code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
if any(st.startswith(x) for x in exclude):
sep = None
st = st.split('|')[0]
if sep and sep in st:
name, suffix = st.rsplit(sep, 1)
else:
name, suffix = st, ""
# We only want to remove suffix that are isoforms, longer suffix would
# suggest that it is part of the right gene name
if len(suffix) != 1:
name = st
return name
|
def gene_name(st, exclude=("ev",), sep=".")
|
Helper functions in the BLAST filtering to get rid alternative splicings.
This is ugly, but different annotation groups are inconsistent with respect
to how the alternative splicings are named. Mostly it can be done by removing
the suffix, except for ones in the exclude list.
| 6.28528 | 5.770352 | 1.089237 |
seqid = seqid.split(';')[0]
if "mito" in seqid or "chloro" in seqid:
return (seqid, "", "")
numbers = re.findall(r'\d+\.*\d*', seqid)
if not numbers:
return (seqid, "", "")
id = numbers[-1]
lastnumi = seqid.rfind(id)
suffixi = lastnumi + len(id)
suffix = seqid[suffixi:]
if sep is None:
sep = [""]
elif type(sep) == str:
sep = [sep]
prefix = seqid[: lastnumi]
if not stdpf:
sep = "|".join(sep)
atoms = re.split(sep, prefix)
if len(atoms) == 1:
prefix = atoms[0]
else:
prefix = atoms[-2]
prefix = prefix.replace("Chromosome", "Chr")
else: # use standard prefix
if re.findall("chr", prefix, re.I):
prefix = "Chr"
if re.findall("lg", prefix, re.I):
prefix = "LG"
elif re.findall("sca", prefix, re.I):
prefix = "Sca"
elif re.findall("supercontig", prefix, re.I):
prefix = "SCg"
elif re.findall("ctg|contig", prefix, re.I):
prefix = "Ctg"
elif re.findall("BAC", prefix, re.I):
prefix = "BAC"
else:
prefix = "C"
return prefix, id, suffix
|
def seqid_parse(seqid, sep=["-"], stdpf=True)
|
This function tries to parse seqid (1st col in bed files)
return prefix, numeric id, and suffix, for example:
>>> seqid_parse('chr1_random')
('Chr', '1', '_random')
>>> seqid_parse('AmTr_v1.0_scaffold00001', '', stdpf=False)
('AmTr_v1.0_scaffold', '00001', '')
>>> seqid_parse('AmTr_v1.0_scaffold00001')
('Sca', '00001', '')
>>> seqid_parse('PDK_30s1055861')
('C', '1055861', '')
>>> seqid_parse('PDK_30s1055861', stdpf=False)
('PDK', '1055861', '')
>>> seqid_parse("AC235758.1", stdpf=False)
('AC', '235758.1', '')
| 2.869544 | 2.823437 | 1.01633 |
import re
mtr_pat1 = re.compile(r"Mt[0-9]+\.[0-9]+[\.[0-9]+]{0,}_([a-z]+[0-9]+)")
mtr_pat2 = re.compile(r"([A-z0-9]+)_[A-z]+_[A-z]+")
zmays_pat = re.compile(
r"[a-z]+:[A-z0-9]+:([A-z0-9]+):[0-9]+:[0-9]+:[0-9]+")
zmays_sub = {'mitochondrion': 'Mt', 'chloroplast': 'Pt'}
if orgn == "medicago":
for mtr_pat in (mtr_pat1, mtr_pat2):
match = re.search(mtr_pat, name)
if match:
n = match.group(1)
n = n.replace("0", "")
name = re.sub(mtr_pat, n, name)
elif orgn == "maize":
match = re.search(zmays_pat, name)
if match:
n = match.group(1)
name = re.sub(zmays_pat, n, name)
if name in zmays_sub:
name = zmays_sub[name]
return name
|
def fixChromName(name, orgn="medicago")
|
Convert quirky chromosome names encountered in different
release files, which are very project specific, into a more
general format.
For example, in Medicago
Convert a seqid like
`Mt3.5.1_Chr1` to `chr1`
`Mt3.5_Chr3` to `chr3`
`chr01_pseudomolecule_IMGAG` to `chr1`
Some examples from Maize
Convert a seqid like
`chromosome:AGPv2:2:1:237068873:1` to `2`
Special cases
`chromosome:AGPv2:mitochondrion:1:569630:1` to `Mt`
`chromosome:AGPv2:chloroplast:1:140384:1` to `Pt`
| 2.75806 | 2.548409 | 1.082267 |
texts = []
for i in xrange(0, len(text), width):
t = delimiter.join(text[i:i + width])
texts.append(t)
return "\n".join(texts)
|
def fill(text, delimiter="", width=70)
|
Wrap text with width per line
| 2.581239 | 2.557261 | 1.009376 |
from jcvi.utils.iter import grouper
max_len = max(len(x) for x in lt) + gap
items_per_line = max(width // max_len, 1)
lt = [x.rjust(max_len) for x in lt]
g = list(grouper(lt, items_per_line, fillvalue=""))
return "\n".join("".join(x) for x in g)
|
def tile(lt, width=70, gap=1)
|
Pretty print list of items.
| 2.761941 | 2.605944 | 1.059862 |
seen = set()
nL = []
for a in L:
if a in seen:
continue
nL.append(a)
seen.add(a)
return nL
|
def uniqify(L)
|
Uniqify a list, maintains order (the first occurrence will be kept).
| 2.412162 | 2.566266 | 0.93995 |
if xlim:
ax.set_xlim(0, xlim)
if ylim:
ax.set_ylim(0, ylim)
if xlabel:
xticklabels = [int(round(x * xfactor)) for x in ax.get_xticks()]
ax.set_xticklabels(xticklabels, family='Helvetica')
ax.set_xlabel(xlabel)
else:
ax.set_xticks([])
if ylabel:
yticklabels = [int(round(x * yfactor)) for x in ax.get_yticks()]
ax.set_yticklabels(yticklabels, family='Helvetica')
ax.set_ylabel(ylabel)
else:
ax.set_yticks([])
|
def normalize_lms_axis(ax, xlim=None, ylim=None, xfactor=1e-6, yfactor=1,
xlabel=None, ylabel="Map (cM)")
|
Normalize the axis limits and labels to beautify axis.
| 1.56769 | 1.55866 | 1.005794 |
from jcvi.graphics.base import plt, savefig, normalize_axes, panel_labels, set2
p = OptionParser(estimategaps.__doc__)
opts, args, iopts = p.set_image_options(args, figsize="6x6", dpi=300)
if len(args) != 3:
sys.exit(not p.print_help())
pf, seqid, mlg = args
bedfile = pf + ".lifted.bed"
agpfile = pf + ".agp"
function = lambda x: x.cm
cc = Map(bedfile, scaffold_info=True, function=function)
agp = AGP(agpfile)
g = GapEstimator(cc, agp, seqid, mlg, function=function)
pp, chrsize, mlgsize = g.pp, g.chrsize, g.mlgsize
spl, spld = g.spl, g.spld
g.compute_all_gaps(verbose=False)
fig = plt.figure(1, (iopts.w, iopts.h))
root = fig.add_axes([0, 0, 1, 1])
# Panel A
xstart, ystart = .15, .55
w, h = .7, .4
t = np.linspace(0, chrsize, 1000)
ax = fig.add_axes([xstart, ystart, w, h])
mx, my = zip(*g.scatter_data)
rho = spearmanr(mx, my)
dsg = "g"
ax.vlines(pp, 0, mlgsize, colors="beige")
ax.plot(mx, my, ".", color=set2[3])
ax.plot(t, spl(t), "-", color=dsg)
ax.text(.05, .95, mlg, va="top", transform=ax.transAxes)
normalize_lms_axis(ax, xlim=chrsize, ylim=mlgsize,
ylabel="Genetic distance (cM)")
if rho < 0:
ax.invert_yaxis()
# Panel B
ystart = .1
ax = fig.add_axes([xstart, ystart, w, h])
ax.vlines(pp, 0, mlgsize, colors="beige")
ax.plot(t, spld(t), "-", lw=2, color=dsg)
ax.plot(pp, spld(pp), "o", mfc="w", mec=dsg, ms=5)
normalize_lms_axis(ax, xlim=chrsize, ylim=25 * 1e-6,
xfactor=1e-6,
xlabel="Physical position (Mb) on {}".format(seqid),
yfactor=1000000, ylabel="Recomb. rate\n(cM / Mb)")
ax.xaxis.grid(False)
labels = ((.05, .95, 'A'), (.05, .5, 'B'))
panel_labels(root, labels)
normalize_axes(root)
pf = "plotratio"
image_name = pf + "." + iopts.format
savefig(image_name, dpi=iopts.dpi, iopts=iopts)
|
def plotratio(args)
|
%prog plotratio JM-2 chr23 JMMale-23
Illustrate physical vs map distance ratio, that were used in the gap estimation algorithm.
| 3.852827 | 3.777419 | 1.019963 |
from math import ceil
from random import choice
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
p = OptionParser(fake.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
inputbed, = args
bed = Bed(inputbed)
recs = []
for seqid, sb in bed.sub_beds():
maxend = max(x.end for x in sb)
size = int(ceil(maxend / 1000.) * 1000)
seq = "".join([choice("ACGT") for x in xrange(size)])
rec = SeqRecord(Seq(seq), id=seqid, description="")
recs.append(rec)
fw = must_open(opts.outfile, "w")
SeqIO.write(recs, fw, "fasta")
|
def fake(args)
|
%prog fake input.bed
Make fake `scaffolds.fasta`. Use case for this is that sometimes I would
receive just the csv/bed file and I'd like to use path() out of the box.
| 2.517413 | 2.37971 | 1.057866 |
nmarkers = len(markers)
s = [bonus] * nmarkers # score
f = [-1] * nmarkers # from
for i in xrange(1, nmarkers):
for j in xrange(i):
mi, mj = markers[i], markers[j]
t = bonus if mi.mlg == mj.mlg else penalty + bonus
if s[i] < s[j] + t:
s[i] = s[j] + t
f[i] = j
# Recover the highest scoring chain
highest_score = max(s)
si = s.index(highest_score)
onchain = set()
while True:
if si < 0:
break
si = f[si]
onchain.add(si)
return [x for i, x in enumerate(markers) if i in onchain]
|
def compute_score(markers, bonus, penalty)
|
Compute chain score using dynamic programming. If a marker is the same
linkage group as a previous one, we add bonus; otherwise, we penalize the
chain switching.
| 3.455638 | 3.198802 | 1.080291 |
p = OptionParser(split.__doc__)
p.add_option("--chunk", default=4, type="int",
help="Split chunks of at least N markers")
p.add_option("--splitsingle", default=False, action="store_true",
help="Split breakpoint range right in the middle")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
inputbed, = args
bonus = 2
nchunk = opts.chunk
nbreaks = 0
penalty = -(nchunk * bonus - 1)
bed = Bed(inputbed)
for seqid, bb in bed.sub_beds():
markers = [Marker(x) for x in bb]
markers = compute_score(markers, bonus, penalty)
for mi, mj in pairwise(markers):
if mi.mlg == mj.mlg:
continue
assert mi.seqid == mj.seqid
start, end = mi.pos, mj.pos
if start > end:
start, end = end, start
if opts.splitsingle:
start = end = (start + end) / 2
print("\t".join(str(x) for x in (mi.seqid, start - 1, end)))
nbreaks += 1
logging.debug("A total of {} breakpoints inferred (--chunk={})".\
format(nbreaks, nchunk))
|
def split(args)
|
%prog split input.bed
Split suspicious scaffolds. Suspicious scaffolds are those that contain
chunks that map to more than one linkage group. The chunk size can be
modified through --chunk option.
| 4.012805 | 3.860473 | 1.03946 |
p = OptionParser(movie.__doc__)
p.add_option("--gapsize", default=100, type="int",
help="Insert gaps of size between scaffolds")
add_allmaps_plot_options(p)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
inputbed, scaffoldsfasta, seqid = args
gapsize = opts.gapsize
pf = inputbed.rsplit(".", 1)[0]
agpfile = pf + ".chr.agp"
tourfile = pf + ".tour"
fp = open(tourfile)
sizes = Sizes(scaffoldsfasta).mapping
ffmpeg = "ffmpeg"
mkdir(ffmpeg)
score = cur_score = None
i = 1
for header, block in read_block(fp, ">"):
s, tag, label = header[1:].split()
if s != seqid:
continue
tour = block[0].split()
tour = [(x[:-1], x[-1]) for x in tour]
if label.startswith("GA"):
cur_score = label.split("-")[-1]
if cur_score == score:
i += 1
continue
score = cur_score
image_name = ".".join((seqid, "{0:04d}".format(i), label, "pdf"))
if need_update(tourfile, image_name):
fwagp = must_open(agpfile, "w")
order_to_agp(seqid, tour, sizes, fwagp, gapsize=gapsize,
gaptype="map")
fwagp.close()
logging.debug("{0} written to `{1}`".format(header, agpfile))
build([inputbed, scaffoldsfasta, "--cleanup"])
pdf_name = plot([inputbed, seqid, "--title={0}".format(label)])
sh("mv {0} {1}".format(pdf_name, image_name))
if label in ("INIT", "FLIP", "TSP", "FINAL"):
for j in xrange(5): # Delay for 5 frames
image_delay = image_name.rsplit(".", 1)[0] + \
".d{0}.pdf".format(j)
sh("cp {0} {1}/{2}".format(image_name, ffmpeg, image_delay))
else:
sh("cp {0} {1}/".format(image_name, ffmpeg))
i += 1
make_movie(ffmpeg, pf)
|
def movie(args)
|
%prog movie input.bed scaffolds.fasta chr1
Visualize history of scaffold OO. The history is contained within the
tourfile, generated by path(). For each historical scaffold OO, the program
plots a separate PDF file. The plots can be combined to show the progression
as a little animation. The third argument limits the plotting to a
specific pseudomolecule, for example `chr1`.
| 4.765559 | 4.481025 | 1.063498 |
os.chdir(workdir)
if format != "png":
cmd = "parallel convert -density {}".format(dpi)
cmd += " {} {.}.png ::: " + "*.{}".format(format)
sh(cmd)
assert engine in ("ffmpeg", "gifsicle"), \
"Only ffmpeg or gifsicle is currently supported"
if engine == "ffmpeg":
cmd = "ffmpeg -framerate {} -pattern_type glob -i '*.png' {}.mp4"\
.format(fps, pf)
elif engine == "gifsicle":
cmd = "convert *.png gif:- |"
cmd += " gifsicle --delay {} --loop --optimize=3".format(100 / fps)
cmd += " --colors=256 --multifile - > {}.gif".format(pf)
sh(cmd)
|
def make_movie(workdir, pf, dpi=120, fps=1, format="pdf", engine="ffmpeg")
|
Make the movie using either ffmpeg or gifsicle.
| 5.051775 | 4.849501 | 1.04171 |
p = OptionParser(estimategaps.__doc__)
p.add_option("--minsize", default=100, type="int",
help="Minimum gap size")
p.add_option("--maxsize", default=500000, type="int",
help="Maximum gap size")
p.add_option("--links", default=10, type="int",
help="Only use linkage grounds with matchings more than")
p.set_verbose(help="Print details for each gap calculation")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
inputbed, = args
pf = inputbed.rsplit(".", 1)[0]
agpfile = pf + ".chr.agp"
bedfile = pf + ".lifted.bed"
cc = Map(bedfile, scaffold_info=True)
agp = AGP(agpfile)
minsize, maxsize = opts.minsize, opts.maxsize
links = opts.links
verbose = opts.verbose
outagpfile = pf + ".estimategaps.agp"
fw = must_open(outagpfile, "w")
for ob, components in agp.iter_object():
components = list(components)
s = Scaffold(ob, cc)
mlg_counts = s.mlg_counts
gaps = [x for x in components if x.is_gap]
gapsizes = [None] * len(gaps) # master
for mlg, count in mlg_counts.items():
if count < links:
continue
g = GapEstimator(cc, agp, ob, mlg)
g.compute_all_gaps(minsize=minsize, maxsize=maxsize, \
verbose=verbose)
# Merge evidence from this mlg into master
assert len(g.gapsizes) == len(gaps)
for i, gs in enumerate(gapsizes):
gg = g.gapsizes[i]
if gs is None:
gapsizes[i] = gg
elif gg:
gapsizes[i] = min(gs, gg)
print(gapsizes)
# Modify AGP
i = 0
for x in components:
if x.is_gap:
x.gap_length = gapsizes[i] or minsize
x.component_type = 'U' if x.gap_length == 100 else 'N'
i += 1
print(x, file=fw)
fw.close()
reindex([outagpfile, "--inplace"])
|
def estimategaps(args)
|
%prog estimategaps input.bed
Estimate sizes of inter-scaffold gaps. The AGP file generated by path()
command has unknown gap sizes with a generic number of Ns (often 100 Ns).
The AGP file `input.chr.agp` will be modified in-place.
| 3.791502 | 3.487802 | 1.087075 |
p = OptionParser(merge.__doc__)
p.add_option("-w", "--weightsfile", default="weights.txt",
help="Write weights to file")
p.set_outfile("out.bed")
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
maps = args
outfile = opts.outfile
fp = must_open(maps)
b = Bed()
mapnames = set()
for row in fp:
mapname = filename_to_mapname(fp.filename())
mapnames.add(mapname)
try:
m = CSVMapLine(row, mapname=mapname)
if m.cm < 0:
logging.error("Ignore marker with negative genetic distance")
print(row.strip(), file=sys.stderr)
else:
b.append(BedLine(m.bedline))
except (IndexError, ValueError): # header or mal-formed line
continue
b.print_to_file(filename=outfile, sorted=True)
logging.debug("A total of {0} markers written to `{1}`.".\
format(len(b), outfile))
assert len(maps) == len(mapnames), "You have a collision in map names"
write_weightsfile(mapnames, weightsfile=opts.weightsfile)
|
def merge(args)
|
%prog merge map1 map2 map3 ...
Convert csv maps to bed format.
Each input map is csv formatted, for example:
ScaffoldID,ScaffoldPosition,LinkageGroup,GeneticPosition
scaffold_2707,11508,1,0
scaffold_2707,11525,1,1.2
scaffold_759,81336,1,9.7
| 4.355606 | 4.189596 | 1.039624 |
p = OptionParser(mergebed.__doc__)
p.add_option("-w", "--weightsfile", default="weights.txt",
help="Write weights to file")
p.set_outfile("out.bed")
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
maps = args
outfile = opts.outfile
fp = must_open(maps)
b = Bed()
mapnames = set()
for row in fp:
mapname = filename_to_mapname(fp.filename())
mapnames.add(mapname)
try:
m = BedLine(row)
m.accn = "{0}-{1}".format(mapname, m.accn)
m.extra = ["{0}:{1}".format(m.seqid, m.start)]
b.append(m)
except (IndexError, ValueError): # header or mal-formed line
continue
b.print_to_file(filename=outfile, sorted=True)
logging.debug("A total of {0} markers written to `{1}`.".\
format(len(b), outfile))
assert len(maps) == len(mapnames), "You have a collision in map names"
write_weightsfile(mapnames, weightsfile=opts.weightsfile)
|
def mergebed(args)
|
%prog mergebed map1.bed map2.bed map3.bed ...
Combine bed maps to bed format, adding the map name.
| 3.813087 | 3.535367 | 1.078555 |
p = OptionParser(summary.__doc__)
p.set_table(sep="|", align=True)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
inputbed, scaffolds = args
pf = inputbed.rsplit(".", 1)[0]
mapbed = pf + ".bed"
chr_agp = pf + ".chr.agp"
sep = opts.sep
align = opts.align
cc = Map(mapbed)
mapnames = cc.mapnames
s = Sizes(scaffolds)
total, l50, n50 = s.summary
r = {}
maps = []
fw = must_open(opts.outfile, "w")
print("*** Summary for each individual map ***", file=fw)
for mapname in mapnames:
markers = [x for x in cc if x.mapname == mapname]
ms = MapSummary(markers, l50, s)
r["Linkage Groups", mapname] = ms.num_lgs
ms.export_table(r, mapname, total)
maps.append(ms)
print(tabulate(r, sep=sep, align=align), file=fw)
r = {}
agp = AGP(chr_agp)
print("*** Summary for consensus map ***", file=fw)
consensus_scaffolds = set(x.component_id for x in agp if not x.is_gap)
oriented_scaffolds = set(x.component_id for x in agp \
if (not x.is_gap) and x.orientation != '?')
unplaced_scaffolds = set(s.mapping.keys()) - consensus_scaffolds
for mapname, sc in (("Anchored", consensus_scaffolds),
("Oriented", oriented_scaffolds),
("Unplaced", unplaced_scaffolds)):
markers = [x for x in cc if x.seqid in sc]
ms = MapSummary(markers, l50, s, scaffolds=sc)
ms.export_table(r, mapname, total)
print(tabulate(r, sep=sep, align=align), file=fw)
|
def summary(args)
|
%prog summary input.bed scaffolds.fasta
Print out summary statistics per map, followed by consensus summary of
scaffold anchoring based on multiple maps.
| 4.04833 | 3.681411 | 1.099668 |
p = OptionParser(build.__doc__)
p.add_option("--cleanup", default=False, action="store_true",
help="Clean up bulky FASTA files, useful for plotting")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
inputbed, scaffolds = args
pf = inputbed.rsplit(".", 1)[0]
mapbed = pf + ".bed"
chr_agp = pf + ".chr.agp"
chr_fasta = pf + ".chr.fasta"
if need_update((chr_agp, scaffolds), chr_fasta):
agp_build([chr_agp, scaffolds, chr_fasta])
unplaced_agp = pf + ".unplaced.agp"
if need_update((chr_agp, scaffolds), unplaced_agp):
write_unplaced_agp(chr_agp, scaffolds, unplaced_agp)
unplaced_fasta = pf + ".unplaced.fasta"
if need_update((unplaced_agp, scaffolds), unplaced_fasta):
agp_build([unplaced_agp, scaffolds, unplaced_fasta])
combined_agp = pf + ".agp"
if need_update((chr_agp, unplaced_agp), combined_agp):
FileMerger((chr_agp, unplaced_agp), combined_agp).merge()
combined_fasta = pf + ".fasta"
if need_update((chr_fasta, unplaced_fasta), combined_fasta):
FileMerger((chr_fasta, unplaced_fasta), combined_fasta).merge()
chainfile = pf + ".chain"
if need_update((combined_agp, scaffolds, combined_fasta), chainfile):
fromagp([combined_agp, scaffolds, combined_fasta])
liftedbed = mapbed.rsplit(".", 1)[0] + ".lifted.bed"
if need_update((mapbed, chainfile), liftedbed):
cmd = "liftOver -minMatch=1 {0} {1} {2} unmapped".\
format(mapbed, chainfile, liftedbed)
sh(cmd, check=True)
if opts.cleanup:
FileShredder([chr_fasta, unplaced_fasta, combined_fasta,
chainfile, unplaced_agp,
combined_fasta + ".sizes", "unmapped"])
sort([liftedbed, "-i"])
|
def build(args)
|
%prog build input.bed scaffolds.fasta
Build associated genome FASTA file and CHAIN file that can be used to lift
old coordinates to new coordinates. The CHAIN file will be used to lift the
original marker positions to new positions in the reconstructed genome. The
new positions of the markers will be reported in *.lifted.bed.
| 2.672446 | 2.481131 | 1.077108 |
p = OptionParser(plotall.__doc__)
add_allmaps_plot_options(p)
opts, args, iopts = p.set_image_options(xargs, figsize="10x6")
if len(args) != 1:
sys.exit(not p.print_help())
inputbed, = args
pf = inputbed.rsplit(".", 1)[0]
agpfile = pf + ".chr.agp"
agp = AGP(agpfile)
objects = [ob for ob, lines in agp.iter_object()]
for seqid in natsorted(objects):
plot(xargs + [seqid])
|
def plotall(xargs)
|
%prog plotall input.bed
Plot the matchings between the reconstructed pseudomolecules and the maps.
This command will plot each reconstructed object (non-singleton).
| 5.071934 | 4.480288 | 1.132055 |
scaffolds_ii = dict((s, i) for i, s in enumerate(scaffolds))
scfs = []
ww = []
for mlg in self.linkage_groups:
w = float(weights[mlg.mapname])
scf = {}
for s, o in tour:
si = scaffolds_ii[s]
scf[si] = self.get_series(mlg.lg, s, orientation=o)
scfs.append(scf)
ww.append(w)
tour = [scaffolds_ii[x] for x, o in tour]
return scfs, tour, ww
|
def prepare_ec(self, scaffolds, tour, weights)
|
Prepare Evolutionary Computation. This converts scaffold names into
indices (integer) in the scaffolds array.
| 4.978389 | 4.769024 | 1.043901 |
linkage_groups = self.linkage_groups
for mlg in linkage_groups:
mapname = mlg.mapname
if mapname == self.pivot:
pivot_position = mlg.position
for mlg in linkage_groups:
position = mlg.position
# Flip order if path goes in the opposite direction to the pivot
common = []
for a, ap in position.items():
if a not in pivot_position:
continue
pp = pivot_position[a]
common.append((ap, pp))
mlg.rho = get_rho(common)
if mlg.rho < 0:
mlg.path = mlg.path[::-1]
mlg.populate_pairwise_distance()
# Preparation of TSP
distances = defaultdict(list)
for mlg in linkage_groups:
mapname = mlg.mapname
position = mlg.position
length = mlg.length
path = mlg.path
rho = mlg.rho
dd = mlg.distances
for a, b in combinations(path, 2):
d = dd[a, b]
distances[a, b].append((d, mapname))
for p in path:
adist, bdist = position[p], length - position[p]
if rho < 0:
adist, bdist = bdist, adist
distances[START, p].append((adist, mapname))
distances[p, END].append((bdist, mapname))
self.distances = distances
tour = self.distances_to_tour()
return tour
|
def assign_order(self)
|
The goal is to assign scaffold orders. To help order the scaffolds, two
dummy node, START and END, mark the ends of the chromosome. We connect
START to each scaffold (directed), and each scaffold to END.
| 3.912723 | 3.894997 | 1.004551 |
if not si or not sj:
return 0
# Same orientation configuration
a = lms(si + sj)
b = lms(sj + si)
# Opposite orientation configuration
c = lms(si + sj[::-1])
d = lms(sj[::-1] + si)
return max(a, b)[0] - max(c, d)[0]
|
def get_orientation(self, si, sj)
|
si, sj are two number series. To compute whether these two series have
same orientation or not. We combine them in the two orientation
configurations and compute length of the longest monotonic series.
| 3.737711 | 3.12305 | 1.196814 |
scaffolds, oos = zip(*tour)
keep = set()
for mlg in self.linkage_groups:
lg = mlg.lg
for s, o in tour:
i = scaffolds.index(s)
L = [self.get_series(lg, x, xo) for x, xo in tour[:i]]
U = [self.get_series(lg, x, xo) for x, xo in tour[i + 1:]]
L, U = list(flatten(L)), list(flatten(U))
M = self.get_series(lg, s, o)
score_with = lms(L + M + U)[0]
score_without = lms(L + U)[0]
assert score_with >= score_without
if score_with > score_without:
keep.add(s)
dropped = len(tour) - len(keep)
logging.debug("Dropped {0} minor scaffolds".format(dropped))
return [(s, o) for (s, o) in tour if s in keep]
|
def fix_tour(self, tour)
|
Test each scaffold if dropping does not decrease LMS.
| 3.899885 | 3.44769 | 1.131159 |
orientations = dict(tour) # old configuration here
scaffold_oo = defaultdict(list)
scaffolds, oos = zip(*tour)
for mlg in self.linkage_groups:
lg = mlg.lg
mapname = mlg.mapname
for s, o in tour:
i = scaffolds.index(s)
L = [self.get_series(lg, x, xo) for x, xo in tour[:i]]
U = [self.get_series(lg, x, xo) for x, xo in tour[i + 1:]]
L, U = list(flatten(L)), list(flatten(U))
M = self.get_series(lg, s)
plus = lms(L + M + U)
minus = lms(L + M[::-1] + U)
d = plus[0] - minus[0]
if not d:
continue
scaffold_oo[s].append((d, mapname)) # reset orientation
fixed = 0
for s, v in scaffold_oo.items():
d = self.weighted_mean(v)
old_d = orientations[s]
new_d = np.sign(d)
if new_d != old_d:
orientations[s] = new_d
fixed += 1
tour = [(x, orientations[x]) for x in scaffolds]
logging.debug("Fixed orientations for {0} scaffolds.".format(fixed))
return tour
|
def fix_orientation(self, tour)
|
Test each scaffold if flipping will increass longest monotonic chain
length.
| 4.317675 | 4.161523 | 1.037523 |
for x in self.spinchars:
self.string = self.msg + "...\t" + x + "\r"
self.out.write(self.string.encode('utf-8'))
self.out.flush()
time.sleep(self.waittime)
|
def spin(self)
|
Perform a single spin
| 5.608404 | 5.498442 | 1.019999 |
return ["{}_{}_{}".format(name, i, x) for i, x in enumerate(seq)]
|
def make_sequence(seq, name="S")
|
Make unique nodes for sequence graph.
| 3.96896 | 3.467851 | 1.144501 |
for x in seq:
if x.endswith("_1"): # Mutation
G.node(x, color=color, width="0.1", shape="circle", label="")
else:
G.node(x, color=color)
for a, b in pairwise(seq):
G.edge(a, b, color=color)
|
def sequence_to_graph(G, seq, color='black')
|
Automatically construct graph given a sequence of characters.
| 3.55874 | 3.66732 | 0.970393 |
for s in zip(*allseqs):
groups = defaultdict(list)
for x in s:
part = x.split('_', 1)[1]
groups[part].append(x)
for part, g in groups.items():
with G.subgraph(name="cluster_" + part) as c:
for x in g:
c.node(x)
c.attr(style="invis")
|
def zip_sequences(G, allseqs, color="white")
|
Fuse certain nodes together, if they contain same data except for the
sequence name.
| 3.037631 | 3.20296 | 0.948383 |
from jcvi.apps.base import iglob
from jcvi.utils.iter import grouper
p = OptionParser(gallery.__doc__)
p.add_option("--columns", default=3, type="int",
help="How many cells per row")
p.add_option("--width", default=200, type="int",
help="Image width")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
folder, link_prefix = args
width = opts.width
images = iglob(folder, "*.jpg,*.JPG,*.png")
td = '<td>{0}<br><a href="{1}"><img src="{1}" width="{2}"></a></td>'
print("<table>")
for ims in grouper(images, opts.columns):
print('<tr height="{0}" valign="top">'.format(width + 5))
for im in ims:
if not im:
continue
im = op.basename(im)
pf = im.split('.')[0].replace('_', '-')
link = link_prefix.rstrip("/") + "/" + im
print(td.format(pf, link, width))
print("</tr>")
print("</table>")
|
def gallery(args)
|
%prog gallery folder link_prefix
Convert a folder of figures to a HTML table. For example:
$ python -m jcvi.formats.html gallery Paper-figures/
https://dl.dropboxusercontent.com/u/15937715/Data/Paper-figures/
Maps the images from local to remote.
| 2.702742 | 2.559673 | 1.055894 |
p = OptionParser(links.__doc__)
p.add_option("--img", default=False, action="store_true",
help="Extract <img> tags [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
url, = args
img = opts.img
htmlfile = download(url)
page = open(htmlfile).read()
soup = BeautifulSoup(page)
tag = 'img' if img else 'a'
src = 'src' if img else 'href'
aa = soup.findAll(tag)
for a in aa:
link = a.get(src)
link = urljoin(url, link)
print(link)
|
def links(args)
|
%prog links url
Extract all the links "<a href=''>" from web page.
| 2.453413 | 2.381401 | 1.030239 |
import HTMLParser
hp = HTMLParser.HTMLParser()
s = hp.unescape(s)
s = s.encode('ascii', unicode_action)
s = s.replace("\n", "").strip()
return s
|
def unescape(s, unicode_action="replace")
|
Unescape HTML strings, and convert & etc.
| 3.080714 | 2.965429 | 1.038876 |
import csv
p = OptionParser(table.__doc__)
p.set_sep(sep=",")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
htmlfile, = args
page = open(htmlfile).read()
soup = BeautifulSoup(page)
for i, tabl in enumerate(soup.findAll('table')):
nrows = 0
csvfile = htmlfile.rsplit(".", 1)[0] + ".{0}.csv".format(i)
writer = csv.writer(open(csvfile, "w"), delimiter=opts.sep)
rows = tabl.findAll('tr')
for tr in rows:
cols = tr.findAll('td')
if not cols:
cols = tr.findAll('th')
row = []
for td in cols:
try:
cell = "".join(td.find(text=True))
cell = unescape(cell)
except TypeError:
cell = ""
row.append(cell)
writer.writerow(row)
nrows += 1
logging.debug("Table with {0} rows written to `{1}`.".format(nrows, csvfile))
|
def table(args)
|
%prog table page.html
Convert HTML tables to csv.
| 2.446561 | 2.262822 | 1.081199 |
p = OptionParser(mask.__doc__)
p.add_option("--db",
help="Contaminant db other than Ecoli K12 [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
assert op.exists(fastafile)
outfastafile = fastafile.rsplit(".", 1)[0] + ".masked.fasta"
vecbedfile = blast([fastafile])
ecoliurl = \
"ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__DH10B_uid58979/NC_010473.fna"
ecolifile = opts.db or download(ecoliurl, filename="Ecoli.fasta")
assert op.exists(ecolifile)
ecolibedfile = blast([fastafile, "--db={0}".format(ecolifile)])
cmd = "cat {0} {1}".format(vecbedfile, ecolibedfile)
cmd += " | mergeBed -nms -d 100 -i stdin"
cmd += " | maskFastaFromBed -fi {0} -bed stdin -fo {1}".\
format(fastafile, outfastafile)
sh(cmd)
return tidy([outfastafile])
|
def mask(args)
|
%prog mask fastafile
Mask the contaminants. By default, this will compare against UniVec_Core and
Ecoli.fasta. Merge the contaminant results, and use `maskFastaFromBed`. Can
perform FASTA tidy if requested.
| 4.26233 | 3.80051 | 1.121515 |
p = OptionParser(blast.__doc__)
p.add_option("--dist", default=100, type="int",
help="Merge adjacent HSPs separated by [default: %default]")
p.add_option("--db",
help="Use a different database rather than UniVec_Core")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
fastaprefix = fastafile.split(".", 1)[0]
univec = opts.db or download("ftp://ftp.ncbi.nih.gov/pub/UniVec/UniVec_Core")
uniprefix = univec.split(".", 1)[0]
fastablast = fastaprefix + ".{0}.blast".format(uniprefix)
prog = run_megablast if opts.db else run_vecscreen
prog(infile=fastafile, outfile=fastablast, db=univec, pctid=95, hitlen=50)
fp = open(fastablast)
ranges = []
for row in fp:
b = BlastLine(row)
ranges.append((b.query, b.qstart, b.qstop))
merged_ranges = range_merge(ranges, dist=opts.dist)
bedfile = fastaprefix + ".{0}.bed".format(uniprefix)
fw = must_open(bedfile, "w")
for seqid, start, end in merged_ranges:
print("\t".join(str(x) for x in (seqid, start - 1, end, uniprefix)), file=fw)
return bedfile
|
def blast(args)
|
%prog blast fastafile
Run BLASTN against database (default is UniVec_Core). Output .bed format
on the vector/contaminant ranges.
| 3.610006 | 3.252125 | 1.110045 |
query = op.basename(query)
targets = [op.basename(x) for x in targets]
prefix_lengths = [len(op.commonprefix([query, name])) for name in targets]
if remove_self and len(query) in prefix_lengths:
prefix_lengths.remove(len(query))
longest_length = max(prefix_lengths)
return query[:longest_length + 1]
|
def longest_unique_prefix(query, targets, remove_self=True)
|
Find the longest unique prefix for filename, when compared against a list of
filenames. Useful to simplify file names in a pool of files. See usage in
formats.fasta.pool().
| 2.575189 | 2.507737 | 1.026898 |
if op.exists(filename):
if oappend:
return oappend
logging.error("`{0}` found, overwrite (Y/N)?".format(filename))
overwrite = (raw_input() == 'Y')
else:
overwrite = True
return overwrite
|
def check_exists(filename, oappend=False)
|
Avoid overwriting some files accidentally.
| 5.061045 | 4.955388 | 1.021322 |
if isinstance(filename, list):
assert "r" in mode
if filename[0].endswith((".gz", ".bz2")):
filename = " ".join(filename) # allow opening multiple gz/bz2 files
else:
import fileinput
return fileinput.input(filename)
if filename.startswith("s3://"):
from jcvi.utils.aws import pull_from_s3
filename = pull_from_s3(filename)
if filename in ("-", "stdin"):
assert "r" in mode
fp = sys.stdin
elif filename == "stdout":
assert "w" in mode
fp = sys.stdout
elif filename == "stderr":
assert "w" in mode
fp = sys.stderr
elif filename == "tmp" and mode == "w":
from tempfile import NamedTemporaryFile
fp = NamedTemporaryFile(delete=False)
elif filename.endswith(".gz"):
if 'r' in mode:
cmd = "gunzip -c {0}".format(filename)
fp = popen(cmd, debug=False)
elif 'w' in mode:
import gzip
fp = gzip.open(filename, mode)
elif filename.endswith(".bz2"):
if 'r' in mode:
cmd = "bzcat {0}".format(filename)
fp = popen(cmd, debug=False)
elif 'w' in mode:
import bz2
fp = bz2.BZ2File(filename, mode)
else:
if checkexists:
assert mode == "w"
overwrite = (not op.exists(filename)) if skipcheck \
else check_exists(filename, oappend)
if overwrite:
if oappend:
fp = open(filename, "a")
else:
fp = open(filename, "w")
else:
logging.debug("File `{0}` already exists. Skipped."\
.format(filename))
return None
else:
fp = open(filename, mode)
return fp
|
def must_open(filename, mode="r", checkexists=False, skipcheck=False, \
oappend=False)
|
Accepts filename and returns filehandle.
Checks on multiple files, stdin/stdout/stderr, .gz or .bz2 file.
| 2.264172 | 2.224583 | 1.017796 |
signal_len = len(signal)
it = (x[1] for x in groupby(handle,
key=lambda row: row.strip()[:signal_len] == signal))
found_signal = False
for header in it:
header = list(header)
for h in header[:-1]:
h = h.strip()
if h[:signal_len] != signal:
continue
yield h, [] # Header only, no contents
header = header[-1].strip()
if header[:signal_len] != signal:
continue
found_signal = True
seq = list(s.strip() for s in next(it))
yield header, seq
if not found_signal:
handle.seek(0)
seq = list(s.strip() for s in handle)
yield None, seq
|
def read_block(handle, signal)
|
Useful for reading block-like file formats, for example FASTA or OBO file,
such file usually startswith some signal, and in-between the signals are a
record
| 3.282244 | 3.3181 | 0.989194 |
import string
d = "".join(x for x in str(s) if x in string.digits)
return cast(d)
|
def get_number(s, cast=int)
|
Try to get a number out of a string, and cast it.
| 5.043029 | 4.468465 | 1.128582 |
p = OptionParser(seqids.__doc__)
p.add_option("--pad0", default=0, help="How many zeros to pad")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
prefix, start, end = args
pad0 = opts.pad0
start, end = int(start), int(end)
step = 1 if start <= end else -1
print(",".join(["{}{:0{}d}".format(prefix, x, pad0) \
for x in xrange(start, end + step, step)]))
|
def seqids(args)
|
%prog seqids prefix start end
Make a list of seqids for graphics.karyotype. For example:
$ python -m jcvi.formats.base seqids chromosome_ 1 3
chromosome_1,chromosome_2,chromosome_3
$ python -m jcvi.formats.base seqids A 3 1 --pad0=2
A03,A02,A01
| 2.51209 | 2.215166 | 1.134041 |
from itertools import combinations
p = OptionParser(pairwise.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
idsfile, = args
ids = SetFile(idsfile)
ids = sorted(ids)
fw = open(idsfile + ".pairs", "w")
for a, b in combinations(ids, 2):
print("\t".join((a, b)), file=fw)
fw.close()
|
def pairwise(args)
|
%prog pairwise ids
Convert a list of IDs into all pairs.
| 2.442253 | 2.372696 | 1.029316 |
p = OptionParser(append.__doc__)
p.set_sep()
p.set_outfile()
opts, args = p.parse_args(args)
nargs = len(args)
if nargs not in (1, 2):
sys.exit(not p.print_help())
csvfile = args[0]
tag = args[1] if nargs == 2 else csvfile
fp = must_open(csvfile)
fw = must_open(opts.outfile, "w")
for row in fp:
row = row.rstrip("\r\n")
row = opts.sep.join((row, tag))
print(row, file=fw)
|
def append(args)
|
%prog append csvfile [tag]
Append a column with fixed value. If tag is missing then just append the
filename.
| 2.746809 | 2.411354 | 1.139115 |
p = OptionParser(truncate.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
number, filename = args
number = int(number)
count = 0
f = open(filename, "r+b")
f.seek(0, os.SEEK_END)
while f.tell() > 0:
f.seek(-1, os.SEEK_CUR)
char = f.read(1)
if char == '\n':
count += 1
if count == number + 1:
f.truncate()
print("Removed {0} lines from end of file".format(number), file=sys.stderr)
return number
f.seek(-1, os.SEEK_CUR)
if count < number + 1:
print("No change: requested removal would leave empty file", file=sys.stderr)
return -1
|
def truncate(args)
|
%prog truncate linecount filename
Remove linecount lines from the end of the file in-place. Borrowed from:
<http://superuser.com/questions/127786/how-to-remove-the-last-2-lines-of-a-very-large-file>
| 2.323172 | 2.22612 | 1.043597 |
from six.moves import zip_longest
p = OptionParser(flatten.__doc__)
p.set_sep(sep=",")
p.add_option("--zipflatten", default=None, dest="zipsep",
help="Specify if columns of the file should be zipped before" +
" flattening. If so, specify delimiter separating column elements" +
" [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
tabfile, = args
zipsep = opts.zipsep
fp = must_open(tabfile)
for row in fp:
if zipsep:
row = row.rstrip()
atoms = row.split(opts.sep)
frows = []
for atom in atoms:
frows.append(atom.split(zipsep))
print("\n".join([zipsep.join(x) for x in list(zip_longest(*frows, fillvalue="na"))]))
else:
print(row.strip().replace(opts.sep, "\n"))
|
def flatten(args)
|
%prog flatten filename > ids
Convert a list of IDs (say, multiple IDs per line) and move them into one
per line.
For example, convert this, to this:
A,B,C | A
1 | B
a,4 | C
| 1
| a
| 4
If multi-column file with multiple elements per column, zip then flatten like so:
A,B,C 2,10,gg | A,2
1,3 4 | B,10
| C,gg
| 1,4
| 3,na
| 3.859816 | 3.618029 | 1.066828 |
from jcvi.utils.cbook import AutoVivification
from jcvi.utils.grouper import Grouper
p = OptionParser(group.__doc__)
p.set_sep()
p.add_option("--groupby", default=None, type='int',
help="Default column to groupby [default: %default]")
p.add_option("--groupsep", default=',',
help="Separator to join the grouped elements [default: `%default`]")
p.add_option("--nouniq", default=False, action="store_true",
help="Do not uniqify the grouped elements [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
tabfile, = args
sep = opts.sep
groupby = opts.groupby
groupsep = opts.groupsep
cols = []
grouper = AutoVivification() if groupby is not None else Grouper()
fp = must_open(tabfile)
for row in fp:
row = row.rstrip()
atoms = row.split(sep)
if groupby is not None:
if len(cols) < len(atoms):
cols = [x for x in xrange(len(atoms))]
if groupby not in cols:
logging.error("groupby col index `{0}` is out of range".format(groupby))
sys.exit()
key = atoms[groupby]
for col in cols:
if col == groupby:
continue
if not grouper[key][col]:
grouper[key][col] = [] if opts.nouniq else set()
if col < len(atoms):
if groupsep in atoms[col]:
for atom in atoms[col].split(groupsep):
if opts.nouniq:
grouper[key][col].append(atom)
else:
grouper[key][col].add(atom)
else:
if opts.nouniq:
grouper[key][col].append(atoms[col])
else:
grouper[key][col].add(atoms[col])
else:
grouper.join(*atoms)
for key in grouper:
if groupby is not None:
line = []
for col in cols:
if col == groupby:
line.append(key)
elif col in grouper[key].keys():
line.append(groupsep.join(grouper[key][col]))
else:
line.append("na")
print(sep.join(line))
else:
print(groupsep.join(key))
|
def group(args)
|
%prog group tabfile > tabfile.grouped
Given a tab-delimited file, either group all elements within the file or
group the elements in the value column(s) based on the key (groupby) column
For example, convert this | into this
---------------------------------------
a 2 3 4 | a,2,3,4,5,6
a 5 6 | b,7,8
b 7 8 | c,9,10,11
c 9 |
c 10 11 |
If grouping by a particular column,
convert this | into this:
---------------------------------------------
a 2 3 4 | a 2,5 3,6 4
a 5 6 | b 7 8
b 7 8 | c 9,10 11
c 9 |
c 10 11 |
By default, it uniqifies all the grouped elements
| 2.313496 | 2.271797 | 1.018355 |
import csv
p = OptionParser(reorder.__doc__)
p.set_sep()
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
tabfile, order = args
sep = opts.sep
order = [int(x) - 1 for x in order.split(",")]
reader = csv.reader(must_open(tabfile), delimiter=sep)
writer = csv.writer(sys.stdout, delimiter=sep)
for row in reader:
newrow = [row[x] for x in order]
writer.writerow(newrow)
|
def reorder(args)
|
%prog reorder tabfile 1,2,4,3 > newtabfile
Reorder columns in tab-delimited files. The above syntax will print out a
new file with col-1,2,4,3 from the old file.
| 2.387422 | 2.110832 | 1.131034 |
p = OptionParser(split.__doc__)
mode_choices = ("batch", "cycle", "optimal")
p.add_option("--all", default=False, action="store_true",
help="split all records [default: %default]")
p.add_option("--mode", default="optimal", choices=mode_choices,
help="Mode when splitting records [default: %default]")
p.add_option("--format", choices=("fasta", "fastq", "txt", "clust"),
help="input file format [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
filename, outdir, N = args
fs = FileSplitter(filename, outputdir=outdir,
format=opts.format, mode=opts.mode)
if opts.all:
logging.debug("option -all override N")
N = fs.num_records
else:
N = min(fs.num_records, int(N))
assert N > 0, "N must be > 0"
logging.debug("split file into %d chunks" % N)
fs.split(N)
return fs
|
def split(args)
|
%prog split file outdir N
Split file into N records. This allows splitting FASTA/FASTQ/TXT file
properly at boundary of records. Split is useful for parallelization
on input chunks.
Option --mode is useful on how to break into chunks.
1. chunk - chunk records sequentially, 1-100 in file 1, 101-200 in file 2, etc.
2. cycle - chunk records in Round Robin fashion
3. optimal - try to make split file of roughly similar sizes, using LPT
algorithm. This is the default.
| 3.170454 | 2.700151 | 1.174176 |
p = OptionParser(join.__doc__)
p.add_option("--column", default="0",
help="0-based column id, multiple values allowed [default: %default]")
p.set_sep(multiple=True)
p.add_option("--noheader", default=False, action="store_true",
help="Do not print header [default: %default]")
p.add_option("--na", default="na",
help="Value for unjoined data [default: %default]")
p.add_option("--compact", default=False, action="store_true",
help="Do not repeat pivotal columns in output")
p.add_option("--keysep", default=",",
help="specify separator joining multiple elements in the key column"
+ " of the pivot file [default: %default]")
p.set_outfile()
opts, args = p.parse_args(args)
nargs = len(args)
keysep = opts.keysep
compact = opts.compact
if len(args) < 2:
sys.exit(not p.print_help())
na = opts.na
c = opts.column
if "," in c:
cc = [int(x) for x in c.split(",")]
else:
cc = [int(c)] * nargs
assert len(cc) == nargs, "Column index number != File number"
s = opts.sep
if "," in s:
ss = [x for x in s.split(",")]
else:
ss = [s] * nargs
assert len(ss) == nargs, "column separator number != File number"
# Maintain the first file line order, and combine other files into it
pivotfile = args[0]
files = [DictFile(f, keypos=c, valuepos=None, delimiter=s) \
for f, c, s in zip(args, cc, ss)]
otherfiles = files[1:]
# The header contains filenames
headers = []
for i, x in enumerate(files):
ncols = x.ncols
if i and compact:
ncols -= 1
headers += [op.basename(x.filename)] * ncols
header = "\t".join(headers)
fp = must_open(pivotfile)
fw = must_open(opts.outfile, "w")
if not opts.noheader:
print(header, file=fw)
for row in fp:
row = row.rstrip()
atoms = row.split(ss[0])
newrow = atoms
key = atoms[cc[0]]
keys = key.split(keysep) if keysep in key else [key]
for d in otherfiles:
drows = list()
for key in keys:
krow = d.get(key, [na] * d.ncols)
if compact:
krow.pop(d.keypos)
drows.append(krow)
drow = [keysep.join(x) for x in list(zip(*drows))]
newrow += drow
print("\t".join(newrow), file=fw)
|
def join(args)
|
%prog join file1.txt(pivotfile) file2.txt ..
Join tabular-like files based on common column.
--column specifies the column index to pivot on.
Use comma to separate multiple values if the pivot column is different
in each file. Maintain the order in the first file.
--sep specifies the column separators, default to tab.
Use comma to separate multiple values if the column separator is different
in each file.
| 3.244755 | 3.048787 | 1.064277 |
p = OptionParser(subset.__doc__)
p.add_option("--column", default="0",
help="0-based column id, multiple values allowed [default: %default]")
p.set_sep(multiple=True)
p.add_option("--pivot", default=1, type="int",
help="1 for using order in file1, 2 for using order in \
file2 [default: %default]")
p.set_outfile()
opts, args = p.parse_args(args)
nargs = len(args)
if len(args) < 2:
sys.exit(not p.print_help())
c = opts.column
if "," in c:
cc = [int(x) for x in c.split(",")]
assert len(set(cc[1:])) == 1, \
"Multiple file2's must have same column index."
cc = cc[0:2]
else:
cc = [int(c)] * 2
s = opts.sep
if "," in s:
ss = [x for x in s.split(",")]
assert len(set(cc[1:])) == 1, \
"Multiple file2's must have same column separator."
ss = ss[0:2]
else:
ss = [s] * 2
if nargs > 2:
file2 = FileMerger(args[1:], outfile="concatenatedFile2").merge()
else:
file2 = args[1]
newargs = [args[0], file2]
files = [DictFile(f, keypos=c, valuepos=None, delimiter=s) \
for f, c, s in zip(newargs, cc, ss)]
pivot = 0 if opts.pivot==1 else 1
fp = open(newargs[pivot])
fw = must_open(opts.outfile, "w")
for row in fp:
row = row.rstrip()
atoms = row.split(ss[pivot])
key = atoms[cc[pivot]]
d = files[1-pivot]
if key in d:
print(ss[0].join(files[0][key]), file=fw)
if nargs > 2:
FileShredder([file2])
|
def subset(args)
|
%prog subset file1.txt(pivotfile) file2.txt ..
subset tabular-like file1 based on common column with file 2.
Normally file1 should have unique row entries.
If more than one file2 are provided, they must have same column separators.
Multiple file2's will be concatenated in the output.
--column specifies the column index (0-based) to pivot on.
Use comma to separate multiple values if the pivot column is different
in each file. Maintain the order in the first file.
--sep specifies the column separators, default to tab.
Use comma to separate multiple values if the column separator is different
in each file.
| 3.404954 | 3.073195 | 1.107952 |
from jcvi.utils.natsort import natsorted
p = OptionParser(setop.__doc__)
p.add_option("--column", default=0, type="int",
help="The column to extract, 0-based, -1 to disable [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
statement, = args
fa, op, fb = statement.split()
assert op in ('|', '&', '-', '^')
column = opts.column
fa = SetFile(fa, column=column)
fb = SetFile(fb, column=column)
if op == '|':
t = fa | fb
elif op == '&':
t = fa & fb
elif op == '-':
t = fa - fb
elif op == '^':
t = fa ^ fb
for x in natsorted(t):
print(x)
|
def setop(args)
|
%prog setop "fileA & fileB" > newfile
Perform set operations, except on files. The files (fileA and fileB) contain
list of ids. The operator is one of the four:
|: union (elements found in either file)
&: intersection (elements found in both)
-: difference (elements in fileA but not in fileB)
^: symmetric difference (elementes found in either set but not both)
Please quote the argument to avoid shell interpreting | and &.
| 2.629935 | 2.45147 | 1.072799 |
p = OptionParser(mergecsv.__doc__)
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) < 2:
sys.exit(not p.print_help())
tsvfiles = args
outfile = opts.outfile
if op.exists(outfile):
os.remove(outfile)
tsvfile = tsvfiles[0]
fw = must_open(opts.outfile, "w")
for i, tsvfile in enumerate(tsvfiles):
fp = open(tsvfile)
if i > 0:
next(fp)
for row in fp:
fw.write(row)
fw.close()
|
def mergecsv(args)
|
%prog mergecsv *.tsv
Merge a set of tsv files.
| 2.471963 | 2.294117 | 1.077523 |
batch_size = math.ceil(self.num_records / float(N))
handle = self._open(self.filename)
while True:
batch = list(islice(handle, batch_size))
if not batch:
break
yield batch
|
def _batch_iterator(self, N=1)
|
Returns N lists of records.
This can be used on any iterator, for example to batch up
SeqRecord objects from Bio.SeqIO.parse(...), or to batch
Alignment objects from Bio.AlignIO.parse(...), or simply
lines from a file handle.
This is a generator function, and it returns lists of the
entries from the supplied iterator. Each list will have
batch_size entries, although the final list may be shorter.
| 3.67249 | 3.680108 | 0.99793 |
mode = self.mode
assert mode in ("batch", "cycle", "optimal")
logging.debug("set split mode=%s" % mode)
self.names = self.__class__.get_names(self.filename, N)
if self.outputdir:
self.names = [op.join(self.outputdir, x) for x in self.names]
if not need_update(self.filename, self.names) and not force:
logging.error("file %s already existed, skip file splitting" % \
self.names[0])
return
filehandles = [open(x, "w") for x in self.names]
if mode == "batch":
for batch, fw in zip(self._batch_iterator(N), filehandles):
count = self.write(fw, batch)
logging.debug("write %d records to %s" % (count, fw.name))
elif mode == "cycle":
handle = self._open(self.filename)
for record, fw in zip(handle, cycle(filehandles)):
count = self.write(fw, [record])
elif mode == "optimal":
endtime = [0] * N
handle = self._open(self.filename)
for record in handle:
mt, mi = min((x, i) for (i, x) in enumerate(endtime))
fw = filehandles[mi]
count = self.write(fw, [record])
endtime[mi] += len(record)
for fw in filehandles:
fw.close()
|
def split(self, N, force=False)
|
There are two modes of splitting the records
- batch: splitting is sequentially to records/N chunks
- cycle: placing each record in the splitted files and cycles
use `cycle` if the len of the record is not evenly distributed
| 3.381557 | 3.21524 | 1.051727 |
from operator import itemgetter
from jcvi.formats.fasta import Fasta, SeqIO
p = OptionParser(prepare.__doc__)
p.add_option("--rearray_lib", default=None,
help="name of the rearrayed library [default: %default]")
p.add_option("--orig_lib_file",
help="fasta file containing reads from the original libraries [default: %default]")
g = OptionGroup(p, "Optional parameters")
g.add_option("--output_folder", default="to_assemble",
help="output folder to write the FASTA files to [default: %default]")
p.add_option_group(g)
opts, args = p.parse_args(args)
if not opts.rearray_lib or not opts.orig_lib_file:
logging.error("Please specify the required parameters")
sys.exit(not p.print_help())
rearraylib, origlibfile = opts.rearray_lib, opts.orig_lib_file
if not op.isfile(origlibfile):
logging.error("Original library reads file `{0}` does not exist!".format(origlibfile))
sys.exit()
lookuptblfile = rearraylib + '.lookup'
logging.debug(lookuptblfile)
if not op.isfile(lookuptblfile):
logging.error("Lookup table file `{0}` does not exist!".format(lookuptblfile))
sys.exit()
rearraylibfile = rearraylib + '.fasta'
logging.debug(rearraylibfile)
if not op.isfile(rearraylibfile):
logging.error("Rearrayed library reads file `{0}` does not exist!".format(rearraylibfile))
sys.exit()
origlibFasta = Fasta(origlibfile)
rearraylibFasta = Fasta(rearraylibfile)
origlibids = [o for o in origlibFasta.iterkeys_ordered()]
rearraylibids = [r for r in rearraylibFasta.iterkeys_ordered()]
if not op.isdir(opts.output_folder):
logging.warning("Output directory `{0}` missing. Creating it now...".format(opts.output_folder))
os.makedirs(opts.output_folder)
logfile = rearraylib + '.log'
log = open(logfile, 'w')
fp = open(lookuptblfile, 'r')
for row in fp:
origprefix, rearrayprefix = itemgetter(0,3)(row.split('\t'))
libpair = origprefix + '_' + rearrayprefix
outfile = opts.output_folder + '/' + libpair + '.fasta'
ofp = open(outfile, 'w')
for o in origlibids:
if re.match(origprefix, o):
SeqIO.write(origlibFasta[o], ofp, 'fasta')
for r in rearraylibids:
if re.match(rearrayprefix, r):
SeqIO.write(rearraylibFasta[r], ofp, 'fasta')
ofp.close()
print(outfile, file=log)
log.close()
logging.debug('Wrote log file `{0}`'.format(logfile))
|
def prepare(args)
|
%prog prepare --rearray_lib=<rearraylibrary> --orig_lib_file=<origlibfile>
Inferred file names
---------------------------------------------
`lookuptblfile` : rearraylibrary.lookup
`rearraylibfile`: rearraylibrary.fasta
Pick sequences from the original library file and the rearrayed library file
based on the mapping information provided in the `lookuptblfile`.
# lookuptblfile format: column number (index)
# 1 (0) 2 (1) 3 (2) 4 (3) 5 (4) 6 (5)
# source_clone source_plate source_well dest_clone dest_plate dest_well
The 1st and 4th column in the `lookuptblfile` form the pair of clones which
constitute the elements used for the per-clone assembly.
| 2.356519 | 2.106143 | 1.118879 |
p = OptionParser(extract.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
idsfile, sizesfile = args
sizes = Sizes(sizesfile).mapping
fp = open(idsfile)
for row in fp:
name = row.strip()
size = sizes[name]
print("\t".join(str(x) for x in (name, size)))
|
def extract(args)
|
%prog extract idsfile sizesfile
Extract the lines containing only the given IDs.
| 3.047088 | 2.514456 | 1.211828 |
from jcvi.formats.agp import OO
p = OptionParser(agp.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
sizesfile, = args
sizes = Sizes(sizesfile)
agpfile = sizes.filename.rsplit(".", 1)[0] + ".agp"
fw = open(agpfile, "w")
o = OO() # Without a filename
for ctg, size in sizes.iter_sizes():
o.add(ctg, ctg, size)
o.write_AGP(fw)
fw.close()
logging.debug("AGP file written to `{0}`.".format(agpfile))
return agpfile
|
def agp(args)
|
%prog agp <fastafile|sizesfile>
Convert the sizes file to a trivial AGP file.
| 3.277369 | 2.887913 | 1.134857 |
return dict(list(zip(list(d.values()), list(d.keys()))))
|
def _reversedict(d)
|
Internal helper for generating reverse mappings; given a
dictionary, returns a new dictionary with keys and values swapped.
| 3.803946 | 3.811782 | 0.997944 |
try:
hex_digits = HEX_COLOR_RE.match(hex_value).groups()[0]
except AttributeError:
raise ValueError("'%s' is not a valid hexadecimal color value." % hex_value)
if len(hex_digits) == 3:
hex_digits = ''.join([2 * s for s in hex_digits])
return '#%s' % hex_digits.lower()
|
def normalize_hex(hex_value)
|
Normalize a hexadecimal color value to the following form and
return the result::
#[a-f0-9]{6}
In other words, the following transformations are applied as
needed:
* If the value contains only three hexadecimal digits, it is
expanded to six.
* The value is normalized to lower-case.
If the supplied value cannot be interpreted as a hexadecimal color
value, ``ValueError`` is raised.
Examples:
>>> normalize_hex('#0099cc')
'#0099cc'
>>> normalize_hex('#0099CC')
'#0099cc'
>>> normalize_hex('#09c')
'#0099cc'
>>> normalize_hex('#09C')
'#0099cc'
>>> normalize_hex('0099cc')
Traceback (most recent call last):
...
ValueError: '0099cc' is not a valid hexadecimal color value.
| 2.558492 | 2.626769 | 0.974007 |
percent = value.split('%')[0]
percent = float(percent) if '.' in percent else int(percent)
if 0 <= percent <= 100:
return '%s%%' % percent
if percent < 0:
return '0%'
if percent > 100:
return '100%'
|
def _normalize_percent_rgb(value)
|
Normalize ``value`` for use in a percentage ``rgb()`` triplet, as
follows:
* If ``value`` is less than 0%, convert to 0%.
* If ``value`` is greater than 100%, convert to 100%.
Examples:
>>> _normalize_percent_rgb('0%')
'0%'
>>> _normalize_percent_rgb('100%')
'100%'
>>> _normalize_percent_rgb('62%')
'62%'
>>> _normalize_percent_rgb('-5%')
'0%'
>>> _normalize_percent_rgb('250%')
'100%'
>>> _normalize_percent_rgb('85.49%')
'85.49%'
| 2.550487 | 2.95364 | 0.863506 |
if spec not in SUPPORTED_SPECIFICATIONS:
raise TypeError("'%s' is not a supported specification for color name lookups; supported specifications are: %s." % (spec,
', '.join(SUPPORTED_SPECIFICATIONS)))
normalized = name.lower()
try:
hex_value = globals()['%s_names_to_hex' % spec][normalized]
except KeyError:
raise ValueError("'%s' is not defined as a named color in %s." % (name, spec))
return hex_value
|
def name_to_hex(name, spec='css3')
|
Convert a color name to a normalized hexadecimal color value.
The optional keyword argument ``spec`` determines which
specification's list of color names will be used; valid values are
``html4``, ``css2``, ``css21`` and ``css3``, and the default is
``css3``.
The color name will be normalized to lower-case before being
looked up, and when no color of that name exists in the given
specification, ``ValueError`` is raised.
Examples:
>>> name_to_hex('white')
'#ffffff'
>>> name_to_hex('navy')
'#000080'
>>> name_to_hex('goldenrod')
'#daa520'
>>> name_to_hex('goldenrod', spec='html4')
Traceback (most recent call last):
...
ValueError: 'goldenrod' is not defined as a named color in html4.
>>> name_to_hex('goldenrod', spec='css5')
Traceback (most recent call last):
...
TypeError: 'css5' is not a supported specification for color name lookups; supported specifications are: html4, css2, css21, css3.
| 3.359835 | 2.567445 | 1.30863 |
if spec not in SUPPORTED_SPECIFICATIONS:
raise TypeError("'%s' is not a supported specification for color name lookups; supported specifications are: %s." % (spec,
', '.join(SUPPORTED_SPECIFICATIONS)))
normalized = normalize_hex(hex_value)
try:
name = globals()['%s_hex_to_names' % spec][normalized]
except KeyError:
raise ValueError("'%s' has no defined color name in %s." % (hex_value, spec))
return name
|
def hex_to_name(hex_value, spec='css3')
|
Convert a hexadecimal color value to its corresponding normalized
color name, if any such name exists.
The optional keyword argument ``spec`` determines which
specification's list of color names will be used; valid values are
``html4``, ``css2``, ``css21`` and ``css3``, and the default is
``css3``.
The hexadecimal value will be normalized before being looked up,
and when no color name for the value is found in the given
specification, ``ValueError`` is raised.
Examples:
>>> hex_to_name('#ffffff')
'white'
>>> hex_to_name('#fff')
'white'
>>> hex_to_name('#000080')
'navy'
>>> hex_to_name('#daa520')
'goldenrod'
>>> hex_to_name('#daa520', spec='html4')
Traceback (most recent call last):
...
ValueError: '#daa520' has no defined color name in html4.
>>> hex_to_name('#daa520', spec='css5')
Traceback (most recent call last):
...
TypeError: 'css5' is not a supported specification for color name lookups; supported specifications are: html4, css2, css21, css3.
| 3.514951 | 2.541318 | 1.383121 |
hex_digits = normalize_hex(hex_value)
return tuple([int(s, 16) for s in (hex_digits[1:3], hex_digits[3:5], hex_digits[5:7])])
|
def hex_to_rgb(hex_value)
|
Convert a hexadecimal color value to a 3-tuple of integers
suitable for use in an ``rgb()`` triplet specifying that color.
The hexadecimal value will be normalized before being converted.
Examples:
>>> hex_to_rgb('#fff')
(255, 255, 255)
>>> hex_to_rgb('#000080')
(0, 0, 128)
| 2.382153 | 3.653007 | 0.652107 |
# In order to maintain precision for common values,
# 256 / 2**n is special-cased for values of n
# from 0 through 4, as well as 0 itself.
specials = {255: '100%', 128: '50%', 64: '25%',
32: '12.5%', 16: '6.25%', 0: '0%'}
return tuple([specials.get(d, '%.02f%%' % ((d / 255.0) * 100)) \
for d in normalize_integer_triplet(rgb_triplet)])
|
def rgb_to_rgb_percent(rgb_triplet)
|
Convert a 3-tuple of integers, suitable for use in an ``rgb()``
color triplet, to a 3-tuple of percentages suitable for use in
representing that color.
This function makes some trade-offs in terms of the accuracy of
the final representation; for some common integer values,
special-case logic is used to ensure a precise result (e.g.,
integer 128 will always convert to '50%', integer 32 will always
convert to '12.5%'), but for all other values a standard Python
``float`` is used and rounded to two decimal places, which may
result in a loss of precision for some values.
Examples:
>>> rgb_to_rgb_percent((255, 255, 255))
('100%', '100%', '100%')
>>> rgb_to_rgb_percent((0, 0, 128))
('0%', '0%', '50%')
>>> rgb_to_rgb_percent((218, 165, 32))
('85.49%', '64.71%', '12.5%')
| 4.344916 | 4.572929 | 0.950139 |
num = float(percent.split('%')[0]) / 100.0 * 255
e = num - math.floor(num)
return e < 0.5 and int(math.floor(num)) or int(math.ceil(num))
|
def _percent_to_integer(percent)
|
Internal helper for converting a percentage value to an integer
between 0 and 255 inclusive.
| 3.29349 | 3.047977 | 1.080549 |
import numpy as np
from skimage.color import rgb2lab, deltaE_cmc
rgb1 = np.array(rgb1, dtype="float64").reshape(1, 1, 3) / 255.
rgb2 = np.array(rgb2, dtype="float64").reshape(1, 1, 3) / 255.
lab1 = rgb2lab(rgb1)
lab2 = rgb2lab(rgb2)
return deltaE_cmc(lab1, lab2, kL=2, kC=1)[0, 0]
|
def color_diff(rgb1, rgb2)
|
Calculate distance between two RGB colors. See discussion:
http://stackoverflow.com/questions/8863810/python-find-similar-colors-best-way
- for basic / fast calculations, you can use dE76 but beware of its problems
- for graphics arts use we recommend dE94 and perhaps dE-CMC 2:1
- for textiles use dE-CMC
| 2.080662 | 2.028201 | 1.025866 |
logging.disable(logging.DEBUG)
colors = []
for key, name in css3_hex_to_names.items():
diff = color_diff(hex_to_rgb(key), requested_color)
colors.append((diff, name))
logging.disable(logging.NOTSET)
min_diff, min_color = min(colors)
return min_color
|
def closest_color(requested_color)
|
Find closest color name for the request RGB tuple.
| 3.846549 | 3.574128 | 1.07622 |
p = OptionParser(offdiag.__doc__)
p.set_beds()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
anchorsfile, = args
qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts)
fp = open(anchorsfile)
pf = "-".join(anchorsfile.split(".")[:2])
header = "Block-id|Napus|Diploid|Napus-chr|Diploid-chr|RBH?".split("|")
print("\t".join(header))
i = -1
for row in fp:
if row[0] == '#':
i += 1
continue
q, s, score = row.split()
rbh = 'no' if score[-1] == 'L' else 'yes'
qi, qq = qorder[q]
si, ss = sorder[s]
oqseqid = qseqid = qq.seqid
osseqid = sseqid = ss.seqid
sseqid = sseqid.split("_")[0][-3:]
if qseqid[0] == 'A':
qseqid = qseqid[-3:] # A09 => A09
elif qseqid[0] == 'C':
qseqid = 'C0' + qseqid[-1] # C9 => C09
else:
continue
if qseqid == sseqid or sseqid[-2:] == 'nn':
continue
block_id = pf + "-block-{0}".format(i)
print("\t".join((block_id, q, s, oqseqid, osseqid, rbh)))
|
def offdiag(args)
|
%prog offdiag diploid.napus.1x1.lifted.anchors
Find gene pairs that are off diagnoal. "Off diagonal" are the pairs that are
not on the orthologous chromosomes. For example, napus chrA01 and brapa A01.
| 4.358224 | 4.003894 | 1.088496 |
from jcvi.utils.cbook import SummaryStats
p = OptionParser(diff.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
simplefile, = args
fp = open(simplefile)
data = [x.split() for x in fp]
spans = []
for block_id, ab in groupby(data[1:], key=lambda x: x[0]):
a, b = list(ab)
aspan, bspan = a[4], b[4]
aspan, bspan = int(aspan), int(bspan)
spans.append((aspan, bspan))
aspans, bspans = zip(*spans)
dspans = [b - a for a, b, in spans]
s = SummaryStats(dspans)
print("For a total of {0} blocks:".format(len(dspans)), file=sys.stderr)
print("Sum of A: {0}".format(sum(aspans)), file=sys.stderr)
print("Sum of B: {0}".format(sum(bspans)), file=sys.stderr)
print("Sum of Delta: {0} ({1})".format(sum(dspans), s), file=sys.stderr)
|
def diff(args)
|
%prog diff simplefile
Calculate difference of pairwise syntenic regions.
| 2.564559 | 2.479038 | 1.034498 |
accns = [order[x] for x in accns]
ii, bb = zip(*accns)
mini, maxi = min(ii), max(ii)
if not conservative: # extend one gene
mini -= 1
maxi += 1
minb = bed[mini]
maxb = bed[maxi]
assert minb.seqid == maxb.seqid
distmode = "ss" if conservative else "ee"
ra = (minb.seqid, minb.start, minb.end, "+")
rb = (maxb.seqid, maxb.start, maxb.end, "+")
dist, orientation = range_distance(ra, rb, distmode=distmode)
assert dist != -1
return dist
|
def estimate_size(accns, bed, order, conservative=True)
|
Estimate the bp length for the deletion tracks, indicated by the gene accns.
True different levels of estimates vary on conservativeness.
| 4.071694 | 4.291452 | 0.948792 |
from jcvi.formats.base import SetFile
p = OptionParser(segment.__doc__)
p.add_option("--chain", default=1, type="int",
help="Allow next N genes to be chained [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
idsfile, bedfile = args
bed = Bed(bedfile)
order = bed.order
ids = SetFile(idsfile)
losses = Grouper()
skip = opts.chain
for i, a in enumerate(bed):
a = a.accn
for j in xrange(i + 1, i + 1 + skip):
if j >= len(bed):
break
b = bed[j].accn
if a in ids:
losses.join(a, a)
if a in ids and b in ids:
losses.join(a, b)
losses = list(losses)
singletons = [x for x in losses if len(x) == 1]
segments = [x for x in losses if len(x) > 1]
ns, nm, nt = len(singletons), len(segments), len(losses)
assert ns + nm == nt
# Summary for all segments
for x in sorted(singletons) + sorted(segments):
print("\t".join(str(x) for x in ("|".join(sorted(x)), len(x),
estimate_size(x, bed, order))))
# Find longest segment stretch
if segments:
mx, maxsegment = max([(len(x), x) for x in segments])
print("Longest stretch: run of {0} genes".format(mx), file=sys.stderr)
print(" {0}".format("|".join(sorted(maxsegment))), file=sys.stderr)
seg_asize = sum(estimate_size(x, bed, order) for x in segments)
seg_bsize = sum(estimate_size(x, bed, order, conservative=False) \
for x in segments)
else:
seg_asize = seg_bsize = 0
sing_asize = sum(estimate_size(x, bed, order) for x in singletons)
sing_bsize = sum(estimate_size(x, bed, order, conservative=False) \
for x in singletons)
total_asize = sing_asize + seg_asize
total_bsize = sing_bsize + seg_bsize
print("Singleton ({0}): {1} - {2} bp".\
format(ns, sing_asize, sing_bsize), file=sys.stderr)
print("Segment ({0}): {1} - {2} bp".\
format(nm, seg_asize, seg_bsize), file=sys.stderr)
print("Total ({0}): {1} - {2} bp".\
format(nt, total_asize, total_bsize), file=sys.stderr)
print("Average ({0}): {1} bp".\
format(nt, (total_asize + total_bsize) / 2), file=sys.stderr)
|
def segment(args)
|
%prog segment loss.ids bedfile
Merge adjacent gene loss into segmental loss.
Then based on the segmental loss, estimate amount of DNA loss in base pairs.
Two estimates can be given:
- conservative: just within the start and end of a single gene
- aggressive: extend the deletion track to the next gene
The real deletion size is within these estimates.
| 2.49404 | 2.426339 | 1.027903 |
from jcvi.formats.base import DictFile
p = OptionParser(merge.__doc__)
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
quartets, registry, lost = args
qq = DictFile(registry, keypos=1, valuepos=3)
lost = DictFile(lost, keypos=1, valuepos=0, delimiter='|')
qq.update(lost)
fp = open(quartets)
cases = {
"AN,CN": 4,
"BO,AN,CN": 8,
"BO,CN": 2,
"BR,AN": 1,
"BR,AN,CN": 6,
"BR,BO": 3,
"BR,BO,AN": 5,
"BR,BO,AN,CN": 9,
"BR,BO,CN": 7,
}
ip = {
"syntenic_model": "Syntenic_model_excluded_by_OMG",
"complete": "Predictable",
"partial": "Truncated",
"pseudogene": "Pseudogene",
"random": "Match_random",
"real_ns": "Transposed",
"gmap_fail": "GMAP_fail",
"AN LOST": "AN_LOST",
"CN LOST": "CN_LOST",
"BR LOST": "BR_LOST",
"BO LOST": "BO_LOST",
"outside": "Outside_synteny_blocks",
"[NF]": "Not_found",
}
for row in fp:
atoms = row.strip().split("\t")
genes = atoms[:4]
tag = atoms[4]
a, b, c, d = [qq.get(x, ".").rsplit("-", 1)[-1] for x in genes]
qqs = [c, d, a, b]
for i, q in enumerate(qqs):
if atoms[i] != '.':
qqs[i] = "syntenic_model"
# Make comment
comment = "Case{0}".format(cases[tag])
dots = sum([1 for x in genes if x == '.'])
if dots == 1:
idx = genes.index(".")
status = qqs[idx]
status = ip[status]
comment += "-" + status
print(row.strip() + "\t" + "\t".join(qqs + [comment]))
|
def merge(args)
|
%prog merge protein-quartets registry LOST
Merge protein quartets table with dna quartets registry. This is specific
to the napus project.
| 4.23358 | 4.028737 | 1.050845 |
from jcvi.formats.bed import intersectBed_wao
p = OptionParser(gffselect.__doc__)
opts, args = p.parse_args(args)
if len(args) != 4:
sys.exit(not p.print_help())
gmapped, expected, idsfile, tag = args
data = get_tags(idsfile)
completeness = dict((a.replace("mrna", "path"), c) \
for (a, b, c) in data)
seen = set()
idsfile = expected.rsplit(".", 1)[0] + ".ids"
fw = open(idsfile, "w")
cnt = 0
for a, b in intersectBed_wao(expected, gmapped):
if b is None:
continue
aname, bbname = a.accn, b.accn
bname = bbname.split(".")[0]
if completeness[bbname] != tag:
continue
if aname == bname:
if bname in seen:
continue
seen.add(bname)
print(bbname, file=fw)
cnt += 1
fw.close()
logging.debug("Total {0} records written to `{1}`.".format(cnt, idsfile))
|
def gffselect(args)
|
%prog gffselect gmaplocation.bed expectedlocation.bed translated.ids tag
Try to match up the expected location and gmap locations for particular
genes. translated.ids was generated by fasta.translate --ids. tag must be
one of "complete|pseudogene|partial".
| 3.852392 | 3.586404 | 1.074166 |
from jcvi.formats.base import DictFile
from jcvi.apps.base import popen
from jcvi.utils.cbook import percentage
p = OptionParser(gaps.__doc__)
p.add_option("--bdist", default=0, type="int",
help="Base pair distance [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 3:
sys.exit(not p.print_help())
idsfile, frfile, gapsbed = args
bdist = opts.bdist
d = DictFile(frfile, keypos=1, valuepos=2)
bedfile = idsfile + ".bed"
fw = open(bedfile, "w")
fp = open(idsfile)
total = 0
for row in fp:
id = row.strip()
hit = d[id]
tag, pos = get_tag(hit, None)
seqid, start, end = pos
start, end = max(start - bdist, 1), end + bdist
print("\t".join(str(x) for x in (seqid, start - 1, end, id)), file=fw)
total += 1
fw.close()
cmd = "intersectBed -a {0} -b {1} -v | wc -l".format(bedfile, gapsbed)
not_in_gaps = popen(cmd).read()
not_in_gaps = int(not_in_gaps)
in_gaps = total - not_in_gaps
print("Ids in gaps: {1}".\
format(total, percentage(in_gaps, total)), file=sys.stderr)
|
def gaps(args)
|
%prog gaps idsfile fractionationfile gapsbed
Check gene locations against gaps. `idsfile` contains a list of IDs to query
into `fractionationfile` in order to get expected locations.
| 2.855478 | 2.702425 | 1.056635 |
p = OptionParser(genestatus.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
idsfile, = args
data = get_tags(idsfile)
key = lambda x: x[0].split(".")[0]
for gene, cc in groupby(data, key=key):
cc = list(cc)
tags = [x[-1] for x in cc]
if "complete" in tags:
tag = "complete"
elif "partial" in tags:
tag = "partial"
else:
tag = "pseudogene"
print("\t".join((gene, tag)))
|
def genestatus(args)
|
%prog genestatus diploid.gff3.exon.ids
Tag genes based on translation from GMAP models, using fasta.translate()
--ids.
| 2.864452 | 2.581768 | 1.109492 |
from jcvi.formats.bed import intersectBed_wao
p = OptionParser(validate.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
fractionation, cdsbed = args
fp = open(fractionation)
sbed = "S.bed"
fw = open(sbed, "w")
for row in fp:
a, b, c = row.split()
if not c.startswith("[S]"):
continue
tag, (seqid, start, end) = get_tag(c, None)
print("\t".join(str(x) for x in (seqid, start - 1, end, b)), file=fw)
fw.close()
pairs = {}
for a, b in intersectBed_wao(sbed, cdsbed):
if b is None:
continue
pairs[a.accn] = b.accn
validated = fractionation + ".validated"
fw = open(validated, "w")
fp.seek(0)
fixed = 0
for row in fp:
a, b, c = row.split()
if b in pairs:
assert c.startswith("[S]")
c = pairs[b]
fixed += 1
print("\t".join((a, b, c)), file=fw)
logging.debug("Fixed {0} [S] cases in `{1}`.".format(fixed, validated))
fw.close()
|
def validate(args)
|
%prog validate diploid.napus.fractionation cds.bed
Check whether [S] intervals overlap with CDS.
| 3.367083 | 2.976654 | 1.131164 |
p = OptionParser(compare.__doc__)
p.set_pasa_opts(action="compare")
p.add_option("--prepare", default=False, action="store_true",
help="Prepare PASA run script with commands [default: %default]")
p.set_grid()
p.set_grid_opts()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
pasa_db, = args
PASA_HOME = opts.pasa_home
if not op.isdir(PASA_HOME):
logging.error("PASA_HOME={0} directory does not exist".format(PASA_HOME))
sys.exit()
launch_pasa = which(op.join(PASA_HOME, "scripts", \
"Launch_PASA_pipeline.pl"))
annots_gff3 = opts.annots_gff3
grid = opts.grid
prepare, runfile = opts.prepare, "run.sh"
os.chdir(pasa_db)
if prepare:
write_file(runfile, "", append=True, skipcheck=True) # initialize run script
acfw = must_open(acconf, "w")
print(annotCompare_conf.format("{0}_pasa".format(pasa_db), \
opts.pctovl, opts.pct_coding, opts.pctid_prot, opts.pctlen_FL, \
opts.pctlen_nonFL, opts.orf_size, opts.pct_aln, opts.pctovl_gene, \
opts.stompovl, opts.trust_FL, opts.utr_exons), file=acfw)
acfw.close()
if not op.exists(gfasta):
sys.exit("Genome fasta file `{0}` does not exist".format(gfasta))
transcripts = tfasta
if not op.exists(transcripts):
sys.exit("Transcript fasta file `{0}` does not exist".format(transcripts))
if op.exists("{0}.clean".format(transcripts)):
transcripts = "{0}.clean".format(transcripts)
accmd = "{0} -c {1} -A -g {2} -t {3} --GENETIC_CODE {4}".format(launch_pasa, \
acconf, gfasta, transcripts, opts.genetic_code)
if annots_gff3:
if not op.exists(annots_gff3):
sys.exit("Annotation gff3 file `{0}` does not exist".format(annots_gff3))
symlink(annots_gff3, annotation)
accmd += " -L --annots_gff3 {0}".format(annotation)
if prepare:
write_file(runfile, accmd, append=True)
else:
sh(accmd, grid=grid, grid_opts=opts)
|
def compare(args)
|
%prog compare pasa_db_name [--annots_gff3=annotation.gff3]
Run the PASA annotation comparison pipeline
This assumes that PASA alignment assembly has alredy been completed and
run directory contains `genome.fasta` and `transcript.fasta` files.
If `--annots_gff3` is specified, the PASA database is loaded with the annotations
first before starting annotation comparison. Otherwise, it uses previously
loaded annotation data.
Using the `--prepare` option creates a shell script with the run commands without
executing the pipeline
| 4.200796 | 3.697832 | 1.136016 |
from jcvi.formats.fasta import Fasta, SeqIO
from jcvi.formats.sizes import Sizes
p = OptionParser(longest.__doc__)
p.add_option("--prefix", default="pasa",
help="Replace asmbl_ with prefix [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
fastafile, subclusters = args
prefix = fastafile.rsplit(".", 1)[0]
idsfile = prefix + ".fl.ids"
fw = open(idsfile, "w")
sizes = Sizes(fastafile).mapping
name_convert = lambda x: x.replace("asmbl", opts.prefix)
keep = set() # List of IDs to write
fp = open(subclusters)
nrecs = 0
for row in fp:
if not row.startswith("sub-cluster:"):
continue
asmbls = row.split()[1:]
longest_asmbl = max(asmbls, key=lambda x: sizes[x])
longest_size = sizes[longest_asmbl]
print(name_convert(longest_asmbl), file=fw)
nrecs += 1
cutoff = max(longest_size / 2, 200)
keep.update(set(x for x in asmbls if sizes[x] >= cutoff))
fw.close()
logging.debug("{0} fl-cDNA records written to `{1}`.".format(nrecs, idsfile))
f = Fasta(fastafile, lazy=True)
newfastafile = prefix + ".clean.fasta"
fw = open(newfastafile, "w")
nrecs = 0
for name, rec in f.iteritems_ordered():
if name not in keep:
continue
rec.id = name_convert(name)
rec.description = ""
SeqIO.write([rec], fw, "fasta")
nrecs += 1
fw.close()
logging.debug("{0} valid records written to `{1}`.".format(nrecs, newfastafile))
|
def longest(args)
|
%prog longest pasa.fasta output.subclusters.out
Find the longest PASA assembly and label it as full-length. Also removes
transcripts shorter than half the length of the longest, or shorter than
200bp. The assemblies for the same locus is found in
`output.subclusters.out`. In particular the lines that look like:
sub-cluster: asmbl_25 asmbl_26 asmbl_27
| 2.903126 | 2.569648 | 1.129776 |
from jcvi.formats.fasta import Fasta, SeqIO
p = OptionParser(filter.__doc__)
p.add_option("--minsize", default=2, type="int",
help="Minimum cluster size")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) < 1:
sys.exit(not p.print_help())
fastafiles = args
minsize = opts.minsize
totalreads = totalassembled = 0
fw = must_open(opts.outfile, "w")
for i, fastafile in enumerate(fastafiles):
f = Fasta(fastafile, lazy=True)
pf = "s{0:03d}".format(i)
nreads = nsingletons = nclusters = 0
for desc, rec in f.iterdescriptions_ordered():
nclusters += 1
if desc.startswith("singleton"):
nsingletons += 1
nreads += 1
continue
# consensus_for_cluster_0 with 63 sequences
name, w, size, seqs = desc.split()
assert w == "with"
size = int(size)
nreads += size
if size < minsize:
continue
rec.description = rec.description.split(None, 1)[-1]
rec.id = pf + "_" + rec.id
SeqIO.write(rec, fw, "fasta")
logging.debug("Scanned {0} clusters with {1} reads ..".\
format(nclusters, nreads))
cclusters, creads = nclusters - nsingletons, nreads - nsingletons
logging.debug("Saved {0} clusters (min={1}) with {2} reads (avg:{3}) [{4}]".\
format(cclusters, minsize, creads, creads / cclusters, pf))
totalreads += nreads
totalassembled += nreads - nsingletons
logging.debug("Total assembled: {0}".\
format(percentage(totalassembled, totalreads)))
|
def filter(args)
|
%prog filter *.consensus.fasta
Filter consensus sequence with min cluster size.
| 3.132093 | 2.972972 | 1.053523 |
p = OptionParser(ids.__doc__)
p.add_option("--prefix", type="int",
help="Find rep id for prefix of len [default: %default]")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
clstrfile, = args
cf = ClstrFile(clstrfile)
prefix = opts.prefix
if prefix:
reads = list(cf.iter_reps_prefix(prefix=prefix))
else:
reads = list(cf.iter_reps())
nreads = len(reads)
idsfile = clstrfile.replace(".clstr", ".ids")
fw = open(idsfile, "w")
for i, name in reads:
print("\t".join(str(x) for x in (i, name)), file=fw)
logging.debug("A total of {0} unique reads written to `{1}`.".\
format(nreads, idsfile))
fw.close()
return idsfile
|
def ids(args)
|
%prog ids cdhit.clstr
Get the representative ids from clstr file.
| 3.106381 | 2.808199 | 1.106183 |
from jcvi.graphics.histogram import loghistogram
p = OptionParser(summary.__doc__)
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
clstrfile, = args
cf = ClstrFile(clstrfile)
data = list(cf.iter_sizes())
loghistogram(data, summary=True)
|
def summary(args)
|
%prog summary cdhit.clstr
Parse cdhit.clstr file to get distribution of cluster sizes.
| 3.891895 | 2.976436 | 1.307569 |
p = OptionParser(deduplicate.__doc__)
p.set_align(pctid=96, pctcov=0)
p.add_option("--fast", default=False, action="store_true",
help="Place sequence in the first cluster")
p.add_option("--consensus", default=False, action="store_true",
help="Compute consensus sequences")
p.add_option("--reads", default=False, action="store_true",
help="Use `cd-hit-454` to deduplicate [default: %default]")
p.add_option("--samestrand", default=False, action="store_true",
help="Enforce same strand alignment")
p.set_home("cdhit")
p.set_cpus()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
fastafile, = args
identity = opts.pctid / 100.
fastafile, qualfile = fasta([fastafile, "--seqtk"])
ocmd = "cd-hit-454" if opts.reads else "cd-hit-est"
cmd = op.join(opts.cdhit_home, ocmd)
cmd += " -c {0}".format(identity)
if ocmd == "cd-hit-est":
cmd += " -d 0" # include complete defline
if opts.samestrand:
cmd += " -r 0"
if not opts.fast:
cmd += " -g 1"
if opts.pctcov != 0:
cmd += " -aL {0} -aS {0}".format(opts.pctcov / 100.)
dd = fastafile + ".P{0}.cdhit".format(opts.pctid)
clstr = dd + ".clstr"
cmd += " -M 0 -T {0} -i {1} -o {2}".format(opts.cpus, fastafile, dd)
if need_update(fastafile, (dd, clstr)):
sh(cmd)
if opts.consensus:
cons = dd + ".consensus"
cmd = op.join(opts.cdhit_home, "cdhit-cluster-consensus")
cmd += " clustfile={0} fastafile={1} output={2} maxlen=1".\
format(clstr, fastafile, cons)
if need_update((clstr, fastafile), cons):
sh(cmd)
return dd
|
def deduplicate(args)
|
%prog deduplicate fastafile
Wraps `cd-hit-est` to remove duplicate sequences.
| 3.503393 | 3.327718 | 1.052792 |
self.seek(block.file_offset)
return self._fhandle.read(block.size)
|
def read_block(self, block)
|
Read complete PEB data from file.
Argument:
Obj:block -- Block data is desired for.
| 7.738578 | 9.590605 | 0.806892 |
self.seek(block.file_offset + block.ec_hdr.data_offset)
buf = self._fhandle.read(block.size - block.ec_hdr.data_offset - block.vid_hdr.data_pad)
return buf
|
def read_block_data(self, block)
|
Read LEB data from file
Argument:
Obj:block -- Block data is desired for.
| 7.59977 | 7.606129 | 0.999164 |
blocks = {}
ubi.file.seek(ubi.file.start_offset)
peb_count = 0
cur_offset = 0
bad_blocks = []
# range instead of xrange, as xrange breaks > 4GB end_offset.
for i in range(ubi.file.start_offset, ubi.file.end_offset, ubi.file.block_size):
try:
buf = ubi.file.read(ubi.file.block_size)
except Exception as e:
if settings.warn_only_block_read_errors:
error(extract_blocks, 'Error', 'PEB: %s: %s' % (ubi.first_peb_num + peb_count, str(e)))
continue
else:
error(extract_blocks, 'Fatal', 'PEB: %s: %s' % (ubi.first_peb_num + peb_count, str(e)))
if buf.startswith(UBI_EC_HDR_MAGIC):
blk = description(buf)
blk.file_offset = i
blk.peb_num = ubi.first_peb_num + peb_count
blk.size = ubi.file.block_size
blocks[blk.peb_num] = blk
peb_count += 1
log(extract_blocks, blk)
verbose_log(extract_blocks, 'file addr: %s' % (ubi.file.last_read_addr()))
ec_hdr_errors = ''
vid_hdr_errors = ''
if blk.ec_hdr.errors:
ec_hdr_errors = ','.join(blk.ec_hdr.errors)
if blk.vid_hdr and blk.vid_hdr.errors:
vid_hdr_errors = ','.join(blk.vid_hdr.errors)
if ec_hdr_errors or vid_hdr_errors:
if blk.peb_num not in bad_blocks:
bad_blocks.append(blk.peb_num)
log(extract_blocks, 'PEB: %s has possible issue EC_HDR [%s], VID_HDR [%s]' % (blk.peb_num, ec_hdr_errors, vid_hdr_errors))
verbose_display(blk)
else:
cur_offset += ubi.file.block_size
ubi.first_peb_num = cur_offset/ubi.file.block_size
ubi.file.start_offset = cur_offset
return blocks
|
def extract_blocks(ubi)
|
Get a list of UBI block objects from file
Arguments:.
Obj:ubi -- UBI object.
Returns:
Dict -- Of block objects keyed by PEB number.
| 3.247831 | 3.124885 | 1.039344 |
return list(filter(lambda block: blocks[block].ec_hdr.image_seq == image_seq, blocks))
|
def by_image_seq(blocks, image_seq)
|
Filter blocks to return only those associated with the provided image_seq number.
Argument:
List:blocks -- List of block objects to sort.
Int:image_seq -- image_seq number found in ec_hdr.
Returns:
List -- List of block indexes matching image_seq number.
| 8.620091 | 5.22487 | 1.649819 |
slist_len = len(blocks)
slist = ['x'] * slist_len
for block in blocks:
if blocks[block].leb_num >= slist_len:
add_elements = blocks[block].leb_num - slist_len + 1
slist += (['x'] * add_elements)
slist_len = len(slist)
slist[blocks[block].leb_num] = block
return slist
|
def by_leb(blocks)
|
Sort blocks by Logical Erase Block number.
Arguments:
List:blocks -- List of block objects to sort.
Returns:
List -- Indexes of blocks sorted by LEB.
| 3.228516 | 3.469674 | 0.930496 |
vol_blocks = {}
# sort block by volume
# not reliable with multiple partitions (fifo)
for i in blocks:
if slist and i not in slist:
continue
elif not blocks[i].is_valid:
continue
if blocks[i].vid_hdr.vol_id not in vol_blocks:
vol_blocks[blocks[i].vid_hdr.vol_id] = []
vol_blocks[blocks[i].vid_hdr.vol_id].append(blocks[i].peb_num)
return vol_blocks
|
def by_vol_id(blocks, slist=None)
|
Sort blocks by volume id
Arguments:
Obj:blocks -- List of block objects.
List:slist -- (optional) List of block indexes.
Return:
Dict -- blocks grouped in lists with dict key as volume id.
| 4.102421 | 4.224025 | 0.971211 |
layout = []
data = []
int_vol = []
unknown = []
for i in blocks:
if slist and i not in slist:
continue
if blocks[i].is_vtbl and blocks[i].is_valid:
layout.append(i)
elif blocks[i].is_internal_vol and blocks[i].is_valid:
int_vol.append(i)
elif blocks[i].is_valid:
data.append(i)
else:
unknown.append(i)
return layout, data, int_vol, unknown
|
def by_type(blocks, slist=None)
|
Sort blocks into layout, internal volume, data or unknown
Arguments:
Obj:blocks -- List of block objects.
List:slist -- (optional) List of block indexes.
Returns:
List:layout -- List of block indexes of blocks containing the
volume table records.
List:data -- List of block indexes containing filesystem data.
List:int_vol -- List of block indexes containing volume ids
greater than UBI_INTERNAL_VOL_START that are not
layout volumes.
List:unknown -- List of block indexes of blocks that failed validation
of crc in ed_hdr or vid_hdr.
| 3.341389 | 2.074286 | 1.610862 |
try:
inodes = {}
bad_blocks = []
walk.index(ubifs, ubifs.master_node.root_lnum, ubifs.master_node.root_offs, inodes, bad_blocks)
if len(inodes) < 2:
raise Exception('No inodes found')
for dent in inodes[1]['dent']:
extract_dents(ubifs, inodes, dent, out_path, perms)
if len(bad_blocks):
error(extract_files, 'Warning', 'Data may be missing or corrupted, bad blocks, LEB [%s]' % ','.join(map(str, bad_blocks)))
except Exception as e:
error(extract_files, 'Error', '%s' % e)
|
def extract_files(ubifs, out_path, perms=False)
|
Extract UBIFS contents to_path/
Arguments:
Obj:ubifs -- UBIFS object.
Str:out_path -- Path to extract contents to.
| 5.505939 | 5.652353 | 0.974097 |
layout_temp = list(layout_blocks)
for i in range(0, len(layout_temp)):
for k in range(0, len(layout_blocks)):
if blocks[layout_temp[i]].ec_hdr.image_seq != blocks[layout_blocks[k]].ec_hdr.image_seq:
continue
if blocks[layout_temp[i]].leb_num != blocks[layout_blocks[k]].leb_num:
continue
if blocks[layout_temp[i]].vid_hdr.sqnum > blocks[layout_blocks[k]].vid_hdr.sqnum:
del layout_blocks[k]
break
return layout_blocks
|
def get_newest(blocks, layout_blocks)
|
Filter out old layout blocks from list
Arguments:
List:blocks -- List of block objects
List:layout_blocks -- List of layout block indexes
Returns:
List -- Newest layout blocks in list
| 3.184504 | 3.452461 | 0.922387 |
image_dict={}
for block_id in layout_blocks_list:
image_seq=blocks[block_id].ec_hdr.image_seq
if image_seq not in image_dict:
image_dict[image_seq]=[block_id]
else:
image_dict[image_seq].append(block_id)
log(group_pairs, 'Layout blocks found at PEBs: %s' % list(image_dict.values()))
return list(image_dict.values())
|
def group_pairs(blocks, layout_blocks_list)
|
Sort a list of layout blocks into pairs
Arguments:
List:blocks -- List of block objects
List:layout_blocks -- List of layout block indexes
Returns:
List -- Layout block pair indexes grouped in a list
| 4.162212 | 4.257876 | 0.977532 |
seq_blocks = []
for layout_pair in layout_pairs:
seq_blocks = sort.by_image_seq(blocks, blocks[layout_pair[0]].ec_hdr.image_seq)
layout_pair.append(seq_blocks)
return layout_pairs
|
def associate_blocks(blocks, layout_pairs, start_peb_num)
|
Group block indexes with appropriate layout pairs
Arguments:
List:blocks -- List of block objects
List:layout_pairs -- List of grouped layout blocks
Int:start_peb_num -- Number of the PEB to start from.
Returns:
List -- Layout block pairs grouped with associated block ranges.
| 7.211203 | 6.720164 | 1.073069 |
volumes = {}
vol_blocks_lists = sort.by_vol_id(blocks, layout_info[2])
for vol_rec in blocks[layout_info[0]].vtbl_recs:
vol_name = vol_rec.name.strip(b'\x00').decode('utf-8')
if vol_rec.rec_index not in vol_blocks_lists:
vol_blocks_lists[vol_rec.rec_index] = []
volumes[vol_name] = description(vol_rec.rec_index, vol_rec, vol_blocks_lists[vol_rec.rec_index])
return volumes
|
def get_volumes(blocks, layout_info)
|
Get a list of UBI volume objects from list of blocks
Arguments:
List:blocks -- List of layout block objects
List:layout_info -- Layout info (indexes of layout blocks and
associated data blocks.)
Returns:
Dict -- Of Volume objects by volume name, including any
relevant blocks.
| 4.283293 | 4.598394 | 0.931476 |
hkey, lkey = struct.unpack('<II',key[0:UBIFS_SK_LEN])
ino_num = hkey & UBIFS_S_KEY_HASH_MASK
key_type = lkey >> UBIFS_S_KEY_BLOCK_BITS
khash = lkey
#if key_type < UBIFS_KEY_TYPES_CNT:
return {'type':key_type, 'ino_num':ino_num, 'khash': khash}
|
def parse_key(key)
|
Parse node key
Arguments:
Str:key -- Hex string literal of node key.
Returns:
Int:key_type -- Type of key, data, ino, dent, etc.
Int:ino_num -- Inode number.
Int:khash -- Key hash.
| 6.315537 | 5.606973 | 1.126372 |
if ctype == UBIFS_COMPR_LZO:
try:
return lzo.decompress(b''.join((b'\xf0', struct.pack('>I', unc_len), data)))
except Exception as e:
error(decompress, 'Warn', 'LZO Error: %s' % e)
elif ctype == UBIFS_COMPR_ZLIB:
try:
return zlib.decompress(data, -11)
except Exception as e:
error(decompress, 'Warn', 'ZLib Error: %s' % e)
else:
return data
|
def decompress(ctype, unc_len, data)
|
Decompress data.
Arguments:
Int:ctype -- Compression type LZO, ZLIB (*currently unused*).
Int:unc_len -- Uncompressed data lenth.
Str:data -- Data to be uncompessed.
Returns:
Uncompressed Data.
| 3.08796 | 3.261812 | 0.946701 |
f = open(path, 'rb')
f.seek(0,2)
file_size = f.tell()+1
f.seek(0)
block_size = None
for _ in range(0, file_size, FILE_CHUNK_SZ):
buf = f.read(FILE_CHUNK_SZ)
for m in re.finditer(UBIFS_NODE_MAGIC, buf):
start = m.start()
chdr = nodes.common_hdr(buf[start:start+UBIFS_COMMON_HDR_SZ])
if chdr and chdr.node_type == UBIFS_SB_NODE:
sb_start = start + UBIFS_COMMON_HDR_SZ
sb_end = sb_start + UBIFS_SB_NODE_SZ
if chdr.len != len(buf[sb_start:sb_end]):
f.seek(sb_start)
buf = f.read(UBIFS_SB_NODE_SZ)
else:
buf = buf[sb_start:sb_end]
sbn = nodes.sb_node(buf)
block_size = sbn.leb_size
f.close()
return block_size
f.close()
return block_size
|
def guess_leb_size(path)
|
Get LEB size from superblock
Arguments:
Str:path -- Path to file.
Returns:
Int -- LEB size.
Searches file for superblock and retrieves leb size.
| 2.771082 | 2.739508 | 1.011526 |
file_offset = 0
offsets = []
f = open(path, 'rb')
f.seek(0,2)
file_size = f.tell()+1
f.seek(0)
for _ in range(0, file_size, FILE_CHUNK_SZ):
buf = f.read(FILE_CHUNK_SZ)
for m in re.finditer(UBI_EC_HDR_MAGIC, buf):
start = m.start()
if not file_offset:
file_offset = start
idx = start
else:
idx = start+file_offset
offsets.append(idx)
file_offset += FILE_CHUNK_SZ
f.close()
occurances = {}
for i in range(0, len(offsets)):
try:
diff = offsets[i] - offsets[i-1]
except:
diff = offsets[i]
if diff not in occurances:
occurances[diff] = 0
occurances[diff] += 1
most_frequent = 0
block_size = None
for offset in occurances:
if occurances[offset] > most_frequent:
most_frequent = occurances[offset]
block_size = offset
return block_size
|
def guess_peb_size(path)
|
Determine the most likely block size
Arguments:
Str:path -- Path to file.
Returns:
Int -- PEB size.
Searches file for Magic Number, picks most
common length between them.
| 2.586903 | 2.616678 | 0.988621 |
if not value:
return None
# Apart from numbers also accept values that end with px
if isinstance(value, str):
value = value.strip(' px')
try:
return int(value)
except (TypeError, ValueError):
return None
|
def convert_to_int(value)
|
Attempts to convert a specified value to an integer
:param value: Content to be converted into an integer
:type value: string or int
| 6.191741 | 7.012114 | 0.883006 |
data.update({
'oembed': oembed_data,
})
_type = oembed_data.get('type')
provider_name = oembed_data.get('provider_name')
if not _type:
return data
if oembed_data.get('title'):
data.update({
'title': oembed_data.get('title'),
})
if _type == 'video':
try:
item = {
'width': convert_to_int(oembed_data.get('width')),
'height': convert_to_int(oembed_data.get('height'))
}
if provider_name in ['YouTube', ]:
item['src'] = HYPERLINK_PATTERN.search(oembed_data.get('html')).group(0)
data['videos'].append(item)
except Exception:
pass
if oembed_data.get('thumbnail_url'):
item = {
'width': convert_to_int(oembed_data.get('thumbnail_width')),
'height': convert_to_int(oembed_data.get('thumbnail_height')),
'src': oembed_data.get('thumbnail_url')
}
data['images'].append(item)
return data
|
def parse_oembed_data(oembed_data, data)
|
Parse OEmbed resposne data to inject into lassie's response dict.
:param oembed_data: OEmbed response data.
:type oembed_data: dict
:param data: Refrence to data variable being updated.
:type data: dict
| 2.04543 | 2.095428 | 0.97614 |
meta = FILTER_MAPS['meta'][source]
meta_map = meta['map']
html = soup.find_all('meta', {meta['key']: meta['pattern']})
image = {}
video = {}
for line in html:
prop = line.get(meta['key'])
value = line.get('content')
_prop = meta_map.get(prop)
if prop in meta_map and _prop and not data.get(_prop):
# this could be bad in cases where any values that the property
# is mapped up to (i.e. "src", "type", etc) are found in ``data``
# TODO: Figure out a smoother way to prevent conflicts ^^^^^^^^
image_prop = meta['image_key']
video_prop = meta['video_key']
if prop.startswith((image_prop, video_prop)) and \
prop.endswith(('width', 'height')):
if prop.endswith(('width', 'height')):
value = convert_to_int(value)
if meta_map[prop] == 'locale':
locale = normalize_locale(value)
if locale:
data['locale'] = locale
if prop == 'keywords':
if isinstance(value, str):
value = [v.strip() for v in value.split(',')]
else:
value = []
if image_prop and prop.startswith(image_prop) and value:
# og:image URLs can be relative
if prop == 'og:image' and url:
value = urljoin(url, value)
image[meta_map[prop]] = value
elif video_prop and prop.startswith(video_prop) and value:
video[meta_map[prop]] = value
else:
data[meta_map[prop]] = value
if image:
image['type'] = image_prop
data['images'].append(image)
if video:
data['videos'].append(video)
|
def _filter_meta_data(self, source, soup, data, url=None)
|
This method filters the web page content for meta tags that match patterns given in the ``FILTER_MAPS``
:param source: The key of the meta dictionary in ``FILTER_MAPS['meta']``
:type source: string
:param soup: BeautifulSoup instance to find meta tags
:type soup: instance
:param data: The response dictionary to manipulate
:type data: (dict)
| 3.661587 | 3.510315 | 1.043094 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.