code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
current_nodes = [self] leaves = [] while len(current_nodes) > 0: next_nodes = [] for node in current_nodes: if node.left is None and node.right is None: leaves.append(node) continue if node.left is not None: next_nodes.append(node.left) if node.right is not None: next_nodes.append(node.right) current_nodes = next_nodes return leaves
def leaves(self)
Return the leaf nodes of the binary tree. A leaf node is any node that does not have child nodes. :return: List of leaf nodes. :rtype: [binarytree.Node] **Example**: .. doctest:: >>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.right = Node(4) >>> >>> print(root) <BLANKLINE> __1 / \\ 2 3 \\ 4 <BLANKLINE> >>> root.leaves [Node(3), Node(4)]
1.698474
1.94756
0.872104
properties = _get_tree_properties(self) properties.update({ 'is_bst': _is_bst(self), 'is_balanced': _is_balanced(self) >= 0 }) return properties
def properties(self)
Return various properties of the binary tree. :return: Binary tree properties. :rtype: dict **Example**: .. doctest:: >>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.left = Node(4) >>> root.left.right = Node(5) >>> props = root.properties >>> >>> props['height'] # equivalent to root.height 2 >>> props['size'] # equivalent to root.size 5 >>> props['max_leaf_depth'] # equivalent to root.max_leaf_depth 2 >>> props['min_leaf_depth'] # equivalent to root.min_leaf_depth 1 >>> props['max_node_value'] # equivalent to root.max_node_value 5 >>> props['min_node_value'] # equivalent to root.min_node_value 1 >>> props['leaf_count'] # equivalent to root.leaf_count 3 >>> props['is_balanced'] # equivalent to root.is_balanced True >>> props['is_bst'] # equivalent to root.is_bst False >>> props['is_complete'] # equivalent to root.is_complete True >>> props['is_max_heap'] # equivalent to root.is_max_heap False >>> props['is_min_heap'] # equivalent to root.is_min_heap True >>> props['is_perfect'] # equivalent to root.is_perfect False >>> props['is_strict'] # equivalent to root.is_strict True
5.00016
7.416539
0.67419
node_stack = [] result = [] node = self while True: if node is not None: node_stack.append(node) node = node.left elif len(node_stack) > 0: node = node_stack.pop() result.append(node) node = node.right else: break return result
def inorder(self)
Return the nodes in the binary tree using in-order_ traversal. An in-order_ traversal visits left subtree, root, then right subtree. .. _in-order: https://en.wikipedia.org/wiki/Tree_traversal :return: List of nodes. :rtype: [binarytree.Node] **Example**: .. doctest:: >>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.left = Node(4) >>> root.left.right = Node(5) >>> >>> print(root) <BLANKLINE> __1 / \\ 2 3 / \\ 4 5 <BLANKLINE> >>> root.inorder [Node(4), Node(2), Node(5), Node(1), Node(3)]
1.878722
2.465797
0.761913
node_stack = [self] result = [] while len(node_stack) > 0: node = node_stack.pop() result.append(node) if node.right is not None: node_stack.append(node.right) if node.left is not None: node_stack.append(node.left) return result
def preorder(self)
Return the nodes in the binary tree using pre-order_ traversal. A pre-order_ traversal visits root, left subtree, then right subtree. .. _pre-order: https://en.wikipedia.org/wiki/Tree_traversal :return: List of nodes. :rtype: [binarytree.Node] **Example**: .. doctest:: >>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.left = Node(4) >>> root.left.right = Node(5) >>> >>> print(root) <BLANKLINE> __1 / \\ 2 3 / \\ 4 5 <BLANKLINE> >>> root.preorder [Node(1), Node(2), Node(4), Node(5), Node(3)]
1.707882
2.301873
0.741953
node_stack = [] result = [] node = self while True: while node is not None: if node.right is not None: node_stack.append(node.right) node_stack.append(node) node = node.left node = node_stack.pop() if (node.right is not None and len(node_stack) > 0 and node_stack[-1] is node.right): node_stack.pop() node_stack.append(node) node = node.right else: result.append(node) node = None if len(node_stack) == 0: break return result
def postorder(self)
Return the nodes in the binary tree using post-order_ traversal. A post-order_ traversal visits left subtree, right subtree, then root. .. _post-order: https://en.wikipedia.org/wiki/Tree_traversal :return: List of nodes. :rtype: [binarytree.Node] **Example**: .. doctest:: >>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.left = Node(4) >>> root.left.right = Node(5) >>> >>> print(root) <BLANKLINE> __1 / \\ 2 3 / \\ 4 5 <BLANKLINE> >>> root.postorder [Node(4), Node(5), Node(2), Node(3), Node(1)]
1.792573
2.163114
0.8287
current_nodes = [self] result = [] while len(current_nodes) > 0: next_nodes = [] for node in current_nodes: result.append(node) if node.left is not None: next_nodes.append(node.left) if node.right is not None: next_nodes.append(node.right) current_nodes = next_nodes return result
def levelorder(self)
Return the nodes in the binary tree using level-order_ traversal. A level-order_ traversal visits nodes left to right, level by level. .. _level-order: https://en.wikipedia.org/wiki/Tree_traversal#Breadth-first_search :return: List of nodes. :rtype: [binarytree.Node] **Example**: .. doctest:: >>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.left = Node(4) >>> root.left.right = Node(5) >>> >>> print(root) <BLANKLINE> __1 / \\ 2 3 / \\ 4 5 <BLANKLINE> >>> root.levelorder [Node(1), Node(2), Node(3), Node(4), Node(5)]
1.747797
2.082999
0.839077
# type: (Optional[Text], Optional[Text]) -> BaseBackend backend = backend or ORGS_INVITATION_BACKEND class_module, class_name = backend.rsplit(".", 1) mod = import_module(class_module) return getattr(mod, class_name)(namespace=namespace)
def invitation_backend(backend=None, namespace=None)
Returns a specified invitation backend Args: backend: dotted path to the invitation backend class namespace: URL namespace to use Returns: an instance of an InvitationBackend
3.258252
5.776921
0.564012
# type: (Optional[Text], Optional[Text]) -> BaseBackend backend = backend or ORGS_REGISTRATION_BACKEND class_module, class_name = backend.rsplit(".", 1) mod = import_module(class_module) return getattr(mod, class_name)(namespace=namespace)
def registration_backend(backend=None, namespace=None)
Returns a specified registration backend Args: backend: dotted path to the registration backend class namespace: URL namespace to use Returns: an instance of an RegistrationBackend
3.342334
6.063863
0.551189
class OrganizationRegistrationForm(forms.ModelForm): email = forms.EmailField() class Meta: model = org_model exclude = ("is_active", "users") def save(self, *args, **kwargs): self.instance.is_active = False super(OrganizationRegistrationForm, self).save(*args, **kwargs) return OrganizationRegistrationForm
def org_registration_form(org_model)
Generates a registration ModelForm for the given organization model class
2.454501
2.390118
1.026937
try: user = get_user_model().objects.get( email__iexact=self.cleaned_data["email"] ) except get_user_model().MultipleObjectsReturned: raise forms.ValidationError( _("This email address has been used multiple times.") ) except get_user_model().DoesNotExist: user = invitation_backend().invite_by_email( self.cleaned_data["email"], **{ "domain": get_current_site(self.request), "organization": self.organization, "sender": self.request.user, } ) # Send a notification email to this user to inform them that they # have been added to a new organization. invitation_backend().send_notification( user, **{ "domain": get_current_site(self.request), "organization": self.organization, "sender": self.request.user, } ) return OrganizationUser.objects.create( user=user, organization=self.organization, is_admin=self.cleaned_data["is_admin"], )
def save(self, *args, **kwargs)
The save method should create a new OrganizationUser linking the User matching the provided email address. If not matching User is found it should kick off the registration process. It needs to create a User in order to link it to the Organization.
2.349583
2.21657
1.060008
is_active = True try: user = get_user_model().objects.get(email=self.cleaned_data["email"]) except get_user_model().DoesNotExist: user = invitation_backend().invite_by_email( self.cleaned_data["email"], **{ "domain": get_current_site(self.request), "organization": self.cleaned_data["name"], "sender": self.request.user, "created": True, } ) is_active = False return create_organization( user, self.cleaned_data["name"], self.cleaned_data["slug"], is_active=is_active, )
def save(self, **kwargs)
Create the organization, then get the user, then make the owner.
2.935928
2.63089
1.115945
# type: (Text, AbstractUser, AbstractBaseOrganization) -> OrganizationInvitationBase try: invitee = self.user_model.objects.get(email__iexact=email) except self.user_model.DoesNotExist: invitee = None # TODO allow sending just the OrganizationUser instance user_invitation = self.invitation_model.objects.create( invitee=invitee, invitee_identifier=email.lower(), invited_by=user, organization=organization, ) self.send_invitation(user_invitation) return user_invitation
def invite_by_email(self, email, user, organization, **kwargs)
Primary interface method by which one user invites another to join Args: email: request: **kwargs: Returns: an invitation instance Raises: MultipleObjectsReturned if multiple matching users are found
3.612952
4.747854
0.760965
# type: (OrganizationInvitationBase) -> bool return self.email_message( invitation.invitee_identifier, self.invitation_subject, self.invitation_body, invitation.invited_by, **kwargs ).send()
def send_invitation(self, invitation, **kwargs)
Sends an invitation message for a specific invitation. This could be overridden to do other things, such as sending a confirmation email to the sender. Args: invitation: Returns:
5.316541
6.954588
0.764465
from_email = "%s %s <%s>" % ( sender.first_name, sender.last_name, email.utils.parseaddr(settings.DEFAULT_FROM_EMAIL)[1], ) reply_to = "%s %s <%s>" % (sender.first_name, sender.last_name, sender.email) headers = {"Reply-To": reply_to} kwargs.update({"sender": sender, "recipient": recipient}) subject_template = loader.get_template(subject_template) body_template = loader.get_template(body_template) subject = subject_template.render( kwargs ).strip() # Remove stray newline characters body = body_template.render(kwargs) return message_class(subject, body, from_email, [recipient], headers=headers)
def email_message( self, recipient, # type: Text subject_template, # type: Text body_template, # type: Text sender=None, # type: Optional[AbstractUser] message_class=EmailMessage, **kwargs )
Returns an invitation email message. This can be easily overridden. For instance, to send an HTML message, use the EmailMultiAlternatives message_class and attach the additional conent.
2.338998
2.284465
1.023871
try: cls.module_registry[module]["OrgModel"]._meta.get_field("users") except FieldDoesNotExist: cls.module_registry[module]["OrgModel"].add_to_class( "users", models.ManyToManyField( USER_MODEL, through=cls.module_registry[module]["OrgUserModel"].__name__, related_name="%(app_label)s_%(class)s", ), ) cls.module_registry[module]["OrgModel"].invitation_model = cls.module_registry[ module ][ "OrgInviteModel" ]
def update_org(cls, module)
Adds the `users` field to the organization model
2.926535
2.584506
1.132338
try: cls.module_registry[module]["OrgUserModel"]._meta.get_field("user") except FieldDoesNotExist: cls.module_registry[module]["OrgUserModel"].add_to_class( "user", models.ForeignKey( USER_MODEL, related_name="%(app_label)s_%(class)s", on_delete=models.CASCADE, ), ) try: cls.module_registry[module]["OrgUserModel"]._meta.get_field("organization") except FieldDoesNotExist: cls.module_registry[module]["OrgUserModel"].add_to_class( "organization", models.ForeignKey( cls.module_registry[module]["OrgModel"], related_name="organization_users", on_delete=models.CASCADE, ), )
def update_org_users(cls, module)
Adds the `user` field to the organization user model and the link to the specific organization model.
1.793379
1.633563
1.097833
try: cls.module_registry[module]["OrgOwnerModel"]._meta.get_field( "organization_user" ) except FieldDoesNotExist: cls.module_registry[module]["OrgOwnerModel"].add_to_class( "organization_user", models.OneToOneField( cls.module_registry[module]["OrgUserModel"], on_delete=models.CASCADE, ), ) try: cls.module_registry[module]["OrgOwnerModel"]._meta.get_field("organization") except FieldDoesNotExist: cls.module_registry[module]["OrgOwnerModel"].add_to_class( "organization", models.OneToOneField( cls.module_registry[module]["OrgModel"], related_name="owner", on_delete=models.CASCADE, ), )
def update_org_owner(cls, module)
Creates the links to the organization and organization user for the owner.
1.874336
1.713965
1.093568
try: cls.module_registry[module]["OrgInviteModel"]._meta.get_field("invited_by") except FieldDoesNotExist: cls.module_registry[module]["OrgInviteModel"].add_to_class( "invited_by", models.ForeignKey( USER_MODEL, related_name="%(app_label)s_%(class)s_sent_invitations", on_delete=models.CASCADE, ), ) try: cls.module_registry[module]["OrgInviteModel"]._meta.get_field("invitee") except FieldDoesNotExist: cls.module_registry[module]["OrgInviteModel"].add_to_class( "invitee", models.ForeignKey( USER_MODEL, null=True, blank=True, related_name="%(app_label)s_%(class)s_invitations", on_delete=models.CASCADE, ), ) try: cls.module_registry[module]["OrgInviteModel"]._meta.get_field( "organization" ) except FieldDoesNotExist: cls.module_registry[module]["OrgInviteModel"].add_to_class( "organization", models.ForeignKey( cls.module_registry[module]["OrgModel"], related_name="organization_invites", on_delete=models.CASCADE, ), )
def update_org_invite(cls, module)
Adds the links to the organization and to the organization user
1.558729
1.534208
1.015983
return "{0}_{1}".format( self._meta.app_label.lower(), self.__class__.__name__.lower() )
def user_relation_name(self)
Returns the string name of the related name to the user. This provides a consistent interface across different organization model classes.
4.216812
3.793839
1.111489
if hasattr(self.user, "get_full_name"): return self.user.get_full_name() return "{0}".format(self.user)
def name(self)
Returns the connected user's full name or string representation if the full name method is unavailable (e.g. on a custom user class).
3.551901
2.831607
1.254377
org_user = self.organization.add_user(user, **self.activation_kwargs()) self.invitee = user self.save() return org_user
def activate(self, user)
Updates the `invitee` value and saves the instance Provided as a way of extending the behavior. Args: user: the newly created user Returns: the linking organization user
6.176212
5.356549
1.153021
if hasattr(self, "organization_user"): return self.organization_user organization_pk = self.kwargs.get("organization_pk", None) user_pk = self.kwargs.get("user_pk", None) self.organization_user = get_object_or_404( self.get_user_model().objects.select_related(), user__pk=user_pk, organization__pk=organization_pk, ) return self.organization_user
def get_object(self)
Returns the OrganizationUser object based on the primary keys for both the organization and the organization user.
2.378586
2.151841
1.105373
# Parse the token try: ts_b36, hash = token.split("-") except ValueError: return False try: ts = base36_to_int(ts_b36) except ValueError: return False # Check that the timestamp/uid has not been tampered with if not constant_time_compare(self._make_token_with_timestamp(user, ts), token): return False # Check the timestamp is within limit if (self._num_days(self._today()) - ts) > REGISTRATION_TIMEOUT_DAYS: return False return True
def check_token(self, user, token)
Check that a password reset token is correct for a given user.
4.027878
3.675324
1.095924
org_model = kwargs.pop("model", None) or kwargs.pop( "org_model", None ) or default_org_model() kwargs.pop("org_user_model", None) # Discard deprecated argument org_owner_model = org_model.owner.related.related_model try: # Django 1.9 org_user_model = org_model.organization_users.rel.related_model except AttributeError: # Django 1.8 org_user_model = org_model.organization_users.related.related_model if org_defaults is None: org_defaults = {} if org_user_defaults is None: if "is_admin" in model_field_names(org_user_model): org_user_defaults = {"is_admin": True} else: org_user_defaults = {} if slug is not None: org_defaults.update({"slug": slug}) if is_active is not None: org_defaults.update({"is_active": is_active}) org_defaults.update({"name": name}) organization = org_model.objects.create(**org_defaults) org_user_defaults.update({"organization": organization, "user": user}) new_user = org_user_model.objects.create(**org_user_defaults) org_owner_model.objects.create( organization=organization, organization_user=new_user ) return organization
def create_organization( user, name, slug=None, is_active=None, org_defaults=None, org_user_defaults=None, **kwargs )
Returns a new organization, also creating an initial organization user who is the owner. The specific models can be specified if a custom organization app is used. The simplest way would be to use a partial. >>> from organizations.utils import create_organization >>> from myapp.models import Account >>> from functools import partial >>> create_account = partial(create_organization, model=Account)
2.215972
2.218038
0.999069
fields = dict([(field.name, field) for field in model._meta.fields]) return getattr(fields[model_field], attr)
def model_field_attr(model, model_field, attr)
Returns the specified attribute for the specified field on the model class.
2.824593
2.742651
1.029877
if not hasattr(self, "form_class"): raise AttributeError(_("You must define a form_class")) return self.form_class(**kwargs)
def get_form(self, **kwargs)
Returns the form for registering or inviting a user
3.601847
3.72434
0.96711
try: relation_name = self.org_model().user_relation_name except TypeError: # No org_model specified, raises a TypeError because NoneType is # not callable. This the most sensible default: relation_name = "organizations_organization" organization_set = getattr(user, relation_name) for org in organization_set.filter(is_active=False): org.is_active = True org.save()
def activate_organizations(self, user)
Activates the related organizations for the user. It only activates the related organizations by model type - that is, if there are multiple types of organizations then only organizations in the provided model class are activated.
6.286587
6.125688
1.026266
try: user = self.user_model.objects.get(id=user_id, is_active=False) except self.user_model.DoesNotExist: raise Http404(_("Your URL may have expired.")) if not RegistrationTokenGenerator().check_token(user, token): raise Http404(_("Your URL may have expired.")) form = self.get_form( data=request.POST or None, files=request.FILES or None, instance=user ) if form.is_valid(): form.instance.is_active = True user = form.save() user.set_password(form.cleaned_data["password"]) user.save() self.activate_organizations(user) user = authenticate( username=form.cleaned_data["username"], password=form.cleaned_data["password"], ) login(request, user) return redirect(self.get_success_url()) return render(request, self.registration_form_template, {"form": form})
def activate_view(self, request, user_id, token)
View function that activates the given User by setting `is_active` to true if the provided information is verified.
2.172362
2.184312
0.994529
if user.is_active: return False token = RegistrationTokenGenerator().make_token(user) kwargs.update({"token": token}) self.email_message( user, self.reminder_subject, self.reminder_body, sender, **kwargs ).send()
def send_reminder(self, user, sender=None, **kwargs)
Sends a reminder email to the specified user
4.120022
4.219953
0.97632
if sender: try: display_name = sender.get_full_name() except (AttributeError, TypeError): display_name = sender.get_username() from_email = "%s <%s>" % ( display_name, email.utils.parseaddr(settings.DEFAULT_FROM_EMAIL)[1] ) reply_to = "%s <%s>" % (display_name, sender.email) else: from_email = settings.DEFAULT_FROM_EMAIL reply_to = from_email headers = {"Reply-To": reply_to} kwargs.update({"sender": sender, "user": user}) subject_template = loader.get_template(subject_template) body_template = loader.get_template(body_template) subject = subject_template.render( kwargs ).strip() # Remove stray newline characters body = body_template.render(kwargs) return message_class(subject, body, from_email, [user.email], headers=headers)
def email_message( self, user, subject_template, body_template, sender=None, message_class=EmailMessage, **kwargs )
Returns an email message for a new user. This can be easily overridden. For instance, to send an HTML message, use the EmailMultiAlternatives message_class and attach the additional conent.
2.285553
2.198557
1.03957
try: user = self.user_model.objects.get(email=email) except self.user_model.DoesNotExist: user = self.user_model.objects.create( username=self.get_username(), email=email, password=self.user_model.objects.make_random_password(), ) user.is_active = False user.save() self.send_activation(user, sender, **kwargs) return user
def register_by_email(self, email, sender=None, request=None, **kwargs)
Returns a User object filled with dummy data and not active, and sends an invitation email.
2.016287
2.00606
1.005098
if user.is_active: return False token = self.get_token(user) kwargs.update({"token": token}) self.email_message( user, self.activation_subject, self.activation_body, sender, **kwargs ).send()
def send_activation(self, user, sender=None, **kwargs)
Invites a user to join the site
3.381951
3.566803
0.948174
try: if request.user.is_authenticated(): return redirect("organization_add") except TypeError: if request.user.is_authenticated: return redirect("organization_add") form = org_registration_form(self.org_model)(request.POST or None) if form.is_valid(): try: user = self.user_model.objects.get(email=form.cleaned_data["email"]) except self.user_model.DoesNotExist: user = self.user_model.objects.create( username=self.get_username(), email=form.cleaned_data["email"], password=self.user_model.objects.make_random_password(), ) user.is_active = False user.save() else: return redirect("organization_add") organization = create_organization( user, form.cleaned_data["name"], form.cleaned_data["slug"], is_active=False, ) return render( request, self.activation_success_template, {"user": user, "organization": organization}, ) return render(request, self.registration_form_template, {"form": form})
def create_view(self, request)
Initiates the organization and user account creation process
2.202793
2.141173
1.028778
try: user = self.user_model.objects.get(email=email) except self.user_model.DoesNotExist: # TODO break out user creation process if "username" in inspect.getargspec( self.user_model.objects.create_user ).args: user = self.user_model.objects.create( username=self.get_username(), email=email, password=self.user_model.objects.make_random_password(), ) else: user = self.user_model.objects.create( email=email, password=self.user_model.objects.make_random_password() ) user.is_active = False user.save() self.send_invitation(user, sender, **kwargs) return user
def invite_by_email(self, email, sender=None, request=None, **kwargs)
Creates an inactive user with the information we know and then sends an invitation email for that user to complete registration. If your project uses email in a different way then you should make to extend this method as it only checks the `email` attribute for Users.
2.151868
2.129338
1.01058
if user.is_active: return False token = self.get_token(user) kwargs.update({"token": token}) self.email_message( user, self.invitation_subject, self.invitation_body, sender, **kwargs ).send() return True
def send_invitation(self, user, sender=None, **kwargs)
An intermediary function for sending an invitation email that selects the templates, generating the token, and ensuring that the user has not already joined the site.
3.34565
3.294924
1.015395
if not user.is_active: return False self.email_message( user, self.notification_subject, self.notification_body, sender, **kwargs ).send() return True
def send_notification(self, user, sender=None, **kwargs)
An intermediary function for sending an notification email informing a pre-existing, active user that they have been added to a new organization.
4.180814
4.735067
0.882947
users_count = self.users.all().count() if users_count == 0: is_admin = True # TODO get specific org user? org_user = self._org_user_model.objects.create( user=user, organization=self, is_admin=is_admin ) if users_count == 0: # TODO get specific org user? self._org_owner_model.objects.create( organization=self, organization_user=org_user ) # User added signal user_added.send(sender=self, user=user) return org_user
def add_user(self, user, is_admin=False)
Adds a new user and if the first user makes the user an admin and the owner.
3.494553
3.300638
1.058751
org_user = self._org_user_model.objects.get(user=user, organization=self) org_user.delete() # User removed signal user_removed.send(sender=self, user=user)
def remove_user(self, user)
Deletes a user from an organization.
4.773029
4.038393
1.181913
is_admin = kwargs.pop("is_admin", False) users_count = self.users.all().count() if users_count == 0: is_admin = True org_user, created = self._org_user_model.objects.get_or_create( organization=self, user=user, defaults={"is_admin": is_admin} ) if users_count == 0: self._org_owner_model.objects.create( organization=self, organization_user=org_user ) if created: # User added signal user_added.send(sender=self, user=user) return org_user, created
def get_or_add_user(self, user, **kwargs)
Adds a new user to the organization, and if it's the first user makes the user an admin and the owner. Uses the `get_or_create` method to create or return the existing user. `user` should be a user instance, e.g. `auth.User`. Returns the same tuple as the `get_or_create` method, the `OrganizationUser` and a boolean value indicating whether the OrganizationUser was created or not.
2.789866
2.550682
1.093773
old_owner = self.owner.organization_user self.owner.organization_user = new_owner self.owner.save() # Owner changed signal owner_changed.send(sender=self, old=old_owner, new=new_owner)
def change_owner(self, new_owner)
Changes ownership of an organization.
3.681262
3.3383
1.102736
return True if self.organization_users.filter( user=user, is_admin=True ) else False
def is_admin(self, user)
Returns True is user is an admin in the organization, otherwise false
6.965381
5.230572
1.331667
from organizations.exceptions import OwnershipRequired try: if self.organization.owner.organization_user.pk == self.pk: raise OwnershipRequired( _( "Cannot delete organization owner " "before organization or transferring ownership." ) ) # TODO This line presumes that OrgOwner model can't be modified except self._org_owner_model.DoesNotExist: pass super(AbstractBaseOrganizationUser, self).delete(using=using)
def delete(self, using=None)
If the organization user is also the owner, this should not be deleted unless it's part of a cascade from the Organization. If there is no owner then the deletion should proceed.
8.489153
7.340519
1.156479
from organizations.exceptions import OrganizationMismatch if self.organization_user.organization.pk != self.organization.pk: raise OrganizationMismatch else: super(AbstractBaseOrganizationOwner, self).save(*args, **kwargs)
def save(self, *args, **kwargs)
Extends the default save method by verifying that the chosen organization user is associated with the organization. Method validates against the primary key of the organization because when validating an inherited model it may be checking an instance of `Organization` against an instance of `CustomOrganization`. Mutli-table inheritence means the database keys will be identical though.
6.576055
4.556627
1.443185
parser = argparse.ArgumentParser(description='Convert ULog to KML') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') parser.add_argument('-o', '--output', dest='output_filename', help="output filename", default='track.kml') parser.add_argument('--topic', dest='topic_name', help="topic name with position data (default=vehicle_gps_position)", default='vehicle_gps_position') parser.add_argument('--camera-trigger', dest='camera_trigger', help="Camera trigger topic name (e.g. camera_capture)", default=None) args = parser.parse_args() convert_ulog2kml(args.filename, args.output_filename, position_topic_name=args.topic_name, camera_trigger_topic_name=args.camera_trigger)
def main()
Command line interface
2.879434
2.885156
0.998017
x = max([x, 0]) colors_arr = [simplekml.Color.red, simplekml.Color.green, simplekml.Color.blue, simplekml.Color.violet, simplekml.Color.yellow, simplekml.Color.orange, simplekml.Color.burlywood, simplekml.Color.azure, simplekml.Color.lightblue, simplekml.Color.lawngreen, simplekml.Color.indianred, simplekml.Color.hotpink] return colors_arr[x]
def _kml_default_colors(x)
flight mode to color conversion
2.436793
2.413771
1.009538
default_style = { 'extrude': False, 'line_width': 3 } used_style = default_style if style is not None: for key in style: used_style[key] = style[key] if not isinstance(position_topic_name, list): position_topic_name = [position_topic_name] colors = [colors] kml = simplekml.Kml() load_topic_names = position_topic_name + ['vehicle_status'] if camera_trigger_topic_name is not None: load_topic_names.append(camera_trigger_topic_name) ulog = ULog(ulog_file_name, load_topic_names) # get flight modes try: cur_dataset = ulog.get_dataset('vehicle_status') flight_mode_changes = cur_dataset.list_value_changes('nav_state') flight_mode_changes.append((ulog.last_timestamp, -1)) except (KeyError, IndexError) as error: flight_mode_changes = [] # add the graphs for topic, cur_colors in zip(position_topic_name, colors): _kml_add_position_data(kml, ulog, topic, cur_colors, used_style, altitude_offset, minimum_interval_s, flight_mode_changes) # camera triggers _kml_add_camera_triggers(kml, ulog, camera_trigger_topic_name, altitude_offset) kml.save(output_file_name)
def convert_ulog2kml(ulog_file_name, output_file_name, position_topic_name= 'vehicle_gps_position', colors=_kml_default_colors, altitude_offset=0, minimum_interval_s=0.1, style=None, camera_trigger_topic_name=None)
Coverts and ULog file to a CSV file. :param ulog_file_name: The ULog filename to open and read :param output_file_name: KML Output file name :param position_topic_name: either name of a topic (must have 'lon', 'lat' & 'alt' fields), or a list of topic names :param colors: lambda function with flight mode (int) (or -1) as input and returns a color (eg 'fffff8f0') (or list of lambda functions if multiple position_topic_name's) :param altitude_offset: add this offset to the altitude [m] :param minimum_interval_s: minimum time difference between two datapoints (drop if more points) :param style: dictionary with rendering options: 'extrude': Bool 'line_width': int :param camera_trigger_topic_name: name of the camera trigger topic (must have 'lon', 'lat' & 'seq') :return: None
2.630103
2.520136
1.043635
data = ulog.data_list topic_instance = 0 cur_dataset = [elem for elem in data if elem.name == camera_trigger_topic_name and elem.multi_id == topic_instance] if len(cur_dataset) > 0: cur_dataset = cur_dataset[0] pos_lon = cur_dataset.data['lon'] pos_lat = cur_dataset.data['lat'] pos_alt = cur_dataset.data['alt'] sequence = cur_dataset.data['seq'] for i in range(len(pos_lon)): pnt = kml.newpoint(name='Camera Trigger '+str(sequence[i])) pnt.coords = [(pos_lon[i], pos_lat[i], pos_alt[i] + altitude_offset)]
def _kml_add_camera_triggers(kml, ulog, camera_trigger_topic_name, altitude_offset)
Add camera trigger points to the map
2.80298
2.665483
1.051585
parser = argparse.ArgumentParser( description='Extract the raw gps communication from an ULog file') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') def is_valid_directory(parser, arg): if not os.path.isdir(arg): parser.error('The directory {} does not exist'.format(arg)) # File exists so return the directory return arg parser.add_argument('-o', '--output', dest='output', action='store', help='Output directory (default is CWD)', metavar='DIR', type=lambda x: is_valid_directory(parser, x)) args = parser.parse_args() ulog_file_name = args.filename msg_filter = ['gps_dump'] ulog = ULog(ulog_file_name, msg_filter) data = ulog.data_list output_file_prefix = os.path.basename(ulog_file_name) # strip '.ulg' if output_file_prefix.lower().endswith('.ulg'): output_file_prefix = output_file_prefix[:-4] # write to different output path? if args.output is not None: output_file_prefix = os.path.join(args.output, output_file_prefix) to_dev_filename = output_file_prefix+'_to_device.dat' from_dev_filename = output_file_prefix+'_from_device.dat' if len(data) == 0: print("File {0} does not contain gps_dump messages!".format(ulog_file_name)) exit(0) gps_dump_data = data[0] # message format check field_names = [f.field_name for f in gps_dump_data.field_data] if not 'len' in field_names or not 'data[0]' in field_names: print('Error: gps_dump message has wrong format') exit(-1) if len(ulog.dropouts) > 0: print("Warning: file contains {0} dropouts".format(len(ulog.dropouts))) print("Creating files {0} and {1}".format(to_dev_filename, from_dev_filename)) with open(to_dev_filename, 'wb') as to_dev_file: with open(from_dev_filename, 'wb') as from_dev_file: msg_lens = gps_dump_data.data['len'] for i in range(len(gps_dump_data.data['timestamp'])): msg_len = msg_lens[i] if msg_len & (1<<7): msg_len = msg_len & ~(1<<7) file_handle = to_dev_file else: file_handle = from_dev_file for k in range(msg_len): file_handle.write(gps_dump_data.data['data['+str(k)+']'][i])
def main()
Command line interface
2.665493
2.656722
1.003301
return [elem for elem in self._data_list if elem.name == name and elem.multi_id == multi_instance][0]
def get_dataset(self, name, multi_instance=0)
get a specific dataset. example: try: gyro_data = ulog.get_dataset('sensor_gyro') except (KeyError, IndexError, ValueError) as error: print(type(error), "(sensor_gyro):", error) :param name: name of the dataset :param multi_instance: the multi_id, defaults to the first :raises KeyError, IndexError, ValueError: if name or instance not found
6.32483
5.671854
1.115126
if msg_info.key in self._msg_info_multiple_dict: if msg_info.is_continued: self._msg_info_multiple_dict[msg_info.key][-1].append(msg_info.value) else: self._msg_info_multiple_dict[msg_info.key].append([msg_info.value]) else: self._msg_info_multiple_dict[msg_info.key] = [[msg_info.value]]
def _add_message_info_multiple(self, msg_info)
add a message info multiple to self._msg_info_multiple_dict
1.96871
1.652282
1.19151
if isinstance(log_file, str): self._file_handle = open(log_file, "rb") else: self._file_handle = log_file # parse the whole file self._read_file_header() self._last_timestamp = self._start_timestamp self._read_file_definitions() if self.has_data_appended and len(self._appended_offsets) > 0: if self._debug: print('This file has data appended') for offset in self._appended_offsets: self._read_file_data(message_name_filter_list, read_until=offset) self._file_handle.seek(offset) # read the whole file, or the rest if data appended self._read_file_data(message_name_filter_list) self._file_handle.close() del self._file_handle
def _load_file(self, log_file, message_name_filter_list)
load and parse an ULog file into memory
3.396372
3.172439
1.070587
if read_until is None: read_until = 1 << 50 # make it larger than any possible log file try: # pre-init reusable objects header = self._MessageHeader() msg_data = self._MessageData() while True: data = self._file_handle.read(3) header.initialize(data) data = self._file_handle.read(header.msg_size) if len(data) < header.msg_size: break # less data than expected. File is most likely cut if self._file_handle.tell() > read_until: if self._debug: print('read until offset=%i done, current pos=%i' % (read_until, self._file_handle.tell())) break if header.msg_type == self.MSG_TYPE_INFO: msg_info = self._MessageInfo(data, header) self._msg_info_dict[msg_info.key] = msg_info.value elif header.msg_type == self.MSG_TYPE_INFO_MULTIPLE: msg_info = self._MessageInfo(data, header, is_info_multiple=True) self._add_message_info_multiple(msg_info) elif header.msg_type == self.MSG_TYPE_PARAMETER: msg_info = self._MessageInfo(data, header) self._changed_parameters.append((self._last_timestamp, msg_info.key, msg_info.value)) elif header.msg_type == self.MSG_TYPE_ADD_LOGGED_MSG: msg_add_logged = self._MessageAddLogged(data, header, self._message_formats) if (message_name_filter_list is None or msg_add_logged.message_name in message_name_filter_list): self._subscriptions[msg_add_logged.msg_id] = msg_add_logged else: self._filtered_message_ids.add(msg_add_logged.msg_id) elif header.msg_type == self.MSG_TYPE_LOGGING: msg_logging = self.MessageLogging(data, header) self._logged_messages.append(msg_logging) elif header.msg_type == self.MSG_TYPE_DATA: msg_data.initialize(data, header, self._subscriptions, self) if msg_data.timestamp != 0 and msg_data.timestamp > self._last_timestamp: self._last_timestamp = msg_data.timestamp elif header.msg_type == self.MSG_TYPE_DROPOUT: msg_dropout = self.MessageDropout(data, header, self._last_timestamp) self._dropouts.append(msg_dropout) else: if self._debug: print('_read_file_data: unknown message type: %i (%s)' % (header.msg_type, chr(header.msg_type))) file_position = self._file_handle.tell() print('file position: %i (0x%x) msg size: %i' % ( file_position, file_position, header.msg_size)) if self._check_file_corruption(header): # seek back to advance only by a single byte instead of # skipping the message self._file_handle.seek(-2-header.msg_size, 1) except struct.error: pass #we read past the end of the file # convert into final representation while self._subscriptions: _, value = self._subscriptions.popitem() if len(value.buffer) > 0: # only add if we have data data_item = ULog.Data(value) self._data_list.append(data_item)
def _read_file_data(self, message_name_filter_list, read_until=None)
read the file data section :param read_until: an optional file offset: if set, parse only up to this offset (smaller than)
3.026786
3.002519
1.008082
# We need to handle 2 cases: # - corrupt file (we do our best to read the rest of the file) # - new ULog message type got added (we just want to skip the message) if header.msg_type == 0 or header.msg_size == 0 or header.msg_size > 10000: if not self._file_corrupt and self._debug: print('File corruption detected') self._file_corrupt = True return self._file_corrupt
def _check_file_corruption(self, header)
check for file corruption based on an unknown message type in the header
5.856185
5.452462
1.074044
if key_name in self._msg_info_dict: val = self._msg_info_dict[key_name] return ((val >> 24) & 0xff, (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff) return None
def get_version_info(self, key_name='ver_sw_release')
get the (major, minor, patch, type) version information as tuple. Returns None if not found definition of type is: >= 0: development >= 64: alpha version >= 128: beta version >= 192: RC version == 255: release version
2.234154
2.185542
1.022242
version = self.get_version_info(key_name) if not version is None and version[3] >= 64: type_str = '' if version[3] < 128: type_str = ' (alpha)' elif version[3] < 192: type_str = ' (beta)' elif version[3] < 255: type_str = ' (RC)' return 'v{}.{}.{}{}'.format(version[0], version[1], version[2], type_str) return None
def get_version_info_str(self, key_name='ver_sw_release')
get version information in the form 'v1.2.3 (RC)', or None if version tag either not found or it's a development version
2.585657
2.449822
1.055447
parser = argparse.ArgumentParser(description='Convert ULog to CSV') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') parser.add_argument( '-m', '--messages', dest='messages', help=("Only consider given messages. Must be a comma-separated list of" " names, like 'sensor_combined,vehicle_gps_position'")) parser.add_argument('-d', '--delimiter', dest='delimiter', action='store', help="Use delimiter in CSV (default is ',')", default=',') parser.add_argument('-o', '--output', dest='output', action='store', help='Output directory (default is same as input file)', metavar='DIR') args = parser.parse_args() if args.output and not os.path.isdir(args.output): print('Creating output directory {:}'.format(args.output)) os.mkdir(args.output) convert_ulog2csv(args.filename, args.messages, args.output, args.delimiter)
def main()
Command line interface
3.202885
3.204958
0.999353
msg_filter = messages.split(',') if messages else None ulog = ULog(ulog_file_name, msg_filter) data = ulog.data_list output_file_prefix = ulog_file_name # strip '.ulg' if output_file_prefix.lower().endswith('.ulg'): output_file_prefix = output_file_prefix[:-4] # write to different output path? if output: base_name = os.path.basename(output_file_prefix) output_file_prefix = os.path.join(output, base_name) for d in data: fmt = '{0}_{1}_{2}.csv' output_file_name = fmt.format(output_file_prefix, d.name, d.multi_id) fmt = 'Writing {0} ({1} data points)' # print(fmt.format(output_file_name, len(d.data['timestamp']))) with open(output_file_name, 'w') as csvfile: # use same field order as in the log, except for the timestamp data_keys = [f.field_name for f in d.field_data] data_keys.remove('timestamp') data_keys.insert(0, 'timestamp') # we want timestamp at first position # we don't use np.savetxt, because we have multiple arrays with # potentially different data types. However the following is quite # slow... # write the header csvfile.write(delimiter.join(data_keys) + '\n') # write the data last_elem = len(data_keys)-1 for i in range(len(d.data['timestamp'])): for k in range(len(data_keys)): csvfile.write(str(d.data[data_keys[k]][i])) if k != last_elem: csvfile.write(delimiter) csvfile.write('\n')
def convert_ulog2csv(ulog_file_name, messages, output, delimiter)
Coverts and ULog file to a CSV file. :param ulog_file_name: The ULog filename to open and read :param messages: A list of message names :param output: Output file path :param delimiter: CSV delimiter :return: None
3.046809
3.101909
0.982237
m1, s1 = divmod(int(ulog.start_timestamp/1e6), 60) h1, m1 = divmod(m1, 60) m2, s2 = divmod(int((ulog.last_timestamp - ulog.start_timestamp)/1e6), 60) h2, m2 = divmod(m2, 60) print("Logging start time: {:d}:{:02d}:{:02d}, duration: {:d}:{:02d}:{:02d}".format( h1, m1, s1, h2, m2, s2)) dropout_durations = [dropout.duration for dropout in ulog.dropouts] if len(dropout_durations) == 0: print("No Dropouts") else: print("Dropouts: count: {:}, total duration: {:.1f} s, max: {:} ms, mean: {:} ms" .format(len(dropout_durations), sum(dropout_durations)/1000., max(dropout_durations), int(sum(dropout_durations)/len(dropout_durations)))) version = ulog.get_version_info_str() if not version is None: print('SW Version: {}'.format(version)) print("Info Messages:") for k in sorted(ulog.msg_info_dict): if not k.startswith('perf_') or verbose: print(" {0}: {1}".format(k, ulog.msg_info_dict[k])) if len(ulog.msg_info_multiple_dict) > 0: if verbose: print("Info Multiple Messages:") for k in sorted(ulog.msg_info_multiple_dict): print(" {0}: {1}".format(k, ulog.msg_info_multiple_dict[k])) else: print("Info Multiple Messages: {}".format( ", ".join(["[{}: {}]".format(k, len(ulog.msg_info_multiple_dict[k])) for k in sorted(ulog.msg_info_multiple_dict)]))) print("") print("{:<41} {:7}, {:10}".format("Name (multi id, message size in bytes)", "number of data points", "total bytes")) data_list_sorted = sorted(ulog.data_list, key=lambda d: d.name + str(d.multi_id)) for d in data_list_sorted: message_size = sum([ULog.get_field_size(f.type_str) for f in d.field_data]) num_data_points = len(d.data['timestamp']) name_id = "{:} ({:}, {:})".format(d.name, d.multi_id, message_size) print(" {:<40} {:7d} {:10d}".format(name_id, num_data_points, message_size * num_data_points))
def show_info(ulog, verbose)
Show general information from an ULog
2.654045
2.653331
1.000269
parser = argparse.ArgumentParser(description='Display information from an ULog file') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Verbose output', default=False) parser.add_argument('-m', '--message', dest='message', help='Show a specific Info Multiple Message') parser.add_argument('-n', '--newline', dest='newline', action='store_true', help='Add newline separators (only with --message)', default=False) args = parser.parse_args() ulog_file_name = args.filename ulog = ULog(ulog_file_name) message = args.message if message: separator = "" if args.newline: separator = "\n" if len(ulog.msg_info_multiple_dict) > 0 and message in ulog.msg_info_multiple_dict: message_info_multiple = ulog.msg_info_multiple_dict[message] for i, m in enumerate(message_info_multiple): print("# {} {}:".format(message, i)) print(separator.join(m)) else: print("message {} not found".format(message)) else: show_info(ulog, args.verbose)
def main()
Commande line interface
2.641922
2.621634
1.007739
parser = argparse.ArgumentParser(description='Display logged messages from an ULog file') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') args = parser.parse_args() ulog_file_name = args.filename msg_filter = [] # we don't need the data messages ulog = ULog(ulog_file_name, msg_filter) for m in ulog.logged_messages: m1, s1 = divmod(int(m.timestamp/1e6), 60) h1, m1 = divmod(m1, 60) print("{:d}:{:02d}:{:02d} {:}: {:}".format( h1, m1, s1, m.log_level_str(), m.message))
def main()
Commande line interface
3.615132
3.54272
1.02044
parser = argparse.ArgumentParser(description='Extract parameters from an ULog file') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') parser.add_argument('-d', '--delimiter', dest='delimiter', action='store', help='Use delimiter in CSV (default is \',\')', default=',') parser.add_argument('-i', '--initial', dest='initial', action='store_true', help='Only extract initial parameters', default=False) parser.add_argument('-o', '--octave', dest='octave', action='store_true', help='Use Octave format', default=False) parser.add_argument('-t', '--timestamps', dest='timestamps', action='store_true', help='Extract changed parameters with timestamps', default=False) parser.add_argument('output_filename', metavar='params.txt', type=argparse.FileType('w'), nargs='?', help='Output filename (default=stdout)', default=sys.stdout) args = parser.parse_args() ulog_file_name = args.filename message_filter = [] if not args.initial: message_filter = None ulog = ULog(ulog_file_name, message_filter) param_keys = sorted(ulog.initial_parameters.keys()) delimiter = args.delimiter output_file = args.output_filename if not args.octave: for param_key in param_keys: output_file.write(param_key) if args.initial: output_file.write(delimiter) output_file.write(str(ulog.initial_parameters[param_key])) output_file.write('\n') elif args.timestamps: output_file.write(delimiter) output_file.write(str(ulog.initial_parameters[param_key])) for t, name, value in ulog.changed_parameters: if name == param_key: output_file.write(delimiter) output_file.write(str(value)) output_file.write('\n') output_file.write("timestamp") output_file.write(delimiter) output_file.write('0') for t, name, value in ulog.changed_parameters: if name == param_key: output_file.write(delimiter) output_file.write(str(t)) output_file.write('\n') else: for t, name, value in ulog.changed_parameters: if name == param_key: output_file.write(delimiter) output_file.write(str(value)) output_file.write('\n') else: for param_key in param_keys: output_file.write('# name ') output_file.write(param_key) values = [ulog.initial_parameters[param_key]] if not args.initial: for t, name, value in ulog.changed_parameters: if name == param_key: values += [value] if len(values) > 1: output_file.write('\n# type: matrix\n') output_file.write('# rows: 1\n') output_file.write('# columns: ') output_file.write(str(len(values)) + '\n') for value in values: output_file.write(str(value) + ' ') else: output_file.write('\n# type: scalar\n') output_file.write(str(values[0])) output_file.write('\n')
def main()
Commande line interface
1.921724
1.919935
1.000932
mav_type = self._ulog.initial_parameters.get('MAV_TYPE', None) if mav_type == 1: # fixed wing always uses EKF2 return 'EKF2' mc_est_group = self._ulog.initial_parameters.get('SYS_MC_EST_GROUP', None) return {0: 'INAV', 1: 'LPE', 2: 'EKF2', 3: 'IEKF'}.get(mc_est_group, 'unknown ({})'.format(mc_est_group))
def get_estimator(self)
return the configured estimator as string from initial parameters
6.349438
5.630481
1.12769
self._add_roll_pitch_yaw_to_message('vehicle_attitude') self._add_roll_pitch_yaw_to_message('vehicle_vision_attitude') self._add_roll_pitch_yaw_to_message('vehicle_attitude_groundtruth') self._add_roll_pitch_yaw_to_message('vehicle_attitude_setpoint', '_d')
def add_roll_pitch_yaw(self)
convenience method to add the fields 'roll', 'pitch', 'yaw' to the loaded data using the quaternion fields (does not update field_data). Messages are: 'vehicle_attitude.q' and 'vehicle_attitude_setpoint.q_d', 'vehicle_attitude_groundtruth.q' and 'vehicle_vision_attitude.q'
3.346507
1.858368
1.800777
ret_val = [] for key in self._ulog.initial_parameters: param_val = self._ulog.initial_parameters[key] if key.startswith('RC_MAP_') and param_val == channel + 1: ret_val.append(key[7:].capitalize()) if len(ret_val) > 0: return ret_val return None
def get_configured_rc_input_names(self, channel)
find all RC mappings to a given channel and return their names :param channel: input channel (0=first) :return: list of strings or None
4.320639
4.22786
1.021945
directory = os.path.abspath(directory) config = load_config(directory) to_err = draft click.echo("Loading template...", err=to_err) if config["template"] is None: template = pkg_resources.resource_string( __name__, "templates/template.rst" ).decode("utf8") else: with open(config["template"], "rb") as tmpl: template = tmpl.read().decode("utf8") click.echo("Finding news fragments...", err=to_err) definitions = config["types"] if config.get("directory"): base_directory = os.path.abspath(config["directory"]) fragment_directory = None else: base_directory = os.path.abspath( os.path.join(directory, config["package_dir"], config["package"]) ) fragment_directory = "newsfragments" fragments, fragment_filenames = find_fragments( base_directory, config["sections"], fragment_directory, definitions ) click.echo("Rendering news fragments...", err=to_err) fragments = split_fragments(fragments, definitions) rendered = render_fragments( # The 0th underline is used for the top line template, config["issue_format"], fragments, definitions, config["underlines"][1:], config["wrap"], ) if project_version is None: project_version = get_version( os.path.join(directory, config["package_dir"]), config["package"] ) if project_name is None: package = config.get("package") if package: project_name = get_project_name( os.path.abspath(os.path.join(directory, config["package_dir"])), package ) else: # Can't determine a project_name, but maybe it is not needed. project_name = "" if project_date is None: project_date = _get_date() top_line = config["title_format"].format( name=project_name, version=project_version, project_date=project_date ) top_line += u"\n" + (config["underlines"][0] * len(top_line)) + u"\n" if draft: click.echo( "Draft only -- nothing has been written.\n" "What is seen below is what would be written.\n", err=to_err, ) click.echo("%s\n%s" % (top_line, rendered)) else: click.echo("Writing to newsfile...", err=to_err) start_line = config["start_line"] append_to_newsfile( directory, config["filename"], start_line, top_line, rendered ) click.echo("Staging newsfile...", err=to_err) stage_newsfile(directory, config["filename"]) click.echo("Removing news fragments...", err=to_err) remove_files(fragment_filenames, answer_yes) click.echo("Done!", err=to_err)
def __main(draft, directory, project_name, project_version, project_date, answer_yes)
The main entry point.
3.044418
3.037898
1.002146
content = OrderedDict() fragment_filenames = [] for key, val in sections.items(): if fragment_directory is not None: section_dir = os.path.join(base_directory, val, fragment_directory) else: section_dir = os.path.join(base_directory, val) files = os.listdir(section_dir) file_content = {} for basename in files: parts = basename.split(u".") counter = 0 if len(parts) == 1: continue else: ticket, category = parts[:2] # If there is a number after the category then use it as a counter, # otherwise ignore it. # This means 1.feature.1 and 1.feature do not conflict but # 1.feature.rst and 1.feature do. if len(parts) > 2: try: counter = int(parts[2]) except ValueError: pass if category not in definitions: continue full_filename = os.path.join(section_dir, basename) fragment_filenames.append(full_filename) with open(full_filename, "rb") as f: data = f.read().decode("utf8", "replace") if (ticket, category, counter) in file_content: raise ValueError( "multiple files for {}.{} in {}".format( ticket, category, section_dir ) ) file_content[ticket, category, counter] = data content[key] = file_content return content, fragment_filenames
def find_fragments(base_directory, sections, fragment_directory, definitions)
Sections are a dictonary of section names to paths.
2.873085
2.848692
1.008563
# Based on Python 3's textwrap.indent def prefixed_lines(): for line in text.splitlines(True): yield (prefix + line if line.strip() else line) return u"".join(prefixed_lines())
def indent(text, prefix)
Adds `prefix` to the beginning of non-empty lines in `text`.
3.253721
3.444002
0.94475
jinja_template = Template(template, trim_blocks=True) data = OrderedDict() for section_name, section_value in fragments.items(): data[section_name] = OrderedDict() for category_name, category_value in section_value.items(): # Suppose we start with an ordering like this: # # - Fix the thing (#7, #123, #2) # - Fix the other thing (#1) # First we sort the issues inside each line: # # - Fix the thing (#2, #7, #123) # - Fix the other thing (#1) entries = [] for text, issues in category_value.items(): entries.append((text, sorted(issues, key=issue_key))) # Then we sort the lines: # # - Fix the other thing (#1) # - Fix the thing (#2, #7, #123) entries.sort(key=entry_key) # Then we put these nicely sorted entries back in an ordered dict # for the template, after formatting each issue number categories = OrderedDict() for text, issues in entries: rendered = [render_issue(issue_format, i) for i in issues] categories[text] = rendered data[section_name][category_name] = categories done = [] res = jinja_template.render( sections=data, definitions=definitions, underlines=underlines ) for line in res.split(u"\n"): if wrap: done.append( textwrap.fill( line, width=79, subsequent_indent=u" ", break_long_words=False, break_on_hyphens=False, ) ) else: done.append(line) return u"\n".join(done).rstrip() + u"\n"
def render_fragments(template, issue_format, fragments, definitions, underlines, wrap)
Render the fragments into a news file.
2.948184
2.943806
1.001487
a = 3 / 8 if n <= 10 else 0.5 return (np.arange(n) + 1 - a) / (n + 1 - 2 * a)
def _ppoints(n, a=0.5)
Ordinates For Probability Plotting. Numpy analogue or `R`'s `ppoints` function. Parameters ---------- n : int Number of points generated a : float Offset fraction (typically between 0 and 1) Returns ------- p : array Sequence of probabilities at which to evaluate the inverse distribution.
4.674747
6.23789
0.749411
# Check that stasmodels is installed from pingouin.utils import _is_statsmodels_installed _is_statsmodels_installed(raise_error=True) from statsmodels.api import stats from statsmodels.formula.api import ols # Check that covariates are numeric ('float', 'int') assert all([data[covar[i]].dtype.kind in 'fi' for i in range(len(covar))]) # Fit ANCOVA model formula = dv + ' ~ C(' + between + ')' for c in covar: formula += ' + ' + c model = ols(formula, data=data).fit() aov = stats.anova_lm(model, typ=2).reset_index() aov.rename(columns={'index': 'Source', 'sum_sq': 'SS', 'df': 'DF', 'PR(>F)': 'p-unc'}, inplace=True) aov.loc[0, 'Source'] = between aov['DF'] = aov['DF'].astype(int) aov[['SS', 'F']] = aov[['SS', 'F']].round(3) # Export to .csv if export_filename is not None: _export_table(aov, export_filename) return aov
def ancovan(dv=None, covar=None, between=None, data=None, export_filename=None)
ANCOVA with n covariates. This is an internal function. The main call to this function should be done by the :py:func:`pingouin.ancova` function. Parameters ---------- dv : string Name of column containing the dependant variable. covar : string Name(s) of columns containing the covariates. between : string Name of column containing the between factor. data : pandas DataFrame DataFrame export_filename : string Filename (without extension) for the output file. If None, do not export the table. By default, the file will be created in the current python console directory. To change that, specify the filename with full path. Returns ------- aov : DataFrame ANCOVA summary :: 'Source' : Names of the factor considered 'SS' : Sums of squares 'DF' : Degrees of freedom 'F' : F-values 'p-unc' : Uncorrected p-values
3.508712
2.968722
1.181893
# Check extension d, ext = op.splitext(dname) if ext.lower() == '.csv': dname = d # Check that dataset exist if dname not in dts['dataset'].values: raise ValueError('Dataset does not exist. Valid datasets names are', dts['dataset'].values) # Load dataset return pd.read_csv(op.join(ddir, dname + '.csv'), sep=',')
def read_dataset(dname)
Read example datasets. Parameters ---------- dname : string Name of dataset to read (without extension). Must be a valid dataset present in pingouin.datasets Returns ------- data : pd.DataFrame Dataset Examples -------- Load the ANOVA dataset >>> from pingouin import read_dataset >>> df = read_dataset('anova')
4.244759
5.309356
0.799487
assert tail in ['two-sided', 'upper', 'lower'], 'Wrong tail argument.' assert isinstance(estimate, (int, float)) bootstat = np.asarray(bootstat) assert bootstat.ndim == 1, 'bootstat must be a 1D array.' n_boot = bootstat.size assert n_boot >= 1, 'bootstat must have at least one value.' if tail == 'upper': p = np.greater_equal(bootstat, estimate).sum() / n_boot elif tail == 'lower': p = np.less_equal(bootstat, estimate).sum() / n_boot else: p = np.greater_equal(np.fabs(bootstat), abs(estimate)).sum() / n_boot return p
def _perm_pval(bootstat, estimate, tail='two-sided')
Compute p-values from a permutation test. Parameters ---------- bootstat : 1D array Permutation distribution. estimate : float or int Point estimate. tail : str 'upper': one-sided p-value (upper tail) 'lower': one-sided p-value (lower tail) 'two-sided': two-sided p-value Returns ------- p : float P-value.
2.148579
2.154421
0.997289
if 'F' in df.keys(): print('\n=============\nANOVA SUMMARY\n=============\n') if 'A' in df.keys(): print('\n==============\nPOST HOC TESTS\n==============\n') print(tabulate(df, headers="keys", showindex=False, floatfmt=floatfmt, tablefmt=tablefmt)) print('')
def print_table(df, floatfmt=".3f", tablefmt='simple')
Pretty display of table. See: https://pypi.org/project/tabulate/. Parameters ---------- df : DataFrame Dataframe to print (e.g. ANOVA summary) floatfmt : string Decimal number formatting tablefmt : string Table format (e.g. 'simple', 'plain', 'html', 'latex', 'grid')
4.325255
4.285407
1.009298
import os.path as op extension = op.splitext(fname.lower())[1] if extension == '': fname = fname + '.csv' table.to_csv(fname, index=None, sep=',', encoding='utf-8', float_format='%.4f', decimal='.')
def _export_table(table, fname)
Export DataFrame to .csv
3.410904
3.168677
1.076444
if x.ndim == 1: # 1D arrays x_mask = ~np.isnan(x) else: # 2D arrays ax = 1 if axis == 'rows' else 0 x_mask = ~np.any(np.isnan(x), axis=ax) # Check if missing values are present if ~x_mask.all(): ax = 0 if axis == 'rows' else 1 ax = 0 if x.ndim == 1 else ax x = x.compress(x_mask, axis=ax) return x
def _remove_na_single(x, axis='rows')
Remove NaN in a single array. This is an internal Pingouin function.
2.557142
2.499004
1.023264
# Safety checks x = np.asarray(x) assert x.size > 1, 'x must have more than one element.' assert axis in ['rows', 'columns'], 'axis must be rows or columns.' if y is None: return _remove_na_single(x, axis=axis) elif isinstance(y, (int, float, str)): return _remove_na_single(x, axis=axis), y elif isinstance(y, (list, np.ndarray)): y = np.asarray(y) # Make sure that we just pass-through if y have only 1 element if y.size == 1: return _remove_na_single(x, axis=axis), y if x.ndim != y.ndim or paired is False: # x and y do not have the same dimension x_no_nan = _remove_na_single(x, axis=axis) y_no_nan = _remove_na_single(y, axis=axis) return x_no_nan, y_no_nan # At this point, we assume that x and y are paired and have same dimensions if x.ndim == 1: # 1D arrays x_mask = ~np.isnan(x) y_mask = ~np.isnan(y) else: # 2D arrays ax = 1 if axis == 'rows' else 0 x_mask = ~np.any(np.isnan(x), axis=ax) y_mask = ~np.any(np.isnan(y), axis=ax) # Check if missing values are present if ~x_mask.all() or ~y_mask.all(): ax = 0 if axis == 'rows' else 1 ax = 0 if x.ndim == 1 else ax both = np.logical_and(x_mask, y_mask) x = x.compress(both, axis=ax) y = y.compress(both, axis=ax) return x, y
def remove_na(x, y=None, paired=False, axis='rows')
Remove missing values along a given axis in one or more (paired) numpy arrays. Parameters ---------- x, y : 1D or 2D arrays Data. ``x`` and ``y`` must have the same number of dimensions. ``y`` can be None to only remove missing values in ``x``. paired : bool Indicates if the measurements are paired or not. axis : str Axis or axes along which missing values are removed. Can be 'rows' or 'columns'. This has no effect if ``x`` and ``y`` are one-dimensional arrays. Returns ------- x, y : np.ndarray Data without missing values Examples -------- Single 1D array >>> import numpy as np >>> from pingouin import remove_na >>> x = [6.4, 3.2, 4.5, np.nan] >>> remove_na(x) array([6.4, 3.2, 4.5]) With two paired 1D arrays >>> y = [2.3, np.nan, 5.2, 4.6] >>> remove_na(x, y, paired=True) (array([6.4, 4.5]), array([2.3, 5.2])) With two independent 2D arrays >>> x = np.array([[4, 2], [4, np.nan], [7, 6]]) >>> y = np.array([[6, np.nan], [3, 2], [2, 2]]) >>> x_no_nan, y_no_nan = remove_na(x, y, paired=False)
2.285095
2.482
0.920667
# Safety checks assert isinstance(aggregate, str), 'aggregate must be a str.' assert isinstance(within, (str, list)), 'within must be str or list.' assert isinstance(subject, str), 'subject must be a string.' assert isinstance(data, pd.DataFrame), 'Data must be a DataFrame.' idx_cols = _flatten_list([subject, within]) all_cols = data.columns if data[idx_cols].isnull().any().any(): raise ValueError("NaN are present in the within-factors or in the " "subject column. Please remove them manually.") # Check if more within-factors are present and if so, aggregate if (data.groupby(idx_cols).count() > 1).any().any(): # Make sure that we keep the non-numeric columns when aggregating # This is disabled by default to avoid any confusion. # all_others = all_cols.difference(idx_cols) # all_num = data[all_others].select_dtypes(include='number').columns # agg = {c: aggregate if c in all_num else 'first' for c in all_others} data = data.groupby(idx_cols).agg(aggregate) else: # Set subject + within factors as index. # Sorting is done to avoid performance warning when dropping. data = data.set_index(idx_cols).sort_index() # Find index with missing values if dv is None: iloc_nan = data.isnull().values.nonzero()[0] else: iloc_nan = data[dv].isnull().values.nonzero()[0] # Drop the last within level idx_nan = data.index[iloc_nan].droplevel(-1) # Drop and re-order data = data.drop(idx_nan).reset_index(drop=False) return data.reindex(columns=all_cols).dropna(how='all', axis=1)
def remove_rm_na(dv=None, within=None, subject=None, data=None, aggregate='mean')
Remove missing values in long-format repeated-measures dataframe. Parameters ---------- dv : string or list Dependent variable(s), from which the missing values should be removed. If ``dv`` is not specified, all the columns in the dataframe are considered. ``dv`` must be numeric. within : string or list Within-subject factor(s). subject : string Subject identifier. data : dataframe Long-format dataframe. aggregate : string Aggregation method if there are more within-factors in the data than specified in the ``within`` argument. Can be `mean`, `median`, `sum`, `first`, `last`, or any other function accepted by :py:meth:`pandas.DataFrame.groupby`. Returns ------- data : dataframe Dataframe without the missing values. Notes ----- If multiple factors are specified, the missing values are removed on the last factor, so the order of ``within`` is important. In addition, if there are more within-factors in the data than specified in the ``within`` argument, data will be aggregated using the function specified in ``aggregate``. Note that in the default case (aggregation using the mean), all the non-numeric column(s) will be dropped.
4.033256
3.81918
1.056053
result = [] # Remove None x = list(filter(None.__ne__, x)) for el in x: x_is_iter = isinstance(x, collections.Iterable) if x_is_iter and not isinstance(el, (str, tuple)): result.extend(_flatten_list(el)) else: result.append(el) return result
def _flatten_list(x)
Flatten an arbitrarily nested list into a new list. This can be useful to select pandas DataFrame columns. From https://stackoverflow.com/a/16176969/10581531 Examples -------- >>> from pingouin.utils import _flatten_list >>> x = ['X1', ['M1', 'M2'], 'Y1', ['Y2']] >>> _flatten_list(x) ['X1', 'M1', 'M2', 'Y1', 'Y2'] >>> x = ['Xaa', 'Xbb', 'Xcc'] >>> _flatten_list(x) ['Xaa', 'Xbb', 'Xcc']
2.678454
3.748447
0.71455
# Check that data is a dataframe if not isinstance(data, pd.DataFrame): raise ValueError('Data must be a pandas dataframe.') # Check that both dv and data are provided. if any(v is None for v in [dv, data]): raise ValueError('DV and data must be specified') # Check that dv is a numeric variable if data[dv].dtype.kind not in 'fi': raise ValueError('DV must be numeric.') # Check that effects is provided if effects not in ['within', 'between', 'interaction', 'all']: raise ValueError('Effects must be: within, between, interaction, all') # Check that within is a string or a list (rm_anova2) if effects == 'within' and not isinstance(within, (str, list)): raise ValueError('within must be a string or a list.') # Check that subject identifier is provided in rm_anova and friedman. if effects == 'within' and subject is None: raise ValueError('subject must be specified when effects=within') # Check that between is a string or a list (anova2) if effects == 'between' and not isinstance(between, (str, list)): raise ValueError('between must be a string or a list.') # Check that both between and within are present for interaction if effects == 'interaction': for input in [within, between]: if not isinstance(input, (str, list)): raise ValueError('within and between must be specified when ' 'effects=interaction')
def _check_dataframe(dv=None, between=None, within=None, subject=None, effects=None, data=None)
Check dataframe
2.857942
2.820945
1.013115
if bf >= 1e4 or bf <= 1e-4: out = np.format_float_scientific(bf, precision=precision, trim=trim) else: out = np.format_float_positional(bf, precision=precision, trim=trim) return out
def _format_bf(bf, precision=3, trim='0')
Format BF10 to floating point or scientific notation.
2.38458
2.143653
1.112391
from scipy.special import gamma # Function to be integrated def fun(g, r, n): return np.exp(((n - 2) / 2) * np.log(1 + g) + (-(n - 1) / 2) * np.log(1 + (1 - r**2) * g) + (-3 / 2) * np.log(g) + - n / (2 * g)) # JZS Bayes factor calculation integr = quad(fun, 0, np.inf, args=(r, n))[0] bf10 = np.sqrt((n / 2)) / gamma(1 / 2) * integr return _format_bf(bf10)
def bayesfactor_pearson(r, n)
Bayes Factor of a Pearson correlation. Parameters ---------- r : float Pearson correlation coefficient n : int Sample size Returns ------- bf : str Bayes Factor (BF10). The Bayes Factor quantifies the evidence in favour of the alternative hypothesis. Notes ----- Adapted from a Matlab code found at https://github.com/anne-urai/Tools/blob/master/stats/BayesFactors/corrbf.m If you would like to compute the Bayes Factor directly from the raw data instead of from the correlation coefficient, use the :py:func:`pingouin.corr` function. The JZS Bayes Factor is approximated using the formula described in ref [1]_: .. math:: BF_{10} = \\frac{\\sqrt{n/2}}{\\gamma(1/2)}* \\int_{0}^{\\infty}e((n-2)/2)* log(1+g)+(-(n-1)/2)log(1+(1-r^2)*g)+(-3/2)log(g)-n/2g where **n** is the sample size and **r** is the Pearson correlation coefficient. References ---------- .. [1] Wetzels, R., Wagenmakers, E.-J., 2012. A default Bayesian hypothesis test for correlations and partial correlations. Psychon. Bull. Rev. 19, 1057–1064. https://doi.org/10.3758/s13423-012-0295-x Examples -------- Bayes Factor of a Pearson correlation >>> from pingouin import bayesfactor_pearson >>> bf = bayesfactor_pearson(0.6, 20) >>> print("Bayes Factor: %s" % bf) Bayes Factor: 8.221
5.013548
3.229557
1.552395
from scipy.stats import gmean # Geometric mean geo_mean = gmean(x) # Geometric standard deviation gstd = np.exp(np.sqrt(np.sum((np.log(x / geo_mean))**2) / (len(x) - 1))) # Geometric z-score return np.log(x / geo_mean) / np.log(gstd)
def gzscore(x)
Geometric standard (Z) score. Parameters ---------- x : array_like Array of raw values Returns ------- gzscore : array_like Array of geometric z-scores (same shape as x) Notes ----- Geometric Z-scores are better measures of dispersion than arithmetic z-scores when the sample data come from a log-normally distributed population. Given the raw scores :math:`x`, the geometric mean :math:`\\mu_g` and the geometric standard deviation :math:`\\sigma_g`, the standard score is given by the formula: .. math:: z = \\frac{log(x) - log(\\mu_g)}{log(\\sigma_g)} References ---------- .. [1] https://en.wikipedia.org/wiki/Geometric_standard_deviation Examples -------- Standardize a log-normal array >>> import numpy as np >>> from pingouin import gzscore >>> np.random.seed(123) >>> raw = np.random.lognormal(size=100) >>> z = gzscore(raw) >>> print(round(z.mean(), 3), round(z.std(), 3)) -0.0 0.995
3.001783
3.495718
0.858703
from scipy.stats import anderson as ads k = len(args) from_dist = np.zeros(k, 'bool') sig_level = np.zeros(k) for j in range(k): st, cr, sig = ads(args[j], dist=dist) from_dist[j] = True if (st > cr).any() else False sig_level[j] = sig[np.argmin(np.abs(st - cr))] if k == 1: from_dist = bool(from_dist) sig_level = float(sig_level) return from_dist, sig_level
def anderson(*args, dist='norm')
Anderson-Darling test of distribution. Parameters ---------- sample1, sample2,... : array_like Array of sample data. May be different lengths. dist : string Distribution ('norm', 'expon', 'logistic', 'gumbel') Returns ------- from_dist : boolean True if data comes from this distribution. sig_level : float The significance levels for the corresponding critical values in %. (See :py:func:`scipy.stats.anderson` for more details) Examples -------- 1. Test that an array comes from a normal distribution >>> from pingouin import anderson >>> x = [2.3, 5.1, 4.3, 2.6, 7.8, 9.2, 1.4] >>> anderson(x, dist='norm') (False, 15.0) 2. Test that two arrays comes from an exponential distribution >>> y = [2.8, 12.4, 28.3, 3.2, 16.3, 14.2] >>> anderson(x, y, dist='expon') (array([False, False]), array([15., 15.]))
3.141508
3.428428
0.916312
if not _check_eftype(eftype): err = "Could not interpret input '{}'".format(eftype) raise ValueError(err) if not isinstance(tval, float): err = "T-value must be float" raise ValueError(err) # Compute Cohen d (Lakens, 2013) if nx is not None and ny is not None: d = tval * np.sqrt(1 / nx + 1 / ny) elif N is not None: d = 2 * tval / np.sqrt(N) else: raise ValueError('You must specify either nx + ny, or just N') return convert_effsize(d, 'cohen', eftype, nx=nx, ny=ny)
def compute_effsize_from_t(tval, nx=None, ny=None, N=None, eftype='cohen')
Compute effect size from a T-value. Parameters ---------- tval : float T-value nx, ny : int, optional Group sample sizes. N : int, optional Total sample size (will not be used if nx and ny are specified) eftype : string, optional desired output effect size Returns ------- ef : float Effect size See Also -------- compute_effsize : Calculate effect size between two set of observations. convert_effsize : Conversion between effect sizes. Notes ----- If both nx and ny are specified, the formula to convert from *t* to *d* is: .. math:: d = t * \\sqrt{\\frac{1}{n_x} + \\frac{1}{n_y}} If only N (total sample size) is specified, the formula is: .. math:: d = \\frac{2t}{\\sqrt{N}} Examples -------- 1. Compute effect size from a T-value when both sample sizes are known. >>> from pingouin import compute_effsize_from_t >>> tval, nx, ny = 2.90, 35, 25 >>> d = compute_effsize_from_t(tval, nx=nx, ny=ny, eftype='cohen') >>> print(d) 0.7593982580212534 2. Compute effect size when only total sample size is known (nx+ny) >>> tval, N = 2.90, 60 >>> d = compute_effsize_from_t(tval, N=N, eftype='cohen') >>> print(d) 0.7487767802667672
4.072371
3.744373
1.087598
# Check that sklearn is installed from pingouin.utils import _is_sklearn_installed _is_sklearn_installed(raise_error=True) from scipy.stats import chi2 from sklearn.covariance import MinCovDet X = np.column_stack((x, y)) nrows, ncols = X.shape gval = np.sqrt(chi2.ppf(0.975, 2)) # Compute center and distance to center center = MinCovDet(random_state=42).fit(X).location_ B = X - center B2 = B**2 bot = B2.sum(axis=1) # Loop over rows dis = np.zeros(shape=(nrows, nrows)) for i in np.arange(nrows): if bot[i] != 0: dis[i, :] = np.linalg.norm(B * B2[i, :] / bot[i], axis=1) # Detect outliers def idealf(x): n = len(x) j = int(np.floor(n / 4 + 5 / 12)) y = np.sort(x) g = (n / 4) - j + (5 / 12) low = (1 - g) * y[j - 1] + g * y[j] k = n - j + 1 up = (1 - g) * y[k - 1] + g * y[k - 2] return up - low # One can either use the MAD or the IQR (see Wilcox 2012) # MAD = mad(dis, axis=1) iqr = np.apply_along_axis(idealf, 1, dis) thresh = (np.median(dis, axis=1) + gval * iqr) outliers = np.apply_along_axis(np.greater, 0, dis, thresh).any(axis=0) # Compute correlation on remaining data if method == 'spearman': r, pval = spearmanr(X[~outliers, 0], X[~outliers, 1]) else: r, pval = pearsonr(X[~outliers, 0], X[~outliers, 1]) return r, pval, outliers
def skipped(x, y, method='spearman')
Skipped correlation (Rousselet and Pernet 2012). Parameters ---------- x, y : array_like First and second set of observations. x and y must be independent. method : str Method used to compute the correlation after outlier removal. Can be either 'spearman' (default) or 'pearson'. Returns ------- r : float Skipped correlation coefficient. pval : float Two-tailed p-value. outliers : array of bool Indicate if value is an outlier or not Notes ----- The skipped correlation involves multivariate outlier detection using a projection technique (Wilcox, 2004, 2005). First, a robust estimator of multivariate location and scatter, for instance the minimum covariance determinant estimator (MCD; Rousseeuw, 1984; Rousseeuw and van Driessen, 1999; Hubert et al., 2008) is computed. Second, data points are orthogonally projected on lines joining each of the data point to the location estimator. Third, outliers are detected using a robust technique. Finally, Spearman correlations are computed on the remaining data points and calculations are adjusted by taking into account the dependency among the remaining data points. Code inspired by Matlab code from Cyril Pernet and Guillaume Rousselet [1]_. Requires scikit-learn. References ---------- .. [1] Pernet CR, Wilcox R, Rousselet GA. Robust Correlation Analyses: False Positive and Power Validation Using a New Open Source Matlab Toolbox. Frontiers in Psychology. 2012;3:606. doi:10.3389/fpsyg.2012.00606.
3.191869
3.028901
1.053804
n, m = b.shape MD = np.zeros((n, n_boot)) nr = np.arange(n) xB = np.random.choice(nr, size=(n_boot, n), replace=True) # Bootstrap the MD for i in np.arange(n_boot): s1 = b[xB[i, :], 0] s2 = b[xB[i, :], 1] X = np.column_stack((s1, s2)) mu = X.mean(0) _, R = np.linalg.qr(X - mu) sol = np.linalg.solve(R.T, (a - mu).T) MD[:, i] = np.sum(sol**2, 0) * (n - 1) # Average across all bootstraps return MD.mean(1)
def bsmahal(a, b, n_boot=200)
Bootstraps Mahalanobis distances for Shepherd's pi correlation. Parameters ---------- a : ndarray (shape=(n, 2)) Data b : ndarray (shape=(n, 2)) Data n_boot : int Number of bootstrap samples to calculate. Returns ------- m : ndarray (shape=(n,)) Mahalanobis distance for each row in a, averaged across all the bootstrap resamples.
3.05934
3.106973
0.984669
from scipy.stats import spearmanr X = np.column_stack((x, y)) # Bootstrapping on Mahalanobis distance m = bsmahal(X, X, n_boot) # Determine outliers outliers = (m >= 6) # Compute correlation r, pval = spearmanr(x[~outliers], y[~outliers]) # (optional) double the p-value to achieve a nominal false alarm rate # pval *= 2 # pval = 1 if pval > 1 else pval return r, pval, outliers
def shepherd(x, y, n_boot=200)
Shepherd's Pi correlation, equivalent to Spearman's rho after outliers removal. Parameters ---------- x, y : array_like First and second set of observations. x and y must be independent. n_boot : int Number of bootstrap samples to calculate. Returns ------- r : float Pi correlation coefficient pval : float Two-tailed adjusted p-value. outliers : array of bool Indicate if value is an outlier or not Notes ----- It first bootstraps the Mahalanobis distances, removes all observations with m >= 6 and finally calculates the correlation of the remaining data. Pi is Spearman's Rho after outlier removal.
5.023576
4.186525
1.199939
from scipy.stats import t X = np.column_stack((x, y)) nx = X.shape[0] M = np.tile(np.median(X, axis=0), nx).reshape(X.shape) W = np.sort(np.abs(X - M), axis=0) m = int((1 - beta) * nx) omega = W[m - 1, :] P = (X - M) / omega P[np.isinf(P)] = 0 P[np.isnan(P)] = 0 # Loop over columns a = np.zeros((2, nx)) for c in [0, 1]: psi = P[:, c] i1 = np.where(psi < -1)[0].size i2 = np.where(psi > 1)[0].size s = X[:, c].copy() s[np.where(psi < -1)[0]] = 0 s[np.where(psi > 1)[0]] = 0 pbos = (np.sum(s) + omega[c] * (i2 - i1)) / (s.size - i1 - i2) a[c] = (X[:, c] - pbos) / omega[c] # Bend a[a <= -1] = -1 a[a >= 1] = 1 # Get r, tval and pval a, b = a r = (a * b).sum() / np.sqrt((a**2).sum() * (b**2).sum()) tval = r * np.sqrt((nx - 2) / (1 - r**2)) pval = 2 * t.sf(abs(tval), nx - 2) return r, pval
def percbend(x, y, beta=.2)
Percentage bend correlation (Wilcox 1994). Parameters ---------- x, y : array_like First and second set of observations. x and y must be independent. beta : float Bending constant for omega (0 <= beta <= 0.5). Returns ------- r : float Percentage bend correlation coefficient. pval : float Two-tailed p-value. Notes ----- Code inspired by Matlab code from Cyril Pernet and Guillaume Rousselet. References ---------- .. [1] Wilcox, R.R., 1994. The percentage bend correlation coefficient. Psychometrika 59, 601–616. https://doi.org/10.1007/BF02294395 .. [2] Pernet CR, Wilcox R, Rousselet GA. Robust Correlation Analyses: False Positive and Power Validation Using a New Open Source Matlab Toolbox. Frontiers in Psychology. 2012;3:606. doi:10.3389/fpsyg.2012.00606.
2.881965
2.841762
1.014147
# Pairwise Euclidean distances b = squareform(pdist(y, metric='euclidean')) # Double centering B = b - b.mean(axis=0)[None, :] - b.mean(axis=1)[:, None] + b.mean() # Compute squared distance covariances dcov2_yy = np.vdot(B, B) / n2 dcov2_xy = np.vdot(A, B) / n2 return np.sqrt(dcov2_xy) / np.sqrt(np.sqrt(dcov2_xx) * np.sqrt(dcov2_yy))
def _dcorr(y, n2, A, dcov2_xx)
Helper function for distance correlation bootstrapping.
2.605836
2.592235
1.005247
# Mediator(s) model (M(j) ~ X + covar) beta_m = [] for j in range(n_mediator): if mtype == 'linear': beta_m.append(linear_regression(X_val[idx], M_val[idx, j], coef_only=True)[1]) else: beta_m.append(logistic_regression(X_val[idx], M_val[idx, j], coef_only=True)[1]) # Full model (Y ~ X + M + covar) beta_y = linear_regression(XM_val[idx], y_val[idx], coef_only=True)[2:(2 + n_mediator)] # Point estimate return beta_m * beta_y
def _point_estimate(X_val, XM_val, M_val, y_val, idx, n_mediator, mtype='linear')
Point estimate of indirect effect based on bootstrap sample.
3.399992
3.324722
1.02264
# Bias of bootstrap estimates z0 = norm.ppf(np.sum(ab_estimates < sample_point) / n_boot) # Adjusted intervals adjusted_ll = norm.cdf(2 * z0 + norm.ppf(alpha / 2)) * 100 adjusted_ul = norm.cdf(2 * z0 + norm.ppf(1 - alpha / 2)) * 100 ll = np.percentile(ab_estimates, q=adjusted_ll) ul = np.percentile(ab_estimates, q=adjusted_ul) return np.array([ll, ul])
def _bca(ab_estimates, sample_point, n_boot, alpha=0.05)
Get (1 - alpha) * 100 bias-corrected confidence interval estimate Note that this is similar to the "cper" module implemented in :py:func:`pingouin.compute_bootci`. Parameters ---------- ab_estimates : 1d array-like Array with bootstrap estimates for each sample. sample_point : float Indirect effect point estimate based on full sample. n_boot : int Number of bootstrap samples alpha : float Alpha for confidence interval Returns ------- CI : 1d array-like Lower limit and upper limit bias-corrected confidence interval estimates.
3.043114
3.239449
0.939393
if estimate == 0: out = 1 else: out = 2 * min(sum(boot > 0), sum(boot < 0)) / len(boot) return min(out, 1)
def _pval_from_bootci(boot, estimate)
Compute p-value from bootstrap distribution. Similar to the pval function in the R package mediation. Note that this is less accurate than a permutation test because the bootstrap distribution is not conditioned on a true null hypothesis.
3.711453
4.027623
0.9215
aov = anova(data=self, dv=dv, between=between, detailed=detailed, export_filename=export_filename) return aov
def _anova(self, dv=None, between=None, detailed=False, export_filename=None)
Return one-way and two-way ANOVA.
2.74787
2.685799
1.023111
aov = welch_anova(data=self, dv=dv, between=between, export_filename=export_filename) return aov
def _welch_anova(self, dv=None, between=None, export_filename=None)
Return one-way Welch ANOVA.
2.878437
2.998499
0.959959
aov = rm_anova(data=self, dv=dv, within=within, subject=subject, correction=correction, detailed=detailed, export_filename=export_filename) return aov
def _rm_anova(self, dv=None, within=None, subject=None, detailed=False, correction='auto', export_filename=None)
One-way and two-way repeated measures ANOVA.
2.307785
2.772773
0.832302
aov = mixed_anova(data=self, dv=dv, between=between, within=within, subject=subject, correction=correction, export_filename=export_filename) return aov
def _mixed_anova(self, dv=None, between=None, within=None, subject=None, correction=False, export_filename=None)
Two-way mixed ANOVA.
2.164557
2.48643
0.870548
stats = pairwise_corr(data=self, columns=columns, covar=covar, tail=tail, method=method, padjust=padjust, export_filename=export_filename) return stats
def _pairwise_corr(self, columns=None, covar=None, tail='two-sided', method='pearson', padjust='none', export_filename=None)
Pairwise (partial) correlations.
2.087238
2.421217
0.862062
stats = partial_corr(data=self, x=x, y=y, covar=covar, x_covar=x_covar, y_covar=y_covar, tail=tail, method=method) return stats
def _partial_corr(self, x=None, y=None, covar=None, x_covar=None, y_covar=None, tail='two-sided', method='pearson')
Partial and semi-partial correlation.
2.05617
2.008122
1.023927
V = self.cov() # Covariance matrix Vi = np.linalg.pinv(V) # Inverse covariance matrix D = np.diag(np.sqrt(1 / np.diag(Vi))) pcor = -1 * (D @ Vi @ D) # Partial correlation matrix pcor[np.diag_indices_from(pcor)] = 1 return pd.DataFrame(pcor, index=V.index, columns=V.columns)
def pcorr(self)
Partial correlation matrix (:py:class:`pandas.DataFrame` method). Returns ---------- pcormat : :py:class:`pandas.DataFrame` Partial correlation matrix. Notes ----- This function calculates the pairwise partial correlations for each pair of variables in a :py:class:`pandas.DataFrame` given all the others. It has the same behavior as the pcor function in the `ppcor` R package. Note that this function only returns the raw Pearson correlation coefficient. If you want to calculate the test statistic and p-values, or use more robust estimates of the correlation coefficient, please refer to the :py:func:`pingouin.pairwise_corr` or :py:func:`pingouin.partial_corr` functions. The :py:func:`pingouin.pcorr` function uses the inverse of the variance-covariance matrix to calculate the partial correlation matrix and is therefore much faster than the two latter functions which are based on the residuals. References ---------- .. [1] https://cran.r-project.org/web/packages/ppcor/index.html Examples -------- >>> import pingouin as pg >>> data = pg.read_dataset('mediation') >>> data.pcorr() X M Y Mbin Ybin X 1.000000 0.392251 0.059771 -0.014405 -0.149210 M 0.392251 1.000000 0.545618 -0.015622 -0.094309 Y 0.059771 0.545618 1.000000 -0.007009 0.161334 Mbin -0.014405 -0.015622 -0.007009 1.000000 -0.076614 Ybin -0.149210 -0.094309 0.161334 -0.076614 1.000000 On a subset of columns >>> data[['X', 'Y', 'M']].pcorr().round(3) X Y M X 1.000 0.037 0.413 Y 0.037 1.000 0.540 M 0.413 0.540 1.000
3.378307
4.100721
0.823832
stats = mediation_analysis(data=self, x=x, m=m, y=y, covar=covar, alpha=alpha, n_boot=n_boot, seed=seed, return_dist=return_dist) return stats
def _mediation_analysis(self, x=None, m=None, y=None, covar=None, alpha=0.05, n_boot=500, seed=None, return_dist=False)
Mediation analysis.
2.120529
2.113443
1.003353