code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
a_chr, a_min, a_max = a
b_chr, b_min, b_max = b
a_min, a_max = sorted((a_min, a_max))
b_min, b_max = sorted((b_min, b_max))
shorter = min((a_max - a_min), (b_max - b_min)) + 1
# must be on the same chromosome
if a_chr != b_chr:
ov = 0
else:
ov = min(shorter, (a_max - b_min + 1), (b_max - a_min + 1))
ov = max(ov, 0)
if ratio:
ov /= float(shorter)
return ov
|
def range_overlap(a, b, ratio=False)
|
Returns whether two ranges overlap. Set percentage=True returns overlap
ratio over the shorter range of the two.
>>> range_overlap(("1", 30, 45), ("1", 41, 55))
5
>>> range_overlap(("1", 21, 45), ("1", 41, 75), ratio=True)
0.2
>>> range_overlap(("1", 30, 45), ("1", 15, 55))
16
>>> range_overlap(("1", 30, 45), ("1", 15, 55), ratio=True)
1.0
>>> range_overlap(("1", 30, 45), ("1", 57, 68))
0
>>> range_overlap(("1", 30, 45), ("2", 42, 55))
0
>>> range_overlap(("1", 30, 45), ("2", 42, 55), ratio=True)
0.0
| 2.3335 | 2.51693 | 0.927122 |
assert distmode in ('ss', 'ee')
a_chr, a_min, a_max, a_strand = a
b_chr, b_min, b_max, b_strand = b
# must be on the same chromosome
if a_chr != b_chr:
dist = -1
#elif range_overlap(a[:3], b[:3]):
# dist = 0
else:
# If the two ranges do not overlap, check stranded-ness and distance
if a_min > b_min:
a_min, b_min = b_min, a_min
a_max, b_max = b_max, a_max
a_strand, b_strand = b_strand, a_strand
if distmode == "ss":
dist = b_max - a_min + 1
elif distmode == "ee":
dist = b_min - a_max - 1
orientation = a_strand + b_strand
return dist, orientation
|
def range_distance(a, b, distmode='ss')
|
Returns the distance between two ranges.
distmode is ss, se, es, ee and sets the place on read one and two to
measure the distance (s = start, e = end)
>>> range_distance(("1", 30, 45, '+'), ("1", 45, 55, '+'))
(26, '++')
>>> range_distance(("1", 30, 45, '-'), ("1", 57, 68, '-'))
(39, '--')
>>> range_distance(("1", 30, 42, '-'), ("1", 45, 55, '+'))
(26, '-+')
>>> range_distance(("1", 30, 42, '+'), ("1", 45, 55, '-'), distmode='ee')
(2, '+-')
| 2.730655 | 2.886739 | 0.945931 |
rmin = min(ranges)[0]
rmax = max(ranges, key=lambda x: x[1])[1]
return rmin, rmax
|
def range_minmax(ranges)
|
Returns the span of a collection of ranges where start is the smallest of
all starts, and end is the largest of all ends.
>>> ranges = [(30, 45), (40, 50), (10, 100)]
>>> range_minmax(ranges)
(10, 100)
| 2.966094 | 4.827997 | 0.614353 |
from jcvi.utils.orderedcollections import SortedCollection
key = (lambda x: x) if left else (lambda x: (x[0], x[2], x[1]))
rr = SortedCollection(ranges, key=key)
try:
if left:
s = rr.find_le(b)
assert key(s) <= key(b), (s, b)
else:
s = rr.find_ge(b)
assert key(s) >= key(b), (s, b)
except ValueError:
s = None
return s
|
def range_closest(ranges, b, left=True)
|
Returns the range that's closest to the given position. Notice that the
behavior is to return ONE closest range to the left end (if left is True).
This is a SLOW method.
>>> ranges = [("1", 30, 40), ("1", 33, 35), ("1", 10, 20)]
>>> b = ("1", 22, 25)
>>> range_closest(ranges, b)
('1', 10, 20)
>>> range_closest(ranges, b, left=False)
('1', 33, 35)
>>> b = ("1", 2, 5)
>>> range_closest(ranges, b)
| 3.354698 | 3.686493 | 0.909997 |
from jcvi.utils.iter import pairwise
ranges = range_merge(ranges)
interleaved_ranges = []
for ch, cranges in groupby(ranges, key=lambda x: x[0]):
cranges = list(cranges)
size = sizes.get(ch, None)
if size:
ch, astart, aend = cranges[0]
if astart > 1:
interleaved_ranges.append((ch, 1, astart - 1))
elif empty:
interleaved_ranges.append(None)
for a, b in pairwise(cranges):
ch, astart, aend = a
ch, bstart, bend = b
istart, iend = aend + 1, bstart - 1
if istart <= iend:
interleaved_ranges.append((ch, istart, iend))
elif empty:
interleaved_ranges.append(None)
if size:
ch, astart, aend = cranges[-1]
if aend < size:
interleaved_ranges.append((ch, aend + 1, size))
elif empty:
interleaved_ranges.append(None)
return interleaved_ranges
|
def range_interleave(ranges, sizes={}, empty=False)
|
Returns the ranges in between the given ranges.
>>> ranges = [("1", 30, 40), ("1", 45, 50), ("1", 10, 30)]
>>> range_interleave(ranges)
[('1', 41, 44)]
>>> ranges = [("1", 30, 40), ("1", 42, 50)]
>>> range_interleave(ranges)
[('1', 41, 41)]
>>> range_interleave(ranges, sizes={"1": 70})
[('1', 1, 29), ('1', 41, 41), ('1', 51, 70)]
| 2.020427 | 2.156713 | 0.936809 |
if not ranges:
return []
ranges.sort()
cur_range = list(ranges[0])
merged_ranges = []
for r in ranges[1:]:
# open new range if start > cur_end or seqid != cur_seqid
if r[1] - cur_range[2] > dist or r[0] != cur_range[0]:
merged_ranges.append(tuple(cur_range))
cur_range = list(r)
else:
cur_range[2] = max(cur_range[2], r[2])
merged_ranges.append(tuple(cur_range))
return merged_ranges
|
def range_merge(ranges, dist=0)
|
Returns merged range. Similar to range_union, except this returns
new ranges.
>>> ranges = [("1", 30, 45), ("1", 40, 50), ("1", 10, 50)]
>>> range_merge(ranges)
[('1', 10, 50)]
>>> ranges = [("1", 30, 40), ("1", 45, 50)]
>>> range_merge(ranges)
[('1', 30, 40), ('1', 45, 50)]
>>> ranges = [("1", 30, 40), ("1", 45, 50)]
>>> range_merge(ranges, dist=5)
[('1', 30, 50)]
| 2.320565 | 2.563124 | 0.905366 |
if not ranges:
return 0
ranges.sort()
total_len = 0
cur_chr, cur_left, cur_right = ranges[0] # left-most range
for r in ranges:
# open new range if left > cur_right or chr != cur_chr
if r[1] > cur_right or r[0] != cur_chr:
total_len += cur_right - cur_left + 1
cur_chr, cur_left, cur_right = r
else:
# update cur_right
cur_right = max(r[2], cur_right)
# the last one
total_len += cur_right - cur_left + 1
return total_len
|
def range_union(ranges)
|
Returns total size of ranges, expect range as (chr, left, right)
>>> ranges = [("1", 30, 45), ("1", 40, 50), ("1", 10, 50)]
>>> range_union(ranges)
41
>>> ranges = [("1", 30, 45), ("2", 40, 50)]
>>> range_union(ranges)
27
>>> ranges = [("1", 30, 45), ("1", 45, 50)]
>>> range_union(ranges)
21
>>> range_union([])
0
| 2.370536 | 2.213782 | 1.070808 |
if not ranges:
return 0
ranges.sort()
ans = 0
for seq, lt in groupby(ranges, key=lambda x: x[0]):
lt = list(lt)
ans += max(max(lt)[1:]) - min(min(lt)[1:]) + 1
return ans
|
def range_span(ranges)
|
Returns the total span between the left most range to the right most range.
>>> ranges = [("1", 30, 45), ("1", 40, 50), ("1", 10, 50)]
>>> range_span(ranges)
41
>>> ranges = [("1", 30, 45), ("2", 40, 50)]
>>> range_span(ranges)
27
>>> ranges = [("1", 30, 45), ("1", 45, 50)]
>>> range_span(ranges)
21
>>> range_span([])
0
| 4.167857 | 4.457263 | 0.935071 |
endpoints = _make_endpoints(ranges)
for seqid, ends in groupby(endpoints, lambda x: x[0]):
active = []
depth = 0
for seqid, pos, leftright, i, score in ends:
if leftright == LEFT:
active.append(i)
depth += 1
else:
depth -= 1
if depth == 0 and active:
yield active
active = []
|
def range_piles(ranges)
|
Return piles of intervals that overlap. The piles are only interrupted by
regions of zero coverage.
>>> ranges = [Range("2", 0, 1, 3, 0), Range("2", 1, 4, 3, 1), Range("3", 5, 7, 3, 2)]
>>> list(range_piles(ranges))
[[0, 1], [2]]
| 5.532663 | 5.969149 | 0.926876 |
overlap = set()
active = set()
endpoints = _make_endpoints(ranges)
for seqid, ends in groupby(endpoints, lambda x: x[0]):
active.clear()
for seqid, pos, leftright, i, score in ends:
if leftright == LEFT:
active.add(i)
else:
active.remove(i)
if len(active) > depth:
overlap.add(tuple(sorted(active)))
for ov in overlap:
yield ov
|
def range_conflict(ranges, depth=1)
|
Find intervals that are overlapping in 1-dimension.
Return groups of block IDs that are in conflict.
>>> ranges = [Range("2", 0, 1, 3, 0), Range("2", 1, 4, 3, 1), Range("3", 5, 7, 3, 2)]
>>> list(range_conflict(ranges))
[(0, 1)]
| 5.797117 | 6.793574 | 0.853324 |
endpoints = _make_endpoints(ranges)
# stores the left end index for quick retrieval
left_index = {}
# dynamic programming, each entry [score, from_index, which_chain]
scores = []
for i, (seqid, pos, leftright, j, score) in enumerate(endpoints):
cur_score = [0, -1, -1] if i == 0 else scores[-1][:]
if leftright == LEFT:
left_index[j] = i
else: # this is right end of j-th interval
# update if chaining j-th interval gives a better score
left_j = left_index[j]
chain_score = scores[left_j][0] + score
if chain_score > cur_score[0]:
cur_score = [chain_score, left_j, j]
scores.append(cur_score)
chains = []
score, last, chain_id = scores[-1] # start backtracking
while last != -1:
if chain_id != -1:
chains.append(chain_id)
_, last, chain_id = scores[last]
chains.reverse()
selected = [ranges[x] for x in chains]
return selected, score
|
def range_chain(ranges)
|
Take list of weighted intervals, find non-overlapping set with max weight.
We proceed with each end point (sorted by their relative positions).
The input are a list of ranges of the form (start, stop, score), output is
subset of the non-overlapping ranges that give the highest score, score
>>> ranges = [Range("1", 0, 9, 22, 0), Range("1", 3, 18, 24, 1), Range("1", 10, 28, 20, 2)]
>>> range_chain(ranges)
([Range(seqid='1', start=0, end=9, score=22, id=0), Range(seqid='1', start=10, end=28, score=20, id=2)], 42)
>>> ranges = [Range("2", 0, 1, 3, 0), Range("2", 1, 4, 3, 1), Range("3", 5, 7, 3, 2)]
>>> range_chain(ranges)
([Range(seqid='2', start=0, end=1, score=3, id=0), Range(seqid='3', start=5, end=7, score=3, id=2)], 6)
| 5.016494 | 4.940298 | 1.015423 |
ranges.sort()
for seqid, rrs in groupby(ranges, key=lambda x: x[0]):
rrs = [(a, b) for (s, a, b) in rrs]
size = sizes[seqid]
ds, depthdetails = range_depth(rrs, size, verbose=verbose)
depthdetails = [(seqid, s, e, d) for s, e, d in depthdetails]
yield depthdetails
|
def ranges_depth(ranges, sizes, verbose=True)
|
Allow triple (seqid, start, end) rather than just tuple (start, end)
| 4.519156 | 3.965022 | 1.139755 |
from jcvi.utils.iter import pairwise
from jcvi.utils.cbook import percentage
# Make endpoints
endpoints = []
for a, b in ranges:
endpoints.append((a, LEFT))
endpoints.append((b, RIGHT))
endpoints.sort()
vstart, vend = min(endpoints)[0], max(endpoints)[0]
assert 0 <= vstart < size
assert 0 <= vend < size
depth = 0
depthstore = defaultdict(int)
depthstore[depth] += vstart
depthdetails = [(0, vstart, depth)]
for (a, atag), (b, btag) in pairwise(endpoints):
if atag == LEFT:
depth += 1
elif atag == RIGHT:
depth -= 1
depthstore[depth] += b - a
depthdetails.append((a, b, depth))
assert btag == RIGHT
depth -= 1
assert depth == 0
depthstore[depth] += size - vend
depthdetails.append((vend, size, depth))
assert sum(depthstore.values()) == size
if verbose:
for depth, count in sorted(depthstore.items()):
print("Depth {0}: {1}".\
format(depth, percentage(count, size)), file=sys.stderr)
return depthstore, depthdetails
|
def range_depth(ranges, size, verbose=True)
|
Overlay ranges on [start, end], and summarize the ploidy of the intervals.
| 3.04568 | 3.042346 | 1.001096 |
formatted = load_csv(header, rows, sep=" ", thousands=thousands)
header, rows = formatted[0], formatted[1:]
return banner(header, rows)
|
def loadtable(header, rows, major='=', minor='-', thousands=True)
|
Print a tabular output, with horizontal separators
| 7.59774 | 8.557369 | 0.887859 |
pairs = d.keys()
rows, cols = zip(*pairs)
if transpose:
rows, cols = cols, rows
rows = sorted(set(rows))
cols = sorted(set(cols))
header = ["o"] + list(cols)
table = []
for r in rows:
combo = [(r, c) for c in cols]
if transpose:
combo = [(c, r) for (r, c) in combo]
data = [d.get(x, "n/a") for x in combo]
data = ["{0:.1f}".format(x) if isinstance(x, float) else x
for x in data]
if key_fun:
data = [key_fun(x) for x in data]
table.append([str(r)] + data)
if not align:
formatted = load_csv(header, table, sep=sep)
return "\n".join(formatted)
return loadtable(header, table, thousands=thousands)
|
def tabulate(d, transpose=False, thousands=True, key_fun=None, sep=',', align=True)
|
d is a dictionary, keyed by tuple(A, B).
Goal is to put A in rows, B in columns, report data in table form.
>>> d = {(1,'a'):3, (1,'b'):4, (2,'a'):5, (2,'b'):0}
>>> print tabulate(d)
===========
o a b
-----------
1 3 4
2 5 0
-----------
>>> print tabulate(d, transpose=True)
===========
o 1 2
-----------
a 3 5
b 4 0
-----------
| 2.751005 | 2.748505 | 1.00091 |
from jcvi.formats.base import must_open
formatted = load_csv(header, contents,
sep=sep, thousands=thousands, align=align)
if comment:
formatted[0] = '#' + formatted[0][1:]
formatted = "\n".join(formatted)
fw = must_open(filename, "w")
print(formatted, file=fw)
if tee and filename != "stdout":
print(formatted)
|
def write_csv(header, contents, sep=",", filename="stdout", thousands=False,
tee=False, align=True, comment=False)
|
Write csv that are aligned with the column headers.
>>> header = ["x_value", "y_value"]
>>> contents = [(1, 100), (2, 200)]
>>> write_csv(header, contents)
x_value, y_value
1, 100
2, 200
| 3.082751 | 4.132022 | 0.746063 |
from jcvi.formats.base import is_number
from jcvi.formats.blast import best as blast_best, bed as blast_bed
from jcvi.apps.align import blat as blat_align
p = OptionParser(blat.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
maptxt, ref = args
pf = maptxt.rsplit(".", 1)[0]
register = {}
fastafile = pf + ".fasta"
fp = open(maptxt)
fw = open(fastafile, "w")
for row in fp:
name, lg, pos, seq = row.split()
if not is_number(pos):
continue
register[name] = (pf + '-' + lg, pos)
print(">{0}\n{1}\n".format(name, seq), file=fw)
fw.close()
blatfile = blat_align([ref, fastafile])
bestfile = blast_best([blatfile])
bedfile = blast_bed([bestfile])
b = Bed(bedfile).order
pf = ".".join((op.basename(maptxt).split(".")[0],
op.basename(ref).split(".")[0]))
csvfile = pf + ".csv"
fp = open(maptxt)
fw = open(csvfile, "w")
for row in fp:
name, lg, pos, seq = row.split()
if name not in b:
continue
bbi, bb = b[name]
scaffold, scaffold_pos = bb.seqid, bb.start
print(",".join(str(x) for x in \
(scaffold, scaffold_pos, lg, pos)), file=fw)
fw.close()
|
def blat(args)
|
%prog blat map1.txt ref.fasta
Make ALLMAPS input csv based on sequences. The tab-delimited txt file
include: name, LG, position, sequence.
| 2.875085 | 2.729492 | 1.053341 |
from jcvi.assembly.allmaps import CSVMapLine
from jcvi.formats.sizes import Sizes
from jcvi.utils.natsort import natsorted
from jcvi.graphics.base import shorten
from jcvi.graphics.dotplot import plt, savefig, markup, normalize_axes, \
downsample, plot_breaks_and_labels, thousands
p = OptionParser(dotplot.__doc__)
p.set_outfile(outfile=None)
opts, args, iopts = p.set_image_options(args, figsize="8x8",
style="dark", dpi=90, cmap="copper")
if len(args) != 2:
sys.exit(not p.print_help())
csvfile, fastafile = args
sizes = natsorted(Sizes(fastafile).mapping.items())
seen = set()
raw_data = []
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1]) # the whole canvas
ax = fig.add_axes([.1, .1, .8, .8]) # the dot plot
fp = must_open(csvfile)
for row in fp:
m = CSVMapLine(row)
seen.add(m.seqid)
raw_data.append(m)
# X-axis is the genome assembly
ctgs, ctg_sizes = zip(*sizes)
xsize = sum(ctg_sizes)
qb = list(np.cumsum(ctg_sizes))
qbreaks = list(zip(ctgs, [0] + qb, qb))
qstarts = dict(zip(ctgs, [0] + qb))
# Y-axis is the map
key = lambda x: x.lg
raw_data.sort(key=key)
ssizes = {}
for lg, d in groupby(raw_data, key=key):
ssizes[lg] = max([x.cm for x in d])
ssizes = natsorted(ssizes.items())
lgs, lg_sizes = zip(*ssizes)
ysize = sum(lg_sizes)
sb = list(np.cumsum(lg_sizes))
sbreaks = list(zip([("LG" + x) for x in lgs], [0] + sb, sb))
sstarts = dict(zip(lgs, [0] + sb))
# Re-code all the scatter dots
data = [(qstarts[x.seqid] + x.pos, sstarts[x.lg] + x.cm, 'g') \
for x in raw_data if (x.seqid in qstarts)]
npairs = downsample(data)
x, y, c = zip(*data)
ax.scatter(x, y, c=c, edgecolors="none", s=2, lw=0)
# Flip X-Y label
gy, gx = op.basename(csvfile).split(".")[:2]
gx, gy = shorten(gx, maxchar=30), shorten(gy, maxchar=30)
xlim, ylim = plot_breaks_and_labels(fig, root, ax, gx, gy,
xsize, ysize, qbreaks, sbreaks)
ax.set_xlim(xlim)
ax.set_ylim(ylim)
title = "Alignment: {} vs {}".format(gx, gy)
title += " ({} markers)".format(thousands(npairs))
root.set_title(markup(title), x=.5, y=.96, color="k")
logging.debug(title)
normalize_axes(root)
image_name = opts.outfile or \
(csvfile.rsplit(".", 1)[0] + "." + iopts.format)
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
fig.clear()
|
def dotplot(args)
|
%prog dotplot map.csv ref.fasta
Make dotplot between chromosomes and linkage maps.
The input map is csv formatted, for example:
ScaffoldID,ScaffoldPosition,LinkageGroup,GeneticPosition
scaffold_2707,11508,1,0
scaffold_2707,11525,1,1.2
| 3.418679 | 3.422986 | 0.998742 |
from jcvi.formats.base import DictFile
p = OptionParser(header.__doc__)
p.add_option("--prefix", default="",
help="Prepend text to line number [default: %default]")
p.add_option("--ids", help="Write ids to file [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
mstmap, conversion_table = args
data = MSTMap(mstmap)
hd = data.header
conversion = DictFile(conversion_table)
newhd = [opts.prefix + conversion.get(x, x) for x in hd]
print("\t".join(hd))
print("--->")
print("\t".join(newhd))
ids = opts.ids
if ids:
fw = open(ids, "w")
print("\n".join(newhd), file=fw)
fw.close()
|
def header(args)
|
%prog header map conversion_table
Rename lines in the map header. The mapping of old names to new names are
stored in two-column `conversion_table`.
| 3.328811 | 3.059796 | 1.087919 |
p = OptionParser(rename.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
mstmap, bedfile = args
markersbed = Bed(bedfile)
markers = markersbed.order
data = MSTMap(mstmap)
header = data.header
header = [header[0]] + ["seqid", "start"] + header[1:]
renamed = []
for b in data:
m, geno = b.id, b.genotype
om = m
if m not in markers:
m = m.rsplit(".", 1)[0]
if m not in markers:
continue
i, mb = markers[m]
renamed.append([om, mb.seqid, mb.start, "\t".join(list(geno))])
renamed.sort(key=lambda x: (x[1], x[2]))
fw = must_open(opts.outfile, "w")
print("\t".join(header), file=fw)
for d in renamed:
print("\t".join(str(x) for x in d), file=fw)
|
def rename(args)
|
%prog rename map markers.bed > renamed.map
Rename markers according to the new mapping locations.
| 3.530998 | 3.243754 | 1.088553 |
from jcvi.formats.blast import bed
p = OptionParser(anchor.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
mapbed, blastfile = args
bedfile = bed([blastfile])
markersbed = Bed(bedfile)
markers = markersbed.order
mapbed = Bed(mapbed, sorted=False)
for b in mapbed:
m = b.accn
if m not in markers:
continue
i, mb = markers[m]
new_accn = "{0}:{1}-{2}".format(mb.seqid, mb.start, mb.end)
b.accn = new_accn
print(b)
|
def anchor(args)
|
%prog anchor map.bed markers.blast > anchored.bed
Anchor scaffolds based on map.
| 3.566977 | 3.295757 | 1.082294 |
p = OptionParser(bed.__doc__)
p.add_option("--switch", default=False, action="store_true",
help="Switch reference and aligned map elements [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
mapout, = args
pf = mapout.split(".")[0]
mapbed = pf + ".bed"
bm = BinMap(mapout)
bm.print_to_bed(mapbed, switch=opts.switch)
return mapbed
|
def bed(args)
|
%prog fasta map.out
Convert MSTMAP output into bed format.
| 3.514513 | 3.138759 | 1.119714 |
from jcvi.formats.sizes import Sizes
p = OptionParser(fasta.__doc__)
p.add_option("--extend", default=1000, type="int",
help="Extend seq flanking the gaps [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
mapout, sfasta = args
Flank = opts.extend
pf = mapout.split(".")[0]
mapbed = pf + ".bed"
bm = BinMap(mapout)
bm.print_to_bed(mapbed)
bed = Bed(mapbed, sorted=False)
markersbed = pf + ".markers.bed"
fw = open(markersbed, "w")
sizes = Sizes(sfasta).mapping
for b in bed:
accn = b.accn
scf, pos = accn.split(".")
pos = int(pos)
start = max(0, pos - Flank)
end = min(pos + Flank, sizes[scf])
print("\t".join(str(x) for x in \
(scf, start, end, accn)), file=fw)
fw.close()
fastaFromBed(markersbed, sfasta, name=True)
|
def fasta(args)
|
%prog fasta map.out scaffolds.fasta
Extract marker sequences based on map.
| 3.582543 | 3.27566 | 1.093686 |
from jcvi.utils.iter import pairwise
p = OptionParser(breakpoint.__doc__)
p.add_option("--diff", default=.1, type="float",
help="Maximum ratio of differences allowed [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
mstmap, = args
diff = opts.diff
data = MSTMap(mstmap)
# Remove singleton markers (avoid double cross-over)
good = []
nsingletons = 0
for i in xrange(1, len(data) - 1):
a = data[i]
left_label, left_rr = check_markers(data[i - 1], a, diff)
right_label, right_rr = check_markers(a, data[i + 1], diff)
if left_label == BREAK and right_label == BREAK:
nsingletons += 1
continue
good.append(a)
logging.debug("A total of {0} singleton markers removed.".format(nsingletons))
for a, b in pairwise(good):
label, rr = check_markers(a, b, diff)
if label == BREAK:
print("\t".join(str(x) for x in rr))
|
def breakpoint(args)
|
%prog breakpoint mstmap.input > breakpoints.bed
Find scaffold breakpoints using genetic map. Use variation.vcf.mstmap() to
generate the input for this routine.
| 3.209451 | 2.984936 | 1.075216 |
start, end = line.component_beg, line.component_end
size = end - start + 1
leftNs, rightNs = 0, 0
lid, lo = line.component_id, line.orientation
for s in seq:
if s in 'nN':
leftNs += 1
else:
break
for s in seq[::-1]:
if s in 'nN':
rightNs += 1
else:
break
if lo == '-':
trimstart = start + rightNs
trimend = end - leftNs
else:
trimstart = start + leftNs
trimend = end - rightNs
trimrange = (trimstart, trimend)
oldrange = (start, end)
if trimrange != oldrange:
logging.debug("{0} trimmed of N's: {1} => {2}".\
format(lid, oldrange, trimrange))
if leftNs:
print("\t".join(str(x) for x in (line.object, 0, 0, 0,
'N', leftNs, "fragment", "yes", "")), file=newagp)
if trimend > trimstart:
print("\t".join(str(x) for x in (line.object, 0, 0, 0,
line.component_type, lid, trimstart, trimend, lo)), file=newagp)
if rightNs and rightNs != size:
print("\t".join(str(x) for x in (line.object, 0, 0, 0,
'N', rightNs, "fragment", "yes", "")), file=newagp)
else:
print(line, file=newagp)
|
def trimNs(seq, line, newagp)
|
Test if the sequences contain dangling N's on both sides. This component
needs to be adjusted to the 'actual' sequence range.
| 2.778 | 2.741169 | 1.013436 |
import csv
from jcvi.formats.sizes import Sizes
p = OptionParser(fromcsv.__doc__)
p.add_option("--evidence", default="map",
help="Linkage evidence to add in AGP")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
contigsfasta, mapcsv, mapagp = args
reader = csv.reader(open(mapcsv))
sizes = Sizes(contigsfasta).mapping
next(reader) # Header
fwagp = must_open(mapagp, "w")
o = OO()
for row in reader:
if len(row) == 2:
object, ctg = row
strand = '?'
elif len(row) == 3:
object, ctg, strand = row
size = sizes[ctg]
o.add(object, ctg, size, strand)
o.write_AGP(fwagp, gapsize=100, gaptype="scaffold",
phases={}, evidence=opts.evidence)
|
def fromcsv(args)
|
%prog fromcsv contigs.fasta map.csv map.agp
Convert csv which contains list of scaffolds/contigs to AGP file.
| 4.313989 | 3.578337 | 1.205585 |
p = OptionParser(compress.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
aagpfile, bagpfile = args
# First AGP provides the mapping
store = {}
agp = AGP(aagpfile)
for a in agp:
if a.is_gap:
continue
# Ignore '?' in the mapping
if a.sign == 0:
a.sign = 1
store[(a.object, a.object_beg, a.object_end)] = \
(a.component_id, a.component_beg, a.component_end, a.sign)
# Second AGP forms the backbone
agp = AGP(bagpfile)
fw = must_open(opts.outfile, "w")
print("\n".join(agp.header), file=fw)
for a in agp:
if a.is_gap:
print(a, file=fw)
continue
component_id, component_beg, component_end, sign = \
store[(a.component_id, a.component_beg, a.component_end)]
orientation = {1: '+', -1: '-', 0: '?'}.get(sign * a.sign)
atoms = (a.object, a.object_beg, a.object_end, a.part_number, a.component_type,
component_id, component_beg, component_end, orientation)
a = AGPLine("\t".join(str(x) for x in atoms))
print(a, file=fw)
|
def compress(args)
|
%prog compress a.agp b.agp
Convert coordinates based on multiple AGP files. Useful to simplify multiple
liftOvers to compress multiple chain files into a single chain file, in
upgrading locations of genomic features.
Example:
`a.agp` could contain split scaffolds:
scaffold_0.1 1 600309 1 W scaffold_0 1 600309 +
`b.agp` could contain mapping to chromosomes:
LG05 6435690 7035998 53 W scaffold_0.1 1 600309 +
The final AGP we want is:
LG05 6435690 7035998 53 W scaffold_0 1 600309 +
| 3.090767 | 2.910426 | 1.061964 |
from jcvi.apps.grid import WriteJobs
from jcvi.formats.bed import sort
p = OptionParser(infer.__doc__)
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
scaffoldsf, genomef = args
inferbed = "infer-components.bed"
if need_update((scaffoldsf, genomef), inferbed):
scaffolds = Fasta(scaffoldsf, lazy=True)
genome = Fasta(genomef)
genome = genome.tostring()
args = [(scaffold_name, scaffold, genome) \
for scaffold_name, scaffold in scaffolds.iteritems_ordered()]
pool = WriteJobs(map_one_scaffold, args, inferbed, cpus=opts.cpus)
pool.run()
sort([inferbed, "-i"])
bed = Bed(inferbed)
inferagpbed = "infer.bed"
fw = open(inferagpbed, "w")
seen = []
for b in bed:
r = (b.seqid, b.start, b.end)
if check_seen(r, seen):
continue
print("\t".join(str(x) for x in \
(b.accn, 0, b.span, b.seqid, b.score, b.strand)), file=fw)
seen.append(r)
fw.close()
frombed([inferagpbed])
|
def infer(args)
|
%prog infer scaffolds.fasta genome.fasta
Infer where the components are in the genome. This function is rarely used,
but can be useful when distributor does not ship an AGP file.
| 4.288779 | 3.972972 | 1.079489 |
from jcvi.formats.base import DictFile
p = OptionParser(format.__doc__)
p.add_option("--switchcomponent",
help="Switch component id based on")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
oldagpfile, newagpfile = args
switchcomponent = opts.switchcomponent
if switchcomponent:
switchcomponent = DictFile(switchcomponent)
agp = AGP(oldagpfile)
fw = open(newagpfile, "w")
nconverts = 0
for i, a in enumerate(agp):
if not a.is_gap and a.component_id in switchcomponent:
oldid = a.component_id
newid = switchcomponent[a.component_id]
a.component_id = newid
logging.debug("Covert {0} to {1} on line {2}".\
format(oldid, newid, i+1))
nconverts += 1
print(a, file=fw)
logging.debug("Total converted records: {0}".format(nconverts))
|
def format(args)
|
%prog format oldagpfile newagpfile
Reformat AGP file. --switch will replace the ids in the AGP file.
| 2.809294 | 2.462143 | 1.140995 |
p = OptionParser(frombed.__doc__)
p.add_option("--gapsize", default=100, type="int",
help="Insert gaps of size [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bedfile, = args
gapsize = opts.gapsize
agpfile = bedfile.replace(".bed", ".agp")
fw = open(agpfile, "w")
bed = Bed(bedfile, sorted=False)
for object, beds in groupby(bed, key=lambda x: x.accn):
beds = list(beds)
for i, b in enumerate(beds):
if gapsize and i != 0:
print("\t".join(str(x) for x in \
(object, 0, 0, 0, "U", \
gapsize, "scaffold", "yes", "map")), file=fw)
print("\t".join(str(x) for x in \
(object, 0, 0, 0, "W", \
b.seqid, b.start, b.end, b.strand)), file=fw)
fw.close()
# Reindex
return reindex([agpfile, "--inplace"])
|
def frombed(args)
|
%prog frombed bedfile
Generate AGP file based on bed file. The bed file must have at least 6
columns. With the 4-th column indicating the new object.
| 3.124982 | 2.905679 | 1.075474 |
from jcvi.utils.range import range_interleave
p = OptionParser(swap.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
agpfile, = args
agp = AGP(agpfile, nogaps=True, validate=False)
agp.sort(key=lambda x: (x.component_id, x.component_beg))
newagpfile = agpfile.rsplit(".", 1)[0] + ".swapped.agp"
fw = open(newagpfile, "w")
agp.transfer_header(fw)
for cid, aa in groupby(agp, key=(lambda x: x.component_id)):
aa = list(aa)
aranges = [(x.component_id, x.component_beg, x.component_end) \
for x in aa]
gaps = range_interleave(aranges)
for a, g in zip_longest(aa, gaps):
a.object, a.component_id = a.component_id, a.object
a.component_beg = a.object_beg
a.component_end = a.object_end
print(a, file=fw)
if not g:
continue
aline = [cid, 0, 0, 0]
gseq, ga, gb = g
cspan = gb - ga + 1
aline += ["N", cspan, "fragment", "yes"]
print("\t".join(str(x) for x in aline), file=fw)
fw.close()
# Reindex
idxagpfile = reindex([newagpfile, "--inplace"])
return newagpfile
|
def swap(args)
|
%prog swap agpfile
Swap objects and components. Will add gap lines. This is often used in
conjuction with formats.chain.fromagp() to convert between different
coordinate systems.
| 3.370698 | 3.245463 | 1.038588 |
from jcvi.utils.table import tabulate
p = OptionParser(stats.__doc__)
p.add_option("--warn", default=False, action="store_true",
help="Warnings on small component spans [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(p.print_help())
agpfile, = args
agp = AGP(agpfile)
gap_lengths = []
component_lengths = []
for a in agp:
span = a.object_span
if a.is_gap:
label = a.gap_type
gap_lengths.append((span, label))
else:
label = "{0}:{1}-{2}".format(a.component_id, a.component_beg, \
a.component_end)
component_lengths.append((span, label))
if opts.warn and span < 50:
logging.error("component span too small ({0}):\n{1}".\
format(span, a))
table = dict()
for label, lengths in zip(("Gaps", "Components"),
(gap_lengths, component_lengths)):
if not lengths:
table[(label, "Min")] = table[(label, "Max")] \
= table[(label, "Sum")] = "n.a."
continue
table[(label, "Min")] = "{0} ({1})".format(*min(lengths))
table[(label, "Max")] = "{0} ({1})".format(*max(lengths))
table[(label, "Sum")] = sum(x[0] for x in lengths)
print(tabulate(table), file=sys.stderr)
|
def stats(args)
|
%prog stats agpfile
Print out a report for length of gaps and components.
| 2.808308 | 2.570849 | 1.092366 |
p = OptionParser(cut.__doc__)
p.add_option("--sep", default=".", help="Separator for splits")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
agpfile, bedfile = args
sep = opts.sep
agp = AGP(agpfile)
bed = Bed(bedfile)
simple_agp = agp.order
newagpfile = agpfile.replace(".agp", ".cut.agp")
fw = open(newagpfile, "w")
agp_fixes = defaultdict(list)
for component, intervals in bed.sub_beds():
i, a = simple_agp[component]
object = a.object
component_span = a.component_span
orientation = a.orientation
assert a.component_beg, a.component_end
cuts = set()
for i in intervals:
start, end = i.start, i.end
end -= 1
assert start <= end
cuts.add(start)
cuts.add(end)
cuts.add(0)
cuts.add(component_span)
cuts = list(sorted(cuts))
sum_of_spans = 0
for i, (a, b) in enumerate(pairwise(cuts)):
oid = object + "{0}{1}".format(sep, i + 1)
aline = [oid, 0, 0, 0]
cspan = b - a
aline += ['D', component, a + 1, b, orientation]
sum_of_spans += cspan
aline = "\t".join(str(x) for x in aline)
agp_fixes[component].append(aline)
assert component_span == sum_of_spans
# Finally write the masked agp
for a in agp:
if not a.is_gap and a.component_id in agp_fixes:
print("\n".join(agp_fixes[a.component_id]), file=fw)
else:
print(a, file=fw)
fw.close()
# Reindex
reindex([newagpfile, "--inplace"])
return newagpfile
|
def cut(args)
|
%prog cut agpfile bedfile
Cut at the boundaries of the ranges in the bedfile.
| 3.342185 | 3.202973 | 1.043463 |
p = OptionParser(reindex.__doc__)
p.add_option("--nogaps", default=False, action="store_true",
help="Remove all gap lines [default: %default]")
p.add_option("--inplace", default=False, action="store_true",
help="Replace input file [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(p.print_help())
agpfile, = args
inplace = opts.inplace
agp = AGP(agpfile, validate=False)
pf = agpfile.rsplit(".", 1)[0]
newagpfile = pf + ".reindexed.agp"
fw = open(newagpfile, "w")
agp.transfer_header(fw)
for chr, chr_agp in groupby(agp, lambda x: x.object):
chr_agp = list(chr_agp)
object_beg = 1
for i, b in enumerate(chr_agp):
b.object_beg = object_beg
b.part_number = i + 1
if opts.nogaps and b.is_gap:
continue
if b.is_gap:
b.object_end = object_beg + b.gap_length - 1
else:
b.object_end = object_beg + b.component_span - 1
object_beg = b.object_end + 1
print(str(b), file=fw)
# Last step: validate the new agpfile
fw.close()
agp = AGP(newagpfile, validate=True)
if inplace:
shutil.move(newagpfile, agpfile)
logging.debug("Rename file `{0}` to `{1}`".format(newagpfile, agpfile))
newagpfile = agpfile
return newagpfile
|
def reindex(args)
|
%prog agpfile
assume the component line order is correct, modify coordinates, this is
necessary mostly due to manual edits (insert/delete) that disrupts
the target coordinates.
| 2.674221 | 2.511151 | 1.064939 |
from jcvi.utils.table import write_csv
p = OptionParser(summary.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(p.print_help())
agpfile, = args
header = "Chromosome #_Distinct #_Components #_Scaffolds " \
"Scaff_N50 Scaff_L50 Length".split()
agp = AGP(agpfile)
data = list(agp.summary_all())
write_csv(header, data, sep=" ")
|
def summary(args)
|
%prog summary agpfile
print a table of scaffold statistics, number of BACs, no of scaffolds,
scaffold N50, scaffold L50, actual sequence, PSMOL NNNs, PSMOL-length, % of
PSMOL sequenced.
| 5.121868 | 3.927873 | 1.30398 |
s = rec.description
chr = re.search(chr_pat, s)
clone = re.search(clone_pat, s)
chr = chr.group(1) if chr else ""
clone = clone.group(1) if clone else ""
return chr, clone
|
def get_clone(rec)
|
>>> get_clone("Medicago truncatula chromosome 2 clone mth2-48e18")
('2', 'mth2-48e18')
| 3.263369 | 2.829587 | 1.153302 |
p = OptionParser(phase.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
fw = must_open(opts.outfile, "w")
for gbfile in args:
for rec in SeqIO.parse(gbfile, "gb"):
bac_phase, keywords = get_phase(rec)
chr, clone = get_clone(rec)
keyword_field = ";".join(keywords)
print("\t".join((rec.id, str(bac_phase), keyword_field,
chr, clone)), file=fw)
|
def phase(args)
|
%prog phase genbankfiles
Input has to be gb file. Search the `KEYWORDS` section to look for PHASE.
Also look for "chromosome" and "clone" in the definition line.
| 3.785066 | 3.016686 | 1.25471 |
p = OptionParser(tpf.__doc__)
p.add_option("--noversion", default=False, action="store_true",
help="Remove trailing accession versions [default: %default]")
p.add_option("--gaps", default=False, action="store_true",
help="Include gaps in the output [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
agpfile, = args
agp = AGP(agpfile)
for a in agp:
object = a.object
if a.is_gap:
if opts.gaps and a.isCloneGap:
print("\t".join((a.gap_type, object, "na")))
continue
component_id = a.component_id
orientation = a.orientation
if opts.noversion:
component_id = component_id.rsplit(".", 1)[0]
print("\t".join((component_id, object, orientation)))
|
def tpf(args)
|
%prog tpf agpfile
Print out a list of ids, one per line. Also known as the Tiling Path.
AC225490.9 chr6
Can optionally output scaffold gaps.
| 3.027007 | 2.820009 | 1.073403 |
from jcvi.formats.obo import validate_term
p = OptionParser(bed.__doc__)
p.add_option("--gaps", default=False, action="store_true",
help="Only print bed lines for gaps [default: %default]")
p.add_option("--nogaps", default=False, action="store_true",
help="Do not print bed lines for gaps [default: %default]")
p.add_option("--bed12", default=False, action="store_true",
help="Produce bed12 formatted output [default: %default]")
p.add_option("--component", default=False, action="store_true",
help="Generate bed file for components [default: %default]")
p.set_outfile()
g1 = OptionGroup(p, "GFF specific parameters",
"Note: If not specified, output will be in `bed` format")
g1.add_option("--gff", default=False, action="store_true",
help="Produce gff3 formatted output. By default, ignores " +\
"AGP gap lines. [default: %default]")
g1.add_option("--source", default="MGSC",
help="Specify a gff3 source [default: `%default`]")
g1.add_option("--feature", default="golden_path_fragment",
help="Specify a gff3 feature type [default: `%default`]")
p.add_option_group(g1)
p.set_SO_opts()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
if opts.component:
opts.nogaps = True
# If output format is gff3 and 'verifySO' option is invoked, validate the SO term
if opts.gff and opts.verifySO:
validate_term(opts.feature, method=opts.verifySO)
agpfile, = args
agp = AGP(agpfile)
fw = must_open(opts.outfile, "w")
if opts.gff:
print("##gff-version 3", file=fw)
for a in agp:
if opts.nogaps and a.is_gap:
continue
if opts.gaps and not a.is_gap:
continue
if opts.bed12:
print(a.bed12line, file=fw)
elif opts.gff:
print(a.gffline(gff_source=opts.source, gff_feat_type=opts.feature), file=fw)
elif opts.component:
name = "{0}:{1}-{2}".\
format(a.component_id, a.component_beg, a.component_end)
print("\t".join(str(x) for x in (a.component_id, a.component_beg - 1,
a.component_end, name,
a.component_type, a.orientation)), file=fw)
else:
print(a.bedline, file=fw)
fw.close()
return fw.name
|
def bed(args)
|
%prog bed agpfile
print out the tiling paths in bed/gff3 format
| 2.74566 | 2.663605 | 1.030806 |
from jcvi.formats.sizes import Sizes
p = OptionParser(extendbed.__doc__)
p.add_option("--nogaps", default=False, action="store_true",
help="Do not print bed lines for gaps [default: %default]")
p.add_option("--bed12", default=False, action="store_true",
help="Produce bed12 formatted output [default: %default]")
p.add_option("--gff", default=False, action="store_true",
help="Produce gff3 formatted output. By default, ignores " +\
" AGP gap lines. [default: %default]")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
# If output format is GFF3, ignore AGP gap lines.
if opts.gff:
opts.nogaps = True
agpfile, fastafile = args
agp = AGP(agpfile)
fw = must_open(opts.outfile, "w")
if opts.gff:
print("##gff-version 3", file=fw)
ranges = defaultdict(list)
thickCoords = [] # These are the coordinates before modify ranges
# Make the first pass to record all the component ranges
for a in agp:
thickCoords.append((a.object_beg, a.object_end))
if a.is_gap:
continue
ranges[a.component_id].append(a)
# Modify the ranges
sizes = Sizes(fastafile).mapping
for accn, rr in ranges.items():
alen = sizes[accn]
a = rr[0]
if a.orientation == "+":
hang = a.component_beg - 1
else:
hang = alen - a.component_end
a.object_beg -= hang
a = rr[-1]
if a.orientation == "+":
hang = alen - a.component_end
else:
hang = a.component_beg - 1
a.object_end += hang
for a, (ts, te) in zip(agp, thickCoords):
if opts.nogaps and a.is_gap:
continue
if opts.bed12:
line = a.bedline
a.object_beg, a.object_end = ts, te
line += "\t" + a.bedextra
print(line, file=fw)
elif opts.gff:
print(a.gffline(), file=fw)
else:
print(a.bedline, file=fw)
|
def extendbed(args)
|
%prog extend agpfile componentfasta
Extend the components to fill the component range. For example, a bed/gff3 file
that was converted from the agp will contain only the BAC sequence intervals
that are 'represented' - sometimes leaving the 5` and 3` out (those that
overlap with adjacent sequences. This script fill up those ranges,
potentially to make graphics for tiling path.
| 2.967428 | 2.862996 | 1.036477 |
from jcvi.graphics.histogram import loghistogram
p = OptionParser(gaps.__doc__)
p.add_option("--merge", dest="merge", default=False, action="store_true",
help="Merge adjacent gaps (to conform to AGP specification)")
p.add_option("--header", default=False, action="store_true",
help="Produce an AGP header [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
merge = opts.merge
agpfile, = args
if merge:
merged_agpfile = agpfile.replace(".agp", ".merged.agp")
fw = open(merged_agpfile, "w")
agp = AGP(agpfile)
sizes = []
data = [] # store merged AGPLine's
priorities = ("centromere", "telomere", "scaffold", "contig", \
"clone", "fragment")
for is_gap, alines in groupby(agp, key=lambda x: (x.object, x.is_gap)):
alines = list(alines)
is_gap = is_gap[1]
if is_gap:
gap_size = sum(x.gap_length for x in alines)
gap_types = set(x.gap_type for x in alines)
for gtype in ("centromere", "telomere"):
if gtype in gap_types:
gap_size = gtype
sizes.append(gap_size)
b = deepcopy(alines[0])
b.object_beg = min(x.object_beg for x in alines)
b.object_end = max(x.object_end for x in alines)
b.gap_length = sum(x.gap_length for x in alines)
assert b.gap_length == b.object_end - b.object_beg + 1
b.component_type = 'U' if b.gap_length == 100 else 'N'
gtypes = [x.gap_type for x in alines]
for gtype in priorities:
if gtype in gtypes:
b.gap_type = gtype
break
linkages = [x.linkage for x in alines]
for linkage in ("no", "yes"):
if linkage in linkages:
b.linkage = linkage
break
alines = [b]
data.extend(alines)
loghistogram(sizes)
if opts.header:
AGP.print_header(fw, organism="Medicago truncatula",
taxid=3880, source="J. Craig Venter Institute")
if merge:
for ob, bb in groupby(data, lambda x: x.object):
for i, b in enumerate(bb):
b.part_number = i + 1
print(b, file=fw)
return merged_agpfile
|
def gaps(args)
|
%prog gaps agpfile
Print out the distribution of gapsizes. Option --merge allows merging of
adjacent gaps which is used by tidy().
| 3.204218 | 3.064405 | 1.045625 |
p = OptionParser(tidy.__doc__)
p.add_option("--nogaps", default=False, action="store_true",
help="Remove all gap lines [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(p.print_help())
agpfile, componentfasta = args
originalagpfile = agpfile
# Step 1: Trim terminal Ns
tmpfasta = "tmp.fasta"
trimmed_agpfile = build([agpfile, componentfasta, tmpfasta,
"--newagp", "--novalidate"])
os.remove(tmpfasta)
agpfile = trimmed_agpfile
agpfile = reindex([agpfile, "--inplace"])
# Step 2: Merge adjacent gaps
merged_agpfile = gaps([agpfile, "--merge"])
os.remove(agpfile)
# Step 3: Trim gaps at the end of object
agpfile = merged_agpfile
agp = AGP(agpfile)
newagpfile = agpfile.replace(".agp", ".fixed.agp")
fw = open(newagpfile, "w")
for object, a in groupby(agp, key=lambda x: x.object):
a = list(a)
if a[0].is_gap:
g, a = a[0], a[1:]
logging.debug("Trim beginning Ns({0}) of {1}".\
format(g.gap_length, object))
if a and a[-1].is_gap:
a, g = a[:-1], a[-1]
logging.debug("Trim trailing Ns({0}) of {1}".\
format(g.gap_length, object))
print("\n".join(str(x) for x in a), file=fw)
fw.close()
os.remove(agpfile)
# Step 4: Final reindex
agpfile = newagpfile
reindex_opts = [agpfile, "--inplace"]
if opts.nogaps:
reindex_opts += ["--nogaps"]
agpfile = reindex(reindex_opts)
tidyagpfile = originalagpfile.replace(".agp", ".tidy.agp")
shutil.move(agpfile, tidyagpfile)
logging.debug("File written to `{0}`.".format(tidyagpfile))
return tidyagpfile
|
def tidy(args)
|
%prog tidy agpfile componentfasta
Given an agp file, run through the following steps:
1. Trim components with dangling N's
2. Merge adjacent gaps
3. Trim gaps at the end of an object
4. Reindex the agp
Final output is in `.tidy.agp`.
| 2.768222 | 2.382331 | 1.16198 |
p = OptionParser(build.__doc__)
p.add_option("--newagp", dest="newagp", default=False, action="store_true",
help="Check components to trim dangling N's [default: %default]")
p.add_option("--novalidate", dest="novalidate", default=False,
action="store_true",
help="Don't validate the agpfile [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
agpfile, componentfasta, targetfasta = args
validate = not opts.novalidate
if opts.newagp:
assert agpfile.endswith(".agp")
newagpfile = agpfile.replace(".agp", ".trimmed.agp")
newagp = open(newagpfile, "w")
else:
newagpfile = None
newagp = None
agp = AGP(agpfile, validate=validate, sorted=True)
agp.build_all(componentfasta=componentfasta, targetfasta=targetfasta,
newagp=newagp)
logging.debug("Target fasta written to `{0}`.".format(targetfasta))
return newagpfile
|
def build(args)
|
%prog build agpfile componentfasta targetfasta
Build targetfasta based on info from agpfile
| 2.809321 | 2.346373 | 1.197304 |
p = OptionParser(validate.__doc__)
opts, args = p.parse_args(args)
try:
agpfile, componentfasta, targetfasta = args
except Exception as e:
sys.exit(p.print_help())
agp = AGP(agpfile)
build = Fasta(targetfasta)
bacs = Fasta(componentfasta, index=False)
# go through this line by line
for aline in agp:
try:
build_seq = build.sequence(dict(chr=aline.object,
start=aline.object_beg, stop=aline.object_end))
if aline.is_gap:
assert build_seq.upper() == aline.gap_length * 'N', \
"gap mismatch: %s" % aline
else:
bac_seq = bacs.sequence(dict(chr=aline.component_id,
start=aline.component_beg, stop=aline.component_end,
strand=aline.orientation))
assert build_seq.upper() == bac_seq.upper(), \
"sequence mismatch: %s" % aline
logging.debug("%s:%d-%d verified" % (aline.object,
aline.object_beg, aline.object_end))
except Exception as e:
logging.error(e)
|
def validate(args)
|
%prog validate agpfile componentfasta targetfasta
validate consistency between agpfile and targetfasta
| 3.667872 | 3.058733 | 1.199148 |
d = {}
for (i, x) in enumerate(self):
if x.is_gap:
continue
xid = x.component_id
d[xid] = (i, x)
xid = xid.rsplit(".", 1)[0] # Remove Genbank version
if xid not in d:
d[xid] = (i, x)
return d
|
def order(self)
|
Returns a dict with component_id => (i, agpline)
| 4.569528 | 3.396743 | 1.345268 |
north = self.getAdjacentClone(i, south=False)
south = self.getAdjacentClone(i)
return north, south
|
def getNorthSouthClone(self, i)
|
Returns the adjacent clone name from both sides.
| 5.888653 | 3.992929 | 1.47477 |
print("\n".join(self.header), file=fw)
|
def transfer_header(self, fw=sys.stdout)
|
transfer_header() copies header to a new file.
print_header() creates a new header.
| 6.754886 | 5.773347 | 1.170012 |
components = []
total_bp = 0
for line in lines:
if line.is_gap:
seq = 'N' * line.gap_length
if newagp:
print(line, file=newagp)
else:
seq = fasta.sequence(dict(chr=line.component_id,
start=line.component_beg,
stop=line.component_end,
strand=line.orientation))
# Check for dangling N's
if newagp:
trimNs(seq, line, newagp)
components.append(seq)
total_bp += len(seq)
if self.validate:
assert total_bp == line.object_end, \
"cumulative base pairs (%d) does not match (%d)" % \
(total_bp, line.object_end)
if not newagp:
rec = SeqRecord(Seq(''.join(components)), id=object, description="")
SeqIO.write([rec], fw, "fasta")
if len(rec) > 1000000:
logging.debug("Write object %s to `%s`" % (object, fw.name))
|
def build_one(self, object, lines, fasta, fw, newagp=None)
|
Construct molecule using component fasta sequence
| 4.039339 | 3.996304 | 1.010769 |
rr = xrange(i + 1, len(self)) if south else xrange(i - 1, -1, -1)
a = self[i]
for ix in rr:
x = self[ix]
if x.object != a.object:
break
return x
return None
|
def getAdjacentClone(self, i, south=True)
|
Returns adjacent clone name, either the line before or after the current
line.
| 3.642102 | 3.478243 | 1.04711 |
from jcvi.formats.base import SetFile
from jcvi.formats.gff import Gff
p = OptionParser(pasa.__doc__)
p.set_home("pasa")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
fastafile, gffile = args
transcodergff = fastafile + ".transdecoder.gff3"
transcodergenomegff = fastafile + ".transdecoder.genome.gff3"
if need_update((fastafile, gffile), (transcodergff, transcodergenomegff)):
cmd = "{0}/scripts/pasa_asmbls_to_training_set.dbi".format(opts.pasa_home)
cmd += " --pasa_transcripts_fasta {0} --pasa_transcripts_gff3 {1}".\
format(fastafile, gffile)
sh(cmd)
completeids = fastafile.rsplit(".", 1)[0] + ".complete.ids"
if need_update(transcodergff, completeids):
cmd = "grep complete {0} | cut -f1 | sort -u".format(transcodergff)
sh(cmd, outfile=completeids)
complete = SetFile(completeids)
seen = set()
completegff = transcodergenomegff.rsplit(".", 1)[0] + ".complete.gff3"
fw = open(completegff, "w")
gff = Gff(transcodergenomegff)
for g in gff:
a = g.attributes
if "Parent" in a:
id = a["Parent"][0]
else:
id = a["ID"][0]
asmbl_id = id.split("|")[0]
if asmbl_id not in complete:
continue
print(g, file=fw)
if g.type == "gene":
seen.add(id)
fw.close()
logging.debug("A total of {0} complete models extracted to `{1}`.".\
format(len(seen), completegff))
|
def pasa(args)
|
%prog ${pasadb}.assemblies.fasta ${pasadb}.pasa_assemblies.gff3
Wraps `pasa_asmbls_to_training_set.dbi`.
| 2.920346 | 2.604823 | 1.12113 |
p = OptionParser(genemark.__doc__)
p.add_option("--junctions", help="Path to `junctions.bed` from Tophat2")
p.set_home("gmes")
p.set_cpus(cpus=32)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
species, fastafile = args
junctions = opts.junctions
mhome = opts.gmes_home
license = op.expanduser("~/.gm_key")
assert op.exists(license), "License key ({0}) not found!".format(license)
cmd = "{0}/gmes_petap.pl --sequence {1}".format(mhome, fastafile)
cmd += " --cores {0}".format(opts.cpus)
if junctions:
intronsgff = "introns.gff"
if need_update(junctions, intronsgff):
jcmd = "{0}/bet_to_gff.pl".format(mhome)
jcmd += " --bed {0} --gff {1} --label Tophat2".\
format(junctions, intronsgff)
sh(jcmd)
cmd += " --ET {0} --et_score 10".format(intronsgff)
else:
cmd += " --ES"
sh(cmd)
logging.debug("GENEMARK matrix written to `output/gmhmm.mod")
|
def genemark(args)
|
%prog genemark species fastafile
Train GENEMARK model given fastafile. GENEMARK self-trains so no trainig
model gff file is needed.
| 4.903391 | 4.63233 | 1.058515 |
p = OptionParser(snap.__doc__)
p.set_home("maker")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
species, gffile, fastafile = args
mhome = opts.maker_home
snapdir = "snap"
mkdir(snapdir)
cwd = os.getcwd()
os.chdir(snapdir)
newgffile = "training.gff3"
logging.debug("Construct GFF file combined with sequence ...")
sh("cat ../{0} > {1}".format(gffile, newgffile))
sh('echo "##FASTA" >> {0}'.format(newgffile))
sh("cat ../{0} >> {1}".format(fastafile, newgffile))
logging.debug("Make models ...")
sh("{0}/src/bin/maker2zff training.gff3".format(mhome))
sh("{0}/exe/snap/fathom -categorize 1000 genome.ann genome.dna".format(mhome))
sh("{0}/exe/snap/fathom -export 1000 -plus uni.ann uni.dna".format(mhome))
sh("{0}/exe/snap/forge export.ann export.dna".format(mhome))
sh("{0}/exe/snap/hmm-assembler.pl {1} . > {1}.hmm".format(mhome, species))
os.chdir(cwd)
logging.debug("SNAP matrix written to `{0}/{1}.hmm`".format(snapdir, species))
|
def snap(args)
|
%prog snap species gffile fastafile
Train SNAP model given gffile and fastafile. Whole procedure taken from:
<http://gmod.org/wiki/MAKER_Tutorial_2012>
| 4.54285 | 4.106202 | 1.106339 |
p = OptionParser(augustus.__doc__)
p.add_option("--autotrain", default=False, action="store_true",
help="Run autoAugTrain.pl to iteratively train AUGUSTUS")
p.set_home("augustus")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
species, gffile, fastafile = args
mhome = opts.augustus_home
augdir = "augustus"
cwd = os.getcwd()
mkdir(augdir)
os.chdir(augdir)
target = "{0}/config/species/{1}".format(mhome, species)
if op.exists(target):
logging.debug("Removing existing target `{0}`".format(target))
sh("rm -rf {0}".format(target))
sh("{0}/scripts/new_species.pl --species={1}".format(mhome, species))
sh("{0}/scripts/gff2gbSmallDNA.pl ../{1} ../{2} 1000 raw.gb".\
format(mhome, gffile, fastafile))
sh("{0}/bin/etraining --species={1} raw.gb 2> train.err".\
format(mhome, species))
sh("cat train.err | perl -pe 's/.*in sequence (\S+): .*/$1/' > badgenes.lst")
sh("{0}/scripts/filterGenes.pl badgenes.lst raw.gb > training.gb".\
format(mhome))
sh("grep -c LOCUS raw.gb training.gb")
# autoAugTrain failed to execute, disable for now
if opts.autotrain:
sh("rm -rf {0}".format(target))
sh("{0}/scripts/autoAugTrain.pl --trainingset=training.gb --species={1}".\
format(mhome, species))
os.chdir(cwd)
sh("cp -r {0} augustus/".format(target))
|
def augustus(args)
|
%prog augustus species gffile fastafile
Train AUGUSTUS model given gffile and fastafile. Whole procedure taken from:
<http://www.molecularevolution.org/molevolfiles/exercises/augustus/training.html>
| 4.006951 | 3.778232 | 1.060536 |
from collections import defaultdict
p = OptionParser(prune.__doc__)
add_graph_options(p)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bestedges, = args
G = read_graph(bestedges, maxerr=opts.maxerr)
reads_to_ctgs = parse_ctgs(bestedges, opts.frgctg)
edges = defaultdict(int)
r = defaultdict(int)
for a, b, d in G.edges_iter(data=True):
ua, ub = reads_to_ctgs.get(a), reads_to_ctgs.get(b)
nn = (ua, ub).count(None)
if nn == 0:
if ua == ub:
r["Same tigs"] += 1
else:
r["Diff tigs"] += 1
if ua > ub:
ua, ub = ub, ua
edges[(ua, ub)] += 1
elif nn == 1:
r["One null"] += 1
else:
assert nn == 2
r["Two nulls"] += 1
U = nx.Graph()
difftigs = "diff_tigs.txt"
neighbors = defaultdict(list)
fw = open(difftigs, "w")
for (ua, ub), count in edges.items():
print("\t".join((ua, ub, str(count))), file=fw)
U.add_edge(ua, ub, weight=count)
neighbors[ua].append((ub, count))
neighbors[ub].append((ua, count))
fw.close()
print("[Unitig edge property]", file=sys.stderr)
for k, v in r.items():
print(": ".join((k, str(v))), file=sys.stderr)
print("Total: {0}".format(sum(r.values())), file=sys.stderr)
print("[Unitig degree distribution]", file=sys.stderr)
degrees = U.degree()
degree_counter = Counter(degrees.values())
for degree, count in sorted(degree_counter.items()):
print("{0}\t{1}".format(degree, count), file=sys.stderr)
# To find associative contigs, one look for a contig that is connected and
# only connected to another single contig - and do that recursively until no
# more contigs can be found
associative = {}
for ua, ubs in neighbors.items():
if len(ubs) == 1: # Only one neighbor
ub, count = ubs[0]
if count >= 2: # Bubble
associative[ua] = (ub, count)
print("A total of {0} associative contigs found"\
.format(len(associative)), file=sys.stderr)
# Keep only one for mutual associative
for ua, ub in associative.items():
if ub in associative and ua < ub:
print(ua, "mutually associative with", ub, file=sys.stderr)
del associative[ub]
print("A total of {0} associative contigs retained"\
.format(len(associative)), file=sys.stderr)
assids = "associative.ids"
fw = open(assids, "w")
for ua, (ub, count) in sorted(associative.items(), key=lambda x:(x[1], x[0])):
print("\t".join((ua, ub, str(count))), file=fw)
fw.close()
logging.debug("Associative contigs written to `{0}`".format(assids))
|
def prune(args)
|
%prog prune best.edges
Prune overlap graph.
| 2.989878 | 2.934553 | 1.018853 |
p = OptionParser(removecontains.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
contains, gkpStore = args
s = set()
fp = open(contains)
for row in fp:
if row[0] == '#':
continue
iid = int(row.split()[0])
s.add(iid)
cmd = "gatekeeper -dumpfragments -lastfragiid {}".format(gkpStore)
gkpmsg = popen(cmd).read()
last_iid = int(gkpmsg.strip().split()[-1])
ndeleted = 0
editfile = "delete.edit"
fw = open(editfile, "w")
for iid in xrange(1, last_iid + 1):
if iid in s:
print("frg iid {0} isdeleted 1".format(iid), file=fw)
ndeleted += 1
fw.close()
assert len(s) == ndeleted
logging.debug("A total of {0} contained reads flagged as deleted."\
.format(ndeleted))
print("Now you can run:", file=sys.stderr)
print("$ gatekeeper --edit {0} {1}".format(editfile, gkpStore), file=sys.stderr)
|
def removecontains(args)
|
%prog removecontains 4-unitigger/best.contains asm.gkpStore
Remove contained reads from gkpStore. This will improve assembly contiguity
without sacrificing accuracy, when using bogart unitigger.
| 4.311437 | 3.782345 | 1.139885 |
from jcvi.apps.console import green
p = OptionParser(overlap.__doc__)
p.add_option("--maxerr", default=2, type="int", help="Maximum error rate")
p.add_option("--canvas", default=100, type="int", help="Canvas size")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
bestcontains, iid = args
canvas = opts.canvas
bestcontainscache = bestcontains + ".cache"
if need_update(bestcontains, bestcontainscache):
fp = open(bestcontains)
fw = open(bestcontainscache, "w")
exclude = set()
for row in fp:
if row[0] == '#':
continue
j = int(row.split()[0])
exclude.add(j)
dump(exclude, fw)
fw.close()
exclude = load(open(bestcontainscache))
logging.debug("A total of {0} reads to exclude".format(len(exclude)))
cmd = "overlapStore -d ../asm.ovlStore -b {0} -e {0}".format(iid)
cmd += " -E {0}".format(opts.maxerr)
frags = []
for row in popen(cmd):
r = OverlapLine(row)
if r.bid in exclude:
continue
frags.append(r)
# Also include to query fragment
frags.append(OverlapLine("{0} {0} N 0 0 0 0".format(iid)))
frags.sort(key=lambda x: x.ahang)
# Determine size of the query fragment
cmd = "gatekeeper -b {0} -e {0}".format(iid)
cmd += " -tabular -dumpfragments ../asm.gkpStore"
fp = popen(cmd)
row = next(fp)
size = int(fp.next().split()[-1])
# Determine size of canvas
xmin = min(x.ahang for x in frags)
xmax = max(x.bhang for x in frags)
xsize = -xmin + size + xmax
ratio = xsize / canvas
fw = sys.stdout
for f in frags:
fsize = -f.ahang + size + f.bhang
a = (f.ahang - xmin) / ratio
b = fsize / ratio
t = '-' * b
if f.orientation == 'N':
t = t[:-1] + '>'
else:
t = '<' + t[1:]
if f.ahang == 0 and f.bhang == 0:
t = green(t)
c = canvas - a - b
fw.write(' ' * a)
fw.write(t)
fw.write(' ' * c)
print("{0} ({1})".format(str(f.bid).rjust(10), f.erate_adj), file=fw)
|
def overlap(args)
|
%prog overlap best.contains iid
Visualize overlaps for a given fragment. Must be run in 4-unitigger. All
overlaps for iid were retrieved, excluding the ones matching best.contains.
| 3.961695 | 3.751572 | 1.056009 |
p = OptionParser(merger.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
layout, gkpstore, contigs = args
fp = open(layout)
pf = "0"
iidfile = pf + ".iids"
for i, row in enumerate(fp):
logging.debug("Read unitig {0}".format(i))
fw = open(iidfile, "w")
layout = row.split("|")
print("\n".join(layout), file=fw)
fw.close()
cmd = "gatekeeper -iid {0}.iids -dumpfasta {0} {1}".format(pf, gkpstore)
sh(cmd)
fastafile = "{0}.fasta".format(pf)
newfastafile = "{0}.new.fasta".format(pf)
format([fastafile, newfastafile, "--sequential=replace", \
"--sequentialoffset=1", "--nodesc"])
fasta([newfastafile])
sh("rm -rf {0}".format(pf))
cmd = "runCA {0}.frg -p {0} -d {0} consensus=pbutgcns".format(pf)
cmd += " unitigger=bogart doFragmentCorrection=0 doUnitigSplitting=0"
sh(cmd)
outdir = "{0}/9-terminator".format(pf)
cmd = "cat {0}/{1}.ctg.fasta {0}/{1}.deg.fasta {0}/{1}.singleton.fasta"\
.format(outdir, pf)
sh(cmd, outfile=contigs, append=True)
|
def merger(args)
|
%prog merger layout gkpStore contigs.fasta
Merge reads into one contig.
| 7.591412 | 6.817116 | 1.113581 |
p = OptionParser(unitigs.__doc__)
p.add_option("--maxerr", default=2, type="int", help="Maximum error rate")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bestedges, = args
G = read_graph(bestedges, maxerr=opts.maxerr, directed=True)
H = nx.Graph()
intconv = lambda x: int(x.split("-")[0])
for k, v in G.iteritems():
if k == G.get(v, None):
H.add_edge(intconv(k), intconv(v))
nunitigs = nreads = 0
for h in nx.connected_component_subgraphs(H, copy=False):
st = [x for x in h if h.degree(x) == 1]
if len(st) != 2:
continue
src, target = st
path = list(nx.all_simple_paths(h, src, target))
assert len(path) == 1
path, = path
print("|".join(str(x) for x in path))
nunitigs += 1
nreads += len(path)
logging.debug("A total of {0} unitigs built from {1} reads."\
.format(nunitigs, nreads))
|
def unitigs(args)
|
%prog unitigs best.edges
Reads Celera Assembler's "best.edges" and extract all unitigs.
| 3.054122 | 2.873889 | 1.062714 |
p = OptionParser(graph.__doc__)
p.add_option("--query", default=-1, type="int",
help="Search from node, -1 to select random node, 0 to disable")
p.add_option("--contig", help="Search from contigs, use comma to separate")
p.add_option("--largest", default=0, type="int", help="Only show largest components")
p.add_option("--maxsize", default=500, type="int", help="Max graph size")
p.add_option("--nomutualbest", default=False, action="store_true",
help="Do not plot mutual best edges as heavy")
add_graph_options(p)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
bestedges, = args
query = opts.query
contig = opts.contig
largest = opts.largest
frgctg = opts.frgctg
edgeweight = not opts.nomutualbest
G = read_graph(bestedges, maxerr=opts.maxerr)
if largest:
H = list(nx.connected_component_subgraphs(G))
c = min(len(H), largest)
logging.debug("{0} components found, {1} retained".format(len(H), c))
G = nx.Graph()
for x in H[:c]:
G.add_edges_from(x.edges())
if query:
if query == -1:
query = choice(G.nodes())
reads_to_ctgs = parse_ctgs(bestedges, frgctg)
if contig:
contigs = set(contig.split(","))
core = [k for k, v in reads_to_ctgs.items() if v in contigs]
else:
ctg = reads_to_ctgs.get(query)
core = [k for k, v in reads_to_ctgs.items() if v == ctg]
logging.debug("Reads ({0}) extended from the same contig {1}".\
format(len(core), ctg))
# Extract a local neighborhood
SG = nx.Graph()
H = graph_local_neighborhood(G, query=core, maxsize=opts.maxsize)
SG.add_edges_from(H.edges(data=edgeweight))
G = SG
seen = []
for n, attrib in G.nodes_iter(data=True):
contig = reads_to_ctgs.get(n, "na")
attrib['label'] = contig
seen.append(contig)
c = Counter(seen)
cc = ["{0}({1})".format(k, v) for k, v in c.most_common()]
print("Contigs: {0}".format(" ".join(cc)), file=sys.stderr)
gexf = "best"
if query >= 0:
gexf += ".{0}".format(query)
gexf += ".gexf"
nx.write_gexf(G, gexf)
logging.debug("Graph written to `{0}` (|V|={1}, |E|={2})".\
format(gexf, len(G), G.size()))
|
def graph(args)
|
%prog graph best.edges
Convert Celera Assembler's "best.edges" to a GEXF which can be used to
feed into Gephi to check the topology of the best overlapping graph. Mutual
best edges are represented as thicker edges.
Reference:
https://github.com/PacificBiosciences/Bioinformatics-Training/blob/master/scripts/CeleraToGephi.py
| 3.300206 | 3.179338 | 1.038017 |
p = OptionParser(astat.__doc__)
p.add_option("--cutoff", default=1000, type="int",
help="Length cutoff [default: %default]")
p.add_option("--genome", default="",
help="Genome name [default: %default]")
p.add_option("--arrDist", default=False, action="store_true",
help="Use arrDist instead [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
covfile, = args
cutoff = opts.cutoff
genome = opts.genome
plot_arrDist = opts.arrDist
suffix = ".{0}".format(cutoff)
small_covfile = covfile + suffix
update_covfile = need_update(covfile, small_covfile)
if update_covfile:
fw = open(small_covfile, "w")
else:
logging.debug("Found `{0}`, will use this one".format(small_covfile))
covfile = small_covfile
fp = open(covfile)
header = next(fp)
if update_covfile:
fw.write(header)
data = []
msg = "{0} tigs scanned ..."
for row in fp:
tigID, rho, covStat, arrDist = row.split()
tigID = int(tigID)
if tigID % 1000000 == 0:
sys.stderr.write(msg.format(tigID) + "\r")
rho, covStat, arrDist = [float(x) for x in (rho, covStat, arrDist)]
if rho < cutoff:
continue
if update_covfile:
fw.write(row)
data.append((tigID, rho, covStat, arrDist))
print(msg.format(tigID), file=sys.stderr)
from jcvi.graphics.base import plt, savefig
logging.debug("Plotting {0} data points.".format(len(data)))
tigID, rho, covStat, arrDist = zip(*data)
y = arrDist if plot_arrDist else covStat
ytag = "arrDist" if plot_arrDist else "covStat"
fig = plt.figure(1, (7, 7))
ax = fig.add_axes([.12, .1, .8, .8])
ax.plot(rho, y, ".", color="lightslategrey")
xtag = "rho"
info = (genome, xtag, ytag)
title = "{0} {1} vs. {2}".format(*info)
ax.set_title(title)
ax.set_xlabel(xtag)
ax.set_ylabel(ytag)
if plot_arrDist:
ax.set_yscale('log')
imagename = "{0}.png".format(".".join(info))
savefig(imagename, dpi=150)
|
def astat(args)
|
%prog astat coverage.log
Create coverage-rho scatter plot.
| 2.594877 | 2.540494 | 1.021406 |
if fasta:
s = SeqRecord(shredded_seq, id=fragID, description="")
SeqIO.write([s], fw, "fasta")
return
seq = str(shredded_seq)
slen = len(seq)
qvs = qvchar * slen # shredded reads have default low qv
if clr is None:
clr_beg, clr_end = 0, slen
else:
clr_beg, clr_end = clr
print(frgTemplate.format(fragID=fragID, libID=libID,
seq=seq, qvs=qvs, clr_beg=clr_beg, clr_end=clr_end), file=fw)
|
def emitFragment(fw, fragID, libID, shredded_seq, clr=None, qvchar='l', fasta=False)
|
Print out the shredded sequence.
| 2.924759 | 2.886835 | 1.013137 |
p = OptionParser(shred.__doc__)
p.set_depth(depth=2)
p.add_option("--readlen", default=1000, type="int",
help="Desired length of the reads [default: %default]")
p.add_option("--minctglen", default=0, type="int",
help="Ignore contig sequence less than [default: %default]")
p.add_option("--shift", default=50, type="int",
help="Overlap between reads must be at least [default: %default]")
p.add_option("--fasta", default=False, action="store_true",
help="Output shredded reads as FASTA sequences [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
libID = fastafile.split(".")[0]
depth = opts.depth
readlen = opts.readlen
shift = opts.shift
outfile = libID + ".depth{0}".format(depth)
if opts.fasta:
outfile += ".fasta"
else:
outfile += ".frg"
f = Fasta(fastafile, lazy=True)
fw = must_open(outfile, "w", checkexists=True)
if not opts.fasta:
print(headerTemplate.format(libID=libID), file=fw)
for ctgID, (name, rec) in enumerate(f.iteritems_ordered()):
seq = rec.seq
seqlen = len(seq)
if seqlen < opts.minctglen:
continue
shredlen = min(seqlen - shift, readlen)
numreads = max(seqlen * depth / shredlen, 1)
center_range_width = seqlen - shredlen
ranges = []
if depth == 1:
if seqlen < readlen:
ranges.append((0, seqlen))
else:
for begin in xrange(0, seqlen, readlen - shift):
end = min(seqlen, begin + readlen)
ranges.append((begin, end))
else:
if numreads == 1:
ranges.append((0, shredlen))
else:
prev_begin = -1
center_increments = center_range_width * 1. / (numreads - 1)
for i in xrange(numreads):
begin = center_increments * i
end = begin + shredlen
begin, end = int(begin), int(end)
if begin == prev_begin:
continue
ranges.append((begin, end))
prev_begin = begin
for shredID, (begin, end) in enumerate(ranges):
shredded_seq = seq[begin:end]
fragID = "{0}.{1}.frag{2}.{3}-{4}".format(libID, ctgID, shredID, begin, end)
emitFragment(fw, fragID, libID, shredded_seq, fasta=opts.fasta)
fw.close()
logging.debug("Shredded reads are written to `{0}`.".format(outfile))
return outfile
|
def shred(args)
|
%prog shred fastafile
Similar to the method of `shredContig` in runCA script. The contigs are
shredded into pseudo-reads with certain length and depth.
| 2.748945 | 2.694163 | 1.020334 |
p = OptionParser(tracedb.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(p.print_help())
action, = args
assert action in ("xml", "lib", "frg")
CMD = "tracedb-to-frg.pl"
xmls = glob("xml*")
if action == "xml":
for xml in xmls:
cmd = CMD + " -xml {0}".format(xml)
sh(cmd, outfile="/dev/null", errfile="/dev/null", background=True)
elif action == "lib":
cmd = CMD + " -lib {0}".format(" ".join(xmls))
sh(cmd)
elif action == "frg":
for xml in xmls:
cmd = CMD + " -frg {0}".format(xml)
sh(cmd, background=True)
|
def tracedb(args)
|
%prog tracedb <xml|lib|frg>
Run `tracedb-to-frg.pl` within current folder.
| 2.972987 | 2.260542 | 1.315165 |
assert op.exists(fastafile)
matefile = fastafile.rsplit(".", 1)[0] + ".mates"
if op.exists(matefile):
logging.debug("matepairs file `{0}` found".format(matefile))
else:
logging.debug("parsing matepairs from `{0}`".format(fastafile))
matefw = open(matefile, "w")
it = SeqIO.parse(fastafile, "fasta")
for fwd, rev in zip(it, it):
print("{0}\t{1}".format(fwd.id, rev.id), file=matefw)
matefw.close()
return matefile
|
def make_matepairs(fastafile)
|
Assumes the mates are adjacent sequence records
| 2.475625 | 2.513575 | 0.984902 |
from jcvi.formats.fasta import clean, make_qual
p = OptionParser(fasta.__doc__)
p.add_option("--clean", default=False, action="store_true",
help="Clean up irregular chars in seq")
p.add_option("--matefile", help="Matepairs file")
p.add_option("--maxreadlen", default=262143, type="int",
help="Maximum read length allowed")
p.add_option("--minreadlen", default=1000, type="int",
help="Minimum read length allowed")
p.add_option("--sequential", default=False, action="store_true",
help="Overwrite read name (e.g. long Pacbio name)")
p.set_size()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
maxreadlen = opts.maxreadlen
minreadlen = opts.minreadlen
if maxreadlen > 0:
split = False
f = Fasta(fastafile, lazy=True)
for id, size in f.itersizes_ordered():
if size > maxreadlen:
logging.debug("Sequence {0} (size={1}) longer than max read len {2}".\
format(id, size, maxreadlen))
split = True
break
if split:
for f in split_fastafile(fastafile, maxreadlen=maxreadlen):
fasta([f, "--maxreadlen=0"])
return
plate = op.basename(fastafile).split(".")[0]
mated = (opts.size != 0)
mean, sv = get_mean_sv(opts.size)
if mated:
libname = "Sanger{0}Kb-".format(opts.size / 1000) + plate
else:
libname = plate
frgfile = libname + ".frg"
if opts.clean:
cleanfasta = fastafile.rsplit(".", 1)[0] + ".clean.fasta"
if need_update(fastafile, cleanfasta):
clean([fastafile, "--canonical", "-o", cleanfasta])
fastafile = cleanfasta
if mated:
qualfile = make_qual(fastafile, score=21)
if opts.matefile:
matefile = opts.matefile
assert op.exists(matefile)
else:
matefile = make_matepairs(fastafile)
cmd = "convert-fasta-to-v2.pl"
cmd += " -l {0} -s {1} -q {2} ".format(libname, fastafile, qualfile)
if mated:
cmd += "-mean {0} -stddev {1} -m {2} ".format(mean, sv, matefile)
sh(cmd, outfile=frgfile)
return
fw = must_open(frgfile, "w")
print(headerTemplate.format(libID=libname), file=fw)
sequential = opts.sequential
i = j = 0
for fragID, seq in parse_fasta(fastafile):
if len(seq) < minreadlen:
j += 1
continue
i += 1
if sequential:
fragID = libname + str(100000000 + i)
emitFragment(fw, fragID, libname, seq)
fw.close()
logging.debug("A total of {0} fragments written to `{1}` ({2} discarded).".\
format(i, frgfile, j))
|
def fasta(args)
|
%prog fasta fastafile
Convert reads formatted as FASTA file, and convert to CA frg file. If .qual
file is found, then use it, otherwise just make a fake qual file. Mates are
assumed as adjacent sequence records (i.e. /1, /2, /1, /2 ...) unless a
matefile is given.
| 3.382193 | 3.294873 | 1.026502 |
p = OptionParser(sff.__doc__)
p.add_option("--prefix", dest="prefix", default=None,
help="Output frg filename prefix")
p.add_option("--nodedup", default=False, action="store_true",
help="Do not remove duplicates [default: %default]")
p.set_size()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(p.print_help())
sffiles = args
plates = [x.split(".")[0].split("_")[-1] for x in sffiles]
mated = (opts.size != 0)
mean, sv = get_mean_sv(opts.size)
if len(plates) > 1:
plate = plates[0][:-1] + 'X'
else:
plate = "_".join(plates)
if mated:
libname = "Titan{0}Kb-".format(opts.size / 1000) + plate
else:
libname = "TitanFrags-" + plate
if opts.prefix:
libname = opts.prefix
cmd = "sffToCA"
cmd += " -libraryname {0} -output {0} ".format(libname)
cmd += " -clear 454 -trim chop "
if mated:
cmd += " -linker titanium -insertsize {0} {1} ".format(mean, sv)
if opts.nodedup:
cmd += " -nodedup "
cmd += " ".join(sffiles)
sh(cmd)
|
def sff(args)
|
%prog sff sffiles
Convert reads formatted as 454 SFF file, and convert to CA frg file.
Turn --nodedup on if another deduplication mechanism is used (e.g.
CD-HIT-454). See assembly.sff.deduplicate().
| 4.257879 | 3.683872 | 1.155816 |
from jcvi.formats.fastq import guessoffset
p = OptionParser(fastq.__doc__)
p.add_option("--outtie", dest="outtie", default=False, action="store_true",
help="Are these outie reads? [default: %default]")
p.set_phred()
p.set_size()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(p.print_help())
fastqfiles = [get_abs_path(x) for x in args]
size = opts.size
outtie = opts.outtie
if size > 1000 and (not outtie):
logging.debug("[warn] long insert size {0} but not outtie".format(size))
mated = (size != 0)
libname = op.basename(args[0]).split(".")[0]
libname = libname.replace("_1_sequence", "")
frgfile = libname + ".frg"
mean, sv = get_mean_sv(opts.size)
cmd = "fastqToCA"
cmd += " -libraryname {0} ".format(libname)
fastqs = " ".join("-reads {0}".format(x) for x in fastqfiles)
if mated:
assert len(args) in (1, 2), "you need one or two fastq files for mated library"
fastqs = "-mates {0}".format(",".join(fastqfiles))
cmd += "-insertsize {0} {1} ".format(mean, sv)
cmd += fastqs
offset = int(opts.phred) if opts.phred else guessoffset([fastqfiles[0]])
illumina = (offset == 64)
if illumina:
cmd += " -type illumina"
if outtie:
cmd += " -outtie"
sh(cmd, outfile=frgfile)
|
def fastq(args)
|
%prog fastq fastqfile
Convert reads formatted as FASTQ file, and convert to CA frg file.
| 4.039793 | 3.915254 | 1.031808 |
p = OptionParser(clr.__doc__)
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
blastfile = args[0]
fastafiles = args[1:]
sizes = {}
for fa in fastafiles:
f = Fasta(fa)
sizes.update(f.itersizes())
b = Blast(blastfile)
for query, hits in b.iter_hits():
qsize = sizes[query]
vectors = list((x.qstart, x.qstop) for x in hits)
vmin, vmax = range_minmax(vectors)
left_size = vmin - 1
right_size = qsize - vmax
if left_size > right_size:
clr_start, clr_end = 0, vmin
else:
clr_start, clr_end = vmax, qsize
print("\t".join(str(x) for x in (query, clr_start, clr_end)))
del sizes[query]
for q, size in sorted(sizes.items()):
print("\t".join(str(x) for x in (q, 0, size)))
|
def clr(args)
|
%prog blastfile fastafiles
Calculate the vector clear range file based BLAST to the vectors.
| 2.688478 | 2.366682 | 1.135969 |
import re
if rule is None:
return name
k = re.search("(?<=^head)[0-9]{1,2}$", rule)
if k:
k = k.group(0)
tname = name[int(k):]
else:
k = re.search("(?<=^ohead)[0-9]{1,2}$", rule)
if k:
k = k.group(0)
tname = name[:int(k)]
else:
k = re.search("(?<=^tail)[0-9]{1,2}$", rule)
if k:
k = k.group(0)
tname = name[:-int(k)]
else:
k = re.search("(?<=^otail)[0-9]{1,2}$", rule)
if k:
k = k.group(0)
tname = name[-int(k):]
else:
print(truncate_name.__doc__, file=sys.stderr)
raise ValueError('Wrong rule for truncation!')
return tname
|
def truncate_name(name, rule=None)
|
shorten taxa names for tree display
Options of rule. This only affects tree display.
- headn (eg. head3 truncates first 3 chars)
- oheadn (eg. ohead3 retains only the first 3 chars)
- tailn (eg. tail3 truncates last 3 chars)
- otailn (eg. otail3 retains only the last 3 chars)
n = 1 ~ 99
| 1.991637 | 1.812523 | 1.09882 |
for barcode in barcodemap:
if barcode in name:
return barcodemap[barcode]
return name
|
def decode_name(name, barcodemap)
|
rename seq/taxon name, typically for a tree display,
according to a barcode map given in a dictionary
By definition barcodes should be distinctive.
| 3.392759 | 4.137232 | 0.820055 |
a, b = .1, .6 # Correspond to 200mya and 0mya
def cv(x): return b - (x - b) / (maxx - minx) * (b - a)
ax.plot((a, b), (.5, .5), "k-")
tick = .015
for mya in xrange(maxx - 25, 0, -25):
p = cv(mya)
ax.plot((p, p), (.5, .5 - tick), "k-")
ax.text(p, .5 - 2.5 * tick, str(mya), ha="center", va="center")
ax.text((a + b) / 2, .5 - 5 * tick, "Time before present (million years)",
ha="center", va="center")
# Source:
# http://www.weston.org/schools/ms/biologyweb/evolution/handouts/GSAchron09.jpg
Geo = (("Neogene", 2.6, 23.0, "#fee400"),
("Paleogene", 23.0, 65.5, "#ff9a65"),
("Cretaceous", 65.5, 145.5, "#80ff40"),
("Jurassic", 145.5, 201.6, "#33fff3"))
h = .05
for era, start, end, color in Geo:
start, end = cv(start), cv(end)
end = max(a, end)
p = Rectangle((end, .5 + tick / 2), abs(start - end),
h, lw=1, ec="w", fc=color)
ax.text((start + end) / 2, .5 + (tick + h) / 2, era,
ha="center", va="center", size=9)
ax.add_patch(p)
|
def draw_geoscale(ax, minx=0, maxx=175)
|
Draw geological epoch on million year ago (mya) scale.
| 4.852648 | 4.508296 | 1.076382 |
p = OptionParser(main.__doc__)
p.add_option("--outgroup", help="Outgroup for rerooting the tree. " +
"Use comma to separate multiple taxa.")
p.add_option("--noreroot", default=False, action="store_true",
help="Don't reroot the input tree [default: %default]")
p.add_option("--rmargin", default=.3, type="float",
help="Set blank rmargin to the right [default: %default]")
p.add_option("--gffdir", default=None,
help="The directory that contain GFF files [default: %default]")
p.add_option("--sizes", default=None,
help="The FASTA file or the sizes file [default: %default]")
p.add_option("--SH", default=None, type="string",
help="SH test p-value [default: %default]")
p.add_option("--scutoff", default=0, type="int",
help="cutoff for displaying node support, 0-100 [default: %default]")
p.add_option("--barcode", default=None,
help="path to seq names barcode mapping file: "
"barcode<tab>new_name [default: %default]")
p.add_option("--leafcolor", default="k",
help="Font color for the OTUs, or path to a file "
"containing color mappings: leafname<tab>color [default: %default]")
p.add_option("--leaffont", default=12, help="Font size for the OTUs")
p.add_option("--geoscale", default=False, action="store_true",
help="Plot geological scale")
opts, args, iopts = p.set_image_options(args, figsize="8x6")
if len(args) != 1:
sys.exit(not p.print_help())
datafile, = args
outgroup = None
reroot = not opts.noreroot
if opts.outgroup:
outgroup = opts.outgroup.split(",")
if datafile == "demo":
tx =
else:
logging.debug("Load tree file `{0}`.".format(datafile))
tx = open(datafile).read()
pf = datafile.rsplit(".", 1)[0]
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
if opts.geoscale:
draw_geoscale(root)
else:
if op.isfile(opts.leafcolor):
leafcolor = "k"
leafcolorfile = opts.leafcolor
else:
leafcolor = opts.leafcolor
leafcolorfile = None
draw_tree(root, tx, rmargin=opts.rmargin, leafcolor=leafcolor,
outgroup=outgroup, reroot=reroot, gffdir=opts.gffdir,
sizes=opts.sizes, SH=opts.SH, scutoff=opts.scutoff,
barcodefile=opts.barcode, leafcolorfile=leafcolorfile,
leaffont=opts.leaffont)
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
image_name = pf + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def main(args)
|
%prog newicktree
Plot Newick formatted tree. The gene structure can be plotted along if
--gffdir is given. The gff file needs to be `genename.gff`. If --sizes is
on, also show the number of amino acids.
With --barcode a mapping file can be provided to convert seq names to
eg. species names, useful in unified tree display. This file should have
distinctive barcodes in column1 and new names in column2, tab delimited.
| 2.992423 | 2.849976 | 1.049982 |
cl = TreeFixCommandline(input=input, \
stree_file=stree_file, smap_file=smap_file, a_ext=a_ext, \
o=o_ext, n=n_ext, **kwargs)
outtreefile = input.rsplit(o_ext, 1)[0] + n_ext
print("TreeFix:", cl, file=sys.stderr)
r, e = cl.run()
if e:
print("***TreeFix could not run", file=sys.stderr)
return None
else:
logging.debug("new tree written to {0}".format(outtreefile))
return outtreefile
|
def run_treefix(input, stree_file, smap_file, a_ext=".fasta", \
o_ext=".dnd", n_ext = ".treefix.dnd", **kwargs)
|
get the ML tree closest to the species tree
| 3.280392 | 3.277595 | 1.000853 |
cl = GblocksCommandline(aln_file=align_fasta_file, **kwargs)
r, e = cl.run()
print("Gblocks:", cl, file=sys.stderr)
if e:
print("***Gblocks could not run", file=sys.stderr)
return None
else:
print(r, file=sys.stderr)
alignp = re.sub(r'.*Gblocks alignment:.*\(([0-9]{1,3}) %\).*', \
r'\1', r, flags=re.DOTALL)
alignp = int(alignp)
if alignp <= 10:
print("** WARNING ** Only %s %% positions retained by Gblocks. " \
"Results aborted. Using original alignment instead.\n" % alignp, file=sys.stderr)
return None
else:
return align_fasta_file+"-gb"
|
def run_gblocks(align_fasta_file, **kwargs)
|
remove poorly aligned positions and divergent regions with Gblocks
| 5.344467 | 5.155605 | 1.036632 |
cl = FfitchCommandline(datafile=distfile, outtreefile=outtreefile, \
intreefile=intreefile, **kwargs)
r, e = cl.run()
if e:
print("***ffitch could not run", file=sys.stderr)
return None
else:
print("ffitch:", cl, file=sys.stderr)
return outtreefile
|
def run_ffitch(distfile, outtreefile, intreefile=None, **kwargs)
|
Infer tree branch lengths using ffitch in EMBOSS PHYLIP
| 4.079683 | 4.297816 | 0.949246 |
tree = Tree(treefile, format=format)
leaves = [t.name for t in tree.get_leaves()][::-1]
outgroup = []
for o in must_open(outgroupfile):
o = o.strip()
for leaf in leaves:
if leaf[:len(o)] == o:
outgroup.append(leaf)
if outgroup:
break
if not outgroup:
print("Outgroup not found. Tree {0} cannot be rerooted.".format(treefile), file=sys.stderr)
return treefile
try:
tree.set_outgroup(tree.get_common_ancestor(*outgroup))
except ValueError:
assert type(outgroup) == list
outgroup = outgroup[0]
tree.set_outgroup(outgroup)
tree.write(outfile=outfile, format=format)
logging.debug("Rerooted tree printed to {0}".format(outfile))
return outfile
|
def smart_reroot(treefile, outgroupfile, outfile, format=0)
|
simple function to reroot Newick format tree using ete2
Tree reading format options see here:
http://packages.python.org/ete2/tutorial/tutorial_trees.html#reading-newick-trees
| 2.805085 | 2.967949 | 0.945126 |
phy_file = op.join(work_dir, "work", "aln.phy")
AlignIO.write(alignment, file(phy_file, "w"), "phylip-relaxed")
phyml_cl = PhymlCommandline(cmd=PHYML_BIN("phyml"), input=phy_file, **kwargs)
logging.debug("Building ML tree using PhyML: %s" % phyml_cl)
stdout, stderr = phyml_cl()
tree_file = phy_file + "_phyml_tree.txt"
if not op.exists(tree_file):
print("***PhyML failed.", file=sys.stderr)
return None
sh("cp {0} {1}".format(tree_file, outfile), log=False)
logging.debug("ML tree printed to %s" % outfile)
return outfile, phy_file
|
def build_ml_phyml(alignment, outfile, work_dir=".", **kwargs)
|
build maximum likelihood tree of DNA seqs with PhyML
| 3.842254 | 3.708928 | 1.035947 |
work_dir = op.join(work_dir, "work")
mkdir(work_dir)
phy_file = op.join(work_dir, "aln.phy")
AlignIO.write(alignment, file(phy_file, "w"), "phylip-relaxed")
raxml_work = op.abspath(op.join(op.dirname(phy_file), "raxml_work"))
mkdir(raxml_work)
raxml_cl = RaxmlCommandline(cmd=RAXML_BIN("raxmlHPC"), \
sequences=phy_file, algorithm="a", model="GTRGAMMA", \
parsimony_seed=12345, rapid_bootstrap_seed=12345, \
num_replicates=100, name="aln", \
working_dir=raxml_work, **kwargs)
logging.debug("Building ML tree using RAxML: %s" % raxml_cl)
stdout, stderr = raxml_cl()
tree_file = "{0}/RAxML_bipartitions.aln".format(raxml_work)
if not op.exists(tree_file):
print("***RAxML failed.", file=sys.stderr)
sh("rm -rf %s" % raxml_work, log=False)
return None
sh("cp {0} {1}".format(tree_file, outfile), log=False)
logging.debug("ML tree printed to %s" % outfile)
sh("rm -rf %s" % raxml_work)
return outfile, phy_file
|
def build_ml_raxml(alignment, outfile, work_dir=".", **kwargs)
|
build maximum likelihood tree of DNA seqs with RAxML
| 3.287886 | 3.248412 | 1.012152 |
assert op.isfile(reftree)
shout = must_open(shout, "a")
raxml_work = op.abspath(op.join(op.dirname(phy_file), "raxml_work"))
mkdir(raxml_work)
raxml_cl = RaxmlCommandline(cmd=RAXML_BIN("raxmlHPC"), \
sequences=phy_file, algorithm="h", model="GTRGAMMA", \
name="SH", starting_tree=reftree, bipartition_filename=querytree, \
working_dir=raxml_work)
logging.debug("Running SH test in RAxML: %s" % raxml_cl)
o, stderr = raxml_cl()
# hard coded
try:
pval = re.search('(Significantly.*:.*)', o).group(0)
except:
print("SH test failed.", file=sys.stderr)
else:
pval = pval.strip().replace("\t"," ").replace("%","\%")
print("{0}\t{1}".format(op.basename(querytree), pval), file=shout)
logging.debug("SH p-value appended to %s" % shout.name)
shout.close()
return shout.name
|
def SH_raxml(reftree, querytree, phy_file, shout="SH_out.txt")
|
SH test using RAxML
querytree can be a single tree or a bunch of trees (eg. from bootstrapping)
| 4.58297 | 4.599276 | 0.996455 |
aln = AlignIO.read(alnfle, alntype)
alnlen = aln.get_alignment_length()
nseq = len(aln)
subaln = None
subalnfile = alnfle.rsplit(".", 1)[0] + "_{0}.{1}".format(subtype, alntype)
if subtype == "synonymous":
for j in range( 0, alnlen, 3 ):
aa = None
for i in range(nseq):
codon = str(aln[i, j: j + 3].seq)
if codon not in CODON_TRANSLATION:
break
if aa and CODON_TRANSLATION[codon] != aa:
break
else:
aa = CODON_TRANSLATION[codon]
else:
if subaln is None:
subaln = aln[:, j: j + 3]
else:
subaln += aln[:, j: j + 3]
if subtype == "fourfold":
for j in range( 0, alnlen, 3 ):
for i in range(nseq):
codon = str(aln[i, j: j + 3].seq)
if codon not in FOURFOLD:
break
else:
if subaln is None:
subaln = aln[:, j: j + 3]
else:
subaln += aln[:, j: j + 3]
if subaln:
AlignIO.write(subaln, subalnfile, alntype)
return subalnfile
else:
print("No sites {0} selected.".format(subtype), file=sys.stderr)
return None
|
def subalignment(alnfle, subtype, alntype="fasta")
|
Subset synonymous or fourfold degenerate sites from an alignment
input should be a codon alignment
| 2.104942 | 1.96585 | 1.070754 |
fw = must_open(filename+".merged", "w")
rows = file(filename).readlines()
rows = [row.strip().split(colsep) for row in rows]
l = len(rows[0])
for rowi, row in enumerate(rows):
n = len(rows)
i = rowi+1
while i <= min(rowi+local, n-1):
merge = 1
row2 = rows[i]
for j in range(l):
a = row[j]
b = row2[j]
if fieldcheck:
a = set(a.split(fsep))
a = fsep.join(sorted(list(a)))
b = set(b.split(fsep))
b = fsep.join(sorted(list(b)))
if all([a!=ignore, b!=ignore, a not in b, b not in a]):
merge = 0
i += 1
break
if merge:
for x in range(l):
if row[x] == ignore:
rows[rowi][x] = row2[x]
elif row[x] in row2[x]:
rows[rowi][x] = row2[x]
else:
rows[rowi][x] = row[x]
row = rows[rowi]
rows.remove(row2)
print(colsep.join(row), file=fw)
fw.close()
return fw.name
|
def merge_rows_local(filename, ignore=".", colsep="\t", local=10, \
fieldcheck=True, fsep=",")
|
merge overlapping rows within given row count distance
| 2.430209 | 2.420234 | 1.004121 |
tandems = [f.strip().split(",") for f in file(tandemfile)]
fw = must_open(mcscanfile+".withtandems", "w")
fp = must_open(mcscanfile)
seen =set()
for i, row in enumerate(fp):
if row[0] == '#':
continue
anchorslist = row.strip().split("\t")
anchors = set([a.split(",")[0] for a in anchorslist])
anchors.remove(".")
if anchors & seen == anchors:
continue
newanchors = []
for a in anchorslist:
if a == ".":
newanchors.append(a)
continue
for t in tandems:
if a in t:
newanchors.append(",".join(t))
seen.update(t)
break
else:
newanchors.append(a)
seen.add(a)
print("\t".join(newanchors), file=fw)
fw.close()
newmcscanfile = merge_rows_local(fw.name)
logging.debug("Tandems added to `{0}`. Results in `{1}`".\
format(mcscanfile, newmcscanfile))
fp.seek(0)
logging.debug("{0} rows merged to {1} rows".\
format(len(fp.readlines()), len(file(newmcscanfile).readlines())))
sh("rm %s" % fw.name)
return newmcscanfile
|
def add_tandems(mcscanfile, tandemfile)
|
add tandem genes to anchor genes in mcscan file
| 3.290733 | 3.216578 | 1.023054 |
from jcvi.graphics.base import discrete_rainbow
p = OptionParser(prepare.__doc__)
p.add_option("--addtandem", help="path to tandemfile [default: %default]")
p.add_option("--writecolors", default=False, action="store_true", \
help="generate a gene_name to color mapping file which will be taken " \
"by jcvi.apps.phylo.draw [default: %default]")
p.set_outdir(outdir="sequences")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
mcscanfile, cdsfile = args
if opts.addtandem:
tandemfile = opts.addtandem
mcscanfile_with_tandems = add_tandems(mcscanfile, tandemfile)
mcscanfile = mcscanfile_with_tandems
seqdir = opts.outdir
mkdir(seqdir)
f = Fasta(cdsfile)
fp = must_open(mcscanfile)
if opts.writecolors:
fc = must_open("leafcolors.txt", "w")
n = 0
for i, row in enumerate(fp):
row = row.strip().split("\t")
if i == 0:
l = len(row)
if l <= 20:
colors = discrete_rainbow(l, shuffle=False)[1]
else:
colors = discrete_rainbow(l, usepreset=False, shuffle=False)[1]
warnings.warn("*** WARNING ***\n" \
"Too many columns. Colors may not be all distinctive.")
assert len(row)==l, "All rows should have same number of fields."
anchors = set()
for j, atom in enumerate(row):
color = "%s,%s,%s" % colors[j]
if atom == ".":
continue
elif "," in atom:
atom = atom.split(",")
for a in atom:
fc.write("{0}\t{1}\n".format(a, color))
anchors.add(a)
else:
fc.write("{0}\t{1}\n".format(atom, color))
anchors.add(atom)
if len(anchors) <= 3:
print("Not enough seqs to build trees for {0}".format(anchors), file=sys.stderr)
continue
pivot = row[0]
fw = must_open("%s/%s.cds" % (seqdir, pivot), "w")
for a in anchors:
if a not in f:
print(a)
a = find_first_isoform(a, f)
assert a, a
arec = f[a]
SeqIO.write((arec), fw, "fasta")
fw.close()
n+=1
if opts.writecolors:
fc.close()
logging.debug("leaf colors written to `{0}`".format(fc.name))
logging.debug("cds of {0} syntelog groups written to {1}/".format(n, seqdir))
return seqdir
|
def prepare(args)
|
%prog prepare mcscanfile cdsfile [options]
Pick sequences from cdsfile to form fasta files, according to multiple
alignment in the mcscanfile.
The fasta sequences can then be used to construct phylogenetic tree.
Use --addtandem=tandemfile to collapse tandems of anchors into single row.
The tandemfile must be provided with *ALL* genomes involved, otherwise
result will be incomplete and redundant.
| 3.817101 | 3.440197 | 1.109559 |
from jcvi.graphics.tree import draw_tree
if shfile:
SHs = DictFile(shfile, delimiter="\t")
ntrees = len(trees)
n = nrow * ncol
for x in xrange(int(ceil(float(ntrees)/n))):
fig = plt.figure(1, (iopts.w, iopts.h)) if iopts \
else plt.figure(1, (5, 5))
root = fig.add_axes([0, 0, 1, 1])
xiv = 1. / ncol
yiv = 1. / nrow
xstart = list(np.arange(0, 1, xiv)) * nrow
ystart = list(chain(*zip(*[list(np.arange(0, 1, yiv))[::-1]] * ncol)))
for i in xrange(n*x, n*(x+1)):
if i == ntrees:
break
ax = fig.add_axes([xstart[i%n], ystart[i%n], xiv, yiv])
f = trees.keys()[i]
tree = trees[f]
try:
SH = SHs[f]
except:
SH = None
draw_tree(ax, tree, rmargin=rmargin, reroot=False, \
supportcolor="r", SH=SH, **kwargs)
root.set_xlim(0, 1)
root.set_ylim(0, 1)
root.set_axis_off()
format = iopts.format if iopts else "pdf"
dpi = iopts.dpi if iopts else 300
if n == 1:
image_name = f.rsplit(".", 1)[0] + "." + format
else:
image_name = "trees{0}.{1}".format(x, format)
image_name = op.join(outdir, image_name)
savefig(image_name, dpi=dpi, iopts=iopts)
plt.clf()
|
def _draw_trees(trees, nrow=1, ncol=1, rmargin=.3, iopts=None, outdir=".",
shfile=None, **kwargs)
|
Draw one or multiple trees on one plot.
| 2.801075 | 2.812183 | 0.99605 |
p = OptionParser(enrich.__doc__)
p.add_option("--ghost", default=False, action="store_true",
help="Add ghost homologs already used [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
omgfile, groupsfile, ntaxa = args
ntaxa = int(ntaxa)
ghost = opts.ghost
# Get gene pair => weight mapping
weights = get_edges()
info = get_info()
# Get gene => taxon mapping
info = dict((k, v.split()[5]) for k, v in info.items())
groups = Grouper()
fp = open(groupsfile)
for row in fp:
members = row.strip().split(",")
groups.join(*members)
logging.debug("Imported {0} families with {1} members.".\
format(len(groups), groups.num_members))
seen = set()
omggroups = Grouper()
fp = open(omgfile)
for row in fp:
genes, idxs = row.split()
genes = genes.split(",")
seen.update(genes)
omggroups.join(*genes)
nmembers = omggroups.num_members
logging.debug("Imported {0} OMG families with {1} members.".\
format(len(omggroups), nmembers))
assert nmembers == len(seen)
alltaxa = set(str(x) for x in range(ntaxa))
recruited = []
fp = open(omgfile)
for row in fp:
genes, idxs = row.split()
genes = genes.split(",")
a = genes[0]
idxs = set(idxs.split(","))
missing_taxa = alltaxa - idxs
if not missing_taxa:
print(row.rstrip())
continue
leftover = groups[a]
if not ghost:
leftover = set(leftover) - seen
if not leftover:
print(row.rstrip())
continue
leftover_sorted_by_taxa = dict((k, \
[x for x in leftover if info[x] == k]) \
for k in missing_taxa)
#print genes, leftover
#print leftover_sorted_by_taxa
solutions = []
for solution in product(*leftover_sorted_by_taxa.values()):
score = sum(weights.get((a, b), 0) for a in solution for b in genes)
if score == 0:
continue
score += sum(weights.get((a, b), 0) for a, b in combinations(solution, 2))
solutions.append((score, solution))
#print solution, score
best_solution = max(solutions) if solutions else None
if best_solution is None:
print(row.rstrip())
continue
#print "best ==>", best_solution
best_score, best_addition = best_solution
genes.extend(best_addition)
recruited.extend(best_addition)
genes = sorted([(info[x], x) for x in genes])
idxs, genes = zip(*genes)
if ghost: # decorate additions so it's clear that they were added
pgenes = []
for g in genes:
if g in recruited and g in seen:
pgenes.append("|{0}|".format(g))
else:
pgenes.append(g)
genes = pgenes
print("\t".join((",".join(genes), ",".join(idxs))))
if not ghost:
seen.update(best_addition)
logging.debug("Recruited {0} new genes.".format(len(recruited)))
|
def enrich(args)
|
%prog enrich omgfile groups ntaxa > enriched.omg
Enrich OMG output by pulling genes misses by OMG.
| 3.139113 | 2.95506 | 1.062284 |
from jcvi.formats.base import DictFile
outfile = listfile.rsplit(".", 1)[0] + ".sorted.list"
threadorder = thread.order
fw = open(outfile, "w")
lt = DictFile(listfile, keypos=column, valuepos=None)
threaded = []
imported = set()
for t in thread:
accn = t.accn
if accn not in lt:
continue
imported.add(accn)
atoms = lt[accn]
threaded.append(atoms)
assert len(threaded) == len(imported)
total = sum(1 for x in open(listfile))
logging.debug("Total: {0}, currently threaded: {1}".format(total, len(threaded)))
fp = open(listfile)
for row in fp:
atoms = row.split()
accn = atoms[0]
if accn in imported:
continue
insert_into_threaded(atoms, threaded, threadorder)
for atoms in threaded:
print("\t".join(atoms), file=fw)
fw.close()
logging.debug("File `{0}` sorted to `{1}`.".format(outfile, thread.filename))
|
def sort_layout(thread, listfile, column=0)
|
Sort the syntelog table according to chromomomal positions. First orient the
contents against threadbed, then for contents not in threadbed, insert to
the nearest neighbor.
| 3.601279 | 3.513239 | 1.025059 |
p = OptionParser(layout.__doc__)
p.add_option("--sort",
help="Sort layout file based on bedfile [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
omgfile, taxa = args
listfile = omgfile.rsplit(".", 1)[0] + ".list"
taxa = taxa.split(",")
ntaxa = len(taxa)
fw = open(listfile, "w")
data = []
fp = open(omgfile)
for row in fp:
genes, idxs = row.split()
row = ["."] * ntaxa
genes = genes.split(",")
ixs = [int(x) for x in idxs.split(",")]
for gene, idx in zip(genes, ixs):
row[idx] = gene
txs = ",".join(taxa[x] for x in ixs)
print("\t".join(("\t".join(row), txs)), file=fw)
data.append(row)
coldata = zip(*data)
ngenes = []
for i, tx in enumerate(taxa):
genes = [x for x in coldata[i] if x != '.']
genes = set(x.strip("|") for x in genes)
ngenes.append((len(genes), tx))
details = ", ".join("{0} {1}".format(a, b) for a, b in ngenes)
total = sum(a for a, b in ngenes)
s = "A list of {0} orthologous families that collectively".format(len(data))
s += " contain a total of {0} genes ({1})".format(total, details)
print(s, file=sys.stderr)
fw.close()
lastcolumn = ntaxa + 1
cmd = "sort -k{0},{0} {1} -o {1}".format(lastcolumn, listfile)
sh(cmd)
logging.debug("List file written to `{0}`.".format(listfile))
sort = opts.sort
if sort:
thread = Bed(sort)
sort_layout(thread, listfile)
|
def layout(args)
|
%prog layout omgfile taxa
Build column formatted gene lists after omgparse(). Use species list
separated by comma in place of taxa, e.g. "BR,BO,AN,CN"
| 3.366796 | 3.118494 | 1.079622 |
p = OptionParser(omgparse.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
work, = args
omgfiles = glob(op.join(work, "gf*.out"))
for omgfile in omgfiles:
omg = OMGFile(omgfile)
best = omg.best()
for bb in best:
genes, taxa = zip(*bb)
print("\t".join((",".join(genes), ",".join(taxa))))
|
def omgparse(args)
|
%prog omgparse work
Parse the OMG outputs to get gene lists.
| 3.569541 | 2.884035 | 1.23769 |
p = OptionParser(group.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
anchorfiles = args
groups = Grouper()
for anchorfile in anchorfiles:
ac = AnchorFile(anchorfile)
for a, b, idx in ac.iter_pairs():
groups.join(a, b)
logging.debug("Created {0} groups with {1} members.".\
format(len(groups), groups.num_members))
outfile = opts.outfile
fw = must_open(outfile, "w")
for g in groups:
print(",".join(sorted(g)), file=fw)
fw.close()
return outfile
|
def group(args)
|
%prog group anchorfiles
Group the anchors into ortho-groups. Can input multiple anchor files.
| 3.398792 | 2.947951 | 1.152933 |
p = OptionParser(omg.__doc__)
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
weightsfiles = args
groupfile = group(weightsfiles + ["--outfile=groups"])
weights = get_weights(weightsfiles)
info = get_info()
fp = open(groupfile)
work = "work"
mkdir(work)
for i, row in enumerate(fp):
gf = op.join(work, "gf{0:05d}".format(i))
genes = row.rstrip().split(",")
fw = open(gf, "w")
contents = ""
npairs = 0
for gene in genes:
gene_pairs = weights[gene]
for a, b, c in gene_pairs:
if b not in genes:
continue
contents += "weight {0}".format(c) + '\n'
contents += info[a] + '\n'
contents += info[b] + '\n\n'
npairs += 1
header = "a group of genes :length ={0}".format(npairs)
print(header, file=fw)
print(contents, file=fw)
fw.close()
|
def omg(args)
|
%prog omg weightsfile
Run Sankoff's OMG algorithm to get orthologs. Download OMG code at:
<http://137.122.149.195/IsbraSoftware/OMGMec.html>
This script only writes the partitions, but not launch OMGMec. You may need to:
$ parallel "java -cp ~/code/OMGMec TestOMGMec {} 4 > {}.out" ::: work/gf?????
Then followed by omgparse() to get the gene lists.
| 4.323682 | 4.224358 | 1.023512 |
from jcvi.formats.blast import cscore
from jcvi.formats.base import DictFile
p = OptionParser(omgprepare.__doc__)
p.add_option("--norbh", action="store_true",
help="Disable RBH hits [default: %default]")
p.add_option("--pctid", default=0, type="int",
help="Percent id cutoff for RBH hits [default: %default]")
p.add_option("--cscore", default=90, type="int",
help="C-score cutoff for RBH hits [default: %default]")
p.set_stripnames()
p.set_beds()
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
ploidy, anchorfile, blastfile = args
norbh = opts.norbh
pctid = opts.pctid
cs = opts.cscore
qbed, sbed, qorder, sorder, is_self = check_beds(anchorfile, p, opts)
fp = open(ploidy)
genomeidx = dict((x.split()[0], i) for i, x in enumerate(fp))
fp.close()
ploidy = DictFile(ploidy)
geneinfo(qbed, qorder, genomeidx, ploidy)
geneinfo(sbed, sorder, genomeidx, ploidy)
pf = blastfile.rsplit(".", 1)[0]
cscorefile = pf + ".cscore"
cscore([blastfile, "-o", cscorefile, "--cutoff=0", "--pct"])
ac = AnchorFile(anchorfile)
pairs = set((a, b) for a, b, i in ac.iter_pairs())
logging.debug("Imported {0} pairs from `{1}`.".format(len(pairs), anchorfile))
weightsfile = pf + ".weights"
fp = open(cscorefile)
fw = open(weightsfile, "w")
npairs = 0
for row in fp:
a, b, c, pct = row.split()
c, pct = float(c), float(pct)
c = int(c * 100)
if (a, b) not in pairs:
if norbh:
continue
if c < cs:
continue
if pct < pctid:
continue
c /= 10 # This severely penalizes RBH against synteny
print("\t".join((a, b, str(c))), file=fw)
npairs += 1
fw.close()
logging.debug("Write {0} pairs to `{1}`.".format(npairs, weightsfile))
|
def omgprepare(args)
|
%prog omgprepare ploidy anchorsfile blastfile
Prepare to run Sankoff's OMG algorithm to get orthologs.
| 3.229771 | 3.051083 | 1.058566 |
p = OptionParser(tandem.__doc__)
p.add_option("--tandem_Nmax", dest="tandem_Nmax", type="int", default=3,
help="merge tandem genes within distance [default: %default]")
p.add_option("--percent_overlap", type="int", default=50,
help="tandem genes have >=x% aligned sequence, x=0-100 \
[default: %default]")
p.set_align(evalue=.01)
p.add_option("--not_self", default=False, action="store_true",
help="provided is not self blast file [default: %default]")
p.add_option("--strip_gene_name", dest="sep", type="string", default=".",
help="strip alternative splicing. Use None for no stripping. \
[default: %default]")
p.add_option("--genefamily", dest="genefam", action="store_true",
help="compile gene families based on similarity [default: %default]")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
blast_file, cds_file, bed_file = args
N = opts.tandem_Nmax
P = opts.percent_overlap
is_self = not opts.not_self
sep = opts.sep
ofile = opts.outfile
tandem_main(blast_file, cds_file, bed_file, N=N, P=P, is_self=is_self, \
evalue=opts.evalue, strip_name=sep, ofile=ofile, genefam=opts.genefam)
|
def tandem(args)
|
%prog tandem blast_file cds_file bed_file [options]
Find tandem gene clusters that are separated by N genes, based on filtered
blast_file by enforcing alignments between any two genes at least 50%
(or user specified value) of either gene.
pep_file can also be used in same manner.
| 3.614868 | 3.368327 | 1.073194 |
od = DefaultOrderedDict(list) if keep_attr_order else defaultdict(list)
for name, value in parse_qsl(qs, keep_blank_values, strict_parsing):
od[name].append(value)
return od
|
def parse_qs(qs, keep_blank_values=0, strict_parsing=0, keep_attr_order=True)
|
Kind of like urlparse.parse_qs, except returns an ordered dict.
Also avoids replicating that function's bad habit of overriding the
built-in 'dict' type.
Taken from below with modification:
<https://bitbucket.org/btubbs/thumpy/raw/8cdece404f15/thumpy.py>
| 2.641404 | 2.917453 | 0.90538 |
'Find the position of an item. Raise ValueError if not found.'
k = self._key(item)
i = bisect_left(self._keys, k)
j = bisect_right(self._keys, k)
return self._items[i:j].index(item) + i
|
def index(self, item)
|
Find the position of an item. Raise ValueError if not found.
| 3.423772 | 2.824538 | 1.212153 |
'Insert a new item. If equal keys are found, add to the left'
k = self._key(item)
i = bisect_left(self._keys, k)
self._keys.insert(i, k)
self._items.insert(i, item)
|
def insert(self, item)
|
Insert a new item. If equal keys are found, add to the left
| 4.230717 | 2.620456 | 1.614497 |
'Insert a new item. If equal keys are found, add to the right'
k = self._key(item)
i = bisect_right(self._keys, k)
self._keys.insert(i, k)
self._items.insert(i, item)
|
def insert_right(self, item)
|
Insert a new item. If equal keys are found, add to the right
| 3.95288 | 2.625476 | 1.505586 |
'Remove first occurence of item. Raise ValueError if not found'
i = self.index(item)
del self._keys[i]
del self._items[i]
|
def remove(self, item)
|
Remove first occurence of item. Raise ValueError if not found
| 4.914875 | 4.028533 | 1.220016 |
'Return first item with a key >= equal to item. Raise ValueError if not found'
k = self._key(item)
i = bisect_left(self._keys, k)
if i != len(self):
return self._items[i]
raise ValueError('No item found with key at or above: %r' % (k,))
|
def find_ge(self, item)
|
Return first item with a key >= equal to item. Raise ValueError if not found
| 4.313375 | 3.196421 | 1.349439 |
'Return first item with a key > item. Raise ValueError if not found'
k = self._key(item)
i = bisect_right(self._keys, k)
if i != len(self):
return self._items[i]
raise ValueError('No item found with key above: %r' % (k,))
|
def find_gt(self, item)
|
Return first item with a key > item. Raise ValueError if not found
| 4.462658 | 3.284884 | 1.358543 |
from jcvi.apps.grid import MakeManager
p = OptionParser(batch.__doc__)
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
cdsfile = args[0]
anchors = args[1:]
workdirs = [".".join(op.basename(x).split(".")[:2]) for x in anchors]
for wd in workdirs:
mkdir(wd)
mm = MakeManager()
for wd, ac in zip(workdirs, anchors):
pairscdsfile = wd + ".cds.fasta"
cmd = "python -m jcvi.apps.ks prepare {} {} -o {}".\
format(ac, cdsfile, pairscdsfile)
mm.add((ac, cdsfile), pairscdsfile, cmd)
ksfile = wd + ".ks"
cmd = "python -m jcvi.apps.ks calc {} -o {} --workdir {}".\
format(pairscdsfile, ksfile, wd)
mm.add(pairscdsfile, ksfile, cmd)
mm.write()
|
def batch(args)
|
%prog batch all.cds *.anchors
Compute Ks values for a set of anchors file. This will generate a bunch of
work directories for each comparisons. The anchorsfile should be in the form
of specie1.species2.anchors.
| 3.51845 | 3.138587 | 1.12103 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.