code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
keys = []
for dic, _ in self.resolve():
try:
cur_keys = dic.keys()
except AttributeError:
raise ConfigTypeError(
u'{0} must be a dict, not {1}'.format(
self.name, type(dic).__name__
)
)
for key in cur_keys:
if key not in keys:
keys.append(key)
return keys
|
def keys(self)
|
Returns a list containing all the keys available as subviews
of the current views. This enumerates all the keys in *all*
dictionaries matching the current view, in contrast to
``view.get(dict).keys()``, which gets all the keys for the
*first* dict matching the view. If the object for this view in
any source is not a dict, then a ConfigTypeError is raised. The
keys are ordered according to how they appear in each source.
| 3.83149 | 3.202097 | 1.196556 |
for collection, _ in self.resolve():
try:
it = iter(collection)
except TypeError:
raise ConfigTypeError(
u'{0} must be an iterable, not {1}'.format(
self.name, type(collection).__name__
)
)
for value in it:
yield value
|
def all_contents(self)
|
Iterates over all subviews from collections at this view from
*all* sources. If the object for this view in any source is not
iterable, then a ConfigTypeError is raised. This method is
intended to be used when the view indicates a list; this method
will concatenate the contents of the list from all sources.
| 4.76103 | 3.389392 | 1.404686 |
od = OrderedDict()
for key, view in self.items():
if redact and view.redact:
od[key] = REDACTED_TOMBSTONE
else:
try:
od[key] = view.flatten(redact=redact)
except ConfigTypeError:
od[key] = view.get()
return od
|
def flatten(self, redact=False)
|
Create a hierarchy of OrderedDicts containing the data from
this view, recursively reifying all views to get their
represented values.
If `redact` is set, then sensitive values are replaced with
the string "REDACTED".
| 3.639234 | 3.577961 | 1.017125 |
node = super(Dumper, self).represent_list(data)
length = len(data)
if self.default_flow_style is None and length < 4:
node.flow_style = True
elif self.default_flow_style is None:
node.flow_style = False
return node
|
def represent_list(self, data)
|
If a list has less than 4 items, represent it in inline style
(i.e. comma separated, within square brackets).
| 2.971108 | 2.708693 | 1.096879 |
if data:
value = u'yes'
else:
value = u'no'
return self.represent_scalar('tag:yaml.org,2002:bool', value)
|
def represent_bool(self, data)
|
Represent bool as 'yes' or 'no' instead of 'true' or 'false'.
| 2.407817 | 2.130749 | 1.130033 |
filename = self.user_config_path()
if os.path.isfile(filename):
self.add(ConfigSource(load_yaml(filename) or {}, filename))
|
def _add_user_source(self)
|
Add the configuration options from the YAML file in the
user's configuration directory (given by `config_dir`) if it
exists.
| 7.232559 | 6.194966 | 1.16749 |
if self.modname:
if self._package_path:
filename = os.path.join(self._package_path, DEFAULT_FILENAME)
if os.path.isfile(filename):
self.add(ConfigSource(load_yaml(filename), filename, True))
|
def _add_default_source(self)
|
Add the package's default configuration settings. This looks
for a YAML file located inside the package for the module
`modname` if it was given.
| 5.676373 | 4.004391 | 1.417537 |
if user:
self._add_user_source()
if defaults:
self._add_default_source()
|
def read(self, user=True, defaults=True)
|
Find and read the files for this configuration and set them
as the sources for this configuration. To disable either
discovered user configuration files or the in-package defaults,
set `user` or `defaults` to `False`.
| 4.651022 | 3.62672 | 1.282432 |
# If environment variable is set, use it.
if self._env_var in os.environ:
appdir = os.environ[self._env_var]
appdir = os.path.abspath(os.path.expanduser(appdir))
if os.path.isfile(appdir):
raise ConfigError(u'{0} must be a directory'.format(
self._env_var
))
else:
# Search platform-specific locations. If no config file is
# found, fall back to the first directory in the list.
configdirs = config_dirs()
for confdir in configdirs:
appdir = os.path.join(confdir, self.appname)
if os.path.isfile(os.path.join(appdir, CONFIG_FILENAME)):
break
else:
appdir = os.path.join(configdirs[0], self.appname)
# Ensure that the directory exists.
if not os.path.isdir(appdir):
os.makedirs(appdir)
return appdir
|
def config_dir(self)
|
Get the path to the user configuration directory. The
directory is guaranteed to exist as a postcondition (one may be
created if none exist).
If the application's ``...DIR`` environment variable is set, it
is used as the configuration directory. Otherwise,
platform-specific standard configuration locations are searched
for a ``config.yaml`` file. If no configuration file is found, a
fallback path is used.
| 2.494806 | 2.427572 | 1.027696 |
filename = os.path.abspath(filename)
self.set(ConfigSource(load_yaml(filename), filename))
|
def set_file(self, filename)
|
Parses the file as YAML and inserts it into the configuration
sources with highest priority.
| 9.356257 | 6.495203 | 1.440487 |
if full:
out_dict = self.flatten(redact=redact)
else:
# Exclude defaults when flattening.
sources = [s for s in self.sources if not s.default]
temp_root = RootView(sources)
temp_root.redactions = self.redactions
out_dict = temp_root.flatten(redact=redact)
yaml_out = yaml.dump(out_dict, Dumper=Dumper,
default_flow_style=None, indent=4,
width=1000)
# Restore comments to the YAML text.
default_source = None
for source in self.sources:
if source.default:
default_source = source
break
if default_source and default_source.filename:
with open(default_source.filename, 'rb') as fp:
default_data = fp.read()
yaml_out = restore_yaml_comments(yaml_out,
default_data.decode('utf-8'))
return yaml_out
|
def dump(self, full=True, redact=False)
|
Dump the Configuration object to a YAML file.
The order of the keys is determined from the default
configuration file. All keys not in the default configuration
will be appended to the end of the file.
:param filename: The file to dump the configuration to, or None
if the YAML string should be returned instead
:type filename: unicode
:param full: Dump settings that don't differ from the defaults
as well
:param redact: Remove sensitive information (views with the `redact`
flag set) from the output
| 3.184204 | 3.28624 | 0.96895 |
super(LazyConfig, self).clear()
self._lazy_suffix = []
self._lazy_prefix = []
|
def clear(self)
|
Remove all sources from this configuration.
| 9.562399 | 7.787993 | 1.227839 |
if view.exists():
value, _ = view.first()
return self.convert(value, view)
elif self.default is REQUIRED:
# Missing required value. This is an error.
raise NotFoundError(u"{0} not found".format(view.name))
else:
# Missing value, but not required.
return self.default
|
def value(self, view, template=None)
|
Get the value for a `ConfigView`.
May raise a `NotFoundError` if the value is missing (and the
template requires it) or a `ConfigValueError` for invalid values.
| 5.551481 | 5.360363 | 1.035654 |
exc_class = ConfigTypeError if type_error else ConfigValueError
raise exc_class(
u'{0}: {1}'.format(view.name, message)
)
|
def fail(self, message, view, type_error=False)
|
Raise an exception indicating that a value cannot be
accepted.
`type_error` indicates whether the error is due to a type
mismatch rather than a malformed value. In this case, a more
specific exception is raised.
| 5.134985 | 5.922107 | 0.867088 |
if isinstance(value, int):
return value
elif isinstance(value, float):
return int(value)
else:
self.fail(u'must be a number', view, True)
|
def convert(self, value, view)
|
Check that the value is an integer. Floats are rounded.
| 3.728527 | 3.008184 | 1.239461 |
if isinstance(value, NUMERIC_TYPES):
return value
else:
self.fail(
u'must be numeric, not {0}'.format(type(value).__name__),
view,
True
)
|
def convert(self, value, view)
|
Check that the value is an int or a float.
| 5.057458 | 3.998283 | 1.264907 |
out = AttrDict()
for key, typ in self.subtemplates.items():
out[key] = typ.value(view[key], self)
return out
|
def value(self, view, template=None)
|
Get a dict with the same keys as the template and values
validated according to the value types.
| 7.217735 | 5.93225 | 1.216694 |
out = []
for item in view:
out.append(self.subtemplate.value(item, self))
return out
|
def value(self, view, template=None)
|
Get a list of items validated against the template.
| 6.501703 | 5.480637 | 1.186304 |
if isinstance(value, BASESTRING):
if self.pattern and not self.regex.match(value):
self.fail(
u"must match the pattern {0}".format(self.pattern),
view
)
return value
else:
self.fail(u'must be a string', view, True)
|
def convert(self, value, view)
|
Check that the value is a string and matches the pattern.
| 4.191995 | 3.533126 | 1.186483 |
if (SUPPORTS_ENUM and isinstance(self.choices, type)
and issubclass(self.choices, enum.Enum)):
try:
return self.choices(value)
except ValueError:
self.fail(
u'must be one of {0!r}, not {1!r}'.format(
[c.value for c in self.choices], value
),
view
)
if value not in self.choices:
self.fail(
u'must be one of {0!r}, not {1!r}'.format(
list(self.choices), value
),
view
)
if isinstance(self.choices, abc.Mapping):
return self.choices[value]
else:
return value
|
def convert(self, value, view)
|
Ensure that the value is among the choices (and remap if the
choices are a mapping).
| 2.445972 | 2.320604 | 1.054024 |
is_mapping = isinstance(self.template, MappingTemplate)
for candidate in self.allowed:
try:
if is_mapping:
if isinstance(candidate, Filename) and \
candidate.relative_to:
next_template = candidate.template_with_relatives(
view,
self.template
)
next_template.subtemplates[view.key] = as_template(
candidate
)
else:
next_template = MappingTemplate({view.key: candidate})
return view.parent.get(next_template)[view.key]
else:
return view.get(candidate)
except ConfigTemplateError:
raise
except ConfigError:
pass
except ValueError as exc:
raise ConfigTemplateError(exc)
self.fail(
u'must be one of {0}, not {1}'.format(
repr(self.allowed), repr(value)
),
view
)
|
def convert(self, value, view)
|
Ensure that the value follows at least one template.
| 4.954877 | 4.783543 | 1.035818 |
path_eggs = [p for p in sys.path if p.endswith('.egg')]
command = self.get_finalized_command("egg_info")
egg_base = path.abspath(command.egg_base)
unique_path_eggs = set(path_eggs + [egg_base])
os.environ['PYTHONPATH'] = ':'.join(unique_path_eggs)
|
def export_live_eggs(self, env=False)
|
Adds all of the eggs in the current environment to PYTHONPATH.
| 3.810724 | 3.285683 | 1.159797 |
'''
Return the JavaScript runtime that is specified in EXECJS_RUNTIME environment variable.
If EXECJS_RUNTIME environment variable is empty or invalid, return None.
'''
name = os.environ.get("EXECJS_RUNTIME", "")
if not name:
return None
try:
return _find_runtime_by_name(name)
except exceptions.RuntimeUnavailableError:
return None
|
def get_from_environment()
|
Return the JavaScript runtime that is specified in EXECJS_RUNTIME environment variable.
If EXECJS_RUNTIME environment variable is empty or invalid, return None.
| 5.440661 | 2.667482 | 2.039624 |
r
codepoint_format = '\\u{0:04x}'.format
def codepoint(m):
return codepoint_format(ord(m.group(0)))
return re.sub('[^\x00-\x7f]', codepoint, str)
|
def encode_unicode_codepoints(str)
|
r"""
>>> encode_unicode_codepoints("a") == 'a'
True
>>> ascii = ''.join(chr(i) for i in range(0x80))
>>> encode_unicode_codepoints(ascii) == ascii
True
>>> encode_unicode_codepoints('\u4e16\u754c') == '\\u4e16\\u754c'
True
| 4.486597 | 6.003788 | 0.747294 |
if isinstance(s, six.text_type):
return s
return s.decode(sys.getfilesystemencoding())
|
def _decode_if_not_text(s)
|
protected
| 3.395787 | 3.49091 | 0.972751 |
pathlist = _decode_if_not_text(os.environ.get('PATH', '')).split(os.pathsep)
for dir in pathlist:
for ext in pathext:
filename = os.path.join(dir, prog + ext)
try:
st = os.stat(filename)
except os.error:
continue
if stat.S_ISREG(st.st_mode) and (stat.S_IMODE(st.st_mode) & 0o111):
return filename
return None
|
def _find_executable(prog, pathext=("",))
|
protected
| 2.256981 | 2.20449 | 1.023811 |
if isinstance(command, str):
command = [command]
command = list(command)
name = command[0]
args = command[1:]
if _is_windows():
pathext = _decode_if_not_text(os.environ.get("PATHEXT", ""))
path = _find_executable(name, pathext.split(os.pathsep))
else:
path = _find_executable(name)
if not path:
return None
return [path] + args
|
def _which(command)
|
protected
| 2.942784 | 2.992347 | 0.983437 |
row = iter(row)
col = 0
start_col = col + 1
cell = ''
first_cell = True
while True:
char = next(row, None)
col += 1
if char == '|':
if first_cell:
# First cell (content before the first |) is skipped
first_cell = False
else:
yield (cell, start_col)
cell = ''
start_col = col + 1
elif char == '\\':
char = next(row)
col += 1
if char == 'n':
cell += '\n'
else:
if char not in ['|', '\\']:
cell += '\\'
cell += char
elif char:
cell += char
else:
break
|
def split_table_cells(self, row)
|
An iterator returning all the table cells in a row with their positions,
accounting for escaping.
| 3.065722 | 2.852888 | 1.074603 |
# TODO(philngo): make sure this complies with CalTRACK 2.2.2.1
if not isinstance(data_series, pd.Series):
raise ValueError(
"expected series, got object with class {}".format(data_series.__class__)
)
if data_series.empty:
return data_series
series = remove_duplicates(data_series)
target_freq = pd.Timedelta(atomic_freq)
timedeltas = (series.index[1:] - series.index[:-1]).append(
pd.TimedeltaIndex([pd.NaT])
)
if series_type == "cumulative":
spread_factor = target_freq.total_seconds() / timedeltas.total_seconds()
series_spread = series * spread_factor
atomic_series = series_spread.asfreq(atomic_freq, method="ffill")
resampled = atomic_series.resample(freq).sum()
resampled_with_nans = atomic_series.resample(freq).mean()
resampled = resampled[resampled_with_nans.notnull()].reindex(resampled.index)
elif series_type == "instantaneous":
atomic_series = series.asfreq(atomic_freq, method="ffill")
resampled = atomic_series.resample(freq).mean()
if resampled.index[-1] < series.index[-1]:
# this adds a null at the end using the target frequency
last_index = pd.date_range(resampled.index[-1], freq=freq, periods=2)[1:]
resampled = (
pd.concat([resampled, pd.Series(np.nan, index=last_index)])
.resample(freq)
.mean()
)
return resampled
|
def as_freq(data_series, freq, atomic_freq="1 Min", series_type="cumulative")
|
Resample data to a different frequency.
This method can be used to upsample or downsample meter data. The
assumption it makes to do so is that meter data is constant and averaged
over the given periods. For instance, to convert billing-period data to
daily data, this method first upsamples to the atomic frequency
(1 minute freqency, by default), "spreading" usage evenly across all
minutes in each period. Then it downsamples to hourly frequency and
returns that result. With instantaneous series, the data is copied to all
contiguous time intervals and the mean over `freq` is returned.
**Caveats**:
- This method gives a fair amount of flexibility in
resampling as long as you are OK with the assumption that usage is
constant over the period (this assumption is generally broken in
observed data at large enough frequencies, so this caveat should not be
taken lightly).
Parameters
----------
data_series : :any:`pandas.Series`
Data to resample. Should have a :any:`pandas.DatetimeIndex`.
freq : :any:`str`
The frequency to resample to. This should be given in a form recognized
by the :any:`pandas.Series.resample` method.
atomic_freq : :any:`str`, optional
The "atomic" frequency of the intermediate data form. This can be
adjusted to a higher atomic frequency to increase speed or memory
performance.
series_type : :any:`str`, {'cumulative', ‘instantaneous’},
default 'cumulative'
Type of data sampling. 'cumulative' data can be spread over smaller
time intervals and is aggregated using addition (e.g. meter data).
'instantaneous' data is copied (not spread) over smaller time intervals
and is aggregated by averaging (e.g. weather data).
Returns
-------
resampled_data : :any:`pandas.Series`
Data resampled to the given frequency.
| 2.906635 | 2.898958 | 1.002648 |
# dont affect the original data
index = index.copy()
if len(index) == 0:
return pd.Series([], index=index)
timedeltas = (index[1:] - index[:-1]).append(pd.TimedeltaIndex([pd.NaT]))
timedelta_days = timedeltas.total_seconds() / (60 * 60 * 24)
return pd.Series(timedelta_days, index=index)
|
def day_counts(index)
|
Days between DatetimeIndex values as a :any:`pandas.Series`.
Parameters
----------
index : :any:`pandas.DatetimeIndex`
The index for which to get day counts.
Returns
-------
day_counts : :any:`pandas.Series`
A :any:`pandas.Series` with counts of days between periods. Counts are
given on start dates of periods.
| 3.415965 | 3.449648 | 0.990236 |
data = super(CalTRACKHourlyModel, self).json()
data.update(
{
"occupancy_lookup": self.occupancy_lookup.to_json(orient="split"),
"temperature_bins": self.temperature_bins.to_json(orient="split"),
}
)
return data
|
def json(self)
|
Return a JSON-serializable representation of this result.
The output of this function can be converted to a serialized string
with :any:`json.dumps`.
| 5.48333 | 6.23704 | 0.879156 |
warnings = []
n_non_zero = int((degree_days > 0).sum())
if n_non_zero < minimum_non_zero:
warnings.append(
EEMeterWarning(
qualified_name=(
"eemeter.caltrack_daily.{model_type}.too_few_non_zero_{degree_day_type}".format(
model_type=model_type, degree_day_type=degree_day_type
)
),
description=(
"Number of non-zero daily {degree_day_type} values below accepted minimum."
" Candidate fit not attempted.".format(
degree_day_type=degree_day_type.upper()
)
),
data={
"n_non_zero_{degree_day_type}".format(
degree_day_type=degree_day_type
): n_non_zero,
"minimum_non_zero_{degree_day_type}".format(
degree_day_type=degree_day_type
): minimum_non_zero,
"{degree_day_type}_balance_point".format(
degree_day_type=degree_day_type
): balance_point,
},
)
)
return warnings
|
def get_too_few_non_zero_degree_day_warning(
model_type, balance_point, degree_day_type, degree_days, minimum_non_zero
)
|
Return an empty list or a single warning wrapped in a list regarding
non-zero degree days for a set of degree days.
Parameters
----------
model_type : :any:`str`
Model type (e.g., ``'cdd_hdd'``).
balance_point : :any:`float`
The balance point in question.
degree_day_type : :any:`str`
The type of degree days (``'cdd'`` or ``'hdd'``).
degree_days : :any:`pandas.Series`
A series of degree day values.
minimum_non_zero : :any:`int`
Minimum allowable number of non-zero degree day values.
Returns
-------
warnings : :any:`list` of :any:`eemeter.EEMeterWarning`
Empty list or list of single warning.
| 2.36867 | 2.289764 | 1.03446 |
warnings = []
total_degree_days = (avg_degree_days * period_days).sum()
if total_degree_days < minimum_total:
warnings.append(
EEMeterWarning(
qualified_name=(
"eemeter.caltrack_daily.{model_type}.total_{degree_day_type}_too_low".format(
model_type=model_type, degree_day_type=degree_day_type
)
),
description=(
"Total {degree_day_type} below accepted minimum."
" Candidate fit not attempted.".format(
degree_day_type=degree_day_type.upper()
)
),
data={
"total_{degree_day_type}".format(
degree_day_type=degree_day_type
): total_degree_days,
"total_{degree_day_type}_minimum".format(
degree_day_type=degree_day_type
): minimum_total,
"{degree_day_type}_balance_point".format(
degree_day_type=degree_day_type
): balance_point,
},
)
)
return warnings
|
def get_total_degree_day_too_low_warning(
model_type,
balance_point,
degree_day_type,
avg_degree_days,
period_days,
minimum_total,
)
|
Return an empty list or a single warning wrapped in a list regarding
the total summed degree day values.
Parameters
----------
model_type : :any:`str`
Model type (e.g., ``'cdd_hdd'``).
balance_point : :any:`float`
The balance point in question.
degree_day_type : :any:`str`
The type of degree days (``'cdd'`` or ``'hdd'``).
avg_degree_days : :any:`pandas.Series`
A series of degree day values.
period_days : :any:`pandas.Series`
A series of containing day counts.
minimum_total : :any:`float`
Minimum allowable total sum of degree day values.
Returns
-------
warnings : :any:`list` of :any:`eemeter.EEMeterWarning`
Empty list or list of single warning.
| 2.444956 | 2.311809 | 1.057594 |
warnings = []
if model_params.get(parameter, 0) < 0:
warnings.append(
EEMeterWarning(
qualified_name=(
"eemeter.caltrack_daily.{model_type}.{parameter}_negative".format(
model_type=model_type, parameter=parameter
)
),
description=(
"Model fit {parameter} parameter is negative. Candidate model rejected.".format(
parameter=parameter
)
),
data=model_params,
)
)
return warnings
|
def get_parameter_negative_warning(model_type, model_params, parameter)
|
Return an empty list or a single warning wrapped in a list indicating
whether model parameter is negative.
Parameters
----------
model_type : :any:`str`
Model type (e.g., ``'cdd_hdd'``).
model_params : :any:`dict`
Parameters as stored in :any:`eemeter.CalTRACKUsagePerDayCandidateModel.model_params`.
parameter : :any:`str`
The name of the parameter, e.g., ``'intercept'``.
Returns
-------
warnings : :any:`list` of :any:`eemeter.EEMeterWarning`
Empty list or list of single warning.
| 4.710324 | 3.467681 | 1.35835 |
warnings = []
if p_value > maximum_p_value:
data = {
"{}_p_value".format(parameter): p_value,
"{}_maximum_p_value".format(parameter): maximum_p_value,
}
data.update(model_params)
warnings.append(
EEMeterWarning(
qualified_name=(
"eemeter.caltrack_daily.{model_type}.{parameter}_p_value_too_high".format(
model_type=model_type, parameter=parameter
)
),
description=(
"Model fit {parameter} p-value is too high. Candidate model rejected.".format(
parameter=parameter
)
),
data=data,
)
)
return warnings
|
def get_parameter_p_value_too_high_warning(
model_type, model_params, parameter, p_value, maximum_p_value
)
|
Return an empty list or a single warning wrapped in a list indicating
whether model parameter p-value is too high.
Parameters
----------
model_type : :any:`str`
Model type (e.g., ``'cdd_hdd'``).
model_params : :any:`dict`
Parameters as stored in :any:`eemeter.CalTRACKUsagePerDayCandidateModel.model_params`.
parameter : :any:`str`
The name of the parameter, e.g., ``'intercept'``.
p_value : :any:`float`
The p-value of the parameter.
maximum_p_value : :any:`float`
The maximum allowable p-value of the parameter.
Returns
-------
warnings : :any:`list` of :any:`eemeter.EEMeterWarning`
Empty list or list of single warning.
| 3.121343 | 2.608588 | 1.196564 |
warnings = [
EEMeterWarning(
qualified_name="eemeter.caltrack_daily.{}.model_results".format(model_type),
description=(
"Error encountered in statsmodels.formula.api.ols method. (Empty data?)"
),
data={"traceback": traceback.format_exc()},
)
]
return CalTRACKUsagePerDayCandidateModel(
model_type=model_type, formula=formula, status="ERROR", warnings=warnings
)
|
def get_fit_failed_candidate_model(model_type, formula)
|
Return a Candidate model that indicates the fitting routine failed.
Parameters
----------
model_type : :any:`str`
Model type (e.g., ``'cdd_hdd'``).
formula : :any:`float`
The candidate model formula.
Returns
-------
candidate_model : :any:`eemeter.CalTRACKUsagePerDayCandidateModel`
Candidate model instance with status ``'ERROR'``, and warning with
traceback.
| 10.757633 | 6.028485 | 1.784467 |
model_type = "intercept_only"
formula = "meter_value ~ 1"
if weights_col is None:
weights = 1
else:
weights = data[weights_col]
try:
model = smf.wls(formula=formula, data=data, weights=weights)
except Exception as e:
return [get_fit_failed_candidate_model(model_type, formula)]
result = model.fit()
# CalTrack 3.3.1.3
model_params = {"intercept": result.params["Intercept"]}
model_warnings = []
# CalTrack 3.4.3.2
for parameter in ["intercept"]:
model_warnings.extend(
get_parameter_negative_warning(model_type, model_params, parameter)
)
if len(model_warnings) > 0:
status = "DISQUALIFIED"
else:
status = "QUALIFIED"
return [
CalTRACKUsagePerDayCandidateModel(
model_type=model_type,
formula=formula,
status=status,
warnings=model_warnings,
model_params=model_params,
model=model,
result=result,
r_squared_adj=0,
)
]
|
def get_intercept_only_candidate_models(data, weights_col)
|
Return a list of a single candidate intercept-only model.
Parameters
----------
data : :any:`pandas.DataFrame`
A DataFrame containing at least the column ``meter_value``.
DataFrames of this form can be made using the
:any:`eemeter.create_caltrack_daily_design_matrix` or
:any:`eemeter.create_caltrack_billing_design_matrix` methods.
weights_col : :any:`str` or None
The name of the column (if any) in ``data`` to use as weights.
Returns
-------
candidate_models : :any:`list` of :any:`CalTRACKUsagePerDayCandidateModel`
List containing a single intercept-only candidate model.
| 3.806055 | 3.057506 | 1.244823 |
model_type = "cdd_only"
cdd_column = "cdd_%s" % balance_point
formula = "meter_value ~ %s" % cdd_column
if weights_col is None:
weights = 1
else:
weights = data[weights_col]
period_days = weights
degree_day_warnings = []
degree_day_warnings.extend(
get_total_degree_day_too_low_warning(
model_type,
balance_point,
"cdd",
data[cdd_column],
period_days,
minimum_total_cdd,
)
)
degree_day_warnings.extend(
get_too_few_non_zero_degree_day_warning(
model_type, balance_point, "cdd", data[cdd_column], minimum_non_zero_cdd
)
)
if len(degree_day_warnings) > 0:
return CalTRACKUsagePerDayCandidateModel(
model_type=model_type,
formula=formula,
status="NOT ATTEMPTED",
warnings=degree_day_warnings,
)
try:
model = smf.wls(formula=formula, data=data, weights=weights)
except Exception as e:
return get_fit_failed_candidate_model(model_type, formula)
result = model.fit()
r_squared_adj = result.rsquared_adj
beta_cdd_p_value = result.pvalues[cdd_column]
# CalTrack 3.3.1.3
model_params = {
"intercept": result.params["Intercept"],
"beta_cdd": result.params[cdd_column],
"cooling_balance_point": balance_point,
}
model_warnings = []
# CalTrack 3.4.3.2
for parameter in ["intercept", "beta_cdd"]:
model_warnings.extend(
get_parameter_negative_warning(model_type, model_params, parameter)
)
model_warnings.extend(
get_parameter_p_value_too_high_warning(
model_type,
model_params,
parameter,
beta_cdd_p_value,
beta_cdd_maximum_p_value,
)
)
if len(model_warnings) > 0:
status = "DISQUALIFIED"
else:
status = "QUALIFIED"
return CalTRACKUsagePerDayCandidateModel(
model_type=model_type,
formula=formula,
status=status,
warnings=model_warnings,
model_params=model_params,
model=model,
result=result,
r_squared_adj=r_squared_adj,
)
|
def get_single_cdd_only_candidate_model(
data,
minimum_non_zero_cdd,
minimum_total_cdd,
beta_cdd_maximum_p_value,
weights_col,
balance_point,
)
|
Return a single candidate cdd-only model for a particular balance
point.
Parameters
----------
data : :any:`pandas.DataFrame`
A DataFrame containing at least the column ``meter_value`` and
``cdd_<balance_point>``
DataFrames of this form can be made using the
:any:`eemeter.create_caltrack_daily_design_matrix` or
:any:`eemeter.create_caltrack_billing_design_matrix` methods.
minimum_non_zero_cdd : :any:`int`
Minimum allowable number of non-zero cooling degree day values.
minimum_total_cdd : :any:`float`
Minimum allowable total sum of cooling degree day values.
beta_cdd_maximum_p_value : :any:`float`
The maximum allowable p-value of the beta cdd parameter.
weights_col : :any:`str` or None
The name of the column (if any) in ``data`` to use as weights.
balance_point : :any:`float`
The cooling balance point for this model.
Returns
-------
candidate_model : :any:`CalTRACKUsagePerDayCandidateModel`
A single cdd-only candidate model, with any associated warnings.
| 2.504314 | 2.178843 | 1.149378 |
balance_points = [int(col[4:]) for col in data.columns if col.startswith("cdd")]
candidate_models = [
get_single_cdd_only_candidate_model(
data,
minimum_non_zero_cdd,
minimum_total_cdd,
beta_cdd_maximum_p_value,
weights_col,
balance_point,
)
for balance_point in balance_points
]
return candidate_models
|
def get_cdd_only_candidate_models(
data, minimum_non_zero_cdd, minimum_total_cdd, beta_cdd_maximum_p_value, weights_col
)
|
Return a list of all possible candidate cdd-only models.
Parameters
----------
data : :any:`pandas.DataFrame`
A DataFrame containing at least the column ``meter_value`` and 1 to n
columns with names of the form ``cdd_<balance_point>``. All columns
with names of this form will be used to fit a candidate model.
DataFrames of this form can be made using the
:any:`eemeter.create_caltrack_daily_design_matrix` or
:any:`eemeter.create_caltrack_billing_design_matrix` methods.
minimum_non_zero_cdd : :any:`int`
Minimum allowable number of non-zero cooling degree day values.
minimum_total_cdd : :any:`float`
Minimum allowable total sum of cooling degree day values.
beta_cdd_maximum_p_value : :any:`float`
The maximum allowable p-value of the beta cdd parameter.
weights_col : :any:`str` or None
The name of the column (if any) in ``data`` to use as weights.
Returns
-------
candidate_models : :any:`list` of :any:`CalTRACKUsagePerDayCandidateModel`
A list of cdd-only candidate models, with any associated warnings.
| 2.504205 | 2.381155 | 1.051677 |
model_type = "hdd_only"
hdd_column = "hdd_%s" % balance_point
formula = "meter_value ~ %s" % hdd_column
if weights_col is None:
weights = 1
else:
weights = data[weights_col]
period_days = weights
degree_day_warnings = []
degree_day_warnings.extend(
get_total_degree_day_too_low_warning(
model_type,
balance_point,
"hdd",
data[hdd_column],
period_days,
minimum_total_hdd,
)
)
degree_day_warnings.extend(
get_too_few_non_zero_degree_day_warning(
model_type, balance_point, "hdd", data[hdd_column], minimum_non_zero_hdd
)
)
if len(degree_day_warnings) > 0:
return CalTRACKUsagePerDayCandidateModel(
model_type=model_type,
formula=formula,
status="NOT ATTEMPTED",
warnings=degree_day_warnings,
)
try:
model = smf.wls(formula=formula, data=data, weights=weights)
except Exception as e:
return get_fit_failed_candidate_model(model_type, formula)
result = model.fit()
r_squared_adj = result.rsquared_adj
beta_hdd_p_value = result.pvalues[hdd_column]
# CalTrack 3.3.1.3
model_params = {
"intercept": result.params["Intercept"],
"beta_hdd": result.params[hdd_column],
"heating_balance_point": balance_point,
}
model_warnings = []
# CalTrack 3.4.3.2
for parameter in ["intercept", "beta_hdd"]:
model_warnings.extend(
get_parameter_negative_warning(model_type, model_params, parameter)
)
model_warnings.extend(
get_parameter_p_value_too_high_warning(
model_type,
model_params,
parameter,
beta_hdd_p_value,
beta_hdd_maximum_p_value,
)
)
if len(model_warnings) > 0:
status = "DISQUALIFIED"
else:
status = "QUALIFIED"
return CalTRACKUsagePerDayCandidateModel(
model_type=model_type,
formula=formula,
status=status,
warnings=model_warnings,
model_params=model_params,
model=model,
result=result,
r_squared_adj=r_squared_adj,
)
|
def get_single_hdd_only_candidate_model(
data,
minimum_non_zero_hdd,
minimum_total_hdd,
beta_hdd_maximum_p_value,
weights_col,
balance_point,
)
|
Return a single candidate hdd-only model for a particular balance
point.
Parameters
----------
data : :any:`pandas.DataFrame`
A DataFrame containing at least the column ``meter_value`` and
``hdd_<balance_point>``
DataFrames of this form can be made using the
:any:`eemeter.create_caltrack_daily_design_matrix` or
:any:`eemeter.create_caltrack_billing_design_matrix` methods.
minimum_non_zero_hdd : :any:`int`
Minimum allowable number of non-zero heating degree day values.
minimum_total_hdd : :any:`float`
Minimum allowable total sum of heating degree day values.
beta_hdd_maximum_p_value : :any:`float`
The maximum allowable p-value of the beta hdd parameter.
weights_col : :any:`str` or None
The name of the column (if any) in ``data`` to use as weights.
balance_point : :any:`float`
The heating balance point for this model.
Returns
-------
candidate_model : :any:`CalTRACKUsagePerDayCandidateModel`
A single hdd-only candidate model, with any associated warnings.
| 2.399863 | 2.131843 | 1.125722 |
balance_points = [int(col[4:]) for col in data.columns if col.startswith("hdd")]
candidate_models = [
get_single_hdd_only_candidate_model(
data,
minimum_non_zero_hdd,
minimum_total_hdd,
beta_hdd_maximum_p_value,
weights_col,
balance_point,
)
for balance_point in balance_points
]
return candidate_models
|
def get_hdd_only_candidate_models(
data, minimum_non_zero_hdd, minimum_total_hdd, beta_hdd_maximum_p_value, weights_col
)
|
Parameters
----------
data : :any:`pandas.DataFrame`
A DataFrame containing at least the column ``meter_value`` and 1 to n
columns with names of the form ``hdd_<balance_point>``. All columns
with names of this form will be used to fit a candidate model.
DataFrames of this form can be made using the
:any:`eemeter.create_caltrack_daily_design_matrix` or
:any:`eemeter.create_caltrack_billing_design_matrix` methods.
minimum_non_zero_hdd : :any:`int`
Minimum allowable number of non-zero heating degree day values.
minimum_total_hdd : :any:`float`
Minimum allowable total sum of heating degree day values.
beta_hdd_maximum_p_value : :any:`float`
The maximum allowable p-value of the beta hdd parameter.
weights_col : :any:`str` or None
The name of the column (if any) in ``data`` to use as weights.
Returns
-------
candidate_models : :any:`list` of :any:`CalTRACKUsagePerDayCandidateModel`
A list of hdd-only candidate models, with any associated warnings.
| 2.439857 | 2.318272 | 1.052446 |
cooling_balance_points = [
int(col[4:]) for col in data.columns if col.startswith("cdd")
]
heating_balance_points = [
int(col[4:]) for col in data.columns if col.startswith("hdd")
]
# CalTrack 3.2.2.1
candidate_models = [
get_single_cdd_hdd_candidate_model(
data,
minimum_non_zero_cdd,
minimum_non_zero_hdd,
minimum_total_cdd,
minimum_total_hdd,
beta_cdd_maximum_p_value,
beta_hdd_maximum_p_value,
weights_col,
cooling_balance_point,
heating_balance_point,
)
for cooling_balance_point in cooling_balance_points
for heating_balance_point in heating_balance_points
if heating_balance_point <= cooling_balance_point
]
return candidate_models
|
def get_cdd_hdd_candidate_models(
data,
minimum_non_zero_cdd,
minimum_non_zero_hdd,
minimum_total_cdd,
minimum_total_hdd,
beta_cdd_maximum_p_value,
beta_hdd_maximum_p_value,
weights_col,
)
|
Return a list of candidate cdd_hdd models for a particular selection
of cooling balance point and heating balance point
Parameters
----------
data : :any:`pandas.DataFrame`
A DataFrame containing at least the column ``meter_value`` and 1 to n
columns each of the form ``hdd_<heating_balance_point>``
and ``cdd_<cooling_balance_point>``. DataFrames of this form can be
made using the
:any:`eemeter.create_caltrack_daily_design_matrix` or
:any:`eemeter.create_caltrack_billing_design_matrix` methods.
minimum_non_zero_cdd : :any:`int`
Minimum allowable number of non-zero cooling degree day values.
minimum_non_zero_hdd : :any:`int`
Minimum allowable number of non-zero heating degree day values.
minimum_total_cdd : :any:`float`
Minimum allowable total sum of cooling degree day values.
minimum_total_hdd : :any:`float`
Minimum allowable total sum of heating degree day values.
beta_cdd_maximum_p_value : :any:`float`
The maximum allowable p-value of the beta cdd parameter.
beta_hdd_maximum_p_value : :any:`float`
The maximum allowable p-value of the beta hdd parameter.
weights_col : :any:`str` or None
The name of the column (if any) in ``data`` to use as weights.
Returns
-------
candidate_models : :any:`list` of :any:`CalTRACKUsagePerDayCandidateModel`
A list of cdd_hdd candidate models, with any associated warnings.
| 1.941631 | 1.74842 | 1.110506 |
best_r_squared_adj = -np.inf
best_candidate = None
# CalTrack 3.4.3.3
for candidate in candidate_models:
if (
candidate.status == "QUALIFIED"
and candidate.r_squared_adj > best_r_squared_adj
):
best_candidate = candidate
best_r_squared_adj = candidate.r_squared_adj
if best_candidate is None:
warnings = [
EEMeterWarning(
qualified_name="eemeter.caltrack_daily.select_best_candidate.no_candidates",
description="No qualified model candidates available.",
data={
"status_count:{}".format(status): count
for status, count in Counter(
[c.status for c in candidate_models]
).items()
},
)
]
return None, warnings
return best_candidate, []
|
def select_best_candidate(candidate_models)
|
Select and return the best candidate model based on r-squared and
qualification.
Parameters
----------
candidate_models : :any:`list` of :any:`eemeter.CalTRACKUsagePerDayCandidateModel`
Candidate models to select from.
Returns
-------
(best_candidate, warnings) : :any:`tuple` of :any:`eemeter.CalTRACKUsagePerDayCandidateModel` or :any:`None` and :any:`list` of `eemeter.EEMeterWarning`
Return the candidate model with highest r-squared or None if none meet
the requirements, and a list of warnings about this selection (or lack
of selection).
| 4.175902 | 3.365652 | 1.240741 |
try:
import matplotlib.pyplot as plt
except ImportError: # pragma: no cover
raise ImportError("matplotlib is required for plotting.")
if figsize is None:
figsize = (10, 4)
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
if candidate.status == "QUALIFIED":
color = "C2"
elif candidate.status == "DISQUALIFIED":
color = "C3"
else:
return
if best:
color = "C1"
alpha = 1
temp_min, temp_max = (30, 90) if temp_range is None else temp_range
temps = np.arange(temp_min, temp_max)
data = {"n_days": np.ones(temps.shape)}
prediction_index = pd.date_range(
"2017-01-01T00:00:00Z", periods=len(temps), freq="D"
)
temps_hourly = pd.Series(temps, index=prediction_index).resample("H").ffill()
prediction = candidate.predict(
prediction_index, temps_hourly, "daily"
).result.predicted_usage
plot_kwargs = {"color": color, "alpha": alpha or 0.3}
plot_kwargs.update(kwargs)
ax.plot(temps, prediction, **plot_kwargs)
if title is not None:
ax.set_title(title)
return ax
|
def plot_caltrack_candidate(
candidate,
best=False,
ax=None,
title=None,
figsize=None,
temp_range=None,
alpha=None,
**kwargs
)
|
Plot a CalTRACK candidate model.
Parameters
----------
candidate : :any:`eemeter.CalTRACKUsagePerDayCandidateModel`
A candidate model with a predict function.
best : :any:`bool`, optional
Whether this is the best candidate or not.
ax : :any:`matplotlib.axes.Axes`, optional
Existing axes to plot on.
title : :any:`str`, optional
Chart title.
figsize : :any:`tuple`, optional
(width, height) of chart.
temp_range : :any:`tuple`, optional
(min, max) temperatures to plot model.
alpha : :any:`float` between 0 and 1, optional
Transparency, 0 fully transparent, 1 fully opaque.
**kwargs
Keyword arguments for :any:`matplotlib.axes.Axes.plot`
Returns
-------
ax : :any:`matplotlib.axes.Axes`
Matplotlib axes.
| 2.578038 | 2.53655 | 1.016356 |
def _json_or_none(obj):
return None if obj is None else obj.json()
data = {
"status": self.status,
"method_name": self.method_name,
"interval": self.interval,
"model": _json_or_none(self.model),
"r_squared_adj": _noneify(self.r_squared_adj),
"warnings": [w.json() for w in self.warnings],
"metadata": self.metadata,
"settings": self.settings,
"totals_metrics": _json_or_none(self.totals_metrics),
"avgs_metrics": _json_or_none(self.avgs_metrics),
"candidates": None,
}
if with_candidates:
data["candidates"] = [candidate.json() for candidate in self.candidates]
return data
|
def json(self, with_candidates=False)
|
Return a JSON-serializable representation of this result.
The output of this function can be converted to a serialized string
with :any:`json.dumps`.
| 2.917022 | 2.886856 | 1.010449 |
try:
import matplotlib.pyplot as plt
except ImportError: # pragma: no cover
raise ImportError("matplotlib is required for plotting.")
if figsize is None:
figsize = (10, 4)
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
if temp_range is None:
temp_range = (20, 90)
if with_candidates:
for candidate in self.candidates:
candidate.plot(ax=ax, temp_range=temp_range, alpha=candidate_alpha)
self.model.plot(ax=ax, best=True, temp_range=temp_range)
if title is not None:
ax.set_title(title)
return ax
|
def plot(
self,
ax=None,
title=None,
figsize=None,
with_candidates=False,
candidate_alpha=None,
temp_range=None,
)
|
Plot a model fit.
Parameters
----------
ax : :any:`matplotlib.axes.Axes`, optional
Existing axes to plot on.
title : :any:`str`, optional
Chart title.
figsize : :any:`tuple`, optional
(width, height) of chart.
with_candidates : :any:`bool`
If True, also plot candidate models.
candidate_alpha : :any:`float` between 0 and 1
Transparency at which to plot candidate models. 0 fully transparent,
1 fully opaque.
Returns
-------
ax : :any:`matplotlib.axes.Axes`
Matplotlib axes.
| 1.970264 | 1.982805 | 0.993675 |
return {
"model_type": self.model_type,
"formula": self.formula,
"status": self.status,
"model_params": self.model_params,
"r_squared_adj": _noneify(self.r_squared_adj),
"warnings": [w.json() for w in self.warnings],
}
|
def json(self)
|
Return a JSON-serializable representation of this result.
The output of this function can be converted to a serialized string
with :any:`json.dumps`.
| 3.809267 | 3.938663 | 0.967147 |
return caltrack_usage_per_day_predict(
self.model_type,
self.model_params,
prediction_index,
temperature_data,
with_disaggregated=with_disaggregated,
with_design_matrix=with_design_matrix,
**kwargs
)
|
def predict(
self,
prediction_index,
temperature_data,
with_disaggregated=False,
with_design_matrix=False,
**kwargs
)
|
Predict
| 3.187635 | 2.959544 | 1.07707 |
return plot_caltrack_candidate(
self,
best=best,
ax=ax,
title=title,
figsize=figsize,
temp_range=temp_range,
alpha=alpha,
**kwargs
)
|
def plot(
self,
best=False,
ax=None,
title=None,
figsize=None,
temp_range=None,
alpha=None,
**kwargs
)
|
Plot
| 2.730075 | 2.551156 | 1.070133 |
return {
"status": self.status,
"criteria_name": self.criteria_name,
"warnings": [w.json() for w in self.warnings],
"settings": self.settings,
}
|
def json(self)
|
Return a JSON-serializable representation of this result.
The output of this function can be converted to a serialized string
with :any:`json.dumps`.
| 4.07408 | 4.173876 | 0.97609 |
sample_metadata = _load_sample_metadata()
metadata = sample_metadata.get(sample)
if metadata is None:
raise ValueError(
"Sample not found: {}. Try one of these?\n{}".format(
sample,
"\n".join(
[" - {}".format(key) for key in sorted(sample_metadata.keys())]
),
)
)
freq = metadata.get("freq")
if freq not in ("hourly", "daily"):
freq = None
meter_data_filename = metadata["meter_data_filename"]
with resource_stream("eemeter.samples", meter_data_filename) as f:
meter_data = meter_data_from_csv(f, gzipped=True, freq=freq)
temperature_filename = metadata["temperature_filename"]
with resource_stream("eemeter.samples", temperature_filename) as f:
temperature_data = temperature_data_from_csv(f, gzipped=True, freq="hourly")
metadata["blackout_start_date"] = pytz.UTC.localize(
parse_date(metadata["blackout_start_date"])
)
metadata["blackout_end_date"] = pytz.UTC.localize(
parse_date(metadata["blackout_end_date"])
)
return meter_data, temperature_data, metadata
|
def load_sample(sample)
|
Load meter data, temperature data, and metadata for associated with a
particular sample identifier. Note: samples are simulated, not real, data.
Parameters
----------
sample : :any:`str`
Identifier of sample. Complete list can be obtained with
:any:`eemeter.samples`.
Returns
-------
meter_data, temperature_data, metadata : :any:`tuple` of :any:`pandas.DataFrame`, :any:`pandas.Series`, and :any:`dict`
Meter data, temperature data, and metadata for this sample identifier.
| 2.519717 | 2.2396 | 1.125074 |
# TODO(philngo): include image in docs.
try:
import matplotlib.pyplot as plt
except ImportError: # pragma: no cover
raise ImportError("matplotlib is required for plotting.")
default_kwargs = {"figsize": (16, 4)}
default_kwargs.update(kwargs)
fig, ax1 = plt.subplots(**default_kwargs)
ax1.plot(
meter_data.index,
meter_data.value,
color="C0",
label="Energy Use",
drawstyle="steps-post",
)
ax1.set_ylabel("Energy Use")
ax2 = ax1.twinx()
ax2.plot(
temperature_data.index,
temperature_data,
color="C1",
label="Temperature",
alpha=0.8,
)
ax2.set_ylabel("Temperature")
fig.legend()
return ax1, ax2
|
def plot_time_series(meter_data, temperature_data, **kwargs)
|
Plot meter and temperature data in dual-axes time series.
Parameters
----------
meter_data : :any:`pandas.DataFrame`
A :any:`pandas.DatetimeIndex`-indexed DataFrame of meter data with the column ``value``.
temperature_data : :any:`pandas.Series`
A :any:`pandas.DatetimeIndex`-indexed Series of temperature data.
**kwargs
Arbitrary keyword arguments to pass to
:any:`plt.subplots <matplotlib.pyplot.subplots>`
Returns
-------
axes : :any:`tuple` of :any:`matplotlib.axes.Axes`
Tuple of ``(ax_meter_data, ax_temperature_data)``.
| 2.472598 | 2.433663 | 1.015999 |
try:
import matplotlib.pyplot as plt
except ImportError: # pragma: no cover
raise ImportError("matplotlib is required for plotting.")
# format data
temperature_mean = compute_temperature_features(meter_data.index, temperature_data)
usage_per_day = compute_usage_per_day_feature(meter_data, series_name="meter_value")
df = merge_features([usage_per_day, temperature_mean.temperature_mean])
if figsize is None:
figsize = (10, 4)
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
if temp_col is None:
temp_col = "temperature_mean"
ax.scatter(df[temp_col], df.meter_value, **kwargs)
ax.set_xlabel("Temperature")
ax.set_ylabel("Energy Use per Day")
if title is not None:
ax.set_title(title)
return ax
|
def plot_energy_signature(
meter_data,
temperature_data,
temp_col=None,
ax=None,
title=None,
figsize=None,
**kwargs
)
|
Plot meter and temperature data in energy signature.
Parameters
----------
meter_data : :any:`pandas.DataFrame`
A :any:`pandas.DatetimeIndex`-indexed DataFrame of meter data with the column ``value``.
temperature_data : :any:`pandas.Series`
A :any:`pandas.DatetimeIndex`-indexed Series of temperature data.
temp_col : :any:`str`, default ``'temperature_mean'``
The name of the temperature column.
ax : :any:`matplotlib.axes.Axes`
The axis on which to plot.
title : :any:`str`, optional
Chart title.
figsize : :any:`tuple`, optional
(width, height) of chart.
**kwargs
Arbitrary keyword arguments to pass to
:any:`matplotlib.axes.Axes.scatter`.
Returns
-------
ax : :any:`matplotlib.axes.Axes`
Matplotlib axes.
| 2.765999 | 2.836827 | 0.975033 |
if number is None:
return None
if isinstance(number, float):
return None if np.isinf(number) or np.isnan(number) else number
# errors if number is not float compatible
return float(number)
|
def _json_safe_float(number)
|
JSON serialization for infinity can be problematic.
See https://docs.python.org/2/library/json.html#basic-usage
This function returns None if `number` is infinity or negative infinity.
If the `number` cannot be converted to float, this will raise an exception.
| 4.528553 | 4.494144 | 1.007656 |
return {
"observed_length": _json_safe_float(self.observed_length),
"predicted_length": _json_safe_float(self.predicted_length),
"merged_length": _json_safe_float(self.merged_length),
"num_parameters": _json_safe_float(self.num_parameters),
"observed_mean": _json_safe_float(self.observed_mean),
"predicted_mean": _json_safe_float(self.predicted_mean),
"observed_variance": _json_safe_float(self.observed_variance),
"predicted_variance": _json_safe_float(self.predicted_variance),
"observed_skew": _json_safe_float(self.observed_skew),
"predicted_skew": _json_safe_float(self.predicted_skew),
"observed_kurtosis": _json_safe_float(self.observed_kurtosis),
"predicted_kurtosis": _json_safe_float(self.predicted_kurtosis),
"observed_cvstd": _json_safe_float(self.observed_cvstd),
"predicted_cvstd": _json_safe_float(self.predicted_cvstd),
"r_squared": _json_safe_float(self.r_squared),
"r_squared_adj": _json_safe_float(self.r_squared_adj),
"rmse": _json_safe_float(self.rmse),
"rmse_adj": _json_safe_float(self.rmse_adj),
"cvrmse": _json_safe_float(self.cvrmse),
"cvrmse_adj": _json_safe_float(self.cvrmse_adj),
"mape": _json_safe_float(self.mape),
"mape_no_zeros": _json_safe_float(self.mape_no_zeros),
"num_meter_zeros": _json_safe_float(self.num_meter_zeros),
"nmae": _json_safe_float(self.nmae),
"nmbe": _json_safe_float(self.nmbe),
"autocorr_resid": _json_safe_float(self.autocorr_resid),
}
|
def json(self)
|
Return a JSON-serializable representation of this result.
The output of this function can be converted to a serialized string
with :any:`json.dumps`.
| 1.550382 | 1.555625 | 0.99663 |
data = {
"segment_name": self.segment_name,
"formula": self.formula,
"warnings": [w.json() for w in self.warnings],
"model_params": self.model_params,
}
return data
|
def json(self)
|
Return a JSON-serializable representation of this result.
The output of this function can be converted to a serialized string
with :any:`json.dumps`.
| 4.717398 | 4.520936 | 1.043456 |
def _json_or_none(obj):
return None if obj is None else obj.json()
data = {
"segment_models": [_json_or_none(m) for m in self.segment_models],
"model_lookup": {
key: _json_or_none(val) for key, val in self.model_lookup.items()
},
"prediction_segment_type": self.prediction_segment_type,
"prediction_segment_name_mapping": self.prediction_segment_name_mapping,
"prediction_feature_processor": self.prediction_feature_processor.__name__,
}
return data
|
def json(self)
|
Return a JSON-serializable representation of this result.
The output of this function can be converted to a serialized string
with :any:`json.dumps`.
| 3.131844 | 2.972778 | 1.053508 |
read_csv_kwargs = {
"usecols": [start_col, value_col],
"dtype": {value_col: np.float64},
"parse_dates": [start_col],
"index_col": start_col,
}
if gzipped:
read_csv_kwargs.update({"compression": "gzip"})
# allow passing extra kwargs
read_csv_kwargs.update(kwargs)
df = pd.read_csv(filepath_or_buffer, **read_csv_kwargs).tz_localize("UTC")
if tz is not None:
df = df.tz_convert(tz)
if freq == "hourly":
df = df.resample("H").sum()
elif freq == "daily":
df = df.resample("D").sum()
return df
|
def meter_data_from_csv(
filepath_or_buffer,
tz=None,
start_col="start",
value_col="value",
gzipped=False,
freq=None,
**kwargs
)
|
Load meter data from a CSV file.
Default format::
start,value
2017-01-01T00:00:00+00:00,0.31
2017-01-02T00:00:00+00:00,0.4
2017-01-03T00:00:00+00:00,0.58
Parameters
----------
filepath_or_buffer : :any:`str` or file-handle
File path or object.
tz : :any:`str`, optional
E.g., ``'UTC'`` or ``'US/Pacific'``
start_col : :any:`str`, optional, default ``'start'``
Date period start column.
value_col : :any:`str`, optional, default ``'value'``
Value column, can be in any unit.
gzipped : :any:`bool`, optional
Whether file is gzipped.
freq : :any:`str`, optional
If given, apply frequency to data using :any:`pandas.DataFrame.resample`.
**kwargs
Extra keyword arguments to pass to :any:`pandas.read_csv`, such as
``sep='|'``.
| 1.875266 | 2.216534 | 0.846035 |
read_csv_kwargs = {
"usecols": [date_col, temp_col],
"dtype": {temp_col: np.float64},
"parse_dates": [date_col],
"index_col": date_col,
}
if gzipped:
read_csv_kwargs.update({"compression": "gzip"})
# allow passing extra kwargs
read_csv_kwargs.update(kwargs)
if tz is None:
tz = "UTC"
df = pd.read_csv(filepath_or_buffer, **read_csv_kwargs).tz_localize(tz)
if freq == "hourly":
df = df.resample("H").sum()
return df[temp_col]
|
def temperature_data_from_csv(
filepath_or_buffer,
tz=None,
date_col="dt",
temp_col="tempF",
gzipped=False,
freq=None,
**kwargs
)
|
Load temperature data from a CSV file.
Default format::
dt,tempF
2017-01-01T00:00:00+00:00,21
2017-01-01T01:00:00+00:00,22.5
2017-01-01T02:00:00+00:00,23.5
Parameters
----------
filepath_or_buffer : :any:`str` or file-handle
File path or object.
tz : :any:`str`, optional
E.g., ``'UTC'`` or ``'US/Pacific'``
date_col : :any:`str`, optional, default ``'dt'``
Date period start column.
temp_col : :any:`str`, optional, default ``'tempF'``
Temperature column.
gzipped : :any:`bool`, optional
Whether file is gzipped.
freq : :any:`str`, optional
If given, apply frequency to data using :any:`pandas.Series.resample`.
**kwargs
Extra keyword arguments to pass to :any:`pandas.read_csv`, such as
``sep='|'``.
| 2.052781 | 2.547348 | 0.80585 |
if orient == "list":
df = pd.DataFrame(data, columns=["start", "value"])
df["start"] = pd.DatetimeIndex(df.start).tz_localize("UTC")
df = df.set_index("start")
return df
else:
raise ValueError("orientation not recognized.")
|
def meter_data_from_json(data, orient="list")
|
Load meter data from json.
Default format::
[
['2017-01-01T00:00:00+00:00', 3.5],
['2017-02-01T00:00:00+00:00', 0.4],
['2017-03-01T00:00:00+00:00', 0.46],
]
Parameters
----------
data : :any:`list`
List elements are each a rows of data.
Returns
-------
df : :any:`pandas.DataFrame`
DataFrame with a single column (``'value'``) and a
:any:`pandas.DatetimeIndex`.
| 2.876949 | 3.009973 | 0.955806 |
if orient == "list":
df = pd.DataFrame(data, columns=["dt", "tempF"])
series = df.tempF
series.index = pd.DatetimeIndex(df.dt).tz_localize("UTC")
return series
else:
raise ValueError("orientation not recognized.")
|
def temperature_data_from_json(data, orient="list")
|
Load temperature data from json. (Must be given in degrees
Fahrenheit).
Default format::
[
['2017-01-01T00:00:00+00:00', 3.5],
['2017-01-01T01:00:00+00:00', 5.4],
['2017-01-01T02:00:00+00:00', 7.4],
]
Parameters
----------
data : :any:`list`
List elements are each a rows of data.
Returns
-------
series : :any:`pandas.Series`
DataFrame with a single column (``'tempF'``) and a
:any:`pandas.DatetimeIndex`.
| 3.65928 | 3.445787 | 1.061958 |
if meter_data.index.name is None:
meter_data.index.name = "start"
return meter_data.to_csv(path_or_buf, index=True)
|
def meter_data_to_csv(meter_data, path_or_buf)
|
Write meter data to CSV. See also :any:`pandas.DataFrame.to_csv`.
Parameters
----------
meter_data : :any:`pandas.DataFrame`
Meter data DataFrame with ``'value'`` column and
:any:`pandas.DatetimeIndex`.
path_or_buf : :any:`str` or file handle, default None
File path or object, if None is provided the result is returned as a string.
| 2.881786 | 3.859136 | 0.746744 |
if temperature_data.index.name is None:
temperature_data.index.name = "dt"
if temperature_data.name is None:
temperature_data.name = "temperature"
return temperature_data.to_frame().to_csv(path_or_buf, index=True)
|
def temperature_data_to_csv(temperature_data, path_or_buf)
|
Write temperature data to CSV. See also :any:`pandas.DataFrame.to_csv`.
Parameters
----------
temperature_data : :any:`pandas.Series`
Temperature data series with :any:`pandas.DatetimeIndex`.
path_or_buf : :any:`str` or file handle, default None
File path or object, if None is provided the result is returned as a string.
| 2.363256 | 2.414881 | 0.978622 |
if flask.has_request_context():
emit(_NAME + str(self._uuid))
else:
sio = flask.current_app.extensions['socketio']
sio.emit(_NAME + str(self._uuid))
eventlet.sleep()
|
def notify(self)
|
Notify the client.
The function passed to ``App.respond`` will get called.
| 6.102296 | 6.218477 | 0.981317 |
if not isinstance(key, (str, bytes)):
raise KeyError('Key must be of type str or bytes, found type {}'.format(type(key)))
|
def validate(key)
|
Check that the key is a string or bytestring.
That's the only valid type of key.
| 3.894226 | 3.630767 | 1.072563 |
try:
# numpy isn't an explicit dependency of bowtie
# so we can't assume it's available
import numpy as np
if isinstance(obj, (np.ndarray, np.generic)):
return obj.tolist()
except ImportError:
pass
try:
# pandas isn't an explicit dependency of bowtie
# so we can't assume it's available
import pandas as pd
if isinstance(obj, pd.DatetimeIndex):
return [x.isoformat() for x in obj.to_pydatetime()]
if isinstance(obj, pd.Index):
return obj.tolist()
if isinstance(obj, pd.Series):
try:
return [x.isoformat() for x in obj.dt.to_pydatetime()]
except AttributeError:
return obj.tolist()
except ImportError:
pass
if isinstance(obj, (datetime, time, date)):
return obj.isoformat()
raise TypeError('Not sure how to serialize {} of type {}'.format(obj, type(obj)))
|
def json_conversion(obj: Any) -> JSON
|
Encode additional objects to JSON.
| 2.297595 | 2.242654 | 1.024498 |
try:
return msgpack.packb(x, default=encoders)
except TypeError as exc:
message = ('Serialization error, check the data passed to a do_ command. '
'Cannot serialize this object:\n') + str(exc)[16:]
raise SerializationError(message)
|
def pack(x: Any) -> bytes
|
Encode ``x`` into msgpack with additional encoders.
| 9.675681 | 8.372732 | 1.155618 |
@property # type: ignore
@wraps(event)
def actualevent(self): # pylint: disable=missing-docstring
name = event.__name__[3:]
try:
# the getter post processing function
# is preserved with an underscore
getter = event(self).__name__
except AttributeError:
getter = None
return Event(name, self._uuid, getter) # pylint: disable=protected-access
return actualevent
|
def make_event(event: Callable) -> Callable
|
Create an event from a method signature.
| 6.526772 | 6.175224 | 1.056929 |
@wraps(command)
def actualcommand(self, *args, **kwds): # pylint: disable=missing-docstring
data = command(self, *args, **kwds)
name = command.__name__[3:]
signal = '{uuid}{sep}{event}'.format(
uuid=self._uuid, # pylint: disable=protected-access
sep=SEPARATOR,
event=name
)
if flask.has_request_context():
emit(signal, {'data': pack(data)})
else:
sio = flask.current_app.extensions['socketio']
sio.emit(signal, {'data': pack(data)})
eventlet.sleep()
return actualcommand
|
def make_command(command: Callable) -> Callable
|
Create an command from a method signature.
| 3.785424 | 3.582294 | 1.056704 |
def get(self, timeout=10): # pylint: disable=missing-docstring
name = getter.__name__
signal = '{uuid}{sep}{event}'.format(
uuid=self._uuid, # pylint: disable=protected-access
sep=SEPARATOR,
event=name
)
event = LightQueue(1)
if flask.has_request_context():
emit(signal, callback=lambda x: event.put(unpack(x)))
else:
sio = flask.current_app.extensions['socketio']
sio.emit(signal, callback=lambda x: event.put(unpack(x)))
data = event.get(timeout=timeout)
return getter(self, data)
# don't want to copy the signature in this case
get.__doc__ = getter.__doc__
return get
|
def make_getter(getter: Callable) -> Callable
|
Create an command from a method signature.
| 4.205529 | 4.092021 | 1.027739 |
if tag is None:
raise ValueError('tag cannot be None')
formatter = string.Formatter()
mapping = FormatDict(component=tag)
return formatter.vformat(wrap, (), mapping)
|
def _insert(wrap: str, tag: Optional[str]) -> str
|
Insert the component tag into the wrapper html.
This ignores other tags already created like ``{socket}``.
https://stackoverflow.com/a/11284026/744520
| 7.681881 | 6.111829 | 1.256887 |
return [dict(label=l, value=v) for l, v in zip(labels, values)]
|
def do_options(self, labels, values)
|
Replace the drop down fields.
Parameters
----------
labels : array-like
List of strings which will be visible to the user.
values : array-like
List of values associated with the labels that are hidden from the user.
Returns
-------
None
| 3.509394 | 5.75952 | 0.609321 |
return [{'label': label, 'value': value} for label, value in zip(labels, values)]
|
def do_options(self, labels: Sequence[str],
values: Sequence[Union[str, int]]) -> Sequence[Dict]
|
Replace the checkbox options.
Parameters
----------
labels : array-like
List of strings which will be visible to the user.
values : array-like
List of values associated with the labels that are hidden from the user.
Returns
-------
None
| 2.698864 | 4.658907 | 0.579291 |
return [{'label': label, 'value': value} for label, value in zip(labels, values)]
|
def do_options(self, labels, values)
|
Replace the radio button options.
Parameters
----------
labels : Sequence
List of strings which will be visible to the user.
values : Sequence
List of values associated with the labels that are hidden from the user.
Returns
-------
None
| 3.392535 | 5.880138 | 0.576948 |
version = check_output(('node', '--version'))
return tuple(int(x) for x in version.strip()[1:].split(b'.'))
|
def node_version()
|
Get node version.
| 4.67823 | 4.799686 | 0.974695 |
ret = eventlet.spawn(self.context(self.func))
eventlet.sleep(self.seconds)
try:
ret.wait()
except Exception: # pylint: disable=broad-except
traceback.print_exc()
self.thread = eventlet.spawn(self.run)
|
def run(self)
|
Invoke the function repeatedly on a timer.
| 4.819125 | 4.402593 | 1.094611 |
return not (
# if one rectangle is left of other
other.column_end <= self.column_start
or self.column_end <= other.column_start
# if one rectangle is above other
or other.row_end <= self.row_start
or self.row_end <= other.row_start
)
|
def overlap(self, other: 'Span')
|
Detect if two spans overlap.
| 3.063683 | 2.65827 | 1.15251 |
yield from itertools.product(
range(self.row_start, self.row_end),
range(self.column_start, self.column_end)
)
|
def cells(self) -> Generator[Tuple[int, int], None, None]
|
Generate cells in span.
| 2.731258 | 2.322806 | 1.175844 |
raise_not_number(value)
self.maximum = '{}px'.format(value)
return self
|
def pixels(self, value: float) -> 'Size'
|
Set the size in pixels.
| 17.255142 | 15.203782 | 1.134924 |
raise_not_number(value)
self.minimum = '{}px'.format(value)
return self
|
def min_pixels(self, value: float) -> 'Size'
|
Set the minimum size in pixels.
| 10.95634 | 9.966423 | 1.099325 |
raise_not_number(value)
self.maximum = '{}em'.format(value)
return self
|
def ems(self, value: float) -> 'Size'
|
Set the size in ems.
| 17.580931 | 13.711984 | 1.282158 |
raise_not_number(value)
self.minimum = '{}em'.format(value)
return self
|
def min_ems(self, value: float) -> 'Size'
|
Set the minimum size in ems.
| 12.752867 | 9.581593 | 1.330976 |
raise_not_number(value)
self.maximum = '{}fr'.format(value)
return self
|
def fraction(self, value: float) -> 'Size'
|
Set the fraction of free space to use.
| 16.502224 | 15.522873 | 1.063091 |
raise_not_number(value)
self.maximum = '{}%'.format(value)
return self
|
def percent(self, value: float) -> 'Size'
|
Set the percentage of free space to use.
| 13.404422 | 12.121926 | 1.1058 |
raise_not_number(value)
self.minimum = '{}%'.format(value)
return self
|
def min_percent(self, value: float) -> 'Size'
|
Set the minimum percentage of free space to use.
| 10.974638 | 9.752877 | 1.125272 |
raise_not_number(value)
self.gap = '{}px'.format(value)
return self
|
def pixels(self, value: int) -> 'Gap'
|
Set the margin in pixels.
| 11.014072 | 10.262473 | 1.073238 |
raise_not_number(value)
self.gap = '{}em'.format(value)
return self
|
def ems(self, value: int) -> 'Gap'
|
Set the margin in ems.
| 12.427358 | 9.544157 | 1.302091 |
raise_not_number(value)
self.gap = '{}%'.format(value)
return self
|
def percent(self, value) -> 'Gap'
|
Set the margin as a percentage.
| 8.886721 | 8.690647 | 1.022561 |
try:
self[Span(*self._available_cell())] = component
except NoUnusedCellsError:
span = list(self._spans.keys())[-1]
self._spans[span] += component
|
def add(self, component: Union[Component, Sequence[Component]]) -> None
|
Add a widget to the grid in the next available cell.
Searches over columns then rows for available cells.
Parameters
----------
components : bowtie._Component
A Bowtie widget instance.
| 13.806783 | 11.77074 | 1.172975 |
cells = set(itertools.product(range(len(self.rows)), range(len(self.columns))))
for span in self._spans:
for cell in span.cells:
cells.remove(cell)
if not cells:
raise NoUnusedCellsError('No available cells')
return min(cells)
|
def _available_cell(self) -> Tuple[int, int]
|
Find next available cell first by row then column.
First, construct a set containing all cells.
Then iterate over the spans and remove occupied cells.
| 3.930205 | 3.125126 | 1.257615 |
if not self.sidebar:
raise NoSidebarError('Set `sidebar=True` if you want to use the sidebar.')
if not isinstance(component, Component):
raise ValueError('component must be Component type, found {}'.format(component))
# self._track_widget(widget)
self._controllers.append(component)
|
def add_sidebar(self, component: Component) -> None
|
Add a widget to the sidebar.
Parameters
----------
component : bowtie._Component
Add this component to the sidebar, it will be appended to the end.
| 7.010544 | 6.418726 | 1.092202 |
if path[0] != '/':
path = '/' + path
for route in self._routes:
assert path != route.path, 'Cannot use the same path twice'
self._routes.append(Route(view=view, path=path, exact=exact))
self.app.add_url_rule(
path, path[1:], lambda: render_template('bowtie.html', title=self.title)
)
|
def add_route(self, view: View, path: str, exact: bool = True) -> None
|
Add a view to the app.
Parameters
----------
view : View
path : str
exact : bool, optional
| 4.036201 | 4.084198 | 0.988248 |
try:
first_event = events[0]
except IndexError:
raise IndexError('Must subscribe to at least one event.')
if len(events) != len(set(events)):
raise ValueError(
'Subscribed to the same event multiple times. All events must be unique.'
)
if len(events) > 1:
# check if we are using any non stateful events
for event in events:
if isinstance(event, Pager):
raise NotStatefulEvent('Pagers must be subscribed by itself.')
if event.getter is None:
raise NotStatefulEvent(
f'{event.uuid}.on_{event.name} is not a stateful event. '
'It must be used alone.'
)
def decorator(func: Callable) -> Callable:
if isinstance(first_event, Pager):
self._pages[first_event] = func
elif first_event.name == 'upload':
if first_event.uuid in self._uploads:
warnings.warn(
('Overwriting function "{func1}" with function '
'"{func2}" for upload object "{obj}".').format(
func1=self._uploads[first_event.uuid],
func2=func.__name__,
obj=COMPONENT_REGISTRY[first_event.uuid]
), Warning)
self._uploads[first_event.uuid] = func
else:
for event in events:
# need to have `events` here to maintain order of arguments
# not sure how to deal with mypy typing errors on events so ignoring
self._subscriptions[event].append((events, func)) # type: ignore
return func
return decorator
|
def subscribe(self, *events: Union[Event, Pager]) -> Callable
|
Call a function in response to an event.
If more than one event is given, `func` will be given
as many arguments as there are events.
If the pager calls notify, the decorated function will be called.
Parameters
----------
*event : event or pager
Bowtie event, must have at least one.
Examples
--------
Subscribing a function to multiple events.
>>> from bowtie.control import Dropdown, Slider
>>> app = App()
>>> dd = Dropdown()
>>> slide = Slider()
>>> @app.subscribe(dd.on_change, slide.on_change)
... def callback(dd_item, slide_value):
... pass
>>> @app.subscribe(dd.on_change)
... @app.subscribe(slide.on_change)
... def callback2(value):
... pass
Using the pager to run a callback function.
>>> from bowtie.pager import Pager
>>> app = App()
>>> pager = Pager()
>>> @app.subscribe(pager)
... def callback():
... pass
>>> def scheduledtask():
... pager.notify()
| 4.18885 | 4.736882 | 0.884305 |
def wrap(func: Callable):
self._schedules.append(Scheduler(self.app, seconds, func))
return wrap
|
def schedule(self, seconds: float)
|
Call a function periodically.
Parameters
----------
seconds : float
Minimum interval of function calls.
func : callable
Function to be called.
| 9.719892 | 10.981676 | 0.885101 |
if node_version() < _MIN_NODE_VERSION:
raise WebpackError(
f'Webpack requires at least version {_MIN_NODE_VERSION} of Node, '
f'found version {node_version}.'
)
packages = self._write_templates()
for filename in ['package.json', 'webpack.prod.js', 'webpack.dev.js']:
if not (self._build_dir / filename).is_file():
sourcefile = self._package_dir / 'src' / filename
shutil.copy(sourcefile, self._build_dir)
if self._run(['yarn', '--ignore-engines', 'install'], notebook=notebook) > 1:
raise YarnError('Error installing node packages')
if packages:
installed = self._installed_packages()
new_packages = [x for x in packages if x.split('@')[0] not in installed]
if new_packages:
retval = self._run(
['yarn', '--ignore-engines', 'add'] + new_packages, notebook=notebook
)
if retval > 1:
raise YarnError('Error installing node packages')
elif retval == 1:
print('Yarn error but trying to continue build')
retval = self._run([_WEBPACK, '--config', 'webpack.dev.js'], notebook=notebook)
if retval != 0:
raise WebpackError('Error building with webpack')
|
def _build(self, notebook: Optional[str] = None) -> None
|
Compile the Bowtie application.
| 3.586026 | 3.491732 | 1.027005 |
with (self._build_dir / 'package.json').open('r') as f:
packages = json.load(f)
yield from packages['dependencies'].keys()
|
def _installed_packages(self) -> Generator[str, None, None]
|
Extract installed packages as list from `package.json`.
| 3.591408 | 3.034149 | 1.183662 |
src = self._build_dir / 'bowtiejs'
os.makedirs(src, exist_ok=True)
return src
|
def _create_jspath(self) -> Path
|
Create the source directory for the build.
| 12.429322 | 7.211916 | 1.723442 |
if notebook is None:
return Popen(command, cwd=self._build_dir).wait()
cmd = Popen(command, cwd=self._build_dir, stdout=PIPE, stderr=STDOUT)
while True:
line = cmd.stdout.readline()
if line == b'' and cmd.poll() is not None:
return cmd.poll()
print(line.decode('utf-8'), end='')
raise Exception()
|
def _run(self, command: List[str], notebook: Optional[str] = None) -> int
|
Run command from terminal and notebook and view output from subprocess.
| 2.499939 | 2.392695 | 1.044821 |
try:
return self.credentials[username] == password
except KeyError:
return False
|
def _check_auth(self, username: str, password: str) -> bool
|
Check if a username/password combination is valid.
| 6.695693 | 3.982414 | 1.681315 |
auth = request.authorization
if not auth or not self._check_auth(auth.username, auth.password):
return Response(
'Could not verify your access level for that URL.\n'
'You have to login with proper credentials', 401,
{'WWW-Authenticate': 'Basic realm="Login Required"'}
)
session['logged_in'] = auth.username
# pylint wants this return statement
return None
|
def before_request(self) -> Optional[Response]
|
Determine if a user is allowed to view this route.
| 2.64777 | 2.5488 | 1.03883 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.