code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
from jcvi.formats.blast import chain_HSPs p = OptionParser(overlap.__doc__) p.add_option("--dir", default=os.getcwd(), help="Download sequences to dir [default: %default]") p.add_option("--suffix", default="fasta", help="Suffix of the sequence file in dir [default: %default]") p.add_option("--qreverse", default=False, action="store_true", help="Reverse seq a [default: %default]") p.add_option("--nochain", default=False, action="store_true", help="Do not chain adjacent HSPs [default: chain HSPs]") p.set_align(pctid=GoodPct, hitlen=GoodOverlap, evalue=.01) p.set_outfile(outfile=None) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) afasta, bfasta = args dir = opts.dir chain = not opts.nochain suffix = opts.suffix evalue = opts.evalue pctid = opts.pctid hitlen = opts.hitlen cutoff = Cutoff(pctid, hitlen) # Check first whether it is file or accession name if not op.exists(afasta): af = op.join(dir, ".".join((afasta, suffix))) if not op.exists(af): # Check to avoid redownload entrez([afasta, "--skipcheck", "--outdir=" + dir]) afasta = af if not op.exists(bfasta): bf = op.join(dir, ".".join((bfasta, suffix))) if not op.exists(bf): entrez([bfasta, "--skipcheck", "--outdir=" + dir]) bfasta = bf assert op.exists(afasta) and op.exists(bfasta) cmd = "blastn -dust no" cmd += " -query {0} -subject {1}".format(afasta, bfasta) cmd += " -evalue {0} -outfmt 6 -perc_identity {1}".format(evalue, pctid) fp = popen(cmd) hsps = fp.readlines() hsps = [BlastLine(x) for x in hsps] hsps = [x for x in hsps if x.hitlen >= hitlen] if chain: logging.debug("Chain HSPs in the Blast output.") dist = 2 * hitlen # Distance to chain the HSPs hsps = chain_HSPs(hsps, xdist=dist, ydist=dist) if len(hsps) == 0: print("No match found.", file=sys.stderr) return None besthsp = hsps[0] aid, asize = next(Fasta(afasta).itersizes()) bid, bsize = next(Fasta(bfasta).itersizes()) o = Overlap(besthsp, asize, bsize, cutoff, qreverse=opts.qreverse) o.print_graphic() if opts.outfile: fw = must_open(opts.outfile, "w") print(str(o), file=fw) fw.close() return o
def overlap(args)
%prog overlap <a|a.fasta> <b|b.fasta> Check overlaps between two fasta records. The arguments can be genBank IDs instead of FASTA files. In case of IDs, the sequences will be downloaded first.
2.918242
2.857532
1.021246
p = OptionParser(certificate.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) tpffile, certificatefile = args fastadir = "fasta" tpf = TPF(tpffile) data = check_certificate(certificatefile) fw = must_open(certificatefile, "w") for i, a in enumerate(tpf): if a.is_gap: continue aid = a.component_id af = op.join(fastadir, aid + ".fasta") if not op.exists(af): # Check to avoid redownload entrez([aid, "--skipcheck", "--outdir=" + fastadir]) north, south = tpf.getNorthSouthClone(i) aphase, asize = phase(aid) for tag, p in (("North", north), ("South", south)): if not p: # end of the chromosome ov = "telomere\t{0}".format(asize) elif p.isCloneGap: bphase = "0" ov = "{0}\t{1}".format(p.gap_type, asize) else: bid = p.component_id bphase, bsize = phase(bid) key = (tag, aid, bid) if key in data: print(data[key], file=fw) continue ar = [aid, bid, "--dir=" + fastadir] o = overlap(ar) ov = o.certificateline if o \ else "{0}\t{1}\tNone".format(bid, asize) print("\t".join(str(x) for x in \ (tag, a.object, aphase, bphase, aid, ov)), file=fw) fw.flush()
def certificate(args)
%prog certificate tpffile certificatefile Generate certificate file for all overlaps in tpffile. tpffile can be generated by jcvi.formats.agp.tpf(). North chr1 2 0 AC229737.8 telomere 58443 South chr1 2 1 AC229737.8 AC202463.29 58443 37835 58443 + Non-terminal Each line describes a relationship between the current BAC and the north/south BAC. First, "North/South" tag, then the chromosome, phases of the two BACs, ids of the two BACs, the size and the overlap start-stop of the CURRENT BAC, and orientation. Each BAC will have two lines in the certificate file.
5.966173
5.004024
1.192275
p = OptionParser(neighbor.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) agpfile, componentID = args fastadir = "fasta" cmd = "grep" cmd += " --color -C2 {0} {1}".format(componentID, agpfile) sh(cmd) agp = AGP(agpfile) aorder = agp.order if not componentID in aorder: print("Record {0} not present in `{1}`."\ .format(componentID, agpfile), file=sys.stderr) return i, c = aorder[componentID] north, south = agp.getNorthSouthClone(i) if not north.isCloneGap: ar = [north.component_id, componentID, "--dir=" + fastadir] if north.orientation == '-': ar += ["--qreverse"] overlap(ar) if not south.isCloneGap: ar = [componentID, south.component_id, "--dir=" + fastadir] if c.orientation == '-': ar += ["--qreverse"] overlap(ar)
def neighbor(args)
%prog neighbor agpfile componentID Check overlaps of a particular component in agpfile.
4.249483
3.751676
1.132689
from jcvi.formats.base import DictFile p = OptionParser(agp.__doc__) opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) tpffile, certificatefile, agpfile = args orientationguide = DictFile(tpffile, valuepos=2) cert = Certificate(certificatefile) cert.write_AGP(agpfile, orientationguide=orientationguide)
def agp(args)
%prog agp tpffile certificatefile agpfile Build agpfile from overlap certificates. Tiling Path File (tpf) is a file that lists the component and the gaps. It is a three-column file similar to below, also see jcvi.formats.agp.tpf(): telomere chr1 na AC229737.8 chr1 + AC202463.29 chr1 + Note: the orientation of the component is only used as a guide. If the orientation is derivable from a terminal overlap, it will use it regardless of what the tpf says. See jcvi.assembly.goldenpath.certificate() which generates a list of certificates based on agpfile. At first, it seems counter-productive to convert first agp to certificates then certificates back to agp. The certificates provide a way to edit the overlap information, so that the agpfile can be corrected (without changing agpfile directly).
4.055129
3.119316
1.300006
aLhang, aRhang = self.qstart - 1, self.asize - self.qstop bLhang, bRhang = self.sstart - 1, self.bsize - self.sstop if self.orientation == '-': bLhang, bRhang = bRhang, bLhang if self.qreverse: aLhang, aRhang = aRhang, aLhang bLhang, bRhang = bRhang, bLhang return aLhang, aRhang, bLhang, bRhang
def get_hangs(self)
Determine the type of overlap given query, ref alignment coordinates Consider the following alignment between sequence a and b: aLhang \ / aRhang \------------/ /------------\ bLhang / \ bRhang Terminal overlap: a before b, b before a Contain overlap: a in b, b in a
2.782713
2.294577
1.212735
print(aclr, bclr, file=sys.stderr) otype = self.otype if otype == 1: if aclr.orientation == '+': aclr.end = self.qstop else: aclr.start = self.qstart if bclr.orientation == '+': bclr.start = self.sstop + 1 else: bclr.end = self.sstart - 1 elif otype == 3: aclr.start = aclr.end elif otype == 4: bclr.start = bclr.end print(aclr, bclr, file=sys.stderr)
def update_clr(self, aclr, bclr)
Zip the two sequences together, using "left-greedy" rule ============= seqA |||| ====(===============) seqB
2.925367
2.857793
1.023646
aLhang, aRhang, bLhang, bRhang = self.get_hangs() achar = ">" bchar = "<" if self.orientation == '-' else ">" if self.qreverse: achar = "<" bchar = {">" : "<", "<" : ">"}[bchar] print(aLhang, aRhang, bLhang, bRhang, file=sys.stderr) width = 50 # Canvas hitlen = self.hitlen lmax = max(aLhang, bLhang) rmax = max(aRhang, bRhang) bpwidth = lmax + hitlen + rmax ratio = width * 1. / bpwidth _ = lambda x: int(round(x * ratio, 0)) a1, a2 = _(aLhang), _(aRhang) b1, b2 = _(bLhang), _(bRhang) hit = max(_(hitlen), 1) msg = " " * max(b1 - a1, 0) msg += achar * (a1 + hit + a2) msg += " " * (width - len(msg) + 2) msg += "{0} ({1})".format(self.aid, self.asize) print(msg, file=sys.stderr) msg = " " * max(a1, b1) msg += "|" * hit print(msg, file=sys.stderr) msg = " " * max(a1 - b1, 0) msg += bchar * (b1 + hit + b2) msg += " " * (width - len(msg) + 2) msg += "{0} ({1})".format(self.bid, self.bsize) print(msg, file=sys.stderr) print(self, file=sys.stderr)
def print_graphic(self)
>>>>>>>>>>>>>>>>>>> seqA (alen) |||||||| <<<<<<<<<<<<<<<<<<<<< seqB (blen)
3.03035
2.87799
1.05294
fw = must_open(filename, "w") for aid, bb in groupby(self.lines, key=lambda x: x.aid): bb = list(bb) north, south = bb aid = north.aid assert aid == south.aid aphase = north.aphase chr = north.chr size = north.asize ar = [chr, 0, 0, 0] northline = southline = None northrange = southrange = None # Warn if adjacent components do not have valid overlaps if south.is_no_overlap: print(south, file=sys.stderr) # Most gaps, except telomeres occur twice, so only do the "North" if north.is_gap: bar = ar + self.get_agp_gap(north.bid) northline = "\t".join(str(x) for x in bar) else: if north.isTerminal: northrange = north.astart, north.astop if south.is_gap: if south.bid == "telomere": bar = ar + self.get_agp_gap(south.bid) southline = "\t".join(str(x) for x in bar) else: if south.isTerminal: southrange = south.astart, south.astop else: bar = ar + self.get_agp_gap("fragment") southline = "\t".join(str(x) for x in bar) # Determine the orientation and clear range for the current BAC clr = [1, size] orientation = sorientation = None if northrange: start, stop = northrange Lhang = start - 1 Rhang = size - stop orientation = '+' if Lhang < Rhang else '-' if north.bphase == 1 and north.bphase < aphase: if Lhang < Rhang: # North overlap at 5` clr[0] = start else: clr[1] = stop # Override left-greedy (also see below) else: if Lhang < Rhang: clr[0] = stop + 1 else: clr[1] = start - 1 if southrange: start, stop = southrange Lhang = start - 1 Rhang = size - stop sorientation = '+' if Lhang > Rhang else '-' # Override left-greedy (also see above) if aphase == 1 and aphase < south.bphase: if Lhang < Rhang: # South overlap at 5` clr[0] = stop + 1 else: clr[1] = start - 1 else: if Lhang < Rhang: clr[0] = start else: clr[1] = stop if orientation: if sorientation: try: assert orientation == sorientation, \ "Orientation conflicts:\n{0}\n{1}".format(north, south) except AssertionError as e: logging.debug(e) else: if sorientation: orientation = sorientation else: # Both overlaps fail to define orientation orientation = orientationguide.get(aid, "+") component_type = "D" if aphase in (1, 2) else "F" bar = ar + [component_type, aid, clr[0], clr[1], orientation] cline = "\t".join(str(x) for x in bar) if northline: print(northline, file=fw) print(cline, file=fw) if southline: print(southline, file=fw) fw.close() reindex([filename, "--inplace"])
def write_AGP(self, filename, orientationguide={})
For each component, we have two overlaps: North and South. ======= |||| South ====(=================) Current BAC North |||| =============== For the case that says "Non-terminal", the overlap will not be considered. North-South would suggest a '+' orientation, South-North would suggest a '-' orientation. In most cases, unless the overlap involves phase1 BAC, the selected range will be shown as the brackets above - exclude North overlap, and include South overlap (aka the "left-greedy" rule).
3.652269
3.44891
1.058963
import hashlib from jcvi.algorithms.formula import MAD_interval as confidence_interval from jcvi.graphics.base import latex, plt, savefig, set2 p = OptionParser(gcdepth.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) sample_name, tag = args # The tag is used to add to title, also provide a random (hashed) color coloridx = int(hashlib.sha1(tag).hexdigest(), 16) % len(set2) color = set2[coloridx] # mosdepth outputs a table that we can use to plot relationship gcbedgz = sample_name + ".regions.gc.bed.gz" df = pd.read_csv(gcbedgz, delimiter="\t") mf = df.loc[:, ("4_usercol", "6_pct_gc")] mf.columns = ["depth", "gc"] # We discard any bins that are gaps mf = mf[(mf["depth"] > .001) | (mf["gc"] > .001)] # Create GC bins gcbins = defaultdict(list) for i, row in mf.iterrows(): gcp = int(round(row["gc"] * 100)) gcbins[gcp].append(row["depth"]) gcd = sorted((k * .01, confidence_interval(v)) for (k, v) in gcbins.items()) gcd_x, gcd_y = zip(*gcd) m, lo, hi = zip(*gcd_y) # Plot plt.plot(mf["gc"], mf["depth"], ".", color="lightslategray", ms=2, mec="lightslategray", alpha=.1) patch = plt.fill_between(gcd_x, lo, hi, facecolor=color, alpha=.25, zorder=10, linewidth=0.0, label="Median +/- MAD band") plt.plot(gcd_x, m, "-", color=color, lw=2, zorder=20) ax = plt.gca() ax.legend(handles=[patch], loc="best") ax.set_xlim(0, 1) ax.set_ylim(0, 100) ax.set_title("{} ({})".format(latex(sample_name), tag)) ax.set_xlabel("GC content") ax.set_ylabel("Depth") savefig(sample_name + ".gcdepth.png")
def gcdepth(args)
%prog gcdepth sample_name tag Plot GC content vs depth vs genomnic bins. Inputs are mosdepth output: - NA12878_S1.mosdepth.global.dist.txt - NA12878_S1.mosdepth.region.dist.txt - NA12878_S1.regions.bed.gz - NA12878_S1.regions.bed.gz.csi - NA12878_S1.regions.gc.bed.gz A sample mosdepth.sh script might look like: ``` #!/bin/bash LD_LIBRARY_PATH=mosdepth/htslib/ mosdepth/mosdepth $1 \\ bams/$1.bam -t 4 -c chr1 -n --by 1000 bedtools nuc -fi GRCh38/WholeGenomeFasta/genome.fa \\ -bed $1.regions.bed.gz \\ | pigz -c > $1.regions.gc.bed.gz ```
3.979648
3.678486
1.081871
p = OptionParser(exonunion.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) gencodebed, = args beds = BedTool(gencodebed) # fields[3] is gene_id; fields[6] is gene_name for g, gb in groupby(beds, key=lambda x: x.fields[3]): gb = BedTool(gb) sys.stdout.write(str(gb.sort().merge(c="4,5,6,7", o=','.join(['first'] * 4))))
def exonunion(args)
%prog exonunion gencode.v26.annotation.exon.bed Collapse overlapping exons within the same gene. File `gencode.v26.annotation.exon.bed` can be generated by: $ zcat gencode.v26.annotation.gtf.gz | awk 'OFS="\t" {if ($3=="exon") {print $1,$4-1,$5,$10,$12,$14,$16,$7}}' | tr -d '";'
4.141375
4.135713
1.001369
from cyvcf2 import VCF counter = Counter() for v in VCF(vcffile): tag = v.ID.split(":")[1] counter[tag] += 1 return counter
def get_gain_loss_summary(vcffile)
Extract Canvas:GAIN/LOSS/REF/LOH tags
4.46593
4.090415
1.091804
p = OptionParser(summarycanvas.__doc__) opts, args = p.parse_args(args) if len(args) < 1: sys.exit(not p.print_help()) for vcffile in args: counter = get_gain_loss_summary(vcffile) pf = op.basename(vcffile).split(".")[0] print(pf + " " + " ".join("{}:{}".format(k, v) for k, v in sorted(counter.items())))
def summarycanvas(args)
%prog summarycanvas output.vcf.gz Generate tag counts (GAIN/LOSS/REF/LOH) of segments in Canvas output.
3.438965
2.698456
1.274419
from cStringIO import StringIO from cyvcf2 import VCF output = StringIO() for v in VCF(vcffile): chrom = v.CHROM start = v.start end = v.INFO.get('END') - 1 cn, = v.format('CN')[0] print("\t".join(str(x) for x in (chrom, start, end, cn)), file=output) beds = BedTool(output.getvalue(), from_string=True) return beds
def parse_segments(vcffile)
Extract all copy number segments from a CANVAS file VCF line looks like: chr1 788879 Canvas:GAIN:chr1:788880-821005 N <CNV> 2 q10 SVTYPE=CNV;END=821005;CNVLEN=32126 RC:BC:CN:MCC 157:4:3:2
3.326536
3.468098
0.959182
if not counter: return np.nan, np.nan total = sum(v for k, v in counter.items()) mid = total / 2 weighted_sum = 0 items_seen = 0 median_found = False for k, v in sorted(counter.items()): weighted_sum += k * v items_seen += v if not median_found and items_seen >= mid: median = k median_found = True mean = weighted_sum * 1. / total return mean, median
def counter_mean_and_median(counter)
Calculate the mean and median value of a counter
2.62955
2.703175
0.972764
if not counter: return "na" return ",".join("{}:{}".format(*z) for z in sorted(counter.items()))
def counter_format(counter)
Pretty print a counter so that it appears as: "2:200,3:100,4:20"
6.383723
4.84408
1.31784
p = OptionParser(gcn.__doc__) p.set_cpus() p.set_tmpdir(tmpdir="tmp") p.set_outfile() opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) exonbed = args[0] canvasvcfs = args[1:] tsvfile = opts.outfile tmpdir = opts.tmpdir mkdir(tmpdir) set_tempdir(tmpdir) df = vcf_to_df(canvasvcfs, exonbed, opts.cpus) for suffix in (".avgcn", ".medcn"): df_to_tsv(df, tsvfile, suffix)
def gcn(args)
%prog gcn gencode.v26.exonunion.bed data/*.vcf.gz Compile gene copy njumber based on CANVAS results.
4.104642
3.329911
1.232658
canvasvcf, exonbed, i = arg logging.debug("Working on job {}: {}".format(i, canvasvcf)) samplekey = op.basename(canvasvcf).split(".")[0].rsplit('_', 1)[0] d = {'SampleKey': samplekey} exons = BedTool(exonbed) cn = parse_segments(canvasvcf) overlaps = exons.intersect(cn, wao=True) gcn_store = {} for ov in overlaps: # Example of ov.fields: # [u'chr1', u'11868', u'12227', u'ENSG00000223972.5', # u'ENST00000456328.2', u'transcribed_unprocessed_pseudogene', # u'DDX11L1', u'.', u'-1', u'-1', u'.', u'0'] gene_name = "|".join((ov.fields[6], ov.fields[3], ov.fields[5])) if gene_name not in gcn_store: gcn_store[gene_name] = defaultdict(int) cn = ov.fields[-2] if cn == ".": continue cn = int(cn) if cn > 10: cn = 10 amt = int(ov.fields[-1]) gcn_store[gene_name][cn] += amt for k, v in sorted(gcn_store.items()): v_mean, v_median = counter_mean_and_median(v) d[k + ".avgcn"] = v_mean d[k + ".medcn"] = v_median cleanup() return d
def vcf_to_df_worker(arg)
Convert CANVAS vcf to a dict, single thread
3.925836
3.826679
1.025912
df = pd.DataFrame() p = Pool(processes=cpus) results = [] args = [(x, exonbed, i) for (i, x) in enumerate(canvasvcfs)] r = p.map_async(vcf_to_df_worker, args, callback=results.append) r.wait() for res in results: df = df.append(res, ignore_index=True) return df
def vcf_to_df(canvasvcfs, exonbed, cpus)
Compile a number of vcf files into tsv file for easy manipulation
2.57602
2.50829
1.027002
tsvfile += suffix columns = ["SampleKey"] + sorted(x for x in df.columns if x.endswith(suffix)) tf = df.reindex_axis(columns, axis='columns') tf.sort_values("SampleKey") tf.to_csv(tsvfile, sep='\t', index=False, float_format='%.4g', na_rep="na") print("TSV output written to `{}` (# samples={})"\ .format(tsvfile, tf.shape[0]), file=sys.stderr)
def df_to_tsv(df, tsvfile, suffix)
Serialize the dataframe as a tsv
4.37793
4.508751
0.970985
from jcvi.graphics.base import savefig p = OptionParser(coverage.__doc__) opts, args, iopts = p.set_image_options(args, format="png") if len(args) != 1: sys.exit(not p.print_help()) covfile, = args df = pd.read_csv(covfile, sep='\t', names=["Ref", "Position", "Depth"]) xlabel, ylabel = "Position", "Depth" df.plot(xlabel, ylabel, color='g') image_name = covfile + "." + iopts.format savefig(image_name)
def coverage(args)
%prog coverage *.coverage Plot coverage along chromosome. The coverage file can be generated with: $ samtools depth a.bam > a.coverage The plot is a simple line plot using matplotlib.
3.109315
2.936401
1.058886
from jcvi.graphics.base import savefig p = OptionParser(plot.__doc__) opts, args, iopts = p.set_image_options(args, figsize="8x7", format="png") if len(args) != 3: sys.exit(not p.print_help()) workdir, sample_key, chrs = args chrs = chrs.split(",") hmm = CopyNumberHMM(workdir=workdir) hmm.plot(sample_key, chrs=chrs) image_name = sample_key + "_cn." + iopts.format savefig(image_name, dpi=iopts.dpi, iopts=iopts)
def plot(args)
%prog plot workdir sample chr1,chr2 Plot some chromosomes for visual proof. Separate multiple chromosomes with comma. Must contain folder workdir/sample-cn/.
3.026196
2.73249
1.107487
p = OptionParser(sweep.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) workdir, sample_key = args golden_ratio = (1 + 5 ** .5) / 2 cmd = "python -m jcvi.variation.cnv hmm {} {}".format(workdir, sample_key) cmd += " --mu {:.5f} --sigma {:.3f} --threshold {:.3f}" mus = [.00012 * golden_ratio ** x for x in range(10)] sigmas = [.0012 * golden_ratio ** x for x in range(20)] thresholds = [.1 * golden_ratio ** x for x in range(10)] print(mus, file=sys.stderr) print(sigmas, file=sys.stderr) print(thresholds, file=sys.stderr) for mu in mus: for sigma in sigmas: for threshold in thresholds: tcmd = cmd.format(mu, sigma, threshold) print(tcmd)
def sweep(args)
%prog sweep workdir 102340_NA12878 Write a number of commands to sweep parameter space.
2.913815
2.771933
1.051185
p = OptionParser(compare.__doc__) p.set_cpus() opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) truths = args[0] cnvoutputs = args[1:] cpus = min(len(cnvoutputs), opts.cpus) p = Pool(processes=cpus) results = [] files = [(x, truths) for x in cnvoutputs] r = p.map_async(compare_worker, files, callback=results.append) r.wait() for res in results: print("\n".join(res))
def compare(args)
%prog compare NA12878_array_hg38.bed *.seg Compare cnv output to known ground truths.
2.985197
2.29318
1.301771
p = OptionParser(cib.__doc__) p.add_option("--prefix", help="Report seqids with this prefix only") p.set_cpus() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) bamfile, samplekey = args mkdir(samplekey) bam = pysam.AlignmentFile(bamfile, "rb") refs = [x for x in bam.header["SQ"]] prefix = opts.prefix if prefix: refs = [x for x in refs if x["SN"].startswith(prefix)] task_args = [] for r in refs: task_args.append((bamfile, r, samplekey)) cpus = min(opts.cpus, len(task_args)) logging.debug("Use {} cpus".format(cpus)) p = Pool(processes=cpus) for res in p.imap(bam_to_cib, task_args): continue
def cib(args)
%prog cib bamfile samplekey Convert BAM to CIB (a binary storage of int8 per base).
2.92452
2.636563
1.109217
p = OptionParser(batchcn.__doc__) p.add_option("--upload", default="s3://hli-mv-data-science/htang/ccn", help="Upload cn and seg results to s3") opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) workdir, samples = args upload = opts.upload store = upload + "/{}/*.seg".format(workdir) computed = [op.basename(x).split(".")[0] for x in glob_s3(store)] computed = set(computed) # Generate a bunch of cn commands fp = open(samples) nskipped = ntotal = 0 cmd = "python -m jcvi.variation.cnv cn --hmm --cleanup {}".format(workdir) for row in fp: samplekey, path = row.strip().split(",") ntotal += 1 if samplekey in computed: nskipped += 1 continue print(" ".join((cmd, samplekey, path))) logging.debug("Skipped: {}".format(percentage(nskipped, ntotal)))
def batchcn(args)
%prog batchcn workdir samples.csv Run CNV segmentation caller in batch mode. Scans a workdir.
5.836182
5.249154
1.111833
p = OptionParser(hmm.__doc__) p.add_option("--mu", default=.003, type="float", help="Transition probability") p.add_option("--sigma", default=.1, type="float", help="Standard deviation of Gaussian emission distribution") p.add_option("--threshold", default=1, type="float", help="Standard deviation must be < this " "in the baseline population") opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) workdir, sample_key = args model = CopyNumberHMM(workdir=workdir, mu=opts.mu, sigma=opts.sigma, threshold=opts.threshold) events = model.run(sample_key) params = ".mu-{}.sigma-{}.threshold-{}"\ .format(opts.mu, opts.sigma, opts.threshold) hmmfile = op.join(workdir, sample_key + params + ".seg") fw = open(hmmfile, "w") nevents = 0 for mean_cn, rr, event in events: if event is None: continue print(" ".join((event.bedline, sample_key)), file=fw) nevents += 1 fw.close() logging.debug("A total of {} aberrant events written to `{}`" .format(nevents, hmmfile)) return hmmfile
def hmm(args)
%prog hmm workdir sample_key Run CNV segmentation caller. The workdir must contain a subfolder called `sample_key-cn` that contains CN for each chromosome. A `beta` directory that contains scaler for each bin must also be present in the current directory.
3.635883
3.482521
1.044038
p = OptionParser(batchccn.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) csvfile, = args mm = MakeManager() pf = op.basename(csvfile).split(".")[0] mkdir(pf) header = next(open(csvfile)) header = None if header.strip().endswith(".bam") else "infer" logging.debug("Header={}".format(header)) df = pd.read_csv(csvfile, header=header) cmd = "perl /mnt/software/ccn_gcn_hg38_script/ccn_gcn_hg38.pl" cmd += " -n {} -b {}" cmd += " -o {} -r hg38".format(pf) for i, (sample_key, bam) in df.iterrows(): cmdi = cmd.format(sample_key, bam) outfile = "{}/{}/{}.ccn".format(pf, sample_key, sample_key) mm.add(csvfile, outfile, cmdi) mm.write()
def batchccn(args)
%prog batchccn test.csv Run CCN script in batch. Write makefile.
4.21366
4.039148
1.043205
p = OptionParser(mergecn.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) csvfile, = args samples = [x.replace("-cn", "").strip().strip("/") for x in open(csvfile)] betadir = "beta" mkdir(betadir) for seqid in allsomes: names = [op.join(s + "-cn", "{}.{}.cn". format(op.basename(s), seqid)) for s in samples] arrays = [np.fromfile(name, dtype=np.float) for name in names] shapes = [x.shape[0] for x in arrays] med_shape = np.median(shapes) arrays = [x for x in arrays if x.shape[0] == med_shape] ploidy = 2 if seqid not in ("chrY", "chrM") else 1 if seqid in sexsomes: chr_med = [np.median([x for x in a if x > 0]) for a in arrays] chr_med = np.array(chr_med) idx = get_kmeans(chr_med, k=2) zero_med = np.median(chr_med[idx == 0]) one_med = np.median(chr_med[idx == 1]) logging.debug("K-means with {} c0:{} c1:{}" .format(seqid, zero_med, one_med)) higher_idx = 1 if one_med > zero_med else 0 # Use the higher mean coverage componen arrays = np.array(arrays)[idx == higher_idx] arrays = [[x] for x in arrays] ar = np.concatenate(arrays) print(seqid, ar.shape) rows, columns = ar.shape beta = [] std = [] for j in xrange(columns): a = ar[:, j] beta.append(np.median(a)) std.append(np.std(a) / np.mean(a)) beta = np.array(beta) / ploidy betafile = op.join(betadir, "{}.beta".format(seqid)) beta.tofile(betafile) stdfile = op.join(betadir, "{}.std".format(seqid)) std = np.array(std) std.tofile(stdfile) logging.debug("Written to `{}`".format(betafile)) ar.tofile("{}.bin".format(seqid))
def mergecn(args)
%prog mergecn FACE.csv Compile matrix of GC-corrected copy numbers. Place a bunch of folders in csv file. Each folder will be scanned, one chromosomes after another.
3.38746
3.30226
1.025801
# We need a way to go from compressed idices to original indices P = Z.copy() P[~np.isfinite(P)] = -1 _, mapping = np.unique(np.cumsum(P >= 0), return_index=True) dZ = Z.compressed() uniq, idx = np.unique(dZ, return_inverse=True) segments = [] for i, mean_cn in enumerate(uniq): if not np.isfinite(mean_cn): continue for rr in contiguous_regions(idx == i): segments.append((mean_cn, mapping[rr])) return segments
def annotate_segments(self, Z)
Report the copy number and start-end segment
5.387792
5.424419
0.993248
if len(args) != 0: sys.exit(not p.print_help()) s = InstanceSkeleton() print("IP address:", s.private_ip_address, file=sys.stderr) print("Instance type:", s.instance_type, file=sys.stderr)
def ip(args)
%prog describe Show current IP address from JSON settings.
4.626322
4.821877
0.959444
p = OptionParser(start.__doc__) p.add_option("--ondemand", default=False, action="store_true", help="Do we want a more expensive on-demand instance") p.add_option("--profile", default="mvrad-datasci-role", help="Profile name") p.add_option("--price", default=4.0, type=float, help="Spot price") opts, args = p.parse_args(args) if len(args) != 0: sys.exit(not p.print_help()) role(["htang"]) session = boto3.Session(profile_name=opts.profile) client = session.client('ec2') s = InstanceSkeleton() # Make sure the instance id is empty instance_id = s.instance_id if instance_id != "": logging.error("Instance exists {}".format(instance_id)) sys.exit(1) launch_spec = s.launch_spec instance_id = "" if opts.ondemand: # Launch on-demand instance response = client.run_instances( BlockDeviceMappings=s.block_device_mappings, MaxCount=1, MinCount=1, ImageId=s.image_id, InstanceType=s.instance_type, KeyName=s.key_name, Placement={"AvailabilityZone": s.availability_zone}, SecurityGroupIds=s.security_group_ids, SubnetId=s.subnet_id, EbsOptimized=s.ebs_optimized, IamInstanceProfile=s.iam_instance_profile, ) instance_id = response["Instances"][0]["InstanceId"] else: # Launch spot instance response = client.request_spot_instances( SpotPrice=str(opts.price), InstanceCount=1, Type="one-time", AvailabilityZoneGroup=s.availability_zone, LaunchSpecification=launch_spec ) request_id = response["SpotInstanceRequests"][0]["SpotInstanceRequestId"] print("Request id {}".format(request_id), file=sys.stderr) while not instance_id: response = client.describe_spot_instance_requests( SpotInstanceRequestIds=[request_id] ) if "InstanceId" in response["SpotInstanceRequests"][0]: instance_id = response["SpotInstanceRequests"][0]["InstanceId"] else: logging.debug("Waiting to be fulfilled ...") time.sleep(10) # Check if the instance is running print("Instance id {}".format(instance_id), file=sys.stderr) status = "" while status != "running": logging.debug("Waiting instance to run ...") time.sleep(3) response = client.describe_instance_status(InstanceIds=[instance_id]) if len(response["InstanceStatuses"]) > 0: status = response["InstanceStatuses"][0]["InstanceState"]["Name"] # Tagging name = "htang-lx-ondemand" if opts.ondemand else "htang-lx-spot" response = client.create_tags( Resources=[instance_id], Tags=[{"Key": k, "Value": v} for k, v in { \ "Name": name, "owner": "htang", "project": "mv-bioinformatics" }.items()] ) # Attach working volumes volumes = s.volumes for volume in volumes: response = client.attach_volume( VolumeId=volume["VolumeId"], InstanceId=instance_id, Device=volume["Device"] ) # Save instance id and ip response = client.describe_instances(InstanceIds=[instance_id]) ip_address = response["Reservations"][0]["Instances"][0]["PrivateIpAddress"] print("IP address {}".format(ip_address), file=sys.stderr) s.save_instance_id(instance_id, ip_address)
def start(args)
%prog start Launch ec2 instance through command line.
2.33479
2.290347
1.019405
p = OptionParser(stop.__doc__) p.add_option("--profile", default="mvrad-datasci-role", help="Profile name") opts, args = p.parse_args(args) if len(args) != 0: sys.exit(not p.print_help()) role(["htang"]) session = boto3.Session(profile_name=opts.profile) client = session.client('ec2') s = InstanceSkeleton() # Make sure the instance id is NOT empty instance_id = s.instance_id if instance_id == "": logging.error("Cannot find instance_id {}".format(instance_id)) sys.exit(1) block_device_mappings = [] for volume in s.volumes: block_device_mappings.append( { "DeviceName": volume["Device"], "NoDevice": "" } ) new_image_name = "htang-dev-{}-{}".format(timestamp(), int(time.time())) response = client.create_image( InstanceId=instance_id, Name=new_image_name, BlockDeviceMappings=block_device_mappings ) print(response, file=sys.stderr) new_image_id = response["ImageId"] image_status = "" while image_status != "available": logging.debug("Waiting for image to be ready") time.sleep(10) response = client.describe_images(ImageIds=[new_image_id]) image_status = response["Images"][0]["State"] # Delete old image, snapshot and shut down instance old_image_id = s.image_id response = client.describe_images(ImageIds=[old_image_id]) old_snapshot_id = response["Images"][0]["BlockDeviceMappings"][0]["Ebs"]["SnapshotId"] response = client.deregister_image(ImageId=old_image_id) print(response, file=sys.stderr) response = client.delete_snapshot(SnapshotId=old_snapshot_id) print(response, file=sys.stderr) response = client.terminate_instances(InstanceIds=[instance_id]) print(response, file=sys.stderr) # Save new image id s.save_image_id(new_image_id) s.save_instance_id("", "")
def stop(args)
%prog stop Stop EC2 instance.
2.482464
2.418664
1.026378
p = OptionParser(rm.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) store, = args contents = glob_s3(store) for c in contents: rm_s3(c)
def rm(args)
%prog rm "s3://hli-mv-data-science/htang/str/*.csv" Remove a bunch of files.
3.196016
2.991917
1.068217
p = OptionParser(cp.__doc__) p.add_option("--force", default=False, action="store_true", help="Force overwrite if exists") p.set_cpus() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) store, folder = args force = opts.force cpus = opts.cpus if op.exists(store): contents = [x.strip().split(",") for x in open(store)] else: contents = glob_s3(store) tasks = [] for c in contents: if isinstance(c, six.string_types): oc = op.basename(c) tc = op.join(folder, oc) else: if len(c) == 2: c, tc = c else: c, = c tc = op.basename(c) tasks.append((c, tc, force)) worker_pool = Pool(cpus) worker_pool.map(worker, tasks) worker_pool.close() worker_pool.join()
def cp(args)
%prog cp "s3://hli-mv-data-science/htang/str/*.csv" . Copy files to folder. Accepts list of s3 addresses as input.
2.815552
2.672009
1.053721
p = OptionParser(ls.__doc__) p.add_option("--keys", help="List of keys to include") p.add_option("--recursive", default=False, action="store_true", help="Recursive search") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) store, = args keys = opts.keys if keys: keys = SetFile(keys) print("\n".join(glob_s3(store, keys=keys, recursive=opts.recursive)))
def ls(args)
%prog ls "s3://hli-mv-data-science/htang/str/*.vcf.gz" List files with support for wildcards.
3.102038
3.058249
1.014318
src_acct, src_username, dst_acct, dst_role = \ "205134639408 htang 114692162163 mvrad-datasci-role".split() p = OptionParser(role.__doc__) p.add_option("--profile", default="mvrad-datasci-role", help="Profile name") p.add_option('--device', default="arn:aws:iam::" + src_acct + ":mfa/" + src_username, metavar='arn:aws:iam::123456788990:mfa/dudeman', help="The MFA Device ARN. This value can also be " "provided via the environment variable 'MFA_DEVICE' or" " the ~/.aws/credentials variable 'aws_mfa_device'.") p.add_option('--duration', type=int, default=3600, help="The duration, in seconds, that the temporary " "credentials should remain valid. Minimum value: " "900 (15 minutes). Maximum: 129600 (36 hours). " "Defaults to 43200 (12 hours), or 3600 (one " "hour) when using '--assume-role'. This value " "can also be provided via the environment " "variable 'MFA_STS_DURATION'. ") p.add_option('--assume-role', '--assume', default="arn:aws:iam::" + dst_acct + ":role/" + dst_role, metavar='arn:aws:iam::123456788990:role/RoleName', help="The ARN of the AWS IAM Role you would like to " "assume, if specified. This value can also be provided" " via the environment variable 'MFA_ASSUME_ROLE'") p.add_option('--role-session-name', help="Friendly session name required when using " "--assume-role", default=getpass.getuser()) p.add_option('--force', help="Refresh credentials even if currently valid.", action="store_true") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) # Use a config to check the expiration of session token config = get_config(AWS_CREDS_PATH) validate(opts, config)
def role(args)
%prog role htang Change aws role.
4.065366
3.827301
1.062202
p = OptionParser(query.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) locifile, contig = args idx = build_index(locifile) pos = idx[contig] logging.debug("Contig {0} found at pos {1}".format(contig, pos)) fp = open(locifile) fp.seek(pos) section = [] while True: row = fp.readline() if row.startswith("//") and row.split()[1] != contig: break section.append(row) print("".join(section))
def query(args)
%prog query out.loci contig Random access to loci file. This script helps speeding up debugging.
3.10677
2.718747
1.142721
from jcvi.assembly.geneticmap import bed as geneticmap_bed from jcvi.apps.align import blat from jcvi.formats.blast import bed as blast_bed, best p = OptionParser(synteny.__doc__) opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) mstmapout, novo, ref = args pf = mstmapout.split(".")[0] rf = ref.split(".")[0] mstmapbed = geneticmap_bed([mstmapout]) cmd = "cut -d. -f1 {0}".format(mstmapbed) tmpbed = mstmapbed + ".tmp" sh(cmd, outfile=tmpbed) os.rename(tmpbed, pf + ".bed") cmd = "cut -f4 {0} | cut -d. -f1 | sort -u".format(mstmapbed) idsfile = pf + ".ids" sh(cmd, outfile=idsfile) fastafile = pf + ".fasta" cmd = "faSomeRecords {0} {1} {2}".format(novo, idsfile, fastafile) sh(cmd) blastfile = blat([ref, fastafile]) bestblastfile = best([blastfile]) blastbed = blast_bed([bestblastfile]) os.rename(blastbed, rf + ".bed") anchorsfile = "{0}.{1}.anchors".format(pf, rf) cmd = "paste {0} {0}".format(idsfile) sh(cmd, outfile=anchorsfile)
def synteny(args)
%prog synteny mstmap.out novo.final.fasta reference.fasta Plot MSTmap against reference genome.
3.214167
2.963747
1.084494
from jcvi.assembly.geneticmap import MSTMatrix p = OptionParser(mstmap.__doc__) p.add_option("--population_type", default="RIL6", help="Type of population, possible values are DH and RILd") p.add_option("--missing_threshold", default=.5, help="Missing threshold, .25 excludes any marker with >25% missing") p.set_outfile() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) lmd, = args fp = open(lmd) next(fp) # Header table = {"0": "-", "1": "A", "2": "B", "3": "X"} mh = ["locus_name"] + fp.next().split()[4:] genotypes = [] for row in fp: atoms = row.split() chr, pos, ref, alt = atoms[:4] locus_name = ".".join((chr, pos)) codes = [table[x] for x in atoms[4:]] genotypes.append([locus_name] + codes) mm = MSTMatrix(genotypes, mh, opts.population_type, opts.missing_threshold) mm.write(opts.outfile, header=True)
def mstmap(args)
%prog mstmap LMD50.snps.genotype.txt Convert LMDs to MSTMAP input.
4.208921
3.856867
1.09128
import numpy as np from jcvi.utils.progressbar import ProgressBar, Percentage, Bar, ETA p = OptionParser(weblogo.__doc__) p.add_option("-N", default=10, type="int", help="Count the first and last N bases") p.add_option("--nreads", default=1000000, type="int", help="Parse first N reads") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fastqfile, = args N = opts.N nreads = opts.nreads pat = "ATCG" L = np.zeros((4, N), dtype="int32") R = np.zeros((4, N), dtype="int32") p = dict((a, i) for (i, a) in enumerate(pat)) L4, R3 = Counter(), Counter() widgets = ['Parse reads: ', Percentage(), ' ', Bar(marker='>', left='[', right=']'), ' ', ETA()] pr = ProgressBar(maxval=nreads, term_width=60, widgets=widgets).start() k = 0 fw_L = open("L.fasta", "w") fw_R = open("R.fasta", "w") fastq = fastqfile.endswith(".fastq") it = iter_fastq(fastqfile) if fastq else \ SeqIO.parse(must_open(fastqfile), "fasta") for rec in it: k += 1 if k % 1000 == 0: pr.update(k) if k > nreads: break if rec is None: break s = str(rec.seq) for i, a in enumerate(s[:N]): if a in p: a = p[a] L[a][i] += 1 for j, a in enumerate(s[-N:][::-1]): if a in p: a = p[a] R[a][N - 1 - j] += 1 l4, r3 = s[:4], s[-3:] L4[l4] += 1 R3[r3] += 1 print(">{0}\n{1}".format(k, s[:N]), file=fw_L) print(">{0}\n{1}".format(k, s[-N:]), file=fw_R) fw_L.close() fw_R.close() cmd = "weblogo -F png -s large -f {0}.fasta -o {0}.png" cmd += " --color-scheme classic --composition none -U probability" cmd += " --title {1}" sh(cmd.format('L', "First_10_bases")) sh(cmd.format('R', "Last_10_bases")) np.savetxt("L.{0}.csv".format(pat), L, delimiter=',', fmt="%d") np.savetxt("R.{0}.csv".format(pat), R, delimiter=',', fmt="%d") fw = open("L4.common", "w") for p, c in L4.most_common(N): print("\t".join((p, str(c))), file=fw) fw.close() fw = open("R3.common", "w") for p, c in R3.most_common(N): print("\t".join((p, str(c))), file=fw) fw.close()
def weblogo(args)
%prog weblogo [fastafile|fastqfile] Extract base composition for reads
2.469165
2.417541
1.021354
from jcvi.graphics.histogram import stem_leaf_plot from jcvi.utils.cbook import SummaryStats p = OptionParser(count.__doc__) p.add_option("--csv", help="Write depth per contig to file") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fastafile, = args csv = open(opts.csv, "w") if opts.csv else None f = Fasta(fastafile, lazy=True) sizes = [] for desc, rec in f.iterdescriptions_ordered(): if desc.startswith("singleton"): sizes.append(1) continue # consensus_for_cluster_0 with 63 sequences if "with" in desc: name, w, size, seqs = desc.split() if csv: print("\t".join(str(x) for x in (name, size, len(rec))), file=csv) assert w == "with" sizes.append(int(size)) # MRD85:00603:02472;size=167; else: name, size, tail = desc.split(";") sizes.append(int(size.replace("size=", ""))) if csv: csv.close() logging.debug("File written to `{0}`".format(opts.csv)) s = SummaryStats(sizes) print(s, file=sys.stderr) stem_leaf_plot(s.data, 0, 100, 20, title="Cluster size")
def count(args)
%prog count cdhit.consensus.fasta Scan the headers for the consensus clusters and count the number of reads.
4.316698
4.190223
1.030183
from jcvi.assembly.kmer import jellyfish, histogram from jcvi.assembly.preprocess import diginorm from jcvi.formats.fasta import filter as fasta_filter, format from jcvi.apps.cdhit import filter as cdhit_filter p = OptionParser(novo.__doc__) p.add_option("--technology", choices=("illumina", "454", "iontorrent"), default="iontorrent", help="Sequencing platform") p.set_depth(depth=50) p.set_align(pctid=96) p.set_home("cdhit", default="/usr/local/bin/") p.set_home("fiona", default="/usr/local/bin/") p.set_home("jellyfish", default="/usr/local/bin/") p.set_cpus() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fastqfile, = args cpus = opts.cpus depth = opts.depth pf, sf = fastqfile.rsplit(".", 1) diginormfile = pf + ".diginorm." + sf if need_update(fastqfile, diginormfile): diginorm([fastqfile, "--single", "--depth={0}".format(depth)]) keepabund = fastqfile + ".keep.abundfilt" sh("cp -s {0} {1}".format(keepabund, diginormfile)) jf = pf + "-K23.histogram" if need_update(diginormfile, jf): jellyfish([diginormfile, "--prefix={0}".format(pf), "--cpus={0}".format(cpus), "--jellyfish_home={0}".format(opts.jellyfish_home)]) genomesize = histogram([jf, pf, "23"]) fiona = pf + ".fiona.fa" if need_update(diginormfile, fiona): cmd = op.join(opts.fiona_home, "fiona") cmd += " -g {0} -nt {1} --sequencing-technology {2}".\ format(genomesize, cpus, opts.technology) cmd += " -vv {0} {1}".format(diginormfile, fiona) logfile = pf + ".fiona.log" sh(cmd, outfile=logfile, errfile=logfile) dedup = "cdhit" pctid = opts.pctid cons = fiona + ".P{0}.{1}.consensus.fasta".format(pctid, dedup) if need_update(fiona, cons): deduplicate([fiona, "--consensus", "--reads", "--pctid={0}".format(pctid), "--cdhit_home={0}".format(opts.cdhit_home)]) filteredfile = pf + ".filtered.fasta" if need_update(cons, filteredfile): covfile = pf + ".cov.fasta" cdhit_filter([cons, "--outfile={0}".format(covfile), "--minsize={0}".format(depth / 5)]) fasta_filter([covfile, "50", "--outfile={0}".format(filteredfile)]) finalfile = pf + ".final.fasta" if need_update(filteredfile, finalfile): format([filteredfile, finalfile, "--sequential=replace", "--prefix={0}_".format(pf)])
def novo(args)
%prog novo reads.fastq Reference-free tGBS pipeline v1.
3.297657
3.249632
1.014779
p = OptionParser(novo2.__doc__) p.set_fastq_names() p.set_align(pctid=95) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) trimmed, pf = args pctid = opts.pctid reads, samples = scan_read_files(trimmed, opts.names) # Set up directory structure clustdir = "uclust" acdir = "allele_counts" for d in (clustdir, acdir): mkdir(d) mm = MakeManager() clustfiles = [] # Step 0 - clustering within sample for s in samples: flist = [x for x in reads if op.basename(x).split(".")[0] == s] outfile = s + ".P{0}.clustS".format(pctid) outfile = op.join(clustdir, outfile) cmd = "python -m jcvi.apps.uclust cluster --cpus=8" cmd += " {0} {1}".format(s, " ".join(flist)) cmd += " --outdir={0}".format(clustdir) cmd += " --pctid={0}".format(pctid) mm.add(flist, outfile, cmd) clustfiles.append(outfile) # Step 1 - make consensus within sample allcons = [] for s, clustfile in zip(samples, clustfiles): outfile = s + ".P{0}.consensus".format(pctid) outfile = op.join(clustdir, outfile) cmd = "python -m jcvi.apps.uclust consensus" cmd += " {0}".format(clustfile) mm.add(clustfile, outfile, cmd) allcons.append(outfile) # Step 2 - clustering across samples clustSfile = pf + ".P{0}.clustS".format(pctid) cmd = "python -m jcvi.apps.uclust mcluster {0}".format(" ".join(allcons)) cmd += " --prefix={0}".format(pf) mm.add(allcons, clustSfile, cmd) # Step 3 - make consensus across samples locifile = pf + ".P{0}.loci".format(pctid) cmd = "python -m jcvi.apps.uclust mconsensus {0}".format(" ".join(allcons)) cmd += " --prefix={0}".format(pf) mm.add(allcons + [clustSfile], locifile, cmd) mm.write()
def novo2(args)
%prog novo2 trimmed projectname Reference-free tGBS pipeline v2.
2.746471
2.677045
1.025934
p = OptionParser(snpplot.__doc__) opts, args, iopts = p.set_image_options(args, format="png") if len(args) != 1: sys.exit(not p.print_help()) datafile, = args # Read in CDT file fp = open(datafile) next(fp) next(fp) data = [] for row in fp: atoms = row.split()[4:] nval = len(atoms) values = [float(x) for x in atoms] # normalize values = [x * 1. / sum(values) for x in values] data.append(values) pf = datafile.rsplit(".", 1)[0] fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) xmin, xmax = .1, .9 ymin, ymax = .1, .9 yinterval = (ymax - ymin) / len(data) colors = "rbg" if nval == 3 else ["lightgray"] + list("rbg") ystart = ymax for d in data: xstart = xmin for dd, c in zip(d, colors): xend = xstart + (xmax - xmin) * dd root.plot((xstart, xend), (ystart, ystart), "-", color=c) xstart = xend ystart -= yinterval root.text(.05, .5, "{0} LMD50 SNPs".format(len(data)), ha="center", va="center", rotation=90, color="lightslategray") for x, t, c in zip((.3, .5, .7), ("REF", "ALT", "HET"), "rbg"): root.text(x, .95, t, color=c, ha="center", va="center") normalize_axes(root) image_name = pf + "." + iopts.format savefig(image_name, dpi=iopts.dpi, iopts=iopts)
def snpplot(args)
%prog counts.cdt Illustrate the histogram per SNP site.
2.937291
2.811296
1.044817
p = OptionParser(filterm4.__doc__) p.add_option("--best", default=1, type="int", help="Only retain best N hits") p.set_outfile() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) m4file, = args best = opts.best fp = open(m4file) fw = must_open(opts.outfile, "w") seen = defaultdict(int) retained = total = 0 for row in fp: r = M4Line(row) total += 1 if total % 100000 == 0: logging.debug("Retained {0} lines".\ format(percentage(retained, total))) if seen.get(r.query, 0) < best: fw.write(row) seen[r.query] += 1 retained += 1 fw.close()
def filterm4(args)
%prog filterm4 sample.m4 > filtered.m4 Filter .m4 file after blasr is run. As blasr takes a long time to run, changing -bestn is undesirable. This screens the m4 file to retain top hits.
2.586433
2.474248
1.045341
import json p = OptionParser(spancount.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fof, = args fp = open(fof) flist = [row.strip() for row in fp] spanCount = "spanCount" avgSpanBases = "avgSpanBases" fw = open(spanCount, "w") for f in flist: fp = open(f) j = json.load(fp) sc = j.get(spanCount, None) asb = j.get(avgSpanBases, None) print(f, asb, sc, file=fw) fw.flush() fw.close()
def spancount(args)
%prog spancount list_of_fillingMetrics Count span support for each gap. A file with paths of all fillingMetrics can be built with Linux `find`. $ (find assembly -name "fillingMetrics.json" -print > list_of_fillMetrics 2> /dev/null &)
3.132198
2.988448
1.048102
from jcvi.formats.base import write_file from jcvi.formats.fasta import format p = OptionParser(patch.__doc__) p.add_option("--cleanfasta", default=False, action="store_true", help="Clean FASTA to remove description [default: %default]") p.add_option("--highqual", default=False, action="store_true", help="Reads are of high quality [default: %default]") p.set_home("pbjelly") p.set_cpus() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) ref, reads = args cpus = opts.cpus cmd = op.join(opts.pbjelly_home, "setup.sh") setup = "source {0}".format(cmd) if not which("fakeQuals.py"): sh(setup) pf = ref.rsplit(".", 1)[0] pr, px = reads.rsplit(".", 1) # Remove description line if opts.cleanfasta: oref = pf + ".f.fasta" oreads = pr + ".f.fasta" format([ref, oref]) format([reads, oreads]) ref, reads = oref, oreads # Check if the FASTA has qual ref, refq = fake_quals(ref) convert_reads = not px in ("fq", "fastq", "txt") if convert_reads: reads, readsq = fake_quals(reads) readsfiles = " ".join((reads, readsq)) else: readsfiles = reads # Make directory structure dref, dreads = "data/reference", "data/reads" cwd = os.getcwd() reference = op.join(cwd, "{0}/{1}".format(dref, ref)) reads = op.join(cwd, "{0}/{1}".format(dreads, reads)) if not op.exists(reference): sh("mkdir -p {0}".format(dref)) sh("cp {0} {1}/".format(" ".join((ref, refq)), dref)) if not op.exists(reads): sh("mkdir -p {0}".format(dreads)) sh("cp {0} {1}/".format(readsfiles, dreads)) outputDir = cwd p = Protocol(outputDir, reference, reads, highqual=opts.highqual) p.write_xml() # Build the pipeline runsh = [setup] for action in "setup|mapping|support|extraction".split("|"): runsh.append("Jelly.py {0} Protocol.xml".format(action)) runsh.append('Jelly.py assembly Protocol.xml -x "--nproc={0}"'.format(cpus)) runsh.append("Jelly.py output Protocol.xml") runfile = "run.sh" contents = "\n".join(runsh) write_file(runfile, contents)
def patch(args)
%prog patch reference.fasta reads.fasta Run PBJelly with reference and reads.
3.633767
3.456843
1.051181
p = OptionParser(prepare.__doc__ + FastqNamings) p.add_option("-K", default=51, type="int", help="K-mer size") p.set_cpus(cpus=32) opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) genomesize = float(args[0]) / 1000 fnames = args[1:] for x in fnames: assert op.exists(x), "File `{0}` not found.".format(x) s = comment_banner("Meraculous params file") + "\n" s += comment_banner("Basic parameters") + "\n" s += "# Describe the libraries ( one line per library )\n" s += "# " + " ".join(header.split()) + "\n" libs = get_libs(fnames) lib_seqs = [] rank = 0 for lib, fs in libs: size = lib.size if size == 0: continue rank += 1 library_name = lib.library_name name = library_name.replace("-", "") wildcard = "{0}*.1.*,{0}*.2.*".format(library_name) rl = max(readlen([x]) for x in fs) lib_seq = lib.get_lib_seq(wildcard, name, rl, rank) lib_seqs.append(lib_seq) s += "\n" + "\n".join(load_csv(None, lib_seqs, sep=" ")) + "\n" params = [("genome_size", genomesize), ("is_diploid", 0), ("mer_size", opts.K), ("num_prefix_blocks", 1), ("no_read_validation", 0), ("local_num_procs", opts.cpus)] s += "\n" + "\n".join(load_csv(None, params, sep=" ")) + "\n" cfgfile = "meraculous.config" write_file(cfgfile, s, tee=True) s = "~/export/meraculous/bin/run_meraculous.sh -c {0}"\ .format(cfgfile) runsh = "run.sh" write_file(runsh, s)
def prepare(args)
%prog prepare genomesize *.fastq Prepare MERACULOUS configuation file. Genome size should be entered in Mb.
4.636864
4.170582
1.111803
from jcvi.apps.fetch import batch_taxonomy list_of_taxids = [str(x) for x in list_of_taxids] return list(batch_taxonomy(list_of_taxids))
def get_names(list_of_taxids)
>>> mylist = [3702, 3649, 3694, 3880] >>> get_names(mylist) ['Arabidopsis thaliana', 'Carica papaya', 'Populus trichocarpa', 'Medicago truncatula']
4.343782
4.754012
0.913709
from jcvi.apps.fetch import batch_taxids return [int(x) for x in batch_taxids(list_of_names)]
def get_taxids(list_of_names)
>>> mylist = ['Arabidopsis thaliana', 'Carica papaya'] >>> get_taxids(mylist) [1, 2]
6.228539
6.724813
0.926203
from ete2 import Tree t = TaxIDTree(list_of_taxids) t = Tree(str(t), format=8) ancestor = t.get_common_ancestor(*t.get_leaves()) return ancestor.name
def MRCA(list_of_taxids)
This gets the most recent common ancester (MRCA) for a list of taxids >>> mylist = [3702, 3649, 3694, 3880] >>> MRCA(mylist) 'rosids'
4.877177
6.150789
0.792935
assert isinstance(taxid, int) t = TaxIDTree(taxid) try: return "Viridiplantae" in str(t) except AttributeError: raise ValueError("{0} is not a valid ID".format(taxid))
def isPlantOrigin(taxid)
Given a taxid, this gets the expanded tree which can then be checked to see if the organism is a plant or not >>> isPlantOrigin(29760) True
5.456123
5.706039
0.956201
p = OptionParser(newick.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) idsfile, = args mylist = [x.strip() for x in open(idsfile) if x.strip()] print(get_taxids(mylist)) t = TaxIDTree(mylist) print(t)
def newick(args)
%prog newick idslist Query a list of IDs to retrieve phylogeny.
3.213061
2.892598
1.110787
pf = op.basename(bedfile).split(".")[0] minibamfile = minibam or op.basename(bamfile).replace(".bam", ".{}.bam".format(pf)) minisamfile = minibam.replace(".bam", ".sam") baifile = minibamfile + ".bai" if op.exists(baifile): sh("rm {}".format(baifile)) cmd = "samtools view -H {} > {}".format(bamfile, minisamfile) sh(cmd) cmd = "cat {}".format(bedfile) cmd += " | perl -lane 'print \"$F[0]:$F[1]-$F[2]\"'" cmd += " | xargs -n1 -t -I \{\}" cmd += " samtools view {}".format(bamfile) cmd += " \{\} >> " + minisamfile sh(cmd) cmd = "samtools view {} -b".format(minisamfile) cmd += " | samtools sort -" cmd += " -o {0}".format(minibamfile) sh(cmd) sh("samtools index {0}".format(minibamfile)) return minibamfile
def get_minibam_bed(bamfile, bedfile, minibam=None)
samtools view -L could do the work, but it is NOT random access. Here we are processing multiple regions sequentially. See also: https://www.biostars.org/p/49306/
3.010196
3.125143
0.963219
p = OptionParser(fastq.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) bamfile, pf = args singletons = pf + ".se.fastq" a = pf + ".read1.fastq" b = pf + ".read2.fastq" cmd = "samtools collate -uOn 128 {} tmp-prefix".format(bamfile) cmd += " | samtools fastq -s {} -1 {} -2 {} -"\ .format(singletons, a, b) sh(cmd) if os.stat(singletons).st_size == 0: # singleton file is empty os.remove(singletons) return a, b
def fastq(args)
%prog fastq bamfile prefix Convert BAM files to paired FASTQ files.
4.154544
3.969392
1.046645
p = OptionParser(mini.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) bamfile, region = args get_minibam(bamfile, region)
def mini(args)
%prog mini bamfile region Extract mini-bam for a single region.
2.866166
2.009571
1.426258
p = OptionParser(noclip.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) bamfile, = args noclipbam = bamfile.replace(".bam", ".noclip.bam") cmd = "samtools view -h {} | awk -F '\t' '($6 !~ /H|S/)'".format(bamfile) cmd += " | samtools view -@ 4 -b -o {}".format(noclipbam) sh(cmd) sh("samtools index {}".format(noclipbam))
def noclip(args)
%prog noclip bamfile Remove clipped reads from BAM.
2.648163
2.466251
1.07376
p = OptionParser(append.__doc__) p.add_option("--prepend", help="Prepend string to read names") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) bamfile, = args prepend = opts.prepend icmd = "samtools view -h {0}".format(bamfile) bamfile = bamfile.rsplit(".", 1)[0] + ".append.bam" ocmd = "samtools view -b -@ 64 - -o {0}".format(bamfile) p = Popen(ocmd, stdin=PIPE) for row in popen(icmd): if row[0] == '@': print(row.strip(), file=p.stdin) else: s = SamLine(row) if prepend: s.qname = prepend + "_" + s.qname else: s.update_readname() print(s, file=p.stdin)
def append(args)
%prog append bamfile Append /1 or /2 to read names. Useful for using the Tophat2 bam file for training AUGUSTUS gene models.
2.759181
2.551936
1.081211
p = OptionParser(bed.__doc__) opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) bedfile = args[0] bamfiles = args[1:] for bamfile in bamfiles: cmd = "bamToBed -i {0}".format(bamfile) sh(cmd, outfile=bedfile, append=True)
def bed(args)
%prog bed bedfile bamfiles Convert bam files to bed.
2.48405
2.17779
1.140629
from jcvi.apps.grid import MakeManager p = OptionParser(merge.__doc__) p.set_sep(sep="_", help="Separator to group per prefix") opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) merged_bams = args[0] bamdirs = args[1:] mkdir(merged_bams) bams = [] for x in bamdirs: bams += glob(op.join(x, "*.bam")) bams = [x for x in bams if "nsorted" not in x] logging.debug("Found a total of {0} BAM files.".format(len(bams))) sep = opts.sep key = lambda x: op.basename(x).split(sep)[0] bams.sort(key=key) mm = MakeManager() for prefix, files in groupby(bams, key=key): files = sorted(list(files)) nfiles = len(files) source = " ".join(files) target = op.join(merged_bams, op.basename(files[0])) if nfiles == 1: source = get_abs_path(source) cmd = "ln -s {0} {1}".format(source, target) mm.add("", target, cmd) else: cmd = "samtools merge -@ 8 {0} {1}".format(target, source) mm.add(files, target, cmd, remove=True) mm.write()
def merge(args)
%prog merge merged_bams bams1_dir bams2_dir ... Merge BAM files. Treat the bams with the same prefix as a set. Output the commands first.
2.943633
2.713904
1.084649
p = OptionParser(count.__doc__) p.add_option("--type", default="exon", help="Only count feature type") p.set_cpus(cpus=8) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) bamfile, gtf = args cpus = opts.cpus pf = bamfile.split(".")[0] countfile = pf + ".count" if not need_update(bamfile, countfile): return nsorted = pf + "_nsorted" nsortedbam, nsortedsam = nsorted + ".bam", nsorted + ".sam" if need_update(bamfile, nsortedsam): cmd = "samtools sort -@ {0} -n {1} {2}".format(cpus, bamfile, nsorted) sh(cmd) cmd = "samtools view -@ {0} -h {1}".format(cpus, nsortedbam) sh(cmd, outfile=nsortedsam) if need_update(nsortedsam, countfile): cmd = "htseq-count --stranded=no --minaqual=10" cmd += " -t {0}".format(opts.type) cmd += " {0} {1}".format(nsortedsam, gtf) sh(cmd, outfile=countfile)
def count(args)
%prog count bamfile gtf Count the number of reads mapped using `htseq-count`.
2.699282
2.489758
1.084154
p = OptionParser(coverage.__doc__) p.add_option("--format", default="bigwig", choices=("bedgraph", "bigwig", "coverage"), help="Output format") p.add_option("--nosort", default=False, action="store_true", help="Do not sort BAM") p.set_outfile() opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) fastafile, bamfile = args format = opts.format if opts.nosort: logging.debug("BAM sorting skipped") else: bamfile = index([bamfile, "--fasta={0}".format(fastafile)]) pf = bamfile.rsplit(".", 2)[0] sizesfile = Sizes(fastafile).filename cmd = "genomeCoverageBed -ibam {0} -g {1}".format(bamfile, sizesfile) if format in ("bedgraph", "bigwig"): cmd += " -bg" bedgraphfile = pf + ".bedgraph" sh(cmd, outfile=bedgraphfile) if format == "bedgraph": return bedgraphfile bigwigfile = pf + ".bigwig" cmd = "bedGraphToBigWig {0} {1} {2}".\ format(bedgraphfile, sizesfile, bigwigfile) sh(cmd) return bigwigfile coveragefile = pf + ".coverage" if need_update(fastafile, coveragefile): sh(cmd, outfile=coveragefile) gcf = GenomeCoverageFile(coveragefile) fw = must_open(opts.outfile, "w") for seqid, cov in gcf.iter_coverage_seqid(): print("\t".join((seqid, "{0:.1f}".format(cov))), file=fw) fw.close()
def coverage(args)
%prog coverage fastafile bamfile Calculate coverage for BAM file. BAM file will be sorted unless with --nosort.
2.754091
2.551785
1.07928
p = OptionParser(fpkm.__doc__) opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) fastafile = args[0] bamfiles = args[1:] # Create a DUMMY gff file for cuffdiff gffile = fastafile.rsplit(".", 1)[0] + ".gff" if need_update(fastafile, gffile): fw = open(gffile, "w") f = Fasta(fastafile, lazy=True) for key, size in f.itersizes_ordered(): print("\t".join(str(x) for x in (key, "dummy", "transcript",\ 1, size, ".", ".", ".", "ID=" + key)), file=fw) fw.close() logging.debug("Dummy GFF created: {0}".format(gffile)) cmd = "cuffdiff {0} {1}".format(gffile, " ".join(bamfiles)) sh(cmd)
def fpkm(args)
%prog fpkm fastafile *.bam Calculate FPKM values from BAM file.
3.197411
3.005013
1.064026
import jcvi.formats.bed p = OptionParser(pairs.__doc__) p.set_pairs() opts, targs = p.parse_args(args) if len(targs) != 1: sys.exit(not p.print_help()) samfile, = targs bedfile = samfile.rsplit(".", 1)[0] + ".bed" if need_update(samfile, bedfile): cmd = "bamToBed -i {0}".format(samfile) sh(cmd, outfile=bedfile) args[args.index(samfile)] = bedfile return jcvi.formats.bed.pairs(args)
def pairs(args)
See __doc__ for OptionParser.set_pairs().
3.201763
2.990763
1.070551
p = OptionParser(consensus.__doc__) p.add_option("--fasta", default=False, action="store_true", help="Generate consensus FASTA sequences [default: %default]") p.add_option("--mask", default=0, type="int", help="Mask bases with quality lower than") opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) fastafile, bamfile = args fasta = opts.fasta suffix = "fasta" if fasta else "fastq" pf = bamfile.rsplit(".", 1)[0] cnsfile = pf + ".cns.{0}".format(suffix) vcfgzfile = pf + ".vcf.gz" vcf([fastafile, bamfile, "-o", vcfgzfile]) cmd += "zcat {0} | vcfutils.pl vcf2fq".format(vcfgzfile) if fasta: cmd += " | seqtk seq -q {0} -A -".format(opts.mask) sh(cmd, outfile=cnsfile)
def consensus(args)
%prog consensus fastafile bamfile Convert bam alignments to consensus FASTQ/FASTA.
3.445184
3.160402
1.09011
from jcvi.apps.grid import Jobs valid_callers = ("mpileup", "freebayes") p = OptionParser(vcf.__doc__) p.set_outfile(outfile="out.vcf.gz") p.add_option("--nosort", default=False, action="store_true", help="Do not sort the BAM files") p.add_option("--caller", default="mpileup", choices=valid_callers, help="Use variant caller [default: %default]") opts, args = p.parse_args(args) if len(args) < 2: sys.exit(not p.print_help()) fastafile = args[0] bamfiles = args[1:] caller = opts.caller unsorted = [x for x in bamfiles if ".sorted." not in x] if opts.nosort: bamfiles = unsorted else: jargs = [[[x, "--unique"]] for x in unsorted] jobs = Jobs(index, args=jargs) jobs.run() bamfiles = [x.replace(".sorted.bam", ".bam") for x in bamfiles] bamfiles = [x.replace(".bam", ".sorted.bam") for x in bamfiles] if caller == "mpileup": cmd = "samtools mpileup -E -uf" cmd += " {0} {1}".format(fastafile, " ".join(bamfiles)) cmd += " | bcftools call -vmO v" elif caller == "freebayes": cmd = "freebayes -f" cmd += " {0} {1}".format(fastafile, " ".join(bamfiles)) sh(cmd, outfile=opts.outfile)
def vcf(args)
%prog vcf fastafile bamfiles > out.vcf.gz Call SNPs on bam files.
2.538849
2.377097
1.068046
import pysam from jcvi.utils.natsort import natsorted p = OptionParser(chimera.__doc__) p.set_verbose() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) samfile, = args samfile = pysam.AlignmentFile(samfile) rstore = defaultdict(list) hstore = defaultdict(int) for r in samfile.fetch(): rstore[r.query_name] += list(breakpoint(r)) hstore[r.query_name] += 1 if opts.verbose: print(r.query_name, "+-"[r.is_reverse], \ sum(l for o, l in r.cigartuples), r.cigarstring, list(breakpoint(r)), file=sys.stderr) for rn, bps in natsorted(rstore.items()): bps = "|".join(str(x) for x in sorted(bps)) if bps else "na" print("\t".join((rn, str(hstore[rn]), bps)))
def chimera(args)
%prog chimera bamfile Parse BAM file from `bwasw` and list multi-hit reads and breakpoints.
2.972091
2.838223
1.047166
p = OptionParser(index.__doc__) p.add_option("--fasta", dest="fasta", default=None, help="add @SQ header to the BAM file [default: %default]") p.add_option("--unique", default=False, action="store_true", help="only retain uniquely mapped reads [default: %default]") p.set_cpus() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(p.print_help()) samfile, = args cpus = opts.cpus fastafile = opts.fasta if fastafile: assert op.exists(fastafile) bamfile = samfile.replace(".sam", ".bam") if fastafile: faifile = fastafile + ".fai" if need_update(fastafile, faifile): sh("samtools faidx {0}".format(fastafile)) cmd = "samtools view -bt {0} {1} -o {2}".\ format(faifile, samfile, bamfile) else: cmd = "samtools view -bS {0} -o {1}".\ format(samfile, bamfile) cmd += " -@ {0}".format(cpus) if opts.unique: cmd += " -q 1" if samfile.endswith(".sam") and need_update(samfile, bamfile): sh(cmd) # Already sorted? if bamfile.endswith(".sorted.bam"): sortedbamfile = bamfile else: prefix = bamfile.replace(".bam", "") sortedbamfile = prefix + ".sorted.bam" if need_update(bamfile, sortedbamfile): cmd = "samtools sort {0} -o {1}".format(bamfile, sortedbamfile) cmd += " -@ {0}".format(cpus) sh(cmd) baifile = sortedbamfile + ".bai" if need_update(sortedbamfile, baifile): sh("samtools index {0}".format(sortedbamfile)) return sortedbamfile
def index(args)
%prog index samfile/bamfile If SAM file, convert to BAM, sort and then index, using SAMTOOLS
2.178547
2.106593
1.034157
import pysam from jcvi.apps.grid import Jobs p = OptionParser(mapped.__doc__) p.set_sam_options(extra=False) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(p.print_help()) samfile, = args view_opts = [] oext, mopts = (".sam", ["-S"]) \ if samfile.endswith(".sam") else (".bam", []) flag, ext = ("-b", ".bam") if opts.bam else ("-h", ".sam") mopts.append(flag) if opts.uniq: mopts.append("-q1") ext = ".uniq{0}".format(ext) if opts.unmapped: uopts = [x for x in mopts] uoutfile = samfile.replace(oext, ".unmapped{0}".format(ext)) uopts.extend(["-f4", samfile, "-o{0}".format(uoutfile)]) view_opts.append(uopts) outfile = samfile.replace(oext, ".mapped{0}".format(ext)) mopts.extend(["-F4", samfile, "-o{0}".format(outfile)]) view_opts.append(mopts) for vo in view_opts: logging.debug('samtools view {0}'.format(" ".join(vo))) jobs = Jobs(pysam.view, [(z for z in x) for x in view_opts]) jobs.run()
def mapped(args)
%prog mapped sam/bamfile Given an input sam/bam file, output a sam/bam file containing only the mapped reads. Optionally, extract the unmapped reads into a separate file
3.412084
3.344686
1.020151
p = OptionParser(pair.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(p.print_help()) def callback(s): print(s.pairline) Sam(args[0], callback=callback)
def pair(args)
%prog pair samfile Parses the sam file and retrieve in pairs format, query:pos ref:pos
3.742981
3.943785
0.949083
seq, cigar = a.seq, a.cigar start = 0 subseqs = [] npadded = 0 if cigar is None: return None, npadded for operation, length in cigar: end = start if operation == 2 else start + length if operation == 0: # match subseq = seq[start:end] elif operation == 1: # insertion subseq = "" elif operation == 2: # deletion subseq = gap * length npadded += length elif operation == 3: # skipped subseq = 'N' * length elif operation in (4, 5): # clip subseq = "" else: raise NotImplementedError subseqs.append(subseq) start = end return "".join(subseqs), npadded
def cigar_to_seq(a, gap='*')
Accepts a pysam row. cigar alignment is presented as a list of tuples (operation,length). For example, the tuple [ (0,3), (1,5), (0,2) ] refers to an alignment with 3 matches, 5 insertions and another 2 matches. Op BAM Description M 0 alignment match (can be a sequence match or mismatch) I 1 insertion to the reference D 2 deletion from the reference N 3 skipped region from the reference S 4 soft clipping (clipped sequences present in SEQ) H 5 hard clipping (clipped sequences NOT present in SEQ) P 6 padding (silent deletion from padded reference) = 7 sequence match X 8 sequence mismatch convert the sequence based on the cigar string. For example:
2.593589
2.645809
0.980263
p = OptionParser(dump.__doc__) p.add_option("--dir", help="Working directory [default: %default]") p.add_option("--nosim", default=False, action="store_true", help="Do not simulate qual to 50 [default: %default]") opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fastbfile, = args d = opts.dir if d: from jcvi.assembly.preprocess import export_fastq rc = "jump" in fastbfile export_fastq(d, fastbfile, rc=rc) return sim = not opts.nosim pf = "j" if "jump" in fastbfile else "f" statsfile = "{0}.lib_stats".format(pf) if op.exists(statsfile): os.remove(statsfile) cmd = "SplitReadsByLibrary READS_IN={0}".format(fastbfile) cmd += " READS_OUT={0} QUALS=True".format(pf) sh(cmd) libs = [] fp = open(statsfile) next(fp); next(fp) # skip two rows for row in fp: if row.strip() == "": continue libname = row.split()[0] if libname == "Unpaired": continue libs.append(libname) logging.debug("Found libraries: {0}".format(",".join(libs))) cmds = [] for libname in libs: cmd = "FastbQualbToFastq" cmd += " HEAD_IN={0}.{1}.AB HEAD_OUT={1}".format(pf, libname) cmd += " PAIRED=True PHRED_OFFSET=33" if sim: cmd += " SIMULATE_QUALS=True" if pf == 'j': cmd += " FLIP=True" cmds.append((cmd, )) m = Jobs(target=sh, args=cmds) m.run() for libname in libs: cmd = "mv {0}.A.fastq {0}.1.fastq".format(libname) sh(cmd) cmd = "mv {0}.B.fastq {0}.2.fastq".format(libname) sh(cmd)
def dump(args)
%prog dump fastbfile Export ALLPATHS fastb file to fastq file. Use --dir to indicate a previously run allpaths folder.
3.979665
3.703243
1.074643
p = OptionParser(fixpairs.__doc__) opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) pairsfile, sep, sd = args newpairsfile = pairsfile.rsplit(".", 1)[0] + ".new.pairs" sep = int(sep) sd = int(sd) p = PairsFile(pairsfile) p.fixLibraryStats(sep, sd) p.write(newpairsfile)
def fixpairs(args)
%prog fixpairs pairsfile sep sd Fix pairs library stats. This is sometime useful to modify library stats, for example, the separation between paired reads after importing the data.
2.830066
2.018937
1.40176
p = OptionParser(fill.__doc__) p.add_option("--stretch", default=3, type="int", help="MAX_STRETCH to pass to FillFragments [default: %default]") p.set_cpus() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) fastb, = args assert fastb == "frag_reads_corr.fastb" pcfile = "frag_reads_corr.k28.pc.info" nthreads = " NUM_THREADS={0}".format(opts.cpus) maxstretch = " MAX_STRETCH={0}".format(opts.stretch) if need_update(fastb, pcfile): cmd = "PathReads READS_IN=frag_reads_corr" cmd += nthreads sh(cmd) filledfastb = "filled_reads.fastb" if need_update(pcfile, filledfastb): cmd = "FillFragments PAIRS_OUT=frag_reads_corr_cpd" cmd += " PRECORRECT_LIBSTATS=True" cmd += maxstretch cmd += nthreads sh(cmd) filledfasta = "filled_reads.fasta" if need_update(filledfastb, filledfasta): cmd = "Fastb2Fasta IN=filled_reads.fastb OUT=filled_reads.fasta" sh(cmd)
def fill(args)
%prog fill frag_reads_corr.fastb Run FillFragments on `frag_reads_corr.fastb`.
4.327679
3.523796
1.22813
fp = open(fastqfile) currentID = 0 npairs = nfrags = 0 for x, lib in izip(p.r1, p.libs): while currentID != x: fragsfw.writelines(islice(fp, 4)) # Exhaust the iterator currentID += 1 nfrags += 1 a = list(islice(fp, 4)) b = list(islice(fp, 4)) if suffix: name = a[0].rstrip() a[0] = name + "/1\n" b[0] = name + "/2\n" else: b[0] = a[0] # Keep same read ID for pairs p1fw[lib].writelines(a) p2fw[lib].writelines(b) currentID += 2 npairs += 2 # Write the remaining single reads while True: contents = list(islice(fp, 4)) if not contents: break fragsfw.writelines(contents) nfrags += 1 logging.debug("A total of {0} paired reads written to `{1}`.".\ format(npairs, ",".join(x.name for x in p1fw + p2fw))) logging.debug("A total of {0} single reads written to `{1}`.".\ format(nfrags, fragsfw.name)) # Validate the numbers expected_pairs = 2 * p.npairs expected_frags = p.nreads - 2 * p.npairs assert npairs == expected_pairs, "Expect {0} paired reads, got {1} instead".\ format(expected_pairs, npairs) assert nfrags == expected_frags, "Expect {0} single reads, got {1} instead".\ format(expected_frags, nfrags)
def extract_pairs(fastqfile, p1fw, p2fw, fragsfw, p, suffix=False)
Take fastqfile and array of pair ID, extract adjacent pairs to outfile. Perform check on numbers when done. p1fw, p2fw is a list of file handles, each for one end. p is a Pairs instance.
3.009779
2.886416
1.042739
from jcvi.assembly.preprocess import run_FastbAndQualb2Fastq p = OptionParser(pairs.__doc__) p.add_option("--header", default=False, action="store_true", help="Print header only [default: %default]") p.add_option("--suffix", default=False, action="store_true", help="Add suffix /1, /2 to read names") opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) pairsfile, fastqfile = args pf = op.basename(fastqfile).split(".")[0] p = PairsFile(pairsfile) print(p.header, file=sys.stderr) if opts.header: return if fastqfile.endswith(".fastb"): fastbfile = fastqfile fastqfile = fastbfile.replace(".fastb", ".fastq") run_FastbAndQualb2Fastq(infile=fastbfile, outfile=fastqfile) p1file = "{0}.1.corr.fastq" p2file = "{0}.2.corr.fastq" fragsfile = "{0}.corr.fastq" p1fw = [open(p1file.format(x), "w") for x in p.libnames] p2fw = [open(p2file.format(x), "w") for x in p.libnames] fragsfw = open(fragsfile.format(pf), "w") extract_pairs(fastqfile, p1fw, p2fw, fragsfw, p, suffix=opts.suffix)
def pairs(args)
%prog pairs pairsfile <fastbfile|fastqfile> Parse ALLPATHS pairs file, and write pairs IDs and single read IDs in respective ids files: e.g. `lib1.pairs.fastq`, `lib2.pairs.fastq`, and single `frags.fastq` (with single reads from lib1/2).
3.058682
2.720573
1.124279
from jcvi.algorithms.graph import nx, topological_sort p = OptionParser(log.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) g = nx.DiGraph() logfile, = args fp = open(logfile) row = fp.readline() incalling = False basedb = {} while row: atoms = row.split() if len(atoms) < 3: row = fp.readline() continue tag, token, trailing = atoms[0], atoms[1], atoms[-1] if trailing == 'file(s):': numfiles = int(atoms[-2]) row = fp.readline() assert row.strip() == tag if token == "Calling" and not incalling: createfiles = [] for i in xrange(numfiles): row = fp.readline() createfiles.append(row.split()[-1]) incalling = True if token == "from" and incalling: fromfiles = [] for i in xrange(numfiles): row = fp.readline() fromfiles.append(row.split()[-1]) for a in fromfiles: for b in createfiles: ba, bb = op.basename(a), op.basename(b) basedb[ba] = a basedb[bb] = b g.add_edge(ba, bb) incalling = False if token == "ln": fromfile, createfile = atoms[-2:] ba, bb = op.basename(fromfile), op.basename(createfile) #print ba, "-->", bb if ba != bb: g.add_edge(ba, bb) row = fp.readline() ts = [basedb[x] for x in topological_sort(g) if x in basedb] print("\n".join(ts))
def log(args)
%prog log logfile Prepare a log of created files, ordered by their creation data. The purpose for this script is to touch these files sequentially to reflect their build order. On the JCVI scratch area, the files are touched regularly to avoid getting deleted, losing their respective timestamps. However, this created a problem for the make system adopted by ALLPATHS. An example block to be extracted ==> [PC] Calling PreCorrect to create 2 file(s): [PC] [PC] $(RUN)/frag_reads_prec.fastb [PC] $(RUN)/frag_reads_prec.qualb [PC] [PC] from 2 file(s): [PC] [PC] $(RUN)/frag_reads_filt.fastb [PC] $(RUN)/frag_reads_filt.qualb
3.025777
2.861281
1.05749
mapping = self._mapping set_a = mapping.setdefault(a, [a]) for arg in args: set_b = mapping.get(arg) if set_b is None: set_a.append(arg) mapping[arg] = set_a elif set_b is not set_a: if len(set_b) > len(set_a): set_a, set_b = set_b, set_a set_a.extend(set_b) for elem in set_b: mapping[elem] = set_a
def join(self, a, *args)
Join given arguments into the same set. Accepts one or more arguments.
2.136494
2.066672
1.033785
mapping = self._mapping try: return mapping[a] is mapping[b] except KeyError: return False
def joined(self, a, b)
Returns True if a and b are members of the same set.
5.1512
4.301717
1.197475
from csv import reader from xlwt import Workbook, easyxf from jcvi.formats.base import flexible_cast p = OptionParser(fromcsv.__doc__) p.add_option("--noheader", default=False, action="store_true", help="Do not treat the first row as header") p.add_option("--rgb", default=-1, type="int", help="Show RGB color box") p.set_sep() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) csvfile, = args header = not opts.noheader rgb = opts.rgb excelfile = csvfile.rsplit(".", 1)[0] + ".xls" data = [] for row in reader(open(csvfile), delimiter=opts.sep): data.append(row) w = Workbook() s = w.add_sheet(op.basename(csvfile)) header_style = easyxf('font: bold on') if header: s.panes_frozen = True s.horz_split_pos = 1 cm = ColorMatcher() for i, row in enumerate(data): for j, cell in enumerate(row): cell = flexible_cast(cell) if header and i == 0: s.write(i, j, cell, header_style) else: if j == rgb: cix = cm.match_color_index(cell) color_style = easyxf('font: color_index {0}'.format(cix)) s.write(i, j, cell, color_style) else: s.write(i, j, cell) w.save(excelfile) logging.debug("File written to `{0}`.".format(excelfile)) return excelfile
def fromcsv(args)
%prog fromcsv csvfile Convert csv file to EXCEL.
2.425553
2.346614
1.033639
from xlrd import open_workbook p = OptionParser(csv.__doc__) p.set_sep(sep=',') opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) excelfile, = args sep = opts.sep csvfile = excelfile.rsplit(".", 1)[0] + ".csv" wb = open_workbook(excelfile) fw = open(csvfile, "w") for s in wb.sheets(): print('Sheet:',s.name, file=sys.stderr) for row in range(s.nrows): values = [] for col in range(s.ncols): values.append(s.cell(row, col).value) print(sep.join(str(x) for x in values), file=fw)
def csv(args)
%prog csv excelfile Convert EXCEL to csv file.
2.162119
1.981444
1.091184
from jcvi.utils.webcolors import color_diff if isinstance(color, int): return color if color: if isinstance(color, six.string_types): rgb = map(int, color.split(',')) else: rgb = color.Get() logging.disable(logging.DEBUG) distances = [color_diff(rgb, x) for x in self.xlwt_colors] logging.disable(logging.NOTSET) result = distances.index(min(distances)) self.unused_colors.discard(self.xlwt_colors[result]) return result
def match_color_index(self, color)
Takes an "R,G,B" string or wx.Color and returns a matching xlwt color.
3.932989
3.219529
1.221604
if not self.unused_colors: # If we somehow run out of colors, reset the color matcher. self.reset() used_colors = [c for c in self.xlwt_colors if c not in self.unused_colors] result_color = max(self.unused_colors, key=lambda c: min(self.color_distance(c, c2) for c2 in used_colors)) result_index = self.xlwt_colors.index(result_color) self.unused_colors.discard(result_color) return result_index
def get_unused_color(self)
Returns an xlwt color index that has not been previously returned by this instance. Attempts to maximize the distance between the color and all previously used colors.
3.634894
3.011501
1.207004
import pyfasta p = OptionParser(validate.__doc__) p.add_option("--prefix", help="Add prefix to seqid") opts, args = p.parse_args(args) vcffile, fastafile = args pf = opts.prefix genome = pyfasta.Fasta(fastafile, record_class=pyfasta.MemoryRecord) fp = must_open(vcffile) match_ref = match_alt = total = 0 for row in fp: if row[0] == '#': continue seqid, pos, id, ref, alt = row.split()[:5] total += 1 if pf: seqid = pf + seqid pos = int(pos) if seqid not in genome: continue true_ref = genome[seqid][pos - 1] if total % 100000 == 0: print(total, "sites parsed", file=sys.stderr) if ref == true_ref: match_ref += 1 elif alt == true_ref: match_alt += 1 logging.debug("Match REF: {}".format(percentage(match_ref, total))) logging.debug("Match ALT: {}".format(percentage(match_alt, total)))
def validate(args)
%prog validate input.vcf genome.fasta Fasta validation of vcf file.
3.212683
2.987828
1.075257
from six.moves.urllib.parse import parse_qs p = OptionParser(uniq.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) vcffile, = args fp = must_open(vcffile) data = [] for row in fp: if row[0] == '#': print(row.strip()) continue v = VcfLine(row) data.append(v) for pos, vv in groupby(data, lambda x: x.pos): vv = list(vv) if len(vv) == 1: print(vv[0]) continue bestv = max(vv, key=lambda x: float(parse_qs(x.info)["R2"][0])) print(bestv)
def uniq(args)
%prog uniq vcffile Retain only the first entry in vcf file.
2.859519
2.571161
1.112151
from random import random p = OptionParser(sample.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) vcffile, ratio = args ratio = float(ratio) fp = open(vcffile) pf = vcffile.rsplit(".", 1)[0] kept = pf + ".kept.vcf" withheld = pf + ".withheld.vcf" fwk = open(kept, "w") fww = open(withheld, "w") nkept = nwithheld = 0 for row in fp: if row[0] == '#': print(row.strip(), file=fwk) continue if random() < ratio: nkept += 1 print(row.strip(), file=fwk) else: nwithheld += 1 print(row.strip(), file=fww) logging.debug("{0} records kept to `{1}`".format(nkept, kept)) logging.debug("{0} records withheld to `{1}`".format(nwithheld, withheld))
def sample(args)
%prog sample vcffile 0.9 Sample subset of vcf file.
2.277628
2.11774
1.075499
p = OptionParser(fromimpute2.__doc__) opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) impute2file, fastafile, chr = args fasta = Fasta(fastafile) print(get_vcfstanza(fastafile, fasta)) fp = open(impute2file) seen = set() for row in fp: snp_id, rsid, pos, ref, alt, aa, ab, bb = row.split() pos = int(pos) if pos in seen: continue seen.add(pos) code = max((float(aa), "0/0"), (float(ab), "0/1"), (float(bb), "1/1"))[-1] tag = "PR" if snp_id == chr else "IM" print("\t".join(str(x) for x in \ (chr, pos, rsid, ref, alt, ".", ".", tag, \ "GT:GP", code + ":" + ",".join((aa, ab, bb)))))
def fromimpute2(args)
%prog fromimpute2 impute2file fastafile 1 Convert impute2 output to vcf file. Imputed file looks like: --- 1:10177:A:AC 10177 A AC 0.451 0.547 0.002
3.936787
3.635537
1.082862
p = OptionParser(refallele.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) vcffile, = args fp = open(vcffile) for row in fp: if row[0] == '#': continue atoms = row.split() marker = "{0}:{1}".format(*atoms[:2]) ref = atoms[3] print("\t".join((marker, ref)))
def refallele(args)
%prog refallele vcffile > out.refAllele Make refAllele file which can be used to convert PLINK file to VCF file.
2.737516
2.509386
1.090911
from jcvi.formats.bed import BedLine from jcvi.graphics.histogram import stem_leaf_plot p = OptionParser(location.__doc__) p.add_option("--dist", default=100, type="int", help="Distance cutoff to call 5` and 3` [default: %default]") opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) bedfile, fastafile = args dist = opts.dist sizes = Sizes(fastafile).mapping fp = open(bedfile) fiveprime = threeprime = total = 0 percentages = [] for row in fp: b = BedLine(row) pos = b.start size = sizes[b.seqid] if pos < dist: fiveprime += 1 if size - pos < dist: threeprime += 1 total += 1 percentages.append(100 * pos / size) m = "Five prime (within {0}bp of start codon): {1}\n".format(dist, fiveprime) m += "Three prime (within {0}bp of stop codon): {1}\n".format(dist, threeprime) m += "Total: {0}".format(total) print(m, file=sys.stderr) bins = 10 title = "Locations within the gene [0=Five-prime, 100=Three-prime]" stem_leaf_plot(percentages, 0, 100, bins, title=title)
def location(args)
%prog location bedfile fastafile Given SNP locations, summarize the locations in the sequences. For example, find out if there are more 3`-SNPs than 5`-SNPs.
2.937487
2.825239
1.039731
atoms = s.split(":") if len(atoms) < 3: return g2x[atoms[0]] inferred = atoms[0] depth = int(atoms[depth_index]) if depth < mindepth: return '-' if inferred == '0/0': return 'A' if inferred == '0/1': return '-' if nohet else 'X' if inferred == '1/1': return 'B' return '-'
def encode_genotype(s, mindepth=3, depth_index=2, nohet=False)
>>> encode_genotype("1/1:128,18,0:6:18") # homozygote B 'B' >>> encode_genotype("0/1:0,0,0:0:3") # missing data '-' >>> encode_genotype("0/1:128,0,26:7:22") # heterozygous A/B 'X'
3.569856
3.442067
1.037126
from jcvi.assembly.geneticmap import MSTMatrix p = OptionParser(mstmap.__doc__) p.add_option("--dh", default=False, action="store_true", help="Double haploid population, no het [default: %default]") p.add_option("--freq", default=.2, type="float", help="Allele must be above frequency [default: %default]") p.add_option("--mindepth", default=3, type="int", help="Only trust genotype calls with depth [default: %default]") p.add_option("--missing_threshold", default=.25, type="float", help="Fraction missing must be below") p.add_option("--noheader", default=False, action="store_true", help="Do not print MSTmap run parameters [default: %default]") p.add_option("--pv4", default=False, action="store_true", help="Enable filtering strand-bias, tail distance bias, etc. " "[default: %default]") p.add_option("--freebayes", default=False, action="store_true", help="VCF output from freebayes") p.set_sep(sep=".", help="Use separator to simplify individual names") p.set_outfile() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) vcffile, = args if vcffile.endswith(".bcf"): bcffile = vcffile vcffile = bcffile.rsplit(".", 1)[0] + ".vcf" cmd = "bcftools view {0}".format(bcffile) cmd += " | vcfutils.pl varFilter" if not opts.pv4: cmd += " -1 0 -2 0 -3 0 -4 0 -e 0" if need_update(bcffile, vcffile): sh(cmd, outfile=vcffile) freq = opts.freq sep = opts.sep depth_index = 1 if opts.freebayes else 2 ptype = "DH" if opts.dh else "RIL6" nohet = ptype == "DH" fp = open(vcffile) genotypes = [] for row in fp: if row[:2] == "##": continue atoms = row.split() if row[0] == '#': ind = [x.split(sep)[0] for x in atoms[9:]] nind = len(ind) mh = ["locus_name"] + ind continue marker = "{0}.{1}".format(*atoms[:2]) geno = atoms[9:] geno = [encode_genotype(x, mindepth=opts.mindepth, depth_index=depth_index, nohet=nohet) for x in geno] assert len(geno) == nind f = 1. / nind if geno.count("A") * f < freq: continue if geno.count("B") * f < freq: continue if geno.count("-") * f > opts.missing_threshold: continue genotype = [marker] + geno genotypes.append(genotype) mm = MSTMatrix(genotypes, mh, ptype, opts.missing_threshold) mm.write(opts.outfile, header=(not opts.noheader))
def mstmap(args)
%prog mstmap bcffile/vcffile > matrixfile Convert bcf/vcf format to mstmap input.
3.727462
3.636404
1.025041
p = OptionParser(liftover.__doc__) p.add_option("--newid", default=False, action="store_true", help="Make new identifiers") opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) oldvcf, chainfile, newvcf = args ul = UniqueLiftover(chainfile) num_excluded = 0 fp = open(oldvcf) fw = open(newvcf, "w") for row in fp: row = row.strip() if row[0] == '#': if row.startswith("##source="): row = "##source={0}".format(__file__) elif row.startswith("##reference="): row = "##reference=hg38" elif row.startswith("##contig="): continue print(row.strip(), file=fw) continue v = VcfLine(row) # GRCh37.p2 has the same MT sequence as hg38 (but hg19 is different) if v.seqid == "MT": v.seqid = "chrM" print(v, file=fw) continue try: new_chrom, new_pos = ul.liftover_cpra(CM[v.seqid], v.pos) except: num_excluded +=1 continue if new_chrom != None and new_pos != None: v.seqid, v.pos = new_chrom, new_pos if opts.newid: v.rsid = "{0}:{1}".format(new_chrom.replace("chr", ""), new_pos) print(v, file=fw) else: num_excluded +=1 logging.debug("Excluded {0}".format(num_excluded))
def liftover(args)
%prog liftover old.vcf hg19ToHg38.over.chain.gz new.vcf Lift over coordinates in vcf file.
2.872588
2.736664
1.049668
chromosome = str(chromosome) position = int(position) # Perform the liftover lookup, shift the position by 1 as pyliftover deals in 0-based co-ords new = self.liftover.convert_coordinate(chromosome, position - 1) # This has to be here as new will be NoneType when the chromosome doesn't exist in the chainfile if new: # If the liftover is unique if len(new) == 1: # If the liftover hasn't changed strand if new[0][2] == "+": # Set the co-ordinates to the lifted-over ones and write out new_chromosome = str(new[0][0]) # Shift the position forward by one to convert back to a 1-based co-ords new_position = int(new[0][1]) + 1 return new_chromosome, new_position else: exception_string = "{},{} has a flipped strand in liftover: {}".format(chromosome, position, new) else: exception_string = "{},{} lifts over to multiple positions: {}".format(chromosome, position, new) elif new is None: exception_string = "Chromosome '{}' provided not in chain file".format(chromosome) if verbose: logging.error(exception_string) return None, None
def liftover_cpra(self, chromosome, position, verbose=False)
Given chromosome, position in 1-based co-ordinates, This will use pyliftover to liftover a CPRA, will return a (c,p) tuple or raise NonUniqueLiftover if no unique and strand maintaining liftover is possible :param chromosome: string with the chromosome as it's represented in the from_genome :param position: position on chromosome (will be cast to int) :return: ((str) chromosome, (int) position) or None if no liftover
4.2365
4.229952
1.001548
p = OptionParser(multilineplot.__doc__) p.add_option("--lines", help="Features to plot in lineplot [default: %default]") p.add_option("--colors", help="List of colors matching number of input bed files") p.add_option("--mode", default="span", choices=("span", "count", "score"), help="Accumulate feature based on [default: %default]") p.add_option("--binned", default=False, action="store_true", help="Specify whether the input is already binned; " + "if True, input files are considered to be binfiles") p.add_option("--ymax", type="int", help="Set Y-axis max") add_window_options(p) opts, args, iopts = p.set_image_options(args, figsize="8x5") if len(args) != 2: sys.exit(not p.print_help()) fastafile, chr = args window, shift, subtract, merge = check_window_options(opts) linebeds = [] colors = opts.colors if opts.lines: lines = opts.lines.split(",") assert len(colors) == len(lines), "Number of chosen colors must match" + \ " number of input bed files" linebeds = get_beds(lines, binned=opts.binned) linebins = get_binfiles(linebeds, fastafile, shift, mode=opts.mode, binned=opts.binned, merge=merge) clen = Sizes(fastafile).mapping[chr] nbins = get_nbins(clen, shift) plt.rcParams["xtick.major.size"] = 0 plt.rcParams["ytick.major.size"] = 0 plt.rcParams["figure.figsize"] = iopts.w, iopts.h fig, axarr = plt.subplots(nrows=len(lines)) if len(linebeds) == 1: axarr = (axarr, ) fig.suptitle(latex(chr), color="darkslategray") for i, ax in enumerate(axarr): lineplot(ax, [linebins[i]], nbins, chr, window, shift, \ color="{0}{1}".format(colors[i], 'r')) if opts.ymax: ax.set_ylim(0, opts.ymax) plt.subplots_adjust(hspace=0.5) image_name = chr + "." + iopts.format savefig(image_name, dpi=iopts.dpi, iopts=iopts)
def multilineplot(args)
%prog multilineplot fastafile chr1 Combine multiple line plots in one vertical stack Inputs must be BED-formatted. --lines: traditional line plots, useful for plotting feature freq
3.482716
3.383953
1.029186
p = OptionParser(stack.__doc__) p.add_option("--top", default=10, type="int", help="Draw the first N chromosomes [default: %default]") p.add_option("--stacks", default="Exons,Introns,DNA_transposons,Retrotransposons", help="Features to plot in stackplot [default: %default]") p.add_option("--switch", help="Change chr names based on two-column file [default: %default]") add_window_options(p) opts, args, iopts = p.set_image_options(args, figsize="8x8") if len(args) != 1: sys.exit(not p.print_help()) fastafile, = args top = opts.top window, shift, subtract, merge = check_window_options(opts) switch = opts.switch if switch: switch = DictFile(opts.switch) stacks = opts.stacks.split(",") bedfiles = get_beds(stacks) binfiles = get_binfiles(bedfiles, fastafile, shift, subtract=subtract, merge=merge) sizes = Sizes(fastafile) s = list(sizes.iter_sizes())[:top] maxl = max(x[1] for x in s) margin = .08 inner = .02 # y distance between tracks pf = fastafile.rsplit(".", 1)[0] fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) # Gauge ratio = draw_gauge(root, margin, maxl) # Per chromosome yinterval = (1 - 2 * margin) / (top + 1) xx = margin yy = 1 - margin for chr, clen in s: yy -= yinterval xlen = clen / ratio cc = chr if "_" in chr: ca, cb = chr.split("_") cc = ca[0].upper() + cb if switch and cc in switch: cc = "\n".join((cc, "({0})".format(switch[cc]))) root.add_patch(Rectangle((xx, yy), xlen, yinterval - inner, color=gray)) ax = fig.add_axes([xx, yy, xlen, yinterval - inner]) nbins = clen / shift if clen % shift: nbins += 1 stackplot(ax, binfiles, nbins, palette, chr, window, shift) root.text(xx - .04, yy + .5 * (yinterval - inner), cc, ha="center", va="center") ax.set_xlim(0, nbins) ax.set_ylim(0, 1) ax.set_axis_off() # Legends yy -= yinterval xx = margin for b, p in zip(bedfiles, palette): b = b.rsplit(".", 1)[0].replace("_", " ") b = Registration.get(b, b) root.add_patch(Rectangle((xx, yy), inner, inner, color=p, lw=0)) xx += 2 * inner root.text(xx, yy, b, size=13) xx += len(b) * .012 + inner root.set_xlim(0, 1) root.set_ylim(0, 1) root.set_axis_off() image_name = pf + "." + iopts.format savefig(image_name, dpi=iopts.dpi, iopts=iopts)
def stack(args)
%prog stack fastafile Create landscape plots that show the amounts of genic sequences, and repetitive sequences along the chromosomes.
3.598276
3.525384
1.020676
from Bio.Emboss.Applications import NeedleCommandline needle_cline = NeedleCommandline(asequence=fa, bsequence=fb, gapopen=10, gapextend=0.5, outfile=needlefile) stdout, stderr = needle_cline() nh = NeedleHeader(needlefile) FileShredder([fa, fb, needlefile], verbose=False) r = ["\t".join((a, b, nh.identity, nh.score))] results.extend(r)
def _needle(fa, fb, needlefile, a, b, results)
Run single needle job
4.473867
4.529823
0.987647
from jcvi.formats.fasta import Fasta, SeqIO p = OptionParser(needle.__doc__) opts, args = p.parse_args(args) if len(args) != 3: sys.exit(not p.print_help()) manager = mp.Manager() results = manager.list() needle_pool = mp.Pool(processes=mp.cpu_count()) pairsfile, apep, bpep = args afasta, bfasta = Fasta(apep), Fasta(bpep) fp = must_open(pairsfile) for i, row in enumerate(fp): a, b = row.split() a, b = afasta[a], bfasta[b] fa, fb = must_open("{0}_{1}_a.fasta".format(pairsfile, i), "w"), \ must_open("{0}_{1}_b.fasta".format(pairsfile, i), "w") SeqIO.write([a], fa, "fasta") SeqIO.write([b], fb, "fasta") fa.close() fb.close() needlefile = "{0}_{1}_ab.needle".format(pairsfile, i) needle_pool.apply_async(_needle, \ (fa.name, fb.name, needlefile, a.id, b.id, results)) needle_pool.close() needle_pool.join() fp.close() scoresfile = "{0}.scores".format(pairsfile.rsplit(".")[0]) fw = must_open(scoresfile, "w") for result in results: print(result, file=fw) fw.close()
def needle(args)
%prog needle nw.pairs a.pep.fasta b.pep.fasta Take protein pairs and needle them Automatically writes output file `nw.scores`
2.380315
2.229596
1.067599
from jcvi.formats.base import SetFile, FileShredder A, T, P = "ABINITIO_PREDICTION", "TRANSCRIPT", "PROTEIN" # Stores default weights and types Registry = {\ "maker": (A, 5), "augustus_masked": (A, 1), "snap_masked": (A, 1), "genemark": (A, 1), "est2genome": (T, 5), "est_gff": (T, 5), "protein2genome": (P, 5), "blastx": (P, 1) } p = OptionParser(maker.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) gffile, fastafile = args types = "type.ids" if need_update(gffile, types): cmd = "cut -f2 -s {0} | sort -u".format(gffile) sh(cmd, outfile=types) types = SetFile(types) reg = defaultdict(list) weightsfile = "weights.txt" contents = [] for s in types: rs = s.split(":")[0] if rs not in Registry: continue type, weight = Registry[rs] reg[type].append(s) contents.append("\t".join(str(x) for x in (type, s, weight))) contents = "\n".join(sorted(contents)) write_file(weightsfile, contents) evs = [x + ".gff" for x in (A, T, P)] FileShredder(evs) for type, tracks in reg.items(): for t in tracks: cmd = "grep '\t{0}' {1} | grep -v '_match\t' >> {2}.gff".format(t, gffile, type) sh(cmd) partition(evs) runfile = "run.sh" contents = EVMRUN.format(*evs) write_file(runfile, contents)
def maker(args)
%prog maker maker.gff3 genome.fasta Prepare EVM inputs by separating tracks from MAKER.
4.634776
4.281867
1.082419
p = OptionParser(tigrload.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) db, ev_type = args runfile = "load.sh" contents = EVMLOAD.format(db, ev_type) write_file(runfile, contents)
def tigrload(args)
%prog tigrload db ev_type Load EVM results into TIGR db. Actually, just write a load.sh script. The ev_type should be set, e.g. "EVM1", "EVM2", etc.
3.745573
2.443922
1.532608
p = OptionParser(pasa.__doc__) opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) pasa_db, fastafile = args termexons = "pasa.terminal_exons.gff3" if need_update(fastafile, termexons): cmd = "$ANNOT_DEVEL/PASA2/scripts/pasa_asmbls_to_training_set.dbi" cmd += ' -M "{0}:mysql.tigr.org" -p "access:access"'.format(pasa_db) cmd += ' -g {0}'.format(fastafile) sh(cmd) cmd = "$EVM/PasaUtils/retrieve_terminal_CDS_exons.pl" cmd += " trainingSetCandidates.fasta trainingSetCandidates.gff" sh(cmd, outfile=termexons) return termexons
def pasa(args)
%prog pasa pasa_db fastafile Run EVM in TIGR-only mode.
7.071276
6.192741
1.141865