code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
'''
Slightly extends the base version of this method by recalculating aLvlNow to account for the
consumer's (potential) misperception about their productivity level.
Parameters
----------
None
Returns
-------
None
'''
RepAgentConsumerType.getPostStates(self)
self.aLvlNow = self.mLvlTrue - self.cLvlNow # This is true
self.aNrmNow = self.aLvlNow/self.pLvlTrue
|
def getPostStates(self)
|
Slightly extends the base version of this method by recalculating aLvlNow to account for the
consumer's (potential) misperception about their productivity level.
Parameters
----------
None
Returns
-------
None
| 14.187102 | 3.42709 | 4.139694 |
'''
Finds the representative agent's (average) perceived productivity level.
Average perception of productivity gets UpdatePrb weight on the true level,
for those that update, and (1-UpdatePrb) weight on the previous average
perception times expected aggregate growth, for those that don't update.
Parameters
----------
None
Returns
-------
pLvlPcvd : np.array
Size 1 array with average perception of productivity level.
'''
pLvlPcvd = self.UpdatePrb*self.pLvlTrue + (1.0-self.UpdatePrb)*(self.pLvlNow*self.PermGroFac[self.t_cycle[0]-1])
return pLvlPcvd
|
def getpLvlPcvd(self)
|
Finds the representative agent's (average) perceived productivity level.
Average perception of productivity gets UpdatePrb weight on the true level,
for those that update, and (1-UpdatePrb) weight on the previous average
perception times expected aggregate growth, for those that don't update.
Parameters
----------
None
Returns
-------
pLvlPcvd : np.array
Size 1 array with average perception of productivity level.
| 9.208049 | 1.852534 | 4.970516 |
'''
Makes new consumers for the given indices. Slightly extends base method by also setting
pLvlTrue = 1.0 in the very first simulated period, as well as initializing the perception
of aggregate productivity for each Markov state. The representative agent begins with
the correct perception of the Markov state.
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
'''
if which_agents==np.array([True]):
RepAgentMarkovConsumerType.simBirth(self,which_agents)
if self.t_sim == 0: # Initialize perception distribution for Markov state
self.pLvlTrue = np.ones(self.AgentCount)
self.aLvlNow = self.aNrmNow*self.pLvlTrue
StateCount = self.MrkvArray.shape[0]
self.pLvlNow = np.ones(StateCount) # Perceived productivity level by Markov state
self.MrkvPcvd = np.zeros(StateCount) # Distribution of perceived Markov state
self.MrkvPcvd[self.MrkvNow[0]] = 1.0
|
def simBirth(self,which_agents)
|
Makes new consumers for the given indices. Slightly extends base method by also setting
pLvlTrue = 1.0 in the very first simulated period, as well as initializing the perception
of aggregate productivity for each Markov state. The representative agent begins with
the correct perception of the Markov state.
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
| 7.464926 | 2.664964 | 2.801136 |
'''
Finds the representative agent's (average) perceived productivity level
for each Markov state, as well as the distribution of the representative
agent's perception of the Markov state.
Parameters
----------
None
Returns
-------
pLvlPcvd : np.array
Array with average perception of productivity level by Markov state.
'''
StateCount = self.MrkvArray.shape[0]
t = self.t_cycle[0]
i = self.MrkvNow[0]
dont_mass = self.MrkvPcvd*(1.-self.UpdatePrb) # pmf of non-updaters
update_mass = np.zeros(StateCount)
update_mass[i] = self.UpdatePrb # pmf of updaters
dont_pLvlPcvd = self.pLvlNow*self.PermGroFac[t-1] # those that don't update think pLvl grows at PermGroFac for last observed state
update_pLvlPcvd = np.zeros(StateCount)
update_pLvlPcvd[i] = self.pLvlTrue # those that update see the true pLvl
# Combine updaters and non-updaters to get average pLvl perception by Markov state
self.MrkvPcvd = dont_mass + update_mass # Total mass of agent in each state
pLvlPcvd = (dont_mass*dont_pLvlPcvd + update_mass*update_pLvlPcvd)/self.MrkvPcvd
pLvlPcvd[self.MrkvPcvd==0.] = 1.0 # Fix division by zero problem when MrkvPcvd[i]=0
return pLvlPcvd
|
def getpLvlPcvd(self)
|
Finds the representative agent's (average) perceived productivity level
for each Markov state, as well as the distribution of the representative
agent's perception of the Markov state.
Parameters
----------
None
Returns
-------
pLvlPcvd : np.array
Array with average perception of productivity level by Markov state.
| 5.079797 | 3.573633 | 1.421466 |
'''
Calculates consumption for the representative agent using the consumption functions.
Takes the weighted average of cLvl across perceived Markov states.
Parameters
----------
None
Returns
-------
None
'''
StateCount = self.MrkvArray.shape[0]
t = self.t_cycle[0]
cNrmNow = np.zeros(StateCount) # Array of chosen cNrm by Markov state
for i in range(StateCount):
cNrmNow[i] = self.solution[t].cFunc[i](self.mNrmNow[i])
self.cNrmNow = cNrmNow
self.cLvlNow = np.dot(cNrmNow*self.pLvlNow,self.MrkvPcvd)
|
def getControls(self)
|
Calculates consumption for the representative agent using the consumption functions.
Takes the weighted average of cLvl across perceived Markov states.
Parameters
----------
None
Returns
-------
None
| 7.878986 | 3.57502 | 2.2039 |
'''
Function to calculate the capital to labor ratio, interest factor, and
wage rate based on each agent's current state. Just calls calcRandW()
and adds the Markov state index.
See documentation for calcRandW for more information.
'''
MrkvNow = self.MrkvNow_hist[self.Shk_idx]
temp = self.calcRandW(aLvlNow,pLvlTrue)
temp(MrkvNow = MrkvNow)
# Overwrite MaggNow, wRteNow, and RfreeNow if requested
if self.overwrite_hist:
t = self.Shk_idx-1
temp(MaggNow = self.MaggNow_overwrite[t])
temp(wRteNow = self.wRteNow_overwrite[t])
temp(RfreeNow = self.RfreeNow_overwrite[t])
return temp
|
def millRule(self,aLvlNow,pLvlTrue)
|
Function to calculate the capital to labor ratio, interest factor, and
wage rate based on each agent's current state. Just calls calcRandW()
and adds the Markov state index.
See documentation for calcRandW for more information.
| 7.643661 | 3.343161 | 2.286357 |
'''
Executes the list of commands in command_list for each AgentType in agent_list
in an ordinary, single-threaded loop. Each command should be a method of
that AgentType subclass. This function exists so as to easily disable
multithreading, as it uses the same syntax as multithreadCommands.
Parameters
----------
agent_list : [AgentType]
A list of instances of AgentType on which the commands will be run.
command_list : [string]
A list of commands to run for each AgentType.
num_jobs : None
Dummy input to match syntax of multiThreadCommands. Does nothing.
Returns
-------
none
'''
for agent in agent_list:
for command in command_list:
exec('agent.' + command)
|
def multiThreadCommandsFake(agent_list,command_list,num_jobs=None)
|
Executes the list of commands in command_list for each AgentType in agent_list
in an ordinary, single-threaded loop. Each command should be a method of
that AgentType subclass. This function exists so as to easily disable
multithreading, as it uses the same syntax as multithreadCommands.
Parameters
----------
agent_list : [AgentType]
A list of instances of AgentType on which the commands will be run.
command_list : [string]
A list of commands to run for each AgentType.
num_jobs : None
Dummy input to match syntax of multiThreadCommands. Does nothing.
Returns
-------
none
| 5.354573 | 1.313635 | 4.07615 |
'''
Executes the list of commands in command_list for each AgentType in agent_list
using a multithreaded system. Each command should be a method of that AgentType subclass.
Parameters
----------
agent_list : [AgentType]
A list of instances of AgentType on which the commands will be run.
command_list : [string]
A list of commands to run for each AgentType in agent_list.
Returns
-------
None
'''
if len(agent_list) == 1:
multiThreadCommandsFake(agent_list,command_list)
return None
# Default umber of parallel jobs is the smaller of number of AgentTypes in
# the input and the number of available cores.
if num_jobs is None:
num_jobs = min(len(agent_list),multiprocessing.cpu_count())
# Send each command in command_list to each of the types in agent_list to be run
agent_list_out = Parallel(n_jobs=num_jobs)(delayed(runCommands)(*args) for args in zip(agent_list, len(agent_list)*[command_list]))
# Replace the original types with the output from the parallel call
for j in range(len(agent_list)):
agent_list[j] = agent_list_out[j]
|
def multiThreadCommands(agent_list,command_list,num_jobs=None)
|
Executes the list of commands in command_list for each AgentType in agent_list
using a multithreaded system. Each command should be a method of that AgentType subclass.
Parameters
----------
agent_list : [AgentType]
A list of instances of AgentType on which the commands will be run.
command_list : [string]
A list of commands to run for each AgentType in agent_list.
Returns
-------
None
| 3.463756 | 2.392358 | 1.447842 |
'''
Stores the progress of a parallel Nelder-Mead search in a text file so that
it can be resumed later (after manual termination or a crash).
Parameters
----------
name : string
Name of the txt file in which to store search progress.
simplex : np.array
The current state of the simplex of parameter guesses.
fvals : np.array
The objective function value at each row of simplex.
iters : int
The number of completed Nelder-Mead iterations.
evals : int
The cumulative number of function evaluations in the search process.
Returns
-------
none
'''
f = open(name + '.txt','w')
my_writer = csv.writer(f,delimiter=' ')
my_writer.writerow(simplex.shape)
my_writer.writerow([iters, evals])
my_writer.writerow(simplex.flatten())
my_writer.writerow(fvals)
f.close()
|
def saveNelderMeadData(name, simplex, fvals, iters, evals)
|
Stores the progress of a parallel Nelder-Mead search in a text file so that
it can be resumed later (after manual termination or a crash).
Parameters
----------
name : string
Name of the txt file in which to store search progress.
simplex : np.array
The current state of the simplex of parameter guesses.
fvals : np.array
The objective function value at each row of simplex.
iters : int
The number of completed Nelder-Mead iterations.
evals : int
The cumulative number of function evaluations in the search process.
Returns
-------
none
| 3.2934 | 1.521959 | 2.163922 |
'''
Reads the progress of a parallel Nelder-Mead search from a text file, as
created by saveNelderMeadData().
Parameters
----------
name : string
Name of the txt file from which to read search progress.
Returns
-------
simplex : np.array
The current state of the simplex of parameter guesses.
fvals : np.array
The objective function value at each row of simplex.
iters : int
The number of completed Nelder-Mead iterations.
evals : int
The cumulative number of function evaluations in the search process.
'''
f = open(name + '.txt','rb')
my_reader = csv.reader(f,delimiter=' ')
my_shape_txt = next(my_reader)
shape0 = int(my_shape_txt[0])
shape1 = int(my_shape_txt[1])
my_nums_txt = next(my_reader)
iters = int(my_nums_txt[0])
evals = int(my_nums_txt[1])
simplex_flat = np.array(next(my_reader),dtype=float)
simplex = np.reshape(simplex_flat,(shape0,shape1))
fvals = np.array(next(my_reader),dtype=float)
f.close()
return simplex, fvals, iters, evals
|
def loadNelderMeadData(name)
|
Reads the progress of a parallel Nelder-Mead search from a text file, as
created by saveNelderMeadData().
Parameters
----------
name : string
Name of the txt file from which to read search progress.
Returns
-------
simplex : np.array
The current state of the simplex of parameter guesses.
fvals : np.array
The objective function value at each row of simplex.
iters : int
The number of completed Nelder-Mead iterations.
evals : int
The cumulative number of function evaluations in the search process.
| 2.816689 | 1.600793 | 1.759559 |
'''
Minimizes the objective function using the Nelder-Mead simplex algorithm,
starting from an initial parameter guess.
Parameters
----------
objectiveFunction : function
The function to be minimized. It should take only a single argument, which
should be a list representing the parameters to be estimated.
parameter_guess : [float]
A starting point for the Nelder-Mead algorithm, which must be a valid
input for objectiveFunction.
verbose : boolean
A flag for the amount of output to print.
Returns
-------
xopt : [float]
The values that minimize objectiveFunction.
'''
# Execute the minimization, starting from the given parameter guess
t0 = time() # Time the process
OUTPUT = fmin(objectiveFunction, parameter_guess, full_output=1, maxiter=1000, disp=verbose, **kwargs)
t1 = time()
# Extract values from optimization output:
xopt = OUTPUT[0] # Parameters that minimize function.
fopt = OUTPUT[1] # Value of function at minimum: ``fopt = func(xopt)``.
optiter = OUTPUT[2] # Number of iterations performed.
funcalls = OUTPUT[3] # Number of function calls made.
warnflag = OUTPUT[4] # warnflag : int
# 1 : Maximum number of function evaluations made.
# 2 : Maximum number of iterations reached.
# Check that optimization succeeded:
if warnflag != 0:
warnings.warn("Minimization failed! xopt=" + str(xopt) + ', fopt=' + str(fopt) +
', optiter=' + str(optiter) +', funcalls=' + str(funcalls) +
', warnflag=' + str(warnflag))
# Display and return the results:
if verbose:
print("Time to estimate is " + str(t1-t0) + " seconds.")
return xopt
|
def minimizeNelderMead(objectiveFunction, parameter_guess, verbose=False, **kwargs)
|
Minimizes the objective function using the Nelder-Mead simplex algorithm,
starting from an initial parameter guess.
Parameters
----------
objectiveFunction : function
The function to be minimized. It should take only a single argument, which
should be a list representing the parameters to be estimated.
parameter_guess : [float]
A starting point for the Nelder-Mead algorithm, which must be a valid
input for objectiveFunction.
verbose : boolean
A flag for the amount of output to print.
Returns
-------
xopt : [float]
The values that minimize objectiveFunction.
| 3.125792 | 2.291865 | 1.363864 |
'''
Minimizes the objective function using a derivative-free Powell algorithm,
starting from an initial parameter guess.
Parameters
----------
objectiveFunction : function
The function to be minimized. It should take only a single argument, which
should be a list representing the parameters to be estimated.
parameter_guess : [float]
A starting point for the Powell algorithm, which must be a valid
input for objectiveFunction.
verbose : boolean
A flag for the amount of output to print.
Returns
-------
xopt : [float]
The values that minimize objectiveFunction.
'''
# Execute the minimization, starting from the given parameter guess
t0 = time() # Time the process
OUTPUT = fmin_powell(objectiveFunction, parameter_guess, full_output=1, maxiter=1000, disp=verbose)
t1 = time()
# Extract values from optimization output:
xopt = OUTPUT[0] # Parameters that minimize function.
fopt = OUTPUT[1] # Value of function at minimum: ``fopt = func(xopt)``.
direc = OUTPUT[2]
optiter = OUTPUT[3] # Number of iterations performed.
funcalls = OUTPUT[4] # Number of function calls made.
warnflag = OUTPUT[5] # warnflag : int
# 1 : Maximum number of function evaluations made.
# 2 : Maximum number of iterations reached.
# Check that optimization succeeded:
if warnflag != 0:
warnings.warn("Minimization failed! xopt=" + str(xopt) + ', fopt=' + str(fopt) + ', direc=' + str(direc) + ', optiter=' + str(optiter) +', funcalls=' + str(funcalls) +', warnflag=' + str(warnflag))
# Display and return the results:
if verbose:
print("Time to estimate is " + str(t1-t0) + " seconds.")
return xopt
|
def minimizePowell(objectiveFunction, parameter_guess, verbose=False)
|
Minimizes the objective function using a derivative-free Powell algorithm,
starting from an initial parameter guess.
Parameters
----------
objectiveFunction : function
The function to be minimized. It should take only a single argument, which
should be a list representing the parameters to be estimated.
parameter_guess : [float]
A starting point for the Powell algorithm, which must be a valid
input for objectiveFunction.
verbose : boolean
A flag for the amount of output to print.
Returns
-------
xopt : [float]
The values that minimize objectiveFunction.
| 3.225044 | 2.335406 | 1.380935 |
'''
Samples rows from the input array of data, generating a new data array with
an equal number of rows (records). Rows are drawn with equal probability
by default, but probabilities can be specified with weights (must sum to 1).
Parameters
----------
data : np.array
An array of data, with each row representing a record.
weights : np.array
A weighting array with length equal to data.shape[0].
seed : int
A seed for the random number generator.
Returns
-------
new_data : np.array
A resampled version of input data.
'''
# Set up the random number generator
RNG = np.random.RandomState(seed)
N = data.shape[0]
# Set up weights
if weights is not None:
cutoffs = np.cumsum(weights)
else:
cutoffs = np.linspace(0,1,N)
# Draw random indices
indices = np.searchsorted(cutoffs,RNG.uniform(size=N))
# Create a bootstrapped sample
new_data = deepcopy(data[indices,])
return new_data
|
def bootstrapSampleFromData(data,weights=None,seed=0)
|
Samples rows from the input array of data, generating a new data array with
an equal number of rows (records). Rows are drawn with equal probability
by default, but probabilities can be specified with weights (must sum to 1).
Parameters
----------
data : np.array
An array of data, with each row representing a record.
weights : np.array
A weighting array with length equal to data.shape[0].
seed : int
A seed for the random number generator.
Returns
-------
new_data : np.array
A resampled version of input data.
| 3.293011 | 1.813921 | 1.81541 |
'''
Calculates what consumption, market resources, and the marginal propensity
to consume must have been in the previous period given model parameters and
values of market resources, consumption, and MPC today.
Parameters
----------
DiscFac : float
Intertemporal discount factor on future utility.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFacCmp : float
Permanent income growth factor, compensated for the possibility of
permanent unemployment.
UnempPrb : float
Probability of becoming permanently unemployed.
Rnrm : float
Interest factor normalized by compensated permanent income growth factor.
Beth : float
Composite effective discount factor for reverse shooting solution; defined
in appendix "Numerical Solution/The Consumption Function" in TBS
lecture notes
cNext : float
Normalized consumption in the succeeding period.
mNext : float
Normalized market resources in the succeeding period.
MPCnext : float
The marginal propensity to consume in the succeeding period.
PFMPC : float
The perfect foresight MPC; also the MPC when permanently unemployed.
Returns
-------
mNow : float
Normalized market resources this period.
cNow : float
Normalized consumption this period.
MPCnow : float
Marginal propensity to consume this period.
'''
uPP = lambda x : utilityPP(x,gam=CRRA)
cNow = PermGroFacCmp*(DiscFac*Rfree)**(-1.0/CRRA)*cNext*(1 + UnempPrb*((cNext/(PFMPC*(mNext-1.0)))**CRRA-1.0))**(-1.0/CRRA)
mNow = (PermGroFacCmp/Rfree)*(mNext - 1.0) + cNow
cUNext = PFMPC*(mNow-cNow)*Rnrm
# See TBS Appendix "E.1 The Consumption Function"
natural = Beth*Rnrm*(1.0/uPP(cNow))*((1.0-UnempPrb)*uPP(cNext)*MPCnext + UnempPrb*uPP(cUNext)*PFMPC) # Convenience variable
MPCnow = natural / (natural + 1)
return mNow, cNow, MPCnow
|
def findNextPoint(DiscFac,Rfree,CRRA,PermGroFacCmp,UnempPrb,Rnrm,Beth,cNext,mNext,MPCnext,PFMPC)
|
Calculates what consumption, market resources, and the marginal propensity
to consume must have been in the previous period given model parameters and
values of market resources, consumption, and MPC today.
Parameters
----------
DiscFac : float
Intertemporal discount factor on future utility.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFacCmp : float
Permanent income growth factor, compensated for the possibility of
permanent unemployment.
UnempPrb : float
Probability of becoming permanently unemployed.
Rnrm : float
Interest factor normalized by compensated permanent income growth factor.
Beth : float
Composite effective discount factor for reverse shooting solution; defined
in appendix "Numerical Solution/The Consumption Function" in TBS
lecture notes
cNext : float
Normalized consumption in the succeeding period.
mNext : float
Normalized market resources in the succeeding period.
MPCnext : float
The marginal propensity to consume in the succeeding period.
PFMPC : float
The perfect foresight MPC; also the MPC when permanently unemployed.
Returns
-------
mNow : float
Normalized market resources this period.
cNow : float
Normalized consumption this period.
MPCnow : float
Marginal propensity to consume this period.
| 5.282934 | 2.193279 | 2.408692 |
'''
This method adds consumption at m=0 to the list of stable arm points,
then constructs the consumption function as a cubic interpolation over
those points. Should be run after the backshooting routine is complete.
Parameters
----------
none
Returns
-------
none
'''
# Add bottom point to the stable arm points
self.solution[0].mNrm_list.insert(0,0.0)
self.solution[0].cNrm_list.insert(0,0.0)
self.solution[0].MPC_list.insert(0,self.MPCmax)
# Construct an interpolation of the consumption function from the stable arm points
self.solution[0].cFunc = CubicInterp(self.solution[0].mNrm_list,self.solution[0].cNrm_list,self.solution[0].MPC_list,self.PFMPC*(self.h-1.0),self.PFMPC)
self.solution[0].cFunc_U = lambda m : self.PFMPC*m
|
def postSolve(self)
|
This method adds consumption at m=0 to the list of stable arm points,
then constructs the consumption function as a cubic interpolation over
those points. Should be run after the backshooting routine is complete.
Parameters
----------
none
Returns
-------
none
| 5.806431 | 2.77635 | 2.09139 |
'''
Makes new consumers for the given indices. Initialized variables include aNrm, as
well as time variables t_age and t_cycle. Normalized assets are drawn from a lognormal
distributions given by aLvlInitMean and aLvlInitStd.
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
'''
# Get and store states for newly born agents
N = np.sum(which_agents) # Number of new consumers to make
self.aLvlNow[which_agents] = drawLognormal(N,mu=self.aLvlInitMean,sigma=self.aLvlInitStd,seed=self.RNG.randint(0,2**31-1))
self.eStateNow[which_agents] = 1.0 # Agents are born employed
self.t_age[which_agents] = 0 # How many periods since each agent was born
self.t_cycle[which_agents] = 0 # Which period of the cycle each agent is currently in
return None
|
def simBirth(self,which_agents)
|
Makes new consumers for the given indices. Initialized variables include aNrm, as
well as time variables t_age and t_cycle. Normalized assets are drawn from a lognormal
distributions given by aLvlInitMean and aLvlInitStd.
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
| 5.694027 | 2.422893 | 2.350094 |
'''
Trivial function that returns boolean array of all False, as there is no death.
Parameters
----------
None
Returns
-------
which_agents : np.array(bool)
Boolean array of size AgentCount indicating which agents die.
'''
# Nobody dies in this model
which_agents = np.zeros(self.AgentCount,dtype=bool)
return which_agents
|
def simDeath(self)
|
Trivial function that returns boolean array of all False, as there is no death.
Parameters
----------
None
Returns
-------
which_agents : np.array(bool)
Boolean array of size AgentCount indicating which agents die.
| 7.303961 | 2.084615 | 3.503747 |
'''
Determine which agents switch from employment to unemployment. All unemployed agents remain
unemployed until death.
Parameters
----------
None
Returns
-------
None
'''
employed = self.eStateNow == 1.0
N = int(np.sum(employed))
newly_unemployed = drawBernoulli(N,p=self.UnempPrb,seed=self.RNG.randint(0,2**31-1))
self.eStateNow[employed] = 1.0 - newly_unemployed
|
def getShocks(self)
|
Determine which agents switch from employment to unemployment. All unemployed agents remain
unemployed until death.
Parameters
----------
None
Returns
-------
None
| 6.201181 | 3.4244 | 1.810881 |
'''
Calculate market resources for all agents this period.
Parameters
----------
None
Returns
-------
None
'''
self.bLvlNow = self.Rfree*self.aLvlNow
self.mLvlNow = self.bLvlNow + self.eStateNow
|
def getStates(self)
|
Calculate market resources for all agents this period.
Parameters
----------
None
Returns
-------
None
| 10.117438 | 4.911678 | 2.059874 |
'''
Calculate consumption for each agent this period.
Parameters
----------
None
Returns
-------
None
'''
employed = self.eStateNow == 1.0
unemployed = np.logical_not(employed)
cLvlNow = np.zeros(self.AgentCount)
cLvlNow[employed] = self.solution[0].cFunc(self.mLvlNow[employed])
cLvlNow[unemployed] = self.solution[0].cFunc_U(self.mLvlNow[unemployed])
self.cLvlNow = cLvlNow
|
def getControls(self)
|
Calculate consumption for each agent this period.
Parameters
----------
None
Returns
-------
None
| 4.036493 | 2.827651 | 1.427508 |
'''
Evaluate the derivative of consumption and medical care with respect to
market resources at given levels of market resources, permanent income,
and medical need shocks.
Parameters
----------
mLvl : np.array
Market resource levels.
pLvl : np.array
Permanent income levels; should be same size as mLvl.
MedShk : np.array
Medical need shocks; should be same size as mLvl.
Returns
-------
dcdm : np.array
Derivative of consumption with respect to market resources for each
point in (xLvl,MedShk).
dMeddm : np.array
Derivative of medical care with respect to market resources for each
point in (xLvl,MedShk).
'''
xLvl = self.xFunc(mLvl,pLvl,MedShk)
dxdm = self.xFunc.derivativeX(mLvl,pLvl,MedShk)
dcdx = self.cFunc.derivativeX(xLvl,MedShk)
dcdm = dxdm*dcdx
dMeddm = (dxdm - dcdm)/self.MedPrice
return dcdm,dMeddm
|
def derivativeX(self,mLvl,pLvl,MedShk)
|
Evaluate the derivative of consumption and medical care with respect to
market resources at given levels of market resources, permanent income,
and medical need shocks.
Parameters
----------
mLvl : np.array
Market resource levels.
pLvl : np.array
Permanent income levels; should be same size as mLvl.
MedShk : np.array
Medical need shocks; should be same size as mLvl.
Returns
-------
dcdm : np.array
Derivative of consumption with respect to market resources for each
point in (xLvl,MedShk).
dMeddm : np.array
Derivative of medical care with respect to market resources for each
point in (xLvl,MedShk).
| 2.4914 | 1.460056 | 1.706373 |
'''
Evaluate the derivative of consumption and medical care with respect to
permanent income at given levels of market resources, permanent income,
and medical need shocks.
Parameters
----------
mLvl : np.array
Market resource levels.
pLvl : np.array
Permanent income levels; should be same size as mLvl.
MedShk : np.array
Medical need shocks; should be same size as mLvl.
Returns
-------
dcdp : np.array
Derivative of consumption with respect to permanent income for each
point in (xLvl,MedShk).
dMeddp : np.array
Derivative of medical care with respect to permanent income for each
point in (xLvl,MedShk).
'''
xLvl = self.xFunc(mLvl,pLvl,MedShk)
dxdp = self.xFunc.derivativeY(mLvl,pLvl,MedShk)
dcdx = self.cFunc.derivativeX(xLvl,MedShk)
dcdp = dxdp*dcdx
dMeddp = (dxdp - dcdp)/self.MedPrice
return dcdp,dMeddp
|
def derivativeY(self,mLvl,pLvl,MedShk)
|
Evaluate the derivative of consumption and medical care with respect to
permanent income at given levels of market resources, permanent income,
and medical need shocks.
Parameters
----------
mLvl : np.array
Market resource levels.
pLvl : np.array
Permanent income levels; should be same size as mLvl.
MedShk : np.array
Medical need shocks; should be same size as mLvl.
Returns
-------
dcdp : np.array
Derivative of consumption with respect to permanent income for each
point in (xLvl,MedShk).
dMeddp : np.array
Derivative of medical care with respect to permanent income for each
point in (xLvl,MedShk).
| 2.525996 | 1.474414 | 1.71322 |
'''
Evaluate the derivative of consumption and medical care with respect to
medical need shock at given levels of market resources, permanent income,
and medical need shocks.
Parameters
----------
mLvl : np.array
Market resource levels.
pLvl : np.array
Permanent income levels; should be same size as mLvl.
MedShk : np.array
Medical need shocks; should be same size as mLvl.
Returns
-------
dcdShk : np.array
Derivative of consumption with respect to medical need for each
point in (xLvl,MedShk).
dMeddShk : np.array
Derivative of medical care with respect to medical need for each
point in (xLvl,MedShk).
'''
xLvl = self.xFunc(mLvl,pLvl,MedShk)
dxdShk = self.xFunc.derivativeZ(mLvl,pLvl,MedShk)
dcdx = self.cFunc.derivativeX(xLvl,MedShk)
dcdShk = dxdShk*dcdx + self.cFunc.derivativeY(xLvl,MedShk)
dMeddShk = (dxdShk - dcdShk)/self.MedPrice
return dcdShk,dMeddShk
|
def derivativeZ(self,mLvl,pLvl,MedShk)
|
Evaluate the derivative of consumption and medical care with respect to
medical need shock at given levels of market resources, permanent income,
and medical need shocks.
Parameters
----------
mLvl : np.array
Market resource levels.
pLvl : np.array
Permanent income levels; should be same size as mLvl.
MedShk : np.array
Medical need shocks; should be same size as mLvl.
Returns
-------
dcdShk : np.array
Derivative of consumption with respect to medical need for each
point in (xLvl,MedShk).
dMeddShk : np.array
Derivative of medical care with respect to medical need for each
point in (xLvl,MedShk).
| 2.535303 | 1.489784 | 1.701792 |
'''
Update the income process, the assets grid, the permanent income grid,
the medical shock distribution, and the terminal solution.
Parameters
----------
none
Returns
-------
none
'''
self.updateIncomeProcess()
self.updateAssetsGrid()
self.updatepLvlNextFunc()
self.updatepLvlGrid()
self.updateMedShockProcess()
self.updateSolutionTerminal()
|
def update(self)
|
Update the income process, the assets grid, the permanent income grid,
the medical shock distribution, and the terminal solution.
Parameters
----------
none
Returns
-------
none
| 9.686079 | 2.655675 | 3.647314 |
'''
Constructs discrete distributions of medical preference shocks for each
period in the cycle. Distributions are saved as attribute MedShkDstn,
which is added to time_vary.
Parameters
----------
None
Returns
-------
None
'''
MedShkDstn = [] # empty list for medical shock distribution each period
for t in range(self.T_cycle):
MedShkAvgNow = self.MedShkAvg[t] # get shock distribution parameters
MedShkStdNow = self.MedShkStd[t]
MedShkDstnNow = approxLognormal(mu=np.log(MedShkAvgNow)-0.5*MedShkStdNow**2,\
sigma=MedShkStdNow,N=self.MedShkCount, tail_N=self.MedShkCountTail,
tail_bound=[0,0.9])
MedShkDstnNow = addDiscreteOutcomeConstantMean(MedShkDstnNow,0.0,0.0,sort=True) # add point at zero with no probability
MedShkDstn.append(MedShkDstnNow)
self.MedShkDstn = MedShkDstn
self.addToTimeVary('MedShkDstn')
|
def updateMedShockProcess(self)
|
Constructs discrete distributions of medical preference shocks for each
period in the cycle. Distributions are saved as attribute MedShkDstn,
which is added to time_vary.
Parameters
----------
None
Returns
-------
None
| 4.770729 | 3.138014 | 1.520302 |
'''
Update the grid of permanent income levels. Currently only works for
infinite horizon models (cycles=0) and lifecycle models (cycles=1). Not
clear what to do about cycles>1. Identical to version in persistent
shocks model, but pLvl=0 is manually added to the grid (because there is
no closed form lower-bounding cFunc for pLvl=0).
Parameters
----------
None
Returns
-------
None
'''
# Run basic version of this method
PersistentShockConsumerType.updatepLvlGrid(self)
for j in range(len(self.pLvlGrid)): # Then add 0 to the bottom of each pLvlGrid
this_grid = self.pLvlGrid[j]
self.pLvlGrid[j] = np.insert(this_grid,0,0.0001)
|
def updatepLvlGrid(self)
|
Update the grid of permanent income levels. Currently only works for
infinite horizon models (cycles=0) and lifecycle models (cycles=1). Not
clear what to do about cycles>1. Identical to version in persistent
shocks model, but pLvl=0 is manually added to the grid (because there is
no closed form lower-bounding cFunc for pLvl=0).
Parameters
----------
None
Returns
-------
None
| 7.202684 | 2.037005 | 3.535918 |
'''
Gets permanent and transitory income shocks for this period as well as medical need shocks
and the price of medical care.
Parameters
----------
None
Returns
-------
None
'''
PersistentShockConsumerType.getShocks(self) # Get permanent and transitory income shocks
MedShkNow = np.zeros(self.AgentCount) # Initialize medical shock array
MedPriceNow = np.zeros(self.AgentCount) # Initialize relative price array
for t in range(self.T_cycle):
these = t == self.t_cycle
N = np.sum(these)
if N > 0:
MedShkAvg = self.MedShkAvg[t]
MedShkStd = self.MedShkStd[t]
MedPrice = self.MedPrice[t]
MedShkNow[these] = self.RNG.permutation(approxLognormal(N,mu=np.log(MedShkAvg)-0.5*MedShkStd**2,sigma=MedShkStd)[1])
MedPriceNow[these] = MedPrice
self.MedShkNow = MedShkNow
self.MedPriceNow = MedPriceNow
|
def getShocks(self)
|
Gets permanent and transitory income shocks for this period as well as medical need shocks
and the price of medical care.
Parameters
----------
None
Returns
-------
None
| 3.475124 | 2.722493 | 1.276449 |
'''
Calculates consumption and medical care for each consumer of this type using the consumption
and medical care functions.
Parameters
----------
None
Returns
-------
None
'''
cLvlNow = np.zeros(self.AgentCount) + np.nan
MedNow = np.zeros(self.AgentCount) + np.nan
for t in range(self.T_cycle):
these = t == self.t_cycle
cLvlNow[these], MedNow[these] = self.solution[t].policyFunc(self.mLvlNow[these],self.pLvlNow[these],self.MedShkNow[these])
self.cLvlNow = cLvlNow
self.MedNow = MedNow
return None
|
def getControls(self)
|
Calculates consumption and medical care for each consumer of this type using the consumption
and medical care functions.
Parameters
----------
None
Returns
-------
None
| 4.914814 | 3.021294 | 1.626725 |
'''
Calculates end-of-period assets for each consumer of this type.
Parameters
----------
None
Returns
-------
None
'''
self.aLvlNow = self.mLvlNow - self.cLvlNow - self.MedPriceNow*self.MedNow
return None
|
def getPostStates(self)
|
Calculates end-of-period assets for each consumer of this type.
Parameters
----------
None
Returns
-------
None
| 13.459542 | 5.370462 | 2.506217 |
'''
Unpacks some of the inputs (and calculates simple objects based on them),
storing the results in self for use by other methods. These include:
income shocks and probabilities, medical shocks and probabilities, next
period's marginal value function (etc), the probability of getting the
worst income shock next period, the patience factor, human wealth, and
the bounding MPCs.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
Returns
-------
None
'''
# Run basic version of this method
ConsGenIncProcessSolver.setAndUpdateValues(self,self.solution_next,self.IncomeDstn,
self.LivPrb,self.DiscFac)
# Also unpack the medical shock distribution
self.MedShkPrbs = self.MedShkDstn[0]
self.MedShkVals = self.MedShkDstn[1]
|
def setAndUpdateValues(self,solution_next,IncomeDstn,LivPrb,DiscFac)
|
Unpacks some of the inputs (and calculates simple objects based on them),
storing the results in self for use by other methods. These include:
income shocks and probabilities, medical shocks and probabilities, next
period's marginal value function (etc), the probability of getting the
worst income shock next period, the patience factor, human wealth, and
the bounding MPCs.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
Returns
-------
None
| 3.627634 | 1.590467 | 2.280861 |
'''
Defines CRRA utility function for this period (and its derivatives,
and their inverses), saving them as attributes of self for other methods
to use. Extends version from ConsIndShock models by also defining inverse
marginal utility function over medical care.
Parameters
----------
none
Returns
-------
none
'''
ConsGenIncProcessSolver.defUtilityFuncs(self) # Do basic version
self.uMedPinv = lambda Med : utilityP_inv(Med,gam=self.CRRAmed)
self.uMed = lambda Med : utility(Med,gam=self.CRRAmed)
self.uMedPP = lambda Med : utilityPP(Med,gam=self.CRRAmed)
|
def defUtilityFuncs(self)
|
Defines CRRA utility function for this period (and its derivatives,
and their inverses), saving them as attributes of self for other methods
to use. Extends version from ConsIndShock models by also defining inverse
marginal utility function over medical care.
Parameters
----------
none
Returns
-------
none
| 10.063264 | 3.138224 | 3.206674 |
'''
Defines the constrained portion of the consumption function as cFuncNowCnst,
an attribute of self. Uses the artificial and natural borrowing constraints.
Parameters
----------
BoroCnstArt : float or None
Borrowing constraint for the minimum allowable (normalized) assets
to end the period with. If it is less than the natural borrowing
constraint at a particular permanent income level, then it is irrelevant;
BoroCnstArt=None indicates no artificial borrowing constraint.
Returns
-------
None
'''
# Find minimum allowable end-of-period assets at each permanent income level
PermIncMinNext = self.PermShkMinNext*self.pLvlNextFunc(self.pLvlGrid)
IncLvlMinNext = PermIncMinNext*self.TranShkMinNext
aLvlMin = (self.solution_next.mLvlMin(PermIncMinNext) - IncLvlMinNext)/self.Rfree
# Make a function for the natural borrowing constraint by permanent income
BoroCnstNat = LinearInterp(np.insert(self.pLvlGrid,0,0.0),np.insert(aLvlMin,0,0.0))
self.BoroCnstNat = BoroCnstNat
# Define the minimum allowable level of market resources by permanent income
if self.BoroCnstArt is not None:
BoroCnstArt = LinearInterp([0.0,1.0],[0.0,self.BoroCnstArt])
self.mLvlMinNow = UpperEnvelope(BoroCnstNat,BoroCnstArt)
else:
self.mLvlMinNow = BoroCnstNat
# Make the constrained total spending function: spend all market resources
trivial_grid = np.array([0.0,1.0]) # Trivial grid
spendAllFunc = TrilinearInterp(np.array([[[0.0,0.0],[0.0,0.0]],[[1.0,1.0],[1.0,1.0]]]),\
trivial_grid,trivial_grid,trivial_grid)
self.xFuncNowCnst = VariableLowerBoundFunc3D(spendAllFunc,self.mLvlMinNow)
self.mNrmMinNow = 0.0 # Needs to exist so as not to break when solution is created
self.MPCmaxEff = 0.0
|
def defBoroCnst(self,BoroCnstArt)
|
Defines the constrained portion of the consumption function as cFuncNowCnst,
an attribute of self. Uses the artificial and natural borrowing constraints.
Parameters
----------
BoroCnstArt : float or None
Borrowing constraint for the minimum allowable (normalized) assets
to end the period with. If it is less than the natural borrowing
constraint at a particular permanent income level, then it is irrelevant;
BoroCnstArt=None indicates no artificial borrowing constraint.
Returns
-------
None
| 4.355576 | 2.953595 | 1.474669 |
'''
Finds endogenous interpolation points (x,m) for the expenditure function.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvlNow : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
Returns
-------
x_for_interpolation : np.array
Total expenditure points for interpolation.
m_for_interpolation : np.array
Corresponding market resource points for interpolation.
p_for_interpolation : np.array
Corresponding permanent income points for interpolation.
'''
# Get size of each state dimension
mCount = aLvlNow.shape[1]
pCount = aLvlNow.shape[0]
MedCount = self.MedShkVals.size
# Calculate endogenous gridpoints and controls
cLvlNow = np.tile(np.reshape(self.uPinv(EndOfPrdvP),(1,pCount,mCount)),(MedCount,1,1))
MedBaseNow = np.tile(np.reshape(self.uMedPinv(self.MedPrice*EndOfPrdvP),(1,pCount,mCount)),
(MedCount,1,1))
MedShkVals_tiled = np.tile(np.reshape(self.MedShkVals**(1.0/self.CRRAmed),(MedCount,1,1)),
(1,pCount,mCount))
MedLvlNow = MedShkVals_tiled*MedBaseNow
aLvlNow_tiled = np.tile(np.reshape(aLvlNow,(1,pCount,mCount)),(MedCount,1,1))
xLvlNow = cLvlNow + self.MedPrice*MedLvlNow
mLvlNow = xLvlNow + aLvlNow_tiled
# Limiting consumption is zero as m approaches the natural borrowing constraint
x_for_interpolation = np.concatenate((np.zeros((MedCount,pCount,1)),xLvlNow),axis=-1)
temp = np.tile(self.BoroCnstNat(np.reshape(self.pLvlGrid,(1,self.pLvlGrid.size,1))),
(MedCount,1,1))
m_for_interpolation = np.concatenate((temp,mLvlNow),axis=-1)
# Make a 3D array of permanent income for interpolation
p_for_interpolation = np.tile(np.reshape(self.pLvlGrid,(1,pCount,1)),(MedCount,1,mCount+1))
# Store for use by cubic interpolator
self.cLvlNow = cLvlNow
self.MedLvlNow = MedLvlNow
self.MedShkVals_tiled = np.tile(np.reshape(self.MedShkVals,(MedCount,1,1)),(1,pCount,mCount))
return x_for_interpolation, m_for_interpolation, p_for_interpolation
|
def getPointsForInterpolation(self,EndOfPrdvP,aLvlNow)
|
Finds endogenous interpolation points (x,m) for the expenditure function.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvlNow : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
Returns
-------
x_for_interpolation : np.array
Total expenditure points for interpolation.
m_for_interpolation : np.array
Corresponding market resource points for interpolation.
p_for_interpolation : np.array
Corresponding permanent income points for interpolation.
| 2.998577 | 2.330377 | 1.286735 |
'''
Constructs a basic solution for this period, including the consumption
function and marginal value function.
Parameters
----------
xLvl : np.array
Total expenditure points for interpolation.
mLvl : np.array
Corresponding market resource points for interpolation.
pLvl : np.array
Corresponding permanent income level points for interpolation.
MedShk : np.array
Corresponding medical need shocks for interpolation.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
'''
# Construct the unconstrained total expenditure function
xFuncNowUnc = interpolator(mLvl,pLvl,MedShk,xLvl)
xFuncNowCnst = self.xFuncNowCnst
xFuncNow = LowerEnvelope3D(xFuncNowUnc,xFuncNowCnst)
# Transform the expenditure function into policy functions for consumption and medical care
aug_factor = 2
xLvlGrid = makeGridExpMult(np.min(xLvl),np.max(xLvl),aug_factor*self.aXtraGrid.size,8)
policyFuncNow = MedShockPolicyFunc(xFuncNow,xLvlGrid,self.MedShkVals,self.MedPrice,
self.CRRA,self.CRRAmed,xLvlCubicBool=self.CubicBool)
cFuncNow = cThruXfunc(xFuncNow,policyFuncNow.cFunc)
MedFuncNow = MedThruXfunc(xFuncNow,policyFuncNow.cFunc,self.MedPrice)
# Make the marginal value function (and the value function if vFuncBool=True)
vFuncNow, vPfuncNow = self.makevAndvPfuncs(policyFuncNow)
# Pack up the solution and return it
solution_now = ConsumerSolution(cFunc=cFuncNow, vFunc=vFuncNow, vPfunc=vPfuncNow,\
mNrmMin=self.mNrmMinNow)
solution_now.MedFunc = MedFuncNow
solution_now.policyFunc = policyFuncNow
return solution_now
|
def usePointsForInterpolation(self,xLvl,mLvl,pLvl,MedShk,interpolator)
|
Constructs a basic solution for this period, including the consumption
function and marginal value function.
Parameters
----------
xLvl : np.array
Total expenditure points for interpolation.
mLvl : np.array
Corresponding market resource points for interpolation.
pLvl : np.array
Corresponding permanent income level points for interpolation.
MedShk : np.array
Corresponding medical need shocks for interpolation.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
| 4.13458 | 2.834554 | 1.458635 |
'''
Constructs the (unconstrained) expenditure function for this period using
bilinear interpolation (over permanent income and the medical shock) among
an array of linear interpolations over market resources.
Parameters
----------
mLvl : np.array
Corresponding market resource points for interpolation.
pLvl : np.array
Corresponding permanent income level points for interpolation.
MedShk : np.array
Corresponding medical need shocks for interpolation.
xLvl : np.array
Expenditure points for interpolation, corresponding to those in mLvl,
pLvl, and MedShk.
Returns
-------
xFuncUnc : BilinearInterpOnInterp1D
Unconstrained total expenditure function for this period.
'''
# Get state dimensions
pCount = mLvl.shape[1]
MedCount = mLvl.shape[0]
# Loop over each permanent income level and medical shock and make a linear xFunc
xFunc_by_pLvl_and_MedShk = [] # Initialize the empty list of lists of 1D xFuncs
for i in range(pCount):
temp_list = []
pLvl_i = pLvl[0,i,0]
mLvlMin_i = self.BoroCnstNat(pLvl_i)
for j in range(MedCount):
m_temp = mLvl[j,i,:] - mLvlMin_i
x_temp = xLvl[j,i,:]
temp_list.append(LinearInterp(m_temp,x_temp))
xFunc_by_pLvl_and_MedShk.append(deepcopy(temp_list))
# Combine the nested list of linear xFuncs into a single function
pLvl_temp = pLvl[0,:,0]
MedShk_temp = MedShk[:,0,0]
xFuncUncBase = BilinearInterpOnInterp1D(xFunc_by_pLvl_and_MedShk,pLvl_temp,MedShk_temp)
xFuncUnc = VariableLowerBoundFunc3D(xFuncUncBase,self.BoroCnstNat)
return xFuncUnc
|
def makeLinearxFunc(self,mLvl,pLvl,MedShk,xLvl)
|
Constructs the (unconstrained) expenditure function for this period using
bilinear interpolation (over permanent income and the medical shock) among
an array of linear interpolations over market resources.
Parameters
----------
mLvl : np.array
Corresponding market resource points for interpolation.
pLvl : np.array
Corresponding permanent income level points for interpolation.
MedShk : np.array
Corresponding medical need shocks for interpolation.
xLvl : np.array
Expenditure points for interpolation, corresponding to those in mLvl,
pLvl, and MedShk.
Returns
-------
xFuncUnc : BilinearInterpOnInterp1D
Unconstrained total expenditure function for this period.
| 3.366503 | 2.122409 | 1.586171 |
'''
Given end of period assets and end of period marginal value, construct
the basic solution for this period.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvl : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
'''
xLvl,mLvl,pLvl = self.getPointsForInterpolation(EndOfPrdvP,aLvl)
MedShk_temp = np.tile(np.reshape(self.MedShkVals,(self.MedShkVals.size,1,1)),\
(1,mLvl.shape[1],mLvl.shape[2]))
solution_now = self.usePointsForInterpolation(xLvl,mLvl,pLvl,MedShk_temp,interpolator)
return solution_now
|
def makeBasicSolution(self,EndOfPrdvP,aLvl,interpolator)
|
Given end of period assets and end of period marginal value, construct
the basic solution for this period.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvl : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
| 3.907602 | 1.923744 | 2.031248 |
'''
Solves a one period consumption saving problem with risky income and
shocks to medical need.
Parameters
----------
None
Returns
-------
solution : ConsumerSolution
The solution to the one period problem, including a consumption
function, medical spending function ( both defined over market re-
sources, permanent income, and medical shock), a marginal value func-
tion (defined over market resources and permanent income), and human
wealth as a function of permanent income.
'''
aLvl,trash = self.prepareToCalcEndOfPrdvP()
EndOfPrdvP = self.calcEndOfPrdvP()
if self.vFuncBool:
self.makeEndOfPrdvFunc(EndOfPrdvP)
if self.CubicBool:
interpolator = self.makeCubicxFunc
else:
interpolator = self.makeLinearxFunc
solution = self.makeBasicSolution(EndOfPrdvP,aLvl,interpolator)
solution = self.addMPCandHumanWealth(solution)
if self.CubicBool:
solution = self.addvPPfunc(solution)
return solution
|
def solve(self)
|
Solves a one period consumption saving problem with risky income and
shocks to medical need.
Parameters
----------
None
Returns
-------
solution : ConsumerSolution
The solution to the one period problem, including a consumption
function, medical spending function ( both defined over market re-
sources, permanent income, and medical shock), a marginal value func-
tion (defined over market resources and permanent income), and human
wealth as a function of permanent income.
| 7.730379 | 2.743941 | 2.817254 |
'''
Find the borrowing constraint for each current state and save it as an
attribute of self for use by other methods.
Parameters
----------
none
Returns
-------
none
'''
self.BoroCnstNatAll = np.zeros(self.StateCount) + np.nan
# Find the natural borrowing constraint conditional on next period's state
for j in range(self.StateCount):
PermShkMinNext = np.min(self.IncomeDstn_list[j][1])
TranShkMinNext = np.min(self.IncomeDstn_list[j][2])
self.BoroCnstNatAll[j] = (self.solution_next.mNrmMin[j] - TranShkMinNext)*\
(self.PermGroFac_list[j]*PermShkMinNext)/self.Rfree_list[j]
self.BoroCnstNat_list = np.zeros(self.StateCount) + np.nan
self.mNrmMin_list = np.zeros(self.StateCount) + np.nan
self.BoroCnstDependency = np.zeros((self.StateCount,self.StateCount)) + np.nan
# The natural borrowing constraint in each current state is the *highest*
# among next-state-conditional natural borrowing constraints that could
# occur from this current state.
for i in range(self.StateCount):
possible_next_states = self.MrkvArray[i,:] > 0
self.BoroCnstNat_list[i] = np.max(self.BoroCnstNatAll[possible_next_states])
# Explicitly handle the "None" case:
if self.BoroCnstArt is None:
self.mNrmMin_list[i] = self.BoroCnstNat_list[i]
else:
self.mNrmMin_list[i] = np.max([self.BoroCnstNat_list[i],self.BoroCnstArt])
self.BoroCnstDependency[i,:] = self.BoroCnstNat_list[i] == self.BoroCnstNatAll
|
def defBoundary(self)
|
Find the borrowing constraint for each current state and save it as an
attribute of self for use by other methods.
Parameters
----------
none
Returns
-------
none
| 3.3894 | 2.877092 | 1.178064 |
'''
Temporarily assume that a particular Markov state will occur in the
succeeding period, and condition solver attributes on this assumption.
Allows the solver to construct the future-state-conditional marginal
value function (etc) for that future state.
Parameters
----------
state_index : int
Index of the future Markov state to condition on.
Returns
-------
none
'''
# Set future-state-conditional values as attributes of self
self.IncomeDstn = self.IncomeDstn_list[state_index]
self.Rfree = self.Rfree_list[state_index]
self.PermGroFac = self.PermGroFac_list[state_index]
self.vPfuncNext = self.solution_next.vPfunc[state_index]
self.mNrmMinNow = self.mNrmMin_list[state_index]
self.BoroCnstNat = self.BoroCnstNatAll[state_index]
self.setAndUpdateValues(self.solution_next,self.IncomeDstn,self.LivPrb,self.DiscFac)
self.DiscFacEff = self.DiscFac # survival probability LivPrb represents probability from
# *current* state, so DiscFacEff is just DiscFac for now
# These lines have to come after setAndUpdateValues to override the definitions there
self.vPfuncNext = self.solution_next.vPfunc[state_index]
if self.CubicBool:
self.vPPfuncNext= self.solution_next.vPPfunc[state_index]
if self.vFuncBool:
self.vFuncNext = self.solution_next.vFunc[state_index]
|
def conditionOnState(self,state_index)
|
Temporarily assume that a particular Markov state will occur in the
succeeding period, and condition solver attributes on this assumption.
Allows the solver to construct the future-state-conditional marginal
value function (etc) for that future state.
Parameters
----------
state_index : int
Index of the future Markov state to condition on.
Returns
-------
none
| 5.388177 | 3.163668 | 1.703142 |
'''
Calculates end-of-period marginal marginal value using a pre-defined
array of next period market resources in self.mNrmNext.
Parameters
----------
none
Returns
-------
EndOfPrdvPP : np.array
End-of-period marginal marginal value of assets at each value in
the grid of assets.
'''
EndOfPrdvPP = self.DiscFacEff*self.Rfree*self.Rfree*self.PermGroFac**(-self.CRRA-1.0)*\
np.sum(self.PermShkVals_temp**(-self.CRRA-1.0)*self.vPPfuncNext(self.mNrmNext)
*self.ShkPrbs_temp,axis=0)
return EndOfPrdvPP
|
def calcEndOfPrdvPP(self)
|
Calculates end-of-period marginal marginal value using a pre-defined
array of next period market resources in self.mNrmNext.
Parameters
----------
none
Returns
-------
EndOfPrdvPP : np.array
End-of-period marginal marginal value of assets at each value in
the grid of assets.
| 4.913976 | 2.201867 | 2.231732 |
'''
Construct the end-of-period value function conditional on next period's
state. NOTE: It might be possible to eliminate this method and replace
it with ConsIndShockSolver.makeEndOfPrdvFunc, but the self.X_cond
variables must be renamed.
Parameters
----------
none
Returns
-------
EndofPrdvFunc_cond : ValueFunc
The end-of-period value function conditional on a particular state
occuring in the next period.
'''
VLvlNext = (self.PermShkVals_temp**(1.0-self.CRRA)*
self.PermGroFac**(1.0-self.CRRA))*self.vFuncNext(self.mNrmNext)
EndOfPrdv_cond = self.DiscFacEff*np.sum(VLvlNext*self.ShkPrbs_temp,axis=0)
EndOfPrdvNvrs_cond = self.uinv(EndOfPrdv_cond)
EndOfPrdvNvrsP_cond = self.EndOfPrdvP_cond*self.uinvP(EndOfPrdv_cond)
EndOfPrdvNvrs_cond = np.insert(EndOfPrdvNvrs_cond,0,0.0)
EndOfPrdvNvrsP_cond = np.insert(EndOfPrdvNvrsP_cond,0,EndOfPrdvNvrsP_cond[0])
aNrm_temp = np.insert(self.aNrm_cond,0,self.BoroCnstNat)
EndOfPrdvNvrsFunc_cond = CubicInterp(aNrm_temp,EndOfPrdvNvrs_cond,EndOfPrdvNvrsP_cond)
EndofPrdvFunc_cond = ValueFunc(EndOfPrdvNvrsFunc_cond,self.CRRA)
return EndofPrdvFunc_cond
|
def makeEndOfPrdvFuncCond(self)
|
Construct the end-of-period value function conditional on next period's
state. NOTE: It might be possible to eliminate this method and replace
it with ConsIndShockSolver.makeEndOfPrdvFunc, but the self.X_cond
variables must be renamed.
Parameters
----------
none
Returns
-------
EndofPrdvFunc_cond : ValueFunc
The end-of-period value function conditional on a particular state
occuring in the next period.
| 3.725549 | 2.283157 | 1.631753 |
'''
Construct the end-of-period marginal value function conditional on next
period's state.
Parameters
----------
None
Returns
-------
EndofPrdvPfunc_cond : MargValueFunc
The end-of-period marginal value function conditional on a particular
state occuring in the succeeding period.
'''
# Get data to construct the end-of-period marginal value function (conditional on next state)
self.aNrm_cond = self.prepareToCalcEndOfPrdvP()
self.EndOfPrdvP_cond= self.calcEndOfPrdvPcond()
EndOfPrdvPnvrs_cond = self.uPinv(self.EndOfPrdvP_cond) # "decurved" marginal value
if self.CubicBool:
EndOfPrdvPP_cond = self.calcEndOfPrdvPP()
EndOfPrdvPnvrsP_cond = EndOfPrdvPP_cond*self.uPinvP(self.EndOfPrdvP_cond) # "decurved" marginal marginal value
# Construct the end-of-period marginal value function conditional on the next state.
if self.CubicBool:
EndOfPrdvPnvrsFunc_cond = CubicInterp(self.aNrm_cond,EndOfPrdvPnvrs_cond,
EndOfPrdvPnvrsP_cond,lower_extrap=True)
else:
EndOfPrdvPnvrsFunc_cond = LinearInterp(self.aNrm_cond,EndOfPrdvPnvrs_cond,
lower_extrap=True)
EndofPrdvPfunc_cond = MargValueFunc(EndOfPrdvPnvrsFunc_cond,self.CRRA) # "recurve" the interpolated marginal value function
return EndofPrdvPfunc_cond
|
def makeEndOfPrdvPfuncCond(self)
|
Construct the end-of-period marginal value function conditional on next
period's state.
Parameters
----------
None
Returns
-------
EndofPrdvPfunc_cond : MargValueFunc
The end-of-period marginal value function conditional on a particular
state occuring in the succeeding period.
| 3.647224 | 2.785828 | 1.309207 |
'''
Calculates end of period marginal value (and marginal marginal) value
at each aXtra gridpoint for each current state, unconditional on the
future Markov state (i.e. weighting conditional end-of-period marginal
value by transition probabilities).
Parameters
----------
none
Returns
-------
none
'''
# Find unique values of minimum acceptable end-of-period assets (and the
# current period states for which they apply).
aNrmMin_unique, state_inverse = np.unique(self.BoroCnstNat_list,return_inverse=True)
self.possible_transitions = self.MrkvArray > 0
# Calculate end-of-period marginal value (and marg marg value) at each
# asset gridpoint for each current period state
EndOfPrdvP = np.zeros((self.StateCount,self.aXtraGrid.size))
EndOfPrdvPP = np.zeros((self.StateCount,self.aXtraGrid.size))
for k in range(aNrmMin_unique.size):
aNrmMin = aNrmMin_unique[k] # minimum assets for this pass
which_states = state_inverse == k # the states for which this minimum applies
aGrid = aNrmMin + self.aXtraGrid # assets grid for this pass
EndOfPrdvP_all = np.zeros((self.StateCount,self.aXtraGrid.size))
EndOfPrdvPP_all = np.zeros((self.StateCount,self.aXtraGrid.size))
for j in range(self.StateCount):
if np.any(np.logical_and(self.possible_transitions[:,j],which_states)): # only consider a future state if one of the relevant states could transition to it
EndOfPrdvP_all[j,:] = self.EndOfPrdvPfunc_list[j](aGrid)
if self.CubicBool: # Add conditional end-of-period (marginal) marginal value to the arrays
EndOfPrdvPP_all[j,:] = self.EndOfPrdvPfunc_list[j].derivative(aGrid)
# Weight conditional marginal (marginal) values by transition probs
# to get unconditional marginal (marginal) value at each gridpoint.
EndOfPrdvP_temp = np.dot(self.MrkvArray,EndOfPrdvP_all)
EndOfPrdvP[which_states,:] = EndOfPrdvP_temp[which_states,:] # only take the states for which this asset minimum applies
if self.CubicBool:
EndOfPrdvPP_temp = np.dot(self.MrkvArray,EndOfPrdvPP_all)
EndOfPrdvPP[which_states,:] = EndOfPrdvPP_temp[which_states,:]
# Store the results as attributes of self, scaling end of period marginal value by survival probability from each current state
LivPrb_tiled = np.tile(np.reshape(self.LivPrb,(self.StateCount,1)),(1,self.aXtraGrid.size))
self.EndOfPrdvP = LivPrb_tiled*EndOfPrdvP
if self.CubicBool:
self.EndOfPrdvPP = LivPrb_tiled*EndOfPrdvPP
|
def calcEndOfPrdvP(self)
|
Calculates end of period marginal value (and marginal marginal) value
at each aXtra gridpoint for each current state, unconditional on the
future Markov state (i.e. weighting conditional end-of-period marginal
value by transition probabilities).
Parameters
----------
none
Returns
-------
none
| 3.620886 | 2.859316 | 1.266347 |
'''
Calculates human wealth and the maximum and minimum MPC for each current
period state, then stores them as attributes of self for use by other methods.
Parameters
----------
none
Returns
-------
none
'''
# Upper bound on MPC at lower m-bound
WorstIncPrb_array = self.BoroCnstDependency*np.tile(np.reshape(self.WorstIncPrbAll,
(1,self.StateCount)),(self.StateCount,1))
temp_array = self.MrkvArray*WorstIncPrb_array
WorstIncPrbNow = np.sum(temp_array,axis=1) # Probability of getting the "worst" income shock and transition from each current state
ExMPCmaxNext = (np.dot(temp_array,self.Rfree_list**(1.0-self.CRRA)*
self.solution_next.MPCmax**(-self.CRRA))/WorstIncPrbNow)**\
(-1.0/self.CRRA)
DiscFacEff_temp = self.DiscFac*self.LivPrb
self.MPCmaxNow = 1.0/(1.0 + ((DiscFacEff_temp*WorstIncPrbNow)**
(1.0/self.CRRA))/ExMPCmaxNext)
self.MPCmaxEff = self.MPCmaxNow
self.MPCmaxEff[self.BoroCnstNat_list < self.mNrmMin_list] = 1.0
# State-conditional PDV of human wealth
hNrmPlusIncNext = self.ExIncNextAll + self.solution_next.hNrm
self.hNrmNow = np.dot(self.MrkvArray,(self.PermGroFac_list/self.Rfree_list)*
hNrmPlusIncNext)
# Lower bound on MPC as m gets arbitrarily large
temp = (DiscFacEff_temp*np.dot(self.MrkvArray,self.solution_next.MPCmin**
(-self.CRRA)*self.Rfree_list**(1.0-self.CRRA)))**(1.0/self.CRRA)
self.MPCminNow = 1.0/(1.0 + temp)
|
def calcHumWealthAndBoundingMPCs(self)
|
Calculates human wealth and the maximum and minimum MPC for each current
period state, then stores them as attributes of self for use by other methods.
Parameters
----------
none
Returns
-------
none
| 5.039477 | 4.329066 | 1.164103 |
'''
Make a linear interpolation to represent the (unconstrained) consumption
function conditional on the current period state.
Parameters
----------
mNrm : np.array
Array of normalized market resource values for interpolation.
cNrm : np.array
Array of normalized consumption values for interpolation.
Returns
-------
cFuncUnc: an instance of HARK.interpolation.LinearInterp
'''
cFuncUnc = LinearInterp(mNrm,cNrm,self.MPCminNow_j*self.hNrmNow_j,self.MPCminNow_j)
return cFuncUnc
|
def makeLinearcFunc(self,mNrm,cNrm)
|
Make a linear interpolation to represent the (unconstrained) consumption
function conditional on the current period state.
Parameters
----------
mNrm : np.array
Array of normalized market resource values for interpolation.
cNrm : np.array
Array of normalized consumption values for interpolation.
Returns
-------
cFuncUnc: an instance of HARK.interpolation.LinearInterp
| 5.411397 | 2.088042 | 2.591613 |
'''
Make a cubic interpolation to represent the (unconstrained) consumption
function conditional on the current period state.
Parameters
----------
mNrm : np.array
Array of normalized market resource values for interpolation.
cNrm : np.array
Array of normalized consumption values for interpolation.
Returns
-------
cFuncUnc: an instance of HARK.interpolation.CubicInterp
'''
cFuncUnc = CubicInterp(mNrm,cNrm,self.MPC_temp_j,self.MPCminNow_j*self.hNrmNow_j,
self.MPCminNow_j)
return cFuncUnc
|
def makeCubiccFunc(self,mNrm,cNrm)
|
Make a cubic interpolation to represent the (unconstrained) consumption
function conditional on the current period state.
Parameters
----------
mNrm : np.array
Array of normalized market resource values for interpolation.
cNrm : np.array
Array of normalized consumption values for interpolation.
Returns
-------
cFuncUnc: an instance of HARK.interpolation.CubicInterp
| 5.724911 | 2.300719 | 2.488314 |
'''
Construct the value function for each current state.
Parameters
----------
solution : ConsumerSolution
The solution to the single period consumption-saving problem. Must
have a consumption function cFunc (using cubic or linear splines) as
a list with elements corresponding to the current Markov state. E.g.
solution.cFunc[0] is the consumption function when in the i=0 Markov
state this period.
Returns
-------
vFuncNow : [ValueFunc]
A list of value functions (defined over normalized market resources
m) for each current period Markov state.
'''
vFuncNow = [] # Initialize an empty list of value functions
# Loop over each current period state and construct the value function
for i in range(self.StateCount):
# Make state-conditional grids of market resources and consumption
mNrmMin = self.mNrmMin_list[i]
mGrid = mNrmMin + self.aXtraGrid
cGrid = solution.cFunc[i](mGrid)
aGrid = mGrid - cGrid
# Calculate end-of-period value at each gridpoint
EndOfPrdv_all = np.zeros((self.StateCount,self.aXtraGrid.size))
for j in range(self.StateCount):
if self.possible_transitions[i,j]:
EndOfPrdv_all[j,:] = self.EndOfPrdvFunc_list[j](aGrid)
EndOfPrdv = np.dot(self.MrkvArray[i,:],EndOfPrdv_all)
# Calculate (normalized) value and marginal value at each gridpoint
vNrmNow = self.u(cGrid) + EndOfPrdv
vPnow = self.uP(cGrid)
# Make a "decurved" value function with the inverse utility function
vNvrs = self.uinv(vNrmNow) # value transformed through inverse utility
vNvrsP = vPnow*self.uinvP(vNrmNow)
mNrm_temp = np.insert(mGrid,0,mNrmMin) # add the lower bound
vNvrs = np.insert(vNvrs,0,0.0)
vNvrsP = np.insert(vNvrsP,0,self.MPCmaxEff[i]**(-self.CRRA/(1.0-self.CRRA)))
MPCminNvrs = self.MPCminNow[i]**(-self.CRRA/(1.0-self.CRRA))
vNvrsFunc_i = CubicInterp(mNrm_temp,vNvrs,vNvrsP,MPCminNvrs*self.hNrmNow[i],MPCminNvrs)
# "Recurve" the decurved value function and add it to the list
vFunc_i = ValueFunc(vNvrsFunc_i,self.CRRA)
vFuncNow.append(vFunc_i)
return vFuncNow
|
def makevFunc(self,solution)
|
Construct the value function for each current state.
Parameters
----------
solution : ConsumerSolution
The solution to the single period consumption-saving problem. Must
have a consumption function cFunc (using cubic or linear splines) as
a list with elements corresponding to the current Markov state. E.g.
solution.cFunc[0] is the consumption function when in the i=0 Markov
state this period.
Returns
-------
vFuncNow : [ValueFunc]
A list of value functions (defined over normalized market resources
m) for each current period Markov state.
| 4.15047 | 2.795597 | 1.484645 |
'''
Many parameters used by MarkovConsumerType are arrays. Make sure those arrays are the
right shape.
Parameters
----------
None
Returns
-------
None
'''
StateCount = self.MrkvArray[0].shape[0]
# Check that arrays are the right shape
assert self.Rfree.shape == (StateCount,),'Rfree not the right shape!'
# Check that arrays in lists are the right shape
for MrkvArray_t in self.MrkvArray:
assert MrkvArray_t.shape == (StateCount,StateCount),'MrkvArray not the right shape!'
for LivPrb_t in self.LivPrb:
assert LivPrb_t.shape == (StateCount,),'Array in LivPrb is not the right shape!'
for PermGroFac_t in self.LivPrb:
assert PermGroFac_t.shape == (StateCount,),'Array in PermGroFac is not the right shape!'
# Now check the income distribution.
# Note IncomeDstn is (potentially) time-varying, so it is in time_vary.
# Therefore it is a list, and each element of that list responds to the income distribution
# at a particular point in time. Each income distribution at a point in time should itself
# be a list, with each element corresponding to the income distribution
# conditional on a particular Markov state.
for IncomeDstn_t in self.IncomeDstn:
assert len(IncomeDstn_t) == StateCount,'List in IncomeDstn is not the right length!'
|
def checkMarkovInputs(self)
|
Many parameters used by MarkovConsumerType are arrays. Make sure those arrays are the
right shape.
Parameters
----------
None
Returns
-------
None
| 4.374978 | 3.464204 | 1.26291 |
'''
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
none
Returns
-------
none
'''
IndShockConsumerType.updateSolutionTerminal(self)
# Make replicated terminal period solution: consume all resources, no human wealth, minimum m is 0
StateCount = self.MrkvArray[0].shape[0]
self.solution_terminal.cFunc = StateCount*[self.cFunc_terminal_]
self.solution_terminal.vFunc = StateCount*[self.solution_terminal.vFunc]
self.solution_terminal.vPfunc = StateCount*[self.solution_terminal.vPfunc]
self.solution_terminal.vPPfunc = StateCount*[self.solution_terminal.vPPfunc]
self.solution_terminal.mNrmMin = np.zeros(StateCount)
self.solution_terminal.hRto = np.zeros(StateCount)
self.solution_terminal.MPCmax = np.ones(StateCount)
self.solution_terminal.MPCmin = np.ones(StateCount)
|
def updateSolutionTerminal(self)
|
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
none
Returns
-------
none
| 3.840433 | 2.815885 | 1.363846 |
'''
Makes new Markov consumer by drawing initial normalized assets, permanent income levels, and
discrete states. Calls IndShockConsumerType.simBirth, then draws from initial Markov distribution.
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
'''
IndShockConsumerType.simBirth(self,which_agents) # Get initial assets and permanent income
if not self.global_markov: #Markov state is not changed if it is set at the global level
N = np.sum(which_agents)
base_draws = drawUniform(N,seed=self.RNG.randint(0,2**31-1))
Cutoffs = np.cumsum(np.array(self.MrkvPrbsInit))
self.MrkvNow[which_agents] = np.searchsorted(Cutoffs,base_draws).astype(int)
|
def simBirth(self,which_agents)
|
Makes new Markov consumer by drawing initial normalized assets, permanent income levels, and
discrete states. Calls IndShockConsumerType.simBirth, then draws from initial Markov distribution.
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
| 8.139178 | 3.474928 | 2.342258 |
'''
Gets new Markov states and permanent and transitory income shocks for this period. Samples
from IncomeDstn for each period-state in the cycle.
Parameters
----------
None
Returns
-------
None
'''
# Get new Markov states for each agent
if self.global_markov:
base_draws = np.ones(self.AgentCount)*drawUniform(1,seed=self.RNG.randint(0,2**31-1))
else:
base_draws = self.RNG.permutation(np.arange(self.AgentCount,dtype=float)/self.AgentCount + 1.0/(2*self.AgentCount))
newborn = self.t_age == 0 # Don't change Markov state for those who were just born (unless global_markov)
MrkvPrev = self.MrkvNow
MrkvNow = np.zeros(self.AgentCount,dtype=int)
for t in range(self.T_cycle):
Cutoffs = np.cumsum(self.MrkvArray[t],axis=1)
for j in range(self.MrkvArray[t].shape[0]):
these = np.logical_and(self.t_cycle == t,MrkvPrev == j)
MrkvNow[these] = np.searchsorted(Cutoffs[j,:],base_draws[these]).astype(int)
if not self.global_markov:
MrkvNow[newborn] = MrkvPrev[newborn]
self.MrkvNow = MrkvNow.astype(int)
# Now get income shocks for each consumer, by cycle-time and discrete state
PermShkNow = np.zeros(self.AgentCount) # Initialize shock arrays
TranShkNow = np.zeros(self.AgentCount)
for t in range(self.T_cycle):
for j in range(self.MrkvArray[t].shape[0]):
these = np.logical_and(t == self.t_cycle, j == MrkvNow)
N = np.sum(these)
if N > 0:
IncomeDstnNow = self.IncomeDstn[t-1][j] # set current income distribution
PermGroFacNow = self.PermGroFac[t-1][j] # and permanent growth factor
Indices = np.arange(IncomeDstnNow[0].size) # just a list of integers
# Get random draws of income shocks from the discrete distribution
EventDraws = drawDiscrete(N,X=Indices,P=IncomeDstnNow[0],exact_match=False,seed=self.RNG.randint(0,2**31-1))
PermShkNow[these] = IncomeDstnNow[1][EventDraws]*PermGroFacNow # permanent "shock" includes expected growth
TranShkNow[these] = IncomeDstnNow[2][EventDraws]
newborn = self.t_age == 0
PermShkNow[newborn] = 1.0
TranShkNow[newborn] = 1.0
self.PermShkNow = PermShkNow
self.TranShkNow = TranShkNow
|
def getShocks(self)
|
Gets new Markov states and permanent and transitory income shocks for this period. Samples
from IncomeDstn for each period-state in the cycle.
Parameters
----------
None
Returns
-------
None
| 3.726504 | 3.228394 | 1.15429 |
'''
A slight modification of AgentType.readShocks that makes sure that MrkvNow is int, not float.
Parameters
----------
None
Returns
-------
None
'''
IndShockConsumerType.readShocks(self)
self.MrkvNow = self.MrkvNow.astype(int)
|
def readShocks(self)
|
A slight modification of AgentType.readShocks that makes sure that MrkvNow is int, not float.
Parameters
----------
None
Returns
-------
None
| 7.239028 | 2.367135 | 3.058139 |
'''
Calculates consumption for each consumer of this type using the consumption functions.
Parameters
----------
None
Returns
-------
None
'''
cNrmNow = np.zeros(self.AgentCount) + np.nan
for t in range(self.T_cycle):
for j in range(self.MrkvArray[t].shape[0]):
these = np.logical_and(t == self.t_cycle, j == self.MrkvNow)
cNrmNow[these] = self.solution[t].cFunc[j](self.mNrmNow[these])
self.cNrmNow = cNrmNow
return None
|
def getControls(self)
|
Calculates consumption for each consumer of this type using the consumption functions.
Parameters
----------
None
Returns
-------
None
| 4.923546 | 3.162806 | 1.556702 |
'''
Calculates updated values of normalized market resources and permanent income level.
Uses pLvlNow, aNrmNow, PermShkNow, TranShkNow.
Parameters
----------
None
Returns
-------
None
'''
pLvlPrev = self.pLvlNow
aNrmPrev = self.aNrmNow
# Calculate new states: normalized market resources and permanent income level
self.pLvlNow = pLvlPrev*self.PermShkNow # Same as in IndShockConsType
self.kNrmNow = aNrmPrev/self.PermShkNow
self.yNrmNow = self.kNrmNow**self.CapShare*self.TranShkNow**(1.-self.CapShare)
self.Rfree = 1. + self.CapShare*self.kNrmNow**(self.CapShare-1.)*self.TranShkNow**(1.-self.CapShare) - self.DeprFac
self.wRte = (1.-self.CapShare)*self.kNrmNow**self.CapShare*self.TranShkNow**(-self.CapShare)
self.mNrmNow = self.Rfree*self.kNrmNow + self.wRte*self.TranShkNow
|
def getStates(self)
|
Calculates updated values of normalized market resources and permanent income level.
Uses pLvlNow, aNrmNow, PermShkNow, TranShkNow.
Parameters
----------
None
Returns
-------
None
| 3.826439 | 2.538304 | 1.507479 |
'''
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
None
Returns
-------
None
'''
RepAgentConsumerType.updateSolutionTerminal(self)
# Make replicated terminal period solution
StateCount = self.MrkvArray.shape[0]
self.solution_terminal.cFunc = StateCount*[self.cFunc_terminal_]
self.solution_terminal.vPfunc = StateCount*[self.solution_terminal.vPfunc]
self.solution_terminal.mNrmMin = StateCount*[self.solution_terminal.mNrmMin]
|
def updateSolutionTerminal(self)
|
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
None
Returns
-------
None
| 5.27479 | 3.1709 | 1.663499 |
'''
Draws a new Markov state and income shocks for the representative agent.
Parameters
----------
None
Returns
-------
None
'''
cutoffs = np.cumsum(self.MrkvArray[self.MrkvNow,:])
MrkvDraw = drawUniform(N=1,seed=self.RNG.randint(0,2**31-1))
self.MrkvNow = np.searchsorted(cutoffs,MrkvDraw)
t = self.t_cycle[0]
i = self.MrkvNow[0]
IncomeDstnNow = self.IncomeDstn[t-1][i] # set current income distribution
PermGroFacNow = self.PermGroFac[t-1][i] # and permanent growth factor
Indices = np.arange(IncomeDstnNow[0].size) # just a list of integers
# Get random draws of income shocks from the discrete distribution
EventDraw = drawDiscrete(N=1,X=Indices,P=IncomeDstnNow[0],exact_match=False,seed=self.RNG.randint(0,2**31-1))
PermShkNow = IncomeDstnNow[1][EventDraw]*PermGroFacNow # permanent "shock" includes expected growth
TranShkNow = IncomeDstnNow[2][EventDraw]
self.PermShkNow = np.array(PermShkNow)
self.TranShkNow = np.array(TranShkNow)
|
def getShocks(self)
|
Draws a new Markov state and income shocks for the representative agent.
Parameters
----------
None
Returns
-------
None
| 4.337319 | 3.708063 | 1.169699 |
'''
Calculates consumption for the representative agent using the consumption functions.
Parameters
----------
None
Returns
-------
None
'''
t = self.t_cycle[0]
i = self.MrkvNow[0]
self.cNrmNow = self.solution[t].cFunc[i](self.mNrmNow)
|
def getControls(self)
|
Calculates consumption for the representative agent using the consumption functions.
Parameters
----------
None
Returns
-------
None
| 10.886662 | 4.849223 | 2.245033 |
'''
Initialize this type for a new simulated history of K/L ratio.
Parameters
----------
None
Returns
-------
None
'''
self.initializeSim()
self.aLvlNow = self.kInit*np.ones(self.AgentCount) # Start simulation near SS
self.aNrmNow = self.aLvlNow/self.pLvlNow
|
def reset(self)
|
Initialize this type for a new simulated history of K/L ratio.
Parameters
----------
None
Returns
-------
None
| 14.814819 | 6.030406 | 2.456687 |
'''
Updates the terminal period solution for an aggregate shock consumer.
Only fills in the consumption function and marginal value function.
Parameters
----------
None
Returns
-------
None
'''
cFunc_terminal = BilinearInterp(np.array([[0.0,0.0],[1.0,1.0]]),np.array([0.0,1.0]),np.array([0.0,1.0]))
vPfunc_terminal = MargValueFunc2D(cFunc_terminal,self.CRRA)
mNrmMin_terminal = ConstantFunction(0)
self.solution_terminal = ConsumerSolution(cFunc=cFunc_terminal,vPfunc=vPfunc_terminal,mNrmMin=mNrmMin_terminal)
|
def updateSolutionTerminal(self)
|
Updates the terminal period solution for an aggregate shock consumer.
Only fills in the consumption function and marginal value function.
Parameters
----------
None
Returns
-------
None
| 4.266834 | 2.483345 | 1.71818 |
'''
Imports economy-determined objects into self from a Market.
Instances of AggShockConsumerType "live" in some macroeconomy that has
attributes relevant to their microeconomic model, like the relationship
between the capital-to-labor ratio and the interest and wage rates; this
method imports those attributes from an "economy" object and makes them
attributes of the ConsumerType.
Parameters
----------
Economy : Market
The "macroeconomy" in which this instance "lives". Might be of the
subclass CobbDouglasEconomy, which has methods to generate the
relevant attributes.
Returns
-------
None
'''
self.T_sim = Economy.act_T # Need to be able to track as many periods as economy runs
self.kInit = Economy.kSS # Initialize simulation assets to steady state
self.aNrmInitMean = np.log(0.00000001) # Initialize newborn assets to nearly zero
self.Mgrid = Economy.MSS*self.MgridBase # Aggregate market resources grid adjusted around SS capital ratio
self.AFunc = Economy.AFunc # Next period's aggregate savings function
self.Rfunc = Economy.Rfunc # Interest factor as function of capital ratio
self.wFunc = Economy.wFunc # Wage rate as function of capital ratio
self.DeprFac = Economy.DeprFac # Rate of capital depreciation
self.PermGroFacAgg = Economy.PermGroFacAgg # Aggregate permanent productivity growth
self.addAggShkDstn(Economy.AggShkDstn) # Combine idiosyncratic and aggregate shocks into one dstn
self.addToTimeInv('Mgrid','AFunc','Rfunc', 'wFunc','DeprFac','PermGroFacAgg')
|
def getEconomyData(self,Economy)
|
Imports economy-determined objects into self from a Market.
Instances of AggShockConsumerType "live" in some macroeconomy that has
attributes relevant to their microeconomic model, like the relationship
between the capital-to-labor ratio and the interest and wage rates; this
method imports those attributes from an "economy" object and makes them
attributes of the ConsumerType.
Parameters
----------
Economy : Market
The "macroeconomy" in which this instance "lives". Might be of the
subclass CobbDouglasEconomy, which has methods to generate the
relevant attributes.
Returns
-------
None
| 7.625759 | 3.371546 | 2.261799 |
'''
Updates attribute IncomeDstn by combining idiosyncratic shocks with aggregate shocks.
Parameters
----------
AggShkDstn : [np.array]
Aggregate productivity shock distribution. First element is proba-
bilities, second element is agg permanent shocks, third element is
agg transitory shocks.
Returns
-------
None
'''
if len(self.IncomeDstn[0]) > 3:
self.IncomeDstn = self.IncomeDstnWithoutAggShocks
else:
self.IncomeDstnWithoutAggShocks = self.IncomeDstn
self.IncomeDstn = [combineIndepDstns(self.IncomeDstn[t],AggShkDstn) for t in range(self.T_cycle)]
|
def addAggShkDstn(self,AggShkDstn)
|
Updates attribute IncomeDstn by combining idiosyncratic shocks with aggregate shocks.
Parameters
----------
AggShkDstn : [np.array]
Aggregate productivity shock distribution. First element is proba-
bilities, second element is agg permanent shocks, third element is
agg transitory shocks.
Returns
-------
None
| 4.057273 | 1.907816 | 2.126658 |
'''
Makes new consumers for the given indices. Initialized variables include aNrm and pLvl, as
well as time variables t_age and t_cycle. Normalized assets and permanent income levels
are drawn from lognormal distributions given by aNrmInitMean and aNrmInitStd (etc).
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
'''
IndShockConsumerType.simBirth(self,which_agents)
if hasattr(self,'aLvlNow'):
self.aLvlNow[which_agents] = self.aNrmNow[which_agents]*self.pLvlNow[which_agents]
else:
self.aLvlNow = self.aNrmNow*self.pLvlNow
|
def simBirth(self,which_agents)
|
Makes new consumers for the given indices. Initialized variables include aNrm and pLvl, as
well as time variables t_age and t_cycle. Normalized assets and permanent income levels
are drawn from lognormal distributions given by aNrmInitMean and aNrmInitStd (etc).
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
| 5.017372 | 1.462048 | 3.431742 |
'''
Randomly determine which consumers die, and distribute their wealth among the survivors.
This method only works if there is only one period in the cycle.
Parameters
----------
None
Returns
-------
who_dies : np.array(bool)
Boolean array of size AgentCount indicating which agents die.
'''
# Divide agents into wealth groups, kill one random agent per wealth group
# order = np.argsort(self.aLvlNow)
# how_many_die = int(self.AgentCount*(1.0-self.LivPrb[0]))
# group_size = self.AgentCount/how_many_die # This should be an integer
# base_idx = self.RNG.randint(0,group_size,size=how_many_die)
# kill_by_rank = np.arange(how_many_die,dtype=int)*group_size + base_idx
# who_dies = np.zeros(self.AgentCount,dtype=bool)
# who_dies[order[kill_by_rank]] = True
# Just select a random set of agents to die
how_many_die = int(round(self.AgentCount*(1.0-self.LivPrb[0])))
base_bool = np.zeros(self.AgentCount,dtype=bool)
base_bool[0:how_many_die] = True
who_dies = self.RNG.permutation(base_bool)
if self.T_age is not None:
who_dies[self.t_age >= self.T_age] = True
# Divide up the wealth of those who die, giving it to those who survive
who_lives = np.logical_not(who_dies)
wealth_living = np.sum(self.aLvlNow[who_lives])
wealth_dead = np.sum(self.aLvlNow[who_dies])
Ractuarial = 1.0 + wealth_dead/wealth_living
self.aNrmNow[who_lives] = self.aNrmNow[who_lives]*Ractuarial
self.aLvlNow[who_lives] = self.aLvlNow[who_lives]*Ractuarial
return who_dies
|
def simDeath(self)
|
Randomly determine which consumers die, and distribute their wealth among the survivors.
This method only works if there is only one period in the cycle.
Parameters
----------
None
Returns
-------
who_dies : np.array(bool)
Boolean array of size AgentCount indicating which agents die.
| 3.160424 | 2.378298 | 1.328859 |
'''
Returns an array of size self.AgentCount with self.RfreeNow in every entry.
Parameters
----------
None
Returns
-------
RfreeNow : np.array
Array of size self.AgentCount with risk free interest rate for each agent.
'''
RfreeNow = self.RfreeNow*np.ones(self.AgentCount)
return RfreeNow
|
def getRfree(self)
|
Returns an array of size self.AgentCount with self.RfreeNow in every entry.
Parameters
----------
None
Returns
-------
RfreeNow : np.array
Array of size self.AgentCount with risk free interest rate for each agent.
| 6.283127 | 1.655485 | 3.795339 |
'''
Finds the effective permanent and transitory shocks this period by combining the aggregate
and idiosyncratic shocks of each type.
Parameters
----------
None
Returns
-------
None
'''
IndShockConsumerType.getShocks(self) # Update idiosyncratic shocks
self.TranShkNow = self.TranShkNow*self.TranShkAggNow*self.wRteNow
self.PermShkNow = self.PermShkNow*self.PermShkAggNow
|
def getShocks(self)
|
Finds the effective permanent and transitory shocks this period by combining the aggregate
and idiosyncratic shocks of each type.
Parameters
----------
None
Returns
-------
None
| 5.065439 | 2.415624 | 2.096948 |
'''
Variation on AggShockConsumerType.addAggShkDstn that handles the Markov
state. AggShkDstn is a list of aggregate productivity shock distributions
for each Markov state.
'''
if len(self.IncomeDstn[0][0]) > 3:
self.IncomeDstn = self.IncomeDstnWithoutAggShocks
else:
self.IncomeDstnWithoutAggShocks = self.IncomeDstn
IncomeDstnOut = []
N = self.MrkvArray.shape[0]
for t in range(self.T_cycle):
IncomeDstnOut.append([combineIndepDstns(self.IncomeDstn[t][n],AggShkDstn[n]) for n in range(N)])
self.IncomeDstn = IncomeDstnOut
|
def addAggShkDstn(self,AggShkDstn)
|
Variation on AggShockConsumerType.addAggShkDstn that handles the Markov
state. AggShkDstn is a list of aggregate productivity shock distributions
for each Markov state.
| 4.415258 | 2.520653 | 1.751632 |
'''
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
None
Returns
-------
None
'''
AggShockConsumerType.updateSolutionTerminal(self)
# Make replicated terminal period solution
StateCount = self.MrkvArray.shape[0]
self.solution_terminal.cFunc = StateCount*[self.solution_terminal.cFunc]
self.solution_terminal.vPfunc = StateCount*[self.solution_terminal.vPfunc]
self.solution_terminal.mNrmMin = StateCount*[self.solution_terminal.mNrmMin]
|
def updateSolutionTerminal(self)
|
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
None
Returns
-------
None
| 4.431566 | 2.722193 | 1.62794 |
'''
Gets permanent and transitory income shocks for this period. Samples from IncomeDstn for
each period in the cycle. This is a copy-paste from IndShockConsumerType, with the
addition of the Markov macroeconomic state. Unfortunately, the getShocks method for
MarkovConsumerType cannot be used, as that method assumes that MrkvNow is a vector
with a value for each agent, not just a single int.
Parameters
----------
None
Returns
-------
None
'''
PermShkNow = np.zeros(self.AgentCount) # Initialize shock arrays
TranShkNow = np.zeros(self.AgentCount)
newborn = self.t_age == 0
for t in range(self.T_cycle):
these = t == self.t_cycle
N = np.sum(these)
if N > 0:
IncomeDstnNow = self.IncomeDstn[t-1][self.MrkvNow] # set current income distribution
PermGroFacNow = self.PermGroFac[t-1] # and permanent growth factor
Indices = np.arange(IncomeDstnNow[0].size) # just a list of integers
# Get random draws of income shocks from the discrete distribution
EventDraws = drawDiscrete(N,X=Indices,P=IncomeDstnNow[0],exact_match=True,seed=self.RNG.randint(0,2**31-1))
PermShkNow[these] = IncomeDstnNow[1][EventDraws]*PermGroFacNow # permanent "shock" includes expected growth
TranShkNow[these] = IncomeDstnNow[2][EventDraws]
# That procedure used the *last* period in the sequence for newborns, but that's not right
# Redraw shocks for newborns, using the *first* period in the sequence. Approximation.
N = np.sum(newborn)
if N > 0:
these = newborn
IncomeDstnNow = self.IncomeDstn[0][self.MrkvNow] # set current income distribution
PermGroFacNow = self.PermGroFac[0] # and permanent growth factor
Indices = np.arange(IncomeDstnNow[0].size) # just a list of integers
# Get random draws of income shocks from the discrete distribution
EventDraws = drawDiscrete(N,X=Indices,P=IncomeDstnNow[0],exact_match=False,seed=self.RNG.randint(0,2**31-1))
PermShkNow[these] = IncomeDstnNow[1][EventDraws]*PermGroFacNow # permanent "shock" includes expected growth
TranShkNow[these] = IncomeDstnNow[2][EventDraws]
# PermShkNow[newborn] = 1.0
# TranShkNow[newborn] = 1.0
# Store the shocks in self
self.EmpNow = np.ones(self.AgentCount,dtype=bool)
self.EmpNow[TranShkNow == self.IncUnemp] = False
self.TranShkNow = TranShkNow*self.TranShkAggNow*self.wRteNow
self.PermShkNow = PermShkNow*self.PermShkAggNow
|
def getShocks(self)
|
Gets permanent and transitory income shocks for this period. Samples from IncomeDstn for
each period in the cycle. This is a copy-paste from IndShockConsumerType, with the
addition of the Markov macroeconomic state. Unfortunately, the getShocks method for
MarkovConsumerType cannot be used, as that method assumes that MrkvNow is a vector
with a value for each agent, not just a single int.
Parameters
----------
None
Returns
-------
None
| 3.329032 | 2.423755 | 1.373502 |
'''
Calculates consumption for each consumer of this type using the consumption functions.
For this AgentType class, MrkvNow is the same for all consumers. However, in an
extension with "macroeconomic inattention", consumers might misperceive the state
and thus act as if they are in different states.
Parameters
----------
None
Returns
-------
None
'''
cNrmNow = np.zeros(self.AgentCount) + np.nan
MPCnow = np.zeros(self.AgentCount) + np.nan
MaggNow = self.getMaggNow()
MrkvNow = self.getMrkvNow()
StateCount = self.MrkvArray.shape[0]
MrkvBoolArray = np.zeros((StateCount,self.AgentCount),dtype=bool)
for i in range(StateCount):
MrkvBoolArray[i,:] = i == MrkvNow
for t in range(self.T_cycle):
these = t == self.t_cycle
for i in range(StateCount):
those = np.logical_and(these,MrkvBoolArray[i,:])
cNrmNow[those] = self.solution[t].cFunc[i](self.mNrmNow[those],MaggNow[those])
MPCnow[those] = self.solution[t].cFunc[i].derivativeX(self.mNrmNow[those],MaggNow[those]) # Marginal propensity to consume
self.cNrmNow = cNrmNow
self.MPCnow = MPCnow
return None
|
def getControls(self)
|
Calculates consumption for each consumer of this type using the consumption functions.
For this AgentType class, MrkvNow is the same for all consumers. However, in an
extension with "macroeconomic inattention", consumers might misperceive the state
and thus act as if they are in different states.
Parameters
----------
None
Returns
-------
None
| 4.494213 | 2.197349 | 2.045288 |
'''
Use primitive parameters (and perfect foresight calibrations) to make
interest factor and wage rate functions (of capital to labor ratio),
as well as discrete approximations to the aggregate shock distributions.
Parameters
----------
None
Returns
-------
None
'''
self.kSS = ((self.getPermGroFacAggLR()**(self.CRRA)/self.DiscFac - (1.0-self.DeprFac))/self.CapShare)**(1.0/(self.CapShare-1.0))
self.KtoYSS = self.kSS**(1.0-self.CapShare)
self.wRteSS = (1.0-self.CapShare)*self.kSS**(self.CapShare)
self.RfreeSS = (1.0 + self.CapShare*self.kSS**(self.CapShare-1.0) - self.DeprFac)
self.MSS = self.kSS*self.RfreeSS + self.wRteSS
self.convertKtoY = lambda KtoY : KtoY**(1.0/(1.0 - self.CapShare)) # converts K/Y to K/L
self.Rfunc = lambda k : (1.0 + self.CapShare*k**(self.CapShare-1.0) - self.DeprFac)
self.wFunc = lambda k : ((1.0-self.CapShare)*k**(self.CapShare))
self.KtoLnow_init = self.kSS
self.MaggNow_init = self.kSS
self.AaggNow_init = self.kSS
self.RfreeNow_init = self.Rfunc(self.kSS)
self.wRteNow_init = self.wFunc(self.kSS)
self.PermShkAggNow_init = 1.0
self.TranShkAggNow_init = 1.0
self.makeAggShkDstn()
self.AFunc = AggregateSavingRule(self.intercept_prev,self.slope_prev)
|
def update(self)
|
Use primitive parameters (and perfect foresight calibrations) to make
interest factor and wage rate functions (of capital to labor ratio),
as well as discrete approximations to the aggregate shock distributions.
Parameters
----------
None
Returns
-------
None
| 4.534728 | 3.132879 | 1.447464 |
'''
Creates the attributes TranShkAggDstn, PermShkAggDstn, and AggShkDstn.
Draws on attributes TranShkAggStd, PermShkAddStd, TranShkAggCount, PermShkAggCount.
Parameters
----------
None
Returns
-------
None
'''
self.TranShkAggDstn = approxMeanOneLognormal(sigma=self.TranShkAggStd,N=self.TranShkAggCount)
self.PermShkAggDstn = approxMeanOneLognormal(sigma=self.PermShkAggStd,N=self.PermShkAggCount)
self.AggShkDstn = combineIndepDstns(self.PermShkAggDstn,self.TranShkAggDstn)
|
def makeAggShkDstn(self)
|
Creates the attributes TranShkAggDstn, PermShkAggDstn, and AggShkDstn.
Draws on attributes TranShkAggStd, PermShkAddStd, TranShkAggCount, PermShkAggCount.
Parameters
----------
None
Returns
-------
None
| 2.881031 | 1.655221 | 1.740572 |
'''
Calculates the interest factor and wage rate this period using each agent's
capital stock to get the aggregate capital ratio.
Parameters
----------
aLvlNow : [np.array]
Agents' current end-of-period assets. Elements of the list correspond
to types in the economy, entries within arrays to agents of that type.
Returns
-------
AggVarsNow : CobbDouglasAggVars
An object containing the aggregate variables for the upcoming period:
capital-to-labor ratio, interest factor, (normalized) wage rate,
aggregate permanent and transitory shocks.
'''
# Calculate aggregate savings
AaggPrev = np.mean(np.array(aLvlNow))/np.mean(pLvlNow) # End-of-period savings from last period
# Calculate aggregate capital this period
AggregateK = np.mean(np.array(aLvlNow)) # ...becomes capital today
# This version uses end-of-period assets and
# permanent income to calculate aggregate capital, unlike the Mathematica
# version, which first applies the idiosyncratic permanent income shocks
# and then aggregates. Obviously this is mathematically equivalent.
# Get this period's aggregate shocks
PermShkAggNow = self.PermShkAggHist[self.Shk_idx]
TranShkAggNow = self.TranShkAggHist[self.Shk_idx]
self.Shk_idx += 1
AggregateL = np.mean(pLvlNow)*PermShkAggNow
# Calculate the interest factor and wage rate this period
KtoLnow = AggregateK/AggregateL
self.KtoYnow = KtoLnow**(1.0-self.CapShare)
RfreeNow = self.Rfunc(KtoLnow/TranShkAggNow)
wRteNow = self.wFunc(KtoLnow/TranShkAggNow)
MaggNow = KtoLnow*RfreeNow + wRteNow*TranShkAggNow
self.KtoLnow = KtoLnow # Need to store this as it is a sow variable
# Package the results into an object and return it
AggVarsNow = CobbDouglasAggVars(MaggNow,AaggPrev,KtoLnow,RfreeNow,wRteNow,PermShkAggNow,TranShkAggNow)
return AggVarsNow
|
def calcRandW(self,aLvlNow,pLvlNow)
|
Calculates the interest factor and wage rate this period using each agent's
capital stock to get the aggregate capital ratio.
Parameters
----------
aLvlNow : [np.array]
Agents' current end-of-period assets. Elements of the list correspond
to types in the economy, entries within arrays to agents of that type.
Returns
-------
AggVarsNow : CobbDouglasAggVars
An object containing the aggregate variables for the upcoming period:
capital-to-labor ratio, interest factor, (normalized) wage rate,
aggregate permanent and transitory shocks.
| 5.597821 | 3.233683 | 1.731098 |
'''
Calculate a new aggregate savings rule based on the history
of the aggregate savings and aggregate market resources from a simulation.
Parameters
----------
MaggNow : [float]
List of the history of the simulated aggregate market resources for an economy.
AaggNow : [float]
List of the history of the simulated aggregate savings for an economy.
Returns
-------
(unnamed) : CapDynamicRule
Object containing a new savings rule
'''
verbose = self.verbose
discard_periods = self.T_discard # Throw out the first T periods to allow the simulation to approach the SS
update_weight = 1. - self.DampingFac # Proportional weight to put on new function vs old function parameters
total_periods = len(MaggNow)
# Regress the log savings against log market resources
logAagg = np.log(AaggNow[discard_periods:total_periods])
logMagg = np.log(MaggNow[discard_periods-1:total_periods-1])
slope, intercept, r_value, p_value, std_err = stats.linregress(logMagg,logAagg)
# Make a new aggregate savings rule by combining the new regression parameters
# with the previous guess
intercept = update_weight*intercept + (1.0-update_weight)*self.intercept_prev
slope = update_weight*slope + (1.0-update_weight)*self.slope_prev
AFunc = AggregateSavingRule(intercept,slope) # Make a new next-period capital function
# Save the new values as "previous" values for the next iteration
self.intercept_prev = intercept
self.slope_prev = slope
# Plot aggregate resources vs aggregate savings for this run and print the new parameters
if verbose:
print('intercept=' + str(intercept) + ', slope=' + str(slope) + ', r-sq=' + str(r_value**2))
#plot_start = discard_periods
#plt.plot(logMagg[plot_start:],logAagg[plot_start:],'.k')
#plt.show()
return AggShocksDynamicRule(AFunc)
|
def calcAFunc(self,MaggNow,AaggNow)
|
Calculate a new aggregate savings rule based on the history
of the aggregate savings and aggregate market resources from a simulation.
Parameters
----------
MaggNow : [float]
List of the history of the simulated aggregate market resources for an economy.
AaggNow : [float]
List of the history of the simulated aggregate savings for an economy.
Returns
-------
(unnamed) : CapDynamicRule
Object containing a new savings rule
| 5.005973 | 3.535789 | 1.415801 |
'''
Use primitive parameters to set basic objects. This is an extremely stripped-down version
of update for CobbDouglasEconomy.
Parameters
----------
none
Returns
-------
none
'''
self.kSS = 1.0
self.MSS = 1.0
self.KtoLnow_init = self.kSS
self.Rfunc = ConstantFunction(self.Rfree)
self.wFunc = ConstantFunction(self.wRte)
self.RfreeNow_init = self.Rfunc(self.kSS)
self.wRteNow_init = self.wFunc(self.kSS)
self.MaggNow_init = self.kSS
self.AaggNow_init = self.kSS
self.PermShkAggNow_init = 1.0
self.TranShkAggNow_init = 1.0
self.makeAggShkDstn()
self.AFunc = ConstantFunction(1.0)
|
def update(self)
|
Use primitive parameters to set basic objects. This is an extremely stripped-down version
of update for CobbDouglasEconomy.
Parameters
----------
none
Returns
-------
none
| 5.145731 | 2.958326 | 1.739407 |
'''
Make simulated histories of aggregate transitory and permanent shocks. Histories are of
length self.act_T, for use in the general equilibrium simulation. This replicates the same
method for CobbDouglasEconomy; future version should create parent class.
Parameters
----------
None
Returns
-------
None
'''
sim_periods = self.act_T
Events = np.arange(self.AggShkDstn[0].size) # just a list of integers
EventDraws = drawDiscrete(N=sim_periods,P=self.AggShkDstn[0],X=Events,seed=0)
PermShkAggHist = self.AggShkDstn[1][EventDraws]
TranShkAggHist = self.AggShkDstn[2][EventDraws]
# Store the histories
self.PermShkAggHist = PermShkAggHist
self.TranShkAggHist = TranShkAggHist
|
def makeAggShkHist(self)
|
Make simulated histories of aggregate transitory and permanent shocks. Histories are of
length self.act_T, for use in the general equilibrium simulation. This replicates the same
method for CobbDouglasEconomy; future version should create parent class.
Parameters
----------
None
Returns
-------
None
| 5.07751 | 2.378675 | 2.134596 |
'''
Returns aggregate state variables and shocks for this period. The capital-to-labor ratio
is irrelevant and thus treated as constant, and the wage and interest rates are also
constant. However, aggregate shocks are assigned from a prespecified history.
Parameters
----------
None
Returns
-------
AggVarsNow : CobbDouglasAggVars
Aggregate state and shock variables for this period.
'''
# Get this period's aggregate shocks
PermShkAggNow = self.PermShkAggHist[self.Shk_idx]
TranShkAggNow = self.TranShkAggHist[self.Shk_idx]
self.Shk_idx += 1
# Factor prices are constant
RfreeNow = self.Rfunc(1.0/PermShkAggNow)
wRteNow = self.wFunc(1.0/PermShkAggNow)
# Aggregates are irrelavent
AaggNow = 1.0
MaggNow = 1.0
KtoLnow = 1.0/PermShkAggNow
# Package the results into an object and return it
AggVarsNow = CobbDouglasAggVars(MaggNow,AaggNow,KtoLnow,RfreeNow,wRteNow,PermShkAggNow,TranShkAggNow)
return AggVarsNow
|
def getAggShocks(self)
|
Returns aggregate state variables and shocks for this period. The capital-to-labor ratio
is irrelevant and thus treated as constant, and the wage and interest rates are also
constant. However, aggregate shocks are assigned from a prespecified history.
Parameters
----------
None
Returns
-------
AggVarsNow : CobbDouglasAggVars
Aggregate state and shock variables for this period.
| 4.544246 | 2.394601 | 1.897705 |
'''
Use primitive parameters (and perfect foresight calibrations) to make
interest factor and wage rate functions (of capital to labor ratio),
as well as discrete approximations to the aggregate shock distributions.
Parameters
----------
None
Returns
-------
None
'''
CobbDouglasEconomy.update(self)
StateCount = self.MrkvArray.shape[0]
AFunc_all = []
for i in range(StateCount):
AFunc_all.append(AggregateSavingRule(self.intercept_prev[i],self.slope_prev[i]))
self.AFunc = AFunc_all
|
def update(self)
|
Use primitive parameters (and perfect foresight calibrations) to make
interest factor and wage rate functions (of capital to labor ratio),
as well as discrete approximations to the aggregate shock distributions.
Parameters
----------
None
Returns
-------
None
| 11.497344 | 3.401436 | 3.380144 |
'''
Calculates and returns the long run permanent income growth factor. This
is the average growth factor in self.PermGroFacAgg, weighted by the long
run distribution of Markov states (as determined by self.MrkvArray).
Parameters
----------
None
Returns
-------
PermGroFacAggLR : float
Long run aggregate permanent income growth factor
'''
# Find the long run distribution of Markov states
w, v = np.linalg.eig(np.transpose(self.MrkvArray))
idx = (np.abs(w-1.0)).argmin()
x = v[:,idx].astype(float)
LR_dstn = (x/np.sum(x))
# Return the weighted average of aggregate permanent income growth factors
PermGroFacAggLR = np.dot(LR_dstn,np.array(self.PermGroFacAgg))
return PermGroFacAggLR
|
def getPermGroFacAggLR(self)
|
Calculates and returns the long run permanent income growth factor. This
is the average growth factor in self.PermGroFacAgg, weighted by the long
run distribution of Markov states (as determined by self.MrkvArray).
Parameters
----------
None
Returns
-------
PermGroFacAggLR : float
Long run aggregate permanent income growth factor
| 4.04113 | 2.257476 | 1.79011 |
'''
Creates the attributes TranShkAggDstn, PermShkAggDstn, and AggShkDstn.
Draws on attributes TranShkAggStd, PermShkAddStd, TranShkAggCount, PermShkAggCount.
This version accounts for the Markov macroeconomic state.
Parameters
----------
None
Returns
-------
None
'''
TranShkAggDstn = []
PermShkAggDstn = []
AggShkDstn = []
StateCount = self.MrkvArray.shape[0]
for i in range(StateCount):
TranShkAggDstn.append(approxMeanOneLognormal(sigma=self.TranShkAggStd[i],N=self.TranShkAggCount))
PermShkAggDstn.append(approxMeanOneLognormal(sigma=self.PermShkAggStd[i],N=self.PermShkAggCount))
AggShkDstn.append(combineIndepDstns(PermShkAggDstn[-1],TranShkAggDstn[-1]))
self.TranShkAggDstn = TranShkAggDstn
self.PermShkAggDstn = PermShkAggDstn
self.AggShkDstn = AggShkDstn
|
def makeAggShkDstn(self)
|
Creates the attributes TranShkAggDstn, PermShkAggDstn, and AggShkDstn.
Draws on attributes TranShkAggStd, PermShkAddStd, TranShkAggCount, PermShkAggCount.
This version accounts for the Markov macroeconomic state.
Parameters
----------
None
Returns
-------
None
| 2.658353 | 1.610274 | 1.650869 |
'''
Make simulated histories of aggregate transitory and permanent shocks.
Histories are of length self.act_T, for use in the general equilibrium
simulation. Draws on history of aggregate Markov states generated by
internal call to makeMrkvHist().
Parameters
----------
None
Returns
-------
None
'''
self.makeMrkvHist() # Make a (pseudo)random sequence of Markov states
sim_periods = self.act_T
# For each Markov state in each simulated period, draw the aggregate shocks
# that would occur in that state in that period
StateCount = self.MrkvArray.shape[0]
PermShkAggHistAll = np.zeros((StateCount,sim_periods))
TranShkAggHistAll = np.zeros((StateCount,sim_periods))
for i in range(StateCount):
Events = np.arange(self.AggShkDstn[i][0].size) # just a list of integers
EventDraws = drawDiscrete(N=sim_periods,P=self.AggShkDstn[i][0],X=Events,seed=0)
PermShkAggHistAll[i,:] = self.AggShkDstn[i][1][EventDraws]
TranShkAggHistAll[i,:] = self.AggShkDstn[i][2][EventDraws]
# Select the actual history of aggregate shocks based on the sequence
# of Markov states that the economy experiences
PermShkAggHist = np.zeros(sim_periods)
TranShkAggHist = np.zeros(sim_periods)
for i in range(StateCount):
these = i == self.MrkvNow_hist
PermShkAggHist[these] = PermShkAggHistAll[i,these]*self.PermGroFacAgg[i]
TranShkAggHist[these] = TranShkAggHistAll[i,these]
# Store the histories
self.PermShkAggHist = PermShkAggHist
self.TranShkAggHist = TranShkAggHist
|
def makeAggShkHist(self)
|
Make simulated histories of aggregate transitory and permanent shocks.
Histories are of length self.act_T, for use in the general equilibrium
simulation. Draws on history of aggregate Markov states generated by
internal call to makeMrkvHist().
Parameters
----------
None
Returns
-------
None
| 3.521977 | 2.528301 | 1.393021 |
'''
Function to calculate the capital to labor ratio, interest factor, and
wage rate based on each agent's current state. Just calls calcRandW()
and adds the Markov state index.
See documentation for calcRandW for more information.
'''
MrkvNow = self.MrkvNow_hist[self.Shk_idx]
temp = self.calcRandW(aLvlNow,pLvlNow)
temp(MrkvNow = MrkvNow)
return temp
|
def millRule(self,aLvlNow,pLvlNow)
|
Function to calculate the capital to labor ratio, interest factor, and
wage rate based on each agent's current state. Just calls calcRandW()
and adds the Markov state index.
See documentation for calcRandW for more information.
| 13.501414 | 2.992998 | 4.511001 |
'''
Calculate a new aggregate savings rule based on the history of the
aggregate savings and aggregate market resources from a simulation.
Calculates an aggregate saving rule for each macroeconomic Markov state.
Parameters
----------
MaggNow : [float]
List of the history of the simulated aggregate market resources for an economy.
AaggNow : [float]
List of the history of the simulated aggregate savings for an economy.
Returns
-------
(unnamed) : CapDynamicRule
Object containing new saving rules for each Markov state.
'''
verbose = self.verbose
discard_periods = self.T_discard # Throw out the first T periods to allow the simulation to approach the SS
update_weight = 1. - self.DampingFac # Proportional weight to put on new function vs old function parameters
total_periods = len(MaggNow)
# Trim the histories of M_t and A_t and convert them to logs
logAagg = np.log(AaggNow[discard_periods:total_periods])
logMagg = np.log(MaggNow[discard_periods-1:total_periods-1])
MrkvHist = self.MrkvNow_hist[discard_periods-1:total_periods-1]
# For each Markov state, regress A_t on M_t and update the saving rule
AFunc_list = []
rSq_list = []
for i in range(self.MrkvArray.shape[0]):
these = i == MrkvHist
slope, intercept, r_value, p_value, std_err = stats.linregress(logMagg[these],logAagg[these])
#if verbose:
# plt.plot(logMagg[these],logAagg[these],'.')
# Make a new aggregate savings rule by combining the new regression parameters
# with the previous guess
intercept = update_weight*intercept + (1.0-update_weight)*self.intercept_prev[i]
slope = update_weight*slope + (1.0-update_weight)*self.slope_prev[i]
AFunc_list.append(AggregateSavingRule(intercept,slope)) # Make a new next-period capital function
rSq_list.append(r_value**2)
# Save the new values as "previous" values for the next iteration
self.intercept_prev[i] = intercept
self.slope_prev[i] = slope
# Plot aggregate resources vs aggregate savings for this run and print the new parameters
if verbose:
print('intercept=' + str(self.intercept_prev) + ', slope=' + str(self.slope_prev) + ', r-sq=' + str(rSq_list))
#plt.show()
return AggShocksDynamicRule(AFunc_list)
|
def calcAFunc(self,MaggNow,AaggNow)
|
Calculate a new aggregate savings rule based on the history of the
aggregate savings and aggregate market resources from a simulation.
Calculates an aggregate saving rule for each macroeconomic Markov state.
Parameters
----------
MaggNow : [float]
List of the history of the simulated aggregate market resources for an economy.
AaggNow : [float]
List of the history of the simulated aggregate savings for an economy.
Returns
-------
(unnamed) : CapDynamicRule
Object containing new saving rules for each Markov state.
| 4.730549 | 3.315587 | 1.426761 |
'''
Finds the difference between simulated and target capital to income ratio in an economy when
a given parameter has heterogeneity according to some distribution.
Parameters
----------
Economy : cstwMPCmarket
An object representing the entire economy, containing the various AgentTypes as an attribute.
param_name : string
The name of the parameter of interest that varies across the population.
param_count : int
The number of different values the parameter of interest will take on.
center : float
A measure of centrality for the distribution of the parameter of interest.
spread : float
A measure of spread or diffusion for the distribution of the parameter of interest.
dist_type : string
The type of distribution to be used. Can be "lognormal" or "uniform" (can expand).
Returns
-------
diff : float
Difference between simulated and target capital to income ratio for this economy.
'''
Economy(LorenzBool = False, ManyStatsBool = False) # Make sure we're not wasting time calculating stuff
Economy.distributeParams(param_name,param_count,center,spread,dist_type) # Distribute parameters
Economy.solve()
diff = Economy.calcKYratioDifference()
print('getKYratioDifference tried center = ' + str(center) + ' and got ' + str(diff))
return diff
|
def getKYratioDifference(Economy,param_name,param_count,center,spread,dist_type)
|
Finds the difference between simulated and target capital to income ratio in an economy when
a given parameter has heterogeneity according to some distribution.
Parameters
----------
Economy : cstwMPCmarket
An object representing the entire economy, containing the various AgentTypes as an attribute.
param_name : string
The name of the parameter of interest that varies across the population.
param_count : int
The number of different values the parameter of interest will take on.
center : float
A measure of centrality for the distribution of the parameter of interest.
spread : float
A measure of spread or diffusion for the distribution of the parameter of interest.
dist_type : string
The type of distribution to be used. Can be "lognormal" or "uniform" (can expand).
Returns
-------
diff : float
Difference between simulated and target capital to income ratio for this economy.
| 6.048744 | 2.131835 | 2.837341 |
'''
Finds the sum of squared distances between simulated and target Lorenz points in an economy when
a given parameter has heterogeneity according to some distribution. The class of distribution
and a measure of spread are given as inputs, but the measure of centrality such that the capital
to income ratio matches the target ratio must be found.
Parameters
----------
Economy : cstwMPCmarket
An object representing the entire economy, containing the various AgentTypes as an attribute.
param_name : string
The name of the parameter of interest that varies across the population.
param_count : int
The number of different values the parameter of interest will take on.
center_range : [float,float]
Bounding values for a measure of centrality for the distribution of the parameter of interest.
spread : float
A measure of spread or diffusion for the distribution of the parameter of interest.
dist_type : string
The type of distribution to be used. Can be "lognormal" or "uniform" (can expand).
Returns
-------
dist : float
Sum of squared distances between simulated and target Lorenz points for this economy (sqrt).
'''
# Define the function to search for the correct value of center, then find its zero
intermediateObjective = lambda center : getKYratioDifference(Economy = Economy,
param_name = param_name,
param_count = param_count,
center = center,
spread = spread,
dist_type = dist_type)
optimal_center = brentq(intermediateObjective,center_range[0],center_range[1],xtol=10**(-6))
Economy.center_save = optimal_center
# Get the sum of squared Lorenz distances given the correct distribution of the parameter
Economy(LorenzBool = True) # Make sure we actually calculate simulated Lorenz points
Economy.distributeParams(param_name,param_count,optimal_center,spread,dist_type) # Distribute parameters
Economy.solveAgents()
Economy.makeHistory()
dist = Economy.calcLorenzDistance()
Economy(LorenzBool = False)
print ('findLorenzDistanceAtTargetKY tried spread = ' + str(spread) + ' and got ' + str(dist))
return dist
|
def findLorenzDistanceAtTargetKY(Economy,param_name,param_count,center_range,spread,dist_type)
|
Finds the sum of squared distances between simulated and target Lorenz points in an economy when
a given parameter has heterogeneity according to some distribution. The class of distribution
and a measure of spread are given as inputs, but the measure of centrality such that the capital
to income ratio matches the target ratio must be found.
Parameters
----------
Economy : cstwMPCmarket
An object representing the entire economy, containing the various AgentTypes as an attribute.
param_name : string
The name of the parameter of interest that varies across the population.
param_count : int
The number of different values the parameter of interest will take on.
center_range : [float,float]
Bounding values for a measure of centrality for the distribution of the parameter of interest.
spread : float
A measure of spread or diffusion for the distribution of the parameter of interest.
dist_type : string
The type of distribution to be used. Can be "lognormal" or "uniform" (can expand).
Returns
-------
dist : float
Sum of squared distances between simulated and target Lorenz points for this economy (sqrt).
| 5.6942 | 2.317508 | 2.457036 |
'''
Calculates the steady state proportions of each age given survival probability sequence LivPrb.
Assumes that agents who die are replaced by a newborn agent with t_age=0.
Parameters
----------
LivPrb : [float]
Sequence of survival probabilities in ordinary chronological order. Has length T_cycle.
terminal_period : bool
Indicator for whether a terminal period follows the last period in the cycle (with LivPrb=0).
Returns
-------
AgeDstn : np.array
Stationary distribution of age. Stochastic vector with frequencies of each age.
'''
T = len(LivPrb)
if terminal_period:
MrkvArray = np.zeros((T+1,T+1))
top = T
else:
MrkvArray = np.zeros((T,T))
top = T-1
for t in range(top):
MrkvArray[t,0] = 1.0 - LivPrb[t]
MrkvArray[t,t+1] = LivPrb[t]
MrkvArray[t+1,0] = 1.0
w, v = np.linalg.eig(np.transpose(MrkvArray))
idx = (np.abs(w-1.0)).argmin()
x = v[:,idx].astype(float)
AgeDstn = (x/np.sum(x))
return AgeDstn
|
def calcStationaryAgeDstn(LivPrb,terminal_period)
|
Calculates the steady state proportions of each age given survival probability sequence LivPrb.
Assumes that agents who die are replaced by a newborn agent with t_age=0.
Parameters
----------
LivPrb : [float]
Sequence of survival probabilities in ordinary chronological order. Has length T_cycle.
terminal_period : bool
Indicator for whether a terminal period follows the last period in the cycle (with LivPrb=0).
Returns
-------
AgeDstn : np.array
Stationary distribution of age. Stochastic vector with frequencies of each age.
| 4.136896 | 1.730014 | 2.39125 |
'''
An alternative method for constructing the income process in the infinite horizon model.
Parameters
----------
none
Returns
-------
none
'''
if self.cycles == 0:
tax_rate = (self.IncUnemp*self.UnempPrb)/((1.0-self.UnempPrb)*self.IndL)
TranShkDstn = deepcopy(approxMeanOneLognormal(self.TranShkCount,sigma=self.TranShkStd[0],tail_N=0))
TranShkDstn[0] = np.insert(TranShkDstn[0]*(1.0-self.UnempPrb),0,self.UnempPrb)
TranShkDstn[1] = np.insert(TranShkDstn[1]*(1.0-tax_rate)*self.IndL,0,self.IncUnemp)
PermShkDstn = approxMeanOneLognormal(self.PermShkCount,sigma=self.PermShkStd[0],tail_N=0)
self.IncomeDstn = [combineIndepDstns(PermShkDstn,TranShkDstn)]
self.TranShkDstn = TranShkDstn
self.PermShkDstn = PermShkDstn
self.addToTimeVary('IncomeDstn')
else: # Do the usual method if this is the lifecycle model
EstimationAgentClass.updateIncomeProcess(self)
|
def updateIncomeProcess(self)
|
An alternative method for constructing the income process in the infinite horizon model.
Parameters
----------
none
Returns
-------
none
| 4.045452 | 3.489318 | 1.159382 |
'''
Solves the cstwMPCmarket.
'''
if self.AggShockBool:
for agent in self.agents:
agent.getEconomyData(self)
Market.solve(self)
else:
self.solveAgents()
self.makeHistory()
|
def solve(self)
|
Solves the cstwMPCmarket.
| 15.055676 | 6.797852 | 2.21477 |
'''
The millRule for this class simply calls the method calcStats.
'''
self.calcStats(aLvlNow,pLvlNow,MPCnow,TranShkNow,EmpNow,t_age,LorenzBool,ManyStatsBool)
if self.AggShockBool:
return self.calcRandW(aLvlNow,pLvlNow)
else: # These variables are tracked but not created in no-agg-shocks specifications
self.MaggNow = 0.0
self.AaggNow = 0.0
|
def millRule(self,aLvlNow,pLvlNow,MPCnow,TranShkNow,EmpNow,t_age,LorenzBool,ManyStatsBool)
|
The millRule for this class simply calls the method calcStats.
| 5.633596 | 4.029594 | 1.398055 |
'''
Distributes heterogeneous values of one parameter to the AgentTypes in self.agents.
Parameters
----------
param_name : string
Name of the parameter to be assigned.
param_count : int
Number of different values the parameter will take on.
center : float
A measure of centrality for the distribution of the parameter.
spread : float
A measure of spread or diffusion for the distribution of the parameter.
dist_type : string
The type of distribution to be used. Can be "lognormal" or "uniform" (can expand).
Returns
-------
None
'''
# Get a list of discrete values for the parameter
if dist_type == 'uniform':
# If uniform, center is middle of distribution, spread is distance to either edge
param_dist = approxUniform(N=param_count,bot=center-spread,top=center+spread)
elif dist_type == 'lognormal':
# If lognormal, center is the mean and spread is the standard deviation (in log)
tail_N = 3
param_dist = approxLognormal(N=param_count-tail_N,mu=np.log(center)-0.5*spread**2,sigma=spread,tail_N=tail_N,tail_bound=[0.0,0.9], tail_order=np.e)
# Distribute the parameters to the various types, assigning consecutive types the same
# value if there are more types than values
replication_factor = len(self.agents) // param_count
# Note: the double division is intenger division in Python 3 and 2.7, this makes it explicit
j = 0
b = 0
while j < len(self.agents):
for n in range(replication_factor):
self.agents[j](AgentCount = int(self.Population*param_dist[0][b]*self.TypeWeight[n]))
exec('self.agents[j](' + param_name + '= param_dist[1][b])')
j += 1
b += 1
|
def distributeParams(self,param_name,param_count,center,spread,dist_type)
|
Distributes heterogeneous values of one parameter to the AgentTypes in self.agents.
Parameters
----------
param_name : string
Name of the parameter to be assigned.
param_count : int
Number of different values the parameter will take on.
center : float
A measure of centrality for the distribution of the parameter.
spread : float
A measure of spread or diffusion for the distribution of the parameter.
dist_type : string
The type of distribution to be used. Can be "lognormal" or "uniform" (can expand).
Returns
-------
None
| 5.074802 | 3.599065 | 1.410033 |
'''
Returns the difference between the simulated capital to income ratio and the target ratio.
Can only be run after solving all AgentTypes and running makeHistory.
Parameters
----------
None
Returns
-------
diff : float
Difference between simulated and target capital to income ratio.
'''
# Ignore the first X periods to allow economy to stabilize from initial conditions
KYratioSim = np.mean(np.array(self.KtoYnow_hist)[self.ignore_periods:])
diff = KYratioSim - self.KYratioTarget
return diff
|
def calcKYratioDifference(self)
|
Returns the difference between the simulated capital to income ratio and the target ratio.
Can only be run after solving all AgentTypes and running makeHistory.
Parameters
----------
None
Returns
-------
diff : float
Difference between simulated and target capital to income ratio.
| 10.175361 | 3.71946 | 2.735709 |
'''
Returns the sum of squared differences between simulated and target Lorenz points.
Parameters
----------
None
Returns
-------
dist : float
Sum of squared distances between simulated and target Lorenz points (sqrt)
'''
LorenzSim = np.mean(np.array(self.Lorenz_hist)[self.ignore_periods:,:],axis=0)
dist = np.sqrt(np.sum((100*(LorenzSim - self.LorenzTarget))**2))
self.LorenzDistance = dist
return dist
|
def calcLorenzDistance(self)
|
Returns the sum of squared differences between simulated and target Lorenz points.
Parameters
----------
None
Returns
-------
dist : float
Sum of squared distances between simulated and target Lorenz points (sqrt)
| 4.359365 | 2.679512 | 1.626925 |
'''
Evaluate the first derivative with respect to market resources of the
marginal value function at given levels of market resources m and per-
manent income p.
Parameters
----------
m : float or np.array
Market resources whose value is to be calcuated.
p : float or np.array
Persistent income levels whose value is to be calculated.
Returns
-------
vPP : float or np.array
Marginal marginal value of market resources when beginning this period
with market resources m and persistent income p; has same size as inputs
m and p.
'''
c = self.cFunc(m,p)
MPC = self.cFunc.derivativeX(m,p)
return MPC*utilityPP(c,gam=self.CRRA)
|
def derivativeX(self,m,p)
|
Evaluate the first derivative with respect to market resources of the
marginal value function at given levels of market resources m and per-
manent income p.
Parameters
----------
m : float or np.array
Market resources whose value is to be calcuated.
p : float or np.array
Persistent income levels whose value is to be calculated.
Returns
-------
vPP : float or np.array
Marginal marginal value of market resources when beginning this period
with market resources m and persistent income p; has same size as inputs
m and p.
| 7.594263 | 1.944306 | 3.905899 |
'''
Unpacks some of the inputs (and calculates simple objects based on them),
storing the results in self for use by other methods. These include:
income shocks and probabilities, next period's marginal value function
(etc), the probability of getting the worst income shock next period,
the patience factor, human wealth, and the bounding MPCs. Human wealth
is stored as a function of persistent income.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, persistent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
Returns
-------
None
'''
# Run basic version of this method
ConsIndShockSetup.setAndUpdateValues(self,solution_next,IncomeDstn,LivPrb,DiscFac)
self.mLvlMinNext = solution_next.mLvlMin
# Replace normalized human wealth (scalar) with human wealth level as function of persistent income
self.hNrmNow = 0.0
pLvlCount = self.pLvlGrid.size
IncShkCount = self.PermShkValsNext.size
pLvlNext = np.tile(self.pLvlNextFunc(self.pLvlGrid),(IncShkCount,1))*np.tile(self.PermShkValsNext,(pLvlCount,1)).transpose()
hLvlGrid = 1.0/self.Rfree*np.sum((np.tile(self.TranShkValsNext,(pLvlCount,1)).transpose()*pLvlNext + solution_next.hLvl(pLvlNext))*np.tile(self.ShkPrbsNext,(pLvlCount,1)).transpose(),axis=0)
self.hLvlNow = LinearInterp(np.insert(self.pLvlGrid,0,0.0),np.insert(hLvlGrid,0,0.0))
|
def setAndUpdateValues(self,solution_next,IncomeDstn,LivPrb,DiscFac)
|
Unpacks some of the inputs (and calculates simple objects based on them),
storing the results in self for use by other methods. These include:
income shocks and probabilities, next period's marginal value function
(etc), the probability of getting the worst income shock next period,
the patience factor, human wealth, and the bounding MPCs. Human wealth
is stored as a function of persistent income.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, persistent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
Returns
-------
None
| 3.564502 | 2.07857 | 1.714881 |
'''
Defines the constrained portion of the consumption function as cFuncNowCnst,
an attribute of self.
Parameters
----------
BoroCnstArt : float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
Returns
-------
None
'''
# Make temporary grids of income shocks and next period income values
ShkCount = self.TranShkValsNext.size
pLvlCount = self.pLvlGrid.size
PermShkVals_temp = np.tile(np.reshape(self.PermShkValsNext,(1,ShkCount)),(pLvlCount,1))
TranShkVals_temp = np.tile(np.reshape(self.TranShkValsNext,(1,ShkCount)),(pLvlCount,1))
pLvlNext_temp = np.tile(np.reshape(self.pLvlNextFunc(self.pLvlGrid),(pLvlCount,1)),(1,ShkCount))*PermShkVals_temp
# Find the natural borrowing constraint for each persistent income level
aLvlMin_candidates = (self.mLvlMinNext(pLvlNext_temp) - TranShkVals_temp*pLvlNext_temp)/self.Rfree
aLvlMinNow = np.max(aLvlMin_candidates,axis=1)
self.BoroCnstNat = LinearInterp(np.insert(self.pLvlGrid,0,0.0),np.insert(aLvlMinNow,0,0.0))
# Define the minimum allowable mLvl by pLvl as the greater of the natural and artificial borrowing constraints
if self.BoroCnstArt is not None:
self.BoroCnstArt = LinearInterp(np.array([0.0,1.0]),np.array([0.0,self.BoroCnstArt]))
self.mLvlMinNow = UpperEnvelope(self.BoroCnstArt,self.BoroCnstNat)
else:
self.mLvlMinNow = self.BoroCnstNat
# Define the constrained consumption function as "consume all" shifted by mLvlMin
cFuncNowCnstBase = BilinearInterp(np.array([[0.,0.],[1.,1.]]),np.array([0.0,1.0]),np.array([0.0,1.0]))
self.cFuncNowCnst = VariableLowerBoundFunc2D(cFuncNowCnstBase,self.mLvlMinNow)
|
def defBoroCnst(self,BoroCnstArt)
|
Defines the constrained portion of the consumption function as cFuncNowCnst,
an attribute of self.
Parameters
----------
BoroCnstArt : float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
Returns
-------
None
| 3.135195 | 2.437148 | 1.28642 |
'''
Prepare to calculate end-of-period marginal value by creating an array
of market resources that the agent could have next period, considering
the grid of end-of-period normalized assets, the grid of persistent income
levels, and the distribution of shocks he might experience next period.
Parameters
----------
None
Returns
-------
aLvlNow : np.array
2D array of end-of-period assets; also stored as attribute of self.
pLvlNow : np.array
2D array of persistent income levels this period.
'''
ShkCount = self.TranShkValsNext.size
pLvlCount = self.pLvlGrid.size
aNrmCount = self.aXtraGrid.size
pLvlNow = np.tile(self.pLvlGrid,(aNrmCount,1)).transpose()
aLvlNow = np.tile(self.aXtraGrid,(pLvlCount,1))*pLvlNow + self.BoroCnstNat(pLvlNow)
pLvlNow_tiled = np.tile(pLvlNow,(ShkCount,1,1))
aLvlNow_tiled = np.tile(aLvlNow,(ShkCount,1,1)) # shape = (ShkCount,pLvlCount,aNrmCount)
if self.pLvlGrid[0] == 0.0: # aLvl turns out badly if pLvl is 0 at bottom
aLvlNow[0,:] = self.aXtraGrid
aLvlNow_tiled[:,0,:] = np.tile(self.aXtraGrid,(ShkCount,1))
# Tile arrays of the income shocks and put them into useful shapes
PermShkVals_tiled = np.transpose(np.tile(self.PermShkValsNext,(aNrmCount,pLvlCount,1)),(2,1,0))
TranShkVals_tiled = np.transpose(np.tile(self.TranShkValsNext,(aNrmCount,pLvlCount,1)),(2,1,0))
ShkPrbs_tiled = np.transpose(np.tile(self.ShkPrbsNext,(aNrmCount,pLvlCount,1)),(2,1,0))
# Get cash on hand next period
pLvlNext = self.pLvlNextFunc(pLvlNow_tiled)*PermShkVals_tiled
mLvlNext = self.Rfree*aLvlNow_tiled + pLvlNext*TranShkVals_tiled
# Store and report the results
self.ShkPrbs_temp = ShkPrbs_tiled
self.pLvlNext = pLvlNext
self.mLvlNext = mLvlNext
self.aLvlNow = aLvlNow
return aLvlNow, pLvlNow
|
def prepareToCalcEndOfPrdvP(self)
|
Prepare to calculate end-of-period marginal value by creating an array
of market resources that the agent could have next period, considering
the grid of end-of-period normalized assets, the grid of persistent income
levels, and the distribution of shocks he might experience next period.
Parameters
----------
None
Returns
-------
aLvlNow : np.array
2D array of end-of-period assets; also stored as attribute of self.
pLvlNow : np.array
2D array of persistent income levels this period.
| 3.15658 | 2.159738 | 1.461557 |
'''
Calculates end-of-period marginal value of assets at each state space
point in aLvlNow x pLvlNow. Does so by taking a weighted sum of next
period marginal values across income shocks (in preconstructed grids
self.mLvlNext x self.pLvlNext).
Parameters
----------
None
Returns
-------
EndOfPrdVP : np.array
A 2D array of end-of-period marginal value of assets.
'''
EndOfPrdvP = self.DiscFacEff*self.Rfree*np.sum(self.vPfuncNext(self.mLvlNext,self.pLvlNext)*self.ShkPrbs_temp,axis=0)
return EndOfPrdvP
|
def calcEndOfPrdvP(self)
|
Calculates end-of-period marginal value of assets at each state space
point in aLvlNow x pLvlNow. Does so by taking a weighted sum of next
period marginal values across income shocks (in preconstructed grids
self.mLvlNext x self.pLvlNext).
Parameters
----------
None
Returns
-------
EndOfPrdVP : np.array
A 2D array of end-of-period marginal value of assets.
| 7.055632 | 1.834329 | 3.846438 |
'''
Construct the end-of-period value function for this period, storing it
as an attribute of self for use by other methods.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal value of assets corresponding to the
asset values in self.aLvlNow x self.pLvlGrid.
Returns
-------
none
'''
vLvlNext = self.vFuncNext(self.mLvlNext,self.pLvlNext) # value in many possible future states
EndOfPrdv = self.DiscFacEff*np.sum(vLvlNext*self.ShkPrbs_temp,axis=0) # expected value, averaging across states
EndOfPrdvNvrs = self.uinv(EndOfPrdv) # value transformed through inverse utility
EndOfPrdvNvrsP = EndOfPrdvP*self.uinvP(EndOfPrdv)
# Add points at mLvl=zero
EndOfPrdvNvrs = np.concatenate((np.zeros((self.pLvlGrid.size,1)),EndOfPrdvNvrs),axis=1)
if hasattr(self,'MedShkDstn'):
EndOfPrdvNvrsP = np.concatenate((np.zeros((self.pLvlGrid.size,1)),EndOfPrdvNvrsP),axis=1)
else:
EndOfPrdvNvrsP = np.concatenate((np.reshape(EndOfPrdvNvrsP[:,0],(self.pLvlGrid.size,1)),EndOfPrdvNvrsP),axis=1) # This is a very good approximation, vNvrsPP = 0 at the asset minimum
aLvl_temp = np.concatenate((np.reshape(self.BoroCnstNat(self.pLvlGrid),(self.pLvlGrid.size,1)),self.aLvlNow),axis=1)
# Make an end-of-period value function for each persistent income level in the grid
EndOfPrdvNvrsFunc_list = []
for p in range(self.pLvlGrid.size):
EndOfPrdvNvrsFunc_list.append(CubicInterp(aLvl_temp[p,:]-self.BoroCnstNat(self.pLvlGrid[p]),EndOfPrdvNvrs[p,:],EndOfPrdvNvrsP[p,:]))
EndOfPrdvNvrsFuncBase = LinearInterpOnInterp1D(EndOfPrdvNvrsFunc_list,self.pLvlGrid)
# Re-adjust the combined end-of-period value function to account for the natural borrowing constraint shifter
EndOfPrdvNvrsFunc = VariableLowerBoundFunc2D(EndOfPrdvNvrsFuncBase,self.BoroCnstNat)
self.EndOfPrdvFunc = ValueFunc2D(EndOfPrdvNvrsFunc,self.CRRA)
|
def makeEndOfPrdvFunc(self,EndOfPrdvP)
|
Construct the end-of-period value function for this period, storing it
as an attribute of self for use by other methods.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal value of assets corresponding to the
asset values in self.aLvlNow x self.pLvlGrid.
Returns
-------
none
| 3.74056 | 3.056656 | 1.223742 |
'''
Finds endogenous interpolation points (c,m) for the consumption function.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvlNow : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
Returns
-------
c_for_interpolation : np.array
Consumption points for interpolation.
m_for_interpolation : np.array
Corresponding market resource points for interpolation.
'''
cLvlNow = self.uPinv(EndOfPrdvP)
mLvlNow = cLvlNow + aLvlNow
# Limiting consumption is zero as m approaches mNrmMin
c_for_interpolation = np.concatenate((np.zeros((self.pLvlGrid.size,1)),cLvlNow),axis=-1)
m_for_interpolation = np.concatenate((self.BoroCnstNat(np.reshape(self.pLvlGrid,(self.pLvlGrid.size,1))),mLvlNow),axis=-1)
# Limiting consumption is MPCmin*mLvl as p approaches 0
m_temp = np.reshape(m_for_interpolation[0,:],(1,m_for_interpolation.shape[1]))
m_for_interpolation = np.concatenate((m_temp,m_for_interpolation),axis=0)
c_for_interpolation = np.concatenate((self.MPCminNow*m_temp,c_for_interpolation),axis=0)
return c_for_interpolation, m_for_interpolation
|
def getPointsForInterpolation(self,EndOfPrdvP,aLvlNow)
|
Finds endogenous interpolation points (c,m) for the consumption function.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvlNow : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
Returns
-------
c_for_interpolation : np.array
Consumption points for interpolation.
m_for_interpolation : np.array
Corresponding market resource points for interpolation.
| 3.43346 | 2.300444 | 1.49252 |
'''
Constructs a basic solution for this period, including the consumption
function and marginal value function.
Parameters
----------
cLvl : np.array
Consumption points for interpolation.
mLvl : np.array
Corresponding market resource points for interpolation.
pLvl : np.array
Corresponding persistent income level points for interpolation.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
'''
# Construct the unconstrained consumption function
cFuncNowUnc = interpolator(mLvl,pLvl,cLvl)
# Combine the constrained and unconstrained functions into the true consumption function
cFuncNow = LowerEnvelope2D(cFuncNowUnc,self.cFuncNowCnst)
# Make the marginal value function
vPfuncNow = self.makevPfunc(cFuncNow)
# Pack up the solution and return it
solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=0.0)
return solution_now
|
def usePointsForInterpolation(self,cLvl,mLvl,pLvl,interpolator)
|
Constructs a basic solution for this period, including the consumption
function and marginal value function.
Parameters
----------
cLvl : np.array
Consumption points for interpolation.
mLvl : np.array
Corresponding market resource points for interpolation.
pLvl : np.array
Corresponding persistent income level points for interpolation.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
| 4.35387 | 2.034942 | 2.139555 |
'''
Given end of period assets and end of period marginal value, construct
the basic solution for this period.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvl : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
pLvl : np.array
Array of persistent income levels that yield the marginal values
in EndOfPrdvP (corresponding pointwise to aLvl).
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
'''
cLvl,mLvl = self.getPointsForInterpolation(EndOfPrdvP,aLvl)
pLvl_temp = np.concatenate((np.reshape(self.pLvlGrid,(self.pLvlGrid.size,1)),pLvl),axis=-1)
pLvl_temp = np.concatenate((np.zeros((1,mLvl.shape[1])),pLvl_temp))
solution_now = self.usePointsForInterpolation(cLvl,mLvl,pLvl_temp,interpolator)
return solution_now
|
def makeBasicSolution(self,EndOfPrdvP,aLvl,pLvl,interpolator)
|
Given end of period assets and end of period marginal value, construct
the basic solution for this period.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aLvl : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
pLvl : np.array
Array of persistent income levels that yield the marginal values
in EndOfPrdvP (corresponding pointwise to aLvl).
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
| 3.660952 | 1.729243 | 2.117084 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.