code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
if not HAVE_MPL: # pragma: no cover
raise RuntimeError('matplotlib not available.')
cmap = LinearSegmentedColormap.from_list(self.name,
self.mpl_colors, **kwargs)
return cmap
|
def get_mpl_colormap(self, **kwargs)
|
A color map that can be used in matplotlib plots. Requires matplotlib
to be importable. Keyword arguments are passed to
`matplotlib.colors.LinearSegmentedColormap.from_list`.
| 4.205011 | 4.08694 | 1.02889 |
from ipythonblocks import BlockGrid
grid = BlockGrid(self.number, 1, block_size=block_size)
for block, color in zip(grid, self.colors):
block.rgb = color
grid.show()
|
def show_as_blocks(self, block_size=100)
|
Show colors in the IPython Notebook using ipythonblocks.
Parameters
----------
block_size : int, optional
Size of displayed blocks.
| 6.412446 | 6.653701 | 0.963741 |
url = 'http://colorbrewer2.org/index.html?type={0}&scheme={1}&n={2}'
return url.format(self.type.lower(), self.name, self.number)
|
def colorbrewer2_url(self)
|
URL that can be used to view the color map at colorbrewer2.org.
| 2.987949 | 2.848918 | 1.048802 |
from jcvi.formats.fasta import summary as fsummary
from jcvi.utils.cbook import percentage, human_size
p = OptionParser(summary.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
chainfile, oldfasta, newfasta = args
chain = Chain(chainfile)
ungapped, dt, dq = chain.ungapped, chain.dt, chain.dq
print("File `{0}` contains {1} chains.".\
format(chainfile, len(chain)), file=sys.stderr)
print("ungapped={0} dt={1} dq={2}".\
format(human_size(ungapped), human_size(dt), human_size(dq)), file=sys.stderr)
oldreal, oldnn, oldlen = fsummary([oldfasta, "--outfile=/dev/null"])
print("Old fasta (`{0}`) mapped: {1}".\
format(oldfasta, percentage(ungapped, oldreal)), file=sys.stderr)
newreal, newnn, newlen = fsummary([newfasta, "--outfile=/dev/null"])
print("New fasta (`{0}`) mapped: {1}".\
format(newfasta, percentage(ungapped, newreal)), file=sys.stderr)
|
def summary(args)
|
%prog summary old.new.chain old.fasta new.fasta
Provide stats of the chain file.
| 2.761256 | 2.488626 | 1.109551 |
from jcvi.formats.agp import AGP
from jcvi.formats.sizes import Sizes
p = OptionParser(fromagp.__doc__)
p.add_option("--novalidate", default=False, action="store_true",
help="Do not validate AGP")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
agpfile, componentfasta, objectfasta = args
chainfile = agpfile.rsplit(".", 1)[0] + ".chain"
fw = open(chainfile, "w")
agp = AGP(agpfile, validate=(not opts.novalidate))
componentsizes = Sizes(componentfasta).mapping
objectsizes = Sizes(objectfasta).mapping
chain = "chain"
score = 1000
tStrand = "+"
id = 0
for a in agp:
if a.is_gap:
continue
tName = a.component_id
tSize = componentsizes[tName]
tStart = a.component_beg
tEnd = a.component_end
tStart -= 1
qName = a.object
qSize = objectsizes[qName]
qStrand = "-" if a.orientation == "-" else "+"
qStart = a.object_beg
qEnd = a.object_end
if qStrand == '-':
_qStart = qSize - qEnd + 1
_qEnd = qSize - qStart + 1
qStart, qEnd = _qStart, _qEnd
qStart -= 1
id += 1
size = a.object_span
headerline = "\t".join(str(x) for x in (
chain, score, tName, tSize, tStrand, tStart,
tEnd, qName, qSize, qStrand, qStart, qEnd, id
))
alignmentline = size
print(headerline, file=fw)
print(alignmentline, file=fw)
print(file=fw)
fw.close()
logging.debug("File written to `{0}`.".format(chainfile))
|
def fromagp(args)
|
%prog fromagp agpfile componentfasta objectfasta
Generate chain file from AGP format. The components represent the old
genome (target) and the objects represent new genome (query).
| 2.717917 | 2.485977 | 1.093299 |
p = OptionParser(blat.__doc__)
p.add_option("--minscore", default=100, type="int",
help="Matches minus mismatches gap penalty [default: %default]")
p.add_option("--minid", default=98, type="int",
help="Minimum sequence identity [default: %default]")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
oldfasta, newfasta = args
twobitfiles = []
for fastafile in args:
tbfile = faToTwoBit(fastafile)
twobitfiles.append(tbfile)
oldtwobit, newtwobit = twobitfiles
cmd = "pblat -threads={0}".format(opts.cpus) if which("pblat") else "blat"
cmd += " {0} {1}".format(oldtwobit, newfasta)
cmd += " -tileSize=12 -minScore={0} -minIdentity={1} ".\
format(opts.minscore, opts.minid)
pslfile = "{0}.{1}.psl".format(*(op.basename(x).split('.')[0] \
for x in (newfasta, oldfasta)))
cmd += pslfile
sh(cmd)
|
def blat(args)
|
%prog blat old.fasta new.fasta
Generate psl file using blat.
| 3.308975 | 3.131968 | 1.056516 |
from jcvi.formats.sizes import Sizes
p = OptionParser(frompsl.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
pslfile, oldfasta, newfasta = args
pf = oldfasta.split(".")[0]
# Chain together alignments from using axtChain
chainfile = pf + ".chain"
twobitfiles = []
for fastafile in (oldfasta, newfasta):
tbfile = faToTwoBit(fastafile)
twobitfiles.append(tbfile)
oldtwobit, newtwobit = twobitfiles
if need_update(pslfile, chainfile):
cmd = "axtChain -linearGap=medium -psl {0}".format(pslfile)
cmd += " {0} {1} {2}".format(oldtwobit, newtwobit, chainfile)
sh(cmd)
# Sort chain files
sortedchain = chainfile.rsplit(".", 1)[0] + ".sorted.chain"
if need_update(chainfile, sortedchain):
cmd = "chainSort {0} {1}".format(chainfile, sortedchain)
sh(cmd)
# Make alignment nets from chains
netfile = pf + ".net"
oldsizes = Sizes(oldfasta).filename
newsizes = Sizes(newfasta).filename
if need_update((sortedchain, oldsizes, newsizes), netfile):
cmd = "chainNet {0} {1} {2}".format(sortedchain, oldsizes, newsizes)
cmd += " {0} /dev/null".format(netfile)
sh(cmd)
# Create liftOver chain file
liftoverfile = pf + ".liftover.chain"
if need_update((netfile, sortedchain), liftoverfile):
cmd = "netChainSubset {0} {1} {2}".\
format(netfile, sortedchain, liftoverfile)
sh(cmd)
|
def frompsl(args)
|
%prog frompsl old.new.psl old.fasta new.fasta
Generate chain file from psl file. The pipeline is describe in:
<http://genomewiki.ucsc.edu/index.php/Minimal_Steps_For_LiftOver>
| 2.937448 | 2.777003 | 1.057776 |
atoms = row.strip().split("\t")
name1, name2, coverage, identity, nmismatch, ngap, \
start1, end1, strand1, start2, end2, strand2, score = atoms
identity = identity.replace("%", "")
hitlen = coverage.split("/")[1]
score = float(score)
same_strand = (strand1 == strand2)
if not same_strand:
start2, end2 = end2, start2
evalue = blastz_score_to_ncbi_expectation(score)
score = blastz_score_to_ncbi_bits(score)
evalue, score = "%.2g" % evalue, "%.1f" % score
return "\t".join((name1, name2, identity, hitlen, nmismatch, ngap, \
start1, end1, start2, end2, evalue, score))
|
def lastz_to_blast(row)
|
Convert the lastz tabular to the blast tabular, see headers above
Obsolete after LASTZ version 1.02.40
| 3.589094 | 3.519085 | 1.019894 |
bfasta_fn, afasta_fn, outfile, lastz_bin, extra, mask, format = t
ref_tags = [Darkspace]
qry_tags = [Darkspace]
ref_tags, qry_tags = add_mask(ref_tags, qry_tags, mask=mask)
lastz_cmd = Lastz_template.format(lastz_bin, bfasta_fn, ref_tags, \
afasta_fn, qry_tags)
if extra:
lastz_cmd += " " + extra.strip()
lastz_cmd += " --format={0}".format(format)
proc = Popen(lastz_cmd)
out_fh = open(outfile, "w")
logging.debug("job <%d> started: %s" % (proc.pid, lastz_cmd))
for row in proc.stdout:
out_fh.write(row)
out_fh.flush()
logging.debug("job <%d> finished" % proc.pid)
|
def lastz_2bit(t)
|
Used for formats other than BLAST, i.e. lav, maf, etc. which requires the
database file to contain a single FASTA record.
| 4.34037 | 4.445572 | 0.976336 |
p = OptionParser(main.__doc__)
supported_formats = tuple(x.strip() for x in \
"lav, lav+text, axt, axt+, maf, maf+, maf-, sam, softsam, "\
"sam-, softsam-, cigar, BLASTN, BLASTN-, differences, rdotplot, text".split(','))
p.add_option("--format", default="BLASTN-", choices=supported_formats,
help="Ooutput format [default: %default]")
p.add_option("--path", dest="lastz_path", default=None,
help="specify LASTZ path")
p.add_option("--mask", dest="mask", default=False, action="store_true",
help="treat lower-case letters as mask info [default: %default]")
p.add_option("--similar", default=False, action="store_true",
help="Use options tuned for close comparison [default: %default]")
p.set_cpus(cpus=32)
p.set_params()
p.set_outfile()
opts, args = p.parse_args()
if len(args) != 2:
sys.exit(p.print_help())
bfasta_fn, afasta_fn = args
for fn in (afasta_fn, bfasta_fn):
assert op.exists(fn)
afasta_fn = op.abspath(afasta_fn)
bfasta_fn = op.abspath(bfasta_fn)
out_fh = must_open(opts.outfile, "w")
extra = opts.extra
if opts.similar:
extra += similarOptions
lastz_bin = opts.lastz_path or "lastz"
assert lastz_bin.endswith("lastz"), "You need to include lastz in your path"
mask = opts.mask
cpus = opts.cpus
logging.debug("Dispatch job to %d cpus" % cpus)
format = opts.format
blastline = (format == "BLASTN-")
# The axt, maf, etc. format can only be run on splitted database (i.e. one
# FASTA record per file). The splitted files are then parallelized for the
# computation, as opposed to splitting queries through "subsample".
outdir = "outdir"
if not blastline:
from jcvi.formats.fasta import Fasta
from jcvi.formats.chain import faToTwoBit
mkdir(outdir)
bfasta_2bit = faToTwoBit(bfasta_fn)
bids = list(Fasta(bfasta_fn, lazy=True).iterkeys_ordered())
apf = op.basename(afasta_fn).split(".")[0]
args = []
# bfasta_fn, afasta_fn, outfile, lastz_bin, extra, mask, format
for id in bids:
bfasta = "/".join((bfasta_2bit, id))
outfile = op.join(outdir, "{0}.{1}.{2}".format(apf, id, format))
args.append((bfasta, afasta_fn, outfile, \
lastz_bin, extra, mask, format))
p = Pool(cpus)
p.map(lastz_2bit, args)
return
lock = Lock()
args = [(k + 1, cpus, bfasta_fn, afasta_fn, out_fh,
lock, lastz_bin, extra, mask) for k in xrange(cpus)]
g = Jobs(target=lastz, args=args)
g.run()
|
def main()
|
%prog database.fa query.fa [options]
Run LASTZ similar to the BLAST interface, and generates -m8 tabular format
| 4.698961 | 4.608009 | 1.019738 |
p = OptionParser(augustus.__doc__)
p.add_option("--species", default="maize",
help="Use species model for prediction")
p.add_option("--hintsfile", help="Hint-guided AUGUSTUS")
p.add_option("--nogff3", default=False, action="store_true",
help="Turn --gff3=off")
p.set_home("augustus")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
cpus = opts.cpus
mhome = opts.augustus_home
gff3 = not opts.nogff3
suffix = ".gff3" if gff3 else ".out"
cfgfile = op.join(mhome, "config/extrinsic/extrinsic.M.RM.E.W.cfg")
outdir = mkdtemp(dir=".")
fs = split([fastafile, outdir, str(cpus)])
augustuswrap_params = partial(augustuswrap, species=opts.species,
gff3=gff3, cfgfile=cfgfile,
hintsfile=opts.hintsfile)
g = Jobs(augustuswrap_params, fs.names)
g.run()
gff3files = [x.rsplit(".", 1)[0] + suffix for x in fs.names]
outfile = fastafile.rsplit(".", 1)[0] + suffix
FileMerger(gff3files, outfile=outfile).merge()
shutil.rmtree(outdir)
if gff3:
from jcvi.annotation.reformat import augustus as reformat_augustus
reformat_outfile = outfile.replace(".gff3", ".reformat.gff3")
reformat_augustus([outfile, "--outfile={0}".format(reformat_outfile)])
|
def augustus(args)
|
%prog augustus fastafile
Run parallel AUGUSTUS. Final results can be reformatted using
annotation.reformat.augustus().
| 3.82969 | 3.634778 | 1.053624 |
p = OptionParser(star.__doc__)
p.add_option("--single", default=False, action="store_true",
help="Single end mapping")
p.set_fastq_names()
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
folder, reference = args
cpus = opts.cpus
mm = MakeManager()
num = 1 if opts.single else 2
folder, reference = args
gd = "GenomeDir"
mkdir(gd)
STAR = "STAR --runThreadN {0} --genomeDir {1}".format(cpus, gd)
# Step 0: build genome index
genomeidx = op.join(gd, "Genome")
if need_update(reference, genomeidx):
cmd = STAR + " --runMode genomeGenerate"
cmd += " --genomeFastaFiles {0}".format(reference)
mm.add(reference, genomeidx, cmd)
# Step 1: align
for p, prefix in iter_project(folder, opts.names, num):
pf = "{0}_star".format(prefix)
bamfile = pf + "Aligned.sortedByCoord.out.bam"
cmd = STAR + " --readFilesIn {0}".format(" ".join(p))
if p[0].endswith(".gz"):
cmd += " --readFilesCommand zcat"
cmd += " --outSAMtype BAM SortedByCoordinate"
cmd += " --outFileNamePrefix {0}".format(pf)
cmd += " --twopassMode Basic"
# Compatibility for cufflinks
cmd += " --outSAMstrandField intronMotif"
cmd += " --outFilterIntronMotifs RemoveNoncanonical"
mm.add(p, bamfile, cmd)
mm.write()
|
def star(args)
|
%prog star folder reference
Run star on a folder with reads.
| 3.29791 | 3.177873 | 1.037773 |
p = OptionParser(cufflinks.__doc__)
p.add_option("--gtf", help="Reference annotation [default: %default]")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
folder, reference = args
cpus = opts.cpus
gtf = opts.gtf
transcripts = "transcripts.gtf"
mm = MakeManager()
gtfs = []
for bam in iglob(folder, "*.bam"):
pf = op.basename(bam).split(".")[0]
outdir = pf + "_cufflinks"
cmd = "cufflinks"
cmd += " -o {0}".format(outdir)
cmd += " -p {0}".format(cpus)
if gtf:
cmd += " -g {0}".format(gtf)
cmd += " --frag-bias-correct {0}".format(reference)
cmd += " --multi-read-correct"
cmd += " {0}".format(bam)
cgtf = op.join(outdir, transcripts)
mm.add(bam, cgtf, cmd)
gtfs.append(cgtf)
assemblylist = "assembly_list.txt"
cmd = 'find . -name "{0}" > {1}'.format(transcripts, assemblylist)
mm.add(gtfs, assemblylist, cmd)
mergedgtf = "merged/merged.gtf"
cmd = "cuffmerge"
cmd += " -o merged"
cmd += " -p {0}".format(cpus)
if gtf:
cmd += " -g {0}".format(gtf)
cmd += " -s {0}".format(reference)
cmd += " {0}".format(assemblylist)
mm.add(assemblylist, mergedgtf, cmd)
mm.write()
|
def cufflinks(args)
|
%prog cufflinks folder reference
Run cufflinks on a folder containing tophat results.
| 2.506116 | 2.454472 | 1.021041 |
from jcvi.apps.bowtie import check_index
from jcvi.formats.fastq import guessoffset
p = OptionParser(tophat.__doc__)
p.add_option("--gtf", help="Reference annotation [default: %default]")
p.add_option("--single", default=False, action="store_true",
help="Single end mapping")
p.add_option("--intron", default=15000, type="int",
help="Max intron size [default: %default]")
p.add_option("--dist", default=-50, type="int",
help="Mate inner distance [default: %default]")
p.add_option("--stdev", default=50, type="int",
help="Mate standard deviation [default: %default]")
p.set_phred()
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
num = 1 if opts.single else 2
folder, reference = args
reference = check_index(reference)
for p, prefix in iter_project(folder, n=num):
outdir = "{0}_tophat".format(prefix)
outfile = op.join(outdir, "accepted_hits.bam")
if op.exists(outfile):
logging.debug("File `{0}` found. Skipping.".format(outfile))
continue
cmd = "tophat -p {0}".format(opts.cpus)
if opts.gtf:
cmd += " -G {0}".format(opts.gtf)
cmd += " -o {0}".format(outdir)
if num == 1: # Single-end
a, = p
else: # Paired-end
a, b = p
cmd += " --max-intron-length {0}".format(opts.intron)
cmd += " --mate-inner-dist {0}".format(opts.dist)
cmd += " --mate-std-dev {0}".format(opts.stdev)
phred = opts.phred or str(guessoffset([a]))
if phred == "64":
cmd += " --phred64-quals"
cmd += " {0} {1}".format(reference, " ".join(p))
sh(cmd)
|
def tophat(args)
|
%prog tophat folder reference
Run tophat on a folder of reads.
| 2.595776 | 2.542535 | 1.02094 |
from scipy.stats import hmean
return int(round(hmean(np.clip(a, a_min, a_max))))
|
def hmean_int(a, a_min=5778, a_max=1149851)
|
Harmonic mean of an array, returns the closest int
| 3.125829 | 2.778952 | 1.124823 |
counts = np.zeros(BB, dtype=int)
for x in a:
c = int(round(math.log(x, phi)))
if c < lb:
c = lb
if c > ub:
c = ub
counts[c - lb] += 1
return counts
|
def golden_array(a, phi=1.61803398875, lb=LB, ub=UB)
|
Given list of ints, we aggregate similar values so that it becomes an
array of multiples of phi, where phi is the golden ratio.
phi ^ 14 = 843
phi ^ 33 = 7881196
So the array of counts go between 843 to 788196. One triva is that the
exponents of phi gets closer to integers as N grows. See interesting
discussion here:
<https://www.johndcook.com/blog/2017/03/22/golden-powers-are-nearly-integers/>
| 3.142025 | 3.56808 | 0.880593 |
from .chic import score_evaluate_M
t, stour, tour_score, active_sizes, M = arg
stour_score, = score_evaluate_M(stour, active_sizes, M)
delta_score = tour_score - stour_score
log10d = np.log10(delta_score) if delta_score > 1e-9 else -9
return t, log10d
|
def prune_tour_worker(arg)
|
Worker thread for CLMFile.prune_tour()
| 8.218111 | 8.308777 | 0.989088 |
p = OptionParser(heatmap.__doc__)
p.add_option("--resolution", default=500000, type="int",
help="Resolution when counting the links")
p.add_option("--chr", help="Plot this contig/chr only")
p.add_option("--nobreaks", default=False, action="store_true",
help="Do not plot breaks (esp. if contigs are small)")
opts, args, iopts = p.set_image_options(args, figsize="10x10",
style="white", cmap="coolwarm",
format="png", dpi=120)
if len(args) != 2:
sys.exit(not p.print_help())
npyfile, jsonfile = args
contig = opts.chr
# Load contig/chromosome starts and sizes
header = json.loads(open(jsonfile).read())
resolution = header.get("resolution", opts.resolution)
logging.debug("Resolution set to {}".format(resolution))
# Load the matrix
A = np.load(npyfile)
# Select specific submatrix
if contig:
contig_start = header["starts"][contig]
contig_size = header["sizes"][contig]
contig_end = contig_start + contig_size
A = A[contig_start: contig_end, contig_start: contig_end]
# Several concerns in practice:
# The diagonal counts may be too strong, this can either be resolved by
# masking them. Or perform a log transform on the entire heatmap.
B = A.astype("float64")
B += 1.0
B = np.log(B)
vmin, vmax = 1, 7
B[B < vmin] = vmin
B[B > vmax] = vmax
print(B)
logging.debug("Matrix log-transformation and thresholding ({}-{}) done"
.format(vmin, vmax))
# Canvas
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1]) # whole canvas
ax = fig.add_axes([.05, .05, .9, .9]) # just the heatmap
breaks = header["starts"].values()
breaks += [header["total_bins"]] # This is actually discarded
breaks = sorted(breaks)[1:]
if contig or opts.nobreaks:
breaks = []
plot_heatmap(ax, B, breaks, iopts, binsize=resolution)
# Title
pf = npyfile.rsplit(".", 1)[0]
title = pf
if contig:
title += "-{}".format(contig)
root.text(.5, .98, title, color="darkslategray", size=18,
ha="center", va="center")
normalize_axes(root)
image_name = title + "." + iopts.format
# macOS sometimes has way too verbose output
logging.getLogger().setLevel(logging.CRITICAL)
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def heatmap(args)
|
%prog heatmap input.npy genome.json
Plot heatmap based on .npy data file. The .npy stores a square matrix with
bins of genome, and cells inside the matrix represent number of links
between bin i and bin j. The `genome.json` contains the offsets of each
contig/chr so that we know where to draw boundary lines, or extract per
contig/chromosome heatmap.
| 3.945331 | 3.710479 | 1.063294 |
p = OptionParser(mergemat.__doc__)
p.set_outfile(outfile="out")
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
npyfiles = args
A = np.load(npyfiles[0])
logging.debug("Load `{}`: matrix of shape {}:; sum={}"
.format(npyfiles[0], A.shape, A.sum()))
for npyfile in npyfiles[1:]:
B = np.load(npyfile)
A += B
logging.debug("Load `{}`: sum={}"
.format(npyfiles[0], A.sum()))
pf = opts.outfile
np.save(pf, A)
logging.debug("Combined {} files into `{}.npy`".format(len(npyfiles), pf))
|
def mergemat(args)
|
%prog mergemat *.npy
Combine counts from multiple .npy data files.
| 3.029465 | 2.747011 | 1.102822 |
import pysam
bamfile = pysam.AlignmentFile(bamfile, "rb")
seqsize = {}
for kv in bamfile.header["SQ"]:
if kv["LN"] < 10 * N:
continue
seqsize[kv["SN"]] = kv["LN"] / N + 1
allseqs = natsorted(seqsize.keys())
allseqsizes = np.array([seqsize[x] for x in allseqs])
seqstarts = np.cumsum(allseqsizes)
seqstarts = np.roll(seqstarts, 1)
total_bins = seqstarts[0]
seqstarts[0] = 0
seqstarts = dict(zip(allseqs, seqstarts))
return seqstarts, seqsize, total_bins
|
def get_seqstarts(bamfile, N)
|
Go through the SQ headers and pull out all sequences with size
greater than the resolution settings, i.e. contains at least a few cells
| 2.790582 | 2.814774 | 0.991405 |
b = np.ones(bins, dtype="float64")
b[0] = 100
for i in range(1, bins):
b[i] = b[i - 1] * ratio
bins = np.around(b).astype(dtype="int")
binsizes = np.diff(bins)
return bins, binsizes
|
def get_distbins(start=100, bins=2500, ratio=1.01)
|
Get exponentially sized
| 3.037666 | 3.003142 | 1.011496 |
p = OptionParser(simulate.__doc__)
p.add_option("--genomesize", default=10000000, type="int",
help="Genome size")
p.add_option("--genes", default=1000, type="int",
help="Number of genes")
p.add_option("--contigs", default=100, type="int",
help="Number of contigs")
p.add_option("--coverage", default=10, type="int",
help="Link coverage")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
pf, = args
GenomeSize = opts.genomesize
Genes = opts.genes
Contigs = opts.contigs
Coverage = opts.coverage
PE = 500
Links = int(GenomeSize * Coverage / PE)
# Simulate the contig sizes that sum to GenomeSize
# See also:
# <https://en.wikipedia.org/wiki/User:Skinnerd/Simplex_Point_Picking>
ContigSizes, = np.random.dirichlet([1] * Contigs, 1) * GenomeSize
ContigSizes = np.array(np.round_(ContigSizes, decimals=0), dtype=int)
ContigStarts = np.zeros(Contigs, dtype=int)
ContigStarts[1:] = np.cumsum(ContigSizes)[:-1]
# Write IDS file
idsfile = pf + ".ids"
fw = open(idsfile, "w")
print("#Contig\tRECounts\tLength", file=fw)
for i, s in enumerate(ContigSizes):
print("tig{:04d}\t{}\t{}".format(i, s / (4 ** 4), s), file=fw)
fw.close()
# Simulate the gene positions
GenePositions = np.sort(np.random.random_integers(0,
GenomeSize - 1, size=Genes))
write_last_and_beds(pf, GenePositions, ContigStarts)
# Simulate links, uniform start, with link distances following 1/x, where x
# is the distance between the links. As an approximation, we have links
# between [1e3, 1e7], so we map from uniform [1e-7, 1e-3]
LinkStarts = np.sort(np.random.random_integers(0, GenomeSize - 1,
size=Links))
a, b = 1e-7, 1e-3
LinkSizes = np.array(np.round_(1 / ((b - a) * np.random.rand(Links) + a),
decimals=0), dtype="int")
LinkEnds = LinkStarts + LinkSizes
# Find link to contig membership
LinkStartContigs = np.searchsorted(ContigStarts, LinkStarts) - 1
LinkEndContigs = np.searchsorted(ContigStarts, LinkEnds) - 1
# Extract inter-contig links
InterContigLinks = (LinkStartContigs != LinkEndContigs) & \
(LinkEndContigs != Contigs)
ICLinkStartContigs = LinkStartContigs[InterContigLinks]
ICLinkEndContigs = LinkEndContigs[InterContigLinks]
ICLinkStarts = LinkStarts[InterContigLinks]
ICLinkEnds = LinkEnds[InterContigLinks]
# Write CLM file
write_clm(pf, ICLinkStartContigs, ICLinkEndContigs,
ICLinkStarts, ICLinkEnds,
ContigStarts, ContigSizes)
|
def simulate(args)
|
%prog simulate test
Simulate CLM and IDS files with given names.
The simulator assumes several distributions:
- Links are distributed uniformly across genome
- Log10(link_size) are distributed normally
- Genes are distributed uniformly
| 3.020748 | 3.017743 | 1.000996 |
qbedfile = pf + "tigs.bed"
sbedfile = pf + "chr.bed"
lastfile = "{}tigs.{}chr.last".format(pf, pf)
qbedfw = open(qbedfile, "w")
sbedfw = open(sbedfile, "w")
lastfw = open(lastfile, "w")
GeneContigs = np.searchsorted(ContigStarts, GenePositions) - 1
for i, (c, gstart) in enumerate(zip(GeneContigs, GenePositions)):
gene = "gene{:05d}".format(i)
tig = "tig{:04d}".format(c)
start = ContigStarts[c]
cstart = gstart - start
print("\t".join(str(x) for x in
(tig, cstart, cstart + 1, gene)), file=qbedfw)
print("\t".join(str(x) for x in
("chr1", gstart, gstart + 1, gene)), file=sbedfw)
lastatoms = [gene, gene, 100] + [0] * 8 + [100]
print("\t".join(str(x) for x in lastatoms), file=lastfw)
qbedfw.close()
sbedfw.close()
lastfw.close()
|
def write_last_and_beds(pf, GenePositions, ContigStarts)
|
Write LAST file, query and subject BED files.
| 2.779079 | 2.666475 | 1.04223 |
clm = defaultdict(list)
for start, end, linkstart, linkend in \
zip(ICLinkStartContigs, ICLinkEndContigs,
ICLinkStarts, ICLinkEnds):
start_a = ContigStarts[start]
start_b = start_a + ContigSizes[start]
end_a = ContigStarts[end]
end_b = end_a + ContigSizes[end]
if linkend >= end_b:
continue
clm[(start, end)].append((linkstart - start_a, start_b - linkstart,
linkend - end_a, end_b - linkend))
clmfile = pf + ".clm"
fw = open(clmfile, "w")
def format_array(a):
return [str(x) for x in sorted(a) if x > 0]
for (start, end), links in sorted(clm.items()):
start = "tig{:04d}".format(start)
end = "tig{:04d}".format(end)
nlinks = len(links)
if not nlinks:
continue
ff = format_array([(b + c) for a, b, c, d in links])
fr = format_array([(b + d) for a, b, c, d in links])
rf = format_array([(a + c) for a, b, c, d in links])
rr = format_array([(a + d) for a, b, c, d in links])
print("{}+ {}+\t{}\t{}".format(start, end, nlinks, " ".join(ff)), file=fw)
print("{}+ {}-\t{}\t{}".format(start, end, nlinks, " ".join(fr)), file=fw)
print("{}- {}+\t{}\t{}".format(start, end, nlinks, " ".join(rf)), file=fw)
print("{}- {}-\t{}\t{}".format(start, end, nlinks, " ".join(rr)), file=fw)
fw.close()
|
def write_clm(pf, ICLinkStartContigs, ICLinkEndContigs,
ICLinkStarts, ICLinkEnds,
ContigStarts, ContigSizes)
|
Write CLM file from simulated data.
| 1.920403 | 1.944493 | 0.987611 |
p = OptionParser(density.__doc__)
p.add_option("--save", default=False, action="store_true",
help="Write log densitites of contigs to file")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
clmfile, = args
clm = CLMFile(clmfile)
pf = clmfile.rsplit(".", 1)[0]
if opts.save:
logdensities = clm.calculate_densities()
densityfile = pf + ".density"
fw = open(densityfile, "w")
for name, logd in logdensities.items():
s = clm.tig_to_size[name]
print("\t".join(str(x) for x in (name, s, logd)), file=fw)
fw.close()
logging.debug("Density written to `{}`".format(densityfile))
tourfile = clmfile.rsplit(".", 1)[0] + ".tour"
tour = clm.activate(tourfile=tourfile, backuptour=False)
clm.flip_all(tour)
clm.flip_whole(tour)
clm.flip_one(tour)
|
def density(args)
|
%prog density test.clm
Estimate link density of contigs.
| 3.549939 | 3.359465 | 1.056698 |
p = OptionParser(optimize.__doc__)
p.add_option("--skiprecover", default=False, action="store_true",
help="Do not import 'recover' contigs")
p.add_option("--startover", default=False, action="store_true",
help="Do not resume from existing tour file")
p.add_option("--skipGA", default=False, action="store_true",
help="Skip GA step")
p.set_outfile(outfile=None)
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
clmfile, = args
startover = opts.startover
runGA = not opts.skipGA
cpus = opts.cpus
# Load contact map
clm = CLMFile(clmfile, skiprecover=opts.skiprecover)
tourfile = opts.outfile or clmfile.rsplit(".", 1)[0] + ".tour"
if startover:
tourfile = None
tour = clm.activate(tourfile=tourfile)
fwtour = open(tourfile, "w")
# Store INIT tour
print_tour(fwtour, clm.tour, "INIT",
clm.active_contigs, clm.oo, signs=clm.signs)
if runGA:
for phase in range(1, 3):
tour = optimize_ordering(fwtour, clm, phase, cpus)
tour = clm.prune_tour(tour, cpus)
# Flip orientations
phase = 1
while True:
tag1, tag2 = optimize_orientations(fwtour, clm, phase, cpus)
if tag1 == REJECT and tag2 == REJECT:
logging.debug("Terminating ... no more {}".format(ACCEPT))
break
phase += 1
fwtour.close()
|
def optimize(args)
|
%prog optimize test.clm
Optimize the contig order and orientation, based on CLM file.
| 4.116782 | 3.832673 | 1.074128 |
from .chic import score_evaluate_M
# Prepare input files
tour_contigs = clm.active_contigs
tour_sizes = clm.active_sizes
tour_M = clm.M
tour = clm.tour
signs = clm.signs
oo = clm.oo
def callback(tour, gen, phase, oo):
fitness = tour.fitness if hasattr(tour, "fitness") else None
label = "GA{}-{}".format(phase, gen)
if fitness:
fitness = "{0}".format(fitness).split(",")[0].replace("(", "")
label += "-" + fitness
if gen % 20 == 0:
print_tour(fwtour, tour, label, tour_contigs, oo, signs=signs)
return tour
callbacki = partial(callback, phase=phase, oo=oo)
toolbox = GA_setup(tour)
toolbox.register("evaluate", score_evaluate_M,
tour_sizes=tour_sizes, tour_M=tour_M)
tour, tour_fitness = GA_run(toolbox, ngen=1000, npop=100, cpus=cpus,
callback=callbacki)
clm.tour = tour
return tour
|
def optimize_ordering(fwtour, clm, phase, cpus)
|
Optimize the ordering of contigs by Genetic Algorithm (GA).
| 5.00914 | 4.835193 | 1.035975 |
# Prepare input files
tour_contigs = clm.active_contigs
tour = clm.tour
oo = clm.oo
print_tour(fwtour, tour, "FLIPALL{}".format(phase),
tour_contigs, oo, signs=clm.signs)
tag1 = clm.flip_whole(tour)
print_tour(fwtour, tour, "FLIPWHOLE{}".format(phase),
tour_contigs, oo, signs=clm.signs)
tag2 = clm.flip_one(tour)
print_tour(fwtour, tour, "FLIPONE{}".format(phase),
tour_contigs, oo, signs=clm.signs)
return tag1, tag2
|
def optimize_orientations(fwtour, clm, phase, cpus)
|
Optimize the orientations of contigs by using heuristic flipping.
| 3.747446 | 3.658745 | 1.024243 |
qbedfile, sbedfile = get_bed_filenames(lastfile, p, opts)
qbedfile = op.abspath(qbedfile)
sbedfile = op.abspath(sbedfile)
qbed = Bed(qbedfile, sorted=False)
contig_to_beds = dict(qbed.sub_beds())
# Create a separate directory for the subplots and movie
mkdir(odir, overwrite=True)
os.chdir(odir)
logging.debug("Change into subdir `{}`".format(odir))
# Make anchorsfile
anchorsfile = ".".join(op.basename(lastfile).split(".", 2)[:2]) \
+ ".anchors"
fw = open(anchorsfile, "w")
for b in Blast(lastfile):
print("\t".join((gene_name(b.query), gene_name(b.subject),
str(int(b.score)))), file=fw)
fw.close()
# Symlink sbed
symlink(sbedfile, op.basename(sbedfile))
return anchorsfile, qbedfile, contig_to_beds
|
def prepare_synteny(tourfile, lastfile, odir, p, opts)
|
Prepare synteny plots for movie().
| 4.52211 | 4.314257 | 1.048178 |
tour = []
tour_o = []
for contig in row.split():
if contig[-1] in ('+', '-', '?'):
tour.append(contig[:-1])
tour_o.append(contig[-1])
else: # Unoriented
tour.append(contig)
tour_o.append('?')
return tour, tour_o
|
def separate_tour_and_o(row)
|
The tour line typically contains contig list like:
tig00044568+ tig00045748- tig00071055- tig00015093- tig00030900-
This function separates the names from the orientations.
| 3.267538 | 2.90459 | 1.124957 |
row = open(tourfile).readlines()[-1]
_tour, _tour_o = separate_tour_and_o(row)
tour = []
tour_o = []
for tc, to in zip(_tour, _tour_o):
if tc not in clm.contigs:
logging.debug("Contig `{}` in file `{}` not found in `{}`"
.format(tc, tourfile, clm.idsfile))
continue
tour.append(tc)
tour_o.append(to)
return tour, tour_o
|
def iter_last_tour(tourfile, clm)
|
Extract last tour from tourfile. The clm instance is also passed in to see
if any contig is covered in the clm.
| 3.557264 | 3.32237 | 1.070701 |
fp = open(tourfile)
i = 0
for row in fp:
if row[0] == '>':
label = row[1:].strip()
if label.startswith("GA"):
pf, j, score = label.split("-", 2)
j = int(j)
else:
j = 0
i += 1
else:
if j % frames != 0:
continue
tour, tour_o = separate_tour_and_o(row)
yield i, label, tour, tour_o
fp.close()
|
def iter_tours(tourfile, frames=1)
|
Extract tours from tourfile. Tourfile contains a set of contig
configurations, generated at each iteration of the genetic algorithm. Each
configuration has two rows, first row contains iteration id and score,
second row contains list of contigs, separated by comma.
| 4.213403 | 4.18301 | 1.007266 |
p = OptionParser(movie.__doc__)
p.add_option("--frames", default=500, type="int",
help="Only plot every N frames")
p.add_option("--engine", default="ffmpeg", choices=("ffmpeg", "gifsicle"),
help="Movie engine, output MP4 or GIF")
p.set_beds()
opts, args, iopts = p.set_image_options(args, figsize="16x8",
style="white", cmap="coolwarm",
format="png", dpi=300)
if len(args) != 3:
sys.exit(not p.print_help())
tourfile, clmfile, lastfile = args
tourfile = op.abspath(tourfile)
clmfile = op.abspath(clmfile)
lastfile = op.abspath(lastfile)
cwd = os.getcwd()
odir = op.basename(tourfile).rsplit(".", 1)[0] + "-movie"
anchorsfile, qbedfile, contig_to_beds = \
prepare_synteny(tourfile, lastfile, odir, p, opts)
args = []
for i, label, tour, tour_o in iter_tours(tourfile, frames=opts.frames):
padi = "{:06d}".format(i)
# Make sure the anchorsfile and bedfile has the serial number in,
# otherwise parallelization may fail
a, b = op.basename(anchorsfile).split(".", 1)
ianchorsfile = a + "_" + padi + "." + b
symlink(anchorsfile, ianchorsfile)
# Make BED file with new order
qb = Bed()
for contig, o in zip(tour, tour_o):
if contig not in contig_to_beds:
continue
bedlines = contig_to_beds[contig][:]
if o == '-':
bedlines.reverse()
for x in bedlines:
qb.append(x)
a, b = op.basename(qbedfile).split(".", 1)
ibedfile = a + "_" + padi + "." + b
qb.print_to_file(ibedfile)
# Plot dot plot, but do not sort contigs by name (otherwise losing
# order)
image_name = padi + "." + iopts.format
tour = ",".join(tour)
args.append([[tour, clmfile, ianchorsfile,
"--outfile", image_name, "--label", label]])
Jobs(movieframe, args).run()
os.chdir(cwd)
make_movie(odir, odir, engine=opts.engine, format=iopts.format)
|
def movie(args)
|
%prog movie test.tour test.clm ref.contigs.last
Plot optimization history.
| 4.673956 | 4.335537 | 1.078057 |
p = OptionParser(score.__doc__)
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
mdir, cdir, contigsfasta = args
orderingfiles = natsorted(iglob(mdir, "*.ordering"))
sizes = Sizes(contigsfasta)
contig_names = list(sizes.iter_names())
contig_ids = dict((name, i) for (i, name) in enumerate(contig_names))
oo = []
# Load contact matrix
glm = op.join(cdir, "all.GLM")
N = len(contig_ids)
M = np.zeros((N, N), dtype=int)
fp = open(glm)
for row in fp:
if row[0] == '#':
continue
x, y, z = row.split()
if x == 'X':
continue
M[int(x), int(y)] = int(z)
fwtour = open("tour", "w")
def callback(tour, gen, oo):
fitness = tour.fitness if hasattr(tour, "fitness") else None
label = "GA-{0}".format(gen)
if fitness:
fitness = "{0}".format(fitness).split(",")[0].replace("(", "")
label += "-" + fitness
print_tour(fwtour, tour, label, contig_names, oo)
return tour
for ofile in orderingfiles:
co = ContigOrdering(ofile)
for x in co:
contig_id = contig_ids[x.contig_name]
oo.append(contig_id)
pf = op.basename(ofile).split(".")[0]
print(pf)
print(oo)
tour, tour_sizes, tour_M = prepare_ec(oo, sizes, M)
# Store INIT tour
print_tour(fwtour, tour, "INIT", contig_names, oo)
# Faster Cython version for evaluation
from .chic import score_evaluate_M
callbacki = partial(callback, oo=oo)
toolbox = GA_setup(tour)
toolbox.register("evaluate", score_evaluate_M,
tour_sizes=tour_sizes, tour_M=tour_M)
tour, tour.fitness = GA_run(toolbox, npop=100, cpus=opts.cpus,
callback=callbacki)
print(tour, tour.fitness)
break
fwtour.close()
|
def score(args)
|
%prog score main_results/ cached_data/ contigsfasta
Score the current LACHESIS CLM.
| 4.536965 | 4.356666 | 1.041385 |
tour = range(len(oo))
tour_sizes = np.array([sizes.sizes[x] for x in oo])
tour_M = M[oo, :][:, oo]
return tour, tour_sizes, tour_M
|
def prepare_ec(oo, sizes, M)
|
This prepares EC and converts from contig_id to an index.
| 3.866329 | 3.507558 | 1.102285 |
sizes_oo = np.array([tour_sizes[x] for x in tour])
sizes_cum = np.cumsum(sizes_oo) - sizes_oo / 2
s = 0
size = len(tour)
for ia in xrange(size):
a = tour[ia]
for ib in xrange(ia + 1, size):
b = tour[ib]
links = tour_M[a, b]
dist = sizes_cum[ib] - sizes_cum[ia]
if dist > 1e7:
break
s += links * 1. / dist
return s,
|
def score_evaluate(tour, tour_sizes=None, tour_M=None)
|
SLOW python version of the evaluation function. For benchmarking
purposes only. Do not use in production.
| 3.3235 | 3.348678 | 0.992481 |
p = OptionParser(movieframe.__doc__)
p.add_option("--label", help="Figure title")
p.set_beds()
p.set_outfile(outfile=None)
opts, args, iopts = p.set_image_options(args, figsize="16x8",
style="white", cmap="coolwarm",
format="png", dpi=120)
if len(args) != 3:
sys.exit(not p.print_help())
tour, clmfile, anchorsfile = args
tour = tour.split(",")
image_name = opts.outfile or ("movieframe." + iopts.format)
label = opts.label or op.basename(image_name).rsplit(".", 1)[0]
clm = CLMFile(clmfile)
totalbins, bins, breaks = make_bins(tour, clm.tig_to_size)
M = read_clm(clm, totalbins, bins)
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1]) # whole canvas
ax1 = fig.add_axes([.05, .1, .4, .8]) # heatmap
ax2 = fig.add_axes([.55, .1, .4, .8]) # dot plot
ax2_root = fig.add_axes([.5, 0, .5, 1]) # dot plot canvas
# Left axis: heatmap
plot_heatmap(ax1, M, breaks, iopts)
# Right axis: synteny
qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts,
sorted=False)
dotplot(anchorsfile, qbed, sbed, fig, ax2_root, ax2, sep=False, title="")
root.text(.5, .98, clm.name, color="g", ha="center", va="center")
root.text(.5, .95, label, color="darkslategray", ha="center", va="center")
normalize_axes(root)
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def movieframe(args)
|
%prog movieframe tour test.clm contigs.ref.anchors
Draw heatmap and synteny in the same plot.
| 4.014009 | 3.490465 | 1.149993 |
p = OptionParser(agp.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
odir, contigsfasta = args
fwagp = must_open(opts.outfile, 'w')
orderingfiles = natsorted(iglob(odir, "*.ordering"))
sizes = Sizes(contigsfasta).mapping
contigs = set(sizes.keys())
anchored = set()
for ofile in orderingfiles:
co = ContigOrdering(ofile)
anchored |= set([x.contig_name for x in co])
obj = op.basename(ofile).split('.')[0]
co.write_agp(obj, sizes, fwagp)
singletons = contigs - anchored
logging.debug('Anchored: {}, Singletons: {}'.
format(len(anchored), len(singletons)))
for s in natsorted(singletons):
order_to_agp(s, [(s, "?")], sizes, fwagp)
|
def agp(args)
|
%prog agp main_results/ contigs.fasta
Generate AGP file based on LACHESIS output.
| 4.272899 | 3.965281 | 1.077578 |
'''Converts the ContigOrdering file into AGP format
'''
contigorder = [(x.contig_name, x.strand) for x in self]
order_to_agp(obj, contigorder, sizes, fw,
gapsize=gapsize, gaptype=gaptype, evidence=evidence)
|
def write_agp(self, obj, sizes, fw=sys.stdout, gapsize=100,
gaptype="contig", evidence="map")
|
Converts the ContigOrdering file into AGP format
| 6.359537 | 4.213562 | 1.509302 |
'''IDS file has a list of contigs that need to be ordered. 'recover',
keyword, if available in the third column, is less confident.
tig00015093 46912
tig00035238 46779 recover
tig00030900 119291
'''
idsfile = self.idsfile
logging.debug("Parse idsfile `{}`".format(idsfile))
fp = open(idsfile)
tigs = []
for row in fp:
if row[0] == '#': # Header
continue
atoms = row.split()
tig, size = atoms[:2]
size = int(size)
if skiprecover and len(atoms) == 3 and atoms[2] == 'recover':
continue
tigs.append((tig, size))
# Arrange contig names and sizes
_tigs, _sizes = zip(*tigs)
self.contigs = set(_tigs)
self.sizes = np.array(_sizes)
self.tig_to_size = dict(tigs)
# Initially all contigs are considered active
self.active = set(_tigs)
|
def parse_ids(self, skiprecover)
|
IDS file has a list of contigs that need to be ordered. 'recover',
keyword, if available in the third column, is less confident.
tig00015093 46912
tig00035238 46779 recover
tig00030900 119291
| 5.742777 | 2.573421 | 2.231573 |
active = self.active
densities = defaultdict(int)
for (at, bt), links in self.contacts.items():
if not (at in active and bt in active):
continue
densities[at] += links
densities[bt] += links
logdensities = {}
for x, d in densities.items():
s = self.tig_to_size[x]
logd = np.log10(d * 1. / min(s, 500000))
logdensities[x] = logd
return logdensities
|
def calculate_densities(self)
|
Calculate the density of inter-contig links per base. Strong contigs
considered to have high level of inter-contig links in the current
partition.
| 4.135475 | 3.668313 | 1.127351 |
if tourfile and (not op.exists(tourfile)):
logging.debug("Tourfile `{}` not found".format(tourfile))
tourfile = None
if tourfile:
logging.debug("Importing tourfile `{}`".format(tourfile))
tour, tour_o = iter_last_tour(tourfile, self)
self.active = set(tour)
tig_to_idx = self.tig_to_idx
tour = [tig_to_idx[x] for x in tour]
signs = sorted([(x, FF[o]) for (x, o) in zip(tour, tour_o)])
_, signs = zip(*signs)
self.signs = np.array(signs, dtype=int)
if backuptour:
backup(tourfile)
tour = array.array('i', tour)
else:
self.report_active()
while True:
logdensities = self.calculate_densities()
lb, ub = outlier_cutoff(logdensities.values())
logging.debug("Log10(link_densities) ~ [{}, {}]"
.format(lb, ub))
remove = set(x for x, d in logdensities.items() if
(d < lb and self.tig_to_size[x] < minsize * 10))
if remove:
self.active -= remove
self.report_active()
else:
break
logging.debug("Remove contigs with size < {}".format(minsize))
self.active = set(x for x in self.active if
self.tig_to_size[x] >= minsize)
tour = range(self.N) # Use starting (random) order otherwise
tour = array.array('i', tour)
# Determine orientations
self.flip_all(tour)
self.report_active()
self.tour = tour
return tour
|
def activate(self, tourfile=None, minsize=10000, backuptour=True)
|
Select contigs in the current partition. This is the setup phase of the
algorithm, and supports two modes:
- "de novo": This is useful at the start of a new run where no tours
available. We select the strong contigs that have significant number
of links to other contigs in the partition. We build a histogram of
link density (# links per bp) and remove the contigs that appear as
outliers. The orientations are derived from the matrix decomposition
of the pairwise strandedness matrix O.
- "hotstart": This is useful when there was a past run, with a given
tourfile. In this case, the active contig list and orientations are
derived from the last tour in the file.
| 4.47128 | 4.32212 | 1.034511 |
from .chic import score_evaluate_M
return score_evaluate_M(tour, self.active_sizes, self.M)
|
def evaluate_tour_M(self, tour)
|
Use Cythonized version to evaluate the score of a current tour
| 17.293421 | 14.16977 | 1.220445 |
from .chic import score_evaluate_P
return score_evaluate_P(tour, self.active_sizes, self.P)
|
def evaluate_tour_P(self, tour)
|
Use Cythonized version to evaluate the score of a current tour,
with better precision on the distance of the contigs.
| 18.051754 | 12.620217 | 1.430384 |
from .chic import score_evaluate_Q
return score_evaluate_Q(tour, self.active_sizes, self.Q)
|
def evaluate_tour_Q(self, tour)
|
Use Cythonized version to evaluate the score of a current tour,
taking orientation into consideration. This may be the most accurate
evaluation under the right condition.
| 18.32765 | 13.546539 | 1.35294 |
if self.signs is None: # First run
score = 0
else:
old_signs = self.signs[:self.N]
score, = self.evaluate_tour_Q(tour)
# Remember we cannot have ambiguous orientation code (0 or '?') here
self.signs = get_signs(self.O, validate=False, ambiguous=False)
score_flipped, = self.evaluate_tour_Q(tour)
if score_flipped >= score:
tag = ACCEPT
else:
self.signs = old_signs[:]
tag = REJECT
self.flip_log("FLIPALL", score, score_flipped, tag)
return tag
|
def flip_all(self, tour)
|
Initialize the orientations based on pairwise O matrix.
| 7.615099 | 7.002648 | 1.08746 |
score, = self.evaluate_tour_Q(tour)
self.signs = -self.signs
score_flipped, = self.evaluate_tour_Q(tour)
if score_flipped > score:
tag = ACCEPT
else:
self.signs = -self.signs
tag = REJECT
self.flip_log("FLIPWHOLE", score, score_flipped, tag)
return tag
|
def flip_whole(self, tour)
|
Test flipping all contigs at the same time to see if score improves.
| 4.928718 | 4.935844 | 0.998556 |
n_accepts = n_rejects = 0
any_tag_ACCEPT = False
for i, t in enumerate(tour):
if i == 0:
score, = self.evaluate_tour_Q(tour)
self.signs[t] = -self.signs[t]
score_flipped, = self.evaluate_tour_Q(tour)
if score_flipped > score:
n_accepts += 1
tag = ACCEPT
else:
self.signs[t] = -self.signs[t]
n_rejects += 1
tag = REJECT
self.flip_log("FLIPONE ({}/{})".format(i + 1, len(self.signs)),
score, score_flipped, tag)
if tag == ACCEPT:
any_tag_ACCEPT = True
score = score_flipped
logging.debug("FLIPONE: N_accepts={} N_rejects={}"
.format(n_accepts, n_rejects))
return ACCEPT if any_tag_ACCEPT else REJECT
|
def flip_one(self, tour)
|
Test flipping every single contig sequentially to see if score
improves.
| 3.282876 | 3.237176 | 1.014117 |
while True:
tour_score, = self.evaluate_tour_M(tour)
logging.debug("Starting score: {}".format(tour_score))
active_sizes = self.active_sizes
M = self.M
args = []
for i, t in enumerate(tour):
stour = tour[:i] + tour[i + 1:]
args.append((t, stour, tour_score, active_sizes, M))
# Parallel run
p = Pool(processes=cpus)
results = list(p.imap(prune_tour_worker, args))
assert len(tour) == len(results), \
"Array size mismatch, tour({}) != results({})"\
.format(len(tour), len(results))
# Identify outliers
active_contigs = self.active_contigs
idx, log10deltas = zip(*results)
lb, ub = outlier_cutoff(log10deltas)
logging.debug("Log10(delta_score) ~ [{}, {}]".format(lb, ub))
remove = set(active_contigs[x] for (x, d) in results if d < lb)
self.active -= remove
self.report_active()
tig_to_idx = self.tig_to_idx
tour = [active_contigs[x] for x in tour]
tour = array.array('i', [tig_to_idx[x] for x in tour
if x not in remove])
if not remove:
break
self.tour = tour
self.flip_all(tour)
return tour
|
def prune_tour(self, tour, cpus)
|
Test deleting each contig and check the delta_score; tour here must
be an array of ints.
| 4.75538 | 4.558024 | 1.043299 |
N = self.N
tig_to_idx = self.tig_to_idx
M = np.zeros((N, N), dtype=int)
for (at, bt), links in self.contacts.items():
if not (at in tig_to_idx and bt in tig_to_idx):
continue
ai = tig_to_idx[at]
bi = tig_to_idx[bt]
M[ai, bi] = M[bi, ai] = links
return M
|
def M(self)
|
Contact frequency matrix. Each cell contains how many inter-contig
links between i-th and j-th contigs.
| 2.853749 | 2.476113 | 1.152511 |
N = self.N
tig_to_idx = self.tig_to_idx
O = np.zeros((N, N), dtype=int)
for (at, bt), (strandedness, md, mh) in self.orientations.items():
if not (at in tig_to_idx and bt in tig_to_idx):
continue
ai = tig_to_idx[at]
bi = tig_to_idx[bt]
score = strandedness * md
O[ai, bi] = O[bi, ai] = score
return O
|
def O(self)
|
Pairwise strandedness matrix. Each cell contains whether i-th and j-th
contig are the same orientation +1, or opposite orientation -1.
| 3.519616 | 3.082044 | 1.141975 |
N = self.N
tig_to_idx = self.tig_to_idx
P = np.zeros((N, N, 2), dtype=int)
for (at, bt), (strandedness, md, mh) in self.orientations.items():
if not (at in tig_to_idx and bt in tig_to_idx):
continue
ai = tig_to_idx[at]
bi = tig_to_idx[bt]
P[ai, bi, 0] = P[bi, ai, 0] = md
P[ai, bi, 1] = P[bi, ai, 1] = mh
return P
|
def P(self)
|
Contact frequency matrix with better precision on distance between
contigs. In the matrix M, the distance is assumed to be the distance
between mid-points of two contigs. In matrix Q, however, we compute
harmonic mean of the links for the orientation configuration that is
shortest. This offers better precision for the distance between big
contigs.
| 2.902641 | 2.689924 | 1.079079 |
N = self.N
tig_to_idx = self.tig_to_idx
signs = self.signs
Q = np.ones((N, N, BB), dtype=int) * -1 # Use -1 as the sentinel
for (at, bt), k in self.contacts_oriented.items():
if not (at in tig_to_idx and bt in tig_to_idx):
continue
ai = tig_to_idx[at]
bi = tig_to_idx[bt]
ao = signs[ai]
bo = signs[bi]
Q[ai, bi] = k[(ao, bo)]
return Q
|
def Q(self)
|
Contact frequency matrix when contigs are already oriented. This is s a
similar matrix as M, but rather than having the number of links in the
cell, it points to an array that has the actual distances.
| 4.355255 | 3.980851 | 1.094051 |
p = OptionParser(insertionpairs.__doc__)
p.add_option("--extend", default=10, type="int",
help="Allow insertion sites to match up within distance")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bedfile, = args
mergedbedfile = mergeBed(bedfile, d=opts.extend, nms=True)
bed = Bed(mergedbedfile)
fw = must_open(opts.outfile, "w")
support = lambda x: -x.reads
for b in bed:
names = b.accn.split(",")
ends = [EndPoint(x) for x in names]
REs = sorted([x for x in ends if x.leftright == "RE"], key=support)
LEs = sorted([x for x in ends if x.leftright == "LE"], key=support)
if not (REs and LEs):
continue
mRE, mLE = REs[0], LEs[0]
pRE, pLE = mRE.position, mLE.position
if pLE < pRE:
b.start, b.end = pLE - 1, pRE
else:
b.start, b.end = pRE - 1, pLE
b.accn = "{0}|{1}".format(mRE.label, mLE.label)
b.score = pLE - pRE - 1
print(b, file=fw)
|
def insertionpairs(args)
|
%prog insertionpairs endpoints.bed
Pair up the candidate endpoints. A candidate exision point would contain
both left-end (LE) and right-end (RE) within a given distance.
-----------| |------------
-------| |--------
---------| |----------
(RE) (LE)
| 3.120748 | 2.965388 | 1.052391 |
p = OptionParser(insertion.__doc__)
p.add_option("--mindepth", default=6, type="int",
help="Minimum depth to call an insertion")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bedfile, = args
mindepth = opts.mindepth
bed = Bed(bedfile)
fw = must_open(opts.outfile, "w")
for seqid, feats in bed.sub_beds():
left_ends = Counter([x.start for x in feats])
right_ends = Counter([x.end for x in feats])
selected = []
for le, count in left_ends.items():
if count >= mindepth:
selected.append((seqid, le, "LE-{0}".format(le), count))
for re, count in right_ends.items():
if count >= mindepth:
selected.append((seqid, re, "RE-{0}".format(re), count))
selected.sort()
for seqid, pos, label, count in selected:
label = "{0}-r{1}".format(label, count)
print("\t".join((seqid, str(pos - 1), str(pos), label)), file=fw)
|
def insertion(args)
|
%prog insertion mic.mac.bed
Find IES based on mapping MIC reads to MAC genome. Output a bedfile with
'lesions' (stack of broken reads) in the MAC genome.
| 2.395556 | 2.308559 | 1.037685 |
p.add_option("--distance", default=500, type="int",
help="Outer distance between the two ends [default: %default]")
p.add_option("--readlen", default=150, type="int",
help="Length of the read")
p.set_depth(depth=10)
p.set_outfile(outfile=None)
|
def add_sim_options(p)
|
Add options shared by eagle or wgsim.
| 4.156691 | 3.976133 | 1.04541 |
p = OptionParser(wgsim.__doc__)
p.add_option("--erate", default=.01, type="float",
help="Base error rate of the read [default: %default]")
p.add_option("--noerrors", default=False, action="store_true",
help="Simulate reads with no errors [default: %default]")
p.add_option("--genomesize", type="int",
help="Genome size in Mb [default: estimate from data]")
add_sim_options(p)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
pf = op.basename(fastafile).split(".")[0]
genomesize = opts.genomesize
size = genomesize * 1000000 if genomesize else Fasta(fastafile).totalsize
depth = opts.depth
readlen = opts.readlen
readnum = int(math.ceil(size * depth / (2 * readlen)))
distance = opts.distance
stdev = distance / 10
outpf = opts.outfile or "{0}.{1}bp.{2}x".format(pf, distance, depth)
logging.debug("Total genome size: {0} bp".format(size))
logging.debug("Target depth: {0}x".format(depth))
logging.debug("Number of read pairs (2x{0}): {1}".format(readlen, readnum))
if opts.noerrors:
opts.erate = 0
cmd = "dwgsim -e {0} -E {0}".format(opts.erate)
if opts.noerrors:
cmd += " -r 0 -R 0 -X 0 -y 0"
cmd += " -d {0} -s {1}".format(distance, stdev)
cmd += " -N {0} -1 {1} -2 {1}".format(readnum, readlen)
cmd += " {0} {1}".format(fastafile, outpf)
sh(cmd)
|
def wgsim(args)
|
%prog wgsim fastafile
Run dwgsim on fastafile.
| 2.83584 | 2.746142 | 1.032663 |
p = OptionParser(cov.__doc__)
p.add_option("--order",
default="swede,kale,h165,yudal,aviso,abu,bristol,bzh",
help="The order to plot the tracks, comma-separated")
p.add_option("--reverse", default=False, action="store_true",
help="Plot the order in reverse")
p.add_option("--gauge_step", default=5000000, type="int",
help="Step size for the base scale")
p.add_option("--hlsuffix", default="regions.forhaibao",
help="Suffix for the filename to be used to highlight regions")
opts, args, iopts = p.set_image_options(args, figsize="11x8")
if len(args) != 4:
sys.exit(not p.print_help())
chr1, chr2, sizesfile, datadir = args
chr1 = chr1.split(",")
chr2 = chr2.split(",")
order = opts.order
hlsuffix = opts.hlsuffix
if order:
order = order.split(",")
if opts.reverse:
order.reverse()
sizes = Sizes(sizesfile).mapping
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
chrs = (chr1, chr2)
chr_sizes, chr_sum_sizes, ratio = calc_ratio(chrs, sizes)
chr_size1, chr_size2 = chr_sum_sizes
chr_sizes1, chr_sizes2 = chr_sizes
w1_start, w1_end = center_panel(chr1, chr_size1, ratio)
w2_start, w2_end = center_panel(chr2, chr_size2, ratio)
w1s = w1_start
w2s = w2_start
dsg = "gray"
i = 0
for c1, s1 in zip(chr1, chr_sizes1):
w1 = ratio * s1
plot_label = i == 0
i += 1
canvas1 = (w1s, .6, w1, .3)
Coverage(fig, root, canvas1, c1, (0, s1), datadir,
order=order, gauge="top", plot_label=plot_label,
gauge_step=opts.gauge_step, palette=dsg,
cap=40, hlsuffix=hlsuffix)
w1s += w1 + gap
i = 0
for c2, s2 in zip(chr2, chr_sizes2):
w2 = ratio * s2
plot_label = i == 0
i += 1
canvas2 = (w2s, .15, w2, .3)
Coverage(fig, root, canvas2, c2, (0, s2), datadir,
order=order, gauge="bottom", plot_label=plot_label,
gauge_step=opts.gauge_step, palette=dsg,
cap=40, hlsuffix=hlsuffix)
w2s += w2 + gap
# Synteny panel
seqidsfile = make_seqids(chrs)
klayout = make_layout(chrs, chr_sum_sizes, ratio, template_cov)
Karyotype(fig, root, seqidsfile, klayout, gap=gap,
generank=False, sizes=sizes)
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
chr2 = "_".join(chr2)
if opts.reverse:
chr2 += ".reverse"
image_name = chr2 + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def cov(args)
|
%prog cov chrA01 chrC01 chr.sizes data AN.CN.1x1.lifted.anchors.simple
Plot coverage graphs between homeologs, the middle panel show the
homeologous gene pairs. Allow multiple chromosomes to multiple chromosomes.
| 3.554698 | 3.369807 | 1.054867 |
p = OptionParser(fig4.__doc__)
p.add_option("--gauge_step", default=200000, type="int",
help="Step size for the base scale")
opts, args, iopts = p.set_image_options(args, figsize="9x7")
if len(args) != 2:
sys.exit(not p.print_help())
layout, datadir = args
layout = F4ALayout(layout, datadir=datadir)
gs = opts.gauge_step
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
block, napusbed, slayout = "r28.txt", "all.bed", "r28.layout"
s = Synteny(fig, root, block, napusbed, slayout, chr_label=False)
synteny_exts = [(x.xstart, x.xend) for x in s.rr]
h = .1
order = "bzh,yudal".split(",")
labels = (r"\textit{B. napus} A$\mathsf{_n}$2",
r"\textit{B. rapa} A$\mathsf{_r}$2",
r"\textit{B. oleracea} C$\mathsf{_o}$2",
r"\textit{B. napus} C$\mathsf{_n}$2")
for t in layout:
xstart, xend = synteny_exts[2 * t.i]
canvas = [xstart, t.y, xend - xstart, h]
root.text(xstart - h, t.y + h / 2, labels[t.i], ha="center", va="center")
ch, ab = t.box_region.split(":")
a, b = ab.split("-")
vlines = [int(x) for x in (a, b)]
Coverage(fig, root, canvas, t.seqid, (t.start, t.end), datadir,
order=order, gauge="top", plot_chr_label=False,
gauge_step=gs, palette="gray",
cap=40, hlsuffix="regions.forhaibao",
vlines=vlines)
# Highlight GSL biosynthesis genes
a, b = (3, "Bra029311"), (5, "Bo2g161590")
for gid in (a, b):
start, end = s.gg[gid]
xstart, ystart = start
xend, yend = end
x = (xstart + xend) / 2
arrow = FancyArrowPatch(posA=(x, ystart - .04),
posB=(x, ystart - .005),
arrowstyle="fancy,head_width=6,head_length=8",
lw=3, fc='k', ec='k', zorder=20)
root.add_patch(arrow)
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
image_name = "napus-fig4." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def fig4(args)
|
%prog fig4 layout data
Napus Figure 4A displays an example deleted region for quartet chromosomes,
showing read alignments from high GL and low GL lines.
| 5.101378 | 4.908676 | 1.039258 |
import math
from jcvi.formats.bed import Bed
from jcvi.graphics.chromosome import HorizontalChromosome
from jcvi.graphics.base import kb_formatter
p = OptionParser(deletion.__doc__)
opts, args, iopts = p.set_image_options(args)
if len(args) != 3:
sys.exit(not p.print_help())
deletion_genes, deletions, bed = args
dg = [int(x) for x in open(deletion_genes)]
dsg, lsg = "darkslategray", "lightslategray"
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
ax = fig.add_axes([.1, .1, .8, .8])
minval = 2 if deletion_genes == "deleted-genes" else 2048
bins = np.logspace(math.log(minval, 10), math.log(max(dg), 10), 16)
n, bins, histpatches = ax.hist(dg, bins=bins, \
fc=lsg, alpha=.75)
ax.set_xscale('log', basex=2)
if deletion_genes == "deleted-genes":
ax.xaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%d'))
ax.set_xlabel('No. of deleted genes in each segment')
else:
ax.xaxis.set_major_formatter(kb_formatter)
ax.set_xlabel('No. of deleted bases in each segment')
ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter('%d'))
ax.set_ylabel('No. of segments')
ax.patch.set_alpha(0.1)
# Draw chromosome C2
na, nb = .45, .85
root.text((na + nb) / 2, .54, "ChrC02", ha="center")
HorizontalChromosome(root, na, nb, .5, height=.025,
fc=lsg, fill=True)
order = Bed(bed).order
fp = open(deletions)
scale = lambda x: na + x * (nb - na) / 52886895
for i, row in enumerate(fp):
i += 1
num, genes = row.split()
genes = genes.split("|")
ia, a = order[genes[0]]
ib, b = order[genes[-1]]
mi, mx = a.start, a.end
mi, mx = scale(mi), scale(mx)
root.add_patch(Rectangle((mi, .475), mx - mi, .05,
fc="red", ec="red"))
if i == 1: # offset between two adjacent regions for aesthetics
mi -= .015
elif i == 2:
mi += .015
TextCircle(root, mi, .44, str(i), fc="red")
for i, mi in zip(range(1, 4), (.83, .78, .73)):
TextCircle(root, mi, .2, str(i), fc="red")
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
image_name = deletion_genes + ".pdf"
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def deletion(args)
|
%prog deletion [deletion-genes|deletion-bases] C2-deletions boleracea.bed
Plot histogram for napus deletions. Can plot deletion-genes or
deletion-bases. The three largest segmental deletions will be highlighted
along with a drawing of the C2 chromosome.
| 3.395955 | 3.262703 | 1.040841 |
p = OptionParser(ploidy.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="8x7")
if len(args) != 2:
sys.exit(not p.print_help())
seqidsfile, klayout = args
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
Karyotype(fig, root, seqidsfile, klayout)
fc = "darkslategrey"
radius = .012
ot = -.05 # use this to adjust vertical position of the left panel
TextCircle(root, .1, .9 + ot, r'$\gamma$', radius=radius, fc=fc)
root.text(.1, .88 + ot, r"$\times3$", ha="center", va="top", color=fc)
TextCircle(root, .08, .79 + ot, r'$\alpha$', radius=radius, fc=fc)
TextCircle(root, .12, .79 + ot, r'$\beta$', radius=radius, fc=fc)
root.text(.1, .77 + ot, r"$\times3\times2\times2$", ha="center", va="top", color=fc)
root.text(.1, .67 + ot, r"Brassica triplication", ha="center",
va="top", color=fc, size=11)
root.text(.1, .65 + ot, r"$\times3\times2\times2\times3$", ha="center", va="top", color=fc)
root.text(.1, .42 + ot, r"Allo-tetraploidy", ha="center",
va="top", color=fc, size=11)
root.text(.1, .4 + ot, r"$\times3\times2\times2\times3\times2$", ha="center", va="top", color=fc)
bb = dict(boxstyle="round,pad=.5", fc="w", ec="0.5", alpha=0.5)
root.text(.5, .2 + ot, r"\noindent\textit{Brassica napus}\\"
"(A$\mathsf{_n}$C$\mathsf{_n}$ genome)", ha="center",
size=16, color="k", bbox=bb)
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
pf = "napus"
image_name = pf + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def ploidy(args)
|
%prog ploidy seqids layout
Build a figure that calls graphics.karyotype to illustrate the high ploidy
of B. napus genome.
| 3.013797 | 2.797278 | 1.077403 |
from jcvi.graphics.base import red_purple as default_cm
p = OptionParser(expr.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="8x5")
if len(args) != 4:
sys.exit(not p.print_help())
block, exp, layout, napusbed = args
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
s = Synteny(fig, root, block, napusbed, layout)
# Import the expression values
# Columns are: leaf-A, leaf-C, root-A, root-C
fp = open(exp)
data = {}
for row in fp:
gid, lf, rt = row.split()
lf, rt = float(lf), float(rt)
data[gid] = (lf, rt)
rA, rB = s.rr
gA = [x.accn for x in rA.genes]
gC = [x.accn for x in rB.genes]
A = [data.get(x, (0, 0)) for x in gA]
C = [data.get(x, (0, 0)) for x in gC]
A = np.array(A)
C = np.array(C)
A = np.transpose(A)
C = np.transpose(C)
d, h = .01, .1
lsg = "lightslategrey"
coords = s.gg # Coordinates of the genes
axes = []
for j, (y, gg) in enumerate(((.79, gA), (.24, gC))):
r = s.rr[j]
x = r.xstart
w = r.xend - r.xstart
ax = fig.add_axes([x, y, w, h])
axes.append(ax)
root.add_patch(Rectangle((x - h, y - d), w + h + d, h + 2 * d, fill=False,
ec=lsg, lw=1))
root.text(x - d, y + 3 * h / 4, "root", ha="right", va="center")
root.text(x - d, y + h / 4, "leaf", ha="right", va="center")
ty = y - 2 * d if y > .5 else y + h + 2 * d
nrows = len(gg)
for i, g in enumerate(gg):
start, end = coords[(j, g)]
sx, sy = start
ex, ey = end
assert sy == ey
sy = sy + 2 * d if sy > .5 else sy - 2 * d
root.plot(((sx + ex) / 2, x + w * (i + .5) / nrows), (sy, ty),
lw=1, ls=":", color="k", alpha=.2)
axA, axC = axes
p = axA.pcolormesh(A, cmap=default_cm)
p = axC.pcolormesh(C, cmap=default_cm)
axA.set_xlim(0, len(gA))
axC.set_xlim(0, len(gC))
x, y, w, h = .35, .1, .3, .05
ax_colorbar = fig.add_axes([x, y, w, h])
fig.colorbar(p, cax=ax_colorbar, orientation='horizontal')
root.text(x - d, y + h / 2, "RPKM", ha="right", va="center")
root.set_xlim(0, 1)
root.set_ylim(0, 1)
for x in (axA, axC, root):
x.set_axis_off()
image_name = "napusf4b." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def expr(args)
|
%prog expr block exp layout napus.bed
Plot a composite figure showing synteny and the expression level between
homeologs in two tissues - total 4 lists of values. block file contains the
gene pairs between AN and CN.
| 3.059624 | 2.86284 | 1.068737 |
p = OptionParser(pasteprepare.__doc__)
p.add_option("--flank", default=5000, type="int",
help="Get the seq of size on two ends [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
goodfasta, = args
flank = opts.flank
pf = goodfasta.rsplit(".", 1)[0]
extbed = pf + ".ext.bed"
sizes = Sizes(goodfasta)
fw = open(extbed, "w")
for bac, size in sizes.iter_sizes():
print("\t".join(str(x) for x in \
(bac, 0, min(flank, size), bac + "L")), file=fw)
print("\t".join(str(x) for x in \
(bac, max(size - flank, 0), size, bac + "R")), file=fw)
fw.close()
fastaFromBed(extbed, goodfasta, name=True)
|
def pasteprepare(args)
|
%prog pasteprepare bacs.fasta
Prepare sequences for paste.
| 3.35168 | 3.230469 | 1.037521 |
from jcvi.formats.bed import uniq
p = OptionParser(paste.__doc__)
p.add_option("--maxsize", default=300000, type="int",
help="Maximum size of patchers to be replaced [default: %default]")
p.add_option("--prefix", help="Prefix of the new object [default: %default]")
p.set_rclip(rclip=1)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
pbed, blastfile, bbfasta = args
maxsize = opts.maxsize # Max DNA size to replace gap
order = Bed(pbed).order
beforebed, afterbed = blast_to_twobeds(blastfile, order, log=True,
rclip=opts.rclip, maxsize=maxsize,
flipbeds=True)
beforebed = uniq([beforebed])
afbed = Bed(beforebed)
bfbed = Bed(afterbed)
shuffle_twobeds(afbed, bfbed, bbfasta, prefix=opts.prefix)
|
def paste(args)
|
%prog paste flanks.bed flanks_vs_assembly.blast backbone.fasta
Paste in good sequences in the final assembly.
| 4.693723 | 4.387397 | 1.06982 |
p = OptionParser(eject.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
candidates, chrfasta = args
sizesfile = Sizes(chrfasta).filename
cbedfile = complementBed(candidates, sizesfile)
cbed = Bed(cbedfile)
for b in cbed:
b.accn = b.seqid
b.score = 1000
b.strand = '+'
cbed.print_to_file()
|
def eject(args)
|
%prog eject candidates.bed chr.fasta
Eject scaffolds from assembly, using the range identified by closest().
| 4.983202 | 3.701315 | 1.346333 |
p = OptionParser(closest.__doc__)
p.add_option("--om", default=False, action="store_true",
help="The bedfile is OM blocks [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
candidates, gapsbed, fastafile = args
sizes = Sizes(fastafile).mapping
bed = Bed(candidates)
ranges = []
for b in bed:
r = range_parse(b.accn) if opts.om else b
ranges.append([r.seqid, r.start, r.end])
gapsbed = Bed(gapsbed)
granges = [(x.seqid, x.start, x.end) for x in gapsbed]
ranges = range_merge(ranges)
for r in ranges:
a = range_closest(granges, r)
b = range_closest(granges, r, left=False)
seqid = r[0]
if a is not None and a[0] != seqid:
a = None
if b is not None and b[0] != seqid:
b = None
mmin = 1 if a is None else a[1]
mmax = sizes[seqid] if b is None else b[2]
print("\t".join(str(x) for x in (seqid, mmin - 1, mmax)))
|
def closest(args)
|
%prog closest candidates.bed gaps.bed fastafile
Identify the nearest gaps flanking suggested regions.
| 3.188433 | 2.867258 | 1.112015 |
from jcvi.formats.agp import mask, bed
from jcvi.formats.sizes import agp
p = OptionParser(insert.__doc__)
opts, args = p.parse_args(args)
if len(args) != 4:
sys.exit(not p.print_help())
candidates, gapsbed, chrfasta, unplacedfasta = args
refinedbed = refine([candidates, gapsbed])
sizes = Sizes(unplacedfasta).mapping
cbed = Bed(candidates)
corder = cbed.order
gbed = Bed(gapsbed)
gorder = gbed.order
gpbed = Bed()
gappositions = {} # (chr, start, end) => gapid
fp = open(refinedbed)
gap_to_scf = defaultdict(list)
seen = set()
for row in fp:
atoms = row.split()
if len(atoms) <= 6:
continue
unplaced = atoms[3]
strand = atoms[5]
gapid = atoms[9]
if gapid not in seen:
seen.add(gapid)
gi, gb = gorder[gapid]
gpbed.append(gb)
gappositions[(gb.seqid, gb.start, gb.end)] = gapid
gap_to_scf[gapid].append((unplaced, strand))
gpbedfile = "candidate.gaps.bed"
gpbed.print_to_file(gpbedfile, sorted=True)
agpfile = agp([chrfasta])
maskedagpfile = mask([agpfile, gpbedfile])
maskedbedfile = maskedagpfile.rsplit(".", 1)[0] + ".bed"
bed([maskedagpfile, "--outfile={0}".format(maskedbedfile)])
mbed = Bed(maskedbedfile)
finalbed = Bed()
for b in mbed:
sid = b.seqid
key = (sid, b.start, b.end)
if key not in gappositions:
finalbed.add("{0}\n".format(b))
continue
gapid = gappositions[key]
scfs = gap_to_scf[gapid]
# For scaffolds placed in the same gap, sort according to positions
scfs.sort(key=lambda x: corder[x[0]][1].start + corder[x[0]][1].end)
for scf, strand in scfs:
size = sizes[scf]
finalbed.add("\t".join(str(x) for x in \
(scf, 0, size, sid, 1000, strand)))
finalbedfile = "final.bed"
finalbed.print_to_file(finalbedfile)
# Clean-up
toclean = [gpbedfile, agpfile, maskedagpfile, maskedbedfile]
FileShredder(toclean)
|
def insert(args)
|
%prog insert candidates.bed gaps.bed chrs.fasta unplaced.fasta
Insert scaffolds into assembly.
| 3.53912 | 3.216763 | 1.100212 |
from jcvi.formats.bed import uniq
from jcvi.utils.iter import pairwise
p = OptionParser(gaps.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
ombed, fastafile = args
ombed = uniq([ombed])
bed = Bed(ombed)
for a, b in pairwise(bed):
om_a = (a.seqid, a.start, a.end, "+")
om_b = (b.seqid, b.start, b.end, "+")
ch_a = range_parse(a.accn)
ch_b = range_parse(b.accn)
ch_a = (ch_a.seqid, ch_a.start, ch_a.end, "+")
ch_b = (ch_b.seqid, ch_b.start, ch_b.end, "+")
om_dist, x = range_distance(om_a, om_b, distmode="ee")
ch_dist, x = range_distance(ch_a, ch_b, distmode="ee")
if om_dist <= 0 and ch_dist <= 0:
continue
print(a)
print(b)
print(om_dist, ch_dist)
|
def gaps(args)
|
%prog gaps OM.bed fastafile
Create patches around OM gaps.
| 2.601868 | 2.39769 | 1.085156 |
p = OptionParser(tips.__doc__)
opts, args = p.parse_args(args)
if len(args) != 4:
sys.exit(not p.print_help())
pbedfile, cbedfile, sizesfile, bbfasta = args
pbed = Bed(pbedfile, sorted=False)
cbed = Bed(cbedfile, sorted=False)
complements = dict()
for object, beds in groupby(cbed, key=lambda x: x.seqid):
beds = list(beds)
complements[object] = beds
sizes = Sizes(sizesfile).mapping
bbsizes = Sizes(bbfasta).mapping
tbeds = []
for object, beds in groupby(pbed, key=lambda x: x.accn):
beds = list(beds)
startbed, endbed = beds[0], beds[-1]
start_id, end_id = startbed.seqid, endbed.seqid
if startbed.start == 1:
start_id = None
if endbed.end == sizes[end_id]:
end_id = None
print(object, start_id, end_id, file=sys.stderr)
if start_id:
b = complements[start_id][0]
b.accn = object
tbeds.append(b)
tbeds.append(BedLine("\t".join(str(x) for x in \
(object, 0, bbsizes[object], object, 1000, "+"))))
if end_id:
b = complements[end_id][-1]
b.accn = object
tbeds.append(b)
tbed = Bed()
tbed.extend(tbeds)
tbedfile = "tips.bed"
tbed.print_to_file(tbedfile)
|
def tips(args)
|
%prog tips patchers.bed complements.bed original.fasta backbone.fasta
Append telomeric sequences based on patchers and complements.
| 2.672838 | 2.517512 | 1.061698 |
p = OptionParser(fill.__doc__)
p.add_option("--extend", default=2000, type="int",
help="Extend seq flanking the gaps [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
gapsbed, badfasta = args
Ext = opts.extend
gapdist = 2 * Ext + 1 # This is to prevent to replacement ranges intersect
gapsbed = mergeBed(gapsbed, d=gapdist, nms=True)
bed = Bed(gapsbed)
sizes = Sizes(badfasta).mapping
pf = gapsbed.rsplit(".", 1)[0]
extbed = pf + ".ext.bed"
fw = open(extbed, "w")
for b in bed:
gapname = b.accn
start, end = max(0, b.start - Ext - 1), b.start - 1
print("\t".join(str(x) for x in \
(b.seqid, start, end, gapname + "L")), file=fw)
start, end = b.end, min(sizes[b.seqid], b.end + Ext)
print("\t".join(str(x) for x in \
(b.seqid, start, end, gapname + "R")), file=fw)
fw.close()
fastaFromBed(extbed, badfasta, name=True)
|
def fill(args)
|
%prog fill gaps.bed bad.fasta
Perform gap filling of one assembly (bad) using sequences from another.
| 3.836496 | 3.389397 | 1.131911 |
from jcvi.apps.align import blast
from jcvi.formats.fasta import SeqIO
p = OptionParser(install.__doc__)
p.set_rclip(rclip=1)
p.add_option("--maxsize", default=300000, type="int",
help="Maximum size of patchers to be replaced [default: %default]")
p.add_option("--prefix", help="Prefix of the new object [default: %default]")
p.add_option("--strict", default=False, action="store_true",
help="Only update if replacement has no gaps [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 4:
sys.exit(not p.print_help())
pbed, pfasta, bbfasta, altfasta = args
maxsize = opts.maxsize # Max DNA size to replace gap
rclip = opts.rclip
blastfile = blast([altfasta, pfasta,"--wordsize=100", "--pctid=99"])
order = Bed(pbed).order
beforebed, afterbed = blast_to_twobeds(blastfile, order, rclip=rclip,
maxsize=maxsize)
beforefasta = fastaFromBed(beforebed, bbfasta, name=True, stranded=True)
afterfasta = fastaFromBed(afterbed, altfasta, name=True, stranded=True)
# Exclude the replacements that contain more Ns than before
ah = SeqIO.parse(beforefasta, "fasta")
bh = SeqIO.parse(afterfasta, "fasta")
count_Ns = lambda x: x.seq.count('n') + x.seq.count('N')
exclude = set()
for arec, brec in zip(ah, bh):
an = count_Ns(arec)
bn = count_Ns(brec)
if opts.strict:
if bn == 0:
continue
elif bn < an:
continue
id = arec.id
exclude.add(id)
logging.debug("Ignore {0} updates because of decreasing quality."\
.format(len(exclude)))
abed = Bed(beforebed, sorted=False)
bbed = Bed(afterbed, sorted=False)
abed = [x for x in abed if x.accn not in exclude]
bbed = [x for x in bbed if x.accn not in exclude]
abedfile = "before.filtered.bed"
bbedfile = "after.filtered.bed"
afbed = Bed()
afbed.extend(abed)
bfbed = Bed()
bfbed.extend(bbed)
afbed.print_to_file(abedfile)
bfbed.print_to_file(bbedfile)
shuffle_twobeds(afbed, bfbed, bbfasta, prefix=opts.prefix)
|
def install(args)
|
%prog install patchers.bed patchers.fasta backbone.fasta alt.fasta
Install patches into backbone, using sequences from alternative assembly.
The patches sequences are generated via jcvi.assembly.patch.fill().
The output is a bedfile that can be converted to AGP using
jcvi.formats.agp.frombed().
| 3.602128 | 3.380269 | 1.065634 |
p = OptionParser(refine.__doc__)
p.add_option("--closest", default=False, action="store_true",
help="In case of no gaps, use closest [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
breakpointsbed, gapsbed = args
ncols = len(open(breakpointsbed).next().split())
logging.debug("File {0} contains {1} columns.".format(breakpointsbed, ncols))
cmd = "intersectBed -wao -a {0} -b {1}".format(breakpointsbed, gapsbed)
pf = "{0}.{1}".format(breakpointsbed.split(".")[0], gapsbed.split(".")[0])
ingapsbed = pf + ".bed"
sh(cmd, outfile=ingapsbed)
fp = open(ingapsbed)
data = [x.split() for x in fp]
nogapsbed = pf + ".nogaps.bed"
largestgapsbed = pf + ".largestgaps.bed"
nogapsfw = open(nogapsbed, "w")
largestgapsfw = open(largestgapsbed, "w")
for b, gaps in groupby(data, key=lambda x: x[:ncols]):
gaps = list(gaps)
gap = gaps[0]
if len(gaps) == 1 and gap[-1] == "0":
assert gap[-3] == "."
print("\t".join(b), file=nogapsfw)
continue
gaps = [(int(x[-1]), x) for x in gaps]
maxgap = max(gaps)[1]
print("\t".join(maxgap), file=largestgapsfw)
nogapsfw.close()
largestgapsfw.close()
beds = [largestgapsbed]
toclean = [nogapsbed, largestgapsbed]
if opts.closest:
closestgapsbed = pf + ".closestgaps.bed"
cmd = "closestBed -a {0} -b {1} -d".format(nogapsbed, gapsbed)
sh(cmd, outfile=closestgapsbed)
beds += [closestgapsbed]
toclean += [closestgapsbed]
else:
pointbed = pf + ".point.bed"
pbed = Bed()
bed = Bed(nogapsbed)
for b in bed:
pos = (b.start + b.end) / 2
b.start, b.end = pos, pos
pbed.append(b)
pbed.print_to_file(pointbed)
beds += [pointbed]
toclean += [pointbed]
refinedbed = pf + ".refined.bed"
FileMerger(beds, outfile=refinedbed).merge()
# Clean-up
FileShredder(toclean)
return refinedbed
|
def refine(args)
|
%prog refine breakpoints.bed gaps.bed
Find gaps within or near breakpoint region.
For breakpoint regions with no gaps, there are two options:
- Break in the middle of the region
- Break at the closest gap (--closest)
| 2.534267 | 2.411638 | 1.050849 |
from jcvi.formats.bed import uniq
p = OptionParser(patcher.__doc__)
p.add_option("--backbone", default="OM",
help="Prefix of the backbone assembly [default: %default]")
p.add_option("--object", default="object",
help="New object name [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
backbonebed, otherbed = args
backbonebed = uniq([backbonebed])
otherbed = uniq([otherbed])
pf = backbonebed.split(".")[0]
key = lambda x: (x.seqid, x.start, x.end)
# Make a uniq bed keeping backbone at redundant intervals
cmd = "intersectBed -v -wa"
cmd += " -a {0} -b {1}".format(otherbed, backbonebed)
outfile = otherbed.rsplit(".", 1)[0] + ".not." + backbonebed
sh(cmd, outfile=outfile)
uniqbed = Bed()
uniqbedfile = pf + ".merged.bed"
uniqbed.extend(Bed(backbonebed))
uniqbed.extend(Bed(outfile))
uniqbed.print_to_file(uniqbedfile, sorted=True)
# Condense adjacent intervals, allow some chaining
bed = uniqbed
key = lambda x: range_parse(x.accn).seqid
bed_fn = pf + ".patchers.bed"
bed_fw = open(bed_fn, "w")
for k, sb in groupby(bed, key=key):
sb = list(sb)
chr, start, end, strand = merge_ranges(sb)
print("\t".join(str(x) for x in \
(chr, start, end, opts.object, 1000, strand)), file=bed_fw)
bed_fw.close()
|
def patcher(args)
|
%prog patcher backbone.bed other.bed
Given optical map alignment, prepare the patchers. Use --backbone to suggest
which assembly is the major one, and the patchers will be extracted from
another assembly.
| 4.08193 | 3.826408 | 1.066779 |
p = OptionParser(treds.__doc__)
p.add_option("--csv", default=False, action="store_true",
help="Also write `meta.csv`")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
tredresults, = args
df = pd.read_csv(tredresults, sep="\t")
tredsfile = datafile("TREDs.meta.csv")
tf = pd.read_csv(tredsfile)
tds = list(tf["abbreviation"])
ids = list(tf["id"])
tags = ["SampleKey"]
final_columns = ["SampleKey"]
afs = []
for td, id in zip(tds, ids):
tag1 = "{}.1".format(td)
tag2 = "{}.2".format(td)
if tag2 not in df:
afs.append("{}")
continue
tags.append(tag2)
final_columns.append(id)
a = np.array(list(df[tag1]) + list(df[tag2]))
counts = alleles_to_counts(a)
af = counts_to_af(counts)
afs.append(af)
tf["allele_frequency"] = afs
metafile = "TREDs_{}_SEARCH.meta.tsv".format(timestamp())
tf.to_csv(metafile, sep="\t", index=False)
logging.debug("File `{}` written.".format(metafile))
if opts.csv:
metacsvfile = metafile.rsplit(".", 1)[0] + ".csv"
tf.to_csv(metacsvfile, index=False)
logging.debug("File `{}` written.".format(metacsvfile))
pp = df[tags]
pp.columns = final_columns
datafile = "TREDs_{}_SEARCH.data.tsv".format(timestamp())
pp.to_csv(datafile, sep="\t", index=False)
logging.debug("File `{}` written.".format(datafile))
mask([datafile, metafile])
|
def treds(args)
|
%prog treds hli.tred.tsv
Compile allele_frequency for TREDs results. Write data.tsv, meta.tsv and
mask.tsv in one go.
| 2.926023 | 2.679715 | 1.091916 |
p = OptionParser(stutter.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
vcf, = args
pf = op.basename(vcf).split(".")[0]
execid, sampleid = pf.split("_")
C = "vcftools --remove-filtered-all --min-meanDP 10"
C += " --gzvcf {} --out {}".format(vcf, pf)
C += " --indv {}".format(sampleid)
info = pf + ".INFO"
if need_update(vcf, info):
cmd = C + " --get-INFO MOTIF --get-INFO RL"
sh(cmd)
allreads = pf + ".ALLREADS.FORMAT"
if need_update(vcf, allreads):
cmd = C + " --extract-FORMAT-info ALLREADS"
sh(cmd)
q = pf + ".Q.FORMAT"
if need_update(vcf, q):
cmd = C + " --extract-FORMAT-info Q"
sh(cmd)
outfile = pf + ".STUTTER"
if need_update((info, allreads, q), outfile):
cmd = "cut -f1,2,5,6 {}".format(info)
cmd += r" | sed -e 's/\t/_/g'"
cmd += " | paste - {} {}".format(allreads, q)
cmd += " | cut -f1,4,7"
sh(cmd, outfile=outfile)
|
def stutter(args)
|
%prog stutter a.vcf.gz
Extract info from lobSTR vcf file. Generates a file that has the following
fields:
CHR, POS, MOTIF, RL, ALLREADS, Q
| 3.926034 | 3.676463 | 1.067884 |
p = OptionParser(filtervcf.__doc__)
p.set_home("lobstr", default="/mnt/software/lobSTR")
p.set_aws_opts(store="hli-mv-data-science/htang/str")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
samples, = args
lhome = opts.lobstr_home
store = opts.output_path
if samples.endswith((".vcf", ".vcf.gz")):
vcffiles = [samples]
else:
vcffiles = [x.strip() for x in must_open(samples)]
vcffiles = [x for x in vcffiles if ".filtered." not in x]
run_args = [(x, lhome, x.startswith("s3://") and store) for x in vcffiles]
cpus = min(opts.cpus, len(run_args))
p = Pool(processes=cpus)
for res in p.map_async(run_filter, run_args).get():
continue
|
def filtervcf(args)
|
%prog filtervcf NA12878.hg38.vcf.gz
Filter lobSTR VCF using script shipped in lobSTR. Input file can be a list
of vcf files.
| 4.495221 | 4.091889 | 1.098568 |
p = OptionParser(meta.__doc__)
p.add_option("--cutoff", default=.5, type="float",
help="Percent observed required (chrY half cutoff)")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 4:
sys.exit(not p.print_help())
binfile, sampleids, strids, wobed = args
cutoff = opts.cutoff
af_file = "allele_freq"
if need_update(binfile, af_file):
df, m, samples, loci = read_binfile(binfile, sampleids, strids)
nalleles = len(samples)
fw = must_open(af_file, "w")
for i, locus in enumerate(loci):
a = m[:, i]
counts = alleles_to_counts(a)
af = counts_to_af(counts)
seqid = locus.split("_")[0]
remove = counts_filter(counts, nalleles, seqid, cutoff=cutoff)
print("\t".join((locus, af, remove)), file=fw)
fw.close()
logging.debug("Load gene intersections from `{}`".format(wobed))
fp = open(wobed)
gene_map = defaultdict(set)
for row in fp:
chr1, start1, end1, chr2, start2, end2, name, ov = row.split()
gene_map[(chr1, start1)] |= set(name.split(","))
for k, v in gene_map.items():
non_enst = sorted(x for x in v if not x.startswith("ENST"))
#enst = sorted(x.rsplit(".", 1)[0] for x in v if x.startswith("ENST"))
gene_map[k] = ",".join(non_enst)
TREDS, df = read_treds()
metafile = "STRs_{}_SEARCH.meta.tsv".format(timestamp())
write_meta(af_file, gene_map, TREDS, filename=metafile)
logging.debug("File `{}` written.".format(metafile))
|
def meta(args)
|
%prog meta data.bin samples STR.ids STR-exons.wo.bed
Compute allele frequencies and prune sites based on missingness.
Filter subset of loci that satisfy:
1. no redundancy (unique chr:pos)
2. variable (n_alleles > 1)
3. low level of missing data (>= 50% autosomal + X, > 25% for Y)
Write meta file with the following infor:
1. id
2. title
3. gene_name
4. variant_type
5. motif
6. allele_frequency
`STR-exons.wo.bed` can be generated like this:
$ tail -n 694105 /mnt/software/lobSTR/hg38/index.tab | cut -f1-3 > all-STR.bed
$ intersectBed -a all-STR.bed -b all-exons.bed -wo > STR-exons.wo.bed
| 4.435167 | 4.193947 | 1.057516 |
p = OptionParser(bin.__doc__)
p.add_option("--dtype", choices=("float32", "int32"),
help="dtype of the matrix")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
tsvfile, = args
dtype = opts.dtype
if dtype is None: # Guess
dtype = np.int32 if "data" in tsvfile else np.float32
else:
dtype = np.int32 if dtype == "int32" else np.float32
print("dtype: {}".format(dtype), file=sys.stderr)
fp = open(tsvfile)
next(fp)
arrays = []
for i, row in enumerate(fp):
a = np.fromstring(row, sep="\t", dtype=dtype)
a = a[1:]
arrays.append(a)
print(i, a, file=sys.stderr)
print("Merging", file=sys.stderr)
b = np.concatenate(arrays)
print("Binary shape: {}".format(b.shape), file=sys.stderr)
binfile = tsvfile.rsplit(".", 1)[0] + ".bin"
b.tofile(binfile)
|
def bin(args)
|
%prog bin data.tsv
Conver tsv to binary format.
| 2.408303 | 2.31014 | 1.042493 |
p = OptionParser(data.__doc__)
p.add_option("--notsv", default=False, action="store_true",
help="Do not write data.tsv")
opts, args = p.parse_args(args)
if len(args) != 4:
sys.exit(not p.print_help())
databin, sampleids, strids, metafile = args
final_columns, percentiles = read_meta(metafile)
df, m, samples, loci = read_binfile(databin, sampleids, strids)
# Clean the data
m %= 1000 # Get the larger of the two alleles
m[m == 999] = -1 # Missing data
final = set(final_columns)
remove = []
for i, locus in enumerate(loci):
if locus not in final:
remove.append(locus)
continue
pf = "STRs_{}_SEARCH".format(timestamp())
filteredstrids = "{}.STR.ids".format(pf)
fw = open(filteredstrids, "w")
print("\n".join(final_columns), file=fw)
fw.close()
logging.debug("Dropped {} columns; Retained {} columns (`{}`)".\
format(len(remove), len(final_columns), filteredstrids))
# Remove low-quality columns!
df.drop(remove, inplace=True, axis=1)
df.columns = final_columns
filtered_bin = "{}.data.bin".format(pf)
if need_update(databin, filtered_bin):
m = df.as_matrix()
m.tofile(filtered_bin)
logging.debug("Filtered binary matrix written to `{}`".format(filtered_bin))
# Write data output
filtered_tsv = "{}.data.tsv".format(pf)
if not opts.notsv and need_update(databin, filtered_tsv):
df.to_csv(filtered_tsv, sep="\t", index_label="SampleKey")
|
def data(args)
|
%prog data data.bin samples.ids STR.ids meta.tsv
Make data.tsv based on meta.tsv.
| 4.363021 | 3.894823 | 1.12021 |
p = OptionParser(mask.__doc__)
opts, args = p.parse_args(args)
if len(args) not in (2, 4):
sys.exit(not p.print_help())
if len(args) == 4:
databin, sampleids, strids, metafile = args
df, m, samples, loci = read_binfile(databin, sampleids, strids)
mode = "STRs"
elif len(args) == 2:
databin, metafile = args
df = pd.read_csv(databin, sep="\t", index_col=0)
m = df.as_matrix()
samples = df.index
loci = list(df.columns)
mode = "TREDs"
pf = "{}_{}_SEARCH".format(mode, timestamp())
final_columns, percentiles = read_meta(metafile)
maskfile = pf + ".mask.tsv"
run_args = []
for i, locus in enumerate(loci):
a = m[:, i]
percentile = percentiles[locus]
run_args.append((i, a, percentile))
if mode == "TREDs" or need_update(databin, maskfile):
cpus = min(8, len(run_args))
write_mask(cpus, samples, final_columns, run_args, filename=maskfile)
logging.debug("File `{}` written.".format(maskfile))
|
def mask(args)
|
%prog mask data.bin samples.ids STR.ids meta.tsv
OR
%prog mask data.tsv meta.tsv
Compute P-values based on meta and data. The `data.bin` should be the matrix
containing filtered loci and the output mask.tsv will have the same
dimension.
| 4.154766 | 3.779213 | 1.099373 |
p = OptionParser(mergecsv.__doc__)
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
csvfiles = args
arrays = []
samplekeys = []
for csvfile in csvfiles:
samplekey = op.basename(csvfile).split(".")[0]
a = np.fromfile(csvfile, sep=",", dtype=np.int32)
x1 = a[::2]
x2 = a[1::2]
a = x1 * 1000 + x2
a[a < 0] = -1
arrays.append(a)
samplekeys.append(samplekey)
print(samplekey, a, file=sys.stderr)
print("Merging", file=sys.stderr)
b = np.concatenate(arrays)
b.tofile("data.bin")
fw = open("samples", "w")
print("\n".join(samplekeys), file=fw)
fw.close()
|
def mergecsv(args)
|
%prog mergecsv *.csv
Combine CSV into binary array.
| 2.543311 | 2.357541 | 1.078798 |
p = OptionParser(compilevcf.__doc__)
p.add_option("--db", default="hg38", help="Use these lobSTR db")
p.add_option("--nofilter", default=False, action="store_true",
help="Do not filter the variants")
p.set_home("lobstr")
p.set_cpus()
p.set_aws_opts(store="hli-mv-data-science/htang/str-data")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
samples, = args
workdir = opts.workdir
store = opts.output_path
cleanup = not opts.nocleanup
filtered = not opts.nofilter
dbs = opts.db.split(",")
cwd = os.getcwd()
mkdir(workdir)
os.chdir(workdir)
samples = op.join(cwd, samples)
stridsfile = "STR.ids"
if samples.endswith((".vcf", ".vcf.gz")):
vcffiles = [samples]
else:
vcffiles = [x.strip() for x in must_open(samples)]
if not op.exists(stridsfile):
ids = []
for db in dbs:
ids.extend(STRFile(opts.lobstr_home, db=db).ids)
uids = uniqify(ids)
logging.debug("Combined: {} Unique: {}".format(len(ids), len(uids)))
fw = open(stridsfile, "w")
print("\n".join(uids), file=fw)
fw.close()
run_args = [(x, filtered, cleanup, store) for x in vcffiles]
cpus = min(opts.cpus, len(run_args))
p = Pool(processes=cpus)
for res in p.map_async(run_compile, run_args).get():
continue
|
def compilevcf(args)
|
%prog compilevcf samples.csv
Compile vcf results into master spreadsheet.
| 3.991339 | 3.927225 | 1.016326 |
from jcvi.utils.table import write_csv
p = OptionParser(ystr.__doc__)
p.set_home("lobstr")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
vcffile, = args
si = STRFile(opts.lobstr_home, db="hg38-named")
register = si.register
header = "Marker|Reads|Ref|Genotype|Motif".split("|")
contents = []
fp = must_open(vcffile)
reader = vcf.Reader(fp)
simple_register = {}
for record in reader:
name = register[(record.CHROM, record.POS)]
info = record.INFO
ref = int(float(info["REF"]))
rpa = info.get("RPA", ref)
if isinstance(rpa, list):
rpa = "|".join(str(int(float(x))) for x in rpa)
ru = info["RU"]
simple_register[name] = rpa
for sample in record.samples:
contents.append((name, sample["ALLREADS"], ref, rpa, ru))
# Multi-part markers
a, b, c = "DYS389I", "DYS389B.1", "DYS389B"
if a in simple_register and b in simple_register:
simple_register[c] = int(simple_register[a]) + int(simple_register[b])
# Multi-copy markers
mm = ["DYS385", "DYS413", "YCAII"]
for m in mm:
ma, mb = m + 'a', m + 'b'
if ma not in simple_register or mb not in simple_register:
simple_register[ma] = simple_register[mb] = None
del simple_register[ma]
del simple_register[mb]
continue
if simple_register[ma] > simple_register[mb]:
simple_register[ma], simple_register[mb] = \
simple_register[mb], simple_register[ma]
write_csv(header, contents, sep=" ")
print("[YSEARCH]")
build_ysearch_link(simple_register)
print("[YFILER]")
build_yhrd_link(simple_register, panel=YHRD_YFILER)
print("[YFILERPLUS]")
build_yhrd_link(simple_register, panel=YHRD_YFILERPLUS)
print("[YSTR-ALL]")
build_yhrd_link(simple_register, panel=USYSTR_ALL)
|
def ystr(args)
|
%prog ystr chrY.vcf
Print out Y-STR info given VCF. Marker name extracted from tabfile.
| 4.134412 | 4.023084 | 1.027672 |
p = OptionParser(liftover.__doc__)
p.add_option("--checkvalid", default=False, action="store_true",
help="Check minscore, period and length")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
refbed, fastafile = args
genome = pyfasta.Fasta(fastafile)
edits = []
fp = open(refbed)
for i, row in enumerate(fp):
s = STRLine(row)
seq = genome[s.seqid][s.start - 1: s.end].upper()
s.motif = get_motif(seq, len(s.motif))
s.fix_counts(seq)
if opts.checkvalid and not s.is_valid():
continue
edits.append(s)
if i % 10000 == 0:
print(i, "lines read", file=sys.stderr)
edits = natsorted(edits, key=lambda x: (x.seqid, x.start))
for e in edits:
print(str(e))
|
def liftover(args)
|
%prog liftover lobstr_v3.0.2_hg38_ref.bed hg38.upper.fa
LiftOver CODIS/Y-STR markers.
| 3.216331 | 3.057996 | 1.051777 |
from jcvi.apps.base import iglob
cparams = "1 1 2 80 5 200 2000"
p = OptionParser(trf.__doc__)
p.add_option("--mismatch", default=31, type="int",
help="Mismatch and gap penalty")
p.add_option("--minscore", default=MINSCORE, type="int",
help="Minimum score to report")
p.add_option("--period", default=6, type="int",
help="Maximum period to report")
p.add_option("--lobstr", default=False, action="store_true",
help="Generate output for lobSTR")
p.add_option("--telomeres", default=False, action="store_true",
help="Run telomere search: minscore=140 period=7")
p.add_option("--centromeres", default=False, action="store_true",
help="Run centromere search: {}".format(cparams))
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
outdir, = args
minlength = opts.minscore / 2
mm = MakeManager()
if opts.telomeres:
opts.minscore, opts.period = 140, 7
params = "2 {0} {0} 80 10 {1} {2}".\
format(opts.mismatch, opts.minscore, opts.period).split()
if opts.centromeres:
params = cparams.split()
bedfiles = []
for fastafile in natsorted(iglob(outdir, "*.fa,*.fasta")):
pf = op.basename(fastafile).split(".")[0]
cmd1 = "trf {0} {1} -d -h".format(fastafile, " ".join(params))
datfile = op.basename(fastafile) + "." + ".".join(params) + ".dat"
bedfile = "{0}.trf.bed".format(pf)
cmd2 = "cat {} | grep -v ^Parameters".format(datfile)
if opts.lobstr:
cmd2 += " | awk '($8 >= {} && $8 <= {})'".\
format(minlength, READLEN - minlength)
else:
cmd2 += " | awk '($8 >= 0)'"
cmd2 += " | sed 's/ /\\t/g'"
cmd2 += " | awk '{{print \"{0}\\t\" $0}}' > {1}".format(pf, bedfile)
mm.add(fastafile, datfile, cmd1)
mm.add(datfile, bedfile, cmd2)
bedfiles.append(bedfile)
bedfile = "trf.bed"
cmd = "cat {0} > {1}".format(" ".join(natsorted(bedfiles)), bedfile)
mm.add(bedfiles, bedfile, cmd)
mm.write()
|
def trf(args)
|
%prog trf outdir
Run TRF on FASTA files.
| 3.095117 | 3.032254 | 1.020732 |
p = OptionParser(batchlobstr.__doc__)
p.add_option("--sep", default=",", help="Separator for building commandline")
p.set_home("lobstr", default="s3://hli-mv-data-science/htang/str-build/lobSTR/")
p.set_aws_opts(store="hli-mv-data-science/htang/str-data")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
samplesfile, = args
store = opts.output_path
computed = ls_s3(store)
fp = open(samplesfile)
skipped = total = 0
for row in fp:
total += 1
sample, s3file = row.strip().split(",")[:2]
exec_id, sample_id = sample.split("_")
bamfile = s3file.replace(".gz", "").replace(".vcf", ".bam")
gzfile = sample + ".{0}.vcf.gz".format("hg38")
if gzfile in computed:
skipped += 1
continue
print(opts.sep.join("python -m jcvi.variation.str lobstr".split() + \
["hg38",
"--input_bam_path", bamfile,
"--output_path", store,
"--sample_id", sample_id,
"--workflow_execution_id", exec_id,
"--lobstr_home", opts.lobstr_home,
"--workdir", opts.workdir]))
fp.close()
logging.debug("Total skipped: {0}".format(percentage(skipped, total)))
|
def batchlobstr(args)
|
%prog batchlobstr samples.csv
Run lobSTR sequentially on list of samples. Each line contains:
sample-name,s3-location
| 5.047091 | 4.937597 | 1.022175 |
from jcvi.formats.sam import get_minibam
# See `Format-lobSTR-database.ipynb` for a list of TREDs for validation
INCLUDE = ["HD", "SBMA", "SCA1", "SCA2", "SCA8", "SCA17", "DM1", "DM2",
"FXTAS"]
db_choices = ("hg38", "hg19")
p = OptionParser(locus.__doc__)
p.add_option("--tred", choices=INCLUDE,
help="TRED name")
p.add_option("--ref", choices=db_choices, default="hg38",
help="Reference genome")
p.set_home("lobstr")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bamfile, = args
ref = opts.ref
lhome = opts.lobstr_home
tred = opts.tred
tredsfile = datafile("TREDs.meta.csv")
tf = pd.read_csv(tredsfile, index_col=0)
row = tf.ix[tred]
tag = "repeat_location"
ldb = "TREDs"
if ref == "hg19":
tag += "." + ref
ldb += "-" + ref
seqid, start_end = row[tag].split(":")
PAD = 1000
start, end = start_end.split('-')
start, end = int(start) - PAD, int(end) + PAD
region = "{}:{}-{}".format(seqid, start, end)
minibamfile = get_minibam(bamfile, region)
c = seqid.replace("chr", "")
cmd, vcf = allelotype_on_chr(minibamfile, c, lhome, ldb)
sh(cmd)
parser = LobSTRvcf(columnidsfile=None)
parser.parse(vcf, filtered=False)
items = parser.items()
if not items:
print("No entry found!", file=sys.stderr)
return
k, v = parser.items()[0]
print("{} => {}".format(tred, v.replace(',', '/')), file=sys.stderr)
|
def locus(args)
|
%prog locus bamfile
Extract selected locus from a list of TREDs for validation, and run lobSTR.
| 4.847856 | 4.490833 | 1.0795 |
p = OptionParser(lobstrindex.__doc__)
p.add_option("--notreds", default=False, action="store_true",
help="Remove TREDs from the bed file")
p.set_home("lobstr")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
trfbed, fastafile = args
pf = fastafile.split(".")[0]
lhome = opts.lobstr_home
mkdir(pf)
if opts.notreds:
newbedfile = trfbed + ".new"
newbed = open(newbedfile, "w")
fp = open(trfbed)
retained = total = 0
seen = set()
for row in fp:
r = STRLine(row)
total += 1
name = r.longname
if name in seen:
continue
seen.add(name)
print(r, file=newbed)
retained += 1
newbed.close()
logging.debug("Retained: {0}".format(percentage(retained, total)))
else:
newbedfile = trfbed
mm = MakeManager()
cmd = "python {0}/scripts/lobstr_index.py".format(lhome)
cmd += " --str {0} --ref {1} --out {2}".format(newbedfile, fastafile, pf)
mm.add((newbedfile, fastafile), op.join(pf, "lobSTR_ref.fasta.rsa"), cmd)
tabfile = "{0}/index.tab".format(pf)
cmd = "python {0}/scripts/GetSTRInfo.py".format(lhome)
cmd += " {0} {1} > {2}".format(newbedfile, fastafile, tabfile)
mm.add((newbedfile, fastafile), tabfile, cmd)
infofile = "{0}/index.info".format(pf)
cmd = "cp {0} {1}".format(newbedfile, infofile)
mm.add(trfbed, infofile, cmd)
mm.write()
|
def lobstrindex(args)
|
%prog lobstrindex hg38.trf.bed hg38.upper.fa
Make lobSTR index. Make sure the FASTA contain only upper case (so use
fasta.format --upper to convert from UCSC fasta). The bed file is generated
by str().
| 3.122686 | 2.972037 | 1.050689 |
p = OptionParser(close.__doc__)
p.set_home("gapfiller")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
scaffolds = args[0]
libtxt = write_libraries(args[1:], aligner="bwa")
cmd = "perl " + op.join(opts.gapfiller_home, "GapFiller.pl")
cmd += " -l {0} -s {1} -T {2}".format(libtxt, scaffolds, opts.cpus)
runsh = "run.sh"
write_file(runsh, cmd)
|
def close(args)
|
%prog close scaffolds.fasta PE*.fastq
Run GapFiller to fill gaps.
| 4.01501 | 3.195921 | 1.256292 |
p = OptionParser(scaffold.__doc__)
p.set_aligner(aligner="bwa")
p.set_home("sspace")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
contigs = args[0]
libtxt = write_libraries(args[1:], aligner=opts.aligner)
# Requires getopts.pl which may be missing
download("http://web.vims.edu/bridge/bridge2/aw/lib/getopts.pl")
cmd = "perl " + op.join(opts.sspace_home, "SSPACE_Standard_v3.0.pl")
cmd += " -l {0} -s {1} -T {2}".format(libtxt, contigs, opts.cpus)
runsh = "run.sh"
write_file(runsh, cmd)
|
def scaffold(args)
|
%prog scaffold contigs.fasta MP*.fastq
Run SSPACE scaffolding.
| 6.395324 | 5.470994 | 1.168951 |
p = OptionParser(agp.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
evidencefile, contigs = args
ef = EvidenceFile(evidencefile, contigs)
agpfile = evidencefile.replace(".evidence", ".agp")
ef.write_agp(agpfile)
|
def agp(args)
|
%prog agp evidencefile contigs.fasta
Convert SSPACE scaffold structure to AGP format.
| 2.814865 | 2.048578 | 1.374058 |
p = OptionParser(embed.__doc__)
p.set_mingap(default=10)
p.add_option("--min_length", default=200, type="int",
help="Minimum length to consider [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
evidencefile, scaffolds, contigs = args
min_length = opts.min_length
splitfasta, oagp, cagp = gaps([scaffolds, "--split",
"--mingap={0}".format(opts.mingap)])
agp = AGP(cagp)
p = agp.graph
ef = EvidenceFile(evidencefile, contigs)
sizes = ef.sz
q = ef.graph
logging.debug("Reference graph: {0}".format(p))
logging.debug("Patch graph: {0}".format(q))
newagp = deepcopy(agp)
seen = set()
deleted = set()
for a in agp:
if a.is_gap:
continue
name = a.component_id
object = a.object
if name in deleted:
print("* Skip {0}, already embedded".format(name), file=sys.stderr)
continue
seen.add(name)
target_name, tag = get_target(p, name)
path = q.get_path(name, target_name, tag=tag)
path_size = sum([sizes[x.v] for x, t in path]) if path else None
status = NO_UPDATE
# Heuristic, the patch must not be too long
if path and path_size > min_length and len(path) > 3:
path = None
if not path:
print(name, target_name, path, path_size, status, file=sys.stderr)
continue
backward = False
for x, t in path:
if x.v in seen:
print("* Does not allow backward" \
" patch on {0}".format(x.v), file=sys.stderr)
backward = True
break
if backward:
continue
# Build the path plus the ends
vv = q.get_node(name)
path.appendleft((vv, tag))
if tag == ">":
path.reverse()
status = INSERT_BEFORE
elif target_name is None:
status = INSERT_AFTER
else:
target = q.get_node(target_name)
path.append((target, tag))
status = INSERT_BETWEEN
print(name, target_name, path, path_size, status, file=sys.stderr)
# Trim the ends off from the constructed AGPLines
lines = path_to_agp(q, path, object, sizes, status)
if status == INSERT_BEFORE:
lines = lines[:-1]
td = newagp.insert_lines(name, lines, \
delete=True, verbose=True)
elif status == INSERT_AFTER:
lines = lines[1:]
td = newagp.insert_lines(name, lines, after=True, \
delete=True, verbose=True)
else:
lines = lines[1:-1]
td = newagp.update_between(name, target_name, lines, \
delete=True, verbose=True)
deleted |= td
seen |= td
# Recruite big singleton contigs
CUTOFF = opts.min_length
for ctg, size in sizes.items():
if ctg in seen:
continue
if size < CUTOFF:
continue
newagp.append(AGPLine.cline(ctg, ctg, sizes, "?"))
# Write a new AGP file
newagpfile = "embedded.agp"
newagp.print_to_file(newagpfile, index=True)
tidy([newagpfile, contigs])
|
def embed(args)
|
%prog embed evidencefile scaffolds.fasta contigs.fasta
Use SSPACE evidencefile to scaffold contigs into existing scaffold
structure, as in `scaffolds.fasta`. Contigs.fasta were used by SSPACE
directly to scaffold.
Rules:
1. Only update existing structure by embedding contigs small enough to fit.
2. Promote singleton contigs only if they are big (>= min_length).
| 4.541344 | 4.336781 | 1.047169 |
align_choices = ("left", "center", "right")
p = OptionParser(gff.__doc__)
p.add_option("--align", default="left", choices=align_choices,
help="Horizontal alignment [default: %default]")
p.add_option("--noUTR", default=False, action="store_true",
help="Do not plot UTRs [default: %default]")
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
fig = plt.figure(1, (8, 5))
root = fig.add_axes([0, 0, 1, 1])
gffiles = args
ngenes = len(gffiles)
canvas = .6
setups, ratio = get_setups(gffiles, canvas=canvas, noUTR=opts.noUTR)
align = opts.align
xs = .2 if align == "left" else .8
yinterval = canvas / ngenes
ys = .8
tip = .01
for genename, mrnabed, cdsbeds in setups:
ExonGlyph(root, xs, ys, mrnabed, cdsbeds, ratio=ratio, align=align)
if align == "left":
root.text(xs - tip, ys, genename, ha="right", va="center")
elif align == "right":
root.text(xs + tip, ys, genename, ha="left", va="center")
ys -= yinterval
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
figname = "exons.pdf"
savefig(figname, dpi=300)
|
def gff(args)
|
%prog gff *.gff
Draw exons for genes based on gff files. Each gff file should contain only
one gene, and only the "mRNA" and "CDS" feature will be drawn on the canvas.
| 2.936266 | 2.829475 | 1.037742 |
from jcvi.formats.fastq import readlen
p = OptionParser(spades.__doc__)
opts, args = p.parse_args(args)
if len(args) == 0:
sys.exit(not p.print_help())
folder, = args
for p, pf in iter_project(folder):
rl = readlen([p[0], "--silent"])
# <http://spades.bioinf.spbau.ru/release3.1.0/manual.html#sec3.4>
kmers = None
if rl >= 150:
kmers = "21,33,55,77"
elif rl >= 250:
kmers = "21,33,55,77,99,127"
cmd = "spades.py"
if kmers:
cmd += " -k {0}".format(kmers)
cmd += " --careful"
cmd += " --pe1-1 {0} --pe1-2 {1}".format(*p)
cmd += " -o {0}_spades".format(pf)
print(cmd)
|
def spades(args)
|
%prog spades folder
Run automated SPADES.
| 3.733759 | 3.551172 | 1.051416 |
from jcvi.apps.bowtie import align
p = OptionParser(contamination.__doc__)
p.add_option("--mapped", default=False, action="store_true",
help="Retain contaminated reads instead [default: %default]")
p.set_cutoff(cutoff=800)
p.set_mateorientation(mateorientation="+-")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
folder, ecoli = args
ecoli = get_abs_path(ecoli)
tag = "--mapped" if opts.mapped else "--unmapped"
for p, pf in iter_project(folder):
align_opts = [ecoli] + p + [tag]
align_opts += ["--cutoff={0}".format(opts.cutoff), "--null"]
if opts.mateorientation:
align_opts += ["--mateorientation={0}".format(opts.mateorientation)]
samfile, logfile = align(align_opts)
|
def contamination(args)
|
%prog contamination folder Ecoli.fasta
Remove contaminated reads. The FASTQ files in the folder will automatically
pair and filtered against Ecoli.fasta to remove contaminants using BOWTIE2.
| 4.053464 | 3.699788 | 1.095594 |
p = OptionParser(pairs.__doc__)
p.set_firstN()
p.set_mates()
p.set_aligner()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
cwd = os.getcwd()
aligner = opts.aligner
work = "-".join(("pairs", aligner))
mkdir(work)
from jcvi.formats.sam import pairs as ps
if aligner == "bowtie":
from jcvi.apps.bowtie import align
elif aligner == "bwa":
from jcvi.apps.bwa import align
folder, ref = args
ref = get_abs_path(ref)
messages = []
for p, prefix in iter_project(folder):
samplefq = []
for i in range(2):
samplefq.append(op.join(work, prefix + "_{0}.first.fastq".format(i+1)))
first([str(opts.firstN)] + [p[i]] + ["-o", samplefq[i]])
os.chdir(work)
align_args = [ref] + [op.basename(fq) for fq in samplefq]
outfile, logfile = align(align_args)
bedfile, stats = ps([outfile, "--rclip={0}".format(opts.rclip)])
os.chdir(cwd)
median = stats.median
tag = "MP" if median > 1000 else "PE"
median = str(median)
pf, sf = median[:2], median[2:]
if sf and int(sf) != 0:
pf = str(int(pf) + 1) # Get the first two effective digits
lib = "{0}-{1}".format(tag, pf + '0' * len(sf))
for i, xp in enumerate(p):
suffix = "fastq.gz" if xp.endswith(".gz") else "fastq"
link = "{0}-{1}.{2}.{3}".format(lib, prefix.replace("-", ""),
i + 1, suffix)
m = "\t".join(str(x) for x in (xp, link))
messages.append(m)
messages = "\n".join(messages)
write_file("f.meta", messages, tee=True)
|
def pairs(args)
|
%prog pairs folder reference.fasta
Estimate insert size distribution. Compatible with a variety of aligners,
including BOWTIE and BWA.
| 4.608087 | 4.383369 | 1.051266 |
p = OptionParser(allpaths.__doc__)
p.add_option("--ploidy", default="1", choices=("1", "2"),
help="Ploidy [default: %default]")
opts, args = p.parse_args(args)
if len(args) == 0:
sys.exit(not p.print_help())
folders = args
for pf in folders:
if not op.isdir(pf):
continue
assemble_dir(pf, target=["final.contigs.fasta", "final.assembly.fasta"],
ploidy=opts.ploidy)
|
def allpaths(args)
|
%prog allpaths folder1 folder2 ...
Run automated ALLPATHS on list of dirs.
| 3.380087 | 3.398392 | 0.994614 |
p = OptionParser(prepare.__doc__)
p.add_option("--first", default=0, type="int",
help="Use only first N reads [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
jfile, = args
metafile = jfile + ".meta"
if need_update(jfile, metafile):
fp = open(jfile)
fastqfiles = [x.strip() for x in fp if ".fastq" in x]
metas = [Meta(x) for x in fastqfiles]
fw = open(metafile, "w")
print("\n".join(str(x) for x in metas), file=fw)
print("Now modify `{0}`, and restart this script.".\
format(metafile), file=sys.stderr)
print("Each line is : genome library fastqfile", file=sys.stderr)
fw.close()
return
mf = MetaFile(metafile)
for m in mf:
m.make_link(firstN=opts.first)
|
def prepare(args)
|
%prog prepare jira.txt
Parse JIRA report and prepare input. Look for all FASTQ files in the report
and get the prefix. Assign fastq to a folder and a new file name indicating
the library type (e.g. PE-500, MP-5000, etc.).
Note that JIRA report can also be a list of FASTQ files.
| 3.649271 | 3.411234 | 1.06978 |
slink(p, pf, tag)
assemble_dir(pf, target)
|
def assemble_pairs(p, pf, tag, target=["final.contigs.fasta"])
|
Take one pair of reads and assemble to contigs.fasta.
| 15.76053 | 16.326332 | 0.965344 |
from jcvi.assembly.preprocess import correct as cr
logging.debug("Work on {0} ({1})".format(pf, ','.join(p)))
itag = tag[0]
cm = ".".join((pf, itag))
targets = (cm + ".1.corr.fastq", cm + ".2.corr.fastq", \
pf + ".PE-0.corr.fastq")
if not need_update(p, targets):
logging.debug("Corrected reads found: {0}. Skipped.".format(targets))
return
slink(p, pf, tag)
cwd = os.getcwd()
os.chdir(pf)
cr(sorted(glob("*.fastq") + glob("*.fastq.gz")) + ["--nofragsdedup"])
sh("mv {0}.1.corr.fastq ../{1}".format(itag, targets[0]))
sh("mv {0}.2.corr.fastq ../{1}".format(itag, targets[1]))
sh("mv frag_reads_corr.corr.fastq ../{0}".format(targets[2]))
logging.debug("Correction finished: {0}".format(targets))
os.chdir(cwd)
|
def correct_pairs(p, pf, tag)
|
Take one pair of reads and correct to generate *.corr.fastq.
| 4.920497 | 4.621193 | 1.064768 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.