code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
''' The distance matrix contains lengths of shortest paths between all pairs of nodes. An entry (u,v) represents the length of shortest path from node u to node v. The average shortest path length is the characteristic path length of the network. Parameters ---------- L : NxN np.ndarray Directed/undirected connection-length matrix. NB L is not the adjacency matrix. See below. Returns ------- D : NxN np.ndarray distance (shortest weighted path) matrix B : NxN np.ndarray matrix of number of edges in shortest weighted path Notes ----- The input matrix must be a connection-length matrix, typically obtained via a mapping from weight to length. For instance, in a weighted correlation network higher correlations are more naturally interpreted as shorter distances and the input matrix should consequently be some inverse of the connectivity matrix. The number of edges in shortest weighted paths may in general exceed the number of edges in shortest binary paths (i.e. shortest paths computed on the binarized connectivity matrix), because shortest weighted paths have the minimal weighted distance, but not necessarily the minimal number of edges. Lengths between disconnected nodes are set to Inf. Lengths on the main diagonal are set to 0. Algorithm: Dijkstra's algorithm. ''' n = len(G) D = np.zeros((n, n)) # distance matrix D[np.logical_not(np.eye(n))] = np.inf B = np.zeros((n, n)) # number of edges matrix for u in range(n): # distance permanence (true is temporary) S = np.ones((n,), dtype=bool) G1 = G.copy() V = [u] while True: S[V] = 0 # distance u->V is now permanent G1[:, V] = 0 # no in-edges as already shortest for v in V: W, = np.where(G1[v, :]) # neighbors of shortest nodes td = np.array( [D[u, W].flatten(), (D[u, v] + G1[v, W]).flatten()]) d = np.min(td, axis=0) wi = np.argmin(td, axis=0) D[u, W] = d # smallest of old/new path lengths ind = W[np.where(wi == 1)] # indices of lengthened paths # increment nr_edges for lengthened paths B[u, ind] = B[u, v] + 1 if D[u, S].size == 0: # all nodes reached break minD = np.min(D[u, S]) if np.isinf(minD): # some nodes cannot be reached break V, = np.where(D[u, :] == minD) return D, B
def distance_wei(G)
The distance matrix contains lengths of shortest paths between all pairs of nodes. An entry (u,v) represents the length of shortest path from node u to node v. The average shortest path length is the characteristic path length of the network. Parameters ---------- L : NxN np.ndarray Directed/undirected connection-length matrix. NB L is not the adjacency matrix. See below. Returns ------- D : NxN np.ndarray distance (shortest weighted path) matrix B : NxN np.ndarray matrix of number of edges in shortest weighted path Notes ----- The input matrix must be a connection-length matrix, typically obtained via a mapping from weight to length. For instance, in a weighted correlation network higher correlations are more naturally interpreted as shorter distances and the input matrix should consequently be some inverse of the connectivity matrix. The number of edges in shortest weighted paths may in general exceed the number of edges in shortest binary paths (i.e. shortest paths computed on the binarized connectivity matrix), because shortest weighted paths have the minimal weighted distance, but not necessarily the minimal number of edges. Lengths between disconnected nodes are set to Inf. Lengths on the main diagonal are set to 0. Algorithm: Dijkstra's algorithm.
5.756661
2.366784
2.432272
''' The global efficiency is the average of inverse shortest path length, and is inversely related to the characteristic path length. The local efficiency is the global efficiency computed on the neighborhood of the node, and is related to the clustering coefficient. Parameters ---------- A : NxN np.ndarray binary undirected connection matrix local : bool If True, computes local efficiency instead of global efficiency. Default value = False. Returns ------- Eglob : float global efficiency, only if local=False Eloc : Nx1 np.ndarray local efficiency, only if local=True ''' def distance_inv(g): D = np.eye(len(g)) n = 1 nPATH = g.copy() L = (nPATH != 0) while np.any(L): D += n * L n += 1 nPATH = np.dot(nPATH, g) L = (nPATH != 0) * (D == 0) D[np.logical_not(D)] = np.inf D = 1 / D np.fill_diagonal(D, 0) return D G = binarize(G) n = len(G) # number of nodes if local: E = np.zeros((n,)) # local efficiency for u in range(n): # V,=np.where(G[u,:]) #neighbors # k=len(V) #degree # if k>=2: #degree must be at least 2 # e=distance_inv(G[V].T[V]) # E[u]=np.sum(e)/(k*k-k) #local efficiency computation # find pairs of neighbors V, = np.where(np.logical_or(G[u, :], G[u, :].T)) # inverse distance matrix e = distance_inv(G[np.ix_(V, V)]) # symmetrized inverse distance matrix se = e + e.T # symmetrized adjacency vector sa = G[u, V] + G[V, u].T numer = np.sum(np.outer(sa.T, sa) * se) / 2 if numer != 0: denom = np.sum(sa)**2 - np.sum(sa * sa) E[u] = numer / denom # local efficiency else: e = distance_inv(G) E = np.sum(e) / (n * n - n) # global efficiency return E
def efficiency_bin(G, local=False)
The global efficiency is the average of inverse shortest path length, and is inversely related to the characteristic path length. The local efficiency is the global efficiency computed on the neighborhood of the node, and is related to the clustering coefficient. Parameters ---------- A : NxN np.ndarray binary undirected connection matrix local : bool If True, computes local efficiency instead of global efficiency. Default value = False. Returns ------- Eglob : float global efficiency, only if local=False Eloc : Nx1 np.ndarray local efficiency, only if local=True
3.698128
2.630857
1.405674
''' Walks are sequences of linked nodes, that may visit a single node more than once. This function finds the number of walks of a given length, between any two nodes. Parameters ---------- CIJ : NxN np.ndarray binary directed/undirected connection matrix Returns ------- Wq : NxNxQ np.ndarray Wq[i,j,q] is the number of walks from i to j of length q twalk : int total number of walks found wlq : Qx1 np.ndarray walk length distribution as a function of q Notes ----- Wq grows very quickly for larger N,K,q. Weights are discarded. ''' CIJ = binarize(CIJ, copy=True) n = len(CIJ) Wq = np.zeros((n, n, n)) CIJpwr = CIJ.copy() Wq[:, :, 1] = CIJ for q in range(n): CIJpwr = np.dot(CIJpwr, CIJ) Wq[:, :, q] = CIJpwr twalk = np.sum(Wq) # total number of walks wlq = np.sum(np.sum(Wq, axis=0), axis=0) return Wq, twalk, wlq
def findwalks(CIJ)
Walks are sequences of linked nodes, that may visit a single node more than once. This function finds the number of walks of a given length, between any two nodes. Parameters ---------- CIJ : NxN np.ndarray binary directed/undirected connection matrix Returns ------- Wq : NxNxQ np.ndarray Wq[i,j,q] is the number of walks from i to j of length q twalk : int total number of walks found wlq : Qx1 np.ndarray walk length distribution as a function of q Notes ----- Wq grows very quickly for larger N,K,q. Weights are discarded.
4.331817
1.728741
2.505763
''' The binary reachability matrix describes reachability between all pairs of nodes. An entry (u,v)=1 means that there exists a path from node u to node v; alternatively (u,v)=0. The distance matrix contains lengths of shortest paths between all pairs of nodes. An entry (u,v) represents the length of shortest path from node u to node v. The average shortest path length is the characteristic path length of the network. Parameters ---------- CIJ : NxN np.ndarray binary directed/undirected connection matrix ensure_binary : bool Binarizes input. Defaults to true. No user who is not testing something will ever want to not use this, use distance_wei instead for unweighted matrices. Returns ------- R : NxN np.ndarray binary reachability matrix D : NxN np.ndarray distance matrix Notes ----- faster but more memory intensive than "breadthdist.m". ''' def reachdist2(CIJ, CIJpwr, R, D, n, powr, col, row): CIJpwr = np.dot(CIJpwr, CIJ) R = np.logical_or(R, CIJpwr != 0) D += R if powr <= n and np.any(R[np.ix_(row, col)] == 0): powr += 1 R, D, powr = reachdist2(CIJ, CIJpwr, R, D, n, powr, col, row) return R, D, powr if ensure_binary: CIJ = binarize(CIJ) R = CIJ.copy() D = CIJ.copy() powr = 2 n = len(CIJ) CIJpwr = CIJ.copy() # check for vertices that have no incoming or outgoing connections # these are ignored by reachdist id = np.sum(CIJ, axis=0) od = np.sum(CIJ, axis=1) id0, = np.where(id == 0) # nothing goes in, so column(R) will be 0 od0, = np.where(od == 0) # nothing comes out, so row(R) will be 0 # use these colums and rows to check for reachability col = list(range(n)) col = np.delete(col, id0) row = list(range(n)) row = np.delete(row, od0) R, D, powr = reachdist2(CIJ, CIJpwr, R, D, n, powr, col, row) #'invert' CIJdist to get distances D = powr - D + 1 # put inf if no path found D[D == n + 2] = np.inf D[:, id0] = np.inf D[od0, :] = np.inf return R, D
def reachdist(CIJ, ensure_binary=True)
The binary reachability matrix describes reachability between all pairs of nodes. An entry (u,v)=1 means that there exists a path from node u to node v; alternatively (u,v)=0. The distance matrix contains lengths of shortest paths between all pairs of nodes. An entry (u,v) represents the length of shortest path from node u to node v. The average shortest path length is the characteristic path length of the network. Parameters ---------- CIJ : NxN np.ndarray binary directed/undirected connection matrix ensure_binary : bool Binarizes input. Defaults to true. No user who is not testing something will ever want to not use this, use distance_wei instead for unweighted matrices. Returns ------- R : NxN np.ndarray binary reachability matrix D : NxN np.ndarray distance matrix Notes ----- faster but more memory intensive than "breadthdist.m".
4.127903
2.27784
1.812201
P = np.linalg.solve(np.diag(np.sum(adjacency, axis=1)), adjacency) n = len(P) D, V = np.linalg.eig(P.T) aux = np.abs(D - 1) index = np.where(aux == aux.min())[0] if aux[index] > 10e-3: raise ValueError("Cannot find eigenvalue of 1. Minimum eigenvalue " + "value is {0}. Tolerance was ".format(aux[index]+1) + "set at 10e-3.") w = V[:, index].T w = w / np.sum(w) W = np.real(np.repeat(w, n, 0)) I = np.eye(n) Z = np.linalg.inv(I - P + W) mfpt = (np.repeat(np.atleast_2d(np.diag(Z)), n, 0) - Z) / W return mfpt
def mean_first_passage_time(adjacency)
Calculates mean first passage time of `adjacency` The first passage time from i to j is the expected number of steps it takes a random walker starting at node i to arrive for the first time at node j. The mean first passage time is not a symmetric measure: `mfpt(i,j)` may be different from `mfpt(j,i)`. Parameters ---------- adjacency : (N x N) array_like Weighted/unweighted, direct/undirected connection weight/length array Returns ------- MFPT : (N x N) ndarray Pairwise mean first passage time array References ---------- .. [1] Goni, J., Avena-Koenigsberger, A., de Mendizabal, N. V., van den Heuvel, M. P., Betzel, R. F., & Sporns, O. (2013). Exploring the morphospace of communication efficiency in complex networks. PLoS One, 8(3), e58070.
4.178525
4.013391
1.041146
''' Do rounding such that .5 always rounds to 1, and not bankers rounding. This is for compatibility with matlab functions, and ease of testing. ''' if ((x > 0) and (x % 1 >= 0.5)) or ((x < 0) and (x % 1 > 0.5)): return int(np.ceil(x)) else: return int(np.floor(x))
def teachers_round(x)
Do rounding such that .5 always rounds to 1, and not bankers rounding. This is for compatibility with matlab functions, and ease of testing.
5.169937
1.936102
2.670281
''' This is equivalent to np.random.choice(n, 4, replace=False) Another fellow suggested np.random.random_sample(n).argpartition(4) which is clever but still substantially slower. ''' rng = get_rng(seed) k = rng.randint(n**4) a = k % n b = k // n % n c = k // n ** 2 % n d = k // n ** 3 % n if (a != b and a != c and a != d and b != c and b != d and c != d): return (a, b, c, d) else: # the probability of finding a wrong configuration is extremely low # unless for extremely small n. if n is extremely small the # computational demand is not a problem. # In my profiling it only took 0.4 seconds to include the uniqueness # check in 1 million runs of this function so I think it is OK. return pick_four_unique_nodes_quickly(n, rng)
def pick_four_unique_nodes_quickly(n, seed=None)
This is equivalent to np.random.choice(n, 4, replace=False) Another fellow suggested np.random.random_sample(n).argpartition(4) which is clever but still substantially slower.
5.70135
4.014211
1.420292
''' This is an efficient implementation of matlab's "dummyvar" command using sparse matrices. input: partitions, NxM array-like containing M partitions of N nodes into <=N distinct communities output: dummyvar, an NxR matrix containing R column variables (indicator variables) with N entries, where R is the total number of communities summed across each of the M partitions. i.e. r = sum((max(len(unique(partitions[i]))) for i in range(m))) ''' # num_rows is not affected by partition indexes n = np.size(cis, axis=0) m = np.size(cis, axis=1) r = np.sum((np.max(len(np.unique(cis[:, i])))) for i in range(m)) nnz = np.prod(cis.shape) ix = np.argsort(cis, axis=0) # s_cis=np.sort(cis,axis=0) # FIXME use the sorted indices to sort by row efficiently s_cis = cis[ix][:, range(m), range(m)] mask = np.hstack((((True,),) * m, (s_cis[:-1, :] != s_cis[1:, :]).T)) indptr, = np.where(mask.flat) indptr = np.append(indptr, nnz) import scipy.sparse as sp dv = sp.csc_matrix((np.repeat((1,), nnz), ix.T.flat, indptr), shape=(n, r)) return dv.toarray()
def dummyvar(cis, return_sparse=False)
This is an efficient implementation of matlab's "dummyvar" command using sparse matrices. input: partitions, NxM array-like containing M partitions of N nodes into <=N distinct communities output: dummyvar, an NxR matrix containing R column variables (indicator variables) with N entries, where R is the total number of communities summed across each of the M partitions. i.e. r = sum((max(len(unique(partitions[i]))) for i in range(m)))
6.346187
2.931501
2.164825
if seed is None or seed == np.random: return np.random.mtrand._rand elif isinstance(seed, np.random.RandomState): return seed try: rstate = np.random.RandomState(seed) except ValueError: rstate = np.random.RandomState(random.Random(seed).randint(0, 2**32-1)) return rstate
def get_rng(seed=None)
By default, or if `seed` is np.random, return the global RandomState instance used by np.random. If `seed` is a RandomState instance, return it unchanged. Otherwise, use the passed (hashable) argument to seed a new instance of RandomState and return it. Parameters ---------- seed : hashable or np.random.RandomState or np.random, optional Returns ------- np.random.RandomState
2.550849
2.594292
0.983254
''' The assortativity coefficient is a correlation coefficient between the degrees of all nodes on two opposite ends of a link. A positive assortativity coefficient indicates that nodes tend to link to other nodes with the same or similar degree. Parameters ---------- CIJ : NxN np.ndarray binary directed/undirected connection matrix flag : int 0 : undirected graph; degree/degree correlation 1 : directed graph; out-degree/in-degree correlation 2 : directed graph; in-degree/out-degree correlation 3 : directed graph; out-degree/out-degree correlation 4 : directed graph; in-degree/in-degreen correlation Returns ------- r : float assortativity coefficient Notes ----- The function accepts weighted networks, but all connection weights are ignored. The main diagonal should be empty. For flag 1 the function computes the directed assortativity described in Rubinov and Sporns (2010) NeuroImage. ''' if flag == 0: # undirected version deg = degrees_und(CIJ) i, j = np.where(np.triu(CIJ, 1) > 0) K = len(i) degi = deg[i] degj = deg[j] else: # directed version id, od, deg = degrees_dir(CIJ) i, j = np.where(CIJ > 0) K = len(i) if flag == 1: degi = od[i] degj = id[j] elif flag == 2: degi = id[i] degj = od[j] elif flag == 3: degi = od[i] degj = od[j] elif flag == 4: degi = id[i] degj = id[j] else: raise ValueError('Flag must be 0-4') # compute assortativity term1 = np.sum(degi * degj) / K term2 = np.square(np.sum(.5 * (degi + degj)) / K) term3 = np.sum(.5 * (degi * degi + degj * degj)) / K r = (term1 - term2) / (term3 - term2) return r
def assortativity_bin(CIJ, flag=0)
The assortativity coefficient is a correlation coefficient between the degrees of all nodes on two opposite ends of a link. A positive assortativity coefficient indicates that nodes tend to link to other nodes with the same or similar degree. Parameters ---------- CIJ : NxN np.ndarray binary directed/undirected connection matrix flag : int 0 : undirected graph; degree/degree correlation 1 : directed graph; out-degree/in-degree correlation 2 : directed graph; in-degree/out-degree correlation 3 : directed graph; out-degree/out-degree correlation 4 : directed graph; in-degree/in-degreen correlation Returns ------- r : float assortativity coefficient Notes ----- The function accepts weighted networks, but all connection weights are ignored. The main diagonal should be empty. For flag 1 the function computes the directed assortativity described in Rubinov and Sporns (2010) NeuroImage.
3.294679
1.607119
2.050053
''' The assortativity coefficient is a correlation coefficient between the strengths (weighted degrees) of all nodes on two opposite ends of a link. A positive assortativity coefficient indicates that nodes tend to link to other nodes with the same or similar strength. Parameters ---------- CIJ : NxN np.ndarray weighted directed/undirected connection matrix flag : int 0 : undirected graph; strength/strength correlation 1 : directed graph; out-strength/in-strength correlation 2 : directed graph; in-strength/out-strength correlation 3 : directed graph; out-strength/out-strength correlation 4 : directed graph; in-strength/in-strengthn correlation Returns ------- r : float assortativity coefficient Notes ----- The main diagonal should be empty. For flag 1 the function computes the directed assortativity described in Rubinov and Sporns (2010) NeuroImage. ''' if flag == 0: # undirected version str = strengths_und(CIJ) i, j = np.where(np.triu(CIJ, 1) > 0) K = len(i) stri = str[i] strj = str[j] else: ist, ost = strengths_dir(CIJ) # directed version i, j = np.where(CIJ > 0) K = len(i) if flag == 1: stri = ost[i] strj = ist[j] elif flag == 2: stri = ist[i] strj = ost[j] elif flag == 3: stri = ost[i] strj = ost[j] elif flag == 4: stri = ist[i] strj = ost[j] else: raise ValueError('Flag must be 0-4') # compute assortativity term1 = np.sum(stri * strj) / K term2 = np.square(np.sum(.5 * (stri + strj)) / K) term3 = np.sum(.5 * (stri * stri + strj * strj)) / K r = (term1 - term2) / (term3 - term2) return r
def assortativity_wei(CIJ, flag=0)
The assortativity coefficient is a correlation coefficient between the strengths (weighted degrees) of all nodes on two opposite ends of a link. A positive assortativity coefficient indicates that nodes tend to link to other nodes with the same or similar strength. Parameters ---------- CIJ : NxN np.ndarray weighted directed/undirected connection matrix flag : int 0 : undirected graph; strength/strength correlation 1 : directed graph; out-strength/in-strength correlation 2 : directed graph; in-strength/out-strength correlation 3 : directed graph; out-strength/out-strength correlation 4 : directed graph; in-strength/in-strengthn correlation Returns ------- r : float assortativity coefficient Notes ----- The main diagonal should be empty. For flag 1 the function computes the directed assortativity described in Rubinov and Sporns (2010) NeuroImage.
3.383315
1.668682
2.027538
''' The k-core is the largest subnetwork comprising nodes of degree at least k. This function computes the k-core for a given binary directed connection matrix by recursively peeling off nodes with degree lower than k, until no such nodes remain. Parameters ---------- CIJ : NxN np.ndarray binary directed adjacency matrix k : int level of k-core peel : bool If True, additionally calculates peelorder and peellevel. Defaults to False. Returns ------- CIJkcore : NxN np.ndarray connection matrix of the k-core. This matrix only contains nodes of degree at least k. kn : int size of k-core peelorder : Nx1 np.ndarray indices in the order in which they were peeled away during k-core decomposition. only returned if peel is specified. peellevel : Nx1 np.ndarray corresponding level - nodes in at the same level have been peeled away at the same time. only return if peel is specified Notes ----- 'peelorder' and 'peellevel' are similar the the k-core sub-shells described in Modha and Singh (2010). ''' if peel: peelorder, peellevel = ([], []) iter = 0 CIJkcore = CIJ.copy() while True: id, od, deg = degrees_dir(CIJkcore) # get degrees of matrix # find nodes with degree <k ff, = np.where(np.logical_and(deg < k, deg > 0)) if ff.size == 0: break # if none found -> stop # else peel away found nodes iter += 1 CIJkcore[ff, :] = 0 CIJkcore[:, ff] = 0 if peel: peelorder.append(ff) if peel: peellevel.append(iter * np.ones((len(ff),))) kn = np.sum(deg > 0) if peel: return CIJkcore, kn, peelorder, peellevel else: return CIJkcore, kn
def kcore_bd(CIJ, k, peel=False)
The k-core is the largest subnetwork comprising nodes of degree at least k. This function computes the k-core for a given binary directed connection matrix by recursively peeling off nodes with degree lower than k, until no such nodes remain. Parameters ---------- CIJ : NxN np.ndarray binary directed adjacency matrix k : int level of k-core peel : bool If True, additionally calculates peelorder and peellevel. Defaults to False. Returns ------- CIJkcore : NxN np.ndarray connection matrix of the k-core. This matrix only contains nodes of degree at least k. kn : int size of k-core peelorder : Nx1 np.ndarray indices in the order in which they were peeled away during k-core decomposition. only returned if peel is specified. peellevel : Nx1 np.ndarray corresponding level - nodes in at the same level have been peeled away at the same time. only return if peel is specified Notes ----- 'peelorder' and 'peellevel' are similar the the k-core sub-shells described in Modha and Singh (2010).
4.466394
1.763293
2.532985
''' The k-core is the largest subnetwork comprising nodes of degree at least k. This function computes the k-core for a given binary undirected connection matrix by recursively peeling off nodes with degree lower than k, until no such nodes remain. Parameters ---------- CIJ : NxN np.ndarray binary undirected connection matrix k : int level of k-core peel : bool If True, additionally calculates peelorder and peellevel. Defaults to False. Returns ------- CIJkcore : NxN np.ndarray connection matrix of the k-core. This matrix only contains nodes of degree at least k. kn : int size of k-core peelorder : Nx1 np.ndarray indices in the order in which they were peeled away during k-core decomposition. only returned if peel is specified. peellevel : Nx1 np.ndarray corresponding level - nodes in at the same level have been peeled away at the same time. only return if peel is specified Notes ----- 'peelorder' and 'peellevel' are similar the the k-core sub-shells described in Modha and Singh (2010). ''' if peel: peelorder, peellevel = ([], []) iter = 0 CIJkcore = CIJ.copy() while True: deg = degrees_und(CIJkcore) # get degrees of matrix # find nodes with degree <k ff, = np.where(np.logical_and(deg < k, deg > 0)) if ff.size == 0: break # if none found -> stop # else peel away found nodes iter += 1 CIJkcore[ff, :] = 0 CIJkcore[:, ff] = 0 if peel: peelorder.append(ff) if peel: peellevel.append(iter * np.ones((len(ff),))) kn = np.sum(deg > 0) if peel: return CIJkcore, kn, peelorder, peellevel else: return CIJkcore, kn
def kcore_bu(CIJ, k, peel=False)
The k-core is the largest subnetwork comprising nodes of degree at least k. This function computes the k-core for a given binary undirected connection matrix by recursively peeling off nodes with degree lower than k, until no such nodes remain. Parameters ---------- CIJ : NxN np.ndarray binary undirected connection matrix k : int level of k-core peel : bool If True, additionally calculates peelorder and peellevel. Defaults to False. Returns ------- CIJkcore : NxN np.ndarray connection matrix of the k-core. This matrix only contains nodes of degree at least k. kn : int size of k-core peelorder : Nx1 np.ndarray indices in the order in which they were peeled away during k-core decomposition. only returned if peel is specified. peellevel : Nx1 np.ndarray corresponding level - nodes in at the same level have been peeled away at the same time. only return if peel is specified Notes ----- 'peelorder' and 'peellevel' are similar the the k-core sub-shells described in Modha and Singh (2010).
4.183613
1.665794
2.511483
''' Local assortativity measures the extent to which nodes are connected to nodes of similar strength. Adapted from Thedchanamoorthy et al. 2014 formula to allowed weighted/signed networks. Parameters ---------- W : NxN np.ndarray undirected connection matrix with positive and negative weights Returns ------- loc_assort_pos : Nx1 np.ndarray local assortativity from positive weights loc_assort_neg : Nx1 np.ndarray local assortativity from negative weights ''' n = len(W) np.fill_diagonal(W, 0) r_pos = assortativity_wei(W * (W > 0)) r_neg = assortativity_wei(W * (W < 0)) str_pos, str_neg, _, _ = strengths_und_sign(W) loc_assort_pos = np.zeros((n,)) loc_assort_neg = np.zeros((n,)) for curr_node in range(n): jp = np.where(W[curr_node, :] > 0) loc_assort_pos[curr_node] = np.sum(np.abs(str_pos[jp] - str_pos[curr_node])) / str_pos[curr_node] jn = np.where(W[curr_node, :] < 0) loc_assort_neg[curr_node] = np.sum(np.abs(str_neg[jn] - str_neg[curr_node])) / str_neg[curr_node] loc_assort_pos = ((r_pos + 1) / n - loc_assort_pos / np.sum(loc_assort_pos)) loc_assort_neg = ((r_neg + 1) / n - loc_assort_neg / np.sum(loc_assort_neg)) return loc_assort_pos, loc_assort_neg
def local_assortativity_wu_sign(W)
Local assortativity measures the extent to which nodes are connected to nodes of similar strength. Adapted from Thedchanamoorthy et al. 2014 formula to allowed weighted/signed networks. Parameters ---------- W : NxN np.ndarray undirected connection matrix with positive and negative weights Returns ------- loc_assort_pos : Nx1 np.ndarray local assortativity from positive weights loc_assort_neg : Nx1 np.ndarray local assortativity from negative weights
2.815807
1.770259
1.590619
''' The rich club coefficient, R, at level k is the fraction of edges that connect nodes of degree k or higher out of the maximum number of edges that such nodes might share. Parameters ---------- CIJ : NxN np.ndarray binary directed connection matrix klevel : int | None sets the maximum level at which the rich club coefficient will be calculated. If None (default), the maximum level is set to the maximum degree of the adjacency matrix Returns ------- R : Kx1 np.ndarray vector of rich-club coefficients for levels 1 to klevel Nk : int number of nodes with degree > k Ek : int number of edges remaining in subgraph with degree > k ''' # definition of degree as used for RC coefficients # degree is taken to be the sum of incoming and outgoing connections id, od, deg = degrees_dir(CIJ) if klevel is None: klevel = int(np.max(deg)) R = np.zeros((klevel,)) Nk = np.zeros((klevel,)) Ek = np.zeros((klevel,)) for k in range(klevel): SmallNodes, = np.where(deg <= k + 1) # get small nodes with degree <=k subCIJ = np.delete(CIJ, SmallNodes, axis=0) subCIJ = np.delete(subCIJ, SmallNodes, axis=1) Nk[k] = np.size(subCIJ, axis=1) # number of nodes with degree >k Ek[k] = np.sum(subCIJ) # number of connections in subgraph # unweighted rich club coefficient R[k] = Ek[k] / (Nk[k] * (Nk[k] - 1)) return R, Nk, Ek
def rich_club_bd(CIJ, klevel=None)
The rich club coefficient, R, at level k is the fraction of edges that connect nodes of degree k or higher out of the maximum number of edges that such nodes might share. Parameters ---------- CIJ : NxN np.ndarray binary directed connection matrix klevel : int | None sets the maximum level at which the rich club coefficient will be calculated. If None (default), the maximum level is set to the maximum degree of the adjacency matrix Returns ------- R : Kx1 np.ndarray vector of rich-club coefficients for levels 1 to klevel Nk : int number of nodes with degree > k Ek : int number of edges remaining in subgraph with degree > k
3.758694
2.054194
1.829765
''' The rich club coefficient, R, at level k is the fraction of edges that connect nodes of degree k or higher out of the maximum number of edges that such nodes might share. Parameters ---------- CIJ : NxN np.ndarray binary undirected connection matrix klevel : int | None sets the maximum level at which the rich club coefficient will be calculated. If None (default), the maximum level is set to the maximum degree of the adjacency matrix Returns ------- R : Kx1 np.ndarray vector of rich-club coefficients for levels 1 to klevel Nk : int number of nodes with degree > k Ek : int number of edges remaining in subgraph with degree > k ''' deg = degrees_und(CIJ) # compute degree of each node if klevel == None: klevel = int(np.max(deg)) R = np.zeros((klevel,)) Nk = np.zeros((klevel,)) Ek = np.zeros((klevel,)) for k in range(klevel): SmallNodes, = np.where(deg <= k + 1) # get small nodes with degree <=k subCIJ = np.delete(CIJ, SmallNodes, axis=0) subCIJ = np.delete(subCIJ, SmallNodes, axis=1) Nk[k] = np.size(subCIJ, axis=1) # number of nodes with degree >k Ek[k] = np.sum(subCIJ) # number of connections in subgraph # unweighted rich club coefficient R[k] = Ek[k] / (Nk[k] * (Nk[k] - 1)) return R, Nk, Ek
def rich_club_bu(CIJ, klevel=None)
The rich club coefficient, R, at level k is the fraction of edges that connect nodes of degree k or higher out of the maximum number of edges that such nodes might share. Parameters ---------- CIJ : NxN np.ndarray binary undirected connection matrix klevel : int | None sets the maximum level at which the rich club coefficient will be calculated. If None (default), the maximum level is set to the maximum degree of the adjacency matrix Returns ------- R : Kx1 np.ndarray vector of rich-club coefficients for levels 1 to klevel Nk : int number of nodes with degree > k Ek : int number of edges remaining in subgraph with degree > k
3.270103
1.716236
1.905392
''' Parameters ---------- CIJ : NxN np.ndarray weighted directed connection matrix klevel : int | None sets the maximum level at which the rich club coefficient will be calculated. If None (default), the maximum level is set to the maximum degree of the adjacency matrix Returns ------- Rw : Kx1 np.ndarray vector of rich-club coefficients for levels 1 to klevel ''' nr_nodes = len(CIJ) # degree of each node is defined here as in+out deg = np.sum((CIJ != 0), axis=0) + np.sum((CIJ.T != 0), axis=0) if klevel is None: klevel = np.max(deg) Rw = np.zeros((klevel,)) # sort the weights of the network, with the strongest connection first wrank = np.sort(CIJ.flat)[::-1] for k in range(klevel): SmallNodes, = np.where(deg < k + 1) if np.size(SmallNodes) == 0: Rw[k] = np.nan continue # remove small nodes with node degree < k cutCIJ = np.delete( np.delete(CIJ, SmallNodes, axis=0), SmallNodes, axis=1) # total weight of connections in subset E>r Wr = np.sum(cutCIJ) # total number of connections in subset E>r Er = np.size(np.where(cutCIJ.flat != 0), axis=1) # E>r number of connections with max weight in network wrank_r = wrank[:Er] # weighted rich-club coefficient Rw[k] = Wr / np.sum(wrank_r) return Rw
def rich_club_wd(CIJ, klevel=None)
Parameters ---------- CIJ : NxN np.ndarray weighted directed connection matrix klevel : int | None sets the maximum level at which the rich club coefficient will be calculated. If None (default), the maximum level is set to the maximum degree of the adjacency matrix Returns ------- Rw : Kx1 np.ndarray vector of rich-club coefficients for levels 1 to klevel
4.232376
3.11705
1.357815
''' The s-core is the largest subnetwork comprising nodes of strength at least s. This function computes the s-core for a given weighted undirected connection matrix. Computation is analogous to the more widely used k-core, but is based on node strengths instead of node degrees. Parameters ---------- CIJ : NxN np.ndarray weighted undirected connection matrix s : float level of s-core. Note that can take on any fractional value. Returns ------- CIJscore : NxN np.ndarray connection matrix of the s-core. This matrix contains only nodes with a strength of at least s. sn : int size of s-core ''' CIJscore = CIJ.copy() while True: str = strengths_und(CIJscore) # get strengths of matrix # find nodes with strength <s ff, = np.where(np.logical_and(str < s, str > 0)) if ff.size == 0: break # if none found -> stop # else peel away found nodes CIJscore[ff, :] = 0 CIJscore[:, ff] = 0 sn = np.sum(str > 0) return CIJscore, sn
def score_wu(CIJ, s)
The s-core is the largest subnetwork comprising nodes of strength at least s. This function computes the s-core for a given weighted undirected connection matrix. Computation is analogous to the more widely used k-core, but is based on node strengths instead of node degrees. Parameters ---------- CIJ : NxN np.ndarray weighted undirected connection matrix s : float level of s-core. Note that can take on any fractional value. Returns ------- CIJscore : NxN np.ndarray connection matrix of the s-core. This matrix contains only nodes with a strength of at least s. sn : int size of s-core
5.627903
2.071018
2.717457
try: return list(array).index(self.pad_value) except ValueError: return len(array)
def find_pad_index(self, array)
Find padding index. Args: array (list): integer list. Returns: idx: padding index. Examples: >>> array = [1, 2, 0] >>> self.find_pad_index(array) 2
3.433372
4.777613
0.718638
lens = [self.find_pad_index(row) for row in y] return lens
def get_length(self, y)
Get true length of y. Args: y (list): padded list. Returns: lens: true length of y. Examples: >>> y = [[1, 0, 0], [1, 1, 0], [1, 1, 1]] >>> self.get_length(y) [1, 2, 3]
11.838353
18.766808
0.630813
y = [[self.id2label[idx] for idx in row[:l]] for row, l in zip(y, lens)] return y
def convert_idx_to_name(self, y, lens)
Convert label index to name. Args: y (list): label index list. lens (list): true length of y. Returns: y: label name list. Examples: >>> # assumes that id2label = {1: 'B-LOC', 2: 'I-LOC'} >>> y = [[1, 0, 0], [1, 2, 0], [1, 1, 1]] >>> lens = [1, 2, 3] >>> self.convert_idx_to_name(y, lens) [['B-LOC'], ['B-LOC', 'I-LOC'], ['B-LOC', 'B-LOC', 'B-LOC']]
4.016612
6.884893
0.583395
y_pred = self.model.predict_on_batch(X) # reduce dimension. y_true = np.argmax(y, -1) y_pred = np.argmax(y_pred, -1) lens = self.get_length(y_true) y_true = self.convert_idx_to_name(y_true, lens) y_pred = self.convert_idx_to_name(y_pred, lens) return y_true, y_pred
def predict(self, X, y)
Predict sequences. Args: X (list): input data. y (list): tags. Returns: y_true: true sequences. y_pred: predicted sequences.
2.607158
2.689478
0.969392
score = f1_score(y_true, y_pred) print(' - f1: {:04.2f}'.format(score * 100)) print(classification_report(y_true, y_pred, digits=4)) return score
def score(self, y_true, y_pred)
Calculate f1 score. Args: y_true (list): true sequences. y_pred (list): predicted sequences. Returns: score: f1 score.
2.631655
3.435667
0.765981
# for nested list if any(isinstance(s, list) for s in seq): seq = [item for sublist in seq for item in sublist + ['O']] prev_tag = 'O' prev_type = '' begin_offset = 0 chunks = [] for i, chunk in enumerate(seq + ['O']): if suffix: tag = chunk[-1] type_ = chunk.split('-')[0] else: tag = chunk[0] type_ = chunk.split('-')[-1] if end_of_chunk(prev_tag, tag, prev_type, type_): chunks.append((prev_type, begin_offset, i-1)) if start_of_chunk(prev_tag, tag, prev_type, type_): begin_offset = i prev_tag = tag prev_type = type_ return chunks
def get_entities(seq, suffix=False)
Gets entities from sequence. Args: seq (list): sequence of labels. Returns: list: list of (chunk_type, chunk_start, chunk_end). Example: >>> from seqeval.metrics.sequence_labeling import get_entities >>> seq = ['B-PER', 'I-PER', 'O', 'B-LOC'] >>> get_entities(seq) [('PER', 0, 1), ('LOC', 3, 3)]
2.192916
2.096879
1.0458
chunk_end = False if prev_tag == 'E': chunk_end = True if prev_tag == 'S': chunk_end = True if prev_tag == 'B' and tag == 'B': chunk_end = True if prev_tag == 'B' and tag == 'S': chunk_end = True if prev_tag == 'B' and tag == 'O': chunk_end = True if prev_tag == 'I' and tag == 'B': chunk_end = True if prev_tag == 'I' and tag == 'S': chunk_end = True if prev_tag == 'I' and tag == 'O': chunk_end = True if prev_tag != 'O' and prev_tag != '.' and prev_type != type_: chunk_end = True return chunk_end
def end_of_chunk(prev_tag, tag, prev_type, type_)
Checks if a chunk ended between the previous and current word. Args: prev_tag: previous chunk tag. tag: current chunk tag. prev_type: previous type. type_: current type. Returns: chunk_end: boolean.
1.536627
1.618354
0.9495
chunk_start = False if tag == 'B': chunk_start = True if tag == 'S': chunk_start = True if prev_tag == 'E' and tag == 'E': chunk_start = True if prev_tag == 'E' and tag == 'I': chunk_start = True if prev_tag == 'S' and tag == 'E': chunk_start = True if prev_tag == 'S' and tag == 'I': chunk_start = True if prev_tag == 'O' and tag == 'E': chunk_start = True if prev_tag == 'O' and tag == 'I': chunk_start = True if tag != 'O' and tag != '.' and prev_type != type_: chunk_start = True return chunk_start
def start_of_chunk(prev_tag, tag, prev_type, type_)
Checks if a chunk started between the previous and current word. Args: prev_tag: previous chunk tag. tag: current chunk tag. prev_type: previous type. type_: current type. Returns: chunk_start: boolean.
1.680201
1.776091
0.946011
true_entities = set(get_entities(y_true, suffix)) pred_entities = set(get_entities(y_pred, suffix)) nb_correct = len(true_entities & pred_entities) nb_pred = len(pred_entities) nb_true = len(true_entities) p = nb_correct / nb_pred if nb_pred > 0 else 0 r = nb_correct / nb_true if nb_true > 0 else 0 score = 2 * p * r / (p + r) if p + r > 0 else 0 return score
def f1_score(y_true, y_pred, average='micro', suffix=False)
Compute the F1 score. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:: F1 = 2 * (precision * recall) / (precision + recall) Args: y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger. Returns: score : float. Example: >>> from seqeval.metrics import f1_score >>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> f1_score(y_true, y_pred) 0.50
1.569039
2.096663
0.748351
if any(isinstance(s, list) for s in y_true): y_true = [item for sublist in y_true for item in sublist] y_pred = [item for sublist in y_pred for item in sublist] nb_correct = sum(y_t==y_p for y_t, y_p in zip(y_true, y_pred)) nb_true = len(y_true) score = nb_correct / nb_true return score
def accuracy_score(y_true, y_pred)
Accuracy classification score. In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must *exactly* match the corresponding set of labels in y_true. Args: y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger. Returns: score : float. Example: >>> from seqeval.metrics import accuracy_score >>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> accuracy_score(y_true, y_pred) 0.80
1.852974
2.14585
0.863515
true_entities = set(get_entities(y_true, suffix)) pred_entities = set(get_entities(y_pred, suffix)) nb_correct = len(true_entities & pred_entities) nb_pred = len(pred_entities) score = nb_correct / nb_pred if nb_pred > 0 else 0 return score
def precision_score(y_true, y_pred, average='micro', suffix=False)
Compute the precision. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample. The best value is 1 and the worst value is 0. Args: y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger. Returns: score : float. Example: >>> from seqeval.metrics import precision_score >>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> precision_score(y_true, y_pred) 0.50
2.043265
3.226726
0.633232
true_entities = set(get_entities(y_true, suffix)) pred_entities = set(get_entities(y_pred, suffix)) nb_correct = len(true_entities & pred_entities) nb_true = len(true_entities) score = nb_correct / nb_true if nb_true > 0 else 0 return score
def recall_score(y_true, y_pred, average='micro', suffix=False)
Compute the recall. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Args: y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger. Returns: score : float. Example: >>> from seqeval.metrics import recall_score >>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> recall_score(y_true, y_pred) 0.50
2.061201
3.229084
0.638324
performace_dict = dict() if any(isinstance(s, list) for s in y_true): y_true = [item for sublist in y_true for item in sublist] y_pred = [item for sublist in y_pred for item in sublist] performace_dict['TP'] = sum(y_t == y_p for y_t, y_p in zip(y_true, y_pred) if ((y_t != 'O') or (y_p != 'O'))) performace_dict['FP'] = sum(y_t != y_p for y_t, y_p in zip(y_true, y_pred)) performace_dict['FN'] = sum(((y_t != 'O') and (y_p == 'O')) for y_t, y_p in zip(y_true, y_pred)) performace_dict['TN'] = sum((y_t == y_p == 'O') for y_t, y_p in zip(y_true, y_pred)) return performace_dict
def performance_measure(y_true, y_pred)
Compute the performance metrics: TP, FP, FN, TN Args: y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a tagger. Returns: performance_dict : dict Example: >>> from seqeval.metrics import performance_measure >>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'O', 'B-ORG'], ['B-PER', 'I-PER', 'O']] >>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'O'], ['B-PER', 'I-PER', 'O']] >>> performance_measure(y_true, y_pred) (3, 3, 1, 4)
1.653895
1.681199
0.98376
true_entities = set(get_entities(y_true, suffix)) pred_entities = set(get_entities(y_pred, suffix)) name_width = 0 d1 = defaultdict(set) d2 = defaultdict(set) for e in true_entities: d1[e[0]].add((e[1], e[2])) name_width = max(name_width, len(e[0])) for e in pred_entities: d2[e[0]].add((e[1], e[2])) last_line_heading = 'macro avg' width = max(name_width, len(last_line_heading), digits) headers = ["precision", "recall", "f1-score", "support"] head_fmt = u'{:>{width}s} ' + u' {:>9}' * len(headers) report = head_fmt.format(u'', *headers, width=width) report += u'\n\n' row_fmt = u'{:>{width}s} ' + u' {:>9.{digits}f}' * 3 + u' {:>9}\n' ps, rs, f1s, s = [], [], [], [] for type_name, true_entities in d1.items(): pred_entities = d2[type_name] nb_correct = len(true_entities & pred_entities) nb_pred = len(pred_entities) nb_true = len(true_entities) p = nb_correct / nb_pred if nb_pred > 0 else 0 r = nb_correct / nb_true if nb_true > 0 else 0 f1 = 2 * p * r / (p + r) if p + r > 0 else 0 report += row_fmt.format(*[type_name, p, r, f1, nb_true], width=width, digits=digits) ps.append(p) rs.append(r) f1s.append(f1) s.append(nb_true) report += u'\n' # compute averages report += row_fmt.format('micro avg', precision_score(y_true, y_pred, suffix=suffix), recall_score(y_true, y_pred, suffix=suffix), f1_score(y_true, y_pred, suffix=suffix), np.sum(s), width=width, digits=digits) report += row_fmt.format(last_line_heading, np.average(ps, weights=s), np.average(rs, weights=s), np.average(f1s, weights=s), np.sum(s), width=width, digits=digits) return report
def classification_report(y_true, y_pred, digits=2, suffix=False)
Build a text report showing the main classification metrics. Args: y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a classifier. digits : int. Number of digits for formatting output floating point values. Returns: report : string. Text summary of the precision, recall, F1 score for each class. Examples: >>> from seqeval.metrics import classification_report >>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> print(classification_report(y_true, y_pred)) precision recall f1-score support <BLANKLINE> MISC 0.00 0.00 0.00 1 PER 1.00 1.00 1.00 1 <BLANKLINE> micro avg 0.50 0.50 0.50 2 macro avg 0.50 0.50 0.50 2 <BLANKLINE>
1.631171
1.664434
0.980016
if isinstance(td, numbers.Real): td = datetime.timedelta(seconds=td) return td.total_seconds()
def _timedelta_to_seconds(td)
Convert a datetime.timedelta object into a seconds interval for rotating file ouput. :param td: datetime.timedelta :return: time in seconds :rtype: int
3.383373
4.214242
0.802843
adapter = _LOGGERS.get(name) if not adapter: # NOTE(jd) Keep using the `adapter' variable here because so it's not # collected by Python since _LOGGERS contains only a weakref adapter = KeywordArgumentAdapter(logging.getLogger(name), kwargs) _LOGGERS[name] = adapter return adapter
def getLogger(name=None, **kwargs)
Build a logger with the given name. :param name: The name for the logger. This is usually the module name, ``__name__``. :type name: string
9.426425
10.516461
0.89635
root_logger = logging.getLogger(None) # Remove all handlers for handler in list(root_logger.handlers): root_logger.removeHandler(handler) # Add configured handlers for out in outputs: if isinstance(out, str): out = output.preconfigured.get(out) if out is None: raise RuntimeError("Output {} is not available".format(out)) out.add_to_logger(root_logger) root_logger.setLevel(level) program_logger = logging.getLogger(program_name) def logging_excepthook(exc_type, value, tb): program_logger.critical( "".join(traceback.format_exception(exc_type, value, tb))) sys.excepthook = logging_excepthook if capture_warnings: logging.captureWarnings(True)
def setup(level=logging.WARNING, outputs=[output.STDERR], program_name=None, capture_warnings=True)
Setup Python logging. This will setup basic handlers for Python logging. :param level: Root log level. :param outputs: Iterable of outputs to log to. :param program_name: The name of the program. Auto-detected if not set. :param capture_warnings: Capture warnings from the `warnings' module.
2.34559
2.589242
0.905899
for logger, level in loggers_and_log_levels: if isinstance(level, str): level = level.upper() logging.getLogger(logger).setLevel(level)
def set_default_log_levels(loggers_and_log_levels)
Set default log levels for some loggers. :param loggers_and_log_levels: List of tuple (logger name, level).
2.207919
2.734063
0.80756
swag_opts = {} if ctx.type == 'file': swag_opts = { 'swag.type': 'file', 'swag.data_dir': ctx.data_dir, 'swag.data_file': ctx.data_file } elif ctx.type == 's3': swag_opts = { 'swag.type': 's3', 'swag.bucket_name': ctx.bucket_name, 'swag.data_file': ctx.data_file, 'swag.region': ctx.region } elif ctx.type == 'dynamodb': swag_opts = { 'swag.type': 'dynamodb', 'swag.region': ctx.region } return SWAGManager(**parse_swag_config_options(swag_opts))
def create_swag_from_ctx(ctx)
Creates SWAG client from the current context.
2.044177
1.991229
1.02659
if not ctx.file: ctx.data_file = data_file if not ctx.data_dir: ctx.data_dir = data_dir ctx.type = 'file'
def file(ctx, data_dir, data_file)
Use the File SWAG Backend
3.51649
3.2785
1.072591
if not ctx.data_file: ctx.data_file = data_file if not ctx.bucket_name: ctx.bucket_name = bucket_name if not ctx.region: ctx.region = region ctx.type = 's3'
def s3(ctx, bucket_name, data_file, region)
Use the S3 SWAG backend.
2.281693
2.278301
1.001489
if ctx.namespace != 'accounts': click.echo( click.style('Only account data is available for listing.', fg='red') ) return swag = create_swag_from_ctx(ctx) accounts = swag.get_all() _table = [[result['name'], result.get('id')] for result in accounts] click.echo( tabulate(_table, headers=["Account Name", "Account Number"]) )
def list(ctx)
List SWAG account info.
5.339768
4.67078
1.143228
swag = create_swag_from_ctx(ctx) accounts = swag.get_service_enabled(name) _table = [[result['name'], result.get('id')] for result in accounts] click.echo( tabulate(_table, headers=["Account Name", "Account Number"]) )
def list_service(ctx, name)
Retrieve accounts pertaining to named service.
5.894555
5.120251
1.151224
if ctx.type == 'file': if ctx.data_file: file_path = ctx.data_file else: file_path = os.path.join(ctx.data_file, ctx.namespace + '.json') # todo make this more like alemebic and determine/load versions automatically with open(file_path, 'r') as f: data = json.loads(f.read()) data = run_migration(data, start_version, end_version) with open(file_path, 'w') as f: f.write(json.dumps(data))
def migrate(ctx, start_version, end_version)
Transition from one SWAG schema to another.
4.053816
4.010408
1.010824
data = [] if ctx.type == 'file': if ctx.data_file: file_path = ctx.data_file else: file_path = os.path.join(ctx.data_dir, ctx.namespace + '.json') with open(file_path, 'r') as f: data = json.loads(f.read()) swag_opts = { 'swag.type': 'dynamodb' } swag = SWAGManager(**parse_swag_config_options(swag_opts)) for item in data: time.sleep(2) swag.create(item, dry_run=ctx.dry_run)
def propagate(ctx)
Transfers SWAG data from one backend to another
3.860934
3.538641
1.091078
swag = create_swag_from_ctx(ctx) data = json.loads(data.read()) for account in data: swag.create(account, dry_run=ctx.dry_run)
def create(ctx, data)
Create a new SWAG item.
6.227707
5.389903
1.15544
enabled = False if disabled else True swag = create_swag_from_ctx(ctx) accounts = swag.get_all(search_filter=path) log.debug('Searching for accounts. Found: {} JMESPath: `{}`'.format(len(accounts), path)) for a in accounts: try: if not swag.get_service(name, search_filter="[?id=='{id}']".format(id=a['id'])): log.info('Found an account to update. AccountName: {name} AccountNumber: {number}'.format(name=a['name'], number=a['id'])) status = [] for region in regions: status.append( { 'enabled': enabled, 'region': region } ) a['services'].append( { 'name': name, 'status': status } ) swag.update(a, dry_run=ctx.dry_run) except InvalidSWAGDataException as e: log.warning('Found a data quality issue. AccountName: {name} AccountNumber: {number}'.format(name=a['name'], number=a['id'])) log.info('Service has been deployed to all matching accounts.')
def deploy_service(ctx, path, name, regions, disabled)
Deploys a new service JSON to multiple accounts. NAME is the service name you wish to deploy.
4.232579
4.072337
1.039349
swag = create_swag_from_ctx(ctx) for k, v in json.loads(data.read()).items(): for account in v['accounts']: data = { 'description': 'This is an AWS owned account used for {}'.format(k), 'id': account['account_id'], 'contacts': [], 'owner': 'aws', 'provider': 'aws', 'sensitive': False, 'email': '[email protected]', 'name': k + '-' + account['region'] } click.echo(click.style( 'Seeded Account. AccountName: {}'.format(data['name']), fg='green') ) swag.create(data, dry_run=ctx.dry_run)
def seed_aws_data(ctx, data)
Seeds SWAG from a list of known AWS accounts.
5.648676
5.337643
1.058272
swag = create_swag_from_ctx(ctx) accounts = swag.get_all() _ids = [result.get('id') for result in accounts] client = boto3.client('organizations') paginator = client.get_paginator('list_accounts') response_iterator = paginator.paginate() count = 0 for response in response_iterator: for account in response['Accounts']: if account['Id'] in _ids: click.echo(click.style( 'Ignoring Duplicate Account. AccountId: {} already exists in SWAG'.format(account['Id']), fg='yellow') ) continue if account['Status'] == 'SUSPENDED': status = 'deprecated' else: status = 'created' data = { 'id': account['Id'], 'name': account['Name'], 'description': 'Account imported from AWS organization.', 'email': account['Email'], 'owner': owner, 'provider': 'aws', 'contacts': [], 'sensitive': False, 'status': [{'region': 'all', 'status': status}] } click.echo(click.style( 'Seeded Account. AccountName: {}'.format(data['name']), fg='green') ) count += 1 swag.create(data, dry_run=ctx.dry_run) click.echo('Seeded {} accounts to SWAG.'.format(count))
def seed_aws_organization(ctx, owner)
Seeds SWAG from an AWS organziation.
3.136531
3.038494
1.032265
logger.debug('Loading item from s3. Bucket: {bucket} Key: {key}'.format( bucket=bucket, key=data_file )) # If the file doesn't exist, then return an empty dict: try: data = _get_from_s3(client, bucket, data_file) except ClientError as ce: if ce.response['Error']['Code'] == 'NoSuchKey': return {} else: raise ce if sys.version_info > (3,): data = data.decode('utf-8') return json.loads(data)
def load_file(client, bucket, data_file)
Tries to load JSON data from S3.
2.725006
2.565884
1.062014
logger.debug('Writing {number_items} items to s3. Bucket: {bucket} Key: {key}'.format( number_items=len(items), bucket=bucket, key=data_file )) if not dry_run: return _put_to_s3(client, bucket, data_file, json.dumps(items))
def save_file(client, bucket, data_file, items, dry_run=None)
Tries to write JSON data to data file in S3.
2.965835
2.824596
1.050003
logger.debug('Creating new item. Item: {item} Path: {data_file}'.format( item=item, data_file=self.data_file )) items = load_file(self.client, self.bucket_name, self.data_file) items = append_item(self.namespace, self.version, item, items) save_file(self.client, self.bucket_name, self.data_file, items, dry_run=dry_run) return item
def create(self, item, dry_run=None)
Creates a new item in file.
3.412635
3.249219
1.050294
logger.debug('Updating item. Item: {item} Path: {data_file}'.format( item=item, data_file=self.data_file )) self.delete(item, dry_run=dry_run) return self.create(item, dry_run=dry_run)
def update(self, item, dry_run=None)
Updates item info in file.
3.362245
3.107551
1.08196
logger.debug('Fetching items. Path: {data_file}'.format( data_file=self.data_file )) return load_file(self.client, self.bucket_name, self.data_file)
def get_all(self)
Gets all items in file.
6.916444
5.905971
1.171094
logger.debug('Health Check on S3 file for: {namespace}'.format( namespace=self.namespace )) try: self.client.head_object(Bucket=self.bucket_name, Key=self.data_file) return True except ClientError as e: logger.debug('Error encountered with S3. Assume unhealthy')
def health_check(self)
Uses head object to make sure the file exists in S3.
5.518123
4.549799
1.212828
logger.debug('Deleting item. Item: {item} Table: {namespace}'.format( item=item, namespace=self.namespace )) if not dry_run: self.table.delete_item(Key={'id': item['id']}) return item
def delete(self, item, dry_run=None)
Deletes item in file.
4.194571
4.179071
1.003709
logger.debug('Updating item. Item: {item} Table: {namespace}'.format( item=item, namespace=self.namespace )) if not dry_run: self.table.put_item(Item=item) return item
def update(self, item, dry_run=None)
Updates item info in file.
4.660406
4.426467
1.05285
logger.debug('Fetching items. Table: {namespace}'.format( namespace=self.namespace )) rows = [] result = self.table.scan() while True: next_token = result.get('LastEvaluatedKey', None) rows += result['Items'] if next_token: result = self.table.scan(ExclusiveStartKey=next_token) else: break return rows
def get_all(self)
Gets all items in file.
3.477647
3.291455
1.056569
logger.debug('Health Check on Table: {namespace}'.format( namespace=self.namespace )) try: self.get_all() return True except ClientError as e: logger.exception(e) logger.error('Error encountered with Database. Assume unhealthy') return False
def health_check(self)
Gets a single item to determine if Dynamo is functioning.
7.427935
6.193407
1.199329
options = {} for key, val in config.items(): if key.startswith('swag.backend.'): options[key[12:]] = val if key.startswith('swag.'): options[key[5:]] = val if options.get('type') == 's3': return S3OptionsSchema(strict=True).load(options).data elif options.get('type') == 'dynamodb': return DynamoDBOptionsSchema(strict=True).load(options).data else: return FileOptionsSchema(strict=True).load(options).data
def parse_swag_config_options(config)
Ensures that options passed to the backend are valid.
2.244843
2.178895
1.030267
def wrapper(fn): def deprecated_method(*args, **kargs): warnings.warn(message, DeprecationWarning, 2) return fn(*args, **kargs) # TODO: use decorator ? functools.wrapper ? deprecated_method.__name__ = fn.__name__ deprecated_method.__doc__ = "%s\n\n%s" % (message, fn.__doc__) return deprecated_method return wrapper
def deprecated(message)
Deprecated function decorator.
3.001265
2.927637
1.025149
for key in sub_dict.keys(): if key not in dictionary: return False if (type(sub_dict[key]) is not dict) and (sub_dict[key] != dictionary[key]): return False if (type(sub_dict[key]) is dict) and (not is_sub_dict(sub_dict[key], dictionary[key])): return False return True
def is_sub_dict(sub_dict, dictionary)
Legacy filter for determining if a given dict is present.
1.585336
1.563143
1.014198
for account in get_all_accounts(bucket, region, json_path)['accounts']: if 'aws' in account['type']: if account['name'] == account_name: return account elif alias: for a in account['alias']: if a == account_name: return account
def get_by_name(account_name, bucket, region='us-west-2', json_path='accounts.json', alias=None)
Given an account name, attempts to retrieve associated account info.
2.65664
2.737844
0.97034
for account in get_all_accounts(bucket, region, json_path)['accounts']: if 'aws' in account['type']: if account['metadata']['account_number'] == account_number: return account
def get_by_aws_account_number(account_number, bucket, region='us-west-2', json_path='accounts.json')
Given an account number (or ID), attempts to retrieve associated account info.
2.93157
2.993581
0.979285
swag_opts = { 'swag.type': 's3', 'swag.bucket_name': bucket, 'swag.bucket_region': region, 'swag.data_file': json_path, 'swag.schema_version': 1 } swag = SWAGManager(**parse_swag_config_options(swag_opts)) accounts = swag.get_all() accounts = [account for account in accounts['accounts'] if is_sub_dict(filters, account)] return {'accounts': accounts}
def get_all_accounts(bucket, region='us-west-2', json_path='accounts.json', **filters)
Fetches all the accounts from SWAG.
3.77418
3.467073
1.088578
try: with open(data_file, 'r', encoding='utf-8') as f: return json.loads(f.read()) except JSONDecodeError as e: return []
def load_file(data_file)
Tries to load JSON from data file.
2.78169
2.669593
1.04199
if dry_run: return with open(data_file, 'w', encoding='utf-8') as f: if sys.version_info > (3, 0): f.write(json.dumps(data)) else: f.write(json.dumps(data).decode('utf-8'))
def save_file(data_file, data, dry_run=None)
Writes JSON data to data file.
2.002866
1.912265
1.047379
logger.debug('Deleting item. Item: {item} Path: {data_file}'.format( item=item, data_file=self.data_file )) items = load_file(self.data_file) items = remove_item(self.namespace, self.version, item, items) save_file(self.data_file, items, dry_run=dry_run) return item
def delete(self, item, dry_run=None)
Deletes item in file.
3.619984
3.493322
1.036258
logger.debug('Fetching items. Path: {data_file}'.format( data_file=self.data_file )) return load_file(self.data_file)
def get_all(self)
Gets all items in file.
7.790462
6.248349
1.246803
logger.debug('Health Check on file for: {namespace}'.format( namespace=self.namespace )) return os.path.isfile(self.data_file)
def health_check(self)
Checks to make sure the file is there.
10.294732
7.356252
1.399453
if namespace == 'accounts': if version == 2: schema = v2.AccountSchema(strict=True, context=context) return schema.load(item).data elif version == 1: return v1.AccountSchema(strict=True).load(item).data raise InvalidSWAGDataException('Schema version is not supported. Version: {}'.format(version)) raise InvalidSWAGDataException('Namespace not supported. Namespace: {}'.format(namespace))
def validate(item, namespace='accounts', version=2, context=None)
Validate item against version schema. Args: item: data object namespace: backend namespace version: schema version context: schema context object
3.328918
3.399098
0.979354
self.version = kwargs['schema_version'] self.namespace = kwargs['namespace'] self.backend = get(kwargs['type'])(*args, **kwargs) self.context = kwargs.pop('schema_context', {})
def configure(self, *args, **kwargs)
Configures a SWAG manager. Overrides existing configuration.
6.883242
6.97028
0.987513
return self.backend.create(validate(item, version=self.version, context=self.context), dry_run=dry_run)
def create(self, item, dry_run=None)
Create a new item in backend.
6.506313
5.72955
1.135571
return self.backend.delete(item, dry_run=dry_run)
def delete(self, item, dry_run=None)
Delete an item in backend.
4.070331
3.40309
1.196069
return self.backend.update(validate(item, version=self.version, context=self.context), dry_run=dry_run)
def update(self, item, dry_run=None)
Update an item in backend.
6.668077
5.990669
1.113077
items = self.backend.get_all() if not items: if self.version == 1: return {self.namespace: []} return [] if search_filter: items = jmespath.search(search_filter, items) return items
def get_all(self, search_filter=None)
Fetch all data from backend.
4.250572
3.996511
1.063571
if not accounts_list: accounts = self.get_all(search_filter=search_filter) else: accounts = accounts_list if self.version == 1: accounts = accounts['accounts'] enabled = [] for account in accounts: if self.version == 1: account_filter = "accounts[?id=='{id}']".format(id=account['id']) else: account_filter = "[?id=='{id}']".format(id=account['id']) service = self.get_service(name, search_filter=account_filter) if self.version == 1: if service: service = service['enabled'] # no region information available in v1 else: if not region: service_filter = "status[?enabled]" else: service_filter = "status[?(region=='{region}' || region=='all') && enabled]".format(region=region) service = jmespath.search(service_filter, service) if service: enabled.append(account) return enabled
def get_service_enabled(self, name, accounts_list=None, search_filter=None, region=None)
Get a list of accounts where a service has been enabled.
2.72645
2.644813
1.030867
if self.version == 1: service_filter = "service.{name}".format(name=name) return jmespath.search(service_filter, self.get(search_filter)) else: service_filter = "services[?name=='{}']".format(name) return one(jmespath.search(service_filter, self.get(search_filter)))
def get_service(self, name, search_filter)
Fetch service metadata.
2.94136
2.919153
1.007607
service_filter = "services[?name=='{}'].metadata.name".format(name) return one(jmespath.search(service_filter, self.get(search_filter)))
def get_service_name(self, name, search_filter)
Fetch account name as referenced by a particular service.
7.048717
6.506659
1.083308
search_filter = "[?name=='{}']".format(name) if alias: if self.version == 1: search_filter = "accounts[?name=='{name}' || contains(alias, '{name}')]".format(name=name) elif self.version == 2: search_filter = "[?name=='{name}' || contains(aliases, '{name}')]".format(name=name) return self.get_all(search_filter)
def get_by_name(self, name, alias=None)
Fetch all accounts with name specified, optionally include aliases.
3.545602
3.053985
1.160976
items = [] if version_start == 1 and version_end == 2: for item in data['accounts']: items.append(v2.upgrade(item)) if version_start == 2 and version_end == 1: for item in data: items.append(v2.downgrade(item)) items = {'accounts': items} return items
def run_migration(data, version_start, version_end)
Runs migration against a data set.
3.283743
3.239978
1.013508
environ = 'test' if 'prod' in account['tags']: environ = 'prod' owner = 'netflix' if not account['ours']: owner = 'third-party' services = [] if account['metadata'].get('s3_name'): services.append( dict( name='s3', metadata=dict( name=account['metadata']['s3_name'] ), status=[ dict( region='all', enabled=True ) ] ) ) if account['metadata'].get('cloudtrail_index'): services.append( dict( name='cloudtrail', metadata=dict( esIndex=account['metadata']['cloudtrail_index'], kibanaUrl=account['metadata']['cloudtrail_kibana_url'] ), status=[ dict( region='all', enabled=True ) ] ) ) if account.get('bastion'): services.append( dict( name='bastion', metadata=dict( hostname=account['bastion'] ), status=[ dict( region='all', enabled=True ) ] ) ) for service in account['services'].keys(): s = dict( name=service, status=[ dict( region='all', enabled=account['services'][service].get('enabled', True) ) ] ) if service == 'spinnaker': s['metadata'] = {'name': account['services'][service]['name']} if service == 'lazyfalcon': if account['services'][service].get('owner'): s['metadata'] = {'owner': account['services'][service]['owner']} if service == 'titus': s['metadata'] = {'stacks': account['services'][service]['stacks']} services.append(s) if account['metadata'].get('project_id'): item_id = account['metadata']['project_id'] elif account['metadata'].get('account_number'): item_id = account['metadata']['account_number'] else: raise Exception('No id found, are you sure this is in v1 swag format.') status = [] if account['type'] == 'aws': status = [ { 'region': 'us-east-1', 'status': 'ready' }, { 'region': 'us-west-2', 'status': 'ready' }, { 'region': 'eu-west-1', 'status': 'ready' }, { 'region': 'us-east-2', 'status': 'in-active' }, { 'region': 'us-west-1', 'status': 'in-active' }, { 'region': 'ca-central-1', 'status': 'in-active' }, { 'region': 'ap-south-1', 'status': 'in-active' }, { 'region': 'ap-northeast-2', 'status': 'in-active' }, { 'region': 'ap-northeast-1', 'status': 'in-active' }, { 'region': 'ap-southeast-1', 'status': 'in-active' }, { 'region': 'ap-southeast-2', 'status': 'in-active' }, { 'region': 'eu-west-2', 'status': 'in-active' }, { 'region': 'eu-central-1', 'status': 'in-active' }, { 'region': 'sa-east-1', 'status': 'in-active' }, ] return dict( id=item_id, email=account['metadata'].get('email'), name=account['name'], contacts=account['owners'], provider=account['type'], status=status, tags=list(set(account['tags'])), environment=environ, description=account['description'], sensitive=account['cmc_required'], owner=owner, aliases=account['alias'], services=services, account_status=account['account_status'] )
def upgrade(account)
Transforms data from a v1 format to a v2 format
2.135894
2.116345
1.009237
d_account = dict(schema_version=1, metadata={'email': account['email']}, tags=list(set([account['environment']] + account.get('tags', [])))) v1_services = {} for service in account.get('services', []): if service['name'] == 's3': if service['metadata'].get('name'): d_account['metadata']['s3_name'] = service['metadata']['name'] elif service['name'] == 'cloudtrail': d_account['metadata']['cloudtrail_index'] = service['metadata']['esIndex'] d_account['metadata']['cloudtrail_kibana_url'] = service['metadata']['kibanaUrl'] elif service['name'] == 'bastion': d_account['bastion'] = service['metadata']['hostname'] elif service['name'] == 'titus': v1_services['titus'] = { 'stacks': service['metadata']['stacks'], 'enabled': service['status'][0]['enabled'] } elif service['name'] == 'spinnaker': v1_services['spinnaker'] = { 'name': service['metadata'].get('name', account["name"]), 'enabled': service['status'][0]['enabled'] } elif service['name'] == 'awwwdit': v1_services['awwwdit'] = { 'enabled': service['status'][0]['enabled'] } elif service['name'] == 'security_monkey': v1_services['security_monkey'] = { 'enabled': service['status'][0]['enabled'] } elif service['name'] == 'poseidon': v1_services['poseidon'] = { 'enabled': service['status'][0]['enabled'] } elif service['name'] == 'rolliepollie': v1_services['rolliepollie'] = { 'enabled': service['status'][0]['enabled'] } elif service['name'] == 'lazyfalcon': owner = None if service.get('metadata'): if service['metadata'].get('owner'): owner = service['metadata']['owner'] v1_services['lazyfalcon'] = { 'enabled': service['status'][0]['enabled'], 'owner': owner } if account['provider'] == 'aws': d_account['metadata']['account_number'] = account['id'] elif account['provider'] == 'gcp': d_account['metadata']['project_id'] = account['id'] d_account['id'] = account['provider'] + '-' + account['id'] d_account['cmc_required'] = account['sensitive'] d_account['name'] = account['name'] d_account['alias'] = account['aliases'] d_account['description'] = account['description'] d_account['owners'] = account['contacts'] d_account['type'] = account['provider'] d_account['ours'] = True if account['owner'] == 'netflix' else False d_account['netflix'] = True if account['owner'] == 'netflix' else False d_account['services'] = v1_services d_account['account_status'] = account['account_status'] return d_account
def downgrade(account)
Transforms data from v2 format to a v1 format
2.515836
2.459906
1.022737
fields_to_validate = ['type', 'environment', 'owner'] for field in fields_to_validate: value = data.get(field) allowed_values = self.context.get(field) if allowed_values and value not in allowed_values: raise ValidationError('Must be one of {}'.format(allowed_values), field_names=field)
def validate_type(self, data)
Performs field validation against the schema context if values have been provided to SWAGManager via the swag.schema_context config object. If the schema context for a given field is empty, then we assume any value is valid for the given schema field.
3.40011
3.136919
1.083901
deleted_status = 'deleted' region_status = data.get('status') account_status = data.get('account_status') for region in region_status: if region['status'] != deleted_status and account_status == deleted_status: raise ValidationError('Account Status cannot be "deleted" if a region is not "deleted"')
def validate_account_status(self, data)
Performs field validation for account_status. If any region is not deleted, account_status cannot be deleted
3.825084
3.089755
1.237989
region_schema = RegionSchema() supplied_regions = data.get('regions', {}) for region in supplied_regions.keys(): result = region_schema.validate(supplied_regions[region]) if len(result.keys()) > 0: raise ValidationError(result)
def validate_regions_schema(self, data)
Performs field validation for regions. This should be a dict with region names as the key and RegionSchema as the value
3.045683
2.62948
1.158284
kwargs = {} if coord.units.is_time_reference(): kwargs['value_format'] = get_date_format(coord) else: kwargs['unit'] = str(coord.units) return Dimension(coord.name(), **kwargs)
def coord_to_dimension(coord)
Converts an iris coordinate to a HoloViews dimension.
4.559172
3.746581
1.216889
import iris order = {'T': -2, 'Z': -1, 'X': 1, 'Y': 2} axis = iris.util.guess_coord_axis(coord) return (order.get(axis, 0), coord and coord.name())
def sort_coords(coord)
Sorts a list of DimCoords trying to ensure that dates and pressure levels appear first and the longitude and latitude appear last in the correct order.
5.079932
4.784752
1.061692
dim = dataset.get_dimension(dim, strict=True) if dim in dataset.vdims: coord_names = [c.name() for c in dataset.data.dim_coords] data = dataset.data.copy().data data = cls.canonicalize(dataset, data, coord_names) return data.T.flatten() if flat else data elif expanded: data = cls.coords(dataset, dim.name, expanded=True) return data.T.flatten() if flat else data else: return cls.coords(dataset, dim.name, ordered=True)
def values(cls, dataset, dim, expanded=True, flat=True, compute=True)
Returns an array of the values along the supplied dimension.
3.713135
3.677017
1.009823
import iris if not isinstance(dims, list): dims = [dims] dims = [dataset.get_dimension(d, strict=True) for d in dims] constraints = [d.name for d in dims] slice_dims = [d for d in dataset.kdims if d not in dims] # Update the kwargs appropriately for Element group types group_kwargs = {} group_type = dict if group_type == 'raw' else group_type if issubclass(group_type, Element): group_kwargs.update(util.get_param_values(dataset)) group_kwargs['kdims'] = slice_dims group_kwargs.update(kwargs) drop_dim = any(d not in group_kwargs['kdims'] for d in slice_dims) unique_coords = product(*[cls.values(dataset, d, expanded=False) for d in dims]) data = [] for key in unique_coords: constraint = iris.Constraint(**dict(zip(constraints, key))) extracted = dataset.data.extract(constraint) if drop_dim: extracted = group_type(extracted, kdims=slice_dims, vdims=dataset.vdims).columns() cube = group_type(extracted, **group_kwargs) data.append((key, cube)) if issubclass(container_type, NdMapping): with item_check(False), sorted_context(False): return container_type(data, kdims=dims) else: return container_type(data)
def groupby(cls, dataset, dims, container_type=HoloMap, group_type=None, **kwargs)
Groups the data by one or more dimensions returning a container indexed by the grouped dimensions containing slices of the cube wrapped in the group_type. This makes it very easy to break up a high-dimensional dataset into smaller viewable chunks.
3.864412
3.936878
0.981593
import iris from iris.experimental.equalise_cubes import equalise_attributes cubes = [] for c, cube in datasets.items(): cube = cube.copy() cube.add_aux_coord(iris.coords.DimCoord([c], var_name=dim.name)) cubes.append(cube) cubes = iris.cube.CubeList(cubes) equalise_attributes(cubes) return cubes.merge_cube()
def concat_dim(cls, datasets, dim, vdims)
Concatenates datasets along one dimension
2.475118
2.539071
0.974812
dim = dataset.get_dimension(dimension, strict=True) values = dataset.dimension_values(dim.name, False) return (np.nanmin(values), np.nanmax(values))
def range(cls, dataset, dimension)
Computes the range along a particular dimension.
3.453307
3.1659
1.090782
new_dataset = dataset.data.copy() for name, new_dim in dimensions.items(): if name == new_dataset.name(): new_dataset.rename(new_dim.name) for coord in new_dataset.dim_coords: if name == coord.name(): coord.rename(new_dim.name) return new_dataset
def redim(cls, dataset, dimensions)
Rename coords on the Cube.
3.26163
2.852873
1.143279
return np.product([len(d.points) for d in dataset.data.coords(dim_coords=True)], dtype=np.intp)
def length(cls, dataset)
Returns the total number of samples in the dataset.
9.589006
9.10297
1.053393
if not vdim: raise Exception("Cannot add key dimension to a dense representation.") raise NotImplementedError
def add_dimension(cls, columns, dimension, dim_pos, values, vdim)
Adding value dimensions not currently supported by iris interface. Adding key dimensions not possible on dense interfaces.
23.55876
9.202007
2.560176
import iris def get_slicer(start, end): def slicer(cell): return start <= cell.point < end return slicer constraint_kwargs = {} for dim, constraint in selection.items(): if isinstance(constraint, slice): constraint = (constraint.start, constraint.stop) if isinstance(constraint, tuple): if constraint == (None, None): continue constraint = get_slicer(*constraint) dim = dataset.get_dimension(dim, strict=True) constraint_kwargs[dim.name] = constraint return iris.Constraint(**constraint_kwargs)
def select_to_constraint(cls, dataset, selection)
Transform a selection dictionary to an iris Constraint.
3.148003
2.956843
1.06465
import iris constraint = cls.select_to_constraint(dataset, selection) pre_dim_coords = [c.name() for c in dataset.data.dim_coords] indexed = cls.indexed(dataset, selection) extracted = dataset.data.extract(constraint) if indexed and not extracted.dim_coords: return extracted.data.item() post_dim_coords = [c.name() for c in extracted.dim_coords] dropped = [c for c in pre_dim_coords if c not in post_dim_coords] for d in dropped: extracted = iris.util.new_axis(extracted, d) return extracted
def select(cls, dataset, selection_mask=None, **selection)
Apply a selection to the data.
3.989912
3.869428
1.031138
geotype = getattr(gv_element, type(element).__name__, None) if crs is None or geotype is None or isinstance(element, _Element): return element return geotype(element, crs=crs)
def convert_to_geotype(element, crs=None)
Converts a HoloViews element type to the equivalent GeoViews element if given a coordinate reference system.
4.838383
4.3176
1.120619
crss = [crs for crs in element.traverse(lambda x: x.crs, [_Element]) if crs is not None] if not crss: return {} crs = crss[0] if any(crs != ocrs for ocrs in crss[1:]): raise ValueError('Cannot %s Elements in different ' 'coordinate reference systems.' % type(op).__name__) return {'crs': crs}
def find_crs(op, element)
Traverses the supplied object looking for coordinate reference systems (crs). If multiple clashing reference systems are found it will throw an error.
4.951342
4.861199
1.018543
return element.map(lambda x: convert_to_geotype(x, kwargs.get('crs')), Element)
def add_crs(op, element, **kwargs)
Converts any elements in the input to their equivalent geotypes if given a coordinate reference system.
13.727289
9.112581
1.506411
if isinstance(element, (Overlay, NdOverlay)): return any(element.traverse(is_geographic, [_Element])) if kdims: kdims = [element.get_dimension(d) for d in kdims] else: kdims = element.kdims if len(kdims) != 2 and not isinstance(element, (Graph, Nodes)): return False if isinstance(element.data, geographic_types) or isinstance(element, (WMTS, Feature)): return True elif isinstance(element, _Element): return kdims == element.kdims and element.crs else: return False
def is_geographic(element, kdims=None)
Utility to determine whether the supplied element optionally a subset of its key dimensions represent a geographic coordinate system.
4.420888
4.676623
0.945316
feature = self.data if scale is not None: feature = feature.with_scale(scale) if bounds: extent = (bounds[0], bounds[2], bounds[1], bounds[3]) else: extent = None geoms = [g for g in feature.intersecting_geometries(extent) if g is not None] if not as_element: return geoms elif not geoms or 'Polygon' in geoms[0].geom_type: return Polygons(geoms, crs=feature.crs) elif 'Point' in geoms[0].geom_type: return Points(geoms, crs=feature.crs) else: return Path(geoms, crs=feature.crs)
def geoms(self, scale=None, bounds=None, as_element=True)
Returns the geometries held by the Feature. Parameters ---------- scale: str Scale of the geometry to return expressed as string. Available scales depends on the Feature type. NaturalEarthFeature: '10m', '50m', '110m' GSHHSFeature: 'auto', 'coarse', 'low', 'intermediate', 'high', 'full' bounds: tuple Tuple of a bounding region to query for geometries in as_element: boolean Whether to wrap the geometries in an element Returns ------- geometries: Polygons/Path Polygons or Path object wrapping around returned geometries
2.58093
2.616573
0.986378