code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
if "flight_id" not in self.data.columns: return None tmp = set(self.data.flight_id) if len(tmp) != 1: logging.warn("Several ids for one flight, consider splitting") return tmp.pop()
def flight_id(self) -> Optional[str]
Returns the unique flight_id value(s) of the DataFrame. If you know how to split flights, you may want to append such a column in the DataFrame.
4.47168
4.695765
0.952279
return set(self.data.squawk.ffill().bfill())
def squawk(self) -> Set[str]
Returns all the unique squawk values in the trajectory.
18.053698
9.7081
1.859653
if "destination" not in self.data.columns: return None tmp = set(self.data.destination) if len(tmp) == 1: return tmp.pop() logging.warn("Several destinations for one flight, consider splitting") return tmp
def destination(self) -> Optional[Union[str, Set[str]]]
Returns the unique destination value(s) of the DataFrame. The destination airport is mostly represented as a ICAO or a IATA code.
4.764907
4.722827
1.00891
from ..data import opensky query_params = { "start": self.start, "stop": self.stop, "callsign": self.callsign, "icao24": self.icao24, } return opensky.history(**query_params)
def query_opensky(self) -> Optional["Flight"]
Return the equivalent Flight from OpenSky History.
3.64713
3.158001
1.154886
from ..data import opensky, ModeS_Decoder if not isinstance(self.icao24, str): raise RuntimeError("Several icao24 for this flight") def fail_warning(): id_ = self.flight_id if id_ is None: id_ = self.callsign logging.warn(f"No data on Impala for flight {id_}.") return self def fail_silent(): return self failure_dict = dict(warning=fail_warning, silent=fail_silent) failure = failure_dict[failure_mode] if data is None: df = opensky.extended(self.start, self.stop, icao24=self.icao24) else: df = data.query("icao24 == @self.icao24").sort_values("mintime") if df is None: return failure() timestamped_df = df.sort_values("mintime").assign( timestamp=lambda df: df.mintime.dt.round("s") ) referenced_df = ( timestamped_df.merge(self.data, on="timestamp", how="outer") .sort_values("timestamp") .rename( columns=dict( altitude="alt", altitude_y="alt", groundspeed="spd", track="trk", ) )[["timestamp", "alt", "spd", "trk"]] .ffill() .drop_duplicates() # bugfix! NEVER ERASE THAT LINE! .merge( timestamped_df[["timestamp", "icao24", "rawmsg"]], on="timestamp", how="right", ) ) identifier = ( self.flight_id if self.flight_id is not None else self.callsign ) # who cares about default lat0, lon0 with EHS decoder = ModeS_Decoder((0, 0)) if progressbar is None: progressbar = lambda x: tqdm( # noqa: E731 x, total=referenced_df.shape[0], desc=f"{identifier}:", leave=False, ) for _, line in progressbar(referenced_df.iterrows()): decoder.process( line.timestamp, line.rawmsg, spd=line.spd, trk=line.trk, alt=line.alt, ) if decoder.traffic is None: return failure() extended = decoder.traffic[self.icao24] if extended is None: return failure() # fix for https://stackoverflow.com/q/53657210/1595335 if "last_position" in self.data.columns: extended = extended.assign(last_position=pd.NaT) if "start" in self.data.columns: extended = extended.assign(start=pd.NaT) if "stop" in self.data.columns: extended = extended.assign(stop=pd.NaT) t = extended + self if "flight_id" in self.data.columns: t.data.flight_id = self.flight_id # sometimes weird callsigns are decoded and should be discarded # so it seems better to filter on callsign rather than on icao24 flight = t[self.callsign] if flight is None: return failure() return flight.sort_values("timestamp")
def query_ehs( self, data: Optional[pd.DataFrame] = None, failure_mode: str = "warning", progressbar: Optional[Callable[[Iterable], Iterable]] = None, ) -> "Flight"
Extend data with extra columns from EHS messages. By default, raw messages are requested from the OpenSky Impala server. Making a lot of small requests can be very inefficient and may look like a denial of service. If you get the raw messages using a different channel, you can provide the resulting dataframe as a parameter. The data parameter expect three colmuns: icao24, rawmsg and mintime, in conformance with the OpenSky API.
3.829707
3.747866
1.021837
data = self.data[self.data.longitude.notnull()] yield from zip(data["longitude"], data["latitude"], data["altitude"])
def coords(self) -> Iterator[Tuple[float, float, float]]
Iterates on longitudes, latitudes and altitudes.
5.041615
4.064302
1.240463
iterator = iter(zip(self.coords, self.timestamp)) while True: next_ = next(iterator, None) if next_ is None: return coords, time = next_ yield (coords[0], coords[1], time.to_pydatetime().timestamp())
def xy_time(self) -> Iterator[Tuple[float, float, float]]
Iterates on longitudes, latitudes and timestamps.
3.484452
3.113926
1.11899
# default value is 10 m unit = "m" for data in _split(self.data, value, unit): yield self.__class__(data)
def split(self, value=10, unit=None): # noqa: F811 if type(value) == int and unit is None
Splits Flights in several legs. By default, Flights are split if no value is given during 10 minutes.
7.533007
8.431903
0.893393
if isinstance(rule, str): data = ( self._handle_last_position() .data.assign(start=self.start, stop=self.stop) .set_index("timestamp") .resample(rule) .first() # better performance than min() for duplicate index .interpolate() .reset_index() .fillna(method="pad") ) elif isinstance(rule, int): data = ( self._handle_last_position() .data.set_index("timestamp") .asfreq( (self.stop - self.start) / (rule - 1), # type: ignore method="nearest", ) .reset_index() ) else: raise TypeError("rule must be a str or an int") return self.__class__(data)
def resample(self, rule: Union[str, int] = "1s") -> "Flight"
Resamples a Flight at a one point per second rate.
3.366786
3.31105
1.016833
# returns a mask mask = douglas_peucker( df=self.data, tolerance=tolerance, lat="latitude", lon="longitude", z=altitude, z_factor=z_factor, ) if return_type == Type["Flight"]: return self.__class__(self.data.loc[mask]) else: return mask
def simplify( self, tolerance: float, altitude: Optional[str] = None, z_factor: float = 3.048, return_type: Type[Mask] = Type["Flight"], ) -> Mask
Simplifies a trajectory with Douglas-Peucker algorithm. The method uses latitude and longitude, projects the trajectory to a conformal projection and applies the algorithm. By default, a 2D version is called, unless you pass a column name for altitude (z parameter). You may scale the z-axis for more relevance (z_factor); the default value works well in most situations. The method returns a Flight unless you specify a np.ndarray[bool] as return_type for getting a mask.
3.536094
3.218571
1.098654
def safe_exec(self, *args, **kwargs): try: return fn(self, *args, **kwargs) except Exception as e: logging.exception(e) QMessageBox.information( self, type(e).__name__, " ".join(str(x) for x in e.args) ) return safe_exec
def dont_crash(fn)
Wraps callbacks: a simple information is raised in place of a program crash.
3.212049
3.127741
1.026955
return self.shape.bounds
def bounds(self) -> Tuple[float, float, float, float]
Returns the bounds of the shape. Bounds are given in the following order in the origin crs: west, south, east, north
48.594799
31.994637
1.518842
west, south, east, north = self.bounds return west, east, south, north
def extent(self) -> Tuple[float, float, float, float]
Returns the extent of the shape. Extent is given in the following order in the origin crs: west, east, south, north This method is convenient for the ax.set_extent method
4.928088
6.289154
0.783585
if self.shape is None: return None if isinstance(projection, crs.Projection): projection = pyproj.Proj(projection.proj4_init) if projection is None: bounds = self.bounds projection = pyproj.Proj( proj="aea", # equivalent projection lat_1=bounds[1], lat_2=bounds[3], lat_0=(bounds[1] + bounds[3]) / 2, lon_0=(bounds[0] + bounds[2]) / 2, ) projected_shape = transform( partial( pyproj.transform, pyproj.Proj(init="EPSG:4326"), projection ), self.shape, ) if not projected_shape.is_valid: warnings.warn("The chosen projection is invalid for current shape") return projected_shape
def project_shape( self, projection: Union[pyproj.Proj, crs.Projection, None] = None ) -> base.BaseGeometry
Projection for a decent representation of the structure. By default, an equivalent projection is applied. Equivalent projections locally respect areas, which is convenient for the area attribute.
2.248177
2.150158
1.045587
if isinstance(projection, crs.Projection): projection = pyproj.Proj(projection.proj4_init) if projection is None: projection = pyproj.Proj( proj="lcc", lat_1=self.data.latitude.min(), lat_2=self.data.latitude.max(), lat_0=self.data.latitude.mean(), lon_0=self.data.longitude.mean(), ) x, y = pyproj.transform( pyproj.Proj(init="EPSG:4326"), projection, self.data.longitude.values, self.data.latitude.values, ) return self.__class__(self.data.assign(x=x, y=y))
def compute_xy( self, projection: Union[pyproj.Proj, crs.Projection, None] = None )
Computes x and y columns from latitudes and longitudes. The source projection is WGS84 (EPSG 4326). The default destination projection is a Lambert Conformal Conical projection centered on the data inside the dataframe. For consistency reasons with pandas DataFrame, a new Traffic structure is returned.
1.710306
1.616495
1.058034
sub = self.data.query("callsign == callsign") return set(cs for cs in sub.callsign if len(cs) > 3 and " " not in cs)
def callsigns(self) -> Set[str]
Return only the most relevant callsigns
6.409524
5.411791
1.184363
key = ["icao24", "callsign"] if self.flight_ids is None else "flight_id" return ( self.data.groupby(key)[["timestamp"]] .count() .sort_values("timestamp", ascending=False) .rename(columns={"timestamp": "count"}) )
def stats(self) -> pd.DataFrame
Statistics about flights contained in the structure. Useful for a meaningful representation.
4.352489
3.657292
1.190085
with ProcessPoolExecutor(max_workers=max_workers) as executor: cumul = [] tasks = { executor.submit(flight.resample, rule): flight for flight in self } for future in tqdm(as_completed(tasks), total=len(tasks)): cumul.append(future.result()) return self.__class__.from_flights(cumul)
def resample( self, rule: Union[str, int] = "1s", max_workers: int = 4, ) -> "Traffic"
Resamples all trajectories, flight by flight. `rule` defines the desired sample rate (default: 1s)
2.626634
2.81494
0.933105
from ..algorithms.cpa import closest_point_of_approach return closest_point_of_approach( self, lateral_separation, vertical_separation, projection, round_t, max_workers, )
def closest_point_of_approach( self, lateral_separation: float, vertical_separation: float, projection: Union[pyproj.Proj, crs.Projection, None] = None, round_t: str = "d", max_workers: int = 4, ) -> "CPA"
Computes a CPA dataframe for all pairs of trajectories candidates for being separated by less than lateral_separation in vertical_separation. In order to be computed efficiently, the method needs the following parameters: - projection: a first filtering is applied on the bounding boxes of trajectories, expressed in meters. You need to provide a decent projection able to approximate distances by Euclide formula. By default, EuroPP() projection is considered, but a non explicit argument will raise a warning. - round_t: an additional column will be added in the DataFrame to group trajectories by relevant time frames. Distance computations will be considered only between trajectories flown in the same time frame. By default, the 'd' pandas freq parameter is considered, to group trajectories by day, but other ways of splitting ('h') may be more relevant and impact performance. - max_workers: distance computations are spread over a given number of processors.
2.008893
2.657072
0.756055
a = vvsound(h) M = tas / a return M
def vtas2mach(tas, h)
True airspeed (tas) to mach number conversion
28.845493
25.640848
1.124982
a = vvsound(h) tas = M * a return tas
def vmach2tas(M, h)
True airspeed (tas) to mach number conversion
17.968294
18.62159
0.964917
rho = vdensity(h) tas = eas * np.sqrt(rho0 / rho) return tas
def veas2tas(eas, h)
Equivalent airspeed to true airspeed
10.256752
10.250186
1.000641
p, rho, T = vatmos(h) qdyn = p*((1.+rho*tas*tas/(7.*p))**3.5-1.) cas = np.sqrt(7.*p0/rho0*((qdyn/p0+1.)**(2./7.)-1.)) # cope with negative speed cas = np.where(tas<0, -1*cas, cas) return cas
def vtas2cas(tas, h)
tas2cas conversion both m/s
10.466268
10.19347
1.026762
tas = vmach2tas(M, h) cas = vtas2cas(tas, h) return cas
def vmach2cas(M, h)
Mach to CAS conversion
3.606959
3.916879
0.920876
tas = vcas2tas(cas, h) M = vtas2mach(tas, h) return M
def vcas2mach(cas, h)
CAS to Mach conversion
4.715392
4.440948
1.061799
# Constants # Base values and gradient in table from hand-out # (but corrected to avoid small discontinuities at borders of layers) h0 = [0.0, 11000., 20000., 32000., 47000., 51000., 71000., 86852.] p0 = [101325., # Sea level 22631.7009099, # 11 km 5474.71768857, # 20 km 867.974468302, # 32 km 110.898214043, # 47 km 66.939, # 51 km 3.9564 ] # 71 km T0 = [288.15, # Sea level 216.65, # 11 km 216.65, # 20 km 228.65, # 32 km 270.65, # 47 km 270.65, # 51 km 214.65] # 71 km # a = lapse rate (temp gradient) # integer 0 indicates isothermic layer! a = [-0.0065, # 0-11 km 0, # 11-20 km 0.001, # 20-32 km 0.0028, # 32-47 km 0, # 47-51 km -0.0028, # 51-71 km -0.002] # 71- km # Clip altitude to maximum! h = max(0.0, min(float(h), h0[-1])) # Find correct layer i = 0 while h > h0[i+1] and i < len(h0) - 2: i = i+1 # Calculate if sothermic layer if a[i] == 0: T = T0[i] p = p0[i]*np.exp(-g0/(R*T)*(h-h0[i])) rho = p/(R*T) # Calculate for temperature gradient else: T = T0[i] + a[i]*(h-h0[i]) p = p0[i]*((T/T0[i])**(-g0/(a[i]*R))) rho = p/(R*T) return p, rho, T
def atmos(h)
atmos(altitude): International Standard Atmosphere calculator Input: h = altitude in meters 0.0 < h < 84852. (will be clipped when outside range, integer input allowed) Output: [p,rho,T] (in SI-units: Pa, kg/m3 and K)
3.894429
3.684285
1.057038
# Base values and gradient in table from hand-out # (but corrected to avoid small discontinuities at borders of layers) h0 = [0.0, 11000., 20000., 32000., 47000., 51000., 71000., 86852.] T0 = [288.15, # Sea level 216.65, # 11 km 216.65, # 20 km 228.65, # 32 km 270.65, # 47 km 270.65, # 51 km 214.65] # 71 km # a = lapse rate (temp gradient) # integer 0 indicates isothermic layer! a = [-0.0065, # 0-11 km 0 , # 11-20 km 0.001, # 20-32 km 0.0028, # 32-47 km 0 , # 47-51 km -0.0028, # 51-71 km -0.002] # 71- km # Clip altitude to maximum! h = max(0.0,min(float(h),h0[-1])) # Find correct layer i = 0 while h>h0[i+1] and i<len(h0)-2: i = i+1 # Calculate if sothermic layer if a[i]==0: T = T0[i] # Calculate for temperature gradient else: T = T0[i] + a[i]*(h-h0[i]) return T
def temp(h)
temp (altitude): Temperature only version of ISA atmos Input: h = altitude in meters 0.0 < h < 84852. (will be clipped when outside range, integer input allowed) Output: T (in SI-unit: K
4.227473
3.956948
1.068367
a = vsound(h) M = tas / a return M
def tas2mach(tas, h)
True airspeed (tas) to mach number conversion
15.18341
13.117996
1.157449
a = vsound(h) tas = M * a return tas
def mach2tas(M, h)
True airspeed (tas) to mach number conversion
9.887187
10.661449
0.927377
rho = density(h) tas = eas * np.sqrt(rho0 / rho) return tas
def eas2tas(eas, h)
Equivalent airspeed to true airspeed
7.95597
6.868509
1.158326
p, rho, T = atmos(h) qdyn = p0*((1.+rho0*cas*cas/(7.*p0))**3.5-1.) tas = np.sqrt(7.*p/rho*((1.+qdyn/p)**(2./7.)-1.)) tas = -1 * tas if cas < 0 else tas return tas
def cas2tas(cas, h)
cas2tas conversion both m/s h in m
9.495226
9.186571
1.033598
tas = mach2tas(M, h) cas = tas2cas(tas, h) return cas
def mach2cas(M, h)
Mach to CAS conversion
3.579304
3.523975
1.015701
tas = cas2tas(cas, h) M = tas2mach(tas, h) return M
def cas2mach(cas, h)
CAS Mach conversion
5.110984
4.85276
1.053212
if minimum_time is not None: minimum_time = to_datetime(minimum_time) traffic = traffic.query(f"timestamp >= '{minimum_time}'") if isinstance(filename, str): filename = Path(filename) if not filename.parent.exists(): filename.parent.mkdir(parents=True) altitude = ( "baro_altitude" if "baro_altitude" in traffic.data.columns else "altitude" ) if "mdl" not in traffic.data.columns: traffic = aircraft.merge(traffic) if "cas" not in traffic.data.columns: traffic = Traffic( traffic.data.assign( cas=vtas2cas(traffic.data.ground_speed, traffic.data[altitude]) ) ) with filename.open("w") as fh: t_delta = traffic.data.timestamp - traffic.start_time data = ( traffic.assign_id() .data.groupby("flight_id") .filter(lambda x: x.shape[0] > 3) .assign(timedelta=t_delta.apply(fmt_timedelta)) .sort_values(by="timestamp") ) for column in data.columns: data[column] = data[column].astype(np.str) is_created: List[str] = [] is_deleted: List[str] = [] start_time = cast(pd.Timestamp, traffic.start_time).time() fh.write(f"00:00:00> TIME {start_time}\n") # Add some bluesky command for the visualisation # fh.write("00:00:00>trail on\n") # fh.write("00:00:00>ssd conflicts\n") # We remove an object when it's its last data point buff = data.groupby("flight_id").timestamp.max() dd = pd.DataFrame( columns=["timestamp"], data=buff.values, index=buff.index.values ) map_icao24_last_point = {} for i, v in dd.iterrows(): map_icao24_last_point[i] = v[0] # Main loop to write lines in the scenario file for _, v in data.iterrows(): if v.flight_id not in is_created: # If the object is not created then create it is_created.append(v.flight_id) fh.write( f"{v.timedelta}> CRE {v.callsign} {v.mdl} " f"{v.latitude} {v.longitude} {v.track} " f"{v[altitude]} {v.cas}\n" ) elif v.timestamp == map_icao24_last_point[v.flight_id]: # Remove an aircraft when no data are available if v.flight_id not in is_deleted: is_deleted.append(v.flight_id) fh.write(f"{v.timedelta}> DEL {v.callsign}\n") elif v.flight_id not in is_deleted: # Otherwise update the object position fh.write( f"{v.timedelta}> MOVE {v.callsign} " f"{v.latitude} {v.longitude} {v[altitude]} " f"{v.track} {v.cas} {v.vertical_rate}\n" ) logging.info(f"Scenario file {filename} written")
def to_bluesky( traffic: Traffic, filename: Union[str, Path], minimum_time: Optional[timelike] = None, ) -> None
Generates a Bluesky scenario file.
3.354698
3.300907
1.016296
if isinstance(package, str): package = importlib.import_module(package) results = {} for loader, name, is_pkg in pkgutil.walk_packages(package.__path__): full_name = package.__name__ + "." + name results[name] = importlib.import_module(full_name) if recursive and is_pkg: results.update(import_submodules(full_name)) return results
def import_submodules(package, recursive=True)
Import all submodules of a module, recursively, including subpackages :param package: package (name or actual module) :type package: str | module :rtype: dict[str, types.ModuleType]
1.399748
1.558266
0.898273
return ax.scatter( self.data.longitude, self.data.latitude, s=s, transform=PlateCarree(), **kwargs, )
def plot(self, ax: GeoAxesSubplot, s: int = 10, **kwargs) -> Artist
Plotting function. All arguments are passed to ax.scatter
2.838403
2.661387
1.066513
if proj not in self.interpolator: self.interpolator[proj] = interp1d( np.stack(t.to_pydatetime().timestamp() for t in self.timestamp), proj.transform_points( PlateCarree(), *np.stack(self.coords).T ).T, ) return PlateCarree().transform_points( proj, *self.interpolator[proj](times) )
def interpolate(self, times, proj=PlateCarree()) -> np.ndarray
Interpolates a trajectory in time.
4.039165
3.495576
1.155508
cumul = [] for f in self: info = { "flight_id": f.flight_id, "callsign": f.callsign, "origin": f.origin, "destination": f.destination, "duration": f.stop - f.start, # type: ignore } cumul.append(info) return ( pd.DataFrame.from_records(cumul) .set_index("flight_id") .sort_values("duration", ascending=False) )
def stats(self) -> pd.DataFrame
Statistics about flights contained in the structure. Useful for a meaningful representation.
2.94039
2.485178
1.183171
if df is None and (isinstance(x, str) or isinstance(y, str)): raise ValueError("Provide a dataframe if x and y are column names") if df is None and (isinstance(lon, str) or isinstance(lat, str)): raise ValueError("Provide a dataframe if lat and lon are column names") if tolerance < 0: raise ValueError("tolerance must be a positive float") if df is not None and isinstance(lat, str) and isinstance(lon, str): lat, lon = df[lat].values, df[lon].values if df is not None and lat is not None and lon is not None: lat, lon = np.array(lat), np.array(lon) x, y = pyproj.transform( pyproj.Proj(init='EPSG:4326'), pyproj.Proj(proj='lcc', lat0=lat.mean(), lon0=lon.mean(), lat1=lat.min(), lat2=lat.max(), ), lon, lat) else: if df is not None: x, y = df[x].values, df[y].values x, y = np.array(x), np.array(y) if z is not None: if df is not None: z = df[z].values z = z_factor * np.array(z) mask = np.ones(len(x), dtype=bool) if z is None: _douglas_peucker_rec(x, y, mask, tolerance) else: _douglas_peucker_rec_3d(x, y, z, mask, tolerance) return mask
def douglas_peucker(*args, df: pd.DataFrame=None, tolerance: float, x='x', y='y', z=None, z_factor: float = 3.048, lat=None, lon=None) -> np.ndarray
Ramer-Douglas-Peucker algorithm for 2D/3D trajectories. Simplify a trajectory by keeping the points further away from the straight line. Parameters: df Optional a Pandas dataframe tolerance float the threshold for cutting the trajectory z_factor float for ft/m conversion (default 3.048) 1km lateral, 100m vertical seems like a good ratio x, y, z str or ndarray[float] the column names if a dataframe is given, otherwise a series of float lat, lon str or ndarray[float] the column names if a dataframe is given, otherwise a series of float. x, y are built with a Lambert Conformal projection Note that lat, lon has precedence over x, y Returns: a np.array of booleans serving as a mask on the dataframe or on the numpy array See also: https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
1.898793
1.840905
1.031445
west, south, east, north = self.projection.boundary.bounds self.set_extent((west, east, south, north), crs=self.projection)
def _set_default_extent(self)
Helper for a default extent limited to the projection boundaries.
4.603547
3.700673
1.243976
if "callsign" in df.columns and df.callsign.dtype == object: df.callsign = df.callsign.str.strip() if nautical_units: df.altitude = df.altitude / 0.3048 if "geoaltitude" in df.columns: df.geoaltitude = df.geoaltitude / 0.3048 if "groundspeed" in df.columns: df.groundspeed = df.groundspeed / 1852 * 3600 if "vertical_rate" in df.columns: df.vertical_rate = df.vertical_rate / 0.3048 * 60 df.timestamp = pd.to_datetime(df.timestamp * 1e9).dt.tz_localize("utc") if "last_position" in df.columns: df = df.query("last_position == last_position").assign( last_position=pd.to_datetime( df.last_position * 1e9 ).dt.tz_localize("utc") ) return df.sort_values("timestamp")
def _format_dataframe( df: pd.DataFrame, nautical_units=True ) -> pd.DataFrame
This function converts types, strips spaces after callsigns and sorts the DataFrame by timestamp. For some reason, all data arriving from OpenSky are converted to units in metric system. Optionally, you may convert the units back to nautical miles, feet and feet/min.
2.070052
1.952331
1.060298
start = to_datetime(start) stop = to_datetime(stop) before_hour = round_time(start, "before") after_hour = round_time(stop, "after") try: # thinking of shapely bounds attribute (in this order) # I just don't want to add the shapely dependency here west, south, east, north = bounds.bounds # type: ignore except AttributeError: west, south, east, north = bounds other_params = "and lon>={} and lon<={} ".format(west, east) other_params += "and lat>={} and lat<={} ".format(south, north) query = self.basic_request.format( columns="icao24, callsign, s.ITEM as serial, count(*) as count", other_tables=", state_vectors_data4.serials s", before_time=start.timestamp(), after_time=stop.timestamp(), before_hour=before_hour.timestamp(), after_hour=after_hour.timestamp(), other_params=other_params + "group by icao24, callsign, s.ITEM", ) logging.info(f"Sending request: {query}") df = self._impala(query, columns="icao24, callsign, serial, count") if df is None: return None df = df[df["count"] != "count"] df["count"] = df["count"].astype(int) return df
def within_bounds( self, start: timelike, stop: timelike, bounds: Union[BaseGeometry, Tuple[float, float, float, float]], ) -> Optional[pd.DataFrame]
EXPERIMENTAL.
4.482916
4.497013
0.996865
start = to_datetime(start) stop = to_datetime(stop) before_hour = round_time(start, how="before") after_hour = round_time(stop, how="after") if isinstance(airport, str): from traffic.data import airports airport = cast(Airport, airports[airport]) other_params = ( "and lat<={airport_latmax} and lat>={airport_latmin} " "and lon<={airport_lonmax} and lon>={airport_lonmin} " "and baroaltitude<=1000 " "group by icao24, callsign" ).format( airport_latmax=airport.lat + 0.1, airport_latmin=airport.lat - 0.1, airport_lonmax=airport.lon + 0.1, airport_lonmin=airport.lon - 0.1, ) columns = "icao24, callsign" other_tables = "" if count is True: columns = "count(*) as count, s.ITEM as serial, " + columns other_tables += ", state_vectors_data4.serials s" other_params += ", s.ITEM" request = self.basic_request.format( columns=columns, before_time=start.timestamp(), after_time=stop.timestamp(), before_hour=before_hour.timestamp(), after_hour=after_hour.timestamp(), other_tables=other_tables, other_params=other_params, ) df = self._impala(request, columns="count, serial, icao24, callsign") if ( df is not None and "callsign" in df.columns and df.callsign.dtype == object ): df = df[df.callsign != "callsign"] return df
def within_airport( self, start: timelike, stop: timelike, airport: Union[Airport, str], count: bool = False, ) -> Optional[pd.DataFrame]
EXPERIMENTAL.
3.134723
3.140743
0.998083
# Generate a list of blacklisted packages from the configuration and # store it into self.blacklist_package_names attribute so this # operation doesn't end up in the fastpath. if not self.whitelist_package_names: self.whitelist_package_names = self._determine_unfiltered_package_names() logger.info( f"Initialized project plugin {self.name}, filtering " + f"{self.whitelist_package_names}" )
def initialize_plugin(self)
Initialize the plugin
7.510211
7.417284
1.012528
# This plugin only processes packages, if the line in the packages # configuration contains a PEP440 specifier it will be processed by the # blacklist release filter. So we need to remove any packages that # are not applicable for this plugin. unfiltered_packages = set() try: lines = self.configuration["whitelist"]["packages"] package_lines = lines.split("\n") except KeyError: package_lines = [] for package_line in package_lines: package_line = package_line.strip() if not package_line or package_line.startswith("#"): continue unfiltered_packages.add(package_line) return list(unfiltered_packages)
def _determine_unfiltered_package_names(self)
Return a list of package names to be filtered base on the configuration file.
4.666528
4.45113
1.048392
if not self.whitelist_package_names: return False name = kwargs.get("name", None) if not name: return False if name in self.whitelist_package_names: logger.info(f"Package {name!r} is whitelisted") return False return True
def check_match(self, **kwargs)
Check if the package name matches against a project that is blacklisted in the configuration. Parameters ========== name: str The normalized package name of the package/project to check against the blacklist. Returns ======= bool: True if it matches, False otherwise.
3.537873
3.311958
1.068212
if self._patterns or self._packagetypes: logger.debug( "Skipping initalization of Exclude Platform plugin. " + "Already initialized" ) return try: tags = self.configuration["blacklist"]["platforms"].split() except KeyError: logger.error(f"Plugin {self.name}: missing platforms= setting") return for platform in tags: lplatform = platform.lower() if lplatform in ("windows", "win"): # PEP 425 # see also setuptools/package_index.py self._patterns.extend([".win32", "-win32", "win_amd64", "win-amd64"]) # PEP 527 self._packagetypes.extend(["bdist_msi", "bdist_wininst"]) elif lplatform in ("macos", "macosx"): self._patterns.extend(["macosx_", "macosx-"]) self._packagetypes.extend(["bdist_dmg"]) elif lplatform in ("freebsd"): # concerns only very few files self._patterns.extend([".freebsd", "-freebsd"]) elif lplatform in ("linux"): self._patterns.extend( [ "linux-i686", # PEP 425 "linux-x86_64", # PEP 425 "linux_armv7l", # https://github.com/pypa/warehouse/pull/2010 "linux_armv6l", # https://github.com/pypa/warehouse/pull/2012 "manylinux1_", # PEP 513 "manylinux2010_", # PEP 571 ] ) self._packagetypes.extend(["bdist_rpm"]) logger.info(f"Initialized {self.name} plugin with {self._patterns!r}")
def initialize_plugin(self)
Initialize the plugin reading patterns from the config.
3.433569
3.368835
1.019216
# Make a copy of releases keys # as we may delete packages during iteration removed = 0 versions = list(releases.keys()) for version in versions: new_files = [] for file_desc in releases[version]: if self._check_match(file_desc): removed += 1 else: new_files.append(file_desc) if len(new_files) == 0: del releases[version] else: releases[version] = new_files logger.debug(f"{self.name}: filenames removed: {removed}")
def filter(self, info, releases)
Remove files from `releases` that match any pattern.
4.079956
3.796419
1.074685
# source dist: never filter out pt = file_desc.get("packagetype") if pt == "sdist": return False # Windows installer if pt in self._packagetypes: return True fn = file_desc["filename"] for i in self._patterns: if i in fn: return True return False
def _check_match(self, file_desc) -> bool
Check if a release version matches any of the specificed patterns. Parameters ========== name: file_desc file description entry Returns ======= bool: True if it matches, False otherwise.
7.811331
6.791408
1.150178
global loaded_filter_plugins enabled_plugins: List[str] = [] config = BandersnatchConfig().config try: config_blacklist_plugins = config["blacklist"]["plugins"] split_plugins = config_blacklist_plugins.split("\n") if "all" in split_plugins: enabled_plugins = ["all"] else: for plugin in split_plugins: if not plugin: continue enabled_plugins.append(plugin) except KeyError: pass # If the plugins for the entrypoint_group have been loaded return them cached_plugins = loaded_filter_plugins.get(entrypoint_group) if cached_plugins: return cached_plugins plugins = set() for entry_point in pkg_resources.iter_entry_points(group=entrypoint_group): plugin_class = entry_point.load() plugin_instance = plugin_class() if "all" in enabled_plugins or plugin_instance.name in enabled_plugins: plugins.add(plugin_instance) loaded_filter_plugins[entrypoint_group] = list(plugins) return plugins
def load_filter_plugins(entrypoint_group: str) -> Iterable[Filter]
Load all blacklist plugins that are registered with pkg_resources Parameters ========== entrypoint_group: str The entrypoint group name to load plugins from Returns ======= List of Blacklist: A list of objects derived from the Blacklist class
2.547762
2.723293
0.935545
if not self.patterns: self.patterns = [ re.compile(pattern_string) for pattern_string in self.PRERELEASE_PATTERNS ] logger.info(f"Initialized prerelease plugin with {self.patterns}")
def initialize_plugin(self)
Initialize the plugin reading patterns from the config.
5.29538
4.419956
1.198062
for version in list(releases.keys()): if any(pattern.match(version) for pattern in self.patterns): del releases[version]
def filter(self, info, releases)
Remove all release versions that match any of the specificed patterns.
4.100671
2.722218
1.506371
# TODO: should retrieving the plugin's config be part of the base class? try: config = self.configuration["filter_regex"]["releases"] except KeyError: return else: if not self.patterns: pattern_strings = [pattern for pattern in config.split("\n") if pattern] self.patterns = [ re.compile(pattern_string) for pattern_string in pattern_strings ] logger.info(f"Initialized regex release plugin with {self.patterns}")
def initialize_plugin(self)
Initialize the plugin reading patterns from the config.
5.799982
5.333913
1.087378
return any(pattern.match(name) for pattern in self.patterns)
def check_match(self, name)
Check if a release version matches any of the specificed patterns. Parameters ========== name: str Release name Returns ======= bool: True if it matches, False otherwise.
6.357033
7.637868
0.832305
# Generate a list of blacklisted packages from the configuration and # store it into self.blacklist_package_names attribute so this # operation doesn't end up in the fastpath. if not self.blacklist_package_names: self.blacklist_package_names = self._determine_filtered_package_names() logger.info( f"Initialized project plugin {self.name}, filtering " + f"{self.blacklist_package_names}" )
def initialize_plugin(self)
Initialize the plugin
7.121924
7.033882
1.012517
# This plugin only processes packages, if the line in the packages # configuration contains a PEP440 specifier it will be processed by the # blacklist release filter. So we need to remove any packages that # are not applicable for this plugin. filtered_packages = set() try: lines = self.configuration["blacklist"]["packages"] package_lines = lines.split("\n") except KeyError: package_lines = [] for package_line in package_lines: package_line = package_line.strip() if not package_line or package_line.startswith("#"): continue package_requirement = Requirement(package_line) if package_requirement.specifier: continue if package_requirement.name != package_line: logger.debug( "Package line %r does not requirement name %r", package_line, package_requirement.name, ) continue filtered_packages.add(package_line) logger.debug("Project blacklist is %r", list(filtered_packages)) return list(filtered_packages)
def _determine_filtered_package_names(self)
Return a list of package names to be filtered base on the configuration file.
3.878985
3.744281
1.035976
name = kwargs.get("name", None) if not name: return False if name in self.blacklist_package_names: logger.info(f"Package {name!r} is blacklisted") return True return False
def check_match(self, **kwargs)
Check if the package name matches against a project that is blacklisted in the configuration. Parameters ========== name: str The normalized package name of the package/project to check against the blacklist. Returns ======= bool: True if it matches, False otherwise.
4.381137
4.159318
1.053331
# Generate a list of blacklisted packages from the configuration and # store it into self.blacklist_package_names attribute so this # operation doesn't end up in the fastpath. if not self.blacklist_package_names: self.blacklist_release_requirements = ( self._determine_filtered_package_requirements() ) logger.info( f"Initialized release plugin {self.name}, filtering " + f"{self.blacklist_release_requirements}" )
def initialize_plugin(self)
Initialize the plugin
8.474978
8.345387
1.015529
filtered_requirements = set() try: lines = self.configuration["blacklist"]["packages"] package_lines = lines.split("\n") except KeyError: package_lines = [] for package_line in package_lines: package_line = package_line.strip() if not package_line or package_line.startswith("#"): continue filtered_requirements.add(Requirement(package_line)) return list(filtered_requirements)
def _determine_filtered_package_requirements(self)
Parse the configuration file for [blacklist]packages Returns ------- list of packaging.requirements.Requirement For all PEP440 package specifiers
2.619919
2.430369
1.077992
if not name or not version_string: return False try: version = Version(version_string) except InvalidVersion: logger.debug(f"Package {name}=={version_string} has an invalid version") return False for requirement in self.blacklist_release_requirements: if name != requirement.name: continue if version in requirement.specifier: logger.debug( f"MATCH: Release {name}=={version} matches specifier " f"{requirement.specifier}" ) return True return False
def _check_match(self, name, version_string) -> bool
Check if the package name and version matches against a blacklisted package version specifier. Parameters ========== name: str Package name version: str Package version Returns ======= bool: True if it matches, False otherwise.
3.905338
3.776792
1.034036
if isinstance(root, str): root = Path(root) results: List[Path] = [] for dirpath, dirnames, filenames in os.walk(root): names = filenames if dirs: names += dirnames for name in names: results.append(Path(dirpath) / name) results.sort() return "\n".join(str(result.relative_to(root)) for result in results)
def find(root: Union[Path, str], dirs: bool = True) -> str
A test helper simulating 'find'. Iterates over directories and filenames, given as relative paths to the root.
2.248203
2.359627
0.952779
if isinstance(filepath, str): base_dir = os.path.dirname(filepath) filename = os.path.basename(filepath) else: base_dir = str(filepath.parent) filename = filepath.name # Change naming format to be more friendly with distributed POSIX # filesystems like GlusterFS that hash based on filename # GlusterFS ignore '.' at the start of filenames and this avoid rehashing with tempfile.NamedTemporaryFile( mode=mode, prefix=f".{filename}.", delete=False, dir=base_dir, **kw ) as f: filepath_tmp = f.name yield f if not os.path.exists(filepath_tmp): # Allow our clients to remove the file in case it doesn't want it to be # put in place actually but also doesn't want to error out. return os.chmod(filepath_tmp, 0o100644) os.rename(filepath_tmp, filepath)
def rewrite( filepath: Union[str, Path], mode: str = "w", **kw: Any ) -> Generator[IO, None, None]
Rewrite an existing file atomically to avoid programs running in parallel to have race conditions while reading.
5.305805
5.169889
1.02629
logger.info(f"unlink {str(path)}") path.unlink() parent_path = path.parent try: parent_path.rmdir() logger.info(f"rmdir {str(parent_path)}") except OSError as oe: logger.debug(f"Did not remove {str(parent_path)}: {str(oe)}")
def unlink_parent_dir(path: Path) -> None
Remove a file and if the dir is empty remove it
2.755413
2.459166
1.120466
with tempfile.NamedTemporaryFile( dir=os.path.dirname(filename), delete=False, prefix=f"{os.path.basename(filename)}.", **kw, ) as tf: if os.path.exists(filename): os.chmod(tf.name, os.stat(filename).st_mode & 0o7777) tf.has_changed = False # type: ignore yield tf if not os.path.exists(tf.name): return filename_tmp = tf.name if os.path.exists(filename) and filecmp.cmp(filename, filename_tmp, shallow=False): os.unlink(filename_tmp) else: os.rename(filename_tmp, filename) tf.has_changed = True
def update_safe(filename: str, **kw: Any) -> Generator[IO, None, None]
Rewrite a file atomically. Clients are allowed to delete the tmpfile to signal that they don't want to have it updated.
2.185838
2.24535
0.973495
try: with utils.rewrite(self.json_file) as jf: dump(package_info, jf, indent=4, sort_keys=True) except Exception as e: logger.error( "Unable to write json to {}: {}".format(self.json_file, str(e)) ) return False symlink_dir = self.json_pypi_symlink.parent if not symlink_dir.exists(): symlink_dir.mkdir() try: # If symlink already exists throw a FileExistsError self.json_pypi_symlink.symlink_to(self.json_file) except FileExistsError: pass return True
def save_json_metadata(self, package_info: Dict) -> bool
Take the JSON metadata we just fetched and save to disk
3.350513
3.126181
1.071759
global display_filter_log filter_plugins = filter_release_plugins() if not filter_plugins: if display_filter_log: logger.info("No release filters are enabled. Skipping filtering") display_filter_log = False else: for plugin in filter_plugins: plugin.filter(self.info, self.releases)
def _filter_releases(self)
Run the release filtering plugins
5.577287
4.485087
1.243518
release_files = [] for release in self.releases.values(): release_files.extend(release) downloaded_files = set() deferred_exception = None for release_file in release_files: try: downloaded_file = self.download_file( release_file["url"], release_file["digests"]["sha256"] ) if downloaded_file: downloaded_files.add( str(downloaded_file.relative_to(self.mirror.homedir)) ) except Exception as e: logger.exception( f"Continuing to next file after error downloading: " f"{release_file['url']}" ) if not deferred_exception: # keep first exception deferred_exception = e if deferred_exception: raise deferred_exception # raise the exception after trying all files self.mirror.altered_packages[self.name] = downloaded_files
def sync_release_files(self)
Purge + download files returning files removed + added
3.369532
3.274845
1.028913
if self.todolist.exists(): try: saved_todo = iter(open(self.todolist, encoding="utf-8")) int(next(saved_todo).strip()) for line in saved_todo: _, serial = line.strip().split() int(serial) except (StopIteration, ValueError): # The todo list was inconsistent. This may happen if we get # killed e.g. by the timeout wrapper. Just remove it - we'll # just have to do whatever happened since the last successful # sync. logger.info("Removing inconsistent todo list.") self.todolist.unlink()
def _cleanup(self)
Does a couple of cleanup tasks to ensure consistent data for later processing.
6.953408
6.7396
1.031724
global LOG_PLUGINS filter_plugins = filter_project_plugins() if not filter_plugins: if LOG_PLUGINS: logger.info("No project filters are enabled. Skipping filtering") LOG_PLUGINS = False return # Make a copy of self.packages_to_sync keys # as we may delete packages during iteration packages = list(self.packages_to_sync.keys()) for package_name in packages: for plugin in filter_plugins: if plugin.check_match(name=package_name): if package_name not in self.packages_to_sync: logger.debug( f"{package_name} not found in packages to sync - " + f"{plugin.name} has no effect here ..." ) else: del self.packages_to_sync[package_name]
def _filter_packages(self)
Run the package filtering plugins and remove any packages from the packages_to_sync that match any filters. - Logging of action will be done within the check_match methods
4.252724
3.695913
1.150656
# In case we don't find any changes we will stay on the currently # synced serial. self.target_serial = self.synced_serial self.packages_to_sync = {} logger.info(f"Current mirror serial: {self.synced_serial}") if self.todolist.exists(): # We started a sync previously and left a todo list as well as the # targetted serial. We'll try to keep going through the todo list # and then mark the targetted serial as done. logger.info("Resuming interrupted sync from local todo list.") saved_todo = iter(open(self.todolist, encoding="utf-8")) self.target_serial = int(next(saved_todo).strip()) for line in saved_todo: package, serial = line.strip().split() self.packages_to_sync[package] = int(serial) elif not self.synced_serial: logger.info("Syncing all packages.") # First get the current serial, then start to sync. This makes us # more defensive in case something changes on the server between # those two calls. self.packages_to_sync.update(self.master.all_packages()) self.target_serial = max( [self.synced_serial] + list(self.packages_to_sync.values()) ) else: logger.info("Syncing based on changelog.") self.packages_to_sync.update( self.master.changed_packages(self.synced_serial) ) self.target_serial = max( [self.synced_serial] + list(self.packages_to_sync.values()) ) # We can avoid downloading the main index page if we don't have # anything todo at all during a changelog-based sync. self.need_index_sync = bool(self.packages_to_sync) self._filter_packages() logger.info(f"Trying to reach serial: {self.target_serial}") pkg_count = len(self.packages_to_sync) logger.info(f"{pkg_count} packages to sync.")
def determine_packages_to_sync(self)
Update the self.packages_to_sync to contain packages that need to be synced.
3.898547
3.86512
1.008649
if self.hash_index: # We are using index page directory hashing, so the directory # format is /simple/f/foo/. We want to return a list of dirs # like "simple/f". subdirs = [simple_dir / x for x in simple_dir.iterdir() if x.is_dir()] else: # This is the traditional layout of /simple/foo/. We should # return a single directory, "simple". subdirs = [simple_dir] return subdirs
def get_simple_dirs(self, simple_dir: Path) -> List[Path]
Return a list of simple index directories that should be searched for package indexes when compiling the main index page.
6.521365
5.815109
1.121452
packages = sorted( { # Filter out all of the "non" normalized names here canonicalize_name(x) for x in os.listdir(simple_dir) } ) # Package indexes must be in directories, so ignore anything else. packages = [x for x in packages if os.path.isdir(os.path.join(simple_dir, x))] return packages
def find_package_indexes_in_dir(self, simple_dir)
Given a directory that contains simple packages indexes, return a sorted list of normalized package names. This presumes every directory within is a simple package index directory.
5.672504
4.84974
1.169651
config_file = self.default_config_file if self.config_file: config_file = self.config_file self.config = ConfigParser() self.config.read(config_file)
def load_configuration(self) -> None
Read the configuration from a configuration file
2.606834
2.269943
1.148414
all_package_files = [] # type: List[Path] loop = asyncio.get_event_loop() mirror_base = config.get("mirror", "directory") json_base = Path(mirror_base) / "web" / "json" workers = args.workers or config.getint("mirror", "workers") executor = concurrent.futures.ThreadPoolExecutor(max_workers=workers) logger.info(f"Starting verify for {mirror_base} with {workers} workers") try: json_files = await loop.run_in_executor(executor, os.listdir, json_base) except FileExistsError as fee: logger.error(f"Metadata base dir {json_base} does not exist: {fee}") return 2 if not json_files: logger.error("No JSON metadata files found. Can not verify") return 3 logger.debug(f"Found {len(json_files)} objects in {json_base}") logger.debug(f"Using a {workers} thread ThreadPoolExecutor") await async_verify( config, all_package_files, mirror_base, json_files, args, executor ) if not args.delete: return 0 return await delete_files(mirror_base, executor, all_package_files, args.dry_run)
async def metadata_verify(config, args) -> int
Crawl all saved JSON metadata or online to check we have all packages if delete - generate a diff of unowned files
3.457656
3.353661
1.031009
pem_key_chunks = [('-----BEGIN %s-----' % marker).encode('utf-8')] # Limit base64 output lines to 64 characters by limiting input lines to 48 characters. for chunk_start in range(0, len(der_key), 48): pem_key_chunks.append(b64encode(der_key[chunk_start:chunk_start + 48])) pem_key_chunks.append(('-----END %s-----' % marker).encode('utf-8')) return b'\n'.join(pem_key_chunks)
def _der_to_pem(der_key, marker)
Perform a simple DER to PEM conversion.
2.580524
2.572819
1.002995
decoded_values = decoder.decode(pkcs8_key, asn1Spec=PKCS8PrivateKey()) try: decoded_key = decoded_values[0] except IndexError: raise ValueError("Invalid private key encoding") return decoded_key["privateKey"]
def rsa_private_key_pkcs8_to_pkcs1(pkcs8_key)
Convert a PKCS8-encoded RSA private key to PKCS1.
4.285907
4.443919
0.964443
algorithm = RsaAlgorithmIdentifier() algorithm["rsaEncryption"] = RSA_ENCRYPTION_ASN1_OID pkcs8_key = PKCS8PrivateKey() pkcs8_key["version"] = 0 pkcs8_key["privateKeyAlgorithm"] = algorithm pkcs8_key["privateKey"] = pkcs1_key return encoder.encode(pkcs8_key)
def rsa_private_key_pkcs1_to_pkcs8(pkcs1_key)
Convert a PKCS1-encoded RSA private key to PKCS8.
2.945636
2.867038
1.027414
algorithm = RsaAlgorithmIdentifier() algorithm["rsaEncryption"] = RSA_ENCRYPTION_ASN1_OID pkcs8_key = PublicKeyInfo() pkcs8_key["algorithm"] = algorithm pkcs8_key["publicKey"] = univ.BitString.fromOctetString(pkcs1_key) return encoder.encode(pkcs8_key)
def rsa_public_key_pkcs1_to_pkcs8(pkcs1_key)
Convert a PKCS1-encoded RSA private key to PKCS8.
3.364646
3.289526
1.022836
decoded_values = decoder.decode(pkcs8_key, asn1Spec=PublicKeyInfo()) try: decoded_key = decoded_values[0] except IndexError: raise ValueError("Invalid public key encoding.") return decoded_key["publicKey"].asOctets()
def rsa_public_key_pkcs8_to_pkcs1(pkcs8_key)
Convert a PKCS8-encoded RSA private key to PKCS1.
3.957922
4.205462
0.941138
r, s = decode_dss_signature(der_signature) component_length = self._sig_component_length() return int_to_bytes(r, component_length) + int_to_bytes(s, component_length)
def _der_to_raw(self, der_signature)
Convert signature from DER encoding to RAW encoding.
3.601413
3.479367
1.035077
component_length = self._sig_component_length() if len(raw_signature) != int(2 * component_length): raise ValueError("Invalid signature") r_bytes = raw_signature[:component_length] s_bytes = raw_signature[component_length:] r = int_from_bytes(r_bytes, "big") s = int_from_bytes(s_bytes, "big") return encode_dss_signature(r, s)
def _raw_to_der(self, raw_signature)
Convert signature from RAW encoding to DER encoding.
2.539786
2.355326
1.078316
for time_claim in ['exp', 'iat', 'nbf']: # Convert datetime to a intDate value in known time-format claims if isinstance(claims.get(time_claim), datetime): claims[time_claim] = timegm(claims[time_claim].utctimetuple()) if access_token: claims['at_hash'] = calculate_at_hash(access_token, ALGORITHMS.HASHES[algorithm]) return jws.sign(claims, key, headers=headers, algorithm=algorithm)
def encode(claims, key, algorithm=ALGORITHMS.HS256, headers=None, access_token=None)
Encodes a claims set and returns a JWT string. JWTs are JWS signed objects with a few reserved claims. Args: claims (dict): A claims set to sign key (str or dict): The key to use for signing the claim set. Can be individual JWK or JWK set. algorithm (str, optional): The algorithm to use for signing the the claims. Defaults to HS256. headers (dict, optional): A set of headers that will be added to the default headers. Any headers that are added as additional headers will override the default headers. access_token (str, optional): If present, the 'at_hash' claim will be calculated and added to the claims present in the 'claims' parameter. Returns: str: The string representation of the header, claims, and signature. Raises: JWTError: If there is an error encoding the claims. Examples: >>> jwt.encode({'a': 'b'}, 'secret', algorithm='HS256') 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhIjoiYiJ9.jiMyrsmD8AoHWeQgmxZ5yq8z0lXS67_QGs52AzC8Ru8'
4.701973
5.373826
0.874977
defaults = { 'verify_signature': True, 'verify_aud': True, 'verify_iat': True, 'verify_exp': True, 'verify_nbf': True, 'verify_iss': True, 'verify_sub': True, 'verify_jti': True, 'verify_at_hash': True, 'require_aud': False, 'require_iat': False, 'require_exp': False, 'require_nbf': False, 'require_iss': False, 'require_sub': False, 'require_jti': False, 'require_at_hash': False, 'leeway': 0, } if options: defaults.update(options) verify_signature = defaults.get('verify_signature', True) try: payload = jws.verify(token, key, algorithms, verify=verify_signature) except JWSError as e: raise JWTError(e) # Needed for at_hash verification algorithm = jws.get_unverified_header(token)['alg'] try: claims = json.loads(payload.decode('utf-8')) except ValueError as e: raise JWTError('Invalid payload string: %s' % e) if not isinstance(claims, Mapping): raise JWTError('Invalid payload string: must be a json object') _validate_claims(claims, audience=audience, issuer=issuer, subject=subject, algorithm=algorithm, access_token=access_token, options=defaults) return claims
def decode(token, key, algorithms=None, options=None, audience=None, issuer=None, subject=None, access_token=None)
Verifies a JWT string's signature and validates reserved claims. Args: token (str): A signed JWS to be verified. key (str or dict): A key to attempt to verify the payload with. Can be individual JWK or JWK set. algorithms (str or list): Valid algorithms that should be used to verify the JWS. audience (str): The intended audience of the token. If the "aud" claim is included in the claim set, then the audience must be included and must equal the provided claim. issuer (str or iterable): Acceptable value(s) for the issuer of the token. If the "iss" claim is included in the claim set, then the issuer must be given and the claim in the token must be among the acceptable values. subject (str): The subject of the token. If the "sub" claim is included in the claim set, then the subject must be included and must equal the provided claim. access_token (str): An access token string. If the "at_hash" claim is included in the claim set, then the access_token must be included, and it must match the "at_hash" claim. options (dict): A dictionary of options for skipping validation steps. defaults = { 'verify_signature': True, 'verify_aud': True, 'verify_iat': True, 'verify_exp': True, 'verify_nbf': True, 'verify_iss': True, 'verify_sub': True, 'verify_jti': True, 'verify_at_hash': True, 'require_aud': False, 'require_iat': False, 'require_exp': False, 'require_nbf': False, 'require_iss': False, 'require_sub': False, 'require_jti': False, 'require_at_hash': False, 'leeway': 0, } Returns: dict: The dict representation of the claims set, assuming the signature is valid and all requested data validation passes. Raises: JWTError: If the signature is invalid in any way. ExpiredSignatureError: If the signature has expired. JWTClaimsError: If any claim is invalid in any way. Examples: >>> payload = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhIjoiYiJ9.jiMyrsmD8AoHWeQgmxZ5yq8z0lXS67_QGs52AzC8Ru8' >>> jwt.decode(payload, 'secret', algorithms='HS256')
1.848226
1.840282
1.004317
if 'nbf' not in claims: return try: nbf = int(claims['nbf']) except ValueError: raise JWTClaimsError('Not Before claim (nbf) must be an integer.') now = timegm(datetime.utcnow().utctimetuple()) if nbf > (now + leeway): raise JWTClaimsError('The token is not yet valid (nbf)')
def _validate_nbf(claims, leeway=0)
Validates that the 'nbf' claim is valid. The "nbf" (not before) claim identifies the time before which the JWT MUST NOT be accepted for processing. The processing of the "nbf" claim requires that the current date/time MUST be after or equal to the not-before date/time listed in the "nbf" claim. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew. Its value MUST be a number containing a NumericDate value. Use of this claim is OPTIONAL. Args: claims (dict): The claims dictionary to validate. leeway (int): The number of seconds of skew that is allowed.
2.599125
2.621686
0.991394
if 'exp' not in claims: return try: exp = int(claims['exp']) except ValueError: raise JWTClaimsError('Expiration Time claim (exp) must be an integer.') now = timegm(datetime.utcnow().utctimetuple()) if exp < (now - leeway): raise ExpiredSignatureError('Signature has expired.')
def _validate_exp(claims, leeway=0)
Validates that the 'exp' claim is valid. The "exp" (expiration time) claim identifies the expiration time on or after which the JWT MUST NOT be accepted for processing. The processing of the "exp" claim requires that the current date/time MUST be before the expiration date/time listed in the "exp" claim. Implementers MAY provide for some small leeway, usually no more than a few minutes, to account for clock skew. Its value MUST be a number containing a NumericDate value. Use of this claim is OPTIONAL. Args: claims (dict): The claims dictionary to validate. leeway (int): The number of seconds of skew that is allowed.
2.771711
2.865899
0.967135
if 'aud' not in claims: # if audience: # raise JWTError('Audience claim expected, but not in claims') return audience_claims = claims['aud'] if isinstance(audience_claims, string_types): audience_claims = [audience_claims] if not isinstance(audience_claims, list): raise JWTClaimsError('Invalid claim format in token') if any(not isinstance(c, string_types) for c in audience_claims): raise JWTClaimsError('Invalid claim format in token') if audience not in audience_claims: raise JWTClaimsError('Invalid audience')
def _validate_aud(claims, audience=None)
Validates that the 'aud' claim is valid. The "aud" (audience) claim identifies the recipients that the JWT is intended for. Each principal intended to process the JWT MUST identify itself with a value in the audience claim. If the principal processing the claim does not identify itself with a value in the "aud" claim when this claim is present, then the JWT MUST be rejected. In the general case, the "aud" value is an array of case- sensitive strings, each containing a StringOrURI value. In the special case when the JWT has one audience, the "aud" value MAY be a single case-sensitive string containing a StringOrURI value. The interpretation of audience values is generally application specific. Use of this claim is OPTIONAL. Args: claims (dict): The claims dictionary to validate. audience (str): The audience that is verifying the token.
2.895017
2.972038
0.974085
if issuer is not None: if isinstance(issuer, string_types): issuer = (issuer,) if claims.get('iss') not in issuer: raise JWTClaimsError('Invalid issuer')
def _validate_iss(claims, issuer=None)
Validates that the 'iss' claim is valid. The "iss" (issuer) claim identifies the principal that issued the JWT. The processing of this claim is generally application specific. The "iss" value is a case-sensitive string containing a StringOrURI value. Use of this claim is OPTIONAL. Args: claims (dict): The claims dictionary to validate. issuer (str or iterable): Acceptable value(s) for the issuer that signed the token.
3.38572
3.165109
1.069701
if 'sub' not in claims: return if not isinstance(claims['sub'], string_types): raise JWTClaimsError('Subject must be a string.') if subject is not None: if claims.get('sub') != subject: raise JWTClaimsError('Invalid subject')
def _validate_sub(claims, subject=None)
Validates that the 'sub' claim is valid. The "sub" (subject) claim identifies the principal that is the subject of the JWT. The claims in a JWT are normally statements about the subject. The subject value MUST either be scoped to be locally unique in the context of the issuer or be globally unique. The processing of this claim is generally application specific. The "sub" value is a case-sensitive string containing a StringOrURI value. Use of this claim is OPTIONAL. Args: claims (dict): The claims dictionary to validate. subject (str): The subject of the token.
2.983815
3.020381
0.987893
while b: a, b = b, (a % b) return a
def _gcd(a, b)
Calculate the Greatest Common Divisor of a and b. Unless b==0, the result will have the same sign as b (so that when b is divided by it, the result comes out positive).
3.366181
5.673184
0.593349
# See 8.2.2(i) in Handbook of Applied Cryptography. ktot = d * e - 1 # The quantity d*e-1 is a multiple of phi(n), even, # and can be represented as t*2^s. t = ktot while t % 2 == 0: t = t // 2 # Cycle through all multiplicative inverses in Zn. # The algorithm is non-deterministic, but there is a 50% chance # any candidate a leads to successful factoring. # See "Digitalized Signatures and Public Key Functions as Intractable # as Factorization", M. Rabin, 1979 spotted = False a = 2 while not spotted and a < _MAX_RECOVERY_ATTEMPTS: k = t # Cycle through all values a^{t*2^i}=a^k while k < ktot: cand = pow(a, k, n) # Check if a^k is a non-trivial root of unity (mod n) if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: # We have found a number such that (cand-1)(cand+1)=0 (mod n). # Either of the terms divides n. p = _gcd(cand + 1, n) spotted = True break k *= 2 # This value was not any good... let's try another! a += 2 if not spotted: raise ValueError("Unable to compute factors p and q from exponent d.") # Found ! q, r = divmod(n, p) assert r == 0 p, q = sorted((p, q), reverse=True) return (p, q)
def _rsa_recover_prime_factors(n, e, d)
Compute factors p and q from the private exponent d. We assume that n has no more than two factors. This function is adapted from code in PyCrypto.
6.367764
6.188639
1.028944
# Only allow this processing if the prefix matches # AND the following byte indicates an ASN1 sequence, # as we would expect with the legacy encoding. if not pkcs8_key.startswith(LEGACY_INVALID_PKCS8_RSA_HEADER + ASN1_SEQUENCE_ID): raise ValueError("Invalid private key encoding") return pkcs8_key[len(LEGACY_INVALID_PKCS8_RSA_HEADER):]
def _legacy_private_key_pkcs8_to_pkcs1(pkcs8_key)
Legacy RSA private key PKCS8-to-PKCS1 conversion. .. warning:: This is incorrect parsing and only works because the legacy PKCS1-to-PKCS8 encoding was also incorrect.
8.000032
7.979383
1.002588
hash_digest = hash_alg(access_token.encode('utf-8')).digest() cut_at = int(len(hash_digest) / 2) truncated = hash_digest[:cut_at] at_hash = base64url_encode(truncated) return at_hash.decode('utf-8')
def calculate_at_hash(access_token, hash_alg)
Helper method for calculating an access token hash, as described in http://openid.net/specs/openid-connect-core-1_0.html#CodeIDToken Its value is the base64url encoding of the left-most half of the hash of the octets of the ASCII representation of the access_token value, where the hash algorithm used is the hash algorithm used in the alg Header Parameter of the ID Token's JOSE Header. For instance, if the alg is RS256, hash the access_token value with SHA-256, then take the left-most 128 bits and base64url encode them. The at_hash value is a case sensitive string. Args: access_token (str): An access token string. hash_alg (callable): A callable returning a hash object, e.g. hashlib.sha256
2.582064
3.072082
0.840493
rem = len(input) % 4 if rem > 0: input += b'=' * (4 - rem) return base64.urlsafe_b64decode(input)
def base64url_decode(input)
Helper method to base64url_decode a string. Args: input (str): A base64url_encoded string to decode.
2.119771
2.912774
0.72775
try: return hmac.compare_digest(a, b) except AttributeError: if len(a) != len(b): return False result = 0 for x, y in zip(a, b): result |= ord(x) ^ ord(y) return result == 0
def constant_time_string_compare(a, b)
Helper for comparing string in constant time, independent of the python version being used. Args: a (str): A string to compare b (str): A string to compare
2.093161
2.266815
0.923393
if algorithm not in ALGORITHMS.SUPPORTED: raise JWSError('Algorithm %s not supported.' % algorithm) encoded_header = _encode_header(algorithm, additional_headers=headers) encoded_payload = _encode_payload(payload) signed_output = _sign_header_and_claims(encoded_header, encoded_payload, algorithm, key) return signed_output
def sign(payload, key, headers=None, algorithm=ALGORITHMS.HS256)
Signs a claims set and returns a JWS string. Args: payload (str): A string to sign key (str or dict): The key to use for signing the claim set. Can be individual JWK or JWK set. headers (dict, optional): A set of headers that will be added to the default headers. Any headers that are added as additional headers will override the default headers. algorithm (str, optional): The algorithm to use for signing the the claims. Defaults to HS256. Returns: str: The string representation of the header, claims, and signature. Raises: JWSError: If there is an error signing the token. Examples: >>> jws.sign({'a': 'b'}, 'secret', algorithm='HS256') 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhIjoiYiJ9.jiMyrsmD8AoHWeQgmxZ5yq8z0lXS67_QGs52AzC8Ru8'
3.357514
3.86966
0.867651
header, payload, signing_input, signature = _load(token) if verify: _verify_signature(signing_input, header, signature, key, algorithms) return payload
def verify(token, key, algorithms, verify=True)
Verifies a JWS string's signature. Args: token (str): A signed JWS to be verified. key (str or dict): A key to attempt to verify the payload with. Can be individual JWK or JWK set. algorithms (str or list): Valid algorithms that should be used to verify the JWS. Returns: str: The str representation of the payload, assuming the signature is valid. Raises: JWSError: If there is an exception verifying a token. Examples: >>> token = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhIjoiYiJ9.jiMyrsmD8AoHWeQgmxZ5yq8z0lXS67_QGs52AzC8Ru8' >>> jws.verify(token, 'secret', algorithms='HS256')
4.537582
8.938622
0.507638
# Allow for pulling the algorithm off of the passed in jwk. if not algorithm and isinstance(key_data, dict): algorithm = key_data.get('alg', None) if not algorithm: raise JWKError('Unable to find a algorithm for key: %s' % key_data) key_class = get_key(algorithm) if not key_class: raise JWKError('Unable to find a algorithm for key: %s' % key_data) return key_class(key_data, algorithm)
def construct(key_data, algorithm=None)
Construct a Key object for the given algorithm with the given key_data.
2.983263
3.055036
0.976506
pruning = self._find_root_pruning(entry_id) return self.classes[self._best_label(pruning)]
def report_entry_label(self, entry_id)
Return the best label of the asked entry. Parameters ---------- entry_id : int The index of the sample to ask. Returns ------- label: object The best label of the given sample.
12.637207
9.391349
1.345622
labels = np.empty(len(self.dataset), dtype=int) for pruning in self.prunings: best_label = self._best_label(pruning) leaves = self._find_leaves(pruning) labels[leaves] = best_label return labels
def report_all_label(self)
Return the best label of the asked entry. Parameters ---------- Returns ------- labels: list of object, shape=(m) The best label of all samples.
4.880155
4.543487
1.074099
r X, Y = dataset.format_sklearn() X = np.array(X) Y = np.array(Y) self.n_labels_ = np.shape(Y)[1] self.n_features_ = np.shape(X)[1] self.clfs_ = [] for i in range(self.n_labels_): # TODO should we handle it here or we should handle it before calling if len(np.unique(Y[:, i])) == 1: clf = DummyClf() else: clf = copy.deepcopy(self.base_clf) self.clfs_.append(clf) Parallel(n_jobs=self.n_jobs, backend='threading')( delayed(_fit_model)(self.clfs_[i], X, Y[:, i]) for i in range(self.n_labels_)) #clf.train(Dataset(X, Y[:, i])) return self
def train(self, dataset)
r"""Train model with given feature. Parameters ---------- X : array-like, shape=(n_samples, n_features) Train feature vector. Y : array-like, shape=(n_samples, n_labels) Target labels. Attributes ---------- clfs\_ : list of :py:mod:`libact.models` object instances Classifier instances. Returns ------- self : object Retuen self.
3.413189
3.35669
1.016832