code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
'''
Makes a quasi-bilinear interpolation to represent the (unconstrained)
consumption function.
Parameters
----------
mLvl : np.array
Market resource points for interpolation.
pLvl : np.array
Persistent income level points for interpolation.
cLvl : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : LinearInterp
The unconstrained consumption function for this period.
'''
cFunc_by_pLvl_list = [] # list of consumption functions for each pLvl
for j in range(pLvl.shape[0]):
pLvl_j = pLvl[j,0]
m_temp = mLvl[j,:] - self.BoroCnstNat(pLvl_j)
c_temp = cLvl[j,:] # Make a linear consumption function for this pLvl
if pLvl_j > 0:
cFunc_by_pLvl_list.append(LinearInterp(m_temp,c_temp,lower_extrap=True,slope_limit=self.MPCminNow,intercept_limit=self.MPCminNow*self.hLvlNow(pLvl_j)))
else:
cFunc_by_pLvl_list.append(LinearInterp(m_temp,c_temp,lower_extrap=True))
pLvl_list = pLvl[:,0]
cFuncUncBase = LinearInterpOnInterp1D(cFunc_by_pLvl_list,pLvl_list) # Combine all linear cFuncs
cFuncUnc = VariableLowerBoundFunc2D(cFuncUncBase,self.BoroCnstNat) # Re-adjust for natural borrowing constraint (as lower bound)
return cFuncUnc
|
def makeLinearcFunc(self,mLvl,pLvl,cLvl)
|
Makes a quasi-bilinear interpolation to represent the (unconstrained)
consumption function.
Parameters
----------
mLvl : np.array
Market resource points for interpolation.
pLvl : np.array
Persistent income level points for interpolation.
cLvl : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : LinearInterp
The unconstrained consumption function for this period.
| 3.659449 | 2.615953 | 1.398897 |
'''
Makes a quasi-cubic spline interpolation of the unconstrained consumption
function for this period. Function is cubic splines with respect to mLvl,
but linear in pLvl.
Parameters
----------
mLvl : np.array
Market resource points for interpolation.
pLvl : np.array
Persistent income level points for interpolation.
cLvl : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : CubicInterp
The unconstrained consumption function for this period.
'''
# Calculate the MPC at each gridpoint
EndOfPrdvPP = self.DiscFacEff*self.Rfree*self.Rfree*np.sum(self.vPPfuncNext(self.mLvlNext,self.pLvlNext)*self.ShkPrbs_temp,axis=0)
dcda = EndOfPrdvPP/self.uPP(np.array(cLvl[1:,1:]))
MPC = dcda/(dcda+1.)
MPC = np.concatenate((np.reshape(MPC[:,0],(MPC.shape[0],1)),MPC),axis=1) # Stick an extra MPC value at bottom; MPCmax doesn't work
MPC = np.concatenate((self.MPCminNow*np.ones((1,self.aXtraGrid.size+1)),MPC),axis=0)
# Make cubic consumption function with respect to mLvl for each persistent income level
cFunc_by_pLvl_list = [] # list of consumption functions for each pLvl
for j in range(pLvl.shape[0]):
pLvl_j = pLvl[j,0]
m_temp = mLvl[j,:] - self.BoroCnstNat(pLvl_j)
c_temp = cLvl[j,:] # Make a cubic consumption function for this pLvl
MPC_temp = MPC[j,:]
if pLvl_j > 0:
cFunc_by_pLvl_list.append(CubicInterp(m_temp,c_temp,MPC_temp,lower_extrap=True,slope_limit=self.MPCminNow,intercept_limit=self.MPCminNow*self.hLvlNow(pLvl_j)))
else: # When pLvl=0, cFunc is linear
cFunc_by_pLvl_list.append(LinearInterp(m_temp,c_temp,lower_extrap=True))
pLvl_list = pLvl[:,0]
cFuncUncBase = LinearInterpOnInterp1D(cFunc_by_pLvl_list,pLvl_list) # Combine all linear cFuncs
cFuncUnc = VariableLowerBoundFunc2D(cFuncUncBase,self.BoroCnstNat) # Re-adjust for lower bound of natural borrowing constraint
return cFuncUnc
|
def makeCubiccFunc(self,mLvl,pLvl,cLvl)
|
Makes a quasi-cubic spline interpolation of the unconstrained consumption
function for this period. Function is cubic splines with respect to mLvl,
but linear in pLvl.
Parameters
----------
mLvl : np.array
Market resource points for interpolation.
pLvl : np.array
Persistent income level points for interpolation.
cLvl : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : CubicInterp
The unconstrained consumption function for this period.
| 4.073285 | 3.144272 | 1.295462 |
'''
Take a solution and add human wealth and the bounding MPCs to it.
Parameters
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem.
Returns:
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem, but now
with human wealth and the bounding MPCs.
'''
solution.hNrm = 0.0 # Can't have None or setAndUpdateValues breaks, should fix
solution.hLvl = self.hLvlNow
solution.mLvlMin= self.mLvlMinNow
solution.MPCmin = self.MPCminNow
solution.MPCmax = 0.0 # MPCmax is actually a function in this model
return solution
|
def addMPCandHumanWealth(self,solution)
|
Take a solution and add human wealth and the bounding MPCs to it.
Parameters
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem.
Returns:
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem, but now
with human wealth and the bounding MPCs.
| 6.246112 | 3.547044 | 1.760935 |
'''
Adds the marginal marginal value function to an existing solution, so
that the next solver can evaluate vPP and thus use cubic interpolation.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, which must include the
consumption function.
Returns
-------
solution : ConsumerSolution
The same solution passed as input, but with the marginal marginal
value function for this period added as the attribute vPPfunc.
'''
vPPfuncNow = MargMargValueFunc2D(solution.cFunc,self.CRRA)
solution.vPPfunc = vPPfuncNow
return solution
|
def addvPPfunc(self,solution)
|
Adds the marginal marginal value function to an existing solution, so
that the next solver can evaluate vPP and thus use cubic interpolation.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, which must include the
consumption function.
Returns
-------
solution : ConsumerSolution
The same solution passed as input, but with the marginal marginal
value function for this period added as the attribute vPPfunc.
| 6.948669 | 1.915051 | 3.628452 |
'''
Solves a one period consumption saving problem with risky income, with
persistent income explicitly tracked as a state variable.
Parameters
----------
None
Returns
-------
solution : ConsumerSolution
The solution to the one period problem, including a consumption
function (defined over market resources and persistent income), a
marginal value function, bounding MPCs, and human wealth as a func-
tion of persistent income. Might also include a value function and
marginal marginal value function, depending on options selected.
'''
aLvl,pLvl = self.prepareToCalcEndOfPrdvP()
EndOfPrdvP = self.calcEndOfPrdvP()
if self.vFuncBool:
self.makeEndOfPrdvFunc(EndOfPrdvP)
if self.CubicBool:
interpolator = self.makeCubiccFunc
else:
interpolator = self.makeLinearcFunc
solution = self.makeBasicSolution(EndOfPrdvP,aLvl,pLvl,interpolator)
solution = self.addMPCandHumanWealth(solution)
if self.vFuncBool:
solution.vFunc = self.makevFunc(solution)
if self.CubicBool:
solution = self.addvPPfunc(solution)
return solution
|
def solve(self)
|
Solves a one period consumption saving problem with risky income, with
persistent income explicitly tracked as a state variable.
Parameters
----------
None
Returns
-------
solution : ConsumerSolution
The solution to the one period problem, including a consumption
function (defined over market resources and persistent income), a
marginal value function, bounding MPCs, and human wealth as a func-
tion of persistent income. Might also include a value function and
marginal marginal value function, depending on options selected.
| 5.912169 | 2.349797 | 2.516034 |
'''
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
None
Returns
-------
None
'''
self.solution_terminal.vFunc = ValueFunc2D(self.cFunc_terminal_,self.CRRA)
self.solution_terminal.vPfunc = MargValueFunc2D(self.cFunc_terminal_,self.CRRA)
self.solution_terminal.vPPfunc = MargMargValueFunc2D(self.cFunc_terminal_,self.CRRA)
self.solution_terminal.hNrm = 0.0 # Don't track normalized human wealth
self.solution_terminal.hLvl = lambda p : np.zeros_like(p) # But do track absolute human wealth by persistent income
self.solution_terminal.mLvlMin = lambda p : np.zeros_like(p)
|
def updateSolutionTerminal(self)
|
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
None
Returns
-------
None
| 4.55188 | 3.131093 | 1.453767 |
'''
A dummy method that creates a trivial pLvlNextFunc attribute that has
no persistent income dynamics. This method should be overwritten by
subclasses in order to make (e.g.) an AR1 income process.
Parameters
----------
None
Returns
-------
None
'''
pLvlNextFuncBasic = LinearInterp(np.array([0.,1.]),np.array([0.,1.]))
self.pLvlNextFunc = self.T_cycle*[pLvlNextFuncBasic]
self.addToTimeVary('pLvlNextFunc')
|
def updatepLvlNextFunc(self)
|
A dummy method that creates a trivial pLvlNextFunc attribute that has
no persistent income dynamics. This method should be overwritten by
subclasses in order to make (e.g.) an AR1 income process.
Parameters
----------
None
Returns
-------
None
| 6.956605 | 2.416557 | 2.878726 |
'''
Installs a special pLvlNextFunc representing retirement in the correct
element of self.pLvlNextFunc. Draws on the attributes T_retire and
pLvlNextFuncRet. If T_retire is zero or pLvlNextFuncRet does not
exist, this method does nothing. Should only be called from within the
method updatepLvlNextFunc, which ensures that time is flowing forward.
Parameters
----------
None
Returns
-------
None
'''
if (not hasattr(self,'pLvlNextFuncRet')) or self.T_retire == 0:
return
t = self.T_retire
self.pLvlNextFunc[t] = self.pLvlNextFuncRet
|
def installRetirementFunc(self)
|
Installs a special pLvlNextFunc representing retirement in the correct
element of self.pLvlNextFunc. Draws on the attributes T_retire and
pLvlNextFuncRet. If T_retire is zero or pLvlNextFuncRet does not
exist, this method does nothing. Should only be called from within the
method updatepLvlNextFunc, which ensures that time is flowing forward.
Parameters
----------
None
Returns
-------
None
| 6.291246 | 1.497308 | 4.201704 |
'''
Makes new consumers for the given indices. Initialized variables include aNrm and pLvl, as
well as time variables t_age and t_cycle. Normalized assets and persistent income levels
are drawn from lognormal distributions given by aNrmInitMean and aNrmInitStd (etc).
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
'''
# Get and store states for newly born agents
N = np.sum(which_agents) # Number of new consumers to make
aNrmNow_new = drawLognormal(N,mu=self.aNrmInitMean,sigma=self.aNrmInitStd,seed=self.RNG.randint(0,2**31-1))
self.pLvlNow[which_agents] = drawLognormal(N,mu=self.pLvlInitMean,sigma=self.pLvlInitStd,seed=self.RNG.randint(0,2**31-1))
self.aLvlNow[which_agents] = aNrmNow_new*self.pLvlNow[which_agents]
self.t_age[which_agents] = 0 # How many periods since each agent was born
self.t_cycle[which_agents] = 0
|
def simBirth(self,which_agents)
|
Makes new consumers for the given indices. Initialized variables include aNrm and pLvl, as
well as time variables t_age and t_cycle. Normalized assets and persistent income levels
are drawn from lognormal distributions given by aNrmInitMean and aNrmInitStd (etc).
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
| 3.887403 | 1.840313 | 2.112359 |
'''
Calculates updated values of normalized market resources and persistent income level for each
agent. Uses pLvlNow, aLvlNow, PermShkNow, TranShkNow.
Parameters
----------
None
Returns
-------
None
'''
aLvlPrev = self.aLvlNow
RfreeNow = self.getRfree()
# Calculate new states: normalized market resources and persistent income level
pLvlNow = np.zeros_like(aLvlPrev)
for t in range(self.T_cycle):
these = t == self.t_cycle
pLvlNow[these] = self.pLvlNextFunc[t-1](self.pLvlNow[these])*self.PermShkNow[these]
self.pLvlNow = pLvlNow # Updated persistent income level
self.bLvlNow = RfreeNow*aLvlPrev # Bank balances before labor income
self.mLvlNow = self.bLvlNow + self.TranShkNow*self.pLvlNow
|
def getStates(self)
|
Calculates updated values of normalized market resources and persistent income level for each
agent. Uses pLvlNow, aLvlNow, PermShkNow, TranShkNow.
Parameters
----------
None
Returns
-------
None
| 4.768418 | 2.718127 | 1.754303 |
'''
Calculates consumption for each consumer of this type using the consumption functions.
Parameters
----------
None
Returns
-------
None
'''
cLvlNow = np.zeros(self.AgentCount) + np.nan
MPCnow = np.zeros(self.AgentCount) + np.nan
for t in range(self.T_cycle):
these = t == self.t_cycle
cLvlNow[these] = self.solution[t].cFunc(self.mLvlNow[these],self.pLvlNow[these])
MPCnow[these] = self.solution[t].cFunc.derivativeX(self.mLvlNow[these],self.pLvlNow[these])
self.cLvlNow = cLvlNow
self.MPCnow = MPCnow
|
def getControls(self)
|
Calculates consumption for each consumer of this type using the consumption functions.
Parameters
----------
None
Returns
-------
None
| 3.639828 | 2.575837 | 1.413066 |
'''
A method that creates the pLvlNextFunc attribute as a sequence of
linear functions, indicating constant expected permanent income growth
across permanent income levels. Draws on the attribute PermGroFac, and
installs a special retirement function when it exists.
Parameters
----------
None
Returns
-------
None
'''
orig_time = self.time_flow
self.timeFwd()
pLvlNextFunc = []
for t in range(self.T_cycle):
pLvlNextFunc.append(LinearInterp(np.array([0.,1.]),np.array([0.,self.PermGroFac[t]])))
self.pLvlNextFunc = pLvlNextFunc
self.addToTimeVary('pLvlNextFunc')
if not orig_time:
self.timeRev()
|
def updatepLvlNextFunc(self)
|
A method that creates the pLvlNextFunc attribute as a sequence of
linear functions, indicating constant expected permanent income growth
across permanent income levels. Draws on the attribute PermGroFac, and
installs a special retirement function when it exists.
Parameters
----------
None
Returns
-------
None
| 6.519608 | 2.412169 | 2.7028 |
'''
A method that creates the pLvlNextFunc attribute as a sequence of
AR1-style functions. Draws on the attributes PermGroFac and PrstIncCorr.
If cycles=0, the product of PermGroFac across all periods must be 1.0,
otherwise this method is invalid.
Parameters
----------
None
Returns
-------
None
'''
orig_time = self.time_flow
self.timeFwd()
pLvlNextFunc = []
pLogMean = self.pLvlInitMean # Initial mean (log) persistent income
for t in range(self.T_cycle):
pLvlNextFunc.append(pLvlFuncAR1(pLogMean,self.PermGroFac[t],self.PrstIncCorr))
pLogMean += np.log(self.PermGroFac[t])
self.pLvlNextFunc = pLvlNextFunc
self.addToTimeVary('pLvlNextFunc')
if not orig_time:
self.timeRev()
|
def updatepLvlNextFunc(self)
|
A method that creates the pLvlNextFunc attribute as a sequence of
AR1-style functions. Draws on the attributes PermGroFac and PrstIncCorr.
If cycles=0, the product of PermGroFac across all periods must be 1.0,
otherwise this method is invalid.
Parameters
----------
None
Returns
-------
None
| 6.205222 | 2.739169 | 2.265367 |
'''
Generate arrays of mean one lognormal draws. The sigma input can be a number
or list-like. If a number, output is a length N array of draws from the
lognormal distribution with standard deviation sigma. If a list, output is
a length T list whose t-th entry is a length N array of draws from the
lognormal with standard deviation sigma[t].
Parameters
----------
N : int
Number of draws in each row.
sigma : float or [float]
One or more standard deviations. Number of elements T in sigma
determines number of rows of output.
seed : int
Seed for random number generator.
Returns:
------------
draws : np.array or [np.array]
T-length list of arrays of mean one lognormal draws each of size N, or
a single array of size N (if sigma is a scalar).
'''
# Set up the RNG
RNG = np.random.RandomState(seed)
if isinstance(sigma,float): # Return a single array of length N
mu = -0.5*sigma**2
draws = RNG.lognormal(mean=mu, sigma=sigma, size=N)
else: # Set up empty list to populate, then loop and populate list with draws
draws=[]
for sig in sigma:
mu = -0.5*(sig**2)
draws.append(RNG.lognormal(mean=mu, sigma=sig, size=N))
return draws
|
def drawMeanOneLognormal(N, sigma=1.0, seed=0)
|
Generate arrays of mean one lognormal draws. The sigma input can be a number
or list-like. If a number, output is a length N array of draws from the
lognormal distribution with standard deviation sigma. If a list, output is
a length T list whose t-th entry is a length N array of draws from the
lognormal with standard deviation sigma[t].
Parameters
----------
N : int
Number of draws in each row.
sigma : float or [float]
One or more standard deviations. Number of elements T in sigma
determines number of rows of output.
seed : int
Seed for random number generator.
Returns:
------------
draws : np.array or [np.array]
T-length list of arrays of mean one lognormal draws each of size N, or
a single array of size N (if sigma is a scalar).
| 3.617318 | 1.689505 | 2.141053 |
'''
Generate arrays of mean one lognormal draws. The sigma input can be a number
or list-like. If a number, output is a length N array of draws from the
lognormal distribution with standard deviation sigma. If a list, output is
a length T list whose t-th entry is a length N array of draws from the
lognormal with standard deviation sigma[t].
Parameters
----------
N : int
Number of draws in each row.
mu : float or [float]
One or more means. Number of elements T in mu determines number
of rows of output.
sigma : float or [float]
One or more standard deviations. Number of elements T in sigma
determines number of rows of output.
seed : int
Seed for random number generator.
Returns:
------------
draws : np.array or [np.array]
T-length list of arrays of mean one lognormal draws each of size N, or
a single array of size N (if sigma is a scalar).
'''
# Set up the RNG
RNG = np.random.RandomState(seed)
if isinstance(sigma,float): # Return a single array of length N
if sigma == 0:
draws = np.exp(mu)*np.ones(N)
else:
draws = RNG.lognormal(mean=mu, sigma=sigma, size=N)
else: # Set up empty list to populate, then loop and populate list with draws
draws=[]
for j in range(len(sigma)):
if sigma[j] == 0:
draws.append(np.exp(mu[j])*np.ones(N))
else:
draws.append(RNG.lognormal(mean=mu[j], sigma=sigma[j], size=N))
return draws
|
def drawLognormal(N,mu=0.0,sigma=1.0,seed=0)
|
Generate arrays of mean one lognormal draws. The sigma input can be a number
or list-like. If a number, output is a length N array of draws from the
lognormal distribution with standard deviation sigma. If a list, output is
a length T list whose t-th entry is a length N array of draws from the
lognormal with standard deviation sigma[t].
Parameters
----------
N : int
Number of draws in each row.
mu : float or [float]
One or more means. Number of elements T in mu determines number
of rows of output.
sigma : float or [float]
One or more standard deviations. Number of elements T in sigma
determines number of rows of output.
seed : int
Seed for random number generator.
Returns:
------------
draws : np.array or [np.array]
T-length list of arrays of mean one lognormal draws each of size N, or
a single array of size N (if sigma is a scalar).
| 3.216934 | 1.564845 | 2.055753 |
'''
Generate arrays of normal draws. The mu and sigma inputs can be numbers or
list-likes. If a number, output is a length N array of draws from the normal
distribution with mean mu and standard deviation sigma. If a list, output is
a length T list whose t-th entry is a length N array with draws from the
normal distribution with mean mu[t] and standard deviation sigma[t].
Parameters
----------
N : int
Number of draws in each row.
mu : float or [float]
One or more means. Number of elements T in mu determines number of rows
of output.
sigma : float or [float]
One or more standard deviations. Number of elements T in sigma
determines number of rows of output.
seed : int
Seed for random number generator.
Returns
-------
draws : np.array or [np.array]
T-length list of arrays of normal draws each of size N, or a single array
of size N (if sigma is a scalar).
'''
# Set up the RNG
RNG = np.random.RandomState(seed)
if isinstance(sigma,float): # Return a single array of length N
draws = sigma*RNG.randn(N) + mu
else: # Set up empty list to populate, then loop and populate list with draws
draws=[]
for t in range(len(sigma)):
draws.append(sigma[t]*RNG.randn(N) + mu[t])
return draws
|
def drawNormal(N, mu=0.0, sigma=1.0, seed=0)
|
Generate arrays of normal draws. The mu and sigma inputs can be numbers or
list-likes. If a number, output is a length N array of draws from the normal
distribution with mean mu and standard deviation sigma. If a list, output is
a length T list whose t-th entry is a length N array with draws from the
normal distribution with mean mu[t] and standard deviation sigma[t].
Parameters
----------
N : int
Number of draws in each row.
mu : float or [float]
One or more means. Number of elements T in mu determines number of rows
of output.
sigma : float or [float]
One or more standard deviations. Number of elements T in sigma
determines number of rows of output.
seed : int
Seed for random number generator.
Returns
-------
draws : np.array or [np.array]
T-length list of arrays of normal draws each of size N, or a single array
of size N (if sigma is a scalar).
| 3.318584 | 1.591875 | 2.084701 |
'''
Generate arrays of Weibull draws. The scale and shape inputs can be
numbers or list-likes. If a number, output is a length N array of draws from
the Weibull distribution with the given scale and shape. If a list, output
is a length T list whose t-th entry is a length N array with draws from the
Weibull distribution with scale scale[t] and shape shape[t].
Note: When shape=1, the Weibull distribution is simply the exponential dist.
Mean: scale*Gamma(1 + 1/shape)
Parameters
----------
N : int
Number of draws in each row.
scale : float or [float]
One or more scales. Number of elements T in scale determines number of
rows of output.
shape : float or [float]
One or more shape parameters. Number of elements T in scale
determines number of rows of output.
seed : int
Seed for random number generator.
Returns:
------------
draws : np.array or [np.array]
T-length list of arrays of Weibull draws each of size N, or a single
array of size N (if sigma is a scalar).
'''
# Set up the RNG
RNG = np.random.RandomState(seed)
if scale == 1:
scale = float(scale)
if isinstance(scale,float): # Return a single array of length N
draws = scale*(-np.log(1.0-RNG.rand(N)))**(1.0/shape)
else: # Set up empty list to populate, then loop and populate list with draws
draws=[]
for t in range(len(scale)):
draws.append(scale[t]*(-np.log(1.0-RNG.rand(N)))**(1.0/shape[t]))
return draws
|
def drawWeibull(N, scale=1.0, shape=1.0, seed=0)
|
Generate arrays of Weibull draws. The scale and shape inputs can be
numbers or list-likes. If a number, output is a length N array of draws from
the Weibull distribution with the given scale and shape. If a list, output
is a length T list whose t-th entry is a length N array with draws from the
Weibull distribution with scale scale[t] and shape shape[t].
Note: When shape=1, the Weibull distribution is simply the exponential dist.
Mean: scale*Gamma(1 + 1/shape)
Parameters
----------
N : int
Number of draws in each row.
scale : float or [float]
One or more scales. Number of elements T in scale determines number of
rows of output.
shape : float or [float]
One or more shape parameters. Number of elements T in scale
determines number of rows of output.
seed : int
Seed for random number generator.
Returns:
------------
draws : np.array or [np.array]
T-length list of arrays of Weibull draws each of size N, or a single
array of size N (if sigma is a scalar).
| 3.798846 | 1.586549 | 2.394408 |
'''
Generate arrays of uniform draws. The bot and top inputs can be numbers or
list-likes. If a number, output is a length N array of draws from the
uniform distribution on [bot,top]. If a list, output is a length T list
whose t-th entry is a length N array with draws from the uniform distribution
on [bot[t],top[t]].
Parameters
----------
N : int
Number of draws in each row.
bot : float or [float]
One or more bottom values. Number of elements T in mu determines number
of rows of output.
top : float or [float]
One or more top values. Number of elements T in top determines number of
rows of output.
seed : int
Seed for random number generator.
Returns
-------
draws : np.array or [np.array]
T-length list of arrays of uniform draws each of size N, or a single
array of size N (if sigma is a scalar).
'''
# Set up the RNG
RNG = np.random.RandomState(seed)
if isinstance(bot,float) or isinstance(bot,int): # Return a single array of size N
draws = bot + (top - bot)*RNG.rand(N)
else: # Set up empty list to populate, then loop and populate list with draws
draws=[]
for t in range(len(bot)):
draws.append(bot[t] + (top[t] - bot[t])*RNG.rand(N))
return draws
|
def drawUniform(N, bot=0.0, top=1.0, seed=0)
|
Generate arrays of uniform draws. The bot and top inputs can be numbers or
list-likes. If a number, output is a length N array of draws from the
uniform distribution on [bot,top]. If a list, output is a length T list
whose t-th entry is a length N array with draws from the uniform distribution
on [bot[t],top[t]].
Parameters
----------
N : int
Number of draws in each row.
bot : float or [float]
One or more bottom values. Number of elements T in mu determines number
of rows of output.
top : float or [float]
One or more top values. Number of elements T in top determines number of
rows of output.
seed : int
Seed for random number generator.
Returns
-------
draws : np.array or [np.array]
T-length list of arrays of uniform draws each of size N, or a single
array of size N (if sigma is a scalar).
| 3.5444 | 1.59175 | 2.226731 |
'''
Generates arrays of booleans drawn from a simple Bernoulli distribution.
The input p can be a float or a list-like of floats; its length T determines
the number of entries in the output. The t-th entry of the output is an
array of N booleans which are True with probability p[t] and False otherwise.
Arguments
---------
N : int
Number of draws in each row.
p : float or [float]
Probability or probabilities of the event occurring (True).
seed : int
Seed for random number generator.
Returns
-------
draws : np.array or [np.array]
T-length list of arrays of Bernoulli draws each of size N, or a single
array of size N (if sigma is a scalar).
'''
# Set up the RNG
RNG = np.random.RandomState(seed)
if isinstance(p,float):# Return a single array of size N
draws = RNG.uniform(size=N) < p
else: # Set up empty list to populate, then loop and populate list with draws:
draws=[]
for t in range(len(p)):
draws.append(RNG.uniform(size=N) < p[t])
return draws
|
def drawBernoulli(N,p=0.5,seed=0)
|
Generates arrays of booleans drawn from a simple Bernoulli distribution.
The input p can be a float or a list-like of floats; its length T determines
the number of entries in the output. The t-th entry of the output is an
array of N booleans which are True with probability p[t] and False otherwise.
Arguments
---------
N : int
Number of draws in each row.
p : float or [float]
Probability or probabilities of the event occurring (True).
seed : int
Seed for random number generator.
Returns
-------
draws : np.array or [np.array]
T-length list of arrays of Bernoulli draws each of size N, or a single
array of size N (if sigma is a scalar).
| 4.445632 | 1.720216 | 2.584345 |
'''
Simulates N draws from a discrete distribution with probabilities P and outcomes X.
Parameters
----------
P : np.array
A list of probabilities of outcomes.
X : np.array
A list of discrete outcomes.
N : int
Number of draws to simulate.
exact_match : boolean
Whether the draws should "exactly" match the discrete distribution (as
closely as possible given finite draws). When True, returned draws are
a random permutation of the N-length list that best fits the discrete
distribution. When False (default), each draw is independent from the
others and the result could deviate from the input.
seed : int
Seed for random number generator.
Returns
-------
draws : np.array
An array draws from the discrete distribution; each element is a value in X.
'''
# Set up the RNG
RNG = np.random.RandomState(seed)
if exact_match:
events = np.arange(P.size) # just a list of integers
cutoffs = np.round(np.cumsum(P)*N).astype(int) # cutoff points between discrete outcomes
top = 0
# Make a list of event indices that closely matches the discrete distribution
event_list = []
for j in range(events.size):
bot = top
top = cutoffs[j]
event_list += (top-bot)*[events[j]]
# Randomly permute the event indices and store the corresponding results
event_draws = RNG.permutation(event_list)
draws = X[event_draws]
else:
# Generate a cumulative distribution
base_draws = RNG.uniform(size=N)
cum_dist = np.cumsum(P)
# Convert the basic uniform draws into discrete draws
indices = cum_dist.searchsorted(base_draws)
draws = np.asarray(X)[indices]
return draws
|
def drawDiscrete(N,P=[1.0],X=[0.0],exact_match=False,seed=0)
|
Simulates N draws from a discrete distribution with probabilities P and outcomes X.
Parameters
----------
P : np.array
A list of probabilities of outcomes.
X : np.array
A list of discrete outcomes.
N : int
Number of draws to simulate.
exact_match : boolean
Whether the draws should "exactly" match the discrete distribution (as
closely as possible given finite draws). When True, returned draws are
a random permutation of the N-length list that best fits the discrete
distribution. When False (default), each draw is independent from the
others and the result could deviate from the input.
seed : int
Seed for random number generator.
Returns
-------
draws : np.array
An array draws from the discrete distribution; each element is a value in X.
| 4.295944 | 2.343927 | 1.832798 |
'''
Calculates the proportion of punks in the population, given data from each type.
Parameters
----------
pNow : [np.array]
List of arrays of binary data, representing the fashion choice of each
agent in each type of this market (0=jock, 1=punk).
pop_size : [int]
List with the number of agents of each type in the market. Unused.
'''
sNowX = np.asarray(sNow).flatten()
pNow = np.mean(sNowX)
return FashionMarketInfo(pNow)
|
def calcPunkProp(sNow)
|
Calculates the proportion of punks in the population, given data from each type.
Parameters
----------
pNow : [np.array]
List of arrays of binary data, representing the fashion choice of each
agent in each type of this market (0=jock, 1=punk).
pop_size : [int]
List with the number of agents of each type in the market. Unused.
| 10.457702 | 2.319917 | 4.507791 |
'''
Calculates a new approximate dynamic rule for the evolution of the proportion
of punks as a linear function and a "shock width".
Parameters
----------
pNow : [float]
List describing the history of the proportion of punks in the population.
Returns
-------
(unnamed) : FashionEvoFunc
A new rule for the evolution of the population punk proportion, based on
the history in input pNow.
'''
pNowX = np.array(pNow)
T = pNowX.size
p_t = pNowX[100:(T-1)]
p_tp1 = pNowX[101:T]
pNextSlope, pNextIntercept, trash1, trash2, trash3 = stats.linregress(p_t,p_tp1)
pPopExp = pNextIntercept + pNextSlope*p_t
pPopErrSq= (pPopExp - p_tp1)**2
pNextStd = np.sqrt(np.mean(pPopErrSq))
print(str(pNextIntercept) + ', ' + str(pNextSlope) + ', ' + str(pNextStd))
return FashionEvoFunc(pNextIntercept,pNextSlope,2*pNextStd)
|
def calcFashionEvoFunc(pNow)
|
Calculates a new approximate dynamic rule for the evolution of the proportion
of punks as a linear function and a "shock width".
Parameters
----------
pNow : [float]
List describing the history of the proportion of punks in the population.
Returns
-------
(unnamed) : FashionEvoFunc
A new rule for the evolution of the population punk proportion, based on
the history in input pNow.
| 5.435077 | 2.491565 | 2.18139 |
'''
Updates the "population punk proportion" evolution array. Fasion victims
believe that the proportion of punks in the subsequent period is a linear
function of the proportion of punks this period, subject to a uniform
shock. Given attributes of self pNextIntercept, pNextSlope, pNextCount,
pNextWidth, and pGrid, this method generates a new array for the attri-
bute pEvolution, representing a discrete approximation of next period
states for each current period state in pGrid.
Parameters
----------
none
Returns
-------
none
'''
self.pEvolution = np.zeros((self.pCount,self.pNextCount))
for j in range(self.pCount):
pNow = self.pGrid[j]
pNextMean = self.pNextIntercept + self.pNextSlope*pNow
dist = approxUniform(N=self.pNextCount,bot=pNextMean-self.pNextWidth,top=pNextMean+self.pNextWidth)[1]
self.pEvolution[j,:] = dist
|
def updateEvolution(self)
|
Updates the "population punk proportion" evolution array. Fasion victims
believe that the proportion of punks in the subsequent period is a linear
function of the proportion of punks this period, subject to a uniform
shock. Given attributes of self pNextIntercept, pNextSlope, pNextCount,
pNextWidth, and pGrid, this method generates a new array for the attri-
bute pEvolution, representing a discrete approximation of next period
states for each current period state in pGrid.
Parameters
----------
none
Returns
-------
none
| 9.733462 | 1.814819 | 5.363323 |
'''
Updates the non-primitive objects needed for solution, using primitive
attributes. This includes defining a "utility from conformity" function
conformUtilityFunc, a grid of population punk proportions, and an array
of future punk proportions (for each value in the grid). Results are
stored as attributes of self.
Parameters
----------
none
Returns
-------
none
'''
self.conformUtilityFunc = lambda x : stats.beta.pdf(x,self.uParamA,self.uParamB)
self.pGrid = np.linspace(0.0001,0.9999,self.pCount)
self.updateEvolution()
|
def update(self)
|
Updates the non-primitive objects needed for solution, using primitive
attributes. This includes defining a "utility from conformity" function
conformUtilityFunc, a grid of population punk proportions, and an array
of future punk proportions (for each value in the grid). Results are
stored as attributes of self.
Parameters
----------
none
Returns
-------
none
| 11.52964 | 2.149267 | 5.364452 |
'''
Resets this agent type to prepare it for a new simulation run. This
includes resetting the random number generator and initializing the style
of each agent of this type.
'''
self.resetRNG()
sNow = np.zeros(self.pop_size)
Shk = self.RNG.rand(self.pop_size)
sNow[Shk < self.p_init] = 1
self.sNow = sNow
|
def reset(self)
|
Resets this agent type to prepare it for a new simulation run. This
includes resetting the random number generator and initializing the style
of each agent of this type.
| 8.37489 | 3.58226 | 2.337879 |
'''
Unpack the behavioral and value functions for more parsimonious access.
Parameters
----------
none
Returns
-------
none
'''
self.switchFuncPunk = self.solution[0].switchFuncPunk
self.switchFuncJock = self.solution[0].switchFuncJock
self.VfuncPunk = self.solution[0].VfuncPunk
self.VfuncJock = self.solution[0].VfuncJock
|
def postSolve(self)
|
Unpack the behavioral and value functions for more parsimonious access.
Parameters
----------
none
Returns
-------
none
| 5.750748 | 3.179577 | 1.808652 |
'''
Simulate one period of the fashion victom model for this type. Each
agent receives an idiosyncratic preference shock and chooses whether to
change styles (using the optimal decision rule).
Parameters
----------
none
Returns
-------
none
'''
pNow = self.pNow
sPrev = self.sNow
J2Pprob = self.switchFuncJock(pNow)
P2Jprob = self.switchFuncPunk(pNow)
Shks = self.RNG.rand(self.pop_size)
J2P = np.logical_and(sPrev == 0,Shks < J2Pprob)
P2J = np.logical_and(sPrev == 1,Shks < P2Jprob)
sNow = copy(sPrev)
sNow[J2P] = 1
sNow[P2J] = 0
self.sNow = sNow
|
def simOnePrd(self)
|
Simulate one period of the fashion victom model for this type. Each
agent receives an idiosyncratic preference shock and chooses whether to
change styles (using the optimal decision rule).
Parameters
----------
none
Returns
-------
none
| 6.273422 | 2.892198 | 2.169084 |
# NOTE: assumes that the first segment is in fact increasing (forced in EGM
# by augmentation with the constrained segment).
# elements in common grid g
# Identify index intervals of falling and rising regions
# We need these to construct the upper envelope because we need to discard
# solutions from the inverted Euler equations that do not represent optimal
# choices (the FOCs are only necessary in these models).
#
# `fall` is a vector of indeces that represent the first elements in all
# of the falling segments (the curve can potentially fold several times)
fall = np.empty(0, dtype=int) # initialize with empty and then add the last point below while-loop
rise = np.array([0]) # Initialize such thatthe lowest point is the first grid point
i = 1 # Initialize
while i <= len(x) - 2:
# Check if the next (`ip1` stands for i plus 1) grid point is below the
# current one, such that the line is folding back.
ip1_falls = x[i+1] < x[i] # true if grid decreases on index increment
i_rose = x[i] > x[i-1] # true if grid decreases on index decrement
val_fell = v[i] < v[i-1] # true if value rises on index decrement
if (ip1_falls and i_rose) or (val_fell and i_rose):
# we are in a region where the endogenous grid is decreasing or
# the value function rises by stepping back in the grid.
fall = np.append(fall, i) # add the index to the vector
# We now iterate from the current index onwards until we find point
# where resources rises again. Unfortunately, we need to check
# each points, as there can be multiple spells of falling endogenous
# grids, so we cannot use bisection or some other fast algorithm.
k = i
while x[k+1] < x[k]:
k = k + 1
# k now holds either the next index the starts a new rising
# region, or it holds the length of M, `m_len`.
rise = np.append(rise, k)
# Set the index to the point where resources again is rising
i = k
i = i + 1
# Add the last index for convenience (then all segments are complete, as
# len(fall) == len(rise), and we can form them by range(rise[j], fall[j]+1).
fall = np.append(fall, len(v)-1)
return rise, fall
|
def calcSegments(x, v)
|
Find index vectors `rise` and `fall` such that `rise` holds the indeces `i`
such that x[i+1]>x[i] and `fall` holds indeces `j` such that either
- x[j+1] < x[j] or,
- x[j]>x[j-1] and v[j]<v[j-1].
The vectors are essential to the DCEGM algorithm, as they definite the
relevant intervals to be used to construct the upper envelope of potential
solutions to the (necessary) first order conditions.
Parameters
----------
x : np.ndarray
array of points where `v` is evaluated
v : np.ndarray
array of values of some function of `x`
Returns
-------
rise : np.ndarray
see description above
fall : np.ndarray
see description above
| 10.151403 | 9.274071 | 1.094601 |
'''
Solves a single period consumption-saving problem for a consumer with perfect foresight.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
DiscFac : float
Intertemporal discount factor for future utility.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
Returns
-------
solution : ConsumerSolution
The solution to this period's problem.
'''
solver = ConsPerfForesightSolver(solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac)
solution = solver.solve()
return solution
|
def solvePerfForesight(solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac)
|
Solves a single period consumption-saving problem for a consumer with perfect foresight.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
DiscFac : float
Intertemporal discount factor for future utility.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
Returns
-------
solution : ConsumerSolution
The solution to this period's problem.
| 1.91132 | 1.304692 | 1.464959 |
'''
Applies a flat income tax rate to all employed income states during the working
period of life (those before T_retire). Time runs forward in this function.
Parameters
----------
IncomeDstn : [income distributions]
The discrete approximation to the income distribution in each time period.
tax_rate : float
A flat income tax rate to be applied to all employed income.
T_retire : int
The time index after which the agent retires.
unemployed_indices : [int]
Indices of transitory shocks that represent unemployment states (no tax).
transitory_index : int
The index of each element of IncomeDstn representing transitory shocks.
Returns
-------
IncomeDstn_new : [income distributions]
The updated income distributions, after applying the tax.
'''
IncomeDstn_new = deepcopy(IncomeDstn)
i = transitory_index
for t in range(len(IncomeDstn)):
if t < T_retire:
for j in range((IncomeDstn[t][i]).size):
if j not in unemployed_indices:
IncomeDstn_new[t][i][j] = IncomeDstn[t][i][j]*(1-tax_rate)
return IncomeDstn_new
|
def applyFlatIncomeTax(IncomeDstn,tax_rate,T_retire,unemployed_indices=[],transitory_index=2)
|
Applies a flat income tax rate to all employed income states during the working
period of life (those before T_retire). Time runs forward in this function.
Parameters
----------
IncomeDstn : [income distributions]
The discrete approximation to the income distribution in each time period.
tax_rate : float
A flat income tax rate to be applied to all employed income.
T_retire : int
The time index after which the agent retires.
unemployed_indices : [int]
Indices of transitory shocks that represent unemployment states (no tax).
transitory_index : int
The index of each element of IncomeDstn representing transitory shocks.
Returns
-------
IncomeDstn_new : [income distributions]
The updated income distributions, after applying the tax.
| 3.324032 | 1.373449 | 2.420207 |
'''
Constructs the base grid of post-decision states, representing end-of-period
assets above the absolute minimum.
All parameters are passed as attributes of the single input parameters. The
input can be an instance of a ConsumerType, or a custom Parameters class.
Parameters
----------
aXtraMin: float
Minimum value for the a-grid
aXtraMax: float
Maximum value for the a-grid
aXtraCount: int
Size of the a-grid
aXtraExtra: [float]
Extra values for the a-grid.
exp_nest: int
Level of nesting for the exponentially spaced grid
Returns
-------
aXtraGrid: np.ndarray
Base array of values for the post-decision-state grid.
'''
# Unpack the parameters
aXtraMin = parameters.aXtraMin
aXtraMax = parameters.aXtraMax
aXtraCount = parameters.aXtraCount
aXtraExtra = parameters.aXtraExtra
grid_type = 'exp_mult'
exp_nest = parameters.aXtraNestFac
# Set up post decision state grid:
aXtraGrid = None
if grid_type == "linear":
aXtraGrid = np.linspace(aXtraMin, aXtraMax, aXtraCount)
elif grid_type == "exp_mult":
aXtraGrid = makeGridExpMult(ming=aXtraMin, maxg=aXtraMax, ng=aXtraCount, timestonest=exp_nest)
else:
raise Exception("grid_type not recognized in __init__." + \
"Please ensure grid_type is 'linear' or 'exp_mult'")
# Add in additional points for the grid:
for a in aXtraExtra:
if (a is not None):
if a not in aXtraGrid:
j = aXtraGrid.searchsorted(a)
aXtraGrid = np.insert(aXtraGrid, j, a)
return aXtraGrid
|
def constructAssetsGrid(parameters)
|
Constructs the base grid of post-decision states, representing end-of-period
assets above the absolute minimum.
All parameters are passed as attributes of the single input parameters. The
input can be an instance of a ConsumerType, or a custom Parameters class.
Parameters
----------
aXtraMin: float
Minimum value for the a-grid
aXtraMax: float
Maximum value for the a-grid
aXtraCount: int
Size of the a-grid
aXtraExtra: [float]
Extra values for the a-grid.
exp_nest: int
Level of nesting for the exponentially spaced grid
Returns
-------
aXtraGrid: np.ndarray
Base array of values for the post-decision-state grid.
| 4.254084 | 2.053037 | 2.072093 |
'''
Appends one solution to another to create a ConsumerSolution whose
attributes are lists. Used in ConsMarkovModel, where we append solutions
*conditional* on a particular value of a Markov state to each other in
order to get the entire solution.
Parameters
----------
new_solution : ConsumerSolution
The solution to a consumption-saving problem; each attribute is a
list representing state-conditional values or functions.
Returns
-------
None
'''
if type(self.cFunc)!=list:
# Then we assume that self is an empty initialized solution instance.
# Begin by checking this is so.
assert NullFunc().distance(self.cFunc) == 0, 'appendSolution called incorrectly!'
# We will need the attributes of the solution instance to be lists. Do that here.
self.cFunc = [new_solution.cFunc]
self.vFunc = [new_solution.vFunc]
self.vPfunc = [new_solution.vPfunc]
self.vPPfunc = [new_solution.vPPfunc]
self.mNrmMin = [new_solution.mNrmMin]
else:
self.cFunc.append(new_solution.cFunc)
self.vFunc.append(new_solution.vFunc)
self.vPfunc.append(new_solution.vPfunc)
self.vPPfunc.append(new_solution.vPPfunc)
self.mNrmMin.append(new_solution.mNrmMin)
|
def appendSolution(self,new_solution)
|
Appends one solution to another to create a ConsumerSolution whose
attributes are lists. Used in ConsMarkovModel, where we append solutions
*conditional* on a particular value of a Markov state to each other in
order to get the entire solution.
Parameters
----------
new_solution : ConsumerSolution
The solution to a consumption-saving problem; each attribute is a
list representing state-conditional values or functions.
Returns
-------
None
| 4.822947 | 2.297775 | 2.098964 |
'''
Saves necessary parameters as attributes of self for use by other methods.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
DiscFac : float
Intertemporal discount factor for future utility.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
Returns
-------
none
'''
self.solution_next = solution_next
self.DiscFac = DiscFac
self.LivPrb = LivPrb
self.CRRA = CRRA
self.Rfree = Rfree
self.PermGroFac = PermGroFac
|
def assignParameters(self,solution_next,DiscFac,LivPrb,CRRA,Rfree,PermGroFac)
|
Saves necessary parameters as attributes of self for use by other methods.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
DiscFac : float
Intertemporal discount factor for future utility.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
Returns
-------
none
| 1.773016 | 1.275997 | 1.389515 |
'''
Defines CRRA utility function for this period (and its derivatives),
saving them as attributes of self for other methods to use.
Parameters
----------
none
Returns
-------
none
'''
self.u = lambda c : utility(c,gam=self.CRRA) # utility function
self.uP = lambda c : utilityP(c,gam=self.CRRA) # marginal utility function
self.uPP = lambda c : utilityPP(c,gam=self.CRRA)
|
def defUtilityFuncs(self)
|
Defines CRRA utility function for this period (and its derivatives),
saving them as attributes of self for other methods to use.
Parameters
----------
none
Returns
-------
none
| 5.128199 | 2.452647 | 2.090884 |
'''
Defines the value and marginal value function for this period.
Parameters
----------
none
Returns
-------
none
'''
MPCnvrs = self.MPC**(-self.CRRA/(1.0-self.CRRA))
vFuncNvrs = LinearInterp(np.array([self.mNrmMin, self.mNrmMin+1.0]),np.array([0.0, MPCnvrs]))
self.vFunc = ValueFunc(vFuncNvrs,self.CRRA)
self.vPfunc = MargValueFunc(self.cFunc,self.CRRA)
|
def defValueFuncs(self)
|
Defines the value and marginal value function for this period.
Parameters
----------
none
Returns
-------
none
| 5.631768 | 3.783353 | 1.488565 |
'''
Makes the (linear) consumption function for this period.
Parameters
----------
none
Returns
-------
none
'''
# Calculate human wealth this period (and lower bound of m)
self.hNrmNow = (self.PermGroFac/self.Rfree)*(self.solution_next.hNrm + 1.0)
self.mNrmMin = -self.hNrmNow
# Calculate the (constant) marginal propensity to consume
PatFac = ((self.Rfree*self.DiscFacEff)**(1.0/self.CRRA))/self.Rfree
self.MPC = 1.0/(1.0 + PatFac/self.solution_next.MPCmin)
# Construct the consumption function
self.cFunc = LinearInterp([self.mNrmMin, self.mNrmMin+1.0],[0.0, self.MPC])
# Add two attributes to enable calculation of steady state market resources
self.ExIncNext = 1.0 # Perfect foresight income of 1
self.mNrmMinNow = self.mNrmMin
|
def makePFcFunc(self)
|
Makes the (linear) consumption function for this period.
Parameters
----------
none
Returns
-------
none
| 5.9626 | 5.188555 | 1.149183 |
'''
Finds steady state (normalized) market resources and adds it to the
solution. This is the level of market resources such that the expectation
of market resources in the next period is unchanged. This value doesn't
necessarily exist.
Parameters
----------
solution : ConsumerSolution
Solution to this period's problem, which must have attribute cFunc.
Returns
-------
solution : ConsumerSolution
Same solution that was passed, but now with the attribute mNrmSS.
'''
# Make a linear function of all combinations of c and m that yield mNext = mNow
mZeroChangeFunc = lambda m : (1.0-self.PermGroFac/self.Rfree)*m + (self.PermGroFac/self.Rfree)*self.ExIncNext
# Find the steady state level of market resources
searchSSfunc = lambda m : solution.cFunc(m) - mZeroChangeFunc(m) # A zero of this is SS market resources
m_init_guess = self.mNrmMinNow + self.ExIncNext # Minimum market resources plus next income is okay starting guess
try:
mNrmSS = newton(searchSSfunc,m_init_guess)
except:
mNrmSS = None
# Add mNrmSS to the solution and return it
solution.mNrmSS = mNrmSS
return solution
|
def addSSmNrm(self,solution)
|
Finds steady state (normalized) market resources and adds it to the
solution. This is the level of market resources such that the expectation
of market resources in the next period is unchanged. This value doesn't
necessarily exist.
Parameters
----------
solution : ConsumerSolution
Solution to this period's problem, which must have attribute cFunc.
Returns
-------
solution : ConsumerSolution
Same solution that was passed, but now with the attribute mNrmSS.
| 6.99545 | 3.62823 | 1.928061 |
'''
Solves the one period perfect foresight consumption-saving problem.
Parameters
----------
none
Returns
-------
solution : ConsumerSolution
The solution to this period's problem.
'''
self.defUtilityFuncs()
self.DiscFacEff = self.DiscFac*self.LivPrb
self.makePFcFunc()
self.defValueFuncs()
solution = ConsumerSolution(cFunc=self.cFunc, vFunc=self.vFunc, vPfunc=self.vPfunc,
mNrmMin=self.mNrmMin, hNrm=self.hNrmNow,
MPCmin=self.MPC, MPCmax=self.MPC)
#solution = self.addSSmNrm(solution)
return solution
|
def solve(self)
|
Solves the one period perfect foresight consumption-saving problem.
Parameters
----------
none
Returns
-------
solution : ConsumerSolution
The solution to this period's problem.
| 5.513844 | 3.623473 | 1.521702 |
'''
Assigns period parameters as attributes of self for use by other methods
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
BoroCnstArt: float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
aXtraGrid: np.array
Array of "extra" end-of-period asset values-- assets above the
absolute minimum acceptable level.
vFuncBool: boolean
An indicator for whether the value function should be computed and
included in the reported solution.
CubicBool: boolean
An indicator for whether the solver should use cubic or linear inter-
polation.
Returns
-------
none
'''
ConsPerfForesightSolver.assignParameters(self,solution_next,DiscFac,LivPrb,
CRRA,Rfree,PermGroFac)
self.BoroCnstArt = BoroCnstArt
self.IncomeDstn = IncomeDstn
self.aXtraGrid = aXtraGrid
self.vFuncBool = vFuncBool
self.CubicBool = CubicBool
|
def assignParameters(self,solution_next,IncomeDstn,LivPrb,DiscFac,CRRA,Rfree,
PermGroFac,BoroCnstArt,aXtraGrid,vFuncBool,CubicBool)
|
Assigns period parameters as attributes of self for use by other methods
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
CRRA : float
Coefficient of relative risk aversion.
Rfree : float
Risk free interest factor on end-of-period assets.
PermGroFac : float
Expected permanent income growth factor at the end of this period.
BoroCnstArt: float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
aXtraGrid: np.array
Array of "extra" end-of-period asset values-- assets above the
absolute minimum acceptable level.
vFuncBool: boolean
An indicator for whether the value function should be computed and
included in the reported solution.
CubicBool: boolean
An indicator for whether the solver should use cubic or linear inter-
polation.
Returns
-------
none
| 1.715214 | 1.252936 | 1.368956 |
'''
Defines CRRA utility function for this period (and its derivatives,
and their inverses), saving them as attributes of self for other methods
to use.
Parameters
----------
none
Returns
-------
none
'''
ConsPerfForesightSolver.defUtilityFuncs(self)
self.uPinv = lambda u : utilityP_inv(u,gam=self.CRRA)
self.uPinvP = lambda u : utilityP_invP(u,gam=self.CRRA)
self.uinvP = lambda u : utility_invP(u,gam=self.CRRA)
if self.vFuncBool:
self.uinv = lambda u : utility_inv(u,gam=self.CRRA)
|
def defUtilityFuncs(self)
|
Defines CRRA utility function for this period (and its derivatives,
and their inverses), saving them as attributes of self for other methods
to use.
Parameters
----------
none
Returns
-------
none
| 4.969833 | 2.760157 | 1.800562 |
'''
Unpacks some of the inputs (and calculates simple objects based on them),
storing the results in self for use by other methods. These include:
income shocks and probabilities, next period's marginal value function
(etc), the probability of getting the worst income shock next period,
the patience factor, human wealth, and the bounding MPCs.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
Returns
-------
None
'''
self.DiscFacEff = DiscFac*LivPrb # "effective" discount factor
self.ShkPrbsNext = IncomeDstn[0]
self.PermShkValsNext = IncomeDstn[1]
self.TranShkValsNext = IncomeDstn[2]
self.PermShkMinNext = np.min(self.PermShkValsNext)
self.TranShkMinNext = np.min(self.TranShkValsNext)
self.vPfuncNext = solution_next.vPfunc
self.WorstIncPrb = np.sum(self.ShkPrbsNext[
(self.PermShkValsNext*self.TranShkValsNext)==
(self.PermShkMinNext*self.TranShkMinNext)])
if self.CubicBool:
self.vPPfuncNext = solution_next.vPPfunc
if self.vFuncBool:
self.vFuncNext = solution_next.vFunc
# Update the bounding MPCs and PDV of human wealth:
self.PatFac = ((self.Rfree*self.DiscFacEff)**(1.0/self.CRRA))/self.Rfree
self.MPCminNow = 1.0/(1.0 + self.PatFac/solution_next.MPCmin)
self.ExIncNext = np.dot(self.ShkPrbsNext,self.TranShkValsNext*self.PermShkValsNext)
self.hNrmNow = self.PermGroFac/self.Rfree*(self.ExIncNext + solution_next.hNrm)
self.MPCmaxNow = 1.0/(1.0 + (self.WorstIncPrb**(1.0/self.CRRA))*
self.PatFac/solution_next.MPCmax)
|
def setAndUpdateValues(self,solution_next,IncomeDstn,LivPrb,DiscFac)
|
Unpacks some of the inputs (and calculates simple objects based on them),
storing the results in self for use by other methods. These include:
income shocks and probabilities, next period's marginal value function
(etc), the probability of getting the worst income shock next period,
the patience factor, human wealth, and the bounding MPCs.
Parameters
----------
solution_next : ConsumerSolution
The solution to next period's one period problem.
IncomeDstn : [np.array]
A list containing three arrays of floats, representing a discrete
approximation to the income process between the period being solved
and the one immediately following (in solution_next). Order: event
probabilities, permanent shocks, transitory shocks.
LivPrb : float
Survival probability; likelihood of being alive at the beginning of
the succeeding period.
DiscFac : float
Intertemporal discount factor for future utility.
Returns
-------
None
| 2.797965 | 1.941064 | 1.44146 |
'''
Defines the constrained portion of the consumption function as cFuncNowCnst,
an attribute of self. Uses the artificial and natural borrowing constraints.
Parameters
----------
BoroCnstArt : float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
Returns
-------
none
'''
# Calculate the minimum allowable value of money resources in this period
self.BoroCnstNat = (self.solution_next.mNrmMin - self.TranShkMinNext)*\
(self.PermGroFac*self.PermShkMinNext)/self.Rfree
# Note: need to be sure to handle BoroCnstArt==None appropriately.
# In Py2, this would evaluate to 5.0: np.max([None, 5.0]).
# However in Py3, this raises a TypeError. Thus here we need to directly
# address the situation in which BoroCnstArt == None:
if BoroCnstArt is None:
self.mNrmMinNow = self.BoroCnstNat
else:
self.mNrmMinNow = np.max([self.BoroCnstNat,BoroCnstArt])
if self.BoroCnstNat < self.mNrmMinNow:
self.MPCmaxEff = 1.0 # If actually constrained, MPC near limit is 1
else:
self.MPCmaxEff = self.MPCmaxNow
# Define the borrowing constraint (limiting consumption function)
self.cFuncNowCnst = LinearInterp(np.array([self.mNrmMinNow, self.mNrmMinNow+1]),
np.array([0.0, 1.0]))
|
def defBoroCnst(self,BoroCnstArt)
|
Defines the constrained portion of the consumption function as cFuncNowCnst,
an attribute of self. Uses the artificial and natural borrowing constraints.
Parameters
----------
BoroCnstArt : float or None
Borrowing constraint for the minimum allowable assets to end the
period with. If it is less than the natural borrowing constraint,
then it is irrelevant; BoroCnstArt=None indicates no artificial bor-
rowing constraint.
Returns
-------
none
| 4.633626 | 3.059321 | 1.514593 |
'''
Perform preparatory work before calculating the unconstrained consumption
function.
Parameters
----------
none
Returns
-------
none
'''
self.setAndUpdateValues(self.solution_next,self.IncomeDstn,self.LivPrb,self.DiscFac)
self.defBoroCnst(self.BoroCnstArt)
|
def prepareToSolve(self)
|
Perform preparatory work before calculating the unconstrained consumption
function.
Parameters
----------
none
Returns
-------
none
| 9.133774 | 4.472661 | 2.042134 |
'''
Prepare to calculate end-of-period marginal value by creating an array
of market resources that the agent could have next period, considering
the grid of end-of-period assets and the distribution of shocks he might
experience next period.
Parameters
----------
none
Returns
-------
aNrmNow : np.array
A 1D array of end-of-period assets; also stored as attribute of self.
'''
# We define aNrmNow all the way from BoroCnstNat up to max(self.aXtraGrid)
# even if BoroCnstNat < BoroCnstArt, so we can construct the consumption
# function as the lower envelope of the (by the artificial borrowing con-
# straint) uconstrained consumption function, and the artificially con-
# strained consumption function.
aNrmNow = np.asarray(self.aXtraGrid) + self.BoroCnstNat
ShkCount = self.TranShkValsNext.size
aNrm_temp = np.tile(aNrmNow,(ShkCount,1))
# Tile arrays of the income shocks and put them into useful shapes
aNrmCount = aNrmNow.shape[0]
PermShkVals_temp = (np.tile(self.PermShkValsNext,(aNrmCount,1))).transpose()
TranShkVals_temp = (np.tile(self.TranShkValsNext,(aNrmCount,1))).transpose()
ShkPrbs_temp = (np.tile(self.ShkPrbsNext,(aNrmCount,1))).transpose()
# Get cash on hand next period
mNrmNext = self.Rfree/(self.PermGroFac*PermShkVals_temp)*aNrm_temp + TranShkVals_temp
# Store and report the results
self.PermShkVals_temp = PermShkVals_temp
self.ShkPrbs_temp = ShkPrbs_temp
self.mNrmNext = mNrmNext
self.aNrmNow = aNrmNow
return aNrmNow
|
def prepareToCalcEndOfPrdvP(self)
|
Prepare to calculate end-of-period marginal value by creating an array
of market resources that the agent could have next period, considering
the grid of end-of-period assets and the distribution of shocks he might
experience next period.
Parameters
----------
none
Returns
-------
aNrmNow : np.array
A 1D array of end-of-period assets; also stored as attribute of self.
| 4.585052 | 3.122085 | 1.468587 |
'''
Calculate end-of-period marginal value of assets at each point in aNrmNow.
Does so by taking a weighted sum of next period marginal values across
income shocks (in a preconstructed grid self.mNrmNext).
Parameters
----------
none
Returns
-------
EndOfPrdvP : np.array
A 1D array of end-of-period marginal value of assets
'''
EndOfPrdvP = self.DiscFacEff*self.Rfree*self.PermGroFac**(-self.CRRA)*np.sum(
self.PermShkVals_temp**(-self.CRRA)*
self.vPfuncNext(self.mNrmNext)*self.ShkPrbs_temp,axis=0)
return EndOfPrdvP
|
def calcEndOfPrdvP(self)
|
Calculate end-of-period marginal value of assets at each point in aNrmNow.
Does so by taking a weighted sum of next period marginal values across
income shocks (in a preconstructed grid self.mNrmNext).
Parameters
----------
none
Returns
-------
EndOfPrdvP : np.array
A 1D array of end-of-period marginal value of assets
| 5.935201 | 2.237464 | 2.652647 |
'''
Finds interpolation points (c,m) for the consumption function.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aNrmNow : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
Returns
-------
c_for_interpolation : np.array
Consumption points for interpolation.
m_for_interpolation : np.array
Corresponding market resource points for interpolation.
'''
cNrmNow = self.uPinv(EndOfPrdvP)
mNrmNow = cNrmNow + aNrmNow
# Limiting consumption is zero as m approaches mNrmMin
c_for_interpolation = np.insert(cNrmNow,0,0.,axis=-1)
m_for_interpolation = np.insert(mNrmNow,0,self.BoroCnstNat,axis=-1)
# Store these for calcvFunc
self.cNrmNow = cNrmNow
self.mNrmNow = mNrmNow
return c_for_interpolation,m_for_interpolation
|
def getPointsForInterpolation(self,EndOfPrdvP,aNrmNow)
|
Finds interpolation points (c,m) for the consumption function.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aNrmNow : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
Returns
-------
c_for_interpolation : np.array
Consumption points for interpolation.
m_for_interpolation : np.array
Corresponding market resource points for interpolation.
| 3.480919 | 2.206166 | 1.577814 |
'''
Constructs a basic solution for this period, including the consumption
function and marginal value function.
Parameters
----------
cNrm : np.array
(Normalized) consumption points for interpolation.
mNrm : np.array
(Normalized) corresponding market resource points for interpolation.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
'''
# Construct the unconstrained consumption function
cFuncNowUnc = interpolator(mNrm,cNrm)
# Combine the constrained and unconstrained functions into the true consumption function
cFuncNow = LowerEnvelope(cFuncNowUnc,self.cFuncNowCnst)
# Make the marginal value function and the marginal marginal value function
vPfuncNow = MargValueFunc(cFuncNow,self.CRRA)
# Pack up the solution and return it
solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=self.mNrmMinNow)
return solution_now
|
def usePointsForInterpolation(self,cNrm,mNrm,interpolator)
|
Constructs a basic solution for this period, including the consumption
function and marginal value function.
Parameters
----------
cNrm : np.array
(Normalized) consumption points for interpolation.
mNrm : np.array
(Normalized) corresponding market resource points for interpolation.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
| 4.321769 | 2.110949 | 2.047311 |
'''
Given end of period assets and end of period marginal value, construct
the basic solution for this period.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aNrm : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
'''
cNrm,mNrm = self.getPointsForInterpolation(EndOfPrdvP,aNrm)
solution_now = self.usePointsForInterpolation(cNrm,mNrm,interpolator)
return solution_now
|
def makeBasicSolution(self,EndOfPrdvP,aNrm,interpolator)
|
Given end of period assets and end of period marginal value, construct
the basic solution for this period.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal values.
aNrm : np.array
Array of end-of-period asset values that yield the marginal values
in EndOfPrdvP.
interpolator : function
A function that constructs and returns a consumption function.
Returns
-------
solution_now : ConsumerSolution
The solution to this period's consumption-saving problem, with a
consumption function, marginal value function, and minimum m.
| 4.120577 | 1.645229 | 2.504562 |
'''
Take a solution and add human wealth and the bounding MPCs to it.
Parameters
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem.
Returns:
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem, but now
with human wealth and the bounding MPCs.
'''
solution.hNrm = self.hNrmNow
solution.MPCmin = self.MPCminNow
solution.MPCmax = self.MPCmaxEff
return solution
|
def addMPCandHumanWealth(self,solution)
|
Take a solution and add human wealth and the bounding MPCs to it.
Parameters
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem.
Returns:
----------
solution : ConsumerSolution
The solution to this period's consumption-saving problem, but now
with human wealth and the bounding MPCs.
| 4.003003 | 1.824566 | 2.193947 |
'''
Makes a linear interpolation to represent the (unconstrained) consumption function.
Parameters
----------
mNrm : np.array
Corresponding market resource points for interpolation.
cNrm : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : LinearInterp
The unconstrained consumption function for this period.
'''
cFuncUnc = LinearInterp(mNrm,cNrm,self.MPCminNow*self.hNrmNow,self.MPCminNow)
return cFuncUnc
|
def makeLinearcFunc(self,mNrm,cNrm)
|
Makes a linear interpolation to represent the (unconstrained) consumption function.
Parameters
----------
mNrm : np.array
Corresponding market resource points for interpolation.
cNrm : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : LinearInterp
The unconstrained consumption function for this period.
| 4.811033 | 2.018859 | 2.383045 |
'''
Solves a one period consumption saving problem with risky income.
Parameters
----------
None
Returns
-------
solution : ConsumerSolution
The solution to the one period problem.
'''
aNrm = self.prepareToCalcEndOfPrdvP()
EndOfPrdvP = self.calcEndOfPrdvP()
solution = self.makeBasicSolution(EndOfPrdvP,aNrm,self.makeLinearcFunc)
solution = self.addMPCandHumanWealth(solution)
return solution
|
def solve(self)
|
Solves a one period consumption saving problem with risky income.
Parameters
----------
None
Returns
-------
solution : ConsumerSolution
The solution to the one period problem.
| 8.126563 | 4.458921 | 1.82254 |
'''
Makes a cubic spline interpolation of the unconstrained consumption
function for this period.
Parameters
----------
mNrm : np.array
Corresponding market resource points for interpolation.
cNrm : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : CubicInterp
The unconstrained consumption function for this period.
'''
EndOfPrdvPP = self.DiscFacEff*self.Rfree*self.Rfree*self.PermGroFac**(-self.CRRA-1.0)* \
np.sum(self.PermShkVals_temp**(-self.CRRA-1.0)*
self.vPPfuncNext(self.mNrmNext)*self.ShkPrbs_temp,axis=0)
dcda = EndOfPrdvPP/self.uPP(np.array(cNrm[1:]))
MPC = dcda/(dcda+1.)
MPC = np.insert(MPC,0,self.MPCmaxNow)
cFuncNowUnc = CubicInterp(mNrm,cNrm,MPC,self.MPCminNow*self.hNrmNow,self.MPCminNow)
return cFuncNowUnc
|
def makeCubiccFunc(self,mNrm,cNrm)
|
Makes a cubic spline interpolation of the unconstrained consumption
function for this period.
Parameters
----------
mNrm : np.array
Corresponding market resource points for interpolation.
cNrm : np.array
Consumption points for interpolation.
Returns
-------
cFuncUnc : CubicInterp
The unconstrained consumption function for this period.
| 4.977262 | 3.480633 | 1.429988 |
'''
Construct the end-of-period value function for this period, storing it
as an attribute of self for use by other methods.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal value of assets corresponding to the
asset values in self.aNrmNow.
Returns
-------
none
'''
VLvlNext = (self.PermShkVals_temp**(1.0-self.CRRA)*\
self.PermGroFac**(1.0-self.CRRA))*self.vFuncNext(self.mNrmNext)
EndOfPrdv = self.DiscFacEff*np.sum(VLvlNext*self.ShkPrbs_temp,axis=0)
EndOfPrdvNvrs = self.uinv(EndOfPrdv) # value transformed through inverse utility
EndOfPrdvNvrsP = EndOfPrdvP*self.uinvP(EndOfPrdv)
EndOfPrdvNvrs = np.insert(EndOfPrdvNvrs,0,0.0)
EndOfPrdvNvrsP = np.insert(EndOfPrdvNvrsP,0,EndOfPrdvNvrsP[0]) # This is a very good approximation, vNvrsPP = 0 at the asset minimum
aNrm_temp = np.insert(self.aNrmNow,0,self.BoroCnstNat)
EndOfPrdvNvrsFunc = CubicInterp(aNrm_temp,EndOfPrdvNvrs,EndOfPrdvNvrsP)
self.EndOfPrdvFunc = ValueFunc(EndOfPrdvNvrsFunc,self.CRRA)
|
def makeEndOfPrdvFunc(self,EndOfPrdvP)
|
Construct the end-of-period value function for this period, storing it
as an attribute of self for use by other methods.
Parameters
----------
EndOfPrdvP : np.array
Array of end-of-period marginal value of assets corresponding to the
asset values in self.aNrmNow.
Returns
-------
none
| 4.130639 | 3.223075 | 1.281583 |
'''
Creates the value function for this period and adds it to the solution.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, likely including the
consumption function, marginal value function, etc.
EndOfPrdvP : np.array
Array of end-of-period marginal value of assets corresponding to the
asset values in self.aNrmNow.
Returns
-------
solution : ConsumerSolution
The single period solution passed as an input, but now with the
value function (defined over market resources m) as an attribute.
'''
self.makeEndOfPrdvFunc(EndOfPrdvP)
solution.vFunc = self.makevFunc(solution)
return solution
|
def addvFunc(self,solution,EndOfPrdvP)
|
Creates the value function for this period and adds it to the solution.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, likely including the
consumption function, marginal value function, etc.
EndOfPrdvP : np.array
Array of end-of-period marginal value of assets corresponding to the
asset values in self.aNrmNow.
Returns
-------
solution : ConsumerSolution
The single period solution passed as an input, but now with the
value function (defined over market resources m) as an attribute.
| 6.249227 | 1.480083 | 4.222214 |
'''
Creates the value function for this period, defined over market resources m.
self must have the attribute EndOfPrdvFunc in order to execute.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, which must include the
consumption function.
Returns
-------
vFuncNow : ValueFunc
A representation of the value function for this period, defined over
normalized market resources m: v = vFuncNow(m).
'''
# Compute expected value and marginal value on a grid of market resources
mNrm_temp = self.mNrmMinNow + self.aXtraGrid
cNrmNow = solution.cFunc(mNrm_temp)
aNrmNow = mNrm_temp - cNrmNow
vNrmNow = self.u(cNrmNow) + self.EndOfPrdvFunc(aNrmNow)
vPnow = self.uP(cNrmNow)
# Construct the beginning-of-period value function
vNvrs = self.uinv(vNrmNow) # value transformed through inverse utility
vNvrsP = vPnow*self.uinvP(vNrmNow)
mNrm_temp = np.insert(mNrm_temp,0,self.mNrmMinNow)
vNvrs = np.insert(vNvrs,0,0.0)
vNvrsP = np.insert(vNvrsP,0,self.MPCmaxEff**(-self.CRRA/(1.0-self.CRRA)))
MPCminNvrs = self.MPCminNow**(-self.CRRA/(1.0-self.CRRA))
vNvrsFuncNow = CubicInterp(mNrm_temp,vNvrs,vNvrsP,MPCminNvrs*self.hNrmNow,MPCminNvrs)
vFuncNow = ValueFunc(vNvrsFuncNow,self.CRRA)
return vFuncNow
|
def makevFunc(self,solution)
|
Creates the value function for this period, defined over market resources m.
self must have the attribute EndOfPrdvFunc in order to execute.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, which must include the
consumption function.
Returns
-------
vFuncNow : ValueFunc
A representation of the value function for this period, defined over
normalized market resources m: v = vFuncNow(m).
| 4.06629 | 2.52261 | 1.611938 |
'''
Adds the marginal marginal value function to an existing solution, so
that the next solver can evaluate vPP and thus use cubic interpolation.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, which must include the
consumption function.
Returns
-------
solution : ConsumerSolution
The same solution passed as input, but with the marginal marginal
value function for this period added as the attribute vPPfunc.
'''
vPPfuncNow = MargMargValueFunc(solution.cFunc,self.CRRA)
solution.vPPfunc = vPPfuncNow
return solution
|
def addvPPfunc(self,solution)
|
Adds the marginal marginal value function to an existing solution, so
that the next solver can evaluate vPP and thus use cubic interpolation.
Parameters
----------
solution : ConsumerSolution
The solution to this single period problem, which must include the
consumption function.
Returns
-------
solution : ConsumerSolution
The same solution passed as input, but with the marginal marginal
value function for this period added as the attribute vPPfunc.
| 6.764294 | 1.820139 | 3.71636 |
'''
Solves the single period consumption-saving problem using the method of
endogenous gridpoints. Solution includes a consumption function cFunc
(using cubic or linear splines), a marginal value function vPfunc, a min-
imum acceptable level of normalized market resources mNrmMin, normalized
human wealth hNrm, and bounding MPCs MPCmin and MPCmax. It might also
have a value function vFunc and marginal marginal value function vPPfunc.
Parameters
----------
none
Returns
-------
solution : ConsumerSolution
The solution to the single period consumption-saving problem.
'''
# Make arrays of end-of-period assets and end-of-period marginal value
aNrm = self.prepareToCalcEndOfPrdvP()
EndOfPrdvP = self.calcEndOfPrdvP()
# Construct a basic solution for this period
if self.CubicBool:
solution = self.makeBasicSolution(EndOfPrdvP,aNrm,interpolator=self.makeCubiccFunc)
else:
solution = self.makeBasicSolution(EndOfPrdvP,aNrm,interpolator=self.makeLinearcFunc)
solution = self.addMPCandHumanWealth(solution) # add a few things
solution = self.addSSmNrm(solution) # find steady state m
# Add the value function if requested, as well as the marginal marginal
# value function if cubic splines were used (to prepare for next period)
if self.vFuncBool:
solution = self.addvFunc(solution,EndOfPrdvP)
if self.CubicBool:
solution = self.addvPPfunc(solution)
return solution
|
def solve(self)
|
Solves the single period consumption-saving problem using the method of
endogenous gridpoints. Solution includes a consumption function cFunc
(using cubic or linear splines), a marginal value function vPfunc, a min-
imum acceptable level of normalized market resources mNrmMin, normalized
human wealth hNrm, and bounding MPCs MPCmin and MPCmax. It might also
have a value function vFunc and marginal marginal value function vPPfunc.
Parameters
----------
none
Returns
-------
solution : ConsumerSolution
The solution to the single period consumption-saving problem.
| 5.914674 | 2.792468 | 2.118081 |
'''
Prepare to calculate end-of-period marginal value by creating an array
of market resources that the agent could have next period, considering
the grid of end-of-period assets and the distribution of shocks he might
experience next period. This differs from the baseline case because
different savings choices yield different interest rates.
Parameters
----------
none
Returns
-------
aNrmNow : np.array
A 1D array of end-of-period assets; also stored as attribute of self.
'''
KinkBool = self.Rboro > self.Rsave # Boolean indicating that there is actually a kink.
# When Rboro == Rsave, this method acts just like it did in IndShock.
# When Rboro < Rsave, the solver would have terminated when it was called.
# Make a grid of end-of-period assets, including *two* copies of a=0
if KinkBool:
aNrmNow = np.sort(np.hstack((np.asarray(self.aXtraGrid) + self.mNrmMinNow,
np.array([0.0,0.0]))))
else:
aNrmNow = np.asarray(self.aXtraGrid) + self.mNrmMinNow
aXtraCount = aNrmNow.size
# Make tiled versions of the assets grid and income shocks
ShkCount = self.TranShkValsNext.size
aNrm_temp = np.tile(aNrmNow,(ShkCount,1))
PermShkVals_temp = (np.tile(self.PermShkValsNext,(aXtraCount,1))).transpose()
TranShkVals_temp = (np.tile(self.TranShkValsNext,(aXtraCount,1))).transpose()
ShkPrbs_temp = (np.tile(self.ShkPrbsNext,(aXtraCount,1))).transpose()
# Make a 1D array of the interest factor at each asset gridpoint
Rfree_vec = self.Rsave*np.ones(aXtraCount)
if KinkBool:
Rfree_vec[0:(np.sum(aNrmNow<=0)-1)] = self.Rboro
self.Rfree = Rfree_vec
Rfree_temp = np.tile(Rfree_vec,(ShkCount,1))
# Make an array of market resources that we could have next period,
# considering the grid of assets and the income shocks that could occur
mNrmNext = Rfree_temp/(self.PermGroFac*PermShkVals_temp)*aNrm_temp + TranShkVals_temp
# Recalculate the minimum MPC and human wealth using the interest factor on saving.
# This overwrites values from setAndUpdateValues, which were based on Rboro instead.
if KinkBool:
PatFacTop = ((self.Rsave*self.DiscFacEff)**(1.0/self.CRRA))/self.Rsave
self.MPCminNow = 1.0/(1.0 + PatFacTop/self.solution_next.MPCmin)
self.hNrmNow = self.PermGroFac/self.Rsave*(np.dot(self.ShkPrbsNext,
self.TranShkValsNext*self.PermShkValsNext) + self.solution_next.hNrm)
# Store some of the constructed arrays for later use and return the assets grid
self.PermShkVals_temp = PermShkVals_temp
self.ShkPrbs_temp = ShkPrbs_temp
self.mNrmNext = mNrmNext
self.aNrmNow = aNrmNow
return aNrmNow
|
def prepareToCalcEndOfPrdvP(self)
|
Prepare to calculate end-of-period marginal value by creating an array
of market resources that the agent could have next period, considering
the grid of end-of-period assets and the distribution of shocks he might
experience next period. This differs from the baseline case because
different savings choices yield different interest rates.
Parameters
----------
none
Returns
-------
aNrmNow : np.array
A 1D array of end-of-period assets; also stored as attribute of self.
| 4.433738 | 3.318778 | 1.335955 |
'''
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
none
Returns
-------
none
'''
self.solution_terminal.vFunc = ValueFunc(self.cFunc_terminal_,self.CRRA)
self.solution_terminal.vPfunc = MargValueFunc(self.cFunc_terminal_,self.CRRA)
self.solution_terminal.vPPfunc = MargMargValueFunc(self.cFunc_terminal_,self.CRRA)
|
def updateSolutionTerminal(self)
|
Update the terminal period solution. This method should be run when a
new AgentType is created or when CRRA changes.
Parameters
----------
none
Returns
-------
none
| 4.439115 | 2.357926 | 1.882635 |
'''
"Unpacks" the consumption functions into their own field for easier access.
After the model has been solved, the consumption functions reside in the
attribute cFunc of each element of ConsumerType.solution. This method
creates a (time varying) attribute cFunc that contains a list of consumption
functions.
Parameters
----------
none
Returns
-------
none
'''
self.cFunc = []
for solution_t in self.solution:
self.cFunc.append(solution_t.cFunc)
self.addToTimeVary('cFunc')
|
def unpackcFunc(self)
|
"Unpacks" the consumption functions into their own field for easier access.
After the model has been solved, the consumption functions reside in the
attribute cFunc of each element of ConsumerType.solution. This method
creates a (time varying) attribute cFunc that contains a list of consumption
functions.
Parameters
----------
none
Returns
-------
none
| 8.837524 | 1.88099 | 4.698336 |
'''
Makes new consumers for the given indices. Initialized variables include aNrm and pLvl, as
well as time variables t_age and t_cycle. Normalized assets and permanent income levels
are drawn from lognormal distributions given by aNrmInitMean and aNrmInitStd (etc).
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
'''
# Get and store states for newly born agents
N = np.sum(which_agents) # Number of new consumers to make
self.aNrmNow[which_agents] = drawLognormal(N,mu=self.aNrmInitMean,sigma=self.aNrmInitStd,seed=self.RNG.randint(0,2**31-1))
pLvlInitMeanNow = self.pLvlInitMean + np.log(self.PlvlAggNow) # Account for newer cohorts having higher permanent income
self.pLvlNow[which_agents] = drawLognormal(N,mu=pLvlInitMeanNow,sigma=self.pLvlInitStd,seed=self.RNG.randint(0,2**31-1))
self.t_age[which_agents] = 0 # How many periods since each agent was born
self.t_cycle[which_agents] = 0 # Which period of the cycle each agent is currently in
return None
|
def simBirth(self,which_agents)
|
Makes new consumers for the given indices. Initialized variables include aNrm and pLvl, as
well as time variables t_age and t_cycle. Normalized assets and permanent income levels
are drawn from lognormal distributions given by aNrmInitMean and aNrmInitStd (etc).
Parameters
----------
which_agents : np.array(Bool)
Boolean array of size self.AgentCount indicating which agents should be "born".
Returns
-------
None
| 4.289337 | 2.140144 | 2.004228 |
'''
Determines which agents die this period and must be replaced. Uses the sequence in LivPrb
to determine survival probabilities for each agent.
Parameters
----------
None
Returns
-------
which_agents : np.array(bool)
Boolean array of size AgentCount indicating which agents die.
'''
# Determine who dies
DiePrb_by_t_cycle = 1.0 - np.asarray(self.LivPrb)
DiePrb = DiePrb_by_t_cycle[self.t_cycle-1] # Time has already advanced, so look back one
DeathShks = drawUniform(N=self.AgentCount,seed=self.RNG.randint(0,2**31-1))
which_agents = DeathShks < DiePrb
if self.T_age is not None: # Kill agents that have lived for too many periods
too_old = self.t_age >= self.T_age
which_agents = np.logical_or(which_agents,too_old)
return which_agents
|
def simDeath(self)
|
Determines which agents die this period and must be replaced. Uses the sequence in LivPrb
to determine survival probabilities for each agent.
Parameters
----------
None
Returns
-------
which_agents : np.array(bool)
Boolean array of size AgentCount indicating which agents die.
| 6.245626 | 3.338663 | 1.870697 |
'''
Finds permanent and transitory income "shocks" for each agent this period. As this is a
perfect foresight model, there are no stochastic shocks: PermShkNow = PermGroFac for each
agent (according to their t_cycle) and TranShkNow = 1.0 for all agents.
Parameters
----------
None
Returns
-------
None
'''
PermGroFac = np.array(self.PermGroFac)
self.PermShkNow = PermGroFac[self.t_cycle-1] # cycle time has already been advanced
self.TranShkNow = np.ones(self.AgentCount)
|
def getShocks(self)
|
Finds permanent and transitory income "shocks" for each agent this period. As this is a
perfect foresight model, there are no stochastic shocks: PermShkNow = PermGroFac for each
agent (according to their t_cycle) and TranShkNow = 1.0 for all agents.
Parameters
----------
None
Returns
-------
None
| 5.643047 | 1.843069 | 3.061766 |
'''
Calculates updated values of normalized market resources and permanent income level for each
agent. Uses pLvlNow, aNrmNow, PermShkNow, TranShkNow.
Parameters
----------
None
Returns
-------
None
'''
pLvlPrev = self.pLvlNow
aNrmPrev = self.aNrmNow
RfreeNow = self.getRfree()
# Calculate new states: normalized market resources and permanent income level
self.pLvlNow = pLvlPrev*self.PermShkNow # Updated permanent income level
self.PlvlAggNow = self.PlvlAggNow*self.PermShkAggNow # Updated aggregate permanent productivity level
ReffNow = RfreeNow/self.PermShkNow # "Effective" interest factor on normalized assets
self.bNrmNow = ReffNow*aNrmPrev # Bank balances before labor income
self.mNrmNow = self.bNrmNow + self.TranShkNow # Market resources after income
return None
|
def getStates(self)
|
Calculates updated values of normalized market resources and permanent income level for each
agent. Uses pLvlNow, aNrmNow, PermShkNow, TranShkNow.
Parameters
----------
None
Returns
-------
None
| 5.318743 | 3.113591 | 1.708234 |
'''
Calculates end-of-period assets for each consumer of this type.
Parameters
----------
None
Returns
-------
None
'''
self.aNrmNow = self.mNrmNow - self.cNrmNow
self.aLvlNow = self.aNrmNow*self.pLvlNow # Useful in some cases to precalculate asset level
return None
|
def getPostStates(self)
|
Calculates end-of-period assets for each consumer of this type.
Parameters
----------
None
Returns
-------
None
| 8.736976 | 4.388789 | 1.990749 |
'''
This method checks whether the instance's type satisfies the growth impatience condition
(GIC), return impatience condition (RIC), absolute impatience condition (AIC), weak return
impatience condition (WRIC), finite human wealth condition (FHWC) and finite value of
autarky condition (FVAC). These are the conditions that are sufficient for nondegenerate
solutions under infinite horizon with a 1 period cycle. Depending on the model at hand, a
different combination of these conditions must be satisfied. To check which conditions are
relevant to the model at hand, a reference to the relevant theoretical literature is made.
Parameters
----------
verbose : boolean
Specifies different levels of verbosity of feedback. When False, it only reports whether the
instance's type fails to satisfy a particular condition. When True, it reports all results, i.e.
the factor values for all conditions.
Returns
-------
None
'''
if self.cycles!=0 or self.T_cycle > 1:
if verbose == True:
print('This method only checks for the conditions for infinite horizon models with a 1 period cycle')
return
violated = False
#Evaluate and report on the return impatience condition
RIF = (self.LivPrb[0]*(self.Rfree*self.DiscFac)**(1/self.CRRA))/self.Rfree
if RIF<1:
if public_call:
print('The return impatience factor value for the supplied parameter values satisfies the return impatience condition.')
else:
violated = True
print('The given type violates the Return Impatience Condition with the supplied parameter values; the factor is %1.5f ' % (RIF))
#Evaluate and report on the absolute impatience condition
AIF = self.LivPrb[0]*(self.Rfree*self.DiscFac)**(1/self.CRRA)
if AIF<1:
if public_call:
print('The absolute impatience factor value for the supplied parameter values satisfies the absolute impatience condition.')
else:
print('The given type violates the absolute impatience condition with the supplied parameter values; the AIF is %1.5f ' % (AIF))
if verbose:
violated = True
print(' Therefore, the absolute amount of consumption is expected to grow over time')
#Evaluate and report on the finite human wealth condition
FHWF = self.PermGroFac[0]/self.Rfree
if FHWF<1:
if public_call:
print('The finite human wealth factor value for the supplied parameter values satisfies the finite human wealth condition.')
else:
print('The given type violates the finite human wealth condition; the finite human wealth factor value %2.5f ' % (FHWF))
violated = True
if verbose and violated and verbose_reference:
print('[!] For more information on the conditions, see Table 3 in "Theoretical Foundations of Buffer Stock Saving" at http://econ.jhu.edu/people/ccarroll/papers/BufferStockTheory/')
return violated
|
def checkConditions(self,verbose=False,verbose_reference=False,public_call=False)
|
This method checks whether the instance's type satisfies the growth impatience condition
(GIC), return impatience condition (RIC), absolute impatience condition (AIC), weak return
impatience condition (WRIC), finite human wealth condition (FHWC) and finite value of
autarky condition (FVAC). These are the conditions that are sufficient for nondegenerate
solutions under infinite horizon with a 1 period cycle. Depending on the model at hand, a
different combination of these conditions must be satisfied. To check which conditions are
relevant to the model at hand, a reference to the relevant theoretical literature is made.
Parameters
----------
verbose : boolean
Specifies different levels of verbosity of feedback. When False, it only reports whether the
instance's type fails to satisfy a particular condition. When True, it reports all results, i.e.
the factor values for all conditions.
Returns
-------
None
| 4.855731 | 2.448414 | 1.983214 |
'''
Updates this agent's income process based on his own attributes.
Parameters
----------
none
Returns:
-----------
none
'''
original_time = self.time_flow
self.timeFwd()
IncomeDstn, PermShkDstn, TranShkDstn = constructLognormalIncomeProcessUnemployment(self)
self.IncomeDstn = IncomeDstn
self.PermShkDstn = PermShkDstn
self.TranShkDstn = TranShkDstn
self.addToTimeVary('IncomeDstn','PermShkDstn','TranShkDstn')
if not original_time:
self.timeRev()
|
def updateIncomeProcess(self)
|
Updates this agent's income process based on his own attributes.
Parameters
----------
none
Returns:
-----------
none
| 4.987944 | 3.625193 | 1.375911 |
'''
Updates this agent's end-of-period assets grid by constructing a multi-
exponentially spaced grid of aXtra values.
Parameters
----------
none
Returns
-------
none
'''
aXtraGrid = constructAssetsGrid(self)
self.aXtraGrid = aXtraGrid
self.addToTimeInv('aXtraGrid')
|
def updateAssetsGrid(self)
|
Updates this agent's end-of-period assets grid by constructing a multi-
exponentially spaced grid of aXtra values.
Parameters
----------
none
Returns
-------
none
| 10.420244 | 2.756361 | 3.780436 |
'''
Calculate human wealth plus minimum and maximum MPC in an infinite
horizon model with only one period repeated indefinitely. Store results
as attributes of self. Human wealth is the present discounted value of
expected future income after receiving income this period, ignoring mort-
ality. The maximum MPC is the limit of the MPC as m --> mNrmMin. The
minimum MPC is the limit of the MPC as m --> infty. This version deals
with the different interest rates on borrowing vs saving.
Parameters
----------
None
Returns
-------
None
'''
# Unpack the income distribution and get average and worst outcomes
PermShkValsNext = self.IncomeDstn[0][1]
TranShkValsNext = self.IncomeDstn[0][2]
ShkPrbsNext = self.IncomeDstn[0][0]
ExIncNext = np.dot(ShkPrbsNext,PermShkValsNext*TranShkValsNext)
PermShkMinNext = np.min(PermShkValsNext)
TranShkMinNext = np.min(TranShkValsNext)
WorstIncNext = PermShkMinNext*TranShkMinNext
WorstIncPrb = np.sum(ShkPrbsNext[(PermShkValsNext*TranShkValsNext)==WorstIncNext])
# Calculate human wealth and the infinite horizon natural borrowing constraint
hNrm = (ExIncNext*self.PermGroFac[0]/self.Rsave)/(1.0-self.PermGroFac[0]/self.Rsave)
temp = self.PermGroFac[0]*PermShkMinNext/self.Rboro
BoroCnstNat = -TranShkMinNext*temp/(1.0-temp)
PatFacTop = (self.DiscFac*self.LivPrb[0]*self.Rsave)**(1.0/self.CRRA)/self.Rsave
PatFacBot = (self.DiscFac*self.LivPrb[0]*self.Rboro)**(1.0/self.CRRA)/self.Rboro
if BoroCnstNat < self.BoroCnstArt:
MPCmax = 1.0 # if natural borrowing constraint is overridden by artificial one, MPCmax is 1
else:
MPCmax = 1.0 - WorstIncPrb**(1.0/self.CRRA)*PatFacBot
MPCmin = 1.0 - PatFacTop
# Store the results as attributes of self
self.hNrm = hNrm
self.MPCmin = MPCmin
self.MPCmax = MPCmax
|
def calcBoundingValues(self)
|
Calculate human wealth plus minimum and maximum MPC in an infinite
horizon model with only one period repeated indefinitely. Store results
as attributes of self. Human wealth is the present discounted value of
expected future income after receiving income this period, ignoring mort-
ality. The maximum MPC is the limit of the MPC as m --> mNrmMin. The
minimum MPC is the limit of the MPC as m --> infty. This version deals
with the different interest rates on borrowing vs saving.
Parameters
----------
None
Returns
-------
None
| 3.864788 | 2.307534 | 1.674856 |
'''
Returns an array of size self.AgentCount with self.Rboro or self.Rsave in each entry, based
on whether self.aNrmNow >< 0.
Parameters
----------
None
Returns
-------
RfreeNow : np.array
Array of size self.AgentCount with risk free interest rate for each agent.
'''
RfreeNow = self.Rboro*np.ones(self.AgentCount)
RfreeNow[self.aNrmNow > 0] = self.Rsave
return RfreeNow
|
def getRfree(self)
|
Returns an array of size self.AgentCount with self.Rboro or self.Rsave in each entry, based
on whether self.aNrmNow >< 0.
Parameters
----------
None
Returns
-------
RfreeNow : np.array
Array of size self.AgentCount with risk free interest rate for each agent.
| 6.088835 | 1.488515 | 4.090542 |
if _debug: decode_file._debug("decode_file %r", fname)
if not pcap:
raise RuntimeError("failed to import pcap")
# create a pcap object, reading from the file
p = pcap.pcap(fname)
# loop through the packets
for i, (timestamp, data) in enumerate(p):
try:
pkt = decode_packet(data)
if not pkt:
continue
except Exception as err:
if _debug: decode_file._debug(" - exception decoding packet %d: %r", i+1, err)
continue
# save the packet number (as viewed in Wireshark) and timestamp
pkt._number = i + 1
pkt._timestamp = timestamp
yield pkt
|
def decode_file(fname)
|
Given the name of a pcap file, open it, decode the contents and yield each packet.
| 3.357666 | 3.158957 | 1.062904 |
if _debug: stop._debug("stop")
global running, taskManager
if args:
sys.stderr.write("===== TERM Signal, %s\n" % time.strftime("%d-%b-%Y %H:%M:%S"))
sys.stderr.flush()
running = False
# trigger the task manager event
if taskManager and taskManager.trigger:
if _debug: stop._debug(" - trigger")
taskManager.trigger.set()
|
def stop(*args)
|
Call to stop running, may be called with a signum and frame
parameter if called as a signal handler.
| 5.790973 | 5.644131 | 1.026017 |
if _debug: print_stack._debug("print_stack %r %r", sig, frame)
global running, deferredFns, sleeptime
sys.stderr.write("==== USR1 Signal, %s\n" % time.strftime("%d-%b-%Y %H:%M:%S"))
sys.stderr.write("---------- globals\n")
sys.stderr.write(" running: %r\n" % (running,))
sys.stderr.write(" deferredFns: %r\n" % (deferredFns,))
sys.stderr.write(" sleeptime: %r\n" % (sleeptime,))
sys.stderr.write("---------- stack\n")
traceback.print_stack(frame)
# make a list of interesting frames
flist = []
f = frame
while f.f_back:
flist.append(f)
f = f.f_back
# reverse the list so it is in the same order as print_stack
flist.reverse()
for f in flist:
sys.stderr.write("---------- frame: %s\n" % (f,))
for k, v in f.f_locals.items():
sys.stderr.write(" %s: %r\n" % (k, v))
sys.stderr.flush()
|
def print_stack(sig, frame)
|
Signal handler to print a stack trace and some interesting values.
| 2.734658 | 2.645175 | 1.033829 |
if _debug: compose_capability._debug("compose_capability %r %r", base, classes)
# make sure the base is a Collector
if not issubclass(base, Collector):
raise TypeError("base must be a subclass of Collector")
# make sure you only add capabilities
for cls in classes:
if not issubclass(cls, Capability):
raise TypeError("%s is not a Capability subclass" % (cls,))
# start with everything the base has and add the new ones
bases = (base,) + classes
# build a new name
name = base.__name__
for cls in classes:
name += '+' + cls.__name__
# return a new type
return type(name, bases, {})
|
def compose_capability(base, *classes)
|
Create a new class starting with the base and adding capabilities.
| 3.036524 | 2.834877 | 1.071131 |
if _debug: add_capability._debug("add_capability %r %r", base, classes)
# start out with a collector
if not issubclass(base, Collector):
raise TypeError("base must be a subclass of Collector")
# make sure you only add capabilities
for cls in classes:
if not issubclass(cls, Capability):
raise TypeError("%s is not a Capability subclass" % (cls,))
base.__bases__ += classes
for cls in classes:
base.__name__ += '+' + cls.__name__
|
def add_capability(base, *classes)
|
Add capabilites to an existing base, all objects get the additional
functionality, but don't get inited. Use with great care!
| 3.4211 | 3.440614 | 0.994328 |
if _debug: Collector._debug("_search_capability %r", base)
rslt = []
for cls in base.__bases__:
if issubclass(cls, Collector):
map( rslt.append, self._search_capability(cls))
elif issubclass(cls, Capability):
rslt.append(cls)
if _debug: Collector._debug(" - rslt: %r", rslt)
return rslt
|
def _search_capability(self, base)
|
Given a class, return a list of all of the derived classes that
are themselves derived from Capability.
| 2.949752 | 2.758575 | 1.069303 |
if _debug: Collector._debug("capability_functions %r", fn)
# build a list of functions to call
fns = []
for cls in self.capabilities:
xfn = getattr(cls, fn, None)
if _debug: Collector._debug(" - cls, xfn: %r, %r", cls, xfn)
if xfn:
fns.append( (getattr(cls, '_zindex', None), xfn) )
# sort them by z-index
fns.sort(key=lambda v: v[0])
if _debug: Collector._debug(" - fns: %r", fns)
# now yield them in order
for xindx, xfn in fns:
if _debug: Collector._debug(" - yield xfn: %r", xfn)
yield xfn
|
def capability_functions(self, fn)
|
This generator yields functions that match the
requested capability sorted by z-index.
| 2.565918 | 2.294594 | 1.118245 |
if _debug: Collector._debug("add_capability %r", cls)
# the new type has everything the current one has plus this new one
bases = (self.__class__, cls)
if _debug: Collector._debug(" - bases: %r", bases)
# save this additional class
self.capabilities.append(cls)
# morph into a new type
newtype = type(self.__class__.__name__ + '+' + cls.__name__, bases, {})
self.__class__ = newtype
# allow the new type to init
if hasattr(cls, '__init__'):
if _debug: Collector._debug(" - calling %r.__init__", cls)
cls.__init__(self)
|
def add_capability(self, cls)
|
Add a capability to this object.
| 4.006429 | 3.817822 | 1.049402 |
return re.compile(r'^' + r'[/-]'.join(args) + r'(?:\s+' + _dow + ')?$')
|
def _merge(*args)
|
Create a composite pattern and compile it.
| 14.515125 | 11.318236 | 1.282455 |
if isinstance(tdata, bytearray):
tdata = bytes(tdata)
elif not isinstance(tdata, bytes):
raise TypeError("tag data must be bytes or bytearray")
self.tagClass = tclass
self.tagNumber = tnum
self.tagLVT = tlvt
self.tagData = tdata
|
def set(self, tclass, tnum, tlvt=0, tdata=b'')
|
set the values of the tag.
| 2.430676 | 2.246866 | 1.081807 |
# check for special encoding
if (self.tagClass == Tag.contextTagClass):
data = 0x08
elif (self.tagClass == Tag.openingTagClass):
data = 0x0E
elif (self.tagClass == Tag.closingTagClass):
data = 0x0F
else:
data = 0x00
# encode the tag number part
if (self.tagNumber < 15):
data += (self.tagNumber << 4)
else:
data += 0xF0
# encode the length/value/type part
if (self.tagLVT < 5):
data += self.tagLVT
else:
data += 0x05
# save this and the extended tag value
pdu.put( data )
if (self.tagNumber >= 15):
pdu.put(self.tagNumber)
# really short lengths are already done
if (self.tagLVT >= 5):
if (self.tagLVT <= 253):
pdu.put( self.tagLVT )
elif (self.tagLVT <= 65535):
pdu.put( 254 )
pdu.put_short( self.tagLVT )
else:
pdu.put( 255 )
pdu.put_long( self.tagLVT )
# now put the data
pdu.put_data(self.tagData)
|
def encode(self, pdu)
|
Encode a tag on the end of the PDU.
| 2.806519 | 2.7616 | 1.016266 |
if self.tagClass != Tag.applicationTagClass:
raise ValueError("application tag required")
# get the class to build
klass = self._app_tag_class[self.tagNumber]
if not klass:
return None
# build an object, tell it to decode this tag, and return it
return klass(self)
|
def app_to_object(self)
|
Return the application object encoded by the tag.
| 7.151375 | 5.722186 | 1.249763 |
if self.tagList:
tag = self.tagList[0]
del self.tagList[0]
else:
tag = None
return tag
|
def Pop(self)
|
Remove the tag from the front of the list and return it.
| 3.878966 | 2.735831 | 1.417839 |
# forward pass
i = 0
while i < len(self.tagList):
tag = self.tagList[i]
# skip application stuff
if tag.tagClass == Tag.applicationTagClass:
pass
# check for context encoded atomic value
elif tag.tagClass == Tag.contextTagClass:
if tag.tagNumber == context:
return tag
# check for context encoded group
elif tag.tagClass == Tag.openingTagClass:
keeper = tag.tagNumber == context
rslt = []
i += 1
lvl = 0
while i < len(self.tagList):
tag = self.tagList[i]
if tag.tagClass == Tag.openingTagClass:
lvl += 1
elif tag.tagClass == Tag.closingTagClass:
lvl -= 1
if lvl < 0: break
rslt.append(tag)
i += 1
# make sure everything balances
if lvl >= 0:
raise InvalidTag("mismatched open/close tags")
# get everything we need?
if keeper:
return TagList(rslt)
else:
raise InvalidTag("unexpected tag")
# try the next tag
i += 1
# nothing found
return None
|
def get_context(self, context)
|
Return a tag or a list of tags context encoded.
| 3.868897 | 3.64959 | 1.060091 |
while pdu.pduData:
self.tagList.append( Tag(pdu) )
|
def decode(self, pdu)
|
decode the tags from a PDU.
| 11.729192 | 8.493212 | 1.381008 |
try:
return cls(arg).value
except (ValueError, TypeError):
raise InvalidParameterDatatype("%s coerce error" % (cls.__name__,))
|
def coerce(cls, arg)
|
Given an arg, return the appropriate value given the class.
| 7.038397 | 6.733037 | 1.045352 |
if isinstance(arg, list):
allInts = allStrings = True
for elem in arg:
allInts = allInts and ((elem == 0) or (elem == 1))
allStrings = allStrings and elem in cls.bitNames
if allInts or allStrings:
return True
return False
|
def is_valid(cls, arg)
|
Return True if arg is valid value for the class.
| 4.235445 | 4.159275 | 1.018313 |
items = self.enumerations.items()
items.sort(lambda a, b: self.cmp(a[1], b[1]))
# last item has highest value
rslt = [None] * (items[-1][1] + 1)
# map the values
for key, value in items:
rslt[value] = key
# return the result
return rslt
|
def keylist(self)
|
Return a list of names in order by value.
| 4.392348 | 3.709709 | 1.184014 |
# rip apart the value
year, month, day, day_of_week = self.value
# assume the worst
day_of_week = 255
# check for special values
if year == 255:
pass
elif month in _special_mon_inv:
pass
elif day in _special_day_inv:
pass
else:
try:
today = time.mktime( (year + 1900, month, day, 0, 0, 0, 0, 0, -1) )
day_of_week = time.gmtime(today)[6] + 1
except OverflowError:
pass
# put it back together
self.value = (year, month, day, day_of_week)
|
def CalcDayOfWeek(self)
|
Calculate the correct day of the week.
| 3.296285 | 3.275299 | 1.006407 |
if when is None:
when = _TaskManager().get_time()
tup = time.localtime(when)
self.value = (tup[0]-1900, tup[1], tup[2], tup[6] + 1)
return self
|
def now(self, when=None)
|
Set the current value to the correct tuple based on the seconds
since the epoch. If 'when' is not provided, get the current time
from the task manager.
| 5.908013 | 4.37834 | 1.349373 |
objType, objInstance = self.value
if isinstance(objType, int):
pass
elif isinstance(objType, str):
# turn it back into an integer
objType = self.objectTypeClass()[objType]
else:
raise TypeError("invalid datatype for objType")
# pack the components together
return (objType, objInstance)
|
def get_tuple(self)
|
Return the unsigned integer tuple of the identifier.
| 7.000529 | 6.096509 | 1.148285 |
if _debug: DeviceInfoCache._debug("has_device_info %r", key)
return key in self.cache
|
def has_device_info(self, key)
|
Return true iff cache has information about the device.
| 4.819504 | 3.824573 | 1.260142 |
if _debug: DeviceInfoCache._debug("iam_device_info %r", apdu)
# make sure the apdu is an I-Am
if not isinstance(apdu, IAmRequest):
raise ValueError("not an IAmRequest: %r" % (apdu,))
# get the device instance
device_instance = apdu.iAmDeviceIdentifier[1]
# get the existing cache record if it exists
device_info = self.cache.get(device_instance, None)
# maybe there is a record for this address
if not device_info:
device_info = self.cache.get(apdu.pduSource, None)
# make a new one using the class provided
if not device_info:
device_info = self.device_info_class(device_instance, apdu.pduSource)
# jam in the correct values
device_info.deviceIdentifier = device_instance
device_info.address = apdu.pduSource
device_info.maxApduLengthAccepted = apdu.maxAPDULengthAccepted
device_info.segmentationSupported = apdu.segmentationSupported
device_info.vendorID = apdu.vendorID
# tell the cache this is an updated record
self.update_device_info(device_info)
|
def iam_device_info(self, apdu)
|
Create a device information record based on the contents of an
IAmRequest and put it in the cache.
| 3.054041 | 2.909078 | 1.049831 |
if _debug: DeviceInfoCache._debug("update_device_info %r", device_info)
# give this a reference count if it doesn't have one
if not hasattr(device_info, '_ref_count'):
device_info._ref_count = 0
# get the current keys
cache_id, cache_address = getattr(device_info, '_cache_keys', (None, None))
if (cache_id is not None) and (device_info.deviceIdentifier != cache_id):
if _debug: DeviceInfoCache._debug(" - device identifier updated")
# remove the old reference, add the new one
del self.cache[cache_id]
self.cache[device_info.deviceIdentifier] = device_info
if (cache_address is not None) and (device_info.address != cache_address):
if _debug: DeviceInfoCache._debug(" - device address updated")
# remove the old reference, add the new one
del self.cache[cache_address]
self.cache[device_info.address] = device_info
# update the keys
device_info._cache_keys = (device_info.deviceIdentifier, device_info.address)
|
def update_device_info(self, device_info)
|
The application has updated one or more fields in the device
information record and the cache needs to be updated to reflect the
changes. If this is a cached version of a persistent record then this
is the opportunity to update the database.
| 2.187359 | 2.20856 | 0.9904 |
if _debug: DeviceInfoCache._debug("acquire %r", key)
if isinstance(key, int):
device_info = self.cache.get(key, None)
elif not isinstance(key, Address):
raise TypeError("key must be integer or an address")
elif key.addrType not in (Address.localStationAddr, Address.remoteStationAddr):
raise TypeError("address must be a local or remote station")
else:
device_info = self.cache.get(key, None)
if device_info:
if _debug: DeviceInfoCache._debug(" - reference bump")
device_info._ref_count += 1
if _debug: DeviceInfoCache._debug(" - device_info: %r", device_info)
return device_info
|
def acquire(self, key)
|
Return the known information about the device and mark the record
as being used by a segmenation state machine.
| 2.7833 | 2.724188 | 1.021699 |
if _debug: DeviceInfoCache._debug("release %r", device_info)
# this information record might be used by more than one SSM
if device_info._ref_count == 0:
raise RuntimeError("reference count")
# decrement the reference count
device_info._ref_count -= 1
|
def release(self, device_info)
|
This function is called by the segmentation state machine when it
has finished with the device information.
| 6.763111 | 6.522406 | 1.036904 |
if _debug: Application._debug("add_object %r", obj)
# extract the object name and identifier
object_name = obj.objectName
if not object_name:
raise RuntimeError("object name required")
object_identifier = obj.objectIdentifier
if not object_identifier:
raise RuntimeError("object identifier required")
# assuming the object identifier is well formed, check the instance number
if (object_identifier[1] >= ObjectIdentifier.maximum_instance_number):
raise RuntimeError("invalid object identifier")
# make sure it hasn't already been defined
if object_name in self.objectName:
raise RuntimeError("already an object with name %r" % (object_name,))
if object_identifier in self.objectIdentifier:
raise RuntimeError("already an object with identifier %r" % (object_identifier,))
# now put it in local dictionaries
self.objectName[object_name] = obj
self.objectIdentifier[object_identifier] = obj
# append the new object's identifier to the local device's object list
# if there is one and it has an object list property
if self.localDevice and self.localDevice.objectList:
self.localDevice.objectList.append(object_identifier)
# let the object know which application stack it belongs to
obj._app = self
|
def add_object(self, obj)
|
Add an object to the local collection.
| 3.514243 | 3.447599 | 1.01933 |
if _debug: Application._debug("delete_object %r", obj)
# extract the object name and identifier
object_name = obj.objectName
object_identifier = obj.objectIdentifier
# delete it from the application
del self.objectName[object_name]
del self.objectIdentifier[object_identifier]
# remove the object's identifier from the device's object list
# if there is one and it has an object list property
if self.localDevice and self.localDevice.objectList:
indx = self.localDevice.objectList.index(object_identifier)
del self.localDevice.objectList[indx]
# make sure the object knows it's detached from an application
obj._app = None
|
def delete_object(self, obj)
|
Add an object to the local collection.
| 4.002824 | 3.964888 | 1.009568 |
if _debug: Application._debug("get_services_supported")
services_supported = ServicesSupported()
# look through the confirmed services
for service_choice, service_request_class in confirmed_request_types.items():
service_helper = "do_" + service_request_class.__name__
if hasattr(self, service_helper):
service_supported = ConfirmedServiceChoice._xlate_table[service_choice]
services_supported[service_supported] = 1
# look through the unconfirmed services
for service_choice, service_request_class in unconfirmed_request_types.items():
service_helper = "do_" + service_request_class.__name__
if hasattr(self, service_helper):
service_supported = UnconfirmedServiceChoice._xlate_table[service_choice]
services_supported[service_supported] = 1
# return the bit list
return services_supported
|
def get_services_supported(self)
|
Return a ServicesSupported bit string based in introspection, look
for helper methods that match confirmed and unconfirmed services.
| 2.963286 | 2.558034 | 1.158423 |
if _debug: key_value_contents._debug("key_value_contents use_dict=%r as_class=%r key_values=%r", use_dict, as_class, key_values)
# make/extend the dictionary of content
if use_dict is None:
use_dict = as_class()
# loop through the values and save them
for k, v in key_values:
if v is not None:
if hasattr(v, 'dict_contents'):
v = v.dict_contents(as_class=as_class)
use_dict.__setitem__(k, v)
# return what we built/updated
return use_dict
|
def key_value_contents(use_dict=None, as_class=dict, key_values=())
|
Return the contents of an object as a dict.
| 2.524005 | 2.405915 | 1.049084 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.