code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
edgepaths = super(Graph, self).edgepaths
edgepaths.crs = self.crs
return edgepaths | def edgepaths(self) | Returns the fixed EdgePaths or computes direct connections
between supplied nodes. | 7.074056 | 5.901814 | 1.198624 |
edgepaths = super(TriMesh, self).edgepaths
edgepaths.crs = self.crs
return edgepaths | def edgepaths(self) | Returns the fixed EdgePaths or computes direct connections
between supplied nodes. | 7.514316 | 6.962255 | 1.079293 |
reader = Reader(shapefile)
return cls.from_records(reader.records(), *args, **kwargs) | def from_shapefile(cls, shapefile, *args, **kwargs) | Loads a shapefile from disk and optionally merges
it with a dataset. See ``from_records`` for full
signature.
Parameters
----------
records: list of cartopy.io.shapereader.Record
Iterator containing Records.
dataset: holoviews.Dataset
Any HoloViews Dataset type.
on: str or list or dict
A mapping between the attribute names in the records and the
dimensions in the dataset.
value: str
The value dimension in the dataset the values will be drawn
from.
index: str or list
One or more dimensions in the dataset the Shapes will be
indexed by.
drop_missing: boolean
Whether to drop shapes which are missing from the provides
dataset.
Returns
-------
shapes: Polygons or Path object
A Polygons or Path object containing the geometries | 3.894839 | 10.101747 | 0.385561 |
if dataset is not None and not on:
raise ValueError('To merge dataset with shapes mapping '
'must define attribute(s) to merge on.')
if util.pd and isinstance(dataset, util.pd.DataFrame):
dataset = Dataset(dataset)
if not isinstance(on, (dict, list)):
on = [on]
if on and not isinstance(on, dict):
on = {o: o for o in on}
if not isinstance(index, list):
index = [index]
kdims = []
for ind in index:
if dataset and dataset.get_dimension(ind):
dim = dataset.get_dimension(ind)
else:
dim = Dimension(ind)
kdims.append(dim)
ddims = []
if dataset:
if value:
vdims = [dataset.get_dimension(value)]
else:
vdims = dataset.vdims
ddims = dataset.dimensions()
if None in vdims:
raise ValueError('Value dimension %s not found '
'in dataset dimensions %s' % (value, ddims) )
else:
vdims = []
data = []
for i, rec in enumerate(records):
geom = {}
if dataset:
selection = {dim: rec.attributes.get(attr, None)
for attr, dim in on.items()}
row = dataset.select(**selection)
if len(row):
values = {k: v[0] for k, v in row.iloc[0].columns().items()}
elif drop_missing:
continue
else:
values = {vd.name: np.nan for vd in vdims}
geom.update(values)
if index:
for kdim in kdims:
if kdim in ddims and len(row):
k = row[kdim.name][0]
elif kdim.name in rec.attributes:
k = rec.attributes[kdim.name]
else:
k = None
geom[kdim.name] = k
geom['geometry'] = rec.geometry
data.append(geom)
if element is not None:
pass
elif data and data[0]:
if isinstance(data[0]['geometry'], poly_types):
element = Polygons
else:
element = Path
else:
element = Polygons
return element(data, vdims=kdims+vdims, **kwargs).opts(color=value) | def from_records(cls, records, dataset=None, on=None, value=None,
index=[], drop_missing=False, element=None, **kwargs) | Load data from a collection of `cartopy.io.shapereader.Record`
objects and optionally merge it with a dataset to assign
values to each polygon and form a chloropleth. Supplying just
records will return an NdOverlayof Shape Elements with a
numeric index. If a dataset is supplied, a mapping between the
attribute names in the records and the dimension names in the
dataset must be supplied. The values assigned to each shape
file can then be drawn from the dataset by supplying a
``value`` and keys the Shapes are indexed by specifying one or
index dimensions.
Parameters
----------
records: list of cartopy.io.shapereader.Record
Iterator containing Records.
dataset: holoviews.Dataset
Any HoloViews Dataset type.
on: str or list or dict
A mapping between the attribute names in the records and the
dimensions in the dataset.
value: str
The value dimension in the dataset the values will be drawn
from.
index: str or list
One or more dimensions in the dataset the Shapes will be
indexed by.
drop_missing: boolean
Whether to drop shapes which are missing from the provides
dataset.
Returns
-------
shapes: Polygons or Path object
A Polygons or Path object containing the geometries | 3.119084 | 2.898668 | 1.07604 |
plot = plot or cb.plot
if isinstance(plot, GeoOverlayPlot):
plots = [get_cb_plot(cb, p) for p in plot.subplots.values()]
plots = [p for p in plots if any(s in cb.streams and getattr(s, '_triggering', False)
for s in p.streams)]
if plots:
plot = plots[0]
return plot | def get_cb_plot(cb, plot=None) | Finds the subplot with the corresponding stream. | 4.201634 | 3.676056 | 1.142973 |
if not all(a in msg for a in attributes):
return True
plot = get_cb_plot(cb)
return (not getattr(plot, 'geographic', False) or
not hasattr(plot.current_frame, 'crs')) | def skip(cb, msg, attributes) | Skips applying transforms if data is not geographic. | 6.916313 | 5.864422 | 1.179368 |
if skip(cb, msg, attributes):
return msg
plot = get_cb_plot(cb)
x0, x1 = msg.get('x_range', (0, 1000))
y0, y1 = msg.get('y_range', (0, 1000))
extents = x0, y0, x1, y1
x0, y0, x1, y1 = project_extents(extents, plot.projection,
plot.current_frame.crs)
coords = {'x_range': (x0, x1), 'y_range': (y0, y1)}
return {k: v for k, v in coords.items() if k in attributes} | def project_ranges(cb, msg, attributes) | Projects ranges supplied by a callback. | 2.981854 | 3.033801 | 0.982877 |
if skip(cb, msg, attributes): return msg
plot = get_cb_plot(cb)
x, y = msg.get('x', 0), msg.get('y', 0)
crs = plot.current_frame.crs
coordinates = crs.transform_points(plot.projection, np.array([x]), np.array([y]))
msg['x'], msg['y'] = coordinates[0, :2]
return {k: v for k, v in msg.items() if k in attributes} | def project_point(cb, msg, attributes=('x', 'y')) | Projects a single point supplied by a callback | 3.237332 | 3.303154 | 0.980073 |
stream = cb.streams[0]
old_data = stream.data
stream.update(data=msg['data'])
element = stream.element
stream.update(data=old_data)
proj = cb.plot.projection
if not isinstance(element, _Element) or element.crs == proj:
return None
crs = element.crs
element.crs = proj
return project(element, projection=crs) | def project_drawn(cb, msg) | Projects a drawn element to the declared coordinate system | 6.116119 | 5.991758 | 1.020755 |
deleted = []
for f in cls._files:
try:
os.remove(f)
deleted.append(f)
except FileNotFoundError:
pass
print('Deleted %d weight files' % len(deleted))
cls._files = [] | def clean_weight_files(cls) | Cleans existing weight files. | 2.940858 | 2.810874 | 1.046243 |
result = None
if hasattr(el, 'crs'):
result = (int(el._auxiliary_component), el.crs)
return result | def _get_projection(el) | Get coordinate reference system from non-auxiliary elements.
Return value is a tuple of a precedence integer and the projection,
to allow non-auxiliary components to take precedence. | 10.23632 | 5.38085 | 1.902361 |
proj = self.projection
if self.global_extent and range_type in ('combined', 'data'):
(x0, x1), (y0, y1) = proj.x_limits, proj.y_limits
return (x0, y0, x1, y1)
extents = super(ProjectionPlot, self).get_extents(element, ranges, range_type)
if not getattr(element, 'crs', None) or not self.geographic:
return extents
elif any(e is None or not np.isfinite(e) for e in extents):
extents = None
else:
extents = project_extents(extents, element.crs, proj)
return (np.NaN,)*4 if not extents else extents | def get_extents(self, element, ranges, range_type='combined') | Subclasses the get_extents method using the GeoAxes
set_extent method to project the extents to the
Elements coordinate reference system. | 3.044012 | 2.922024 | 1.041748 |
lons = lons.astype(np.float64)
return ((lons - base + period * 2) % period) + base | def wrap_lons(lons, base, period) | Wrap longitude values into the range between base and base+period. | 4.113277 | 3.933217 | 1.045779 |
x, y = coord_names
geom = geom_dict['geometry']
new_dict = {k: v for k, v in geom_dict.items() if k != 'geometry'}
array = geom_to_array(geom)
new_dict[x] = array[:, 0]
new_dict[y] = array[:, 1]
if geom.geom_type == 'Polygon':
holes = []
for interior in geom.interiors:
holes.append(geom_to_array(interior))
if holes:
new_dict['holes'] = [holes]
elif geom.geom_type == 'MultiPolygon':
outer_holes = []
for g in geom:
holes = []
for interior in g.interiors:
holes.append(geom_to_array(interior))
outer_holes.append(holes)
if any(hs for hs in outer_holes):
new_dict['holes'] = outer_holes
return new_dict | def geom_dict_to_array_dict(geom_dict, coord_names=['Longitude', 'Latitude']) | Converts a dictionary containing an geometry key to a dictionary
of x- and y-coordinate arrays and if present a list-of-lists of
hole array. | 1.925053 | 1.805533 | 1.066196 |
interface = polygons.interface.datatype
if interface == 'geodataframe':
return [row.to_dict() for _, row in polygons.data.iterrows()]
elif interface == 'geom_dictionary':
return polygons.data
polys = []
xdim, ydim = polygons.kdims
has_holes = polygons.has_holes
holes = polygons.holes() if has_holes else None
for i, polygon in enumerate(polygons.split(datatype='columns')):
array = np.column_stack([polygon.pop(xdim.name), polygon.pop(ydim.name)])
splits = np.where(np.isnan(array[:, :2].astype('float')).sum(axis=1))[0]
arrays = np.split(array, splits+1) if len(splits) else [array]
invalid = False
subpolys = []
subholes = None
if has_holes:
subholes = [[LinearRing(h) for h in hs] for hs in holes[i]]
for j, arr in enumerate(arrays):
if j != (len(arrays)-1):
arr = arr[:-1] # Drop nan
if len(arr) == 0:
continue
elif len(arr) == 1:
if skip_invalid:
continue
poly = Point(arr[0])
invalid = True
elif len(arr) == 2:
if skip_invalid:
continue
poly = LineString(arr)
invalid = True
elif not len(splits):
poly = Polygon(arr, (subholes[j] if has_holes else []))
else:
poly = Polygon(arr)
hs = [h for h in subholes[j]] if has_holes else []
poly = Polygon(poly.exterior, holes=hs)
subpolys.append(poly)
if invalid:
polys += [dict(polygon, geometry=sp) for sp in subpolys]
continue
elif len(subpolys) == 1:
geom = subpolys[0]
elif subpolys:
geom = MultiPolygon(subpolys)
else:
continue
polygon['geometry'] = geom
polys.append(polygon)
return polys | def polygons_to_geom_dicts(polygons, skip_invalid=True) | Converts a Polygons element into a list of geometry dictionaries,
preserving all value dimensions.
For array conversion the following conventions are applied:
* Any nan separated array are converted into a MultiPolygon
* Any array without nans is converted to a Polygon
* If there are holes associated with a nan separated array
the holes are assigned to the polygons by testing for an
intersection
* If any single array does not have at least three coordinates
it is skipped by default
* If skip_invalid=False and an array has less than three
coordinates it will be converted to a LineString | 2.965796 | 2.970835 | 0.998304 |
interface = path.interface.datatype
if interface == 'geodataframe':
return [row.to_dict() for _, row in path.data.iterrows()]
elif interface == 'geom_dictionary':
return path.data
geoms = []
invalid = False
xdim, ydim = path.kdims
for i, path in enumerate(path.split(datatype='columns')):
array = np.column_stack([path.pop(xdim.name), path.pop(ydim.name)])
splits = np.where(np.isnan(array[:, :2].astype('float')).sum(axis=1))[0]
arrays = np.split(array, splits+1) if len(splits) else [array]
subpaths = []
for j, arr in enumerate(arrays):
if j != (len(arrays)-1):
arr = arr[:-1] # Drop nan
if len(arr) == 0:
continue
elif len(arr) == 1:
if skip_invalid:
continue
g = Point(arr[0])
invalid = True
else:
g = LineString(arr)
subpaths.append(g)
if invalid:
geoms += [dict(path, geometry=sp) for sp in subpaths]
continue
elif len(subpaths) == 1:
geom = subpaths[0]
elif subpaths:
geom = MultiLineString(subpaths)
path['geometry'] = geom
geoms.append(path)
return geoms | def path_to_geom_dicts(path, skip_invalid=True) | Converts a Path element into a list of geometry dictionaries,
preserving all value dimensions. | 3.302156 | 3.268219 | 1.010384 |
if isinstance(geom, sgeom.Polygon) and not geom.exterior.is_ccw:
geom = sgeom.polygon.orient(geom)
return geom | def to_ccw(geom) | Reorients polygon to be wound counter-clockwise. | 3.614331 | 3.499156 | 1.032915 |
if geom.geom_type == 'Point':
return 1
if hasattr(geom, 'exterior'):
geom = geom.exterior
if not geom.geom_type.startswith('Multi') and hasattr(geom, 'array_interface_base'):
return len(geom.array_interface_base['data'])//2
else:
length = 0
for g in geom:
length += geom_length(g)
return length | def geom_length(geom) | Calculates the length of coordinates in a shapely geometry. | 3.086004 | 3.054782 | 1.010221 |
if len(element.vdims) > 1:
xs, ys = (element.dimension_values(i, False, False)
for i in range(2))
zs = np.dstack([element.dimension_values(i, False, False)
for i in range(2, 2+len(element.vdims))])
else:
xs, ys, zs = (element.dimension_values(i, False, False)
for i in range(3))
lon0, lon1 = element.range(0)
if isinstance(element.crs, ccrs._CylindricalProjection) and (lon1 - lon0) == 360:
xs = np.append(xs, xs[0:1] + 360, axis=0)
zs = np.ma.concatenate([zs, zs[:, 0:1]], axis=1)
return xs, ys, zs | def geo_mesh(element) | Get mesh data from a 2D Element ensuring that if the data is
on a cylindrical coordinate system and wraps globally that data
actually wraps around. | 2.664939 | 2.613713 | 1.019599 |
import pyproj
if isinstance(crs, pyproj.Proj):
out = crs
elif isinstance(crs, dict) or isinstance(crs, basestring):
try:
out = pyproj.Proj(crs)
except RuntimeError:
try:
out = pyproj.Proj(init=crs)
except RuntimeError:
out = None
else:
out = None
return out | def check_crs(crs) | Checks if the crs represents a valid grid, projection or ESPG string.
(Code copied from https://github.com/fmaussion/salem)
Examples
--------
>>> p = check_crs('+units=m +init=epsg:26915')
>>> p.srs
'+units=m +init=epsg:26915 '
>>> p = check_crs('wrong')
>>> p is None
True
Returns
-------
A valid crs if possible, otherwise None | 2.308523 | 2.54701 | 0.906366 |
import cartopy.crs as ccrs
try:
from osgeo import osr
has_gdal = True
except ImportError:
has_gdal = False
proj = check_crs(proj)
if proj.is_latlong():
return ccrs.PlateCarree()
srs = proj.srs
if has_gdal:
# this is more robust, as srs could be anything (espg, etc.)
s1 = osr.SpatialReference()
s1.ImportFromProj4(proj.srs)
srs = s1.ExportToProj4()
km_proj = {'lon_0': 'central_longitude',
'lat_0': 'central_latitude',
'x_0': 'false_easting',
'y_0': 'false_northing',
'k': 'scale_factor',
'zone': 'zone',
}
km_globe = {'a': 'semimajor_axis',
'b': 'semiminor_axis',
}
km_std = {'lat_1': 'lat_1',
'lat_2': 'lat_2',
}
kw_proj = dict()
kw_globe = dict()
kw_std = dict()
for s in srs.split('+'):
s = s.split('=')
if len(s) != 2:
continue
k = s[0].strip()
v = s[1].strip()
try:
v = float(v)
except:
pass
if k == 'proj':
if v == 'tmerc':
cl = ccrs.TransverseMercator
if v == 'lcc':
cl = ccrs.LambertConformal
if v == 'merc':
cl = ccrs.Mercator
if v == 'utm':
cl = ccrs.UTM
if k in km_proj:
kw_proj[km_proj[k]] = v
if k in km_globe:
kw_globe[km_globe[k]] = v
if k in km_std:
kw_std[km_std[k]] = v
globe = None
if kw_globe:
globe = ccrs.Globe(**kw_globe)
if kw_std:
kw_proj['standard_parallels'] = (kw_std['lat_1'], kw_std['lat_2'])
# mercatoooor
if cl.__name__ == 'Mercator':
kw_proj.pop('false_easting', None)
kw_proj.pop('false_northing', None)
return cl(globe=globe, **kw_proj) | def proj_to_cartopy(proj) | Converts a pyproj.Proj to a cartopy.crs.Projection
(Code copied from https://github.com/fmaussion/salem)
Parameters
----------
proj: pyproj.Proj
the projection to convert
Returns
-------
a cartopy.crs.Projection object | 1.998262 | 1.989196 | 1.004558 |
try:
import cartopy.crs as ccrs
import geoviews as gv # noqa
import pyproj
except:
raise ImportError('Geographic projection support requires GeoViews and cartopy.')
if crs is None:
return ccrs.PlateCarree()
if isinstance(crs, basestring) and crs.lower().startswith('epsg'):
try:
crs = ccrs.epsg(crs[5:].lstrip().rstrip())
except:
raise ValueError("Could not parse EPSG code as CRS, must be of the format 'EPSG: {code}.'")
elif isinstance(crs, int):
crs = ccrs.epsg(crs)
elif isinstance(crs, (basestring, pyproj.Proj)):
try:
crs = proj_to_cartopy(crs)
except:
raise ValueError("Could not parse EPSG code as CRS, must be of the format 'proj4: {proj4 string}.'")
elif not isinstance(crs, ccrs.CRS):
raise ValueError("Projection must be defined as a EPSG code, proj4 string, cartopy CRS or pyproj.Proj.")
return crs | def process_crs(crs) | Parses cartopy CRS definitions defined in one of a few formats:
1. EPSG codes: Defined as string of the form "EPSG: {code}" or an integer
2. proj.4 string: Defined as string of the form "{proj.4 string}"
3. cartopy.crs.CRS instance
4. None defaults to crs.PlateCaree | 2.856904 | 2.610278 | 1.094483 |
try:
import xarray as xr
except:
raise ImportError('Loading tiffs requires xarray to be installed')
with warnings.catch_warnings():
warnings.filterwarnings('ignore')
da = xr.open_rasterio(filename)
return from_xarray(da, crs, apply_transform, nan_nodata, **kwargs) | def load_tiff(filename, crs=None, apply_transform=False, nan_nodata=False, **kwargs) | Returns an RGB or Image element loaded from a geotiff file.
The data is loaded using xarray and rasterio. If a crs attribute
is present on the loaded data it will attempt to decode it into
a cartopy projection otherwise it will default to a non-geographic
HoloViews element.
Parameters
----------
filename: string
Filename pointing to geotiff file to load
crs: Cartopy CRS or EPSG string (optional)
Overrides CRS inferred from the data
apply_transform: boolean
Whether to apply affine transform if defined on the data
nan_nodata: boolean
If data contains nodata values convert them to NaNs
**kwargs:
Keyword arguments passed to the HoloViews/GeoViews element
Returns
-------
element: Image/RGB/QuadMesh element | 2.629839 | 2.938559 | 0.894942 |
if crs:
kwargs['crs'] = crs
elif hasattr(da, 'crs'):
try:
kwargs['crs'] = process_crs(da.crs)
except:
param.main.warning('Could not decode projection from crs string %r, '
'defaulting to non-geographic element.' % da.crs)
coords = list(da.coords)
if coords not in (['band', 'y', 'x'], ['y', 'x']):
from .element.geo import Dataset, HvDataset
el = Dataset if 'crs' in kwargs else HvDataset
return el(da, **kwargs)
if len(coords) == 2:
y, x = coords
bands = 1
else:
y, x = coords[1:]
bands = len(da.coords[coords[0]])
if apply_transform:
from affine import Affine
transform = Affine.from_gdal(*da.attrs['transform'][:6])
nx, ny = da.sizes[x], da.sizes[y]
xs, ys = np.meshgrid(np.arange(nx)+0.5, np.arange(ny)+0.5) * transform
data = (xs, ys)
else:
xres, yres = da.attrs['res'] if 'res' in da.attrs else (1, 1)
xs = da.coords[x][::-1] if xres < 0 else da.coords[x]
ys = da.coords[y][::-1] if yres < 0 else da.coords[y]
data = (xs, ys)
for b in range(bands):
values = da[b].values
if nan_nodata and da.attrs.get('nodatavals', []):
values = values.astype(float)
for d in da.attrs['nodatavals']:
values[values==d] = np.NaN
data += (values,)
if 'datatype' not in kwargs:
kwargs['datatype'] = ['xarray', 'grid', 'image']
if xs.ndim > 1:
from .element.geo import QuadMesh, HvQuadMesh
el = QuadMesh if 'crs' in kwargs else HvQuadMesh
el = el(data, [x, y], **kwargs)
elif bands < 3:
from .element.geo import Image, HvImage
el = Image if 'crs' in kwargs else HvImage
el = el(data, [x, y], **kwargs)
else:
from .element.geo import RGB, HvRGB
el = RGB if 'crs' in kwargs else HvRGB
vdims = el.vdims[:bands]
el = el(data, [x, y], vdims, **kwargs)
if hasattr(el.data, 'attrs'):
el.data.attrs = da.attrs
return el | def from_xarray(da, crs=None, apply_transform=False, nan_nodata=False, **kwargs) | Returns an RGB or Image element given an xarray DataArray
loaded using xr.open_rasterio.
If a crs attribute is present on the loaded data it will
attempt to decode it into a cartopy projection otherwise it
will default to a non-geographic HoloViews element.
Parameters
----------
da: xarray.DataArray
DataArray to convert to element
crs: Cartopy CRS or EPSG string (optional)
Overrides CRS inferred from the data
apply_transform: boolean
Whether to apply affine transform if defined on the data
nan_nodata: boolean
If data contains nodata values convert them to NaNs
**kwargs:
Keyword arguments passed to the HoloViews/GeoViews element
Returns
-------
element: Image/RGB/QuadMesh element | 2.630765 | 2.527446 | 1.040879 |
if not isinstance(self.handles.get('artist'), GoogleTiles):
self.handles['artist'].remove() | def teardown_handles(self) | If no custom update_handles method is supplied this method
is called to tear down any previous handles before replacing
them. | 16.722113 | 17.011747 | 0.982974 |
for i, g in enumerate(geoms):
if g is geom:
return i | def find_geom(geom, geoms) | Returns the index of a geometry in a list of geometries avoiding
expensive equality checks of `in` operator. | 3.656793 | 3.433084 | 1.065163 |
area_fraction = min(bounds.area/domain.area, 1)
return int(min(round(np.log2(1/area_fraction)), levels)) | def compute_zoom_level(bounds, domain, levels) | Computes a zoom level given a bounds polygon, a polygon of the
overall domain and the number of zoom levels to divide the data
into.
Parameters
----------
bounds: shapely.geometry.Polygon
Polygon representing the area of the current viewport
domain: shapely.geometry.Polygon
Polygon representing the overall bounding region of the data
levels: int
Number of zoom levels to divide the domain into
Returns
-------
zoom_level: int
Integer zoom level | 5.280281 | 6.114902 | 0.86351 |
x0, y0, x1, y1 = bounds
return Polygon([(x0, y0), (x1, y0), (x1, y1), (x0, y1)]) | def bounds_to_poly(bounds) | Constructs a shapely Polygon from the provided bounds tuple.
Parameters
----------
bounds: tuple
Tuple representing the (left, bottom, right, top) coordinates
Returns
-------
polygon: shapely.geometry.Polygon
Shapely Polygon geometry of the bounds | 1.788991 | 2.874707 | 0.622321 |
tile_source = mapping['tile_source']
level = properties.pop('level', 'underlay')
renderer = plot.add_tile(tile_source, level=level)
renderer.alpha = properties.get('alpha', 1)
# Remove save tool
plot.tools = [t for t in plot.tools if not isinstance(t, SaveTool)]
return renderer, tile_source | def _init_glyph(self, plot, mapping, properties) | Returns a Bokeh glyph object. | 4.419827 | 4.147783 | 1.065588 |
try:
plan = json.loads(open(self.args.plan_file_path).read())
return plan_to_assignment(plan)
except IOError:
self.log.exception(
'Given json file {file} not found.'
.format(file=self.args.plan_file_path),
)
raise
except ValueError:
self.log.exception(
'Given json file {file} could not be decoded.'
.format(file=self.args.plan_file_path),
)
raise
except KeyError:
self.log.exception(
'Given json file {file} could not be parsed in desired format.'
.format(file=self.args.plan_file_path),
)
raise | def get_assignment(self) | Parse the given json plan in dict format. | 2.514736 | 2.199722 | 1.143206 |
# encoders / decoders do not maintain ordering currently
# so we need to keep this so we can rebuild order before returning
original_ordering = [(p.topic, p.partition) for p in payloads]
retries = 0
broker = None
while not broker:
try:
broker = self._get_coordinator_for_group(group)
except (GroupCoordinatorNotAvailableError, GroupLoadInProgressError) as e:
if retries == CONSUMER_OFFSET_TOPIC_CREATION_RETRIES:
raise e
time.sleep(CONSUMER_OFFSET_RETRY_INTERVAL_SEC)
retries += 1
# Send the list of request payloads and collect the responses and
# errors
responses = {}
def failed_payloads(payloads):
for payload in payloads:
topic_partition = (str(payload.topic), payload.partition)
responses[topic_partition] = FailedPayloadsError(payload)
host, port, afi = get_ip_port_afi(broker.host)
try:
conn = self._get_conn(host, broker.port, afi)
except ConnectionError:
failed_payloads(payloads)
else:
request = encoder_fn(payloads=payloads)
# decoder_fn=None signal that the server is expected to not
# send a response. This probably only applies to
# ProduceRequest w/ acks = 0
future = conn.send(request)
while not future.is_done:
for r, f in conn.recv():
f.success(r)
if future.failed():
failed_payloads(payloads)
elif not request.expect_response():
failed_payloads(payloads)
else:
for payload_response in decoder_fn(future.value):
topic_partition = (str(payload_response.topic),
payload_response.partition)
responses[topic_partition] = payload_response
# Return responses in the same order as provided
return [responses[tp] for tp in original_ordering] | def _send_consumer_aware_request(self, group, payloads, encoder_fn, decoder_fn) | Send a list of requests to the consumer coordinator for the group
specified using the supplied encode/decode functions. As the payloads
that use consumer-aware requests do not contain the group (e.g.
OffsetFetchRequest), all payloads must be for a single group.
Arguments:
group: the name of the consumer group (str) the payloads are for
payloads: list of object-like entities with topic (str) and
partition (int) attributes; payloads with duplicate
topic+partition are not supported.
encode_fn: a method to encode the list of payloads to a request body,
must accept client_id, correlation_id, and payloads as
keyword arguments
decode_fn: a method to decode a response body into response objects.
The response objects must be object-like and have topic
and partition attributes
Returns:
List of response objects in the same order as the supplied payloads | 4.352613 | 4.348905 | 1.000853 |
with ZK(cluster_config) as zk:
brokers = sorted(list(zk.get_brokers().items()), key=itemgetter(0))
return [(id, data['host']) for id, data in brokers] | def get_broker_list(cluster_config) | Returns a list of brokers in the form [(id: host)]
:param cluster_config: the configuration of the cluster
:type cluster_config: map | 4.512273 | 4.712114 | 0.95759 |
filter_by_set = set(filter_by)
return [(id, host) for id, host in brokers if id in filter_by_set] | def filter_broker_list(brokers, filter_by) | Returns sorted list, a subset of elements from brokers in the form [(id, host)].
Passing empty list for filter_by will return empty list.
:param brokers: list of brokers to filter, assumes the data is in so`rted order
:type brokers: list of (id, host)
:param filter_by: the list of ids of brokers to keep
:type filter_by: list of integers | 3.561453 | 2.98993 | 1.191149 |
session = FuturesSession()
for host in hosts:
url = "http://{host}:{port}/{prefix}/read/{key}".format(
host=host,
port=jolokia_port,
prefix=jolokia_prefix,
key=UNDER_REPL_KEY,
)
yield host, session.get(url) | def generate_requests(hosts, jolokia_port, jolokia_prefix) | Return a generator of requests to fetch the under replicated
partition number from the specified hosts.
:param hosts: list of brokers ip addresses
:type hosts: list of strings
:param jolokia_port: HTTP port for Jolokia
:type jolokia_port: integer
:param jolokia_prefix: HTTP prefix on the server for the Jolokia queries
:type jolokia_prefix: string
:returns: generator of requests | 3.51214 | 3.398395 | 1.03347 |
under_replicated = 0
missing_brokers = 0
for host, request in generate_requests(hosts, jolokia_port, jolokia_prefix):
try:
response = request.result()
if 400 <= response.status_code <= 599:
print("Got status code {0}. Exiting.".format(response.status_code))
sys.exit(1)
json = response.json()
under_replicated += json['value']
except RequestException as e:
print("Broker {0} is down: {1}."
"This maybe because it is starting up".format(host, e), file=sys.stderr)
missing_brokers += 1
except KeyError:
print("Cannot find the key, Kafka is probably still starting up", file=sys.stderr)
missing_brokers += 1
return under_replicated, missing_brokers | def read_cluster_status(hosts, jolokia_port, jolokia_prefix) | Read and return the number of under replicated partitions and
missing brokers from the specified hosts.
:param hosts: list of brokers ip addresses
:type hosts: list of strings
:param jolokia_port: HTTP port for Jolokia
:type jolokia_port: integer
:param jolokia_prefix: HTTP prefix on the server for the Jolokia queries
:type jolokia_prefix: string
:returns: tuple of integers | 3.200999 | 3.067932 | 1.043374 |
print("Will restart the following brokers in {0}:".format(cluster_config.name))
for id, host in brokers:
print(" {0}: {1}".format(id, host)) | def print_brokers(cluster_config, brokers) | Print the list of brokers that will be restarted.
:param cluster_config: the cluster configuration
:type cluster_config: map
:param brokers: the brokers that will be restarted
:type brokers: map of broker ids and host names | 3.995519 | 3.492829 | 1.143921 |
while True:
print("Do you want to restart these brokers? ", end="")
choice = input().lower()
if choice in ['yes', 'y']:
return True
elif choice in ['no', 'n']:
return False
else:
print("Please respond with 'yes' or 'no'") | def ask_confirmation() | Ask for confirmation to the user. Return true if the user confirmed
the execution, false otherwise.
:returns: bool | 2.833099 | 3.049378 | 0.929074 |
_, stdout, stderr = connection.sudo_command(start_command)
if verbose:
report_stdout(host, stdout)
report_stderr(host, stderr) | def start_broker(host, connection, start_command, verbose) | Execute the start | 3.987805 | 4.842483 | 0.823504 |
_, stdout, stderr = connection.sudo_command(stop_command)
if verbose:
report_stdout(host, stdout)
report_stderr(host, stderr) | def stop_broker(host, connection, stop_command, verbose) | Execute the stop | 3.874691 | 4.6792 | 0.828067 |
stable_counter = 0
max_checks = int(math.ceil(unhealthy_time_limit / check_interval))
for i in itertools.count():
partitions, brokers = read_cluster_status(
hosts,
jolokia_port,
jolokia_prefix,
)
if partitions or brokers:
stable_counter = 0
else:
stable_counter += 1
print(
"Under replicated partitions: {p_count}, missing brokers: {b_count} ({stable}/{limit})".format(
p_count=partitions,
b_count=brokers,
stable=stable_counter,
limit=check_count,
))
if stable_counter >= check_count:
print("The cluster is stable")
return
if i >= max_checks:
raise WaitTimeoutException()
time.sleep(check_interval) | def wait_for_stable_cluster(
hosts,
jolokia_port,
jolokia_prefix,
check_interval,
check_count,
unhealthy_time_limit,
) | Block the caller until the cluster can be considered stable.
:param hosts: list of brokers ip addresses
:type hosts: list of strings
:param jolokia_port: HTTP port for Jolokia
:type jolokia_port: integer
:param jolokia_prefix: HTTP prefix on the server for the Jolokia queries
:type jolokia_prefix: string
:param check_interval: the number of seconds it will wait between each check
:type check_interval: integer
:param check_count: the number of times the check should be positive before
restarting the next broker
:type check_count: integer
:param unhealthy_time_limit: the maximum number of seconds it will wait for
the cluster to become stable before exiting with error
:type unhealthy_time_limit: integer | 2.835737 | 3.03534 | 0.93424 |
all_hosts = [b[1] for b in brokers]
for n, host in enumerate(all_hosts[skip:]):
with ssh(host=host, forward_agent=True, sudoable=True, max_attempts=3, max_timeout=2,
ssh_password=ssh_password) as connection:
execute_task(pre_stop_task, host)
wait_for_stable_cluster(
all_hosts,
jolokia_port,
jolokia_prefix,
check_interval,
1 if n == 0 else check_count,
unhealthy_time_limit,
)
print("Stopping {0} ({1}/{2})".format(host, n + 1, len(all_hosts) - skip))
stop_broker(host, connection, stop_command, verbose)
execute_task(post_stop_task, host)
# we open a new SSH connection in case the hostname has a new IP
with ssh(host=host, forward_agent=True, sudoable=True, max_attempts=3, max_timeout=2,
ssh_password=ssh_password) as connection:
print("Starting {0} ({1}/{2})".format(host, n + 1, len(all_hosts) - skip))
start_broker(host, connection, start_command, verbose)
# Wait before terminating the script
wait_for_stable_cluster(
all_hosts,
jolokia_port,
jolokia_prefix,
check_interval,
check_count,
unhealthy_time_limit,
) | def execute_rolling_restart(
brokers,
jolokia_port,
jolokia_prefix,
check_interval,
check_count,
unhealthy_time_limit,
skip,
verbose,
pre_stop_task,
post_stop_task,
start_command,
stop_command,
ssh_password=None
) | Execute the rolling restart on the specified brokers. It checks the
number of under replicated partitions on each broker, using Jolokia.
The check is performed at constant intervals, and a broker will be restarted
when all the brokers are answering and are reporting zero under replicated
partitions.
:param brokers: the brokers that will be restarted
:type brokers: map of broker ids and host names
:param jolokia_port: HTTP port for Jolokia
:type jolokia_port: integer
:param jolokia_prefix: HTTP prefix on the server for the Jolokia queries
:type jolokia_prefix: string
:param check_interval: the number of seconds it will wait between each check
:type check_interval: integer
:param check_count: the number of times the check should be positive before
restarting the next broker
:type check_count: integer
:param unhealthy_time_limit: the maximum number of seconds it will wait for
the cluster to become stable before exiting with error
:type unhealthy_time_limit: integer
:param skip: the number of brokers to skip
:type skip: integer
:param verbose: print commend execution information
:type verbose: bool
:param pre_stop_task: a list of tasks to execute before running stop
:type pre_stop_task: list
:param post_stop_task: a list of task to execute after running stop
:type post_stop_task: list
:param start_command: the start command for kafka
:type start_command: string
:param stop_command: the stop command for kafka
:type stop_command: string
:param ssh_password: The ssh password to use if needed
:type ssh_password: string | 2.526661 | 2.540288 | 0.994636 |
if opts.skip < 0 or opts.skip >= brokers_num:
print("Error: --skip must be >= 0 and < #brokers")
return True
if opts.check_count < 0:
print("Error: --check-count must be >= 0")
return True
if opts.unhealthy_time_limit < 0:
print("Error: --unhealthy-time-limit must be >= 0")
return True
if opts.check_count == 0:
print("Warning: no check will be performed")
if opts.check_interval < 0:
print("Error: --check-interval must be >= 0")
return True
return False | def validate_opts(opts, brokers_num) | Basic option validation. Returns True if the options are not valid,
False otherwise.
:param opts: the command line options
:type opts: map
:param brokers_num: the number of brokers
:type brokers_num: integer
:returns: bool | 2.179513 | 2.254951 | 0.966546 |
all_ids = set(broker_ids)
valid = True
for subset_id in subset_ids:
valid = valid and subset_id in all_ids
if subset_id not in all_ids:
print("Error: user specified broker id {0} does not exist in cluster.".format(subset_id))
return valid | def validate_broker_ids_subset(broker_ids, subset_ids) | Validate that user specified broker ids to restart exist in the broker ids retrieved
from cluster config.
:param broker_ids: all broker IDs in a cluster
:type broker_ids: list of integers
:param subset_ids: broker IDs specified by user
:type subset_ids: list of integers
:returns: bool | 3.057297 | 2.704661 | 1.130381 |
pre_stop_tasks = []
post_stop_tasks = []
task_to_task_args = dict(list(zip(tasks, task_args)))
tasks_classes = [PreStopTask, PostStopTask]
for func, task_args in task_to_task_args.items():
for task_class in tasks_classes:
imported_class = dynamic_import(func, task_class)
if imported_class:
if task_class is PreStopTask:
pre_stop_tasks.append(imported_class(task_args))
elif task_class is PostStopTask:
post_stop_tasks.append(imported_class(task_args))
else:
print("ERROR: Class is not a type of Pre/Post StopTask:" + func)
sys.exit(1)
return pre_stop_tasks, post_stop_tasks | def get_task_class(tasks, task_args) | Reads in a list of tasks provided by the user,
loads the appropiate task, and returns two lists,
pre_stop_tasks and post_stop_tasks
:param tasks: list of strings locating tasks to load
:type tasks: list
:param task_args: list of strings to be used as args
:type task_args: list | 2.465314 | 2.389665 | 1.031656 |
self.cluster_config = cluster_config
self.args = args
with ZK(self.cluster_config) as self.zk:
self.log.debug(
'Starting %s for cluster: %s and zookeeper: %s',
self.__class__.__name__,
self.cluster_config.name,
self.cluster_config.zookeeper,
)
brokers = self.zk.get_brokers()
assignment = self.zk.get_cluster_assignment()
pm = partition_measurer(
self.cluster_config,
brokers,
assignment,
args,
)
ct = ClusterTopology(
assignment,
brokers,
pm,
rg_parser.get_replication_group,
)
if len(ct.partitions) == 0:
self.log.info("The cluster is empty. No actions to perform.")
return
# Exit if there is an on-going reassignment
if self.is_reassignment_pending():
self.log.error('Previous reassignment pending.')
sys.exit(1)
self.run_command(ct, cluster_balancer(ct, args)) | def run(
self,
cluster_config,
rg_parser,
partition_measurer,
cluster_balancer,
args,
) | Initialize cluster_config, args, and zk then call run_command. | 3.462014 | 3.218931 | 1.075517 |
if self.should_execute():
result = self.zk.execute_plan(plan, allow_rf_change=allow_rf_change)
if not result:
self.log.error('Plan execution unsuccessful.')
sys.exit(1)
else:
self.log.info(
'Plan sent to zookeeper for reassignment successfully.',
)
else:
self.log.info('Proposed plan won\'t be executed (--apply and confirmation needed).') | def execute_plan(self, plan, allow_rf_change=False) | Save proposed-plan and execute the same if requested. | 5.889122 | 5.320135 | 1.10695 |
return self.args.apply and (self.args.no_confirm or self.confirm_execution()) | def should_execute(self) | Confirm if proposed-plan should be executed. | 13.566002 | 8.516402 | 1.592926 |
in_progress_plan = self.zk.get_pending_plan()
if in_progress_plan:
in_progress_partitions = in_progress_plan['partitions']
self.log.info(
'Previous re-assignment in progress for {count} partitions.'
' Current partitions in re-assignment queue: {partitions}'
.format(
count=len(in_progress_partitions),
partitions=in_progress_partitions,
)
)
return True
else:
return False | def is_reassignment_pending(self) | Return True if there are reassignment tasks pending. | 3.820988 | 3.765322 | 1.014784 |
new_assignment = cluster_topology.assignment
if (not original_assignment or not new_assignment or
max_partition_movements < 0 or max_leader_only_changes < 0 or
max_movement_size < 0):
return {}
# The replica set stays the same for leaders only changes
leaders_changes = [
(t_p, new_assignment[t_p])
for t_p, replica in six.iteritems(original_assignment)
if replica != new_assignment[t_p] and
set(replica) == set(new_assignment[t_p])
]
# The replica set is different for partitions changes
# Here we create a list of tuple ((topic, partion), # replica movements)
partition_change_count = [
(
t_p,
len(set(replica) - set(new_assignment[t_p])),
)
for t_p, replica in six.iteritems(original_assignment)
if set(replica) != set(new_assignment[t_p])
]
self.log.info(
"Total number of actions before reduction: %s.",
len(partition_change_count) + len(leaders_changes),
)
# Extract reduced plan maximizing uniqueness of topics and ensuring we do not
# go over the max_movement_size
reduced_actions = self._extract_actions_unique_topics(
partition_change_count,
max_partition_movements,
cluster_topology,
max_movement_size,
)
# Ensure progress is made if force_progress=True
if len(reduced_actions) == 0 and force_progress:
smallest_size = min([cluster_topology.partitions[t_p[0]].size for t_p in partition_change_count])
self.log.warning(
'--max-movement-size={max_movement_size} is too small, using smallest size'
' in set of partitions to move, {smallest_size} instead to force progress'.format(
max_movement_size=max_movement_size,
smallest_size=smallest_size,
)
)
max_movement_size = smallest_size
reduced_actions = self._extract_actions_unique_topics(
partition_change_count,
max_partition_movements,
cluster_topology,
max_movement_size,
)
reduced_partition_changes = [
(t_p, new_assignment[t_p]) for t_p in reduced_actions
]
self.log.info(
"Number of partition changes: %s."
" Number of leader-only changes: %s",
len(reduced_partition_changes),
min(max_leader_only_changes, len(leaders_changes)),
)
# Merge leaders and partition changes and generate the assignment
reduced_assignment = {
t_p: replicas
for t_p, replicas in (
reduced_partition_changes + leaders_changes[:max_leader_only_changes]
)
}
return reduced_assignment | def get_reduced_assignment(
self,
original_assignment,
cluster_topology,
max_partition_movements,
max_leader_only_changes,
max_movement_size=DEFAULT_MAX_MOVEMENT_SIZE,
force_progress=False,
) | Reduce the assignment based on the total actions.
Actions represent actual partition movements
and/or changes in preferred leader.
Get the difference of original and proposed assignment
and take the subset of this plan for given limit.
Argument(s):
original_assignment: Current assignment of cluster in zookeeper
cluster_topology: Cluster topology containing the new proposed-assignment of cluster
max_partition_movements:Maximum number of partition-movements in
final set of actions
max_leader_only_changes:Maximum number of actions with leader only changes
max_movement_size: Maximum size, in bytes, to move in final set of actions
force_progress: Whether to force progress if max_movement_size is too small
:return:
:reduced_assignment: Final reduced assignment | 2.929633 | 2.889758 | 1.013799 |
# Group actions by topic
topic_actions = defaultdict(list)
for t_p, replica_change_cnt in movement_counts:
topic_actions[t_p[0]].append((t_p, replica_change_cnt))
# Create reduced assignment minimizing duplication of topics
extracted_actions = []
curr_movements = 0
curr_size = 0
action_available = True
while curr_movements < max_movements and curr_size <= max_movement_size and action_available:
action_available = False
for topic, actions in six.iteritems(topic_actions):
for action in actions:
action_size = cluster_topology.partitions[action[0]].size
if curr_movements + action[1] > max_movements or curr_size + action_size > max_movement_size:
# Remove action since it won't be possible to use it
actions.remove(action)
else:
# Append (topic, partition) to the list of movements
action_available = True
extracted_actions.append(action[0])
curr_movements += action[1]
curr_size += action_size
actions.remove(action)
break
return extracted_actions | def _extract_actions_unique_topics(self, movement_counts, max_movements, cluster_topology, max_movement_size) | Extract actions limiting to given max value such that
the resultant has the minimum possible number of duplicate topics.
Algorithm:
1. Group actions by by topic-name: {topic: action-list}
2. Iterate through the dictionary in circular fashion and keep
extracting actions with until max_partition_movements
are reached.
:param movement_counts: list of tuple ((topic, partition), movement count)
:param max_movements: max number of movements to extract
:param cluster_topology: cluster topology containing the new proposed assignment for the cluster
:param max_movement_size: maximum size of data to move at a time in extracted actions
:return: list of tuple (topic, partitions) to include in the reduced plan | 3.216105 | 2.80882 | 1.145002 |
permit = ''
while permit.lower() not in ('yes', 'no'):
permit = input('Execute Proposed Plan? [yes/no] ')
if permit.lower() == 'yes':
return True
else:
return False | def confirm_execution(self) | Confirm from your if proposed-plan be executed. | 4.381073 | 3.063052 | 1.430296 |
with open(proposed_plan_file, 'w') as output:
json.dump(proposed_layout, output) | def write_json_plan(self, proposed_layout, proposed_plan_file) | Dump proposed json plan to given output file for future usage. | 2.379903 | 2.247459 | 1.05893 |
# Replica set cannot be changed
assert(new_leader in self._replicas)
curr_leader = self.leader
idx = self._replicas.index(new_leader)
self._replicas[0], self._replicas[idx] = \
self._replicas[idx], self._replicas[0]
return curr_leader | def swap_leader(self, new_leader) | Change the preferred leader with one of
given replicas.
Note: Leaders for all the replicas of current
partition needs to be changed. | 3.627405 | 3.540813 | 1.024455 |
for i, broker in enumerate(self.replicas):
if broker == source:
self.replicas[i] = dest
return | def replace(self, source, dest) | Replace source broker with destination broker in replica set if found. | 5.553222 | 3.157984 | 1.758471 |
count = sum(
int(self.topic == partition.topic)
for partition in partitions
)
return count | def count_siblings(self, partitions) | Count siblings of partition in given partition-list.
:key-term:
sibling: partitions with same topic | 7.453388 | 7.331223 | 1.016664 |
kafka_client = KafkaToolClient(hosts, timeout=10)
kafka_client.load_metadata_for_topics()
topic_partitions = kafka_client.topic_partitions
resp = kafka_client.send_metadata_request()
for _, topic, partitions in resp.topics:
for partition_error, partition, leader, replicas, isr in partitions:
if topic_partitions.get(topic, {}).get(partition) is not None:
topic_partitions[topic][partition] = PartitionMetadata(topic, partition, leader,
replicas, isr, partition_error)
return topic_partitions | def get_topic_partition_metadata(hosts) | Returns topic-partition metadata from Kafka broker.
kafka-python 1.3+ doesn't include partition metadata information in
topic_partitions so we extract it from metadata ourselves. | 3.013548 | 2.989979 | 1.007883 |
topic_data = zk.get_topics(partition_metadata.topic)
topic = partition_metadata.topic
partition = partition_metadata.partition
expected_replicas = set(topic_data[topic]['partitions'][str(partition)]['replicas'])
available_replicas = set(partition_metadata.replicas)
return expected_replicas - available_replicas | def get_unavailable_brokers(zk, partition_metadata) | Returns the set of unavailable brokers from the difference of replica
set of given partition to the set of available replicas. | 3.027192 | 2.482895 | 1.219218 |
metadata = get_topic_partition_metadata(cluster_config.broker_list)
affected_partitions = set()
if fetch_unavailable_brokers:
unavailable_brokers = set()
with ZK(cluster_config) as zk:
for partitions in metadata.values():
for partition_metadata in partitions.values():
if int(partition_metadata.error) == error:
if fetch_unavailable_brokers:
unavailable_brokers |= get_unavailable_brokers(zk, partition_metadata)
affected_partitions.add((partition_metadata.topic, partition_metadata.partition))
if fetch_unavailable_brokers:
return affected_partitions, unavailable_brokers
else:
return affected_partitions | def get_topic_partition_with_error(cluster_config, error, fetch_unavailable_brokers=False) | Fetches the metadata from the cluster and returns the set of
(topic, partition) tuples containing all the topic-partitions
currently affected by the specified error. It also fetches unavailable-broker list
if required. | 2.301897 | 2.181348 | 1.055264 |
topics = _verify_topics_and_partitions(kafka_client, topics, raise_on_error)
group_offset_reqs = [
OffsetFetchRequestPayload(topic, partition)
for topic, partitions in six.iteritems(topics)
for partition in partitions
]
group_offsets = {}
send_api = kafka_client.send_offset_fetch_request_kafka
if group_offset_reqs:
# fail_on_error = False does not prevent network errors
group_resps = send_api(
group=group,
payloads=group_offset_reqs,
fail_on_error=False,
callback=pluck_topic_offset_or_zero_on_unknown,
)
for resp in group_resps:
group_offsets.setdefault(
resp.topic,
{},
)[resp.partition] = resp.offset
return group_offsets | def get_current_consumer_offsets(
kafka_client,
group,
topics,
raise_on_error=True,
) | Get current consumer offsets.
NOTE: This method does not refresh client metadata. It is up to the caller
to avoid using stale metadata.
If any partition leader is not available, the request fails for all the
other topics. This is the tradeoff of sending all topic requests in batch
and save both in performance and Kafka load.
:param kafka_client: a connected KafkaToolClient
:param group: kafka group_id
:param topics: topic list or dict {<topic>: [partitions]}
:param raise_on_error: if False the method ignores missing topics and
missing partitions. It still may fail on the request send.
:returns: a dict topic: partition: offset
:raises:
:py:class:`kafka_utils.util.error.UnknownTopic`: upon missing
topics and raise_on_error=True
:py:class:`kafka_utils.util.error.UnknownPartition`: upon missing
partitions and raise_on_error=True
FailedPayloadsError: upon send request error. | 4.058604 | 3.933102 | 1.031909 |
topics = _verify_topics_and_partitions(
kafka_client,
topics,
raise_on_error,
)
highmark_offset_reqs = []
lowmark_offset_reqs = []
for topic, partitions in six.iteritems(topics):
# Batch watermark requests
for partition in partitions:
# Request the the latest offset
highmark_offset_reqs.append(
OffsetRequestPayload(
topic, partition, -1, max_offsets=1
)
)
# Request the earliest offset
lowmark_offset_reqs.append(
OffsetRequestPayload(
topic, partition, -2, max_offsets=1
)
)
watermark_offsets = {}
if not (len(highmark_offset_reqs) + len(lowmark_offset_reqs)):
return watermark_offsets
# fail_on_error = False does not prevent network errors
highmark_resps = kafka_client.send_offset_request(
highmark_offset_reqs,
fail_on_error=False,
callback=_check_fetch_response_error,
)
lowmark_resps = kafka_client.send_offset_request(
lowmark_offset_reqs,
fail_on_error=False,
callback=_check_fetch_response_error,
)
# At this point highmark and lowmark should ideally have the same length.
assert len(highmark_resps) == len(lowmark_resps)
aggregated_offsets = defaultdict(lambda: defaultdict(dict))
for resp in highmark_resps:
aggregated_offsets[resp.topic][resp.partition]['highmark'] = \
resp.offsets[0]
for resp in lowmark_resps:
aggregated_offsets[resp.topic][resp.partition]['lowmark'] = \
resp.offsets[0]
for topic, partition_watermarks in six.iteritems(aggregated_offsets):
for partition, watermarks in six.iteritems(partition_watermarks):
watermark_offsets.setdefault(
topic,
{},
)[partition] = PartitionOffsets(
topic,
partition,
watermarks['highmark'],
watermarks['lowmark'],
)
return watermark_offsets | def get_topics_watermarks(kafka_client, topics, raise_on_error=True) | Get current topic watermarks.
NOTE: This method does not refresh client metadata. It is up to the caller
to use avoid using stale metadata.
If any partition leader is not available, the request fails for all the
other topics. This is the tradeoff of sending all topic requests in batch
and save both in performance and Kafka load.
:param kafka_client: a connected KafkaToolClient
:param topics: topic list or dict {<topic>: [partitions]}
:param raise_on_error: if False the method ignores missing topics
and missing partitions. It still may fail on the request send.
:returns: a dict topic: partition: Part
:raises:
:py:class:`~kafka_utils.util.error.UnknownTopic`: upon missing
topics and raise_on_error=True
:py:class:`~kafka_utils.util.error.UnknownPartition`: upon missing
partitions and raise_on_error=True
FailedPayloadsError: upon send request error. | 2.3188 | 2.372273 | 0.977459 |
kafka_client.load_metadata_for_topics()
return _commit_offsets_to_watermark(
kafka_client, group, topics,
HIGH_WATERMARK, raise_on_error,
) | def advance_consumer_offsets(
kafka_client,
group,
topics,
raise_on_error=True,
) | Advance consumer offsets to the latest message in the topic
partition (the high watermark).
This method shall refresh the client metadata prior to updating
the offsets.
If any partition leader is not available, the request fails for all the
other topics. This is the tradeoff of sending all topic requests in batch
and save both in performance and Kafka load.
:param kafka_client: a connected KafkaToolClient
:param group: kafka group_id
:param topics: topic list or dict {<topic>: [partitions]}
:param raise_on_error: if False the method does not raise exceptions
on missing topics/partitions. It may still fail on the request send.
:returns: a list of errors for each partition offset update that failed.
:rtype: list [OffsetCommitError]
:raises:
:py:class:`kafka_utils.util.error.UnknownTopic`: upon missing
topics and raise_on_error=True
:py:class:`kafka_utils.util.error.UnknownPartition`: upon missing
partitions and raise_on_error=True
FailedPayloadsError: upon send request error. | 6.217515 | 8.195325 | 0.758666 |
kafka_client.load_metadata_for_topics()
return _commit_offsets_to_watermark(
kafka_client, group, topics,
LOW_WATERMARK, raise_on_error,
) | def rewind_consumer_offsets(
kafka_client,
group,
topics,
raise_on_error=True,
) | Rewind consumer offsets to the earliest message in the topic
partition (the low watermark).
This method shall refresh the client metadata prior to updating
the offsets.
If any partition leader is not available, the request fails for all the
other topics. This is the tradeoff of sending all topic requests in batch
and save both in performance and Kafka load.
:param kafka_client: a connected KafkaToolClient
:param group: kafka group_id
:param topics: topic list or dict {<topic>: [partitions]}
:param raise_on_error: if False the method does not raise exceptions
on missing topics/partitions. It may still fail on the request send.
:returns: a list of errors for each partition offset update that failed.
:rtype: list [OffsetCommitError]
:raises:
:py:class:`kafka_utils.util.error.UnknownTopic`: upon missing
topics and raise_on_error=True
:py:class:`kafka_utils.util.error.UnknownPartition`: upon missing
partitions and raise_on_error=True
FailedPayloadsError: upon send request error. | 5.952087 | 7.559995 | 0.787314 |
valid_new_offsets = _verify_commit_offsets_requests(
kafka_client,
new_offsets,
raise_on_error
)
group_offset_reqs = [
OffsetCommitRequestPayload(
topic,
partition,
offset,
metadata='',
)
for topic, new_partition_offsets in six.iteritems(valid_new_offsets)
for partition, offset in six.iteritems(new_partition_offsets)
]
send_api = kafka_client.send_offset_commit_request_kafka
status = []
if group_offset_reqs:
status = send_api(
group,
group_offset_reqs,
raise_on_error,
callback=_check_commit_response_error
)
return [_f for _f in status
if _f and _f.error != 0] | def set_consumer_offsets(
kafka_client,
group,
new_offsets,
raise_on_error=True,
) | Set consumer offsets to the specified offsets.
This method does not validate the specified offsets, it is up to
the caller to specify valid offsets within a topic partition.
If any partition leader is not available, the request fails for all the
other topics. This is the tradeoff of sending all topic requests in batch
and save both in performance and Kafka load.
:param kafka_client: a connected KafkaToolClient
:param group: kafka group_id
:param topics: dict {<topic>: {<partition>: <offset>}}
:param raise_on_error: if False the method does not raise exceptions
on errors encountered. It may still fail on the request send.
:returns: a list of errors for each partition offset update that failed.
:rtype: list [OffsetCommitError]
:raises:
:py:class:`kafka_utils.util.error.UnknownTopic`: upon missing
topics and raise_on_error=True
:py:class:`kafka_utils.util.error.UnknownPartition`: upon missing
partitions and raise_on_error=True
:py:class:`exceptions.TypeError`: upon badly formatted input
new_offsets
FailedPayloadsError: upon send request error. | 3.865835 | 3.920346 | 0.986095 |
result = {}
for topic, partition_offsets in six.iteritems(offsets):
result[topic] = _nullify_partition_offsets(partition_offsets)
return result | def nullify_offsets(offsets) | Modify offsets metadata so that the partition offsets
have null payloads.
:param offsets: dict {<topic>: {<partition>: <offset>}}
:returns: a dict topic: partition: offset | 3.510843 | 3.582564 | 0.979981 |
assert all(len(row) == len(headers) for row in table)
str_headers = [str(header) for header in headers]
str_table = [[str(cell) for cell in row] for row in table]
column_lengths = [
max(len(header), *(len(row[i]) for row in str_table))
for i, header in enumerate(str_headers)
]
print(
" | ".join(
str(header).ljust(length)
for header, length in zip(str_headers, column_lengths)
)
)
print("-+-".join("-" * length for length in column_lengths))
for row in str_table:
print(
" | ".join(
str(cell).ljust(length)
for cell, length in zip(row, column_lengths)
)
) | def display_table(headers, table) | Print a formatted table.
:param headers: A list of header objects that are displayed in the first
row of the table.
:param table: A list of lists where each sublist is a row of the table.
The number of elements in each row should be equal to the number of
headers. | 1.775557 | 1.834997 | 0.967608 |
assert cluster_topologies
rg_ids = list(next(six.itervalues(cluster_topologies)).rgs.keys())
assert all(
set(rg_ids) == set(cluster_topology.rgs.keys())
for cluster_topology in six.itervalues(cluster_topologies)
)
rg_imbalances = [
stats.get_replication_group_imbalance_stats(
list(cluster_topology.rgs.values()),
list(cluster_topology.partitions.values()),
)
for cluster_topology in six.itervalues(cluster_topologies)
]
_display_table_title_multicolumn(
'Extra Replica Count',
'Replication Group',
rg_ids,
list(cluster_topologies.keys()),
[
[erc[rg_id] for rg_id in rg_ids]
for _, erc in rg_imbalances
],
)
for name, imbalance in zip(
six.iterkeys(cluster_topologies),
(imbalance for imbalance, _ in rg_imbalances)
):
print(
'\n'
'{name}'
'Total extra replica count: {imbalance}'
.format(
name='' if len(cluster_topologies) == 1 else name + '\n',
imbalance=imbalance,
)
) | def display_replica_imbalance(cluster_topologies) | Display replica replication-group distribution imbalance statistics.
:param cluster_topologies: A dictionary mapping a string name to a
ClusterTopology object. | 3.202173 | 3.140258 | 1.019717 |
broker_ids = list(next(six.itervalues(cluster_topologies)).brokers.keys())
assert all(
set(broker_ids) == set(cluster_topology.brokers.keys())
for cluster_topology in six.itervalues(cluster_topologies)
)
broker_partition_counts = [
stats.get_broker_partition_counts(
cluster_topology.brokers[broker_id]
for broker_id in broker_ids
)
for cluster_topology in six.itervalues(cluster_topologies)
]
broker_weights = [
stats.get_broker_weights(
cluster_topology.brokers[broker_id]
for broker_id in broker_ids
)
for cluster_topology in six.itervalues(cluster_topologies)
]
_display_table_title_multicolumn(
'Partition Count',
'Broker',
broker_ids,
list(cluster_topologies.keys()),
broker_partition_counts,
)
print('')
_display_table_title_multicolumn(
'Partition Weight',
'Broker',
broker_ids,
list(cluster_topologies.keys()),
broker_weights,
)
for name, bpc, bw in zip(
list(cluster_topologies.keys()),
broker_partition_counts,
broker_weights
):
print(
'\n'
'{name}'
'Partition count imbalance: {net_imbalance}\n'
'Broker weight mean: {weight_mean}\n'
'Broker weight stdev: {weight_stdev}\n'
'Broker weight cv: {weight_cv}'
.format(
name='' if len(cluster_topologies) == 1 else name + '\n',
net_imbalance=stats.get_net_imbalance(bpc),
weight_mean=stats.mean(bw),
weight_stdev=stats.stdevp(bw),
weight_cv=stats.coefficient_of_variation(bw),
)
) | def display_partition_imbalance(cluster_topologies) | Display partition count and weight imbalance statistics.
:param cluster_topologies: A dictionary mapping a string name to a
ClusterTopology object. | 2.332075 | 2.277802 | 1.023827 |
broker_ids = list(next(six.itervalues(cluster_topologies)).brokers.keys())
assert all(
set(broker_ids) == set(cluster_topology.brokers.keys())
for cluster_topology in six.itervalues(cluster_topologies)
)
broker_leader_counts = [
stats.get_broker_leader_counts(
cluster_topology.brokers[broker_id]
for broker_id in broker_ids
)
for cluster_topology in six.itervalues(cluster_topologies)
]
broker_leader_weights = [
stats.get_broker_leader_weights(
cluster_topology.brokers[broker_id]
for broker_id in broker_ids
)
for cluster_topology in six.itervalues(cluster_topologies)
]
_display_table_title_multicolumn(
'Leader Count',
'Brokers',
broker_ids,
list(cluster_topologies.keys()),
broker_leader_counts,
)
print('')
_display_table_title_multicolumn(
'Leader weight',
'Brokers',
broker_ids,
list(cluster_topologies.keys()),
broker_leader_weights,
)
for name, blc, blw in zip(
list(cluster_topologies.keys()),
broker_leader_counts,
broker_leader_weights
):
print(
'\n'
'{name}'
'Leader count imbalance: {net_imbalance}\n'
'Broker leader weight mean: {weight_mean}\n'
'Broker leader weight stdev: {weight_stdev}\n'
'Broker leader weight cv: {weight_cv}'
.format(
name='' if len(cluster_topologies) == 1 else name + '\n',
net_imbalance=stats.get_net_imbalance(blc),
weight_mean=stats.mean(blw),
weight_stdev=stats.stdevp(blw),
weight_cv=stats.coefficient_of_variation(blw),
)
) | def display_leader_imbalance(cluster_topologies) | Display leader count and weight imbalance statistics.
:param cluster_topologies: A dictionary mapping a string name to a
ClusterTopology object. | 2.271545 | 2.241678 | 1.013323 |
broker_ids = list(next(six.itervalues(cluster_topologies)).brokers.keys())
assert all(
set(broker_ids) == set(cluster_topology.brokers.keys())
for cluster_topology in six.itervalues(cluster_topologies)
)
topic_names = list(next(six.itervalues(cluster_topologies)).topics.keys())
assert all(
set(topic_names) == set(cluster_topology.topics.keys())
for cluster_topology in six.itervalues(cluster_topologies)
)
imbalances = [
stats.get_topic_imbalance_stats(
[cluster_topology.brokers[broker_id] for broker_id in broker_ids],
[cluster_topology.topics[tname] for tname in topic_names],
)
for cluster_topology in six.itervalues(cluster_topologies)
]
weighted_imbalances = [
stats.get_weighted_topic_imbalance_stats(
[cluster_topology.brokers[broker_id] for broker_id in broker_ids],
[cluster_topology.topics[tname] for tname in topic_names],
)
for cluster_topology in six.itervalues(cluster_topologies)
]
_display_table_title_multicolumn(
'Extra-Topic-Partition Count',
'Brokers',
broker_ids,
list(cluster_topologies.keys()),
[
[i[1][broker_id] for broker_id in broker_ids]
for i in imbalances
]
)
print('')
_display_table_title_multicolumn(
'Weighted Topic Imbalance',
'Brokers',
broker_ids,
list(cluster_topologies.keys()),
[
[wi[1][broker_id] for broker_id in broker_ids]
for wi in weighted_imbalances
]
)
for name, topic_imbalance, weighted_topic_imbalance in zip(
six.iterkeys(cluster_topologies),
(i[0] for i in imbalances),
(wi[0] for wi in weighted_imbalances),
):
print(
'\n'
'{name}'
'Topic partition imbalance count: {topic_imbalance}\n'
'Weighted topic partition imbalance: {weighted_topic_imbalance}'
.format(
name='' if len(cluster_topologies) == 1 else name + '\n',
topic_imbalance=topic_imbalance,
weighted_topic_imbalance=weighted_topic_imbalance,
)
) | def display_topic_broker_imbalance(cluster_topologies) | Display topic broker imbalance statistics.
:param cluster_topologies: A dictionary mapping a string name to a
ClusterTopology object. | 1.954299 | 1.982065 | 0.985991 |
movement_count, movement_size, leader_changes = \
stats.get_partition_movement_stats(ct, base_assignment)
print(
'Total partition movements: {movement_count}\n'
'Total partition movement size: {movement_size}\n'
'Total leader changes: {leader_changes}'
.format(
movement_count=movement_count,
movement_size=movement_size,
leader_changes=leader_changes,
)
) | def display_movements_stats(ct, base_assignment) | Display how the amount of movement between two assignments.
:param ct: The cluster's ClusterTopology.
:param base_assignment: The cluster assignment to compare against. | 2.717394 | 2.971293 | 0.914549 |
curr_plan_list, new_plan_list, total_changes = plan_details
action_cnt = '\n[INFO] Total actions required {0}'.format(total_changes)
_log_or_display(to_log, action_cnt)
action_cnt = (
'[INFO] Total actions that will be executed {0}'
.format(len(new_plan_list))
)
_log_or_display(to_log, action_cnt)
changes = ('[INFO] Proposed Changes in current cluster-layout:\n')
_log_or_display(to_log, changes)
tp_str = 'Topic - Partition'
curr_repl_str = 'Previous-Assignment'
new_rep_str = 'Proposed-Assignment'
tp_list = [tp_repl[0] for tp_repl in curr_plan_list]
# Display heading
msg = '=' * 80
_log_or_display(to_log, msg)
row = (
'{tp:^30s}: {curr_rep_str:^20s} ==> {new_rep_str:^20s}' .format(
tp=tp_str,
curr_rep_str=curr_repl_str,
new_rep_str=new_rep_str,
)
)
_log_or_display(to_log, row)
msg = '=' * 80
_log_or_display(to_log, msg)
# Display each topic-partition list with changes
tp_list_sorted = sorted(tp_list, key=lambda tp: (tp[0], tp[1]))
for tp in tp_list_sorted:
curr_repl = [
tp_repl[1] for tp_repl in curr_plan_list if tp_repl[0] == tp
][0]
proposed_repl = [
tp_repl[1] for tp_repl in new_plan_list if tp_repl[0] == tp
][0]
tp_str = '{topic} - {partition:<2d}'.format(topic=tp[0], partition=tp[1])
row = (
'{tp:<30s}: {curr_repl:<20s} ==> {proposed_repl:<20s}'.format(
tp=tp_str,
curr_repl=curr_repl,
proposed_repl=proposed_repl,
)
)
_log_or_display(to_log, row) | def display_assignment_changes(plan_details, to_log=True) | Display current and proposed changes in
topic-partition to replica layout over brokers. | 2.583836 | 2.431566 | 1.062622 |
data_mean = data_mean or mean(data)
return sum((x - data_mean) ** 2 for x in data) / len(data) | def variance(data, data_mean=None) | Return variance of a sequence of numbers.
:param data_mean: Precomputed mean of the sequence. | 2.176145 | 2.732102 | 0.796509 |
data_variance = data_variance or variance(data, data_mean)
return sqrt(data_variance) | def stdevp(data, data_mean=None, data_variance=None) | Return standard deviation of a sequence of numbers.
:param data_mean: Precomputed mean of the sequence.
:param data_variance: Precomputed variance of the sequence. | 3.231037 | 5.055966 | 0.639054 |
data_mean = data_mean or mean(data)
data_stdev = data_stdev or stdevp(data, data_mean)
if data_mean == 0:
return float("inf") if data_stdev != 0 else 0
else:
return data_stdev / data_mean | def coefficient_of_variation(data, data_mean=None, data_stdev=None) | Return the coefficient of variation (CV) of a sequence of numbers.
:param data_mean: Precomputed mean of the sequence.
:param data_stdevp: Precomputed stdevp of the
sequence. | 2.48282 | 2.443472 | 1.016103 |
net_imbalance = 0
opt_count, extra_allowed = \
compute_optimum(len(count_per_broker), sum(count_per_broker))
for count in count_per_broker:
extra_cnt, extra_allowed = \
get_extra_element_count(count, opt_count, extra_allowed)
net_imbalance += extra_cnt
return net_imbalance | def get_net_imbalance(count_per_broker) | Calculate and return net imbalance based on given count of
partitions or leaders per broker.
Net-imbalance in case of partitions implies total number of
extra partitions from optimal count over all brokers.
This is also implies, the minimum number of partition movements
required for overall balancing.
For leaders, net imbalance implies total number of extra brokers
as leaders from optimal count. | 4.019559 | 4.259558 | 0.943656 |
if curr_count > opt_count:
# We still can allow 1 extra count
if extra_allowed_cnt > 0:
extra_allowed_cnt -= 1
extra_cnt = curr_count - opt_count - 1
else:
extra_cnt = curr_count - opt_count
else:
extra_cnt = 0
return extra_cnt, extra_allowed_cnt | def get_extra_element_count(curr_count, opt_count, extra_allowed_cnt) | Evaluate and return extra same element count based on given values.
:key-term:
group: In here group can be any base where elements are place
i.e. replication-group while placing replicas (elements)
or brokers while placing partitions (elements).
element: Generic term for units which are optimally placed over group.
:params:
curr_count: Given count
opt_count: Optimal count for each group.
extra_allowed_cnt: Count of groups which can have 1 extra element
_ on each group. | 2.671592 | 2.995541 | 0.891856 |
tot_rgs = len(rgs)
extra_replica_cnt_per_rg = defaultdict(int)
for partition in partitions:
# Get optimal replica-count for each partition
opt_replica_cnt, extra_replicas_allowed = \
compute_optimum(tot_rgs, partition.replication_factor)
# Extra replica count for each rg
for rg in rgs:
replica_cnt_rg = rg.count_replica(partition)
extra_replica_cnt, extra_replicas_allowed = \
get_extra_element_count(
replica_cnt_rg,
opt_replica_cnt,
extra_replicas_allowed,
)
extra_replica_cnt_per_rg[rg.id] += extra_replica_cnt
# Evaluate net imbalance across all replication-groups
net_imbalance = sum(extra_replica_cnt_per_rg.values())
return net_imbalance, extra_replica_cnt_per_rg | def get_replication_group_imbalance_stats(rgs, partitions) | Calculate extra replica count replica count over each replication-group
and net extra-same-replica count. | 3.513666 | 3.206758 | 1.095707 |
extra_partition_cnt_per_broker = defaultdict(int)
tot_brokers = len(brokers)
# Sort the brokers so that the iteration order is deterministic.
sorted_brokers = sorted(brokers, key=lambda b: b.id)
for topic in topics:
# Optimal partition-count per topic per broker
total_partition_replicas = \
len(topic.partitions) * topic.replication_factor
opt_partition_cnt, extra_partitions_allowed = \
compute_optimum(tot_brokers, total_partition_replicas)
# Get extra-partition count per broker for each topic
for broker in sorted_brokers:
partition_cnt_broker = broker.count_partitions(topic)
extra_partitions, extra_partitions_allowed = \
get_extra_element_count(
partition_cnt_broker,
opt_partition_cnt,
extra_partitions_allowed,
)
extra_partition_cnt_per_broker[broker.id] += extra_partitions
# Net extra partitions over all brokers
net_imbalance = sum(six.itervalues(extra_partition_cnt_per_broker))
return net_imbalance, extra_partition_cnt_per_broker | def get_topic_imbalance_stats(brokers, topics) | Return count of topics and partitions on each broker having multiple
partitions of same topic.
:rtype dict(broker_id: same-topic-partition count)
Example:
Total-brokers (b1, b2): 2
Total-partitions of topic t1: 5
(b1 has 4 partitions), (b2 has 1 partition)
opt-count: 5/2 = 2
extra-count: 5%2 = 1
i.e. 1 broker can have 2 + 1 = 3 partitions
and rest of brokers can have 2 partitions for given topic
Extra-partition or imbalance:
b1: current-partitions - optimal-count = 4 - 2 - 1(extra allowed) = 1
Net-imbalance = 1 | 3.390456 | 3.350086 | 1.012051 |
total_movements = 0
movements = {}
for prev_partition, prev_replicas in six.iteritems(prev_assignment):
curr_replicas = curr_assignment[prev_partition]
diff = len(set(curr_replicas) - set(prev_replicas))
if diff:
total_movements += diff
movements[prev_partition] = (
(set(prev_replicas) - set(curr_replicas)),
(set(curr_replicas) - set(prev_replicas)),
)
return movements, total_movements | def calculate_partition_movement(prev_assignment, curr_assignment) | Calculate the partition movements from initial to current assignment.
Algorithm:
For each partition in initial assignment
# If replica set different in current assignment:
# Get Difference in sets
:rtype: tuple
dict((partition, (from_broker_set, to_broker_set)), total_movements | 2.359195 | 1.985886 | 1.187981 |
try:
with open(meta_properties_path, 'r') as f:
broker_id = _parse_meta_properties_file(f)
except IOError:
raise IOError(
"Cannot open meta.properties file: {path}"
.format(path=meta_properties_path),
)
except ValueError:
raise ValueError("Broker id not valid")
if broker_id is None:
raise ValueError("Autogenerated broker id missing from data directory")
return broker_id | def _read_generated_broker_id(meta_properties_path) | reads broker_id from meta.properties file.
:param string meta_properties_path: path for meta.properties file
:returns int: broker_id from meta_properties_path | 3.372839 | 3.401485 | 0.991578 |
# Path to the meta.properties file. This is used to read the automatic broker id
# if the given broker id is -1
META_FILE_PATH = "{data_path}/meta.properties"
if not data_path:
raise ValueError("You need to specify the data_path if broker_id == -1")
meta_properties_path = META_FILE_PATH.format(data_path=data_path)
return _read_generated_broker_id(meta_properties_path) | def get_broker_id(data_path) | This function will look into the data folder to get the automatically created
broker_id.
:param string data_path: the path to the kafka data folder
:returns int: the real broker_id | 5.013473 | 5.00839 | 1.001015 |
# Refresh client metadata. We do not use the topic list, because we
# don't want to accidentally create the topic if it does not exist.
# If Kafka is unavailable, let's retry loading client metadata
try:
kafka_client.load_metadata_for_topics()
except KafkaUnavailableError:
kafka_client.load_metadata_for_topics()
group_offsets = get_current_consumer_offsets(
kafka_client, group, topics, raise_on_error
)
watermarks = get_topics_watermarks(
kafka_client, topics, raise_on_error
)
result = {}
for topic, partitions in six.iteritems(group_offsets):
result[topic] = [
ConsumerPartitionOffsets(
topic=topic,
partition=partition,
current=group_offsets[topic][partition],
highmark=watermarks[topic][partition].highmark,
lowmark=watermarks[topic][partition].lowmark,
) for partition in partitions
]
return result | def get_consumer_offsets_metadata(
kafka_client,
group,
topics,
raise_on_error=True,
) | This method:
* refreshes metadata for the kafka client
* fetches group offsets
* fetches watermarks
:param kafka_client: KafkaToolClient instance
:param group: group id
:param topics: list of topics
:param raise_on_error: if False the method ignores missing topics and
missing partitions. It still may fail on the request send.
:returns: dict <topic>: [ConsumerPartitionOffsets] | 3.206435 | 2.865121 | 1.119127 |
# Refresh client metadata. We do not use the topic list, because we
# don't want to accidentally create the topic if it does not exist.
# If Kafka is unavailable, let's retry loading client metadata
try:
kafka_client.load_metadata_for_topics()
except KafkaUnavailableError:
kafka_client.load_metadata_for_topics()
topics_to_be_considered = []
for topic in kafka_client.topic_partitions:
if re.search(topic_regex, topic):
topics_to_be_considered.append(topic)
watermarks = get_topics_watermarks(
kafka_client, topics_to_be_considered
)
return watermarks | def get_watermark_for_regex(
kafka_client,
topic_regex,
) | This method:
* refreshes metadata for the kafka client
* fetches watermarks
:param kafka_client: KafkaToolClient instance
:param topic: the topic regex
:returns: dict <topic>: [ConsumerPartitionOffsets] | 3.791303 | 3.708359 | 1.022367 |
# Refresh client metadata. We do not use the topic list, because we
# don't want to accidentally create the topic if it does not exist.
# If Kafka is unavailable, let's retry loading client metadata
try:
kafka_client.load_metadata_for_topics()
except KafkaUnavailableError:
kafka_client.load_metadata_for_topics()
watermarks = get_topics_watermarks(
kafka_client, [topic]
)
return watermarks | def get_watermark_for_topic(
kafka_client,
topic,
) | This method:
* refreshes metadata for the kafka client
* fetches watermarks
:param kafka_client: KafkaToolClient instance
:param topic: the topic
:returns: dict <topic>: [ConsumerPartitionOffsets] | 5.662444 | 5.430851 | 1.042644 |
result = dict()
for topic in topics:
partition_offsets = [
response[topic]
for response in offsets_responses
if topic in response
]
result[topic] = merge_partition_offsets(*partition_offsets)
return result | def merge_offsets_metadata(topics, *offsets_responses) | Merge the offset metadata dictionaries from multiple responses.
:param topics: list of topics
:param offsets_responses: list of dict topic: partition: offset
:returns: dict topic: partition: offset | 2.80848 | 2.822342 | 0.995088 |
output = dict()
for partition_offset in partition_offsets:
for partition, offset in six.iteritems(partition_offset):
prev_offset = output.get(partition, 0)
output[partition] = max(prev_offset, offset)
return output | def merge_partition_offsets(*partition_offsets) | Merge the partition offsets of a single topic from multiple responses.
:param partition_offsets: list of dict partition: offset
:returns: dict partition: offset | 2.328483 | 2.700565 | 0.862221 |
movement_count = 0
movement_size = 0
for partition in six.itervalues(self.cluster_topology.partitions):
count, size = self._rebalance_partition_replicas(
partition,
None if not max_movement_count
else max_movement_count - movement_count,
None if not max_movement_size
else max_movement_size - movement_size,
)
movement_count += count
movement_size += size
return movement_count, movement_size | def rebalance_replicas(
self,
max_movement_count=None,
max_movement_size=None,
) | Balance replicas across replication-groups.
:param max_movement_count: The maximum number of partitions to move.
:param max_movement_size: The maximum total size of the partitions to move.
:returns: A 2-tuple whose first element is the number of partitions moved
and whose second element is the total size of the partitions moved. | 2.231464 | 2.511375 | 0.888543 |
# Separate replication-groups into under and over replicated
total = partition.replication_factor
over_replicated_rgs, under_replicated_rgs = separate_groups(
list(self.cluster_topology.rgs.values()),
lambda g: g.count_replica(partition),
total,
)
# Move replicas from over-replicated to under-replicated groups
movement_count = 0
movement_size = 0
while (
under_replicated_rgs and over_replicated_rgs
) and (
max_movement_size is None or
movement_size + partition.size <= max_movement_size
) and (
max_movement_count is None or
movement_count < max_movement_count
):
# Decide source and destination group
rg_source = self._elect_source_replication_group(
over_replicated_rgs,
partition,
)
rg_destination = self._elect_dest_replication_group(
rg_source.count_replica(partition),
under_replicated_rgs,
partition,
)
if rg_source and rg_destination:
# Actual movement of partition
self.log.debug(
'Moving partition {p_name} from replication-group '
'{rg_source} to replication-group {rg_dest}'.format(
p_name=partition.name,
rg_source=rg_source.id,
rg_dest=rg_destination.id,
),
)
rg_source.move_partition(rg_destination, partition)
movement_count += 1
movement_size += partition.size
else:
# Groups balanced or cannot be balanced further
break
# Re-compute under and over-replicated replication-groups
over_replicated_rgs, under_replicated_rgs = separate_groups(
list(self.cluster_topology.rgs.values()),
lambda g: g.count_replica(partition),
total,
)
return movement_count, movement_size | def _rebalance_partition_replicas(
self,
partition,
max_movement_count=None,
max_movement_size=None,
) | Rebalance replication groups for given partition. | 2.525425 | 2.52126 | 1.001652 |
return max(
over_replicated_rgs,
key=lambda rg: rg.count_replica(partition),
) | def _elect_source_replication_group(
self,
over_replicated_rgs,
partition,
) | Decide source replication-group based as group with highest replica
count. | 5.229637 | 3.788797 | 1.38029 |
min_replicated_rg = min(
under_replicated_rgs,
key=lambda rg: rg.count_replica(partition),
)
# Locate under-replicated replication-group with lesser
# replica count than source replication-group
if min_replicated_rg.count_replica(partition) < replica_count_source - 1:
return min_replicated_rg
return None | def _elect_dest_replication_group(
self,
replica_count_source,
under_replicated_rgs,
partition,
) | Decide destination replication-group based on replica-count. | 3.289628 | 2.955546 | 1.113036 |
with open(json_file, 'r') as consumer_offsets_json:
try:
parsed_offsets = {}
parsed_offsets_data = json.load(consumer_offsets_json)
# Create new dict with partition-keys as integers
parsed_offsets['groupid'] = parsed_offsets_data['groupid']
parsed_offsets['offsets'] = {}
for topic, topic_data in six.iteritems(parsed_offsets_data['offsets']):
parsed_offsets['offsets'][topic] = {}
for partition, offset in six.iteritems(topic_data):
parsed_offsets['offsets'][topic][int(partition)] = offset
return parsed_offsets
except ValueError:
print(
"Error: Given consumer-data json data-file {file} could not be "
"parsed".format(file=json_file),
file=sys.stderr,
)
raise | def parse_consumer_offsets(cls, json_file) | Parse current offsets from json-file. | 2.921399 | 2.806733 | 1.040854 |
new_offsets = defaultdict(dict)
try:
for topic, partitions in six.iteritems(topic_partitions):
# Validate current offsets in range of low and highmarks
# Currently we only validate for positive offsets and warn
# if out of range of low and highmarks
valid_partitions = set()
for topic_partition_offsets in current_offsets[topic]:
partition = topic_partition_offsets.partition
valid_partitions.add(partition)
# Skip the partition not present in list
if partition not in topic_partitions[topic]:
continue
lowmark = topic_partition_offsets.lowmark
highmark = topic_partition_offsets.highmark
new_offset = topics_offset_data[topic][partition]
if new_offset < 0:
print(
"Error: Given offset: {offset} is negative"
.format(offset=new_offset),
file=sys.stderr,
)
sys.exit(1)
if new_offset < lowmark or new_offset > highmark:
print(
"Warning: Given offset {offset} for topic-partition "
"{topic}:{partition} is outside the range of lowmark "
"{lowmark} and highmark {highmark}".format(
offset=new_offset,
topic=topic,
partition=partition,
lowmark=lowmark,
highmark=highmark,
)
)
new_offsets[topic][partition] = new_offset
if not set(partitions).issubset(valid_partitions):
print(
"Error: Some invalid partitions {partitions} for topic "
"{topic} found. Valid partition-list {valid_partitions}. "
"Exiting...".format(
partitions=', '.join([str(p) for p in partitions]),
valid_partitions=', '.join([str(p) for p in valid_partitions]),
topic=topic,
),
file=sys.stderr,
)
sys.exit(1)
except KeyError as ex:
print(
"Error: Possible invalid topic or partition. Error msg: {ex}. "
"Exiting...".format(ex=ex),
)
sys.exit(1)
return new_offsets | def build_new_offsets(cls, client, topics_offset_data, topic_partitions, current_offsets) | Build complete consumer offsets from parsed current consumer-offsets
and lowmarks and highmarks from current-offsets for. | 2.522419 | 2.422934 | 1.04106 |
# Fetch current offsets
try:
consumer_group = parsed_consumer_offsets['groupid']
topics_offset_data = parsed_consumer_offsets['offsets']
topic_partitions = dict(
(topic, [partition for partition in offset_data.keys()])
for topic, offset_data in six.iteritems(topics_offset_data)
)
except IndexError:
print(
"Error: Given parsed consumer-offset data {consumer_offsets} "
"could not be parsed".format(consumer_offsets=parsed_consumer_offsets),
file=sys.stderr,
)
raise
current_offsets = get_consumer_offsets_metadata(
client,
consumer_group,
topic_partitions,
)
# Build new offsets
new_offsets = cls.build_new_offsets(
client,
topics_offset_data,
topic_partitions,
current_offsets,
)
# Commit offsets
consumer_group = parsed_consumer_offsets['groupid']
set_consumer_offsets(client, consumer_group, new_offsets)
print("Restored to new offsets {offsets}".format(offsets=dict(new_offsets))) | def restore_offsets(cls, client, parsed_consumer_offsets) | Fetch current offsets from kafka, validate them against given
consumer-offsets data and commit the new offsets.
:param client: Kafka-client
:param parsed_consumer_offsets: Parsed consumer offset data from json file
:type parsed_consumer_offsets: dict(group: dict(topic: partition-offsets)) | 2.982885 | 2.907596 | 1.025894 |
tuple_list = list(tup)
for index, value in pairs:
tuple_list[index] = value
return tuple(tuple_list) | def tuple_replace(tup, *pairs) | Return a copy of a tuple with some elements replaced.
:param tup: The tuple to be copied.
:param pairs: Any number of (index, value) tuples where index is the index
of the item to replace and value is the new value of the item. | 2.676144 | 3.287306 | 0.814084 |
# timeit says that this is faster than a similar
tuple_list = list(tup)
for i, f in pairs:
tuple_list[i] = f(tuple_list[i])
return tuple(tuple_list) | def tuple_alter(tup, *pairs) | Return a copy of a tuple with some elements altered.
:param tup: The tuple to be copied.
:param pairs: Any number of (index, func) tuples where index is the index
of the item to alter and the new value is func(tup[index]). | 5.294024 | 5.300419 | 0.998793 |
tuple_list = list(tup)
for item in items:
tuple_list.remove(item)
return tuple(tuple_list) | def tuple_remove(tup, *items) | Return a copy of a tuple with some items removed.
:param tup: The tuple to be copied.
:param items: Any number of items. The first instance of each item will
be removed from the tuple. | 2.300543 | 3.386401 | 0.679347 |
error_msg = 'Positive integer required, {string} given.'.format(string=string)
try:
value = int(string)
except ValueError:
raise ArgumentTypeError(error_msg)
if value < 0:
raise ArgumentTypeError(error_msg)
return value | def positive_int(string) | Convert string to positive integer. | 2.292733 | 2.216361 | 1.034459 |
error_msg = 'Positive non-zero integer required, {string} given.'.format(string=string)
try:
value = int(string)
except ValueError:
raise ArgumentTypeError(error_msg)
if value <= 0:
raise ArgumentTypeError(error_msg)
return value | def positive_nonzero_int(string) | Convert string to positive integer greater than zero. | 2.427009 | 2.34596 | 1.034548 |
error_msg = 'Positive float required, {string} given.'.format(string=string)
try:
value = float(string)
except ValueError:
raise ArgumentTypeError(error_msg)
if value < 0:
raise ArgumentTypeError(error_msg)
return value | def positive_float(string) | Convert string to positive float. | 2.420738 | 2.331923 | 1.038086 |
return dict(list(set1.items()) + list(set2.items())) | def dict_merge(set1, set2) | Joins two dictionaries. | 2.749715 | 2.617035 | 1.050699 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.