModelSerializer):
type = 'many' if many else 'one'
field_info['related_to'] = field.get_plural_name()
else:
type = self.label_lookup[field]
field_info['type'] = type
return field_info
|
def get_field_info(self, field)
|
Adds `related_to` and `nullable` to the metadata response.
| 2.644306 | 2.483678 | 1.064674 |
meta = model._meta
try:
if DJANGO19:
field = meta.get_field(field_name)
else:
field = meta.get_field_by_name(field_name)[0]
return field
except:
if DJANGO19:
related_objs = (
f for f in meta.get_fields()
if (f.one_to_many or f.one_to_one)
and f.auto_created and not f.concrete
)
related_m2m_objs = (
f for f in meta.get_fields(include_hidden=True)
if f.many_to_many and f.auto_created
)
else:
related_objs = meta.get_all_related_objects()
related_m2m_objs = meta.get_all_related_many_to_many_objects()
related_objects = {
o.get_accessor_name(): o
for o in chain(related_objs, related_m2m_objs)
}
if field_name in related_objects:
return related_objects[field_name]
else:
# check virtual fields (1.7)
if hasattr(meta, 'virtual_fields'):
for field in meta.virtual_fields:
if field.name == field_name:
return field
raise AttributeError(
'%s is not a valid field for %s' % (field_name, model)
)
|
def get_model_field(model, field_name)
|
Return a field given a model and field name.
Arguments:
model: a Django model
field_name: the name of a field
Returns:
A Django field if `field_name` is a valid field for `model`,
None otherwise.
| 1.871753 | 1.933026 | 0.968302 |
if not hasattr(model, '_meta'):
# ephemeral model with no metaclass
return False
model_field = get_model_field(model, field_name)
return isinstance(model_field, (ManyToManyField, RelatedObject))
|
def is_field_remote(model, field_name)
|
Check whether a given model field is a remote field.
A remote field is the inverse of a one-to-many or a
many-to-many relationship.
Arguments:
model: a Django model
field_name: the name of a field
Returns:
True if `field_name` is a remote field, False otherwise.
| 4.755122 | 5.513414 | 0.862464 |
def wrapper(self):
if not hasattr(self, '_resettable_cached_properties'):
self._resettable_cached_properties = {}
if func.__name__ not in self._resettable_cached_properties:
self._resettable_cached_properties[func.__name__] = func(self)
return self._resettable_cached_properties[func.__name__]
# Returns a property whose getter is the 'wrapper' function
return property(wrapper)
|
def resettable_cached_property(func)
|
Decorator to add cached computed properties to an object.
Similar to Django's `cached_property` decorator, except stores
all the data under a single well-known key so that it can easily
be blown away.
| 2.223562 | 2.036888 | 1.091647 |
def reset(self):
if hasattr(self, '_resettable_cached_properties'):
self._resettable_cached_properties = {}
cls.reset = reset
return cls
|
def cacheable_object(cls)
|
Decorator to add a reset() method that clears data cached by
the @resettable_cached_property decorator. Technically this could
be a mixin...
| 5.523616 | 2.999158 | 1.841722 |
setting, value = kwargs['setting'], kwargs['value']
if setting == self.name:
self._reload(value)
|
def _settings_changed(self, *args, **kwargs)
|
Handle changes to core settings.
| 6.51578 | 4.766717 | 1.366932 |
if self.bound: # Prevent double-binding
return
super(DynamicRelationField, self).bind(*args, **kwargs)
self.bound = True
parent_model = getattr(self.parent.Meta, 'model', None)
remote = is_field_remote(parent_model, self.source)
try:
model_field = get_model_field(parent_model, self.source)
except:
# model field may not be available for m2o fields with no
# related_name
model_field = None
# Infer `required` and `allow_null`
if 'required' not in self.kwargs and (
remote or (
model_field and (
model_field.has_default() or model_field.null
)
)
):
self.required = False
if 'allow_null' not in self.kwargs and getattr(
model_field, 'null', False
):
self.allow_null = True
self.model_field = model_field
|
def bind(self, *args, **kwargs)
|
Bind to the parent serializer.
| 3.551992 | 3.317404 | 1.070714 |
if not self.parent:
# Don't cache, so that we'd recompute if parent is set.
return None
node = self
seen = set()
while True:
seen.add(node)
if getattr(node, 'parent', None):
node = node.parent
if node in seen:
return None
else:
return node
|
def root_serializer(self)
|
Return the root serializer (serializer for the primary resource).
| 4.503519 | 4.159592 | 1.082683 |
if not self.parent or not self._is_dynamic:
return kwargs
if 'request_fields' not in kwargs:
# If 'request_fields' isn't explicitly set, pull it from the
# parent serializer.
request_fields = self._get_request_fields_from_parent()
if request_fields is None:
# Default to 'id_only' for nested serializers.
request_fields = True
kwargs['request_fields'] = request_fields
if self.embed and kwargs.get('request_fields') is True:
# If 'embed' then make sure we fetch the full object.
kwargs['request_fields'] = {}
if hasattr(self.parent, 'sideloading'):
kwargs['sideloading'] = self.parent.sideloading
if hasattr(self.parent, 'debug'):
kwargs['debug'] = self.parent.debug
return kwargs
|
def _inherit_parent_kwargs(self, kwargs)
|
Extract any necessary attributes from parent serializer to
propagate down to child serializer.
| 3.637237 | 3.545919 | 1.025753 |
init_args = {
k: v for k, v in six.iteritems(self.kwargs)
if k in self.SERIALIZER_KWARGS
}
kwargs = self._inherit_parent_kwargs(kwargs)
init_args.update(kwargs)
if self.embed and self._is_dynamic:
init_args['embed'] = True
return self._get_cached_serializer(args, init_args)
|
def get_serializer(self, *args, **kwargs)
|
Get an instance of the child serializer.
| 4.378504 | 4.245718 | 1.031275 |
serializer = self.serializer
model = serializer.get_model()
source = self.source
if not self.kwargs['many'] and serializer.id_only():
# attempt to optimize by reading the related ID directly
# from the current instance rather than from the related object
source_id = '%s_id' % source
# try the faster way first:
if hasattr(instance, source_id):
return getattr(instance, source_id)
elif model is not None:
# this is probably a one-to-one field, or a reverse related
# lookup, so let's look it up the slow way and let the
# serializer handle the id dereferencing
try:
instance = getattr(instance, source)
except model.DoesNotExist:
instance = None
# dereference ephemeral objects
if model is None:
instance = getattr(instance, source)
if instance is None:
return None
return serializer.to_representation(instance)
|
def to_representation(self, instance)
|
Represent the relationship, either as an ID or object.
| 5.611247 | 5.394092 | 1.040258 |
related_model = serializer.Meta.model
if isinstance(data, related_model):
return data
try:
instance = related_model.objects.get(pk=data)
except related_model.DoesNotExist:
raise ValidationError(
"Invalid value for '%s': %s object with ID=%s not found" %
(self.field_name, related_model.__name__, data)
)
return instance
|
def to_internal_value_single(self, data, serializer)
|
Return the underlying object, given the serialized form.
| 2.589294 | 2.492923 | 1.038658 |
if self.kwargs['many']:
serializer = self.serializer.child
if not isinstance(data, list):
raise ParseError("'%s' value must be a list" % self.field_name)
return [
self.to_internal_value_single(
instance,
serializer
) for instance in data
]
return self.to_internal_value_single(data, self.serializer)
|
def to_internal_value(self, data)
|
Return the underlying object(s), given the serialized form.
| 3.427453 | 3.1882 | 1.075043 |
serializer_class = self._serializer_class
if not isinstance(serializer_class, six.string_types):
return serializer_class
parts = serializer_class.split('.')
module_path = '.'.join(parts[:-1])
if not module_path:
if getattr(self, 'parent', None) is None:
raise Exception(
"Can not load serializer '%s'" % serializer_class +
' before binding or without specifying full path')
# try the module of the parent class
module_path = self.parent.__module__
module = importlib.import_module(module_path)
serializer_class = getattr(module, parts[-1])
self._serializer_class = serializer_class
return serializer_class
|
def serializer_class(self)
|
Get the class of the child serializer.
Resolves string imports.
| 3.023305 | 2.948531 | 1.02536 |
prefetches = []
for field, fprefetch in self.prefetches.items():
has_query = hasattr(fprefetch, 'query')
qs = fprefetch.query.queryset if has_query else None
prefetches.append(
Prefetch(field, queryset=qs)
)
queryset = self.queryset
if prefetches:
queryset = queryset.prefetch_related(*prefetches)
return queryset
|
def _get_django_queryset(self)
|
Return Django QuerySet with prefetches properly configured.
| 3.609435 | 2.955045 | 1.221449 |
if isinstance(value, list):
for val in value:
self.appendlist(key, val)
else:
self.appendlist(key, value)
|
def add(self, key, value)
|
Method to accept a list of values and append to flat list.
QueryDict.appendlist(), if given a list, will append the list,
which creates nested lists. In most cases, we want to be able
to pass in a list (for convenience) but have it appended into
a flattened list.
TODO: Possibly throw an error if add() is used on a non-list param.
| 2.974802 | 2.039631 | 1.4585 |
def handle_encodings(request):
try:
return QueryParams(request.GET)
except UnicodeEncodeError:
pass
s = request.environ.get('QUERY_STRING', '')
try:
s = s.encode('utf-8')
except UnicodeDecodeError:
pass
return QueryParams(s)
request.GET = handle_encodings(request)
request = super(WithDynamicViewSetMixin, self).initialize_request(
request, *args, **kargs
)
try:
# Django<1.9, DRF<3.2
# MergeDict doesn't have the same API as dict.
# Django has deprecated MergeDict and DRF is moving away from
# using it - thus, were comfortable replacing it with a QueryDict
# This will allow the data property to have normal dict methods.
from django.utils.datastructures import MergeDict
if isinstance(request._full_data, MergeDict):
data_as_dict = request.data.dicts[0]
for d in request.data.dicts[1:]:
data_as_dict.update(d)
request._full_data = data_as_dict
except:
pass
return request
|
def initialize_request(self, request, *args, **kargs)
|
Override DRF initialize_request() method to swap request.GET
(which is aliased by request.query_params) with a mutable instance
of QueryParams, and to convert request MergeDict to a subclass of dict
for consistency (MergeDict is not a subclass of dict)
| 5.312441 | 4.68688 | 1.133471 |
renderers = super(WithDynamicViewSetMixin, self).get_renderers()
if settings.ENABLE_BROWSABLE_API is False:
return [
r for r in renderers if not isinstance(r, BrowsableAPIRenderer)
]
else:
return renderers
|
def get_renderers(self)
|
Optionally block Browsable API rendering.
| 4.65143 | 3.411795 | 1.363338 |
if '[]' in name:
# array-type
return self.request.query_params.getlist(
name) if name in self.features else None
elif '{}' in name:
# object-type (keys are not consistent)
return self._extract_object_params(
name) if name in self.features else {}
else:
# single-type
return self.request.query_params.get(
name) if name in self.features else None
|
def get_request_feature(self, name)
|
Parses the request for a particular feature.
Arguments:
name: A feature name.
Returns:
A feature parsed from the URL if the feature is supported, or None.
| 4.056142 | 4.377256 | 0.92664 |
params = self.request.query_params.lists()
params_map = {}
prefix = name[:-1]
offset = len(prefix)
for name, value in params:
if name.startswith(prefix):
if name.endswith('}'):
name = name[offset:-1]
elif name.endswith('}[]'):
# strip off trailing []
# this fixes an Ember queryparams issue
name = name[offset:-3]
else:
# malformed argument like:
# filter{foo=bar
raise exceptions.ParseError(
'"%s" is not a well-formed filter key.' % name
)
else:
continue
params_map[name] = value
return params_map
|
def _extract_object_params(self, name)
|
Extract object params, return as dict
| 5.437516 | 5.356097 | 1.015201 |
serializer = self.get_serializer()
return getattr(self, 'queryset', serializer.Meta.model.objects.all())
|
def get_queryset(self, queryset=None)
|
Returns a queryset for this request.
Arguments:
queryset: Optional root-level queryset.
| 5.398056 | 7.974971 | 0.676875 |
if hasattr(self, '_request_fields'):
return self._request_fields
include_fields = self.get_request_feature(self.INCLUDE)
exclude_fields = self.get_request_feature(self.EXCLUDE)
request_fields = {}
for fields, include in(
(include_fields, True),
(exclude_fields, False)):
if fields is None:
continue
for field in fields:
field_segments = field.split('.')
num_segments = len(field_segments)
current_fields = request_fields
for i, segment in enumerate(field_segments):
last = i == num_segments - 1
if segment:
if last:
current_fields[segment] = include
else:
if segment not in current_fields:
current_fields[segment] = {}
current_fields = current_fields[segment]
elif not last:
# empty segment must be the last segment
raise exceptions.ParseError(
'"%s" is not a valid field.' %
field
)
self._request_fields = request_fields
return request_fields
|
def get_request_fields(self)
|
Parses the INCLUDE and EXCLUDE features.
Extracts the dynamic field features from the request parameters
into a field map that can be passed to a serializer.
Returns:
A nested dict mapping serializer keys to
True (include) or False (exclude).
| 2.461994 | 2.237964 | 1.100104 |
# Explicitly disable support filtering. Applying filters to this
# endpoint would require us to pass through sideload filters, which
# can have unintended consequences when applied asynchronously.
if self.get_request_feature(self.FILTER):
raise ValidationError(
'Filtering is not enabled on relation endpoints.'
)
# Prefix include/exclude filters with field_name so it's scoped to
# the parent object.
field_prefix = field_name + '.'
self._prefix_inex_params(request, self.INCLUDE, field_prefix)
self._prefix_inex_params(request, self.EXCLUDE, field_prefix)
# Filter for parent object, include related field.
self.request.query_params.add('filter{pk}', pk)
self.request.query_params.add(self.INCLUDE, field_prefix)
# Get serializer and field.
serializer = self.get_serializer()
field = serializer.fields.get(field_name)
if field is None:
raise ValidationError('Unknown field: "%s".' % field_name)
# Query for root object, with related field prefetched
queryset = self.get_queryset()
queryset = self.filter_queryset(queryset)
obj = queryset.first()
if not obj:
return Response("Not found", status=404)
# Serialize the related data. Use the field's serializer to ensure
# it's configured identically to the sideload case.
serializer = field.get_serializer(envelope=True)
try:
# TODO(ryo): Probably should use field.get_attribute() but that
# seems to break a bunch of things. Investigate later.
serializer.instance = getattr(obj, field.source)
except ObjectDoesNotExist:
# See:
# http://jsonapi.org/format/#fetching-relationships-responses-404
# This is a case where the "link URL exists but the relationship
# is empty" and therefore must return a 200.
return Response({}, status=200)
return Response(serializer.data)
|
def list_related(self, request, pk=None, field_name=None)
|
Fetch related object(s), as if sideloaded (used to support
link objects).
This method gets mapped to `/<resource>/<pk>/<field_name>/` by
DynamicRouter for all DynamicRelationField fields. Generally,
this method probably shouldn't be overridden.
An alternative implementation would be to generate reverse queries.
For an exploration of that approach, see:
https://gist.github.com/ryochiji/54687d675978c7d96503
| 5.930616 | 5.833632 | 1.016625 |
# noqa
if self.ENABLE_BULK_UPDATE:
patch_all = self.get_request_patch_all()
if self.ENABLE_PATCH_ALL and patch_all:
# patch-all update
data = request.data
return self._patch_all(
data,
query=(patch_all == 'query')
)
else:
# bulk payload update
partial = 'partial' in kwargs
bulk_payload = self._get_bulk_payload(request)
if bulk_payload:
return self._bulk_update(bulk_payload, partial)
# singular update
try:
return super(DynamicModelViewSet, self).update(request, *args,
**kwargs)
except AssertionError as e:
err = str(e)
if 'Fix your URL conf' in err:
# this error is returned by DRF if a client
# makes an update request (PUT or PATCH) without an ID
# since DREST supports bulk updates with IDs contained in data,
# we return a 400 instead of a 500 for this case,
# as this is not considered a misconfiguration
raise exceptions.ValidationError(err)
else:
raise
|
def update(self, request, *args, **kwargs)
|
Update one or more model instances.
If ENABLE_BULK_UPDATE is set, multiple previously-fetched records
may be updated in a single call, provided their IDs.
If ENABLE_PATCH_ALL is set, multiple records
may be updated in a single PATCH call, even without knowing their IDs.
*WARNING*: ENABLE_PATCH_ALL should be considered an advanced feature
and used with caution. This feature must be enabled at the viewset level
and must also be requested explicitly by the client
via the "patch-all" query parameter.
This parameter can have one of the following values:
true (or 1): records will be fetched and then updated in a transaction loop
- The `Model.save` method will be called and model signals will run
- This can be slow if there are too many signals or many records in the query
- This is considered the more safe and default behavior
query: records will be updated in a single query
- The `QuerySet.update` method will be called and model signals will not run
- This will be fast, but may break data constraints that are controlled by signals
- This is considered unsafe but useful in certain situations
The server's successful response to a patch-all request
will NOT include any individual records. Instead, the response content will contain
a "meta" object with an "updated" count of updated records.
Examples:
Update one dog:
PATCH /dogs/1/
{
'fur': 'white'
}
Update many dogs by ID:
PATCH /dogs/
[
{'id': 1, 'fur': 'white'},
{'id': 2, 'fur': 'black'},
{'id': 3, 'fur': 'yellow'}
]
Update all dogs in a query:
PATCH /dogs/?filter{fur.contains}=brown&patch-all=true
{
'fur': 'gold'
}
| 5.619061 | 5.585114 | 1.006078 |
bulk_payload = self._get_bulk_payload(request)
if bulk_payload:
return self._create_many(bulk_payload)
return super(DynamicModelViewSet, self).create(
request, *args, **kwargs)
|
def create(self, request, *args, **kwargs)
|
Either create a single or many model instances in bulk
using the Serializer's many=True ability from Django REST >= 2.2.5.
The data can be represented by the serializer name (single or plural
forms), dict or list.
Examples:
POST /dogs/
{
"name": "Fido",
"age": 2
}
POST /dogs/
{
"dog": {
"name": "Lucky",
"age": 3
}
}
POST /dogs/
{
"dogs": [
{"name": "Fido", "age": 2},
{"name": "Lucky", "age": 3}
]
}
POST /dogs/
[
{"name": "Fido", "age": 2},
{"name": "Lucky", "age": 3}
]
| 3.742463 | 4.10638 | 0.911378 |
bulk_payload = self._get_bulk_payload(request)
if bulk_payload:
return self._destroy_many(bulk_payload)
lookup_url_kwarg = self.lookup_url_kwarg or self.lookup_field
if lookup_url_kwarg not in kwargs:
# assume that it is a poorly formatted bulk request
return Response(status=status.HTTP_405_METHOD_NOT_ALLOWED)
return super(DynamicModelViewSet, self).destroy(
request, *args, **kwargs
)
|
def destroy(self, request, *args, **kwargs)
|
Either delete a single or many model instances in bulk
DELETE /dogs/
{
"dogs": [
{"id": 1},
{"id": 2}
]
}
DELETE /dogs/
[
{"id": 1},
{"id": 2}
]
| 3.251379 | 3.365566 | 0.966072 |
model = self.get_model()
if model:
return get_model_table(model)
else:
return self.get_name()
|
def get_resource_key(self)
|
Return canonical resource key, usually the DB table name.
| 5.450719 | 4.065629 | 1.340683 |
data = super(DynamicListSerializer, self).data
processed_data = ReturnDict(
SideloadingProcessor(self, data).data,
serializer=self
) if self.child.envelope else ReturnList(
data,
serializer=self
)
processed_data = post_process(processed_data)
return processed_data
|
def data(self)
|
Get the data, after performing post-processing if necessary.
| 9.832927 | 8.48591 | 1.158736 |
if not self.dynamic:
return
if (isinstance(self.request_fields, dict) and
self.request_fields.pop('*', None) is False):
exclude_fields = '*'
only_fields = set(only_fields or [])
include_fields = include_fields or []
exclude_fields = exclude_fields or []
if only_fields:
exclude_fields = '*'
include_fields = only_fields
if exclude_fields == '*':
# First exclude all, then add back in explicitly included fields.
include_fields = set(
list(include_fields) + [
field for field, val in six.iteritems(self.request_fields)
if val or val == {}
]
)
all_fields = set(self.get_all_fields().keys()) # this is slow
exclude_fields = all_fields - include_fields
elif include_fields == '*':
all_fields = set(self.get_all_fields().keys()) # this is slow
include_fields = all_fields
for name in exclude_fields:
self.request_fields[name] = False
for name in include_fields:
if not isinstance(self.request_fields.get(name), dict):
# not sideloading this field
self.request_fields[name] = True
|
def _dynamic_init(self, only_fields, include_fields, exclude_fields)
|
Modifies `request_fields` via higher-level dynamic field interfaces.
Arguments:
only_fields: List of field names to render.
All other fields will be deferred (respects sideloads).
include_fields: List of field names to include.
Adds to default field set, (respects sideloads).
`*` means include all fields.
exclude_fields: List of field names to exclude.
Removes from default field set. If set to '*', all fields are
removed, except for ones that are explicitly included.
| 2.900916 | 2.644125 | 1.097117 |
if not hasattr(cls.Meta, 'name'):
class_name = getattr(cls.get_model(), '__name__', None)
setattr(
cls.Meta,
'name',
inflection.underscore(class_name) if class_name else None
)
return cls.Meta.name
|
def get_name(cls)
|
Get the serializer name.
The name can be defined on the Meta class or will be generated
automatically from the model name.
| 3.45427 | 3.168839 | 1.090074 |
if not hasattr(cls.Meta, 'plural_name'):
setattr(
cls.Meta,
'plural_name',
inflection.pluralize(cls.get_name())
)
return cls.Meta.plural_name
|
def get_plural_name(cls)
|
Get the serializer's plural name.
The plural name may be defined on the Meta class.
If the plural name is not defined,
the pluralized form of the name will be returned.
| 2.83799 | 3.037679 | 0.934263 |
if (
not settings.ENABLE_FIELDS_CACHE or
not self.ENABLE_FIELDS_CACHE or
self.__class__ not in FIELDS_CACHE
):
all_fields = super(
WithDynamicSerializerMixin,
self
).get_fields()
if (
settings.ENABLE_FIELDS_CACHE and
self.ENABLE_FIELDS_CACHE
):
FIELDS_CACHE[self.__class__] = all_fields
else:
all_fields = copy.copy(FIELDS_CACHE[self.__class__])
for k, field in six.iteritems(all_fields):
if hasattr(field, 'reset'):
field.reset()
for k, field in six.iteritems(all_fields):
field.field_name = k
field.parent = self
return all_fields
|
def _all_fields(self)
|
Returns the entire serializer field set.
Does not respect dynamic field inclusions/exclusions.
| 2.853302 | 2.645564 | 1.078523 |
all_fields = self.get_all_fields()
if self.dynamic is False:
return all_fields
if self.id_only():
return {}
serializer_fields = copy.deepcopy(all_fields)
request_fields = self.request_fields
deferred = self._get_deferred_field_names(serializer_fields)
# apply request overrides
if request_fields:
for name, include in six.iteritems(request_fields):
if name not in serializer_fields:
raise exceptions.ParseError(
'"%s" is not a valid field name for "%s".' %
(name, self.get_name())
)
if include is not False and name in deferred:
deferred.remove(name)
elif include is False:
deferred.add(name)
for name in deferred:
serializer_fields.pop(name)
# Set read_only flags based on read_only_fields meta list.
# Here to cover DynamicFields not covered by DRF.
ro_fields = getattr(self.Meta, 'read_only_fields', [])
self.flag_fields(serializer_fields, ro_fields, 'read_only', True)
pw_fields = getattr(self.Meta, 'untrimmed_fields', [])
self.flag_fields(
serializer_fields,
pw_fields,
'trim_whitespace',
False,
)
# Toggle read_only flags for immutable fields.
# Note: This overrides `read_only` if both are set, to allow
# inferred DRF fields to be made immutable.
immutable_field_names = self._get_flagged_field_names(
serializer_fields,
'immutable'
)
self.flag_fields(
serializer_fields,
immutable_field_names,
'read_only',
value=False if self.get_request_method() == 'POST' else True
)
return serializer_fields
|
def get_fields(self)
|
Returns the serializer's field set.
If `dynamic` is True, respects field inclusions/exlcusions.
Otherwise, reverts back to standard DRF behavior.
| 3.679257 | 3.482058 | 1.056633 |
query_params = self.get_request_attribute('query_params', {})
if 'exclude_links' in query_params:
return {}
else:
all_fields = self.get_all_fields()
return {
name: field for name, field in six.iteritems(all_fields)
if isinstance(field, DynamicRelationField) and
getattr(field, 'link', True) and
not (
# Skip sideloaded fields
name in self.fields and
self.is_field_sideloaded(name)
) and not (
# Skip included single relations
# TODO: Use links, when we can generate canonical URLs
name in self.fields and
not getattr(field, 'many', False)
)
}
|
def _link_fields(self)
|
Construct dict of name:field for linkable fields.
| 5.152291 | 4.737242 | 1.087614 |
ret = {}
fields = self._readable_fields
is_fast = isinstance(instance, prefetch.FastObject)
id_fields = self._readable_id_fields
for field in fields:
attribute = None
# we exclude dynamic fields here because the proper fastquery
# dereferencing happens in the `get_attribute` method now
if (
is_fast and
not isinstance(
field,
(DynamicGenericRelationField, DynamicRelationField)
)
):
if field in id_fields and field.source not in instance:
# TODO - make better.
attribute = instance.get(field.source + '_id')
ret[field.field_name] = attribute
continue
else:
try:
attribute = instance[field.source]
except KeyError:
# slower, but does more stuff
# Also, some temp debugging
if hasattr(instance, field.source):
attribute = getattr(instance, field.source)
else:
# Fall back on DRF behavior
attribute = field.get_attribute(instance)
print(
'Missing %s from %s' % (
field.field_name,
self.__class__.__name__
)
)
else:
try:
attribute = field.get_attribute(instance)
except SkipField:
continue
if attribute is None:
# We skip `to_representation` for `None` values so that
# fields do not have to explicitly deal with that case.
ret[field.field_name] = None
else:
ret[field.field_name] = field.to_representation(attribute)
return ret
|
def _faster_to_representation(self, instance)
|
Modified to_representation with optimizations.
1) Returns a plain old dict as opposed to OrderedDict.
(Constructing ordered dict is ~100x slower than `{}`.)
2) Ensure we use a cached list of fields
(this optimization exists in DRF 3.2 but not 3.1)
Arguments:
instance: a model instance or data object
Returns:
Dict of primitive datatypes.
| 4.624118 | 4.612341 | 1.002553 |
if self.enable_optimization:
representation = self._faster_to_representation(instance)
else:
representation = super(
WithDynamicSerializerMixin,
self
).to_representation(instance)
if settings.ENABLE_LINKS:
# TODO: Make this function configurable to support other
# formats like JSON API link objects.
representation = merge_link_object(
self, representation, instance
)
if self.debug:
representation['_meta'] = {
'id': instance.pk,
'type': self.get_plural_name()
}
# tag the representation with the serializer and instance
return tag_dict(
representation,
serializer=self,
instance=instance,
embed=self.embed
)
|
def _to_representation(self, instance)
|
Uncached `to_representation`.
| 5.729294 | 5.374195 | 1.066075 |
if self.id_only():
return instance.pk
pk = getattr(instance, 'pk', None)
if not settings.ENABLE_SERIALIZER_OBJECT_CACHE or pk is None:
return self._to_representation(instance)
else:
if pk not in self.obj_cache:
self.obj_cache[pk] = self._to_representation(instance)
return self.obj_cache[pk]
|
def to_representation(self, instance)
|
Modified to_representation method. Optionally may cache objects.
Arguments:
instance: A model instance or data object.
Returns:
Instance ID if the serializer is meant to represent its ID.
Otherwise, a tagged data dict representation.
| 3.278243 | 2.926517 | 1.120186 |
update = getattr(self, 'instance', None) is not None
instance = super(
WithDynamicSerializerMixin,
self
).save(
*args,
**kwargs
)
view = self._context.get('view')
if view and update:
if int(DRF_VERSION[0]) <= 3 and int(DRF_VERSION[1]) < 5:
# Reload the object on update
# to get around prefetch cache issues
# Fixed in DRF in 3.5.0
instance = self.instance = view.get_object()
return instance
|
def save(self, *args, **kwargs)
|
Serializer save that address prefetch issues.
| 5.630423 | 4.919737 | 1.144456 |
model = self.get_model()
out = [model._meta.pk.name] # get PK field name
# If this is being called, it means it
# is a many-relation to its parent.
# Django wants the FK to the parent,
# but since accurately inferring the FK
# pointing back to the parent is less than trivial,
# we will just pull all ID fields.
# TODO: We also might need to return all non-nullable fields,
# or else it is possible Django will issue another request.
for field in model._meta.fields:
if isinstance(field, models.ForeignKey):
out.append(field.name + '_id')
return out
|
def get_id_fields(self)
|
Called to return a list of fields consisting of, at minimum,
the PK field name. The output of this method is used to
construct a Prefetch object with a .only() queryset
when this field is not being sideloaded but we need to
return a list of IDs.
| 10.095717 | 9.551258 | 1.057004 |
if not isinstance(instance, dict):
data = super(
DynamicEphemeralSerializer,
self
).to_representation(instance)
else:
data = instance
instance = EphemeralObject(data)
if self.id_only():
return data
else:
return tag_dict(data, serializer=self, instance=instance)
|
def to_representation(self, instance)
|
Provides post processing. Sub-classes should implement their own
to_representation method, but pass the resulting dict through
this function to get tagging and field selection.
Arguments:
instance: Serialized dict, or object. If object,
it will be serialized by the super class's
to_representation() method.
| 6.478725 | 5.908912 | 1.096433 |
def get_url(url):
return reverse(url, request=request) if url else url
def is_active_url(path, url):
return path.startswith(url) if url and path else False
path = request.path
directory_list = []
def sort_key(r):
return r[0]
# TODO(ant): support arbitrarily nested
# structure, for now it is capped at a single level
# for UX reasons
for group_name, endpoints in sorted(
six.iteritems(directory),
key=sort_key
):
endpoints_list = []
for endpoint_name, endpoint in sorted(
six.iteritems(endpoints),
key=sort_key
):
if endpoint_name[:1] == '_':
continue
endpoint_url = get_url(endpoint.get('_url', None))
active = is_active_url(path, endpoint_url)
endpoints_list.append(
(endpoint_name, endpoint_url, [], active)
)
url = get_url(endpoints.get('_url', None))
active = is_active_url(path, url)
directory_list.append(
(group_name, url, endpoints_list, active)
)
return directory_list
|
def get_directory(request)
|
Get API directory as a nested list of lists.
| 3.222152 | 3.166271 | 1.017649 |
class API(views.APIView):
_ignore_model_permissions = True
def get(self, request, *args, **kwargs):
directory_list = get_directory(request)
result = OrderedDict()
for group_name, url, endpoints, _ in directory_list:
if url:
result[group_name] = url
else:
group = OrderedDict()
for endpoint_name, url, _, _ in endpoints:
group[endpoint_name] = url
result[group_name] = group
return Response(result)
return API.as_view()
|
def get_api_root_view(self, **kwargs)
|
Return API root view, using the global directory.
| 3.139354 | 2.857528 | 1.098626 |
if base_name is None:
base_name = prefix
super(DynamicRouter, self).register(prefix, viewset, base_name)
prefix_parts = prefix.split('/')
if len(prefix_parts) > 1:
prefix = prefix_parts[0]
endpoint = '/'.join(prefix_parts[1:])
else:
endpoint = prefix
prefix = None
if prefix and prefix not in directory:
current = directory[prefix] = {}
else:
current = directory.get(prefix, directory)
list_name = self.routes[0].name
url_name = list_name.format(basename=base_name)
if endpoint not in current:
current[endpoint] = {}
current[endpoint]['_url'] = url_name
current[endpoint]['_viewset'] = viewset
|
def register(self, prefix, viewset, base_name=None)
|
Add any registered route into a global API directory.
If the prefix includes a path separator,
store the URL in the directory under the first path segment.
Otherwise, store it as-is.
For example, if there are two registered prefixes,
'v1/users' and 'groups', `directory` will look liks:
{
'v1': {
'users': {
'_url': 'users-list'
'_viewset': <class 'UserViewSet'>
},
}
'groups': {
'_url': 'groups-list'
'_viewset': <class 'GroupViewSet'>
}
}
| 2.768459 | 2.612054 | 1.059878 |
# Try to extract resource name from viewset.
try:
serializer = viewset.serializer_class()
resource_key = serializer.get_resource_key()
resource_name = serializer.get_name()
path_name = serializer.get_plural_name()
except:
import traceback
traceback.print_exc()
raise Exception(
"Failed to extract resource name from viewset: '%s'."
" It, or its serializer, may not be DREST-compatible." % (
viewset
)
)
# Construct canonical path and register it.
if namespace:
namespace = namespace.rstrip('/') + '/'
base_path = namespace or ''
base_path = r'%s' % base_path + path_name
self.register(base_path, viewset)
# Make sure resource isn't already registered.
if resource_key in resource_map:
raise Exception(
"The resource '%s' has already been mapped to '%s'."
" Each resource can only be mapped to one canonical"
" path. " % (
resource_key,
resource_map[resource_key]['path']
)
)
# Register resource in reverse map.
resource_map[resource_key] = {
'path': base_path,
'viewset': viewset
}
# Make sure the resource name isn't registered, either
# TODO: Think of a better way to clean this up, there's a lot of
# duplicated effort here, between `resource_name` and `resource_key`
# This resource name -> key mapping is currently only used by
# the DynamicGenericRelationField
if resource_name in resource_name_map:
resource_key = resource_name_map[resource_name]
raise Exception(
"The resource name '%s' has already been mapped to '%s'."
" A resource name can only be used once." % (
resource_name,
resource_map[resource_key]['path']
)
)
# map the resource name to the resource key for easier lookup
resource_name_map[resource_name] = resource_key
|
def register_resource(self, viewset, namespace=None)
|
Register a viewset that should be considered the canonical
endpoint for a particular resource. In addition to generating
and registering the route, it adds the route in a reverse map
to allow DREST to build the canonical URL for a given resource.
Arguments:
viewset - viewset class, should have `serializer_class` attr.
namespace - (optional) URL namespace, e.g. 'v3'.
| 3.486202 | 3.283626 | 1.061693 |
if resource_key not in resource_map:
# Note: Maybe raise?
return None
base_path = get_script_prefix() + resource_map[resource_key]['path']
if pk:
return '%s/%s/' % (base_path, pk)
else:
return base_path
|
def get_canonical_path(resource_key, pk=None)
|
Return canonical resource path.
Arguments:
resource_key - Canonical resource key
i.e. Serializer.get_resource_key().
pk - (Optional) Object's primary key for a single-resource URL.
Returns: Absolute URL as string.
| 4.018827 | 3.800351 | 1.057488 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.