code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
from jcvi.assembly.soap import prepare
logging.debug("Work on {0} ({1})".format(pf, ','.join(p)))
asm = "{0}.closed.scafSeq".format(pf)
if not need_update(p, asm):
logging.debug("Assembly found: {0}. Skipped.".format(asm))
return
slink(p, pf, tag, extra)
cwd = os.getcwd()
os.chdir(pf)
prepare(sorted(glob("*.fastq") + glob("*.fastq.gz")) + \
["--assemble_1st_rank_only", "-K 31"])
sh("./run.sh")
sh("cp asm31.closed.scafSeq ../{0}".format(asm))
logging.debug("Assembly finished: {0}".format(asm))
os.chdir(cwd)
|
def soap_trios(p, pf, tag, extra)
|
Take one pair of reads and 'widow' reads after correction and run SOAP.
| 6.864745 | 6.688527 | 1.026346 |
p = OptionParser(soapX.__doc__)
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
folder, tag = args[:2]
extra = args[2:]
extra = [get_abs_path(x) for x in extra]
tag = tag.split(",")
for p, pf in iter_project(folder, n=3):
soap_trios(p, pf, tag, extra)
|
def soapX(args)
|
%prog soapX folder tag [*.fastq]
Run SOAP on a folder of paired reads and apply tag before assembly.
Optional *.fastq in the argument list will be symlinked in each folder and
co-assembled.
| 4.510181 | 3.695247 | 1.220536 |
p = OptionParser(correctX.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
folder, tag = args
tag = tag.split(",")
for p, pf in iter_project(folder):
correct_pairs(p, pf, tag)
|
def correctX(args)
|
%prog correctX folder tag
Run ALLPATHS correction on a folder of paired reads and apply tag.
| 3.86094 | 2.920025 | 1.322228 |
p = OptionParser(allpathsX.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
folder, tag = args
tag = tag.split(",")
for p, pf in iter_project(folder):
assemble_pairs(p, pf, tag)
|
def allpathsX(args)
|
%prog allpathsX folder tag
Run assembly on a folder of paired reads and apply tag (PE-200, PE-500).
Allow multiple tags separated by comma, e.g. PE-350,TT-1050
| 3.991196 | 3.081041 | 1.295405 |
p = OptionParser(stats.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
folder, = args
statsfiles = iglob(folder, "*.stats")
after_equal = lambda x: x.split("=")[-1]
header = "Library Assembled_reads Contigs".split()
contents = []
# label=M0096 total=7443 cnts=948 mean=7.851 std=35.96
for statsfile in statsfiles:
fp = open(statsfile)
for row in fp:
if row.startswith("label="):
break
label, total, cnts = row.split()[:3]
label = after_equal(label)
reads = int(after_equal(total))
contigs = int(after_equal(cnts))
contents.append((label, reads, contigs))
all_labels, all_reads, all_contigs = zip(*contents)
contents.append(("SUM", sum(all_reads), sum(all_contigs)))
contents.append(("AVERAGE (per sample)", \
int(np.mean(all_reads)), int(np.mean(all_contigs))))
contents.append(("MEDIAN (per sample)", \
int(np.median(all_reads)), int(np.median(all_contigs))))
write_csv(header, contents, filename=opts.outfile)
|
def stats(args)
|
%prog stats folder
Generate table summarizing .stats files.
| 3.521761 | 3.418794 | 1.030118 |
p = OptionParser(mcluster.__doc__)
add_consensus_options(p)
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
consensusfiles = args
minlength = opts.minlength
cpus = opts.cpus
pf = opts.prefix
pctid = find_pctid(consensusfiles)
pf += ".P{0}".format(pctid)
consensusfile = pf + ".consensus.fasta"
if need_update(consensusfiles, consensusfile):
fw_cons = must_open(consensusfile, "w")
totalseqs = 0
for cf in consensusfiles:
nseqs = 0
s = op.basename(cf).split(".")[0]
for name, seq in parse_fasta(cf):
name = '.'.join((s, name))
print(">{0}\n{1}".format(name, seq), file=fw_cons)
nseqs += 1
logging.debug("Read `{0}`: {1} seqs".format(cf, nseqs))
totalseqs += nseqs
logging.debug("Total: {0} seqs".format(totalseqs))
fw_cons.close()
userfile = pf + ".u"
notmatchedfile = pf + ".notmatched"
if need_update(consensusfile, userfile):
cluster_smallmem(consensusfile, userfile, notmatchedfile,
minlength, pctid, cpus)
clustfile = pf + ".clust"
if need_update((consensusfile, userfile, notmatchedfile), clustfile):
makeclust(consensusfile, userfile, notmatchedfile, clustfile)
clustSfile = pf + ".clustS"
if need_update(clustfile, clustSfile):
parallel_musclewrap(clustfile, cpus, minsamp=opts.minsamp)
|
def mcluster(args)
|
%prog mcluster *.consensus
Cluster across samples using consensus sequences.
| 3.205901 | 3.124623 | 1.026012 |
p = OptionParser(mconsensus.__doc__)
p.add_option("--allele_counts", default="allele_counts",
help="Directory to generate allele counts")
add_consensus_options(p)
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
consensusfiles = args
prefix = opts.prefix
acdir = opts.allele_counts
store = ClustStores(consensusfiles)
pctid = find_pctid(consensusfiles)
pf = prefix + ".P{0}".format(pctid)
clustSfile = pf + ".clustS"
AC = makeloci(clustSfile, store, prefix,
minsamp=opts.minsamp, pctid=pctid)
mkdir(acdir)
acfile = pf + ".allele_counts"
fw = open(acfile, "w")
seen = DefaultOrderedDict(list) # chr, pos => taxa
print("# " + "\t".join(ACHEADER), file=fw)
# Sort allele counts into separate files
for ac in AC:
chrpos = ac.chr, ac.pos
seen[chrpos].append(ac)
print(ac.tostring(taxon=True), file=fw)
fw.close()
logging.debug("Populate all taxa and instantiate empty vector if missing")
all_taxa = set([op.basename(x).split(".")[0] for x in consensusfiles])
taxon_to_ac = defaultdict(list)
for chrpos, aclist in seen.items():
included_taxa = set([x.taxon for x in aclist])
missing_taxa = all_taxa - included_taxa
template = deepcopy(aclist[0])
template.clear()
for ac in aclist:
taxon_to_ac[ac.taxon].append(ac)
for tx in missing_taxa:
taxon_to_ac[tx].append(template)
logging.debug("Write allele counts for all taxa")
for tx, aclist in sorted(taxon_to_ac.items()):
tx_acfile = op.join(acdir, tx + ".allele_counts")
fw = open(tx_acfile, "w")
print("# " + "\t".join(ACHEADER_NO_TAXON), file=fw)
for ac in aclist:
print(ac.tostring(), file=fw)
fw.close()
logging.debug("Written {0} sites in `{1}`".\
format(len(aclist), tx_acfile))
|
def mconsensus(args)
|
%prog mconsensus *.consensus
Call consensus along the stacks from cross-sample clustering.
| 3.582958 | 3.552646 | 1.008532 |
p = OptionParser(consensus.__doc__)
p.add_option("--ploidy", default=2, type="int",
help="Number of haplotypes per locus")
add_consensus_options(p)
p.set_verbose()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
clustSfile, = args
pf = clustSfile.rsplit(".", 1)[0]
mindepth = opts.mindepth
minlength = opts.minlength
verbose = opts.verbose
C = ClustFile(clustSfile)
output = []
bins = []
indices = []
start = end = 0 # Index into base count array
for data in C:
names, seqs, nreps = zip(*data)
total_nreps = sum(nreps)
# Depth filter
if total_nreps < mindepth:
continue
first_name, first_seq, first_nrep = data[0]
fname = first_name.split(";")[0] + ";size={0};".format(total_nreps)
cons_name, cons_seq, cons_nrep = get_seed(data)
if len(data) > 1 and cons_name != CONSTAG:
logging.debug("Tag {0} not found in cluster {1}".\
format(CONSTAG, cons_name))
# List for sequence data
S = [(seq, nrep) for name, seq, nrep in data if nrep]
# Pileups for base counting
RAD = stack(S)
if len(data) == 1: # No computation needed
output.append((fname, seq))
bins.extend(RAD)
start = end
end += len(seq)
indices.append((fname, start, end))
continue
shortcon, shortRAD = compute_consensus(fname, cons_seq, \
RAD, S, total_nreps,
mindepth=mindepth, verbose=verbose)
if len(shortcon) < minlength:
cons_seq = seq
shortcon, shortRAD = compute_consensus(fname, first_seq,\
RAD, S, total_nreps,
mindepth=mindepth, verbose=verbose)
if len(shortcon) < minlength: # Stop trying
continue
output.append((fname, shortcon))
bins.extend(shortRAD)
start = end
end += len(shortcon)
indices.append((fname, start, end))
consensfile = pf + ".consensus"
consens = open(consensfile, 'w')
for k, v in output:
print("\n".join((k, v)), file=consens)
consens.close()
logging.debug("Consensus sequences written to `{0}`".format(consensfile))
binfile = consensfile + ".bin"
bins = np.array(bins, dtype=np.uint32)
ulimit = 65535
bins[bins > ulimit] = ulimit
bins = np.array(bins, dtype=np.uint16) # Compact size
bins.tofile(binfile)
logging.debug("Allele counts written to `{0}`".format(binfile))
idxfile = consensfile + ".idx"
fw = open(idxfile, "w")
for fname, start, end in indices:
print("\t".join(str(x) for x in (fname, start, end)), file=fw)
fw.close()
logging.debug("Serializing indices to `{0}`".format(idxfile))
return consensfile, binfile, idxfile
|
def consensus(args)
|
%prog consensus clustSfile
Call consensus along the stacks. Tabulate bases at each site, tests for
errors according to error rate, calls consensus.
| 3.478853 | 3.35002 | 1.038458 |
S, nreps = zip(*S)
S = np.array([list(x) for x in S])
rows, cols = S.shape
counts = []
for c in xrange(cols):
freq = [0] * NBASES
for b, nrep in zip(S[:, c], nreps):
freq[BASES.index(b)] += nrep
counts.append(freq)
return counts
|
def stack(S)
|
From list of bases at a site D, make counts of bases
| 4.259558 | 3.903899 | 1.091103 |
cseq = seq.strip(GAPS)
leftjust = seq.index(cseq[0])
rightjust = seq.rindex(cseq[-1])
return leftjust, rightjust
|
def get_left_right(seq)
|
Find position of the first and last base
| 4.899249 | 4.555274 | 1.075511 |
C = ClustFile(f)
for data in C:
names, seqs, nreps = zip(*data)
total_nreps = sum(nreps)
# Depth filter
if total_nreps < mindepth:
continue
S = []
for name, seq, nrep in data:
# Append sequence * number of dereps
S.append([seq, nrep])
# Make list for each site in sequences
res = stack(S)
yield [x[:4] for x in res if sum(x[:4]) >= mindepth]
|
def cons(f, mindepth)
|
Makes a list of lists of reads at each site
| 8.61644 | 7.891144 | 1.091913 |
C = defaultdict(int)
for d in N:
C[tuple(d)] += 1
return [i for i in C.items() if (0, 0, 0, 0) not in i]
|
def makeC(N)
|
Makes a dictionary with counts of base counts [x,x,x,x]:x,
speeds up Likelihood calculation
| 4.219463 | 4.384814 | 0.96229 |
p = OptionParser(estimateHE.__doc__)
add_consensus_options(p)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
clustSfile, = args
HEfile = clustSfile.rsplit(".", 1)[0] + ".HE"
if not need_update(clustSfile, HEfile):
logging.debug("File `{0}` found. Computation skipped.".format(HEfile))
return HEfile
D = []
for d in cons(clustSfile, opts.mindepth):
D.extend(d)
logging.debug("Computing base frequencies ...")
P = makeP(D)
C = makeC(D)
logging.debug("Solving log-likelihood function ...")
x0 = [.01, .001] # initital values
H, E = scipy.optimize.fmin(LL, x0, args=(P, C))
fw = must_open(HEfile, "w")
print(H, E, file=fw)
fw.close()
return HEfile
|
def estimateHE(args)
|
%prog estimateHE clustSfile
Estimate heterozygosity (H) and error rate (E). Idea borrowed heavily from
the PyRad paper.
| 4.077169 | 3.660784 | 1.113742 |
matfile = op.join(datadir, "blosum80.mat")
cmd = "poa -read_fasta - -pir stdout {0} -tolower -silent -hb -fuse_all".format(matfile)
p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
s = ""
for i, j in zip(names, seqs):
s += "\n".join((i, j)) + "\n"
return p.communicate(s)[0]
|
def alignfast(names, seqs)
|
Performs MUSCLE alignments on cluster and returns output as string
| 5.51488 | 5.646791 | 0.97664 |
seen = set()
filtered_names, filtered_seqs = [], []
for name, seq in zip(names, seqs):
samp = name.split(sep, 1)[0]
if samp in seen:
continue
seen.add(samp)
filtered_names.append(name)
filtered_seqs.append(seq)
nfiltered, nnames = len(filtered_names), len(names)
assert nfiltered == len(seen)
return filtered_names, filtered_seqs, seen
|
def filter_samples(names, seqs, sep='.')
|
When there are uncollapsed contigs within the same sample, only retain the
first seq, or the seq that is most abundant (with cluster_size).
| 2.492549 | 2.494484 | 0.999224 |
p = OptionParser(cluster.__doc__)
add_consensus_options(p)
p.set_align(pctid=95)
p.set_outdir()
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
prefix = args[0]
fastqfiles = args[1:]
cpus = opts.cpus
pctid = opts.pctid
mindepth = opts.mindepth
minlength = opts.minlength
fastafile, qualfile = fasta(fastqfiles + ["--seqtk",
"--outdir={0}".format(opts.outdir),
"--outfile={0}".format(prefix + ".fasta")])
prefix = op.join(opts.outdir, prefix)
pf = prefix + ".P{0}".format(pctid)
derepfile = prefix + ".derep"
if need_update(fastafile, derepfile):
derep(fastafile, derepfile, minlength, cpus)
userfile = pf + ".u"
notmatchedfile = pf + ".notmatched"
if need_update(derepfile, userfile):
cluster_smallmem(derepfile, userfile, notmatchedfile,
minlength, pctid, cpus)
clustfile = pf + ".clust"
if need_update((derepfile, userfile, notmatchedfile), clustfile):
makeclust(derepfile, userfile, notmatchedfile, clustfile,
mindepth=mindepth)
clustSfile = pf + ".clustS"
if need_update(clustfile, clustSfile):
parallel_musclewrap(clustfile, cpus)
statsfile = pf + ".stats"
if need_update(clustSfile, statsfile):
makestats(clustSfile, statsfile, mindepth=mindepth)
|
def cluster(args)
|
%prog cluster prefix fastqfiles
Use `vsearch` to remove duplicate reads. This routine is heavily influenced
by PyRAD: <https://github.com/dereneaton/pyrad>.
| 3.203557 | 3.118106 | 1.027405 |
p = OptionParser(align.__doc__)
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
clustfile, = args
parallel_musclewrap(clustfile, opts.cpus)
|
def align(args)
|
%prog align clustfile
Align clustfile to clustSfile. Useful for benchmarking aligners.
| 3.97606 | 3.353732 | 1.185563 |
ax = np.array(x)
ay = np.array(y)
if title:
print(dark(title), file=sys.stderr)
az = ay * width / ay.max()
tx = [asciiaxis(x, digit=digit) for x in ax]
rjust = max([len(x) for x in tx]) + 1
for x, y, z in zip(tx, ay, az):
x = x.rjust(rjust)
y = y or ""
z = green(char * z)
print("{0} |{1} {2}".format(x, z, y), file=sys.stderr)
|
def asciiplot(x, y, digit=1, width=50, title=None, char="=")
|
Print out a horizontal plot using ASCII chars.
width is the textwidth (height) of the plot.
| 4.347342 | 4.389501 | 0.990396 |
fig = plt.figure()
ax = fig.add_subplot(111)
xmax = 20 * (len(palette) + 1)
x1s = np.arange(0, xmax, 20)
xintervals = [10] * len(palette)
xx = zip(x1s, xintervals)
ax.broken_barh(xx, (5, 10), facecolors=palette)
ax.set_ylim(0, 20)
ax.set_xlim(0, xmax)
ax.set_axis_off()
savefig(outfile)
|
def print_colors(palette, outfile="Palette.png")
|
print color palette (a tuple) to a PNG file for quick check
| 2.762453 | 2.736808 | 1.00937 |
import random
from scipy import interpolate
if usepreset:
if 0 < N <= 5:
cmap = cm.gist_rainbow
elif N <= 20:
cmap = cm.Set1
else:
sys.exit(discrete_rainbow.__doc__)
cdict = cmap._segmentdata.copy()
# N colors
colors_i = np.linspace(0,1.,N)
# N+1 indices
indices = np.linspace(0,1.,N+1)
rgbs = []
for key in ('red','green','blue'):
# Find the N colors
D = np.array(cdict[key])
I = interpolate.interp1d(D[:,0], D[:,1])
colors = I(colors_i)
rgbs.append(colors)
# Place these colors at the correct indices.
A = np.zeros((N+1,3), float)
A[:,0] = indices
A[1:,1] = colors
A[:-1,2] = colors
# Create a tuple for the dictionary.
L = []
for l in A:
L.append(tuple(l))
cdict[key] = tuple(L)
palette = zip(*rgbs)
if shuffle:
random.shuffle(palette)
if plot:
print_colors(palette)
# Return (colormap object, RGB tuples)
return mpl.colors.LinearSegmentedColormap('colormap',cdict,1024), palette
|
def discrete_rainbow(N=7, cmap=cm.Set1, usepreset=True, shuffle=False, \
plot=False)
|
Return a discrete colormap and the set of colors.
modified from
<http://www.scipy.org/Cookbook/Matplotlib/ColormapTransformations>
cmap: colormap instance, eg. cm.jet.
N: Number of colors.
Example
>>> x = resize(arange(100), (5,100))
>>> djet = cmap_discretize(cm.jet, 5)
>>> imshow(x, cmap=djet)
See available matplotlib colormaps at:
<http://dept.astro.lsa.umich.edu/~msshin/science/code/matplotlib_cm/>
If N>20 the sampled colors might not be very distinctive.
If you want to error and try anyway, set usepreset=False
| 3.428185 | 3.527971 | 0.971716 |
tc = "gray"
axt = ax.transAxes
yy = .95
for msg in messages:
ax.text(.95, yy, msg, color=tc, transform=axt, ha="right")
yy -= .05
|
def write_messages(ax, messages)
|
Write text on canvas, usually on the top right corner.
| 4.923167 | 4.442501 | 1.108197 |
'''
TODO: redundant with quickplot(), need to be refactored.
'''
if percentage:
total_length = sum(data.values())
data = dict((k, v * 100. / total_length) for (k, v) in data.items())
left, height = zip(*sorted(data.items()))
pad = max(height) * .01
c1, c2 = "darkslategray", "tomato"
if counts:
for l, h in zip(left, height):
if xmax and l > xmax:
break
tag = str(int(h))
rotation = 90
if percentage:
tag = append_percentage(tag) if int(tag) > 0 else ""
rotation = 0
color = c1
if highlight is not None and l in highlight:
color = c2
ax.text(l, h + pad, tag, color=color, size=8,
ha="center", va="bottom", rotation=rotation)
if xmax is None:
xmax = max(left)
ax.bar(left, height, align="center", fc=c1)
if highlight:
for h in highlight:
ax.bar([h], [data[h]], align="center", ec=c2, fc=c2)
ax.set_xlabel(markup(xlabel))
if ylabel:
ax.set_ylabel(markup(ylabel))
if title:
ax.set_title(markup(title))
ax.set_xlim((xmin - .5, xmax + .5))
if percentage:
ax.set_ylim(0, 100)
|
def quickplot_ax(ax, data, xmin, xmax, xlabel, title=None, ylabel="Counts",
counts=True, percentage=True, highlight=None)
|
TODO: redundant with quickplot(), need to be refactored.
| 3.137947 | 2.916985 | 1.07575 |
plt.figure(1, (6, 6))
left, height = zip(*sorted(data.items()))
pad = max(height) * .01
if counts:
for l, h in zip(left, height):
if xmax and l > xmax:
break
plt.text(l, h + pad, str(h), color="darkslategray", size=8,
ha="center", va="bottom", rotation=90)
if xmax is None:
xmax = max(left)
plt.bar(left, height, align="center")
plt.xlabel(markup(xlabel))
plt.ylabel(markup(ylabel))
plt.title(markup(title))
plt.xlim((xmin - .5, xmax + .5))
# Basic statistics
messages = []
counts_over_xmax = sum([v for k, v in data.items() if k > xmax])
if counts_over_xmax:
messages += ["Counts over xmax({0}): {1}".format(xmax, counts_over_xmax)]
kk = []
for k, v in data.items():
kk += [k] * v
messages += ["Total: {0}".format(np.sum(height))]
messages += ["Maximum: {0}".format(np.max(kk))]
messages += ["Minimum: {0}".format(np.min(kk))]
messages += ["Average: {0:.2f}".format(np.mean(kk))]
messages += ["Median: {0}".format(np.median(kk))]
ax = plt.gca()
if print_stats:
write_messages(ax, messages)
set_human_axis(ax)
set_ticklabels_helvetica(ax)
savefig(figname)
|
def quickplot(data, xmin, xmax, xlabel, title, ylabel="Counts",
figname="plot.pdf", counts=True, print_stats=True)
|
Simple plotting function - given a dictionary of data, produce a bar plot
with the counts shown on the plot.
| 2.888687 | 2.865021 | 1.00826 |
parts = au.split()
first = parts[0]
middle = [x for x in parts if x[-1] == '.']
middle = "".join(middle)
last = [x for x in parts[1:] if x[-1] != '.']
last = " ".join(last)
initials = "{0}.{1}".format(first[0], middle)
if first[-1] == '.': # Some people use full middle name
middle, last = last.split(None, 1)
initials = "{0}.{1}.".format(first[0], middle)
return last, first, initials
|
def get_name_parts(au)
|
Fares Z. Najar => last, first, initials
>>> get_name_parts("Fares Z. Najar")
('Najar', 'Fares', 'F.Z.')
| 3.601522 | 3.718673 | 0.968496 |
from jcvi.formats.base import read_block
fp = open(lstfile)
all_authors = []
for header, seq in read_block(fp, "["):
seq = " ".join(seq)
authors = []
for au in seq.split(","):
au = au.strip()
if not au:
continue
au = string.translate(au, None, string.digits)
#au = au.replace("-", '')
authors.append(au)
all_authors.append(authors)
out = []
for authors in all_authors:
blocks = []
for au in authors:
last, first, initials = get_name_parts(au)
suffix = ""
nameblock = NameTemplate.format(last=last, first=first,
initials=initials, suffix=suffix)
blocks.append(nameblock)
bigblock = ",\n".join(blocks)
out.append(bigblock)
return out
|
def parse_names(lstfile)
|
This is the alternative format `lstfile`. In this format, there are two
sections, starting with [Sequence] and [Manuscript], respectively, then
followed by authors separated by comma.
| 3.367142 | 3.314739 | 1.015809 |
p = OptionParser(names.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(p.print_help())
namelist, templatefile = args
# First check the alternative format
if open(namelist).read()[0] == '[':
out = parse_names(namelist)
make_template(templatefile, out)
return
reader = csv.reader(open(namelist), delimiter="\t")
header = next(reader)
ncols = len(header)
assert ncols > 3
nextras = ncols - 3
blocks = []
bools = []
for row in reader:
first, middle, last = row[:3]
extras = row[3:]
bools.append([(x.upper() == 'Y') for x in extras])
middle = middle.strip()
if middle != "":
middle = middle.rstrip('.') + '.'
initials = "{0}.{1}".format(first[0], middle)
suffix = ""
nameblock = NameTemplate.format(last=last, first=first,
initials=initials, suffix=suffix)
blocks.append(nameblock)
selected_idx = zip(*bools)
out = [] * nextras
for i, sbools in enumerate(selected_idx):
selected = []
for b, ss in zip(blocks, sbools):
if ss:
selected.append(b)
bigblock = ",\n".join(selected)
out.append(bigblock)
logging.debug("List N{0} contains a total of {1} names.".format(i,
len(selected)))
make_template(templatefile, out)
|
def names(args)
|
%prog names namelist templatefile
Generate name blocks from the `namelist` file. The `namelist` file is
tab-delimited that contains >=4 columns of data. Three columns are mandatory.
First name, middle initial and last name. First row is table header. For the
extra columns, the first column will go in the `$N0` field in the template
file, second to the `$N1` field, etc.
In the alternative mode, the namelist just contains several sections. First
row will go in the `$N0` in the template file, second to the `$N1` field.
The namelist may look like:
[Sequence]
Bruce A. Roe, Frederic Debelle, Giles Oldroyd, Rene Geurts
[Manuscript]
Haibao Tang1, Vivek Krishnakumar1, Shelby Bidwell1, Benjamin Rosen1
Then in this example Sequence section goes into N0, Manuscript goes into N1.
Useful hints for constructing the template file can be found in:
<http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/asn_spec/seq.asn.html>
Often the template file can be retrieved from web form:
<http://www.ncbi.nlm.nih.gov/WebSub/template.cgi>
| 3.867542 | 3.425513 | 1.12904 |
p = OptionParser(main.__doc__)
p.add_option("-g", "--graphic", default=False, action="store_true",
help="Create boilerplate for a graphic script")
opts, args = p.parse_args()
if len(args) != 1:
sys.exit(not p.print_help())
script, = args
imports = graphic_imports if opts.graphic else default_imports
app = graphic_app if opts.graphic else default_app
template = default_template.format(imports, app)
write_file(script, template)
message = "template writes to `{0}`".format(script)
if opts.graphic:
message = "graphic " + message
message = message[0].upper() + message[1:]
logging.debug(message)
|
def main()
|
%prog scriptname.py
create a minimal boilerplate for a new script
| 3.494385 | 3.375291 | 1.035284 |
sd = [ambiguous_dna_values[x] for x in s]
return ["".join(x) for x in list(product(*sd))]
|
def unpack_ambiguous(s)
|
List sequences with ambiguous characters in all possibilities.
| 5.841689 | 4.912655 | 1.18911 |
p = OptionParser(split.__doc__)
p.set_outdir(outdir="deconv")
p.add_option("--nocheckprefix", default=False, action="store_true",
help="Don't check shared prefix [default: %default]")
p.add_option("--paired", default=False, action="store_true",
help="Paired-end data [default: %default]")
p.add_option("--append", default=False, action="store_true",
help="Append barcode to 2nd read [default: %default]")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
barcodefile = args[0]
fastqfile = args[1:]
paired = opts.paired
append = opts.append
if append:
assert paired, "--append only works with --paired"
nfiles = len(fastqfile)
barcodes = []
fp = open(barcodefile)
for row in fp:
id, seq = row.split()
for s in unpack_ambiguous(seq):
barcodes.append(BarcodeLine._make((id, s)))
nbc = len(barcodes)
logging.debug("Imported {0} barcodes (ambiguous codes expanded).".format(nbc))
checkprefix = not opts.nocheckprefix
if checkprefix:
# Sanity check of shared prefix
excludebarcodes = []
for bc in barcodes:
exclude = []
for s in barcodes:
if bc.id == s.id:
continue
assert bc.seq != s.seq
if s.seq.startswith(bc.seq) and len(s.seq) > len(bc.seq):
logging.error("{0} shares same prefix as {1}.".format(s, bc))
exclude.append(s)
excludebarcodes.append(exclude)
else:
excludebarcodes = nbc * [[]]
outdir = opts.outdir
mkdir(outdir)
cpus = opts.cpus
logging.debug("Create a pool of {0} workers.".format(cpus))
pool = Pool(cpus)
if paired:
assert nfiles == 2, "You asked for --paired, but sent in {0} files".\
format(nfiles)
split_fun = append_barcode_paired if append else split_barcode_paired
mode = "paired"
else:
split_fun = split_barcode
mode = "single"
logging.debug("Mode: {0}".format(mode))
pool.map(split_fun, \
zip(barcodes, excludebarcodes,
nbc * [outdir], nbc * [fastqfile]))
|
def split(args)
|
%prog split barcodefile fastqfile1 ..
Deconvolute fastq files into subsets of fastq reads, based on the barcodes
in the barcodefile, which is a two-column file like:
ID01 AGTCCAG
Input fastqfiles can be several files. Output files are ID01.fastq,
ID02.fastq, one file per line in barcodefile.
When --paired is set, the number of input fastqfiles must be two. Output
file (the deconvoluted reads) will be in interleaved format.
| 3.162382 | 3.047901 | 1.03756 |
p = OptionParser(merge.__doc__)
p.set_outdir(outdir="outdir")
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
folders = args
outdir = opts.outdir
mkdir(outdir)
files = flatten(glob("{0}/*.*.fastq".format(x)) for x in folders)
files = list(files)
key = lambda x: op.basename(x).split(".")[0]
files.sort(key=key)
for id, fns in groupby(files, key=key):
fns = list(fns)
outfile = op.join(outdir, "{0}.fastq".format(id))
FileMerger(fns, outfile=outfile).merge(checkexists=True)
|
def merge(args)
|
%prog merge folder1 ...
Consolidate split contents in the folders. The folders can be generated by
the split() process and several samples may be in separate fastq files. This
program merges them.
| 3.191673 | 2.864713 | 1.114134 |
_p = set()
for x in p:
_p |= set(range(x - tolerance, x + tolerance + 1))
return _p
|
def expand_alleles(p, tolerance=0)
|
Returns expanded allele set given the tolerance.
| 3.958681 | 3.49059 | 1.134101 |
_p1 = expand_alleles(p1, tolerance=tolerance)
_p2 = expand_alleles(p2, tolerance=tolerance)
possible_progenies = set(tuple(sorted(x)) for x in product(_p1, _p2))
if x_linked: # Add all hemizygotes
possible_progenies |= set((x, x) for x in (set(_p1) | set(_p2)))
return possible_progenies
|
def get_progenies(p1, p2, x_linked=False, tolerance=0)
|
Returns possible progenies in a trio.
| 3.126399 | 2.886915 | 1.082955 |
p = OptionParser(mendelian_errors2.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="7x7", format="png")
if len(args) != 1:
sys.exit(not p.print_help())
csvfile, = args
fig, ax = plt.subplots(ncols=1, nrows=1,
figsize=(iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
ymin = -.2
df = pd.read_csv(csvfile)
data = []
for i, d in df.iterrows():
tred = d['Name']
motif = d['Motif']
if tred in ignore:
logging.debug("Ignore {}".format(d['TRED']))
continue
if len(motif) > 6:
if "/" in motif: # CTG/CAG
motif = motif.split("/")[0]
else:
motif = motif[:6] + ".."
xtred = "{} {}".format(tred, motif)
accuracy = d[-1]
data.append((xtred, accuracy))
key = lambda x: float(x.rstrip('%'))
data.sort(key=lambda x: key(x[-1]))
print(data)
treds, accuracies = zip(*data)
ntreds = len(treds)
ticks = range(ntreds)
accuracies = [key(x) for x in accuracies]
for tick, accuracy in zip(ticks, accuracies):
ax.plot([tick, tick], [ymin, accuracy],
"-", lw=2, color='lightslategray')
trios, = ax.plot(accuracies, "o", mfc='w', mec='b')
ax.set_title("Mendelian errors based on STR calls in trios in HLI samples")
ntrios = "Mendelian errors in 802 trios"
ax.legend([trios], [ntrios], loc='best')
ax.set_xticks(ticks)
ax.set_xticklabels(treds, rotation=45, ha="right", size=8)
ax.set_yticklabels([int(x) for x in ax.get_yticks()], family='Helvetica')
ax.set_ylabel("Mendelian errors (\%)")
ax.set_ylim(ymin, 100)
normalize_axes(root)
image_name = "mendelian_errors2." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def mendelian_errors2(args)
|
%prog mendelian_errors2 Trios.summary.csv
Plot Mendelian errors as calculated by mendelian(). File
`Trios.summary.csv` looks like:
Name,Motif,Inheritance,N_Correct,N_Error,N_missing,ErrorRate [N_Error / (N_Correct + N_Error))]
DM1,CTG,AD,790,12,0,1.5%
DM2,CCTG,AD,757,45,0,5.6%
DRPLA,CAG,AD,791,11,0,1.4%
| 3.437916 | 3.297673 | 1.042528 |
call_to_ints = lambda x: tuple(int(_) for _ in x.split("|") if _ != ".")
tp1_sex, tp1_call = tp1[:2]
tp2_sex, tp2_call = tp2[:2]
tpp_sex, tpp_call = tpp[:2]
# tp1_evidence = sum(int(x) for x in tp1[2:])
# tp2_evidence = sum(int(x) for x in tp2[2:])
# tpp_evidence = sum(int(x) for x in tpp[2:])
tp1_call = call_to_ints(tp1_call)
tp2_call = call_to_ints(tp2_call)
tpp_call = call_to_ints(tpp_call)
possible_progenies = set(tuple(sorted(x)) \
for x in product(tp1_call, tp2_call))
if is_xlinked and tpp_sex == "Male":
possible_progenies = set(tuple((x,)) for x in tp1_call)
if -1 in tp1_call or -1 in tp2_call or -1 in tpp_call:
tag = "Missing"
# elif tp1_evidence < 2 or tp2_evidence < 2 or tpp_evidence < 2:
# tag = "Missing"
else:
tag = "Correct" if tpp_call in possible_progenies else "Error"
return tag
|
def mendelian_check(tp1, tp2, tpp, is_xlinked=False)
|
Compare TRED calls for Parent1, Parent2 and Proband.
| 2.425333 | 2.359935 | 1.027712 |
return (rname == target_chr) and \
(target_start <= rstart <= target_end)
|
def in_region(rname, rstart, target_chr, target_start, target_end)
|
Quick check if a point is within the target region.
| 2.752519 | 2.604005 | 1.057033 |
import pysam
from jcvi.utils.iter import pairwise
from jcvi.utils.grouper import Grouper
p = OptionParser(alts.__doc__)
p.set_outfile(outfile="TREDs.alts.csv")
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
treds = args
repo = TREDsRepo()
if "all" in treds:
treds = repo.names
pad_left, pad_right = 1000, 10000
READLEN = 150
fw = must_open(opts.outfile, "w")
print("TRED,alts,alts.hg19", file=fw) # Header
for tred in treds:
ref_regions = []
# Simulate a depth 1000 BAM with 300 repeats
for ref in ("hg38", "hg19"):
# This is the region that involves the TRED locus
repo = TREDsRepo(ref=ref)
t = repo[tred]
chr, start, end = t.chr, t.repeat_start, t.repeat_end
start -= pad_left
end += pad_right
tred_ref = "{}_{}".format(tred, ref)
if not op.isdir(tred_ref):
simulate([tred_ref, "300", "300", "--depth=1000",
"--ref={}".format(ref), "--tred={}".format(tred)])
bamfile = op.join(tred_ref, "300.bam")
# Parse the BAM file, retrieve all regions
bamfile = pysam.AlignmentFile(bamfile, "rb")
nreads = altreads = 0
alt_points = set()
for read in bamfile.fetch():
fname, fstart = bamfile.getrname(read.reference_id), read.reference_start
rname, rstart = bamfile.getrname(read.next_reference_id), read.next_reference_start
f_in_region = in_region(fname, fstart, chr, start, end)
r_in_region = in_region(rname, rstart, chr, start, end)
if (not f_in_region) and r_in_region:
alt_points.add((fname, fstart))
altreads += 1
if (not r_in_region) and f_in_region:
alt_points.add((rname, rstart))
altreads += 1
nreads += 1
logging.debug("A total of {} reads ({} alts) processed".\
format(nreads, altreads))
alt_points = natsorted(alt_points)
# Chain these points together into regions
g = Grouper()
for a in alt_points:
g.join(a)
for a, b in pairwise(alt_points):
achr, apos = a
bchr, bpos = b
if achr != bchr:
continue
if (bpos - apos) > READLEN:
continue
g.join(a, b)
# All regions that contain ALT
alt_sum = 0
regions = []
for c in g:
chr_min, pos_min = min(c)
chr_max, pos_max = max(c)
assert chr_min, chr_max
pos_min -= READLEN
pos_max += READLEN
regions.append((chr_min, pos_min, pos_max))
alt_sum += pos_max - pos_min
regions = "|".join(["{}:{}-{}".format(c, start, end) \
for c, start, end in natsorted(regions)])
ref_regions.append(regions)
line = ",".join([tred] + ref_regions)
print(line, file=sys.stderr)
print(line, file=fw)
logging.debug("Alternative region sum: {} bp".format(alt_sum))
fw.close()
|
def alts(args)
|
%prog alts HD
Build alternative loci based on simulation data.
| 3.054109 | 3.034291 | 1.006531 |
import seaborn as sns
p = OptionParser(depth.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="14x14")
if len(args) != 1:
sys.exit(not p.print_help())
tsvfile, = args
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2,
figsize=(iopts.w, iopts.h))
plt.tight_layout(pad=6)
data = pd.read_csv(tsvfile, sep="\t", low_memory=False)
ids, treds = read_treds()
for (dp, ax, title) in zip(("FDP", "PDP", "RDP", "PEDP"),
(ax1, ax2, ax3, ax4),
("Spanning reads", "Partial reads",
"Repeat-only reads", "Paired-end reads")):
logging.debug("Build {}".format(title))
# Construct related data structure
xd = [] # (tred, dp)
mdp = [] # (tred, median_dp)
for tred, motif in zip(treds["abbreviation"], treds["motif"]):
if tred in ignore:
logging.debug("Ignore {}".format(tred))
continue
if len(motif) > 4:
if "/" in motif: # CTG/CAG
motif = motif.split("/")[0]
else:
motif = motif[:4] + ".."
xtred = "{} {}".format(tred, motif)
md = [x for x in data[tred + '.' + dp] if x >= 0]
subsample = 10000 if dp == "RDP" else 1000
md = sample(md, subsample)
pmd = [x for x in md if x > 0]
median = np.median(pmd) if pmd else 0
mdp.append((xtred, median))
for d in md:
xd.append((xtred, d))
# Determine order
mdp.sort(key=lambda x: x[1])
order, mdp = zip(*mdp)
# OK, now plot
xt, xd = zip(*xd)
sns.boxplot(xt, xd, ax=ax, order=order, fliersize=2)
xticklabels = ax.get_xticklabels()
ax.set_xticklabels(xticklabels, rotation=45, ha="right")
ax.set_title("Number of {} per locus".format(title), size=18)
ylim = 30 if dp == "RDP" else 100
ax.set_ylim(0, ylim)
yticklabels = [int(x) for x in ax.get_yticks()]
ax.set_yticklabels(yticklabels, family='Helvetica', size=14)
root = fig.add_axes([0, 0, 1, 1])
pad = .04
panel_labels(root, ((pad, 1 - pad, "A"), (1 / 2. + pad / 2, 1 - pad, "B"),
(pad, .5 - pad / 2, "C"), (1 / 2. + pad / 2, .5 - pad / 2, "D")))
normalize_axes(root)
image_name = "depth." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def depth(args)
|
%prog depth DP.tsv
Plot read depths across all TREDs.
| 3.201663 | 3.04475 | 1.051536 |
p = OptionParser(mendelian_errors.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="6x6")
if len(args) != 1:
sys.exit(not p.print_help())
csvfile, = args
fig, ax = plt.subplots(ncols=1, nrows=1,
figsize=(iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
ymin = -.2
df = pd.read_csv(csvfile)
data = []
for i, d in df.iterrows():
if d['TRED'].split()[0] in ignore:
logging.debug("Ignore {}".format(d['TRED']))
continue
data.append(d)
treds, duos, trios = zip(*data)
ntreds = len(treds)
ticks = range(ntreds)
treds = [x.split()[0] for x in treds]
duos = [float(x.rstrip('%')) for x in duos]
trios = [float(x.rstrip('%')) for x in trios]
for tick, duo, trio in zip(ticks, duos, trios):
m = max(duo, trio)
ax.plot([tick, tick], [ymin, m], "-", lw=2, color='lightslategray')
duos, = ax.plot(duos, "o", mfc='w', mec='g')
trios, = ax.plot(trios, "o", mfc='w', mec='b')
ax.set_title("Mendelian errors based on trios and duos in HLI samples")
nduos = "Mendelian errors in 362 duos"
ntrios = "Mendelian errors in 339 trios"
ax.legend([trios, duos], [ntrios, nduos], loc='best')
ax.set_xticks(ticks)
ax.set_xticklabels(treds, rotation=45, ha="right", size=8)
yticklabels = [int(x) for x in ax.get_yticks()]
ax.set_yticklabels(yticklabels, family='Helvetica')
ax.set_ylabel("Mendelian errors (\%)")
ax.set_ylim(ymin, 20)
normalize_axes(root)
image_name = "mendelian_errors." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def mendelian_errors(args)
|
%prog mendelian_errors STR-Mendelian-errors.csv
Plot Mendelian errors as calculated by mendelian(). File
`STR-Mendelian-errors.csv` looks like:
,Duos - Mendelian errors,Trios - Mendelian errors
SCA36,1.40%,0.60%
ULD,0.30%,1.50%
BPES,0.00%,1.80%
One TRED disease per line, followed by duo errors and trio errors.
| 2.710426 | 2.58465 | 1.048663 |
self_key = ["ChildSelf"]
keys = family.keys()
spouse_key = [x for x in keys if ("spouse" in x.lower())]
assert len(spouse_key) <= 1
parent_keys = [x for x in keys if \
("parent" in x.lower()) and ("grand" not in x.lower())]
sib_keys = [x for x in keys if ("sibling" in x.lower()) \
or ("twin" in x.lower())] + self_key
child_keys = [x for x in keys if \
("child" in x.lower()) and ("grand" not in x.lower()) \
and ("self" not in x.lower())]
for sk in sib_keys:
yield TrioOrDuo(parent_keys, [sk], family)
for ck in child_keys:
yield TrioOrDuo(self_key + spouse_key, [ck], family)
|
def extract_trios(family)
|
Identify all trios/duos inside a family, where a family contains dictionary
of relationship: individual, for example:
{
"ChildSelf": "176531498",
"DzTwin": "176531497",
"Parent": "176449143"
}
| 3.457097 | 3.008599 | 1.149072 |
df = pd.read_csv(tsvfile, sep="\t", index_col=0, dtype={"SampleKey": str})
return df
|
def read_tred_tsv(tsvfile)
|
Read the TRED table into a dataframe.
| 3.893492 | 3.781091 | 1.029727 |
p = OptionParser(mendelian.__doc__)
p.add_option("--tolerance", default=0, type="int",
help="Tolernace for differences")
p.set_verbose()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
triosjson, tredtsv = args
verbose = opts.verbose
tolerance = opts.tolerance
js = json.load(open(triosjson))
allterms = set()
duos = set()
trios = set()
for v in js:
allterms |= set(v.keys())
for trio_or_duo in extract_trios(v):
assert len(trio_or_duo) in (2, 3)
if len(trio_or_duo) == 2:
duos.add(trio_or_duo)
else:
trios.add(trio_or_duo)
# print "\n".join(allterms)
print("A total of {} families imported".format(len(js)))
# Read in all data
df = read_tred_tsv(tredtsv)
ids, treds = read_treds()
table = {}
for tred, inheritance in zip(treds["abbreviation"], treds["inheritance"]):
x_linked = inheritance[0] == 'X' # X-linked
name = tred
if x_linked:
name += " (X-linked)"
print("[TRED] {}".format(name))
n_total = len(duos)
n_error = 0
for duo in duos:
n_error += duo.check_mendelian(df, tred, tolerance=tolerance,
x_linked=x_linked, verbose=verbose)
tag = "Duos - Mendelian errors"
print("{}: {}".format(tag, percentage(n_error, n_total)))
duo_error = percentage(n_error, n_total, mode=2)
table[(name, tag)] = "{0:.1f}%".format(duo_error)
n_total = len(trios)
n_error = 0
for trio in trios:
n_error += trio.check_mendelian(df, tred, tolerance=tolerance,
x_linked=x_linked, verbose=verbose)
tag = "Trios - Mendelian errors"
print("{}: {}".format(tag, percentage(n_error, n_total)))
trio_error = percentage(n_error, n_total, mode=2)
table[(name, tag)] = "{0:.1f}%".format(trio_error)
# Summarize
print(tabulate(table))
|
def mendelian(args)
|
%prog mendelian trios_candidate.json hli.20170424.tred.tsv
Calculate Mendelian errors based on trios and duos.
| 2.93967 | 2.717172 | 1.081886 |
p = OptionParser(mini.__doc__)
p.add_option("--pad", default=20000, type="int",
help="Add padding to the STR reigons")
p.add_option("--treds", default=None,
help="Extract specific treds, use comma to separate")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
bamfile, minibam = args
treds = opts.treds.split(",") if opts.treds else None
pad = opts.pad
bedfile = make_STR_bed(pad=pad, treds=treds)
get_minibam_bed(bamfile, bedfile, minibam)
logging.debug("Mini-BAM written to `{}`".format(minibam))
|
def mini(args)
|
%prog mini bamfile minibamfile
Prepare mini-BAMs that contain only the STR loci.
| 3.494931 | 2.879089 | 1.213902 |
p = OptionParser(likelihood.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="10x5",
style="white", cmap="coolwarm")
if len(args) != 0:
sys.exit(not p.print_help())
fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1,
figsize=(iopts.w, iopts.h))
plt.tight_layout(pad=4)
# Haploid model
LL, CI_h1, CI_h2, MLE = parse_log("100_100.log")
data = []
for k, v in LL.items():
data.append((k[0], v))
data.sort()
x, y = zip(*data)
x = np.array(x)
curve, = ax1.plot(x, y, "-", color=lsg, lw=2)
ax1.set_title("Simulated haploid ($h^{truth}=100$)")
h_hat, max_LL = max(data, key=lambda x: x[-1])
_, min_LL = min(data, key=lambda x: x[-1])
ymin, ymax = ax1.get_ylim()
ax1.set_ylim([ymin, ymax + 30])
LL_label = "log(Likelihood)"
ax1.plot([h_hat, h_hat], [ymin, max_LL], ":", color=lsg, lw=2)
ax1.text(h_hat, max_LL + 10, r"$\hat{h}=93$", color=lsg)
ax1.set_xlabel(r"$h$")
ax1.set_ylabel(LL_label)
a, b = CI_h1
ci = ax1.fill_between(x, [ymin] * len(x), y, where=(x >= a) & (x <= b),
color=lsg, alpha=.5)
ax1.legend([curve, ci], ["Likelihood curve", r'95$\%$ CI'], loc='best')
# Diploid model
LL, CI_h1, CI_h2, MLE = parse_log("100_20.log")
h_hat, max_LL = max(data, key=lambda x: x[-1])
_, min_LL = min(data, key=lambda x: x[-1])
data = np.ones((301, 301)) * min_LL
for k, v in LL.items():
a, b = k
data[a, b] = v
data[b, a] = v
data = mask_upper_triangle(data)
ax_imshow(ax2, data, opts.cmap, LL_label, 20, 104)
root = fig.add_axes([0, 0, 1, 1])
pad = .04
panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B")))
normalize_axes(root)
image_name = "likelihood." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def likelihood(args)
|
%prog likelihood
Plot likelihood surface. Look for two files in the current folder:
- 100_100.log, haploid model
- 100_20.log, diploid model
| 3.072207 | 2.815662 | 1.091114 |
from matplotlib import gridspec
p = OptionParser(likelihood2.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="10x5",
style="white", cmap="coolwarm")
if len(args) != 1:
sys.exit(not p.print_help())
jsonfile, = args
fig = plt.figure(figsize=(iopts.w, iopts.h))
gs = gridspec.GridSpec(2, 2)
ax1 = fig.add_subplot(gs[:, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[1, 1])
plt.tight_layout(pad=3)
pf = plot_panel(jsonfile, ax1, ax2, ax3, opts.cmap)
root = fig.add_axes([0, 0, 1, 1])
normalize_axes(root)
image_name = "likelihood2.{}.".format(pf) + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def likelihood2(args)
|
%prog likelihood2 100_20.json
Plot the likelihood surface and marginal distributions.
| 2.750187 | 2.524802 | 1.089268 |
from matplotlib import gridspec
p = OptionParser(likelihood3.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="10x10",
style="white", cmap="coolwarm")
if len(args) != 2:
sys.exit(not p.print_help())
jsonfile1, jsonfile2 = args
fig = plt.figure(figsize=(iopts.w, iopts.h))
gs = gridspec.GridSpec(9, 2)
ax1 = fig.add_subplot(gs[:4, 0])
ax2 = fig.add_subplot(gs[:2, 1])
ax3 = fig.add_subplot(gs[2:4, 1])
ax4 = fig.add_subplot(gs[5:, 0])
ax5 = fig.add_subplot(gs[5:7, 1])
ax6 = fig.add_subplot(gs[7:, 1])
plt.tight_layout(pad=2)
plot_panel(jsonfile1, ax1, ax2, ax3, opts.cmap)
plot_panel(jsonfile2, ax4, ax5, ax6, opts.cmap)
root = fig.add_axes([0, 0, 1, 1])
pad = .02
panel_labels(root, ((pad, 1 - pad, "A"), (pad, 4. / 9, "B")))
normalize_axes(root)
image_name = "likelihood3." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def likelihood3(args)
|
%prog likelihood3 140_20.json 140_70.json
Plot the likelihood surface and marginal distributions for two settings.
| 2.457937 | 2.289191 | 1.073714 |
p = OptionParser(diagram.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="8x4", format="png")
if len(args) != 0:
sys.exit(not p.print_help())
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
# Gauge on top, this is log-scale
yy = .7
yinterval = .1
height = .05
yp = yy - yinterval - height
canvas = .95
xstart = .025
convert = lambda x: xstart + x * canvas / 600
# Symbols
root.text(.5, .9, r"$L$: Read length, $F$: Flank size, $V$: Pair distance", ha="center")
root.text(.5, .85, r"ex. $L=150bp, F=9bp, V=500bp$", ha="center")
root.text(xstart + canvas, yy - height, "STR repeat length", ha="center",
color=lsg, size=10)
# Mark the key events
pad = .02
arrowlen = canvas * 1.05
arrowprops = dict(length_includes_head=True, width=.01, fc=lsg, lw=0,
head_length=arrowlen * .12, head_width=.04)
p = FancyArrow(xstart, yy, arrowlen, 0, shape="right", **arrowprops)
root.add_patch(p)
ppad = 30
keyevents = (( 0, 0, -1, r"$0$"),
(150 - 18, 150 - 18 - ppad, 0, r"$L - 2F$"),
(150 - 9, 150 - 9, 1, r"$L - F$"),
(150, 150 + ppad, 2, r"$L$"),
(500 - 9, 500 - 9, 3, r"$V - F$"),
)
for event, pos, i, label in keyevents:
_event = convert(event)
_pos = convert(pos)
root.plot((_event, _event), (yy - height / 4, yy + height / 4),
'-', color='k')
root.text(_pos, yy + pad, label, rotation=45, va="bottom", size=8)
if i < 0:
continue
ystart = yp - i * yinterval
root.plot((_event, _event), (ystart, yy - height / 4), ':', color=lsg)
# Range on bottom. These are simple 4 rectangles, with the range indicating
# the predictive range.
CLOSED, OPEN = range(2)
ranges = ((0, 150 - 18, CLOSED, "Spanning reads"),
(9, 150 - 9, OPEN, "Partial reads"),
(150, 500 - 9, CLOSED, "Repeat reads"),
(0, 500 - 9, CLOSED, "Paired-end reads"),
)
for start, end, starttag, label in ranges:
_start = convert(start)
_end = convert(end)
data = [[0., 1.], [0., 1.]] if starttag == OPEN else \
[[1., 0.], [1., 0.]]
root.imshow(data, interpolation='bicubic', cmap=plt.cm.Greens,
extent=[_start, _end, yp, yp + height])
root.text(_end + pad, yp + height / 2, label, va="center")
yp -= yinterval
normalize_axes(root)
image_name = "diagram." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def diagram(args)
|
%prog diagram
Plot the predictive power of various evidences.
| 3.933568 | 3.89674 | 1.009451 |
p = OptionParser(allelefreqall.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
reportfile, = args
treds, df = read_treds(reportfile)
# Prepare 5 pages, each page with 6 distributions
treds = sorted(treds)
count = 6
pdfs = []
for page in xrange(len(treds) / count + 1):
start = page * count
page_treds = treds[start: start + count]
if not page_treds:
break
allelefreq([",".join(page_treds), "--usereport", reportfile,
"--nopanels", "--figsize", "12x16"])
outpdf = "allelefreq.{}.pdf".format(page)
sh("mv allelefreq.pdf {}".format(outpdf))
pdfs.append(outpdf)
from jcvi.formats.pdf import cat
pf = op.basename(reportfile).split(".")[0]
finalpdf = pf + ".allelefreq.pdf"
logging.debug("Merging pdfs into `{}`".format(finalpdf))
cat(pdfs + ["-o", finalpdf, "--cleanup"])
|
def allelefreqall(args)
|
%prog allelefreqall HN_Platinum_Gold.20180525.tsv.report.txt
Plot all 30 STR allele frequencies.
| 4.114099 | 4.084572 | 1.007229 |
p = OptionParser(allelefreq.__doc__)
p.add_option("--nopanels", default=False, action="store_true",
help="No panel labels A, B, ...")
p.add_option("--usereport", help="Use allele frequency in report file")
opts, args, iopts = p.set_image_options(args, figsize="9x13")
if len(args) != 1:
sys.exit(not p.print_help())
loci, = args
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(ncols=2, nrows=3,
figsize=(iopts.w, iopts.h))
plt.tight_layout(pad=4)
if opts.usereport:
treds, df = read_treds(tredsfile=opts.usereport)
else:
treds, df = read_treds()
df = df.set_index(["abbreviation"])
axes = (ax1, ax2, ax3, ax4, ax5, ax6)
loci = loci.split(",")
for ax, locus in zip(axes, loci):
plot_allelefreq(ax, df, locus)
# Delete unused axes
for ax in axes[len(loci):]:
ax.set_axis_off()
root = fig.add_axes([0, 0, 1, 1])
pad = .03
if not opts.nopanels:
panel_labels(root, ((pad / 2, 1 - pad, "A"), (.5 + pad, 1 - pad, "B"),
(pad / 2, 2 / 3. - pad / 2, "C"), (.5 + pad, 2 / 3. - pad / 2, "D"),
(pad / 2, 1 / 3. , "E"), (.5 + pad, 1 / 3. , "F"),
))
normalize_axes(root)
image_name = "allelefreq." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def allelefreq(args)
|
%prog allelefreq HD,DM1,SCA1,SCA17,FXTAS,FRAXE
Plot the allele frequencies of some STRs.
| 2.65593 | 2.625992 | 1.011401 |
p = OptionParser(simulate.__doc__)
p.add_option("--method", choices=("wgsim", "eagle"), default="eagle",
help="Read simulator")
p.add_option("--ref", default="hg38", choices=("hg38", "hg19"),
help="Reference genome version")
p.add_option("--tred", default="HD", help="TRED locus")
add_simulate_options(p)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
rundir, startunits, endunits = args
ref = opts.ref
ref_fasta = "/mnt/ref/{}.upper.fa".format(ref)
startunits, endunits = int(startunits), int(endunits)
basecwd = os.getcwd()
mkdir(rundir)
os.chdir(rundir)
cwd = os.getcwd()
# TRED region (e.g. Huntington)
pad_left, pad_right = 1000, 10000
repo = TREDsRepo(ref=ref)
tred = repo[opts.tred]
chr, start, end = tred.chr, tred.repeat_start, tred.repeat_end
logging.debug("Simulating {}".format(tred))
fasta = Fasta(ref_fasta)
seq_left = fasta[chr][start - pad_left:start - 1]
seq_right = fasta[chr][end: end + pad_right]
motif = tred.repeat
simulate_method = wgsim if opts.method == "wgsim" else eagle
# Write fake sequence
for units in range(startunits, endunits + 1):
pf = str(units)
mkdir(pf)
os.chdir(pf)
seq = str(seq_left) + motif * units + str(seq_right)
fastafile = pf + ".fasta"
make_fasta(seq, fastafile, id=chr.upper())
# Simulate reads on it
simulate_method([fastafile, "--depth={}".format(opts.depth),
"--readlen={}".format(opts.readlen),
"--distance={}".format(opts.distance),
"--outfile={}".format(pf)])
read1 = pf + ".bwa.read1.fastq"
read2 = pf + ".bwa.read2.fastq"
samfile, _ = align([ref_fasta, read1, read2])
indexed_samfile = index([samfile])
sh("mv {} ../{}.bam".format(indexed_samfile, pf))
sh("mv {}.bai ../{}.bam.bai".format(indexed_samfile, pf))
os.chdir(cwd)
shutil.rmtree(pf)
os.chdir(basecwd)
|
def simulate(args)
|
%prog simulate run_dir 1 300
Simulate BAMs with varying inserts with dwgsim. The above command will
simulate between 1 to 300 CAGs in the HD region, in a directory called
`run_dir`.
| 3.401989 | 3.316764 | 1.025695 |
p = OptionParser(mergebam.__doc__)
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) not in (2, 3):
sys.exit(not p.print_help())
if len(args) == 2:
idir1, outdir = args
dir1 = [idir1] if idir1.endswith(".bam") else iglob(idir1, "*.bam")
logging.debug("Homozygous mode")
dir2 = [""] * len(dir1)
elif len(args) == 3:
idir1, idir2, outdir = args
dir1 = [idir1] if idir1.endswith(".bam") else iglob(idir1, "*.bam")
dir2 = [idir2] if idir2.endswith(".bam") else iglob(idir2, "*.bam")
assert len(dir2) == 1, "Second pile must contain a single bam"
dir2 = [idir2] * len(dir1)
assert len(dir1) == len(dir2), "Two piles must contain same number of bams"
cmd = "samtools merge {} {} {} && samtools index {}"
cmds = []
mkdir(outdir)
for a, b in zip(dir1, dir2):
ia = op.basename(a).split(".")[0]
ib = op.basename(b).split(".")[0] if b else ia
outfile = op.join(outdir, "{}_{}.bam".format(ia, ib))
cmds.append(cmd.format(outfile, a, b, outfile))
p = Parallel(cmds, cpus=opts.cpus)
p.run()
|
def mergebam(args)
|
%prog mergebam dir1 homo_outdir
or
%prog mergebam dir1 dir2/20.bam het_outdir
Merge sets of BAMs to make diploid. Two modes:
- Homozygous mode: pair-up the bams in the two folders and merge
- Heterozygous mode: pair the bams in first folder with a particular bam
| 2.362583 | 2.285603 | 1.033681 |
p = OptionParser(batchlobstr.__doc__)
p.add_option("--haploid", default="chrY,chrM",
help="Use haploid model for these chromosomes")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bamlist, = args
cmd = "python -m jcvi.variation.str lobstr TREDs"
cmd += " --input_bam_path {}"
cmd += " --haploid {}".format(opts.haploid)
cmd += " --simulation"
cmds = [cmd.format(x.strip()) for x in open(bamlist).readlines()]
p = Parallel(cmds, cpus=opts.cpus)
p.run()
|
def batchlobstr(args)
|
%prog batchlobstr bamlist
Run lobSTR on a list of BAMs. The corresponding batch command for TREDPARSE:
$ tred.py bamlist --haploid chr4 --workdir tredparse_results
| 3.976732 | 3.606621 | 1.10262 |
from jcvi.variation.str import LobSTRvcf
p = OptionParser(compilevcf.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
folder, = args
vcf_files = iglob(folder, "*.vcf,*.vcf.gz")
for vcf_file in vcf_files:
try:
p = LobSTRvcf(columnidsfile=None)
p.parse(vcf_file, filtered=False)
res = p.items()
if res:
k, v = res[0]
res = v.replace(',', '/')
else:
res = "-1/-1"
num = op.basename(vcf_file).split(".")[0]
print(num, res)
except (TypeError, AttributeError) as e:
p = TREDPARSEvcf(vcf_file)
continue
|
def compilevcf(args)
|
%prog compilevcf dir
Compile vcf outputs into lists.
| 4.953265 | 4.859082 | 1.019383 |
p = OptionParser(evidences.__doc__)
p.add_option("--csv", default="hli.20170328.tred.tsv",
help="TRED csv output to plot")
opts, args, iopts = p.set_image_options(args, format="pdf")
if len(args) != 0:
sys.exit(not p.print_help())
format = iopts.format
# Extract sample coverage first
df = pd.read_csv("qc-export-MeanCoverage.csv", header=None,
names=["Samplekey", "MeanCoverage"], index_col=0)
# Find coverage for HD
xf = pd.read_csv(opts.csv, sep="\t", index_col=0)
dp = {}
tred = "HD"
for sk, row in xf.iterrows():
sk = str(sk)
a1 = row[tred + ".1"]
a2 = row[tred + ".2"]
fdp = row[tred + ".FDP"]
pdp = row[tred + ".PDP"]
pedp = row[tred + ".PEDP"]
dp[sk] = (a1, a2, fdp, pdp, pedp)
# Build a consolidated dataframe
ef = pd.DataFrame.from_dict(dp, orient="index")
ef.columns = [tred + ".1", tred + ".2", tred + ".FDP",
tred + ".PDP", tred + ".PEDP"]
ef.index.name = "SampleKey"
mf = df.merge(ef, how="right", left_index=True, right_index=True)
# Plot a bunch of figures
outdir = "output"
mkdir(outdir)
xlim = ylim = (0, 100)
draw_jointplot(outdir + "/A", "MeanCoverage", "HD.FDP",
data=mf, xlim=xlim, ylim=ylim, format=format)
draw_jointplot(outdir + "/B", "MeanCoverage", "HD.PDP",
data=mf, color='g', xlim=xlim, ylim=ylim, format=format)
draw_jointplot(outdir + "/C", "MeanCoverage", "HD.PEDP",
data=mf, color='m', xlim=xlim, ylim=ylim, format=format)
xlim = (0, 50)
draw_jointplot(outdir + "/D", "HD.2", "HD.FDP",
data=mf, xlim=xlim, ylim=ylim, format=format)
draw_jointplot(outdir + "/E", "HD.2", "HD.PDP",
data=mf, color='g', xlim=xlim, ylim=ylim, format=format)
draw_jointplot(outdir + "/F", "HD.2", "HD.PEDP",
data=mf, color='m', xlim=xlim, ylim=ylim, format=format)
|
def evidences(args)
|
%prog evidences
Plot distribution of evidences against two factors:
- Sample mean coverage
- Longer allele
| 2.590734 | 2.572255 | 1.007184 |
import seaborn as sns
sns.set_context('talk')
plt.clf()
register = {"MeanCoverage": "Sample Mean Coverage",
"HD.FDP": "Depth of full spanning reads",
"HD.PDP": "Depth of partial spanning reads",
"HD.PEDP": "Depth of paired-end reads",
"HD.2": "Repeat size of the longer allele"}
g = sns.jointplot(x, y, data=data, kind=kind, color=color,
xlim=xlim, ylim=ylim)
g.ax_joint.set_xlabel(register.get(x, x))
g.ax_joint.set_ylabel(register.get(y, y))
savefig(figname + "." + format, cleanup=False)
|
def draw_jointplot(figname, x, y, data=None, kind="reg", color=None,
xlim=None, ylim=None, format="pdf")
|
Wraps around sns.jointplot
| 4.202741 | 4.260574 | 0.986426 |
a, b = s.split("|")
ai, aj = a.split("-")
bi, bj = b.split("-")
los = [int(ai), int(bi)]
his = [int(aj), int(bj)]
if exclude and exclude in los:
los.remove(exclude)
if exclude and exclude in his:
his.remove(exclude)
return max(los), max(his)
|
def get_lo_hi_from_CI(s, exclude=None)
|
Parse the confidence interval from CI.
>>> get_lo_hi_from_CI("20-20/40-60")
(40, 60)
| 2.461694 | 2.867074 | 0.858608 |
p = OptionParser(compare.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="10x10")
if len(args) != 1:
sys.exit(not p.print_help())
datafile, = args
pf = datafile.rsplit(".", 1)[0]
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2,
figsize=(iopts.w, iopts.h))
plt.tight_layout(pad=3)
bbox = {'facecolor': 'tomato', 'alpha': .2, 'ec': 'w'}
pad = 2
# Read benchmark data
df = pd.read_csv("Evaluation.csv")
truth = df["Truth"]
axes = (ax1, ax2, ax3, ax4)
progs = ("Manta", "Isaac", "GATK", "lobSTR")
markers = ("bx-", "yo-", "md-", "c+-")
for ax, prog, marker in zip(axes, progs, markers):
ax.plot(truth, df[prog], marker)
ax.plot(truth, truth, 'k--') # to show diagonal
ax.axhline(infected_thr, color='tomato')
ax.text(max(truth) - pad, infected_thr + pad, 'Risk threshold',
bbox=bbox, ha="right")
ax.axhline(ref_thr, color='tomato')
ax.text(max(truth) - pad, ref_thr - pad, 'Reference repeat count',
bbox=bbox, ha="right", va="top")
ax.set_title(SIMULATED_HAPLOID)
ax.set_xlabel(r'Num of CAG repeats inserted ($\mathit{h}$)')
ax.set_ylabel('Num of CAG repeats called')
ax.legend([prog, 'Truth'], loc='best')
root = fig.add_axes([0, 0, 1, 1])
pad = .03
panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B"),
(pad / 2, 1 / 2., "C"), (1 / 2., 1 / 2. , "D")))
normalize_axes(root)
image_name = pf + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def compare(args)
|
%prog compare Evaluation.csv
Compare performances of various variant callers on simulated STR datasets.
| 3.800547 | 3.429311 | 1.108254 |
p = OptionParser(compare2.__doc__)
p.add_option('--maxinsert', default=300, type="int",
help="Maximum number of repeats")
add_simulate_options(p)
opts, args, iopts = p.set_image_options(args, figsize="10x5")
if len(args) != 0:
sys.exit(not p.print_help())
depth = opts.depth
readlen = opts.readlen
distance = opts.distance
max_insert = opts.maxinsert
fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1,
figsize=(iopts.w, iopts.h))
plt.tight_layout(pad=2)
# ax1: lobSTR vs TREDPARSE with haploid model
lobstr_results = parse_results("lobstr_results_homo.txt")
tredparse_results = parse_results("tredparse_results_homo.txt")
title = SIMULATED_HAPLOID + \
r" ($D=%s\times, L=%dbp, V=%dbp$)" % (depth, readlen, distance)
plot_compare(ax1, title, tredparse_results, lobstr_results,
max_insert=max_insert)
# ax2: lobSTR vs TREDPARSE with diploid model
lobstr_results = parse_results("lobstr_results_het.txt", exclude=20)
tredparse_results = parse_results("tredparse_results_het.txt", exclude=20)
title = SIMULATED_DIPLOID + \
r" ($D=%s\times, L=%dbp, V=%dbp$)" % (depth, readlen, distance)
plot_compare(ax2, title, tredparse_results, lobstr_results,
max_insert=max_insert)
for ax in (ax1, ax2):
ax.set_xlim(0, max_insert)
ax.set_ylim(0, max_insert)
root = fig.add_axes([0, 0, 1, 1])
pad = .03
panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B")))
normalize_axes(root)
image_name = "tredparse." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def compare2(args)
|
%prog compare2
Compare performances of various variant callers on simulated STR datasets.
| 2.679372 | 2.579708 | 1.038634 |
p = OptionParser(power.__doc__)
p.add_option('--maxinsert', default=300, type="int",
help="Maximum number of repeats")
add_simulate_options(p)
opts, args, iopts = p.set_image_options(args, figsize="10x10", format="png")
if len(args) != 0:
sys.exit(not p.print_help())
max_insert = opts.maxinsert
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2,
figsize=(iopts.w, iopts.h))
plt.tight_layout(pad=3)
color = "lightslategray"
# ax1: Spanning
tredparse_results = parse_results("tredparse_results_het-spanning.txt")
title = SIMULATED_DIPLOID + " (Sub-model 1: Spanning reads)"
plot_compare(ax1, title, tredparse_results, None, color=color,
max_insert=max_insert, risk=False)
# ax2: Partial
tredparse_results = parse_results("tredparse_results_het-partial.txt", exclude=20)
title = SIMULATED_DIPLOID + " (Sub-model 2: Partial reads)"
plot_compare(ax2, title, tredparse_results, None, color=color,
max_insert=max_insert, risk=False)
# ax3: Repeat
tredparse_results = parse_results("tredparse_results_het-repeat.txt", exclude=20)
# HACK (repeat reads won't work under 50)
tredparse_results = [x for x in tredparse_results if x[0] > 50]
title = SIMULATED_DIPLOID + " (Sub-model 3: Repeat-only reads)"
plot_compare(ax3, title, tredparse_results, None, color=color,
max_insert=max_insert, risk=False)
# ax4: Pair
tredparse_results = parse_results("tredparse_results_het-pair.txt", exclude=20)
title = SIMULATED_DIPLOID + " (Sub-model 4: Paired-end reads)"
plot_compare(ax4, title, tredparse_results, None, color=color,
max_insert=max_insert, risk=False)
for ax in (ax1, ax2, ax3, ax4):
ax.set_xlim(0, max_insert)
ax.set_ylim(0, max_insert)
root = fig.add_axes([0, 0, 1, 1])
pad = .03
panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B"),
(pad / 2, 1 / 2. , "C"), (1 / 2., 1 / 2. , "D")))
normalize_axes(root)
image_name = "power." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def power(args)
|
%prog power
Compare performances of various variant callers on simulated STR datasets.
This compares the power of various evidence types.
| 2.410269 | 2.356353 | 1.022881 |
p = OptionParser(tredparse.__doc__)
p.add_option('--maxinsert', default=300, type="int",
help="Maximum number of repeats")
add_simulate_options(p)
opts, args, iopts = p.set_image_options(args, figsize="10x10")
if len(args) != 0:
sys.exit(not p.print_help())
depth = opts.depth
max_insert = opts.maxinsert
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2,
figsize=(iopts.w, iopts.h))
plt.tight_layout(pad=3)
# ax1: lobSTR vs TREDPARSE with haploid model
lobstr_results = parse_results("lobstr_results_homo-20x-150bp-500bp.txt")
tredparse_results = parse_results("tredparse_results_homo-20x-150bp-500bp.txt")
title = SIMULATED_HAPLOID + r" (Depth=$%s\times$)" % depth
plot_compare(ax1, title, tredparse_results, lobstr_results,
max_insert=max_insert)
# ax2: lobSTR vs TREDPARSE with diploid model (depth=20x)
lobstr_results = parse_results("lobstr_results_het-20x-150bp-500bp.txt", exclude=20)
tredparse_results = parse_results("tredparse_results_het-20x-150bp-500bp.txt", exclude=20)
title = SIMULATED_DIPLOID + r" (Depth=$%s\times$)" % depth
plot_compare(ax2, title, tredparse_results, lobstr_results,
max_insert=max_insert)
# ax3: lobSTR vs TREDPARSE with diploid model (depth=5x)
lobstr_results = parse_results("lobstr_results_het-5x-150bp-500bp.txt", exclude=20)
tredparse_results = parse_results("tredparse_results_het-5x-150bp-500bp.txt", exclude=20)
title = SIMULATED_DIPLOID + r" (Depth=$%s\times$)" % 5
plot_compare(ax3, title, tredparse_results, lobstr_results,
max_insert=max_insert)
# ax4: lobSTR vs TREDPARSE with diploid model (depth=80x)
lobstr_results = parse_results("lobstr_results_het-80x-150bp-500bp.txt", exclude=20)
tredparse_results = parse_results("tredparse_results_het-80x-150bp-500bp.txt", exclude=20)
title = SIMULATED_DIPLOID + r" (Depth=$%s\times$)" % 80
plot_compare(ax4, title, tredparse_results, lobstr_results,
max_insert=max_insert)
for ax in (ax1, ax2, ax3, ax4):
ax.set_xlim(0, max_insert)
ax.set_ylim(0, max_insert)
root = fig.add_axes([0, 0, 1, 1])
pad = .03
panel_labels(root, ((pad / 2, 1 - pad, "A"), (1 / 2., 1 - pad, "B"),
(pad / 2, 1 / 2. , "C"), (1 / 2., 1 / 2. , "D")))
normalize_axes(root)
image_name = "tredparse." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def tredparse(args)
|
%prog tredparse
Compare performances of various variant callers on simulated STR datasets.
Adds coverage comparisons as panel C and D.
| 1.910129 | 1.86906 | 1.021973 |
from jcvi.utils.cbook import percentage
if summary:
unique = len(data)
total = sum(data)
# Print out a distribution
print("Unique: {0}".format(percentage(unique, total)), file=sys.stderr)
bins = defaultdict(int)
for d in data:
logd = int(log(d, base))
bins[logd] += 1
x, y = [], []
for size, number in sorted(bins.items()):
lb, ub = base ** size, base ** (size + 1)
x.append((lb, ub))
y.append(number)
asciiplot(x, y, title=title)
|
def loghistogram(data, base=2, ascii=True, title="Counts", summary=False)
|
bins is a dictionary with key: log(x, base), value: counts.
| 3.783378 | 3.657698 | 1.03436 |
'''
Generate stem and leaf plot given a collection of numbers
'''
assert bins > 0
range = vmax - vmin
step = range * 1. / bins
if isinstance(range, int):
step = int(ceil(step))
step = step or 1
bins = np.arange(vmin, vmax + step, step)
hist, bin_edges = np.histogram(data, bins=bins)
# By default, len(bin_edges) = len(hist) + 1
bin_edges = bin_edges[:len(hist)]
asciiplot(bin_edges, hist, digit=digit, title=title)
print("Last bin ends in {0}, inclusive.".format(vmax), file=sys.stderr)
return bin_edges, hist
|
def stem_leaf_plot(data, vmin, vmax, bins, digit=1, title=None)
|
Generate stem and leaf plot given a collection of numbers
| 4.550087 | 3.976255 | 1.144315 |
if ascii:
return texthistogram([numberfile], vmin, vmax, title=title,
bins=bins, skip=skip, col=col, base=base)
data, vmin, vmax = get_data(numberfile, vmin, vmax, skip=skip, col=col)
outfile = numberfile + ".base{0}.{1}".format(base, outfmt) \
if base else numberfile + ".pdf"
template = histogram_log_template if base else histogram_template
rtemplate = RTemplate(template, locals())
rtemplate.run()
|
def histogram(numberfile, vmin, vmax, xlabel, title, outfmt="pdf",
bins=50, skip=0, col=0, ascii=False, base=0, fill="white")
|
Generate histogram using number from numberfile, and only numbers in the
range of (vmin, vmax)
| 4.436201 | 4.62039 | 0.960136 |
if ascii:
return texthistogram(numberfiles, vmin, vmax, title=title,
bins=bins, skip=skip)
newfile = "_".join(op.basename(x).split(".")[0] for x in numberfiles)
fw = open(newfile, "w")
print("{0}\tgrp".format(xlabel), file=fw)
if tags:
tags = tags.split(",")
for i, f in enumerate(numberfiles):
data, va, vb = get_data(f, vmin, vmax, skip=skip)
vmin = min(vmin, va)
vmax = max(vmax, vb)
fp = open(f)
if tags:
tag = tags[i]
else:
tag = op.basename(f).rsplit(".", 1)[0]
for row in fp:
val = row.strip()
print("\t".join((val, tag)), file=fw)
fw.close()
numberfile = newfile
outfile = numberfile + '.' + outfmt
if prefix:
outfile = prefix + outfile
htemplate = histogram_multiple_template_b \
if facet else histogram_multiple_template_a
rtemplate = RTemplate(htemplate, locals())
rtemplate.run()
|
def histogram_multiple(numberfiles, vmin, vmax, xlabel, title, outfmt="pdf",
tags=None, bins=20, skip=0, ascii=False,
facet=False, fill="white", prefix="")
|
Generate histogram using number from numberfile, and only numbers in the
range of (vmin, vmax). First combining multiple files.
| 3.785789 | 3.727287 | 1.015696 |
allowed_format = ("emf", "eps", "pdf", "png", "ps", \
"raw", "rgba", "svg", "svgz")
p = OptionParser(main.__doc__)
p.add_option("--skip", default=0, type="int",
help="skip the first several lines [default: %default]")
p.add_option("--col", default=0, type="int", help="Get the n-th column")
p.set_histogram()
p.add_option("--tags", dest="tags", default=None,
help="tags for data if multiple input files, comma sep")
p.add_option("--ascii", default=False, action="store_true",
help="print ASCII text stem-leaf plot [default: %default]")
p.add_option("--base", default="0", choices=("0", "2", "10"),
help="use logarithm axis with base, 0 to disable [default: %default]")
p.add_option("--facet", default=False, action="store_true",
help="place multiple histograms side-by-side [default: %default]")
p.add_option("--fill", default="white",
help="color of the bin [default: %default]")
p.add_option("--format", default="pdf", choices=allowed_format,
help="Generate image of format [default: %default]")
p.add_option("--quick", default=False, action="store_true",
help="Use quick plot, assuming bins are already counted")
p.add_option("--noprintstats", default=False, action="store_true",
help="Write basic stats when using --quick")
opts, args = p.parse_args()
if len(args) < 1:
sys.exit(not p.print_help())
skip = opts.skip
vmin, vmax = opts.vmin, opts.vmax
bins = opts.bins
xlabel, title = opts.xlabel, opts.title
title = title or args[0]
base = int(opts.base)
fileno = len(args)
if opts.quick:
assert fileno == 1, "Single input file expected using --quick"
filename = args[0]
figname = filename.rsplit(".", 1)[0] + ".pdf"
data = DictFile(filename, keycast=int, cast=int)
quickplot(data, vmin, vmax, xlabel, title, figname=figname,
print_stats=(not opts.noprintstats))
return
if fileno == 1:
histogram(args[0], vmin, vmax, xlabel, title, outfmt=opts.format,
bins=bins, skip=skip, ascii=opts.ascii,
base=base, fill=opts.fill, col=opts.col)
else:
histogram_multiple(args, vmin, vmax, xlabel, title, outfmt=opts.format,
tags=opts.tags, bins=bins, skip=skip, ascii=opts.ascii,
facet=opts.facet, fill=opts.fill)
|
def main()
|
%prog numbers1.txt number2.txt ...
Print histogram of the data files. The data files contain one number per
line. If more than one file is inputted, the program will combine the
histograms into the same plot.
| 3.243381 | 3.203633 | 1.012407 |
tlx, brx = [canvas2px(x, w, dpi) for x in (tlx, brx)]
tly, bry = [canvas2px(y, h, dpi) for y in (tly, bry)]
chr, bac_list = chr.split(':')
return '<area shape="rect" coords="' + \
",".join(str(x) for x in (tlx, tly, brx, bry)) \
+ '" href="#' + chr + '"' \
+ ' title="' + chr + ':' + str(segment_start) + '..' + str(segment_end) + '"' \
+ ' />'
|
def write_ImageMapLine(tlx, tly, brx, bry, w, h, dpi, chr, segment_start, segment_end)
|
Write out an image map area line with the coordinates passed to this
function
<area shape="rect" coords="tlx,tly,brx,bry" href="#chr7" title="chr7:100001..500001">
| 2.795164 | 2.469708 | 1.131779 |
p = OptionParser(batch.__doc__)
set_align_options(p)
p.set_sam_options()
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
ref_fasta, proj_dir, outdir = args
outdir = outdir.rstrip("/")
s3dir = None
if outdir.startswith("s3://"):
s3dir = outdir
outdir = op.basename(outdir)
mkdir(outdir)
mm = MakeManager()
for p, pf in iter_project(proj_dir):
targs = [ref_fasta] + p
cmd1, bamfile = mem(targs, opts)
if cmd1:
cmd1 = output_bam(cmd1, bamfile)
nbamfile = op.join(outdir, bamfile)
cmd2 = "mv {} {}".format(bamfile, nbamfile)
cmds = [cmd1, cmd2]
if s3dir:
cmd = "aws s3 cp {} {} --sse".format(nbamfile,
op.join(s3dir, bamfile))
cmds.append(cmd)
mm.add(p, nbamfile, cmds)
mm.write()
|
def batch(args)
|
%proj batch database.fasta project_dir output_dir
Run bwa in batch mode.
| 3.554724 | 3.451203 | 1.029995 |
p = OptionParser(index.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
dbfile, = args
check_index(dbfile)
|
def index(args)
|
%prog index database.fasta
Wrapper for `bwa index`. Same interface.
| 2.642164 | 2.345026 | 1.12671 |
p.add_option("--bwa", default="bwa", help="Run bwa at this path")
p.add_option("--rg", help="Read group")
p.add_option("--readtype",
choices=("pacbio", "pbread", "ont2d", "intractg"),
help="Read type in bwa-mem")
p.set_cutoff(cutoff=800)
|
def set_align_options(p)
|
Used in align() and batch()
| 7.068439 | 6.908607 | 1.023135 |
valid_modes = ("bwasw", "aln", "mem")
p = OptionParser(align.__doc__)
p.add_option("--mode", default="mem", choices=valid_modes, help="BWA mode")
set_align_options(p)
p.set_sam_options()
opts, args = p.parse_args(args)
mode = opts.mode
nargs = len(args)
if nargs not in (2, 3):
sys.exit(not p.print_help())
tag = "bwa-{0}: ".format(mode)
c = mem
if nargs == 2:
tag += "Single-end alignment"
if mode == "bwasw":
c = bwasw
elif mode == "aln":
c = samse
else:
assert mode != "bwasw", "Cannot use --bwasw with paired-end mode"
tag += "Paired-end alignment"
if mode == "aln":
c = sampe
logging.debug(tag)
cmd, samfile = c(args, opts)
if cmd:
cmd = output_bam(cmd, samfile)
bam = opts.bam
unmapped = opts.unmapped
sh(cmd)
if unmapped:
dbfile, readfile = args[:2]
mopts = [samfile, "--unmapped"]
if not bam:
mopts += ["--sam"]
mapped(mopts)
FileShredder([samfile])
return samfile, None
|
def align(args)
|
%prog align database.fasta read1.fq [read2.fq]
Wrapper for three modes of BWA - mem (default), aln, bwasw (long reads).
| 4.495648 | 4.058228 | 1.107786 |
dbfile, readfile = args
dbfile = check_index(dbfile)
saifile = check_aln(dbfile, readfile, cpus=opts.cpus)
samfile, _, unmapped = get_samfile(readfile, dbfile,
bam=opts.bam, unmapped=opts.unmapped)
if not need_update((dbfile, saifile), samfile):
logging.error("`{0}` exists. `bwa samse` already run.".format(samfile))
return "", samfile
cmd = "bwa samse {0} {1} {2}".format(dbfile, saifile, readfile)
cmd += " " + opts.extra
if opts.uniq:
cmd += " -n 1"
return cmd, samfile
|
def samse(args, opts)
|
%prog samse database.fasta short_read.fastq
Wrapper for `bwa samse`. Output will be short_read.sam.
| 5.516506 | 5.280905 | 1.044614 |
dbfile, read1file, read2file = args
dbfile = check_index(dbfile)
sai1file = check_aln(dbfile, read1file, cpus=opts.cpus)
sai2file = check_aln(dbfile, read2file, cpus=opts.cpus)
samfile, _, unmapped = get_samfile(read1file, dbfile,
bam=opts.bam, unmapped=opts.unmapped)
if not need_update((dbfile, sai1file, sai2file), samfile):
logging.error("`{0}` exists. `bwa samse` already run.".format(samfile))
return "", samfile
cmd = "bwa sampe " + " ".join((dbfile, sai1file, sai2file,
read1file, read2file))
cmd += " " + opts.extra
if opts.cutoff:
cmd += " -a {0}".format(opts.cutoff)
if opts.uniq:
cmd += " -n 1"
return cmd, samfile
|
def sampe(args, opts)
|
%prog sampe database.fasta read1.fq read2.fq
Wrapper for `bwa sampe`. Output will be read1.sam.
| 4.284782 | 3.892195 | 1.100865 |
dbfile, read1file = args[:2]
readtype = opts.readtype
pl = readtype or "illumina"
pf = op.basename(read1file).split(".")[0]
rg = opts.rg or r"@RG\tID:{0}\tSM:sm\tLB:lb\tPL:{1}".format(pf, pl)
dbfile = check_index(dbfile)
args[0] = dbfile
samfile, _, unmapped = get_samfile(read1file, dbfile,
bam=opts.bam, unmapped=opts.unmapped)
if not need_update(read1file, samfile):
logging.error("`{0}` exists. `bwa mem` already run.".format(samfile))
return "", samfile
cmd = "{} mem".format(opts.bwa)
'''
-M Mark shorter split hits as secondary (for Picard compatibility).
'''
cmd += " -M -t {0}".format(opts.cpus)
cmd += ' -R "{0}"'.format(rg)
if readtype:
cmd += " -x {0}".format(readtype)
cmd += " " + opts.extra
cmd += " ".join(args)
return cmd, samfile
|
def mem(args, opts)
|
%prog mem database.fasta read1.fq [read2.fq]
Wrapper for `bwa mem`. Output will be read1.sam.
| 5.403132 | 5.113921 | 1.056554 |
dbfile, readfile = args
dbfile = check_index(dbfile)
samfile, _, unmapped = get_samfile(readfile, dbfile,
bam=opts.bam, unmapped=opts.unmapped)
if not need_update(dbfile, samfile):
logging.error("`{0}` exists. `bwa bwasw` already run.".format(samfile))
return "", samfile
cmd = "bwa bwasw " + " ".join(args)
cmd += " -t {0}".format(opts.cpus)
cmd += " " + opts.extra
return cmd, samfile
|
def bwasw(args, opts)
|
%prog bwasw database.fasta long_read.fastq
Wrapper for `bwa bwasw`. Output will be long_read.sam.
| 5.497244 | 4.815858 | 1.141488 |
from jcvi.apps.base import mkdir
p = OptionParser(link.__doc__)
p.add_option("--dir",
help="Place links in a subdirectory [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
meta, = args
d = opts.dir
if d:
mkdir(d)
fp = open(meta)
cwd = op.dirname(get_abs_path(meta))
for row in fp:
source, target = row.split()
source = op.join(cwd, source)
if d:
target = op.join(d, target)
lnsf(source, target, log=True)
|
def link(args)
|
%prog link metafile
Link source to target based on a tabular file.
| 3.16386 | 2.964539 | 1.067235 |
p = OptionParser(touch.__doc__)
opts, args = p.parse_args(args)
fp = sys.stdin
for link_name in fp:
link_name = link_name.strip()
if not op.islink(link_name):
continue
if not op.exists(link_name):
continue
source = get_abs_path(link_name)
lnsf(source, link_name)
|
def touch(args)
|
find . -type l | %prog touch
Linux commands `touch` wouldn't modify mtime for links, this script can.
Use find to pipe in all the symlinks.
| 4.039889 | 3.726762 | 1.084021 |
p = OptionParser(clean.__doc__)
opts, args = p.parse_args(args)
for link_name in os.listdir(os.getcwd()):
if not op.islink(link_name):
continue
logging.debug("remove symlink `{0}`".format(link_name))
os.unlink(link_name)
|
def clean(args)
|
%prog clean
Removes all symlinks from current folder
| 3.776274 | 3.18476 | 1.185733 |
p = OptionParser(cp.__doc__)
fp = sys.stdin
for link_name in fp:
link_name = link_name.strip()
if not op.exists(link_name):
continue
source = get_abs_path(link_name)
link_name = op.basename(link_name)
if not op.exists(link_name):
os.symlink(source, link_name)
logging.debug(" => ".join((source, link_name)))
|
def cp(args)
|
find folder -type l | %prog cp
Copy all the softlinks to the current folder, using absolute paths
| 4.025498 | 3.663697 | 1.098753 |
from jcvi.utils.cbook import human_size
p = OptionParser(size.__doc__)
fp = sys.stdin
results = []
for link_name in fp:
link_name = link_name.strip()
if not op.islink(link_name):
continue
source = get_abs_path(link_name)
link_name = op.basename(link_name)
filesize = op.getsize(source)
results.append((filesize, link_name))
# sort by descending file size
for filesize, link_name in sorted(results, reverse=True):
filesize = human_size(filesize, a_kilobyte_is_1024_bytes=True)
print("%10s\t%s" % (filesize, link_name), file=sys.stderr)
|
def size(args)
|
find folder -type l | %prog size
Get the size for all the paths that are pointed by the links
| 3.46027 | 3.501798 | 0.988141 |
p = OptionParser(nucmer.__doc__)
opts, args = p.parse_args(args)
if len(args) != 5:
sys.exit(not p.print_help())
mapbed, mtrfasta, asmfasta, chr, idx = args
idx = int(idx)
m1 = 1000000
bedfile = "sample.bed"
bed = Bed()
bed.add("\t".join(str(x) for x in (chr, (idx - 1) * m1, idx * m1)))
bed.print_to_file(bedfile)
cmd = "intersectBed -a {0} -b {1} -nonamecheck -sorted | cut -f4".\
format(mapbed, bedfile)
idsfile = "query.ids"
sh(cmd, outfile=idsfile)
sfasta = fastaFromBed(bedfile, mtrfasta)
qfasta = "query.fasta"
cmd = "faSomeRecords {0} {1} {2}".format(asmfasta, idsfile, qfasta)
sh(cmd)
cmd = "nucmer {0} {1}".format(sfasta, qfasta)
sh(cmd)
mummerplot_main(["out.delta", "--refcov=0"])
sh("mv out.pdf {0}.{1}.pdf".format(chr, idx))
|
def nucmer(args)
|
%prog nucmer mappings.bed MTR.fasta assembly.fasta chr1 3
Select specific chromosome region based on MTR mapping. The above command
will extract chr1:2,000,001-3,000,000.
| 4.470879 | 3.997421 | 1.118441 |
from jcvi.apps.base import download
so_file_url = "http://obo.cvs.sourceforge.net/viewvc/obo/obo/ontology/genomic-proteomic/so.obo"
so_file = download(so_file_url, debug=False)
return GODag(so_file)
|
def load_GODag()
|
OBO file retrieved from http://obo.cvs.sourceforge.net/viewvc/obo/obo/ontology/genomic-proteomic/so.obo
| 4.203075 | 2.188285 | 1.920716 |
if so is None:
so = load_GODag()
oterm = term
if term not in so.valid_names:
if "resolve" in method:
if "_" in term:
tparts = deque(term.split("_"))
tparts.pop() if "prefix" in method else tparts.popleft()
nterm = "_".join(tparts).strip()
term = validate_term(nterm, so=so, method=method)
if term is None:
return None
else:
logging.error("Term `{0}` does not exist".format(term))
sys.exit(1)
if oterm != term:
logging.debug("Resolved term `{0}` to `{1}`".format(oterm, term))
return term
|
def validate_term(term, so=None, method="verify")
|
Validate an SO term against so.obo
| 3.740386 | 3.688168 | 1.014158 |
p = OptionParser(agp.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
tablefile, = args
fp = open(tablefile)
for row in fp:
atoms = row.split()
hr = atoms[0]
scaf = atoms[1]
scaf_start = int(atoms[2]) + 1
scaf_end = int(atoms[3])
strand = atoms[4]
hr_start = int(atoms[5]) + 1
hr_end = int(atoms[6])
print("\t".join(str(x) for x in \
(hr, hr_start, hr_end, 1, 'W',
scaf, scaf_start, scaf_end, strand)))
|
def agp(args)
|
%prog agp Siirt_Female_pistachio_23May2017_table.txt
The table file, as prepared by Dovetail Genomics, is not immediately useful
to convert gene model coordinates, as assumed by formats.chain.fromagp().
This is a quick script to do such conversion. The file structure of this
table file is described in the .manifest file shipped in the same package::
pistachio_b_23May2017_MeyIy.table.txt
Tab-delimited table describing positions of input assembly scaffolds
in the Hirise scaffolds. The table has the following format:
1. HiRise scaffold name
2. Input sequence name
3. Starting base (zero-based) of the input sequence
4. Ending base of the input sequence
5. Strand (- or +) of the input sequence in the scaffold
6. Starting base (zero-based) in the HiRise scaffold
7. Ending base in the HiRise scaffold
where '-' in the strand column indicates that the sequence is reverse
complemented relative to the input assembly.
CAUTION: This is NOT a proper AGP format since it does not have gaps in
them.
| 2.531113 | 2.428292 | 1.042343 |
p = OptionParser(traits.__doc__)
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
samples = []
for folder in args:
targets = iglob(folder, "*-traits.json")
if not targets:
continue
filename = targets[0]
js = json.load(open(filename))
js["skin_rgb"] = make_rgb(
js["traits"]["skin-color"]["L"],
js["traits"]["skin-color"]["A"],
js["traits"]["skin-color"]["B"])
js["eye_rgb"] = make_rgb(
js["traits"]["eye-color"]["L"],
js["traits"]["eye-color"]["A"],
js["traits"]["eye-color"]["B"])
samples.append(js)
template = Template(traits_template)
fw = open("report.html", "w")
print(template.render(samples=samples), file=fw)
logging.debug("Report written to `{}`".format(fw.name))
fw.close()
|
def traits(args)
|
%prog traits directory
Make HTML page that reports eye and skin color.
| 2.771375 | 2.53951 | 1.091303 |
p = OptionParser(regression.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="8x8")
if len(args) != 1:
sys.exit(not p.print_help())
tsvfile, = args
df = pd.read_csv(tsvfile, sep="\t")
chrono = "Chronological age (yr)"
pred = "Predicted age (yr)"
resdf = pd.DataFrame({chrono: df["hli_calc_age_sample_taken"], pred: df["Predicted Age"]})
g = sns.jointplot(chrono, pred, resdf, joint_kws={"s": 6},
xlim=(0, 100), ylim=(0, 80))
g.fig.set_figwidth(iopts.w)
g.fig.set_figheight(iopts.h)
outfile = tsvfile.rsplit(".", 1)[0] + ".regression.pdf"
savefig(outfile)
|
def regression(args)
|
%prog regression postgenomic-s.tsv
Plot chronological vs. predicted age.
| 3.351095 | 2.852391 | 1.174837 |
fig = plt.figure(1, size)
ax1 = plt.subplot2grid((2, 2), (0, 0))
ax2 = plt.subplot2grid((2, 2), (0, 1))
ax3 = plt.subplot2grid((2, 2), (1, 0))
ax4 = plt.subplot2grid((2, 2), (1, 1))
chemistry = ["V1", "V2", "V2.5", float("nan")]
colors = sns.color_palette("Set2", 8)
color_map = dict(zip(chemistry, colors))
age_label = "Chronological age (yr)"
ax1.scatter(df["hli_calc_age_sample_taken"], df["teloLength"],
s=10, marker='.',
color=df["Chemistry"].map(color_map))
ax1.set_ylim(0, 15)
ax1.set_ylabel("Telomere length (Kb)")
ax2.scatter(df["hli_calc_age_sample_taken"], df["ccn.chrX"],
s=10, marker='.',
color=df["Chemistry"].map(color_map))
ax2.set_ylim(1.8, 2.1)
ax2.set_ylabel("ChrX copy number")
ax4.scatter(df["hli_calc_age_sample_taken"], df["ccn.chrY"],
s=10, marker='.',
color=df["Chemistry"].map(color_map))
ax4.set_ylim(0.8, 1.1)
ax4.set_ylabel("ChrY copy number")
ax3.scatter(df["hli_calc_age_sample_taken"], df["TRA.PPM"],
s=10, marker='.',
color=df["Chemistry"].map(color_map))
ax3.set_ylim(0, 250)
ax3.set_ylabel("$TCR-\\alpha$ deletions (count per million reads)")
from matplotlib.lines import Line2D
legend_elements = [Line2D([0], [0], marker='.', color='w', label=chem,
markerfacecolor=color, markersize=16) \
for (chem, color) in zip(chemistry, colors)[:3]]
for ax in (ax1, ax2, ax3, ax4):
ax.set_xlabel(age_label)
ax.legend(handles=legend_elements, loc="upper right")
plt.tight_layout()
root = fig.add_axes((0, 0, 1, 1))
labels = ((.02, .98, "A"),
(.52, .98, "B"),
(.02, .5, "C"),
(.52, .5, "D"))
panel_labels(root, labels)
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
|
def composite_correlation(df, size=(12, 8))
|
Plot composite correlation figure
| 2.47629 | 2.4897 | 0.994613 |
p = OptionParser(correlation.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="12x8")
if len(args) != 1:
sys.exit(not p.print_help())
tsvfile, = args
df = pd.read_csv(tsvfile, sep="\t")
composite_correlation(df, size=(iopts.w, iopts.h))
outfile = tsvfile.rsplit(".", 1)[0] + ".correlation.pdf"
savefig(outfile)
|
def correlation(args)
|
%prog correlation postgenomic-s.tsv
Plot correlation of age vs. postgenomic features.
| 2.920494 | 2.444711 | 1.194617 |
df = df_orig.rename(columns={"hli_calc_age_sample_taken": "Age",
"hli_calc_gender": "Gender",
"eth7_max": "Ethnicity",
"MeanCoverage": "Mean coverage",
"Chemistry": "Sequencing chemistry",
"Release Client": "Cohort",
})
fig = plt.figure(1, size)
ax1 = plt.subplot2grid((2, 7), (0, 0), rowspan=1, colspan=2)
ax2 = plt.subplot2grid((2, 7), (0, 2), rowspan=1, colspan=2)
ax3 = plt.subplot2grid((2, 7), (0, 4), rowspan=1, colspan=3)
ax4 = plt.subplot2grid((2, 7), (1, 0), rowspan=1, colspan=2)
ax5 = plt.subplot2grid((2, 7), (1, 2), rowspan=1, colspan=2)
ax6 = plt.subplot2grid((2, 7), (1, 4), rowspan=1, colspan=3)
sns.distplot(df["Age"].dropna(), kde=False, ax=ax1)
sns.countplot(x="Gender", data=df, ax=ax2)
sns.countplot(x="Ethnicity", data=df, ax=ax3,
order = df['Ethnicity'].value_counts().index)
sns.distplot(df["Mean coverage"].dropna(), kde=False, ax=ax4)
ax4.set_xlim(0, 100)
sns.countplot(x="Sequencing chemistry", data=df, ax=ax5)
sns.countplot(x="Cohort", data=df, ax=ax6,
order = df['Cohort'].value_counts().index)
# Anonymize the cohorts
cohorts = ax6.get_xticklabels()
newCohorts = []
for i, c in enumerate(cohorts):
if c.get_text() == "Spector":
c = "TwinsUK"
elif c.get_text() != "Health Nucleus":
c = "C{}".format(i + 1)
newCohorts.append(c)
ax6.set_xticklabels(newCohorts)
for ax in (ax6,):
ax.set_xticklabels(ax.get_xticklabels(), ha="right", rotation=30)
for ax in (ax1, ax2, ax3, ax4, ax5, ax6):
ax.set_title(ax.get_xlabel())
ax.set_xlabel("")
plt.tight_layout()
root = fig.add_axes((0, 0, 1, 1))
labels = ((.02, .96, "A"),
(.3, .96, "B"),
(.6, .96, "C"),
(.02, .52, "D"),
(.3, .52, "E"),
(.6, .52, "F"))
panel_labels(root, labels)
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
|
def composite_qc(df_orig, size=(16, 12))
|
Plot composite QC figures
| 2.241422 | 2.233944 | 1.003347 |
# Construct the pairs of trait values
traitValuesAbsent = 0
nanValues = 0
genderSkipped = 0
twinValues = []
for a, b, t in triples:
if gender is not None and t != gender:
genderSkipped += 1
continue
if not (a in traits and b in traits):
traitValuesAbsent += 1
continue
if np.isnan(traits[a]) or np.isnan(traits[b]):
nanValues += 1
continue
twinValues.append((traits[a], traits[b]))
print("A total of {} pairs extracted ({} absent; {} nan; {} genderSkipped)"\
.format(len(twinValues), traitValuesAbsent, nanValues, genderSkipped))
return twinValues
|
def extract_twin_values(triples, traits, gender=None)
|
Calculate the heritability of certain traits in triplets.
Parameters
==========
triples: (a, b, "Female/Male") triples. The sample IDs are then used to query
the traits dictionary.
traits: sample_id => value dictionary
Returns
=======
tuples of size 2, that contain paired trait values of the twins
| 2.99838 | 3.107881 | 0.964767 |
p = OptionParser(heritability.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="12x18")
if len(args) != 3:
sys.exit(not p.print_help())
combined, mz, dz = args
# Prepare twins data
def get_pairs(filename):
with open(filename) as fp:
for row in fp:
yield row.strip().split(",")
MZ = list(get_pairs(mz))
DZ = list(get_pairs(dz))
print(len(MZ), "monozygotic twins")
print(len(DZ), "dizygotic twins")
df = pd.read_csv(combined, sep="\t", index_col=0)
df["Sample name"] = np.array(df["Sample name"], dtype=np.str)
gender = extract_trait(df, "Sample name", "hli_calc_gender")
sameGenderMZ = list(filter_same_gender(MZ, gender))
sameGenderDZ = list(filter_same_gender(DZ, gender))
composite(df, sameGenderMZ, sameGenderDZ, size=(iopts.w, iopts.h))
logging.getLogger().setLevel(logging.CRITICAL)
savefig("heritability.pdf")
|
def heritability(args)
|
%prog pg.tsv MZ-twins.csv DZ-twins.csv
Plot composite figures ABCD on absolute difference of 4 traits,
EFGH on heritability of 4 traits. The 4 traits are:
telomere length, ccn.chrX, ccn.chrY, TRA.PPM
| 4.214524 | 3.593874 | 1.172696 |
p = OptionParser(compile.__doc__)
p.set_outfile(outfile="age.tsv")
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
dfs = []
for folder in args:
ofolder = os.listdir(folder)
# telomeres
subdir = [x for x in ofolder if x.startswith("telomeres")][0]
subdir = op.join(folder, subdir)
filename = op.join(subdir, "tel_lengths.txt")
df = pd.read_csv(filename, sep="\t")
d1 = df.ix[0].to_dict()
# ccn
subdir = [x for x in ofolder if x.startswith("ccn")][0]
subdir = op.join(folder, subdir)
filename = iglob(subdir, "*.ccn.json")[0]
js = json.load(open(filename))
d1.update(js)
df = pd.DataFrame(d1, index=[0])
dfs.append(df)
df = pd.concat(dfs, ignore_index=True)
df.to_csv(opts.outfile, sep="\t", index=False)
|
def compile(args)
|
%prog compile directory
Extract telomere length and ccn.
| 2.904848 | 2.554879 | 1.13698 |
from random import choice
seq = Seq(''.join(choice('ACGT') for _ in xrange(size)))
s = SeqRecord(seq, id=name, description="Fake sequence")
SeqIO.write([s], fw, "fasta")
|
def simulate_one(fw, name, size)
|
Simulate a random sequence with name and size
| 4.169788 | 3.774137 | 1.104832 |
p = OptionParser(simulate.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
idsfile, = args
fp = open(idsfile)
fw = must_open(opts.outfile, "w")
for row in fp:
name, size = row.split()
size = int(size)
simulate_one(fw, name, size)
fp.close()
|
def simulate(args)
|
%prog simulate idsfile
Simulate random FASTA file based on idsfile, which is a two-column
tab-separated file with sequence name and size.
| 2.820316 | 2.221859 | 1.26935 |
p = OptionParser(gc.__doc__)
p.add_option("--binsize", default=500, type="int",
help="Bin size to use")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
binsize = opts.binsize
allbins = []
for name, seq in parse_fasta(fastafile):
for i in range(len(seq) / binsize):
atcnt = gccnt = 0
for c in seq[i * binsize: (i + 1) * binsize].upper():
if c in "AT":
atcnt += 1
elif c in "GC":
gccnt += 1
totalcnt = atcnt + gccnt
if totalcnt == 0:
continue
gcpct = gccnt * 100 / totalcnt
allbins.append(gcpct)
from jcvi.graphics.base import asciiplot
from collections import Counter
title = "Total number of bins={}".format(len(allbins))
c = Counter(allbins)
x, y = zip(*sorted(c.items()))
asciiplot(x, y, title=title)
|
def gc(args)
|
%prog gc fastafile
Plot G+C content distribution.
| 2.657827 | 2.550005 | 1.042283 |
from jcvi.utils.cbook import SummaryStats
p = OptionParser(trimsplit.__doc__)
p.add_option("--minlength", default=1000, type="int",
help="Min length of contigs to keep")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
minlength = opts.minlength
fw = must_open(fastafile.rsplit(".", 1)[0] + ".split.fasta", "w")
ntotal = 0
removed = []
Ns = []
for name, seq in parse_fasta(fastafile):
stretches = []
ntotal += len(seq)
for lower, stretch in groupby(seq, key=lambda x: x.islower()):
stretch = "".join(stretch)
if lower or len(stretch) < minlength:
removed.append(len(stretch))
continue
for isN, s in groupby(stretch, key=lambda x: x in "Nn"):
s = "".join(s)
if isN or len(s) < minlength:
Ns.append(len(s))
continue
stretches.append(s)
for i, seq in enumerate(stretches):
id = "{0}_{1}".format(name.split("|")[0], i)
s = SeqRecord(Seq(seq), id=id, description="")
SeqIO.write([s], fw, "fasta")
fw.close()
# Reporting
if removed:
logging.debug("Total bases removed: {0}".\
format(percentage(sum(removed), ntotal)))
print(SummaryStats(removed), file=sys.stderr)
if Ns:
logging.debug("Total Ns removed: {0}".\
format(percentage(sum(Ns), ntotal)))
print(SummaryStats(Ns), file=sys.stderr)
|
def trimsplit(args)
|
%prog trimsplit fastafile
Split sequences at lower-cased letters and stretch of Ns. This is useful
at cleaning up the low quality bases for the QUIVER output.
| 2.472383 | 2.359091 | 1.048024 |
from jcvi.formats.sizes import Sizes
p = OptionParser(qual.__doc__)
p.add_option("--qv", default=31, type="int",
help="Dummy qv score for extended bases")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
sizes = Sizes(fastafile)
qvchar = str(opts.qv)
fw = must_open(opts.outfile, "w")
total = 0
for s, slen in sizes.iter_sizes():
print(">" + s, file=fw)
print(" ".join([qvchar] * slen), file=fw)
total += 1
fw.close()
logging.debug("Written {0} records in `{1}`.".format(total, opts.outfile))
|
def qual(args)
|
%prog qual fastafile
Generate dummy .qual file based on FASTA file.
| 3.199175 | 2.91505 | 1.097468 |
p = OptionParser(info.__doc__)
p.add_option("--gaps", default=False, action="store_true",
help="Count number of gaps [default: %default]")
p.set_table()
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) == 0:
sys.exit(not p.print_help())
fastafiles = args
data = []
for f in fastafiles:
s = SequenceInfo(f, gapstats=opts.gaps)
data.append(s.data)
write_csv(s.header, data, sep=opts.sep,
filename=opts.outfile, align=opts.align)
|
def info(args)
|
%prog info *.fasta
Run `sequence_info` on FASTA files. Generate a report per file.
| 3.0887 | 2.713368 | 1.138327 |
p = OptionParser(fromtab.__doc__)
p.set_sep(sep=None)
p.add_option("--noheader", default=False, action="store_true",
help="Ignore first line")
p.add_option("--replace",
help="Replace spaces in name to char [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
tabfile, fastafile = args
sep = opts.sep
replace = opts.replace
fp = must_open(tabfile)
fw = must_open(fastafile, "w")
nseq = 0
if opts.noheader:
next(fp)
for row in fp:
row = row.strip()
if not row or row[0] == '#':
continue
name, seq = row.rsplit(sep, 1)
if replace:
name = name.replace(" ", replace)
print(">{0}\n{1}".format(name, seq), file=fw)
nseq += 1
fw.close()
logging.debug("A total of {0} sequences written to `{1}`.".\
format(nseq, fastafile))
|
def fromtab(args)
|
%prog fromtab tabfile fastafile
Convert 2-column sequence file to FASTA format. One usage for this is to
generatea `adapters.fasta` for TRIMMOMATIC.
| 2.520715 | 2.327374 | 1.083072 |
p = OptionParser(longestorf.__doc__)
p.add_option("--ids", action="store_true",
help="Generate table with ORF info [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
pf = fastafile.rsplit(".", 1)[0]
orffile = pf + ".orf.fasta"
idsfile = None
if opts.ids:
idsfile = pf + ".orf.ids"
fwids = open(idsfile, "w")
f = Fasta(fastafile, lazy=True)
fw = must_open(orffile, "w")
before, after = 0, 0
for name, rec in f.iteritems_ordered():
cds = rec.seq
before += len(cds)
# Try all six frames
orf = ORFFinder(cds)
lorf = orf.get_longest_orf()
newcds = Seq(lorf)
after += len(newcds)
newrec = SeqRecord(newcds, id=name, description=rec.description)
SeqIO.write([newrec], fw, "fasta")
if idsfile:
print("\t".join((name, orf.info)), file=fwids)
fw.close()
if idsfile:
fwids.close()
logging.debug("Longest ORFs written to `{0}` ({1}).".\
format(orffile, percentage(after, before)))
return orffile
|
def longestorf(args)
|
%prog longestorf fastafile
Find longest ORF for each sequence in fastafile.
| 2.897203 | 2.803077 | 1.03358 |
from jcvi.utils.iter import grouper
p = OptionParser(ispcr.__doc__)
p.add_option("-r", dest="rclip", default=1, type="int",
help="pair ID is derived from rstrip N chars [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
ispcrfile = fastafile + ".isPcr"
fw = open(ispcrfile, "w")
N = opts.rclip
strip_name = lambda x: x[:-N] if N else str
npairs = 0
fastaiter = SeqIO.parse(fastafile, "fasta")
for a, b in grouper(fastaiter, 2):
aid, bid = [strip_name(x) for x in (a.id, b.id)]
assert aid == bid, "Name mismatch {0}".format((aid, bid))
print("\t".join((aid, str(a.seq), str(b.seq))), file=fw)
npairs += 1
fw.close()
logging.debug("A total of {0} pairs written to `{1}`.".\
format(npairs, ispcrfile))
|
def ispcr(args)
|
%prog ispcr fastafile
Reformat paired primers into isPcr query format, which is three column
format: name, forward, reverse
| 3.108526 | 3.072927 | 1.011585 |
'''
parse a fasta-formatted file and returns header
can be a fasta file that contains multiple records.
'''
try:
fp = must_open(infile)
except:
fp = infile
# keep header
fa_iter = (x[1] for x in groupby(fp, lambda row: row[0] == '>'))
for header in fa_iter:
header = next(header)
if header[0] != '>':
continue
# drop '>'
header = header.strip()[1:]
# stitch the sequence lines together and make into upper case
seq = "".join(s.strip() for s in next(fa_iter))
if upper:
seq = seq.upper()
yield header, seq
|
def parse_fasta(infile, upper=False)
|
parse a fasta-formatted file and returns header
can be a fasta file that contains multiple records.
| 4.364554 | 3.360394 | 1.298822 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.