code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
from scipy.stats import norm
a = np.asarray(a)
c = norm.ppf(3 / 4.) if normalize else 1
center = np.apply_over_axes(np.median, a, axis)
return np.median((np.fabs(a - center)) / c, axis=axis) | def mad(a, normalize=True, axis=0) | Median Absolute Deviation along given axis of an array.
Parameters
----------
a : array-like
Input array.
normalize : boolean.
If True, scale by a normalization constant (~0.67)
axis : int, optional
The defaul is 0. Can also be None.
Returns
-------
mad : float
mad = median(abs(a - median(a))) / c
References
----------
.. [1] https://en.wikipedia.org/wiki/Median_absolute_deviation
Examples
--------
>>> from pingouin import mad
>>> a = [1.2, 5.4, 3.2, 7.8, 2.5]
>>> mad(a)
2.965204437011204
>>> mad(a, normalize=False)
2.0 | 3.774945 | 5.209544 | 0.724621 |
from scipy.stats import chi2
a = np.asarray(a)
k = np.sqrt(chi2.ppf(0.975, 1))
return (np.fabs(a - np.median(a)) / mad(a)) > k | def madmedianrule(a) | Outlier detection based on the MAD-median rule.
Parameters
----------
a : array-like
Input array.
Returns
-------
outliers: boolean (same shape as a)
Boolean array indicating whether each sample is an outlier (True) or
not (False).
References
----------
.. [1] Hall, P., Welsh, A.H., 1985. Limit theorems for the median
deviation. Ann. Inst. Stat. Math. 37, 27–36.
https://doi.org/10.1007/BF02481078
Examples
--------
>>> from pingouin import madmedianrule
>>> a = [-1.09, 1., 0.28, -1.51, -0.58, 6.61, -2.43, -0.43]
>>> madmedianrule(a)
array([False, False, False, False, False, True, False, False]) | 3.700927 | 5.426536 | 0.682005 |
from scipy.stats import mannwhitneyu
x = np.asarray(x)
y = np.asarray(y)
# Remove NA
x, y = remove_na(x, y, paired=False)
# Compute test
if tail == 'one-sided':
tail = 'less' if np.median(x) < np.median(y) else 'greater'
uval, pval = mannwhitneyu(x, y, use_continuity=True, alternative=tail)
# Effect size 1: common language effect size (McGraw and Wong 1992)
diff = x[:, None] - y
cles = max((diff < 0).sum(), (diff > 0).sum()) / diff.size
# Effect size 2: rank biserial correlation (Wendt 1972)
rbc = 1 - (2 * uval) / diff.size # diff.size = x.size * y.size
# Fill output DataFrame
stats = pd.DataFrame({}, index=['MWU'])
stats['U-val'] = round(uval, 3)
stats['p-val'] = pval
stats['RBC'] = round(rbc, 3)
stats['CLES'] = round(cles, 3)
col_order = ['U-val', 'p-val', 'RBC', 'CLES']
stats = stats.reindex(columns=col_order)
return stats | def mwu(x, y, tail='two-sided') | Mann-Whitney U Test (= Wilcoxon rank-sum test). It is the non-parametric
version of the independent T-test.
Parameters
----------
x, y : array_like
First and second set of observations. x and y must be independent.
tail : string
Specify whether to return 'one-sided' or 'two-sided' p-value.
Returns
-------
stats : pandas DataFrame
Test summary ::
'U-val' : U-value
'p-val' : p-value
'RBC' : rank-biserial correlation (effect size)
'CLES' : common language effect size
Notes
-----
mwu tests the hypothesis that data in x and y are samples from continuous
distributions with equal medians. The test assumes that x and y
are independent. This test corrects for ties and by default
uses a continuity correction (see :py:func:`scipy.stats.mannwhitneyu`
for details).
The rank biserial correlation is the difference between the proportion of
favorable evidence minus the proportion of unfavorable evidence
(see Kerby 2014).
The common language effect size is the probability (from 0 to 1) that a
randomly selected observation from the first sample will be greater than a
randomly selected observation from the second sample.
References
----------
.. [1] Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of
two random variables is stochastically larger than the other.
The annals of mathematical statistics, 50-60.
.. [2] Kerby, D. S. (2014). The simple difference formula: An approach to
teaching nonparametric correlation. Comprehensive Psychology,
3, 11-IT.
.. [3] McGraw, K. O., & Wong, S. P. (1992). A common language effect size
statistic. Psychological bulletin, 111(2), 361.
Examples
--------
>>> import numpy as np
>>> from pingouin import mwu
>>> np.random.seed(123)
>>> x = np.random.uniform(low=0, high=1, size=20)
>>> y = np.random.uniform(low=0.2, high=1.2, size=20)
>>> mwu(x, y, tail='two-sided')
U-val p-val RBC CLES
MWU 97.0 0.00556 0.515 0.758 | 3.675413 | 3.013802 | 1.219527 |
from scipy.stats import chi2, rankdata, tiecorrect
# Check data
_check_dataframe(dv=dv, between=between, data=data,
effects='between')
# Remove NaN values
data = data.dropna()
# Reset index (avoid duplicate axis error)
data = data.reset_index(drop=True)
# Extract number of groups and total sample size
groups = list(data[between].unique())
n_groups = len(groups)
n = data[dv].size
# Rank data, dealing with ties appropriately
data['rank'] = rankdata(data[dv])
# Find the total of rank per groups
grp = data.groupby(between)['rank']
sum_rk_grp = grp.sum().values
n_per_grp = grp.count().values
# Calculate chi-square statistic (H)
H = (12 / (n * (n + 1)) * np.sum(sum_rk_grp**2 / n_per_grp)) - 3 * (n + 1)
# Correct for ties
H /= tiecorrect(data['rank'].values)
# Calculate DOF and p-value
ddof1 = n_groups - 1
p_unc = chi2.sf(H, ddof1)
# Create output dataframe
stats = pd.DataFrame({'Source': between,
'ddof1': ddof1,
'H': np.round(H, 3),
'p-unc': p_unc,
}, index=['Kruskal'])
col_order = ['Source', 'ddof1', 'H', 'p-unc']
stats = stats.reindex(columns=col_order)
stats.dropna(how='all', axis=1, inplace=True)
# Export to .csv
if export_filename is not None:
_export_table(stats, export_filename)
return stats | def kruskal(dv=None, between=None, data=None, detailed=False,
export_filename=None) | Kruskal-Wallis H-test for independent samples.
Parameters
----------
dv : string
Name of column containing the dependant variable.
between : string
Name of column containing the between factor.
data : pandas DataFrame
DataFrame
export_filename : string
Filename (without extension) for the output file.
If None, do not export the table.
By default, the file will be created in the current python console
directory. To change that, specify the filename with full path.
Returns
-------
stats : DataFrame
Test summary ::
'H' : The Kruskal-Wallis H statistic, corrected for ties
'p-unc' : Uncorrected p-value
'dof' : degrees of freedom
Notes
-----
The Kruskal-Wallis H-test tests the null hypothesis that the population
median of all of the groups are equal. It is a non-parametric version of
ANOVA. The test works on 2 or more independent samples, which may have
different sizes.
Due to the assumption that H has a chi square distribution, the number of
samples in each group must not be too small. A typical rule is that each
sample must have at least 5 measurements.
NaN values are automatically removed.
Examples
--------
Compute the Kruskal-Wallis H-test for independent samples.
>>> from pingouin import kruskal, read_dataset
>>> df = read_dataset('anova')
>>> kruskal(dv='Pain threshold', between='Hair color', data=df)
Source ddof1 H p-unc
Kruskal Hair color 3 10.589 0.014172 | 3.844047 | 3.459535 | 1.111146 |
from scipy.stats import rankdata, chi2, find_repeats
# Check data
_check_dataframe(dv=dv, within=within, data=data, subject=subject,
effects='within')
# Collapse to the mean
data = data.groupby([subject, within]).mean().reset_index()
# Remove NaN
if data[dv].isnull().any():
data = remove_rm_na(dv=dv, within=within, subject=subject,
data=data[[subject, within, dv]])
# Extract number of groups and total sample size
grp = data.groupby(within)[dv]
rm = list(data[within].unique())
k = len(rm)
X = np.array([grp.get_group(r).values for r in rm]).T
n = X.shape[0]
# Rank per subject
ranked = np.zeros(X.shape)
for i in range(n):
ranked[i] = rankdata(X[i, :])
ssbn = (ranked.sum(axis=0)**2).sum()
# Compute the test statistic
Q = (12 / (n * k * (k + 1))) * ssbn - 3 * n * (k + 1)
# Correct for ties
ties = 0
for i in range(n):
replist, repnum = find_repeats(X[i])
for t in repnum:
ties += t * (t * t - 1)
c = 1 - ties / float(k * (k * k - 1) * n)
Q /= c
# Approximate the p-value
ddof1 = k - 1
p_unc = chi2.sf(Q, ddof1)
# Create output dataframe
stats = pd.DataFrame({'Source': within,
'ddof1': ddof1,
'Q': np.round(Q, 3),
'p-unc': p_unc,
}, index=['Friedman'])
col_order = ['Source', 'ddof1', 'Q', 'p-unc']
stats = stats.reindex(columns=col_order)
stats.dropna(how='all', axis=1, inplace=True)
# Export to .csv
if export_filename is not None:
_export_table(stats, export_filename)
return stats | def friedman(dv=None, within=None, subject=None, data=None,
export_filename=None) | Friedman test for repeated measurements.
Parameters
----------
dv : string
Name of column containing the dependant variable.
within : string
Name of column containing the within-subject factor.
subject : string
Name of column containing the subject identifier.
data : pandas DataFrame
DataFrame
export_filename : string
Filename (without extension) for the output file.
If None, do not export the table.
By default, the file will be created in the current python console
directory. To change that, specify the filename with full path.
Returns
-------
stats : DataFrame
Test summary ::
'Q' : The Friedman Q statistic, corrected for ties
'p-unc' : Uncorrected p-value
'dof' : degrees of freedom
Notes
-----
The Friedman test is used for one-way repeated measures ANOVA by ranks.
Data are expected to be in long-format.
Note that if the dataset contains one or more other within subject
factors, an automatic collapsing to the mean is applied on the dependant
variable (same behavior as the ezANOVA R package). As such, results can
differ from those of JASP. If you can, always double-check the results.
Due to the assumption that the test statistic has a chi squared
distribution, the p-value is only reliable for n > 10 and more than 6
repeated measurements.
NaN values are automatically removed.
Examples
--------
Compute the Friedman test for repeated measurements.
>>> from pingouin import friedman, read_dataset
>>> df = read_dataset('rm_anova')
>>> friedman(dv='DesireToKill', within='Disgustingness',
... subject='Subject', data=df)
Source ddof1 Q p-unc
Friedman Disgustingness 1 9.228 0.002384 | 3.63799 | 3.428509 | 1.0611 |
from scipy.stats import chi2
# Check data
_check_dataframe(dv=dv, within=within, data=data, subject=subject,
effects='within')
# Remove NaN
if data[dv].isnull().any():
data = remove_rm_na(dv=dv, within=within, subject=subject,
data=data[[subject, within, dv]])
# Groupby and extract size
grp = data.groupby(within)[dv]
grp_s = data.groupby(subject)[dv]
k = data[within].nunique()
dof = k - 1
# n = grp.count().unique()[0]
# Q statistic and p-value
q = (dof * (k * np.sum(grp.sum()**2) - grp.sum().sum()**2)) / \
(k * grp.sum().sum() - np.sum(grp_s.sum()**2))
p_unc = chi2.sf(q, dof)
# Create output dataframe
stats = pd.DataFrame({'Source': within,
'dof': dof,
'Q': np.round(q, 3),
'p-unc': p_unc,
}, index=['cochran'])
# Export to .csv
if export_filename is not None:
_export_table(stats, export_filename)
return stats | def cochran(dv=None, within=None, subject=None, data=None,
export_filename=None) | Cochran Q test. Special case of the Friedman test when the dependant
variable is binary.
Parameters
----------
dv : string
Name of column containing the binary dependant variable.
within : string
Name of column containing the within-subject factor.
subject : string
Name of column containing the subject identifier.
data : pandas DataFrame
DataFrame
export_filename : string
Filename (without extension) for the output file.
If None, do not export the table.
By default, the file will be created in the current python console
directory. To change that, specify the filename with full path.
Returns
-------
stats : DataFrame
Test summary ::
'Q' : The Cochran Q statistic
'p-unc' : Uncorrected p-value
'dof' : degrees of freedom
Notes
-----
The Cochran Q Test is a non-parametric test for ANOVA with repeated
measures where the dependent variable is binary.
Data are expected to be in long-format. NaN are automatically removed
from the data.
The Q statistics is defined as:
.. math:: Q = \\frac{(r-1)(r\\sum_j^rx_j^2-N^2)}{rN-\\sum_i^nx_i^2}
where :math:`N` is the total sum of all observations, :math:`j=1,...,r`
where :math:`r` is the number of repeated measures, :math:`i=1,...,n` where
:math:`n` is the number of observations per condition.
The p-value is then approximated using a chi-square distribution with
:math:`r-1` degrees of freedom:
.. math:: Q \\sim \\chi^2(r-1)
References
----------
.. [1] Cochran, W.G., 1950. The comparison of percentages in matched
samples. Biometrika 37, 256–266.
https://doi.org/10.1093/biomet/37.3-4.256
Examples
--------
Compute the Cochran Q test for repeated measurements.
>>> from pingouin import cochran, read_dataset
>>> df = read_dataset('cochran')
>>> cochran(dv='Energetic', within='Time', subject='Subject', data=df)
Source dof Q p-unc
cochran Time 2 6.706 0.034981 | 3.915335 | 3.714557 | 1.054052 |
if not _isconvertible(float, string):
return False
elif isinstance(string, (_text_type, _binary_type)) and (
math.isinf(float(string)) or math.isnan(float(string))):
return string.lower() in ['inf', '-inf', 'nan']
return True | def _isnumber(string) | >>> _isnumber("123.45")
True
>>> _isnumber("123")
True
>>> _isnumber("spam")
False
>>> _isnumber("123e45678")
False
>>> _isnumber("inf")
True | 3.808424 | 4.46587 | 0.852784 |
return isinstance(string, _bool_type) or\
(isinstance(string, (_binary_type, _text_type))
and
string in ("True", "False")) | def _isbool(string) | >>> _isbool(True)
True
>>> _isbool("False")
True
>>> _isbool(1)
False | 5.27175 | 6.219698 | 0.847589 |
if has_invisible and \
(isinstance(string, _text_type) or isinstance(string, _binary_type)):
string = _strip_invisible(string)
if string is None:
return _none_type
elif hasattr(string, "isoformat"): # datetime.datetime, date, and time
return _text_type
elif _isbool(string):
return _bool_type
elif _isint(string) and numparse:
return int
elif _isint(string, _long_type) and numparse:
return int
elif _isnumber(string) and numparse:
return float
elif isinstance(string, _binary_type):
return _binary_type
else:
return _text_type | def _type(string, has_invisible=True, numparse=True) | The least generic type (type(None), int, float, str, unicode).
>>> _type(None) is type(None)
True
>>> _type("foo") is type("")
True
>>> _type("1") is type(1)
True
>>> _type('\x1b[31m42\x1b[0m') is type(42)
True
>>> _type('\x1b[31m42\x1b[0m') is type(42)
True | 2.660929 | 2.711758 | 0.981256 |
# optional wide-character support
if wcwidth is not None and WIDE_CHARS_MODE:
len_fn = wcwidth.wcswidth
else:
len_fn = len
if isinstance(s, _text_type) or isinstance(s, _binary_type):
return len_fn(_strip_invisible(s))
else:
return len_fn(_text_type(s)) | def _visible_width(s) | Visible width of a printed string. ANSI color codes are removed.
>>> _visible_width('\x1b[31mhello\x1b[0m'), _visible_width("world")
(5, 5) | 4.50258 | 5.076517 | 0.886943 |
return max(map(line_width_fn, re.split("[\r\n]", multiline_s))) | def _multiline_width(multiline_s, line_width_fn=len) | Visible width of a potentially multiline content. | 3.526792 | 3.623228 | 0.973384 |
if has_invisible:
line_width_fn = _visible_width
elif enable_widechars: # optional wide-character support if available
line_width_fn = wcwidth.wcswidth
else:
line_width_fn = len
if is_multiline:
def width_fn(s): return _multiline_width(s, line_width_fn)
else:
width_fn = line_width_fn
return width_fn | def _choose_width_fn(has_invisible, enable_widechars, is_multiline) | Return a function to calculate visible cell width. | 2.791327 | 2.700332 | 1.033697 |
strings, padfn = _align_column_choose_padfn(
strings, alignment, has_invisible)
width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline)
s_widths = list(map(width_fn, strings))
maxwidth = max(max(s_widths), minwidth)
# TODO: refactor column alignment in single-line and multiline modes
if is_multiline:
if not enable_widechars and not has_invisible:
padded_strings = [
"\n".join([padfn(maxwidth, s) for s in ms.splitlines()])
for ms in strings]
else:
# enable wide-character width corrections
s_lens = [max((len(s) for s in re.split("[\r\n]", ms)))
for ms in strings]
visible_widths = [maxwidth - (w - l)
for w, l in zip(s_widths, s_lens)]
# wcswidth and _visible_width don't count invisible characters;
# padfn doesn't need to apply another correction
padded_strings = ["\n".join([padfn(w, s) for s in (ms.splitlines() or ms)])
for ms, w in zip(strings, visible_widths)]
else: # single-line cell values
if not enable_widechars and not has_invisible:
padded_strings = [padfn(maxwidth, s) for s in strings]
else:
# enable wide-character width corrections
s_lens = list(map(len, strings))
visible_widths = [maxwidth - (w - l)
for w, l in zip(s_widths, s_lens)]
# wcswidth and _visible_width don't count invisible characters;
# padfn doesn't need to apply another correction
padded_strings = [
padfn(
w, s) for s, w in zip(
strings, visible_widths)]
return padded_strings | def _align_column(strings, alignment, minwidth=0,
has_invisible=True, enable_widechars=False, is_multiline=False) | [string] -> [padded_string] | 2.923502 | 2.878685 | 1.015569 |
types = [_type(s, has_invisible, numparse) for s in strings]
return reduce(_more_generic, types, _bool_type) | def _column_type(strings, has_invisible=True, numparse=True) | The least generic type all column values are convertible to.
>>> _column_type([True, False]) is _bool_type
True
>>> _column_type(["1", "2"]) is _int_type
True
>>> _column_type(["1", "2.3"]) is _float_type
True
>>> _column_type(["1", "2.3", "four"]) is _text_type
True
>>> _column_type(["four", '\u043f\u044f\u0442\u044c']) is _text_type
True
>>> _column_type([None, "brux"]) is _text_type
True
>>> _column_type([1, 2, None]) is _int_type
True
>>> import datetime as dt
>>> _column_type([dt.datetime(1991,2,19), dt.time(17,35)]) is _text_type
True | 6.315858 | 8.598729 | 0.734511 |
"Pad string header to width chars given known visible_width of the header."
if is_multiline:
header_lines = re.split(_multiline_codes, header)
padded_lines = [_align_header(h, alignment, width, width_fn(h))
for h in header_lines]
return "\n".join(padded_lines)
# else: not multiline
ninvisible = len(header) - visible_width
width += ninvisible
if alignment == "left":
return _padright(width, header)
elif alignment == "center":
return _padboth(width, header)
elif not alignment:
return "{0}".format(header)
else:
return _padleft(width, header) | def _align_header(header, alignment, width, visible_width, is_multiline=False,
width_fn=None) | Pad string header to width chars given known visible_width of the header. | 4.585926 | 3.345514 | 1.370769 |
if index is None or index is False:
return rows
if len(index) != len(rows):
print('index=', index)
print('rows=', rows)
raise ValueError('index must be as long as the number of data rows')
rows = [[v] + list(row) for v, row in zip(index, rows)]
return rows | def _prepend_row_index(rows, index) | Add a left-most index column. | 3.466048 | 3.338651 | 1.038158 |
if isinstance(disable_numparse, Iterable):
numparses = [True] * column_count
for index in disable_numparse:
numparses[index] = False
return numparses
else:
return [not disable_numparse] * column_count | def _expand_numparse(disable_numparse, column_count) | Return a list of bools of length `column_count` which indicates whether
number parsing should be used on each column.
If `disable_numparse` is a list of indices, each of those indices are False,
and everything else is True.
If `disable_numparse` is a bool, then the returned list is all the same. | 2.288369 | 2.273346 | 1.006608 |
alpha = np.array(alpha)
return np.remainder(alpha * n, 2 * np.pi) | def circ_axial(alpha, n) | Transforms n-axial data to a common scale.
Parameters
----------
alpha : array
Sample of angles in radians
n : int
Number of modes
Returns
-------
alpha : float
Transformed angles
Notes
-----
Tranform data with multiple modes (known as axial data) to a unimodal
sample, for the purpose of certain analysis such as computation of a
mean resultant vector (see Berens 2009).
Examples
--------
Transform degrees to unimodal radians in the Berens 2009 neuro dataset.
>>> import numpy as np
>>> from pingouin import read_dataset
>>> from pingouin.circular import circ_axial
>>> df = read_dataset('circular')
>>> alpha = df['Orientation'].values
>>> alpha = circ_axial(np.deg2rad(alpha), 2) | 4.331222 | 12.450227 | 0.347883 |
from scipy.stats import norm
x = np.asarray(x)
y = np.asarray(y)
# Check size
if x.size != y.size:
raise ValueError('x and y must have the same length.')
# Remove NA
x, y = remove_na(x, y, paired=True)
n = x.size
# Compute correlation coefficient
x_sin = np.sin(x - circmean(x))
y_sin = np.sin(y - circmean(y))
# Similar to np.corrcoef(x_sin, y_sin)[0][1]
r = np.sum(x_sin * y_sin) / np.sqrt(np.sum(x_sin**2) * np.sum(y_sin**2))
# Compute T- and p-values
tval = np.sqrt((n * (x_sin**2).mean() * (y_sin**2).mean())
/ np.mean(x_sin**2 * y_sin**2)) * r
# Approximately distributed as a standard normal
pval = 2 * norm.sf(abs(tval))
pval = pval / 2 if tail == 'one-sided' else pval
return np.round(r, 3), pval | def circ_corrcc(x, y, tail='two-sided') | Correlation coefficient between two circular variables.
Parameters
----------
x : np.array
First circular variable (expressed in radians)
y : np.array
Second circular variable (expressed in radians)
tail : string
Specify whether to return 'one-sided' or 'two-sided' p-value.
Returns
-------
r : float
Correlation coefficient
pval : float
Uncorrected p-value
Notes
-----
Adapted from the CircStats MATLAB toolbox (Berens 2009).
Use the np.deg2rad function to convert angles from degrees to radians.
Please note that NaN are automatically removed.
Examples
--------
Compute the r and p-value of two circular variables
>>> from pingouin import circ_corrcc
>>> x = [0.785, 1.570, 3.141, 3.839, 5.934]
>>> y = [0.593, 1.291, 2.879, 3.892, 6.108]
>>> r, pval = circ_corrcc(x, y)
>>> print(r, pval)
0.942 0.06579836070349088 | 2.946789 | 3.043482 | 0.96823 |
from scipy.stats import pearsonr, chi2
x = np.asarray(x)
y = np.asarray(y)
# Check size
if x.size != y.size:
raise ValueError('x and y must have the same length.')
# Remove NA
x, y = remove_na(x, y, paired=True)
n = x.size
# Compute correlation coefficent for sin and cos independently
rxs = pearsonr(y, np.sin(x))[0]
rxc = pearsonr(y, np.cos(x))[0]
rcs = pearsonr(np.sin(x), np.cos(x))[0]
# Compute angular-linear correlation (equ. 27.47)
r = np.sqrt((rxc**2 + rxs**2 - 2 * rxc * rxs * rcs) / (1 - rcs**2))
# Compute p-value
pval = chi2.sf(n * r**2, 2)
pval = pval / 2 if tail == 'one-sided' else pval
return np.round(r, 3), pval | def circ_corrcl(x, y, tail='two-sided') | Correlation coefficient between one circular and one linear variable
random variables.
Parameters
----------
x : np.array
First circular variable (expressed in radians)
y : np.array
Second circular variable (linear)
tail : string
Specify whether to return 'one-sided' or 'two-sided' p-value.
Returns
-------
r : float
Correlation coefficient
pval : float
Uncorrected p-value
Notes
-----
Python code borrowed from brainpipe (based on the MATLAB toolbox CircStats)
Please note that NaN are automatically removed from datasets.
Examples
--------
Compute the r and p-value between one circular and one linear variables.
>>> from pingouin import circ_corrcl
>>> x = [0.785, 1.570, 3.141, 0.839, 5.934]
>>> y = [1.593, 1.291, -0.248, -2.892, 0.102]
>>> r, pval = circ_corrcl(x, y)
>>> print(r, pval)
0.109 0.9708899750629236 | 2.989195 | 3.133785 | 0.953861 |
alpha = np.array(alpha)
if isinstance(w, (list, np.ndarray)):
w = np.array(w)
if alpha.shape != w.shape:
raise ValueError("w must have the same shape as alpha.")
else:
w = np.ones_like(alpha)
return np.angle(np.multiply(w, np.exp(1j * alpha)).sum(axis=axis)) | def circ_mean(alpha, w=None, axis=0) | Mean direction for circular data.
Parameters
----------
alpha : array
Sample of angles in radians
w : array
Number of incidences in case of binned angle data
axis : int
Compute along this dimension
Returns
-------
mu : float
Mean direction
Examples
--------
Mean resultant vector of circular data
>>> from pingouin import circ_mean
>>> alpha = [0.785, 1.570, 3.141, 0.839, 5.934]
>>> circ_mean(alpha)
1.012962445838065 | 2.226115 | 3.066468 | 0.725954 |
alpha = np.array(alpha)
w = np.array(w) if w is not None else np.ones(alpha.shape)
if alpha.size is not w.size:
raise ValueError("Input dimensions do not match")
# Compute weighted sum of cos and sin of angles:
r = np.multiply(w, np.exp(1j * alpha)).sum(axis=axis)
# Obtain length:
r = np.abs(r) / w.sum(axis=axis)
# For data with known spacing, apply correction factor
if d is not None:
c = d / 2 / np.sin(d / 2)
r = c * r
return r | def circ_r(alpha, w=None, d=None, axis=0) | Mean resultant vector length for circular data.
Parameters
----------
alpha : array
Sample of angles in radians
w : array
Number of incidences in case of binned angle data
d : float
Spacing (in radians) of bin centers for binned data. If supplied,
a correction factor is used to correct for bias in the estimation
of r.
axis : int
Compute along this dimension
Returns
-------
r : float
Mean resultant length
Notes
-----
The length of the mean resultant vector is a crucial quantity for the
measurement of circular spread or hypothesis testing in directional
statistics. The closer it is to one, the more concentrated the data
sample is around the mean direction (Berens 2009).
Examples
--------
Mean resultant vector length of circular data
>>> from pingouin import circ_r
>>> x = [0.785, 1.570, 3.141, 0.839, 5.934]
>>> circ_r(x)
0.49723034495605356 | 3.899105 | 4.748212 | 0.821173 |
alpha = np.array(alpha)
if w is None:
r = circ_r(alpha)
n = len(alpha)
else:
if len(alpha) is not len(w):
raise ValueError("Input dimensions do not match")
r = circ_r(alpha, w, d)
n = np.sum(w)
# Compute Rayleigh's statistic
R = n * r
z = (R**2) / n
# Compute p value using approxation in Zar (1999), p. 617
pval = np.exp(np.sqrt(1 + 4 * n + 4 * (n**2 - R**2)) - (1 + 2 * n))
return np.round(z, 3), pval | def circ_rayleigh(alpha, w=None, d=None) | Rayleigh test for non-uniformity of circular data.
Parameters
----------
alpha : np.array
Sample of angles in radians.
w : np.array
Number of incidences in case of binned angle data.
d : float
Spacing (in radians) of bin centers for binned data. If supplied,
a correction factor is used to correct for bias in the estimation
of r.
Returns
-------
z : float
Z-statistic
pval : float
P-value
Notes
-----
The Rayleigh test asks how large the resultant vector length R must be
to indicate a non-uniform distribution (Fisher 1995).
H0: the population is uniformly distributed around the circle
HA: the populatoin is not distributed uniformly around the circle
The assumptions for the Rayleigh test are that (1) the distribution has
only one mode and (2) the data is sampled from a von Mises distribution.
Examples
--------
1. Simple Rayleigh test for non-uniformity of circular data.
>>> from pingouin import circ_rayleigh
>>> x = [0.785, 1.570, 3.141, 0.839, 5.934]
>>> z, pval = circ_rayleigh(x)
>>> print(z, pval)
1.236 0.3048435876500138
2. Specifying w and d
>>> circ_rayleigh(x, w=[.1, .2, .3, .4, .5], d=0.2)
(0.278, 0.8069972000769801) | 4.608276 | 4.965706 | 0.92802 |
pvals = np.asarray(pvals)
num_nan = np.isnan(pvals).sum()
pvals_corrected = pvals * (float(pvals.size) - num_nan)
pvals_corrected = np.clip(pvals_corrected, None, 1)
with np.errstate(invalid='ignore'):
reject = np.less(pvals_corrected, alpha)
return reject, pvals_corrected | def bonf(pvals, alpha=0.05) | P-values correction with Bonferroni method.
Parameters
----------
pvals : array_like
Array of p-values of the individual tests.
alpha : float
Error rate (= alpha level).
Returns
-------
reject : array, bool
True if a hypothesis is rejected, False if not
pval_corrected : array
P-values adjusted for multiple hypothesis testing using the Bonferroni
procedure (= multiplied by the number of tests).
See also
--------
holm : Holm-Bonferroni correction
fdr : Benjamini/Hochberg and Benjamini/Yekutieli FDR correction
Notes
-----
From Wikipedia:
Statistical hypothesis testing is based on rejecting the null hypothesis
if the likelihood of the observed data under the null hypotheses is low.
If multiple hypotheses are tested, the chance of a rare event increases,
and therefore, the likelihood of incorrectly rejecting a null hypothesis
(i.e., making a Type I error) increases.
The Bonferroni correction compensates for that increase by testing each
individual hypothesis :math:`p_i` at a significance level of
:math:`p_i = \\alpha / n` where :math:`\\alpha` is the desired overall
alpha level and :math:`n` is the number of hypotheses. For example, if a
trial is testing :math:`n=20` hypotheses with a desired
:math:`\\alpha=0.05`, then the Bonferroni correction would test each
individual hypothesis at :math:`\\alpha=0.05/20=0.0025``.
The Bonferroni adjusted p-values are defined as:
.. math::
\\widetilde {p}_{{(i)}}= n \\cdot p_{{(i)}}
The Bonferroni correction tends to be a bit too conservative.
Note that NaN values are not taken into account in the p-values correction.
References
----------
- Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi
di teste. Studi in onore del professore salvatore ortu carboni, 13-60.
- https://en.wikipedia.org/wiki/Bonferroni_correction
Examples
--------
>>> from pingouin import bonf
>>> pvals = [.50, .003, .32, .054, .0003]
>>> reject, pvals_corr = bonf(pvals, alpha=.05)
>>> print(reject, pvals_corr)
[False True False False True] [1. 0.015 1. 0.27 0.0015] | 2.859871 | 3.222886 | 0.887363 |
# Convert to array and save original shape
pvals = np.asarray(pvals)
shape_init = pvals.shape
pvals = pvals.ravel()
num_nan = np.isnan(pvals).sum()
# Sort the (flattened) p-values
pvals_sortind = np.argsort(pvals)
pvals_sorted = pvals[pvals_sortind]
sortrevind = pvals_sortind.argsort()
ntests = pvals.size - num_nan
# Now we adjust the p-values
pvals_corr = np.diag(pvals_sorted * np.arange(ntests, 0, -1)[..., None])
pvals_corr = np.maximum.accumulate(pvals_corr)
pvals_corr = np.clip(pvals_corr, None, 1)
# And revert to the original shape and order
pvals_corr = np.append(pvals_corr, np.full(num_nan, np.nan))
pvals_corrected = pvals_corr[sortrevind].reshape(shape_init)
with np.errstate(invalid='ignore'):
reject = np.less(pvals_corrected, alpha)
return reject, pvals_corrected | def holm(pvals, alpha=.05) | P-values correction with Holm method.
Parameters
----------
pvals : array_like
Array of p-values of the individual tests.
alpha : float
Error rate (= alpha level).
Returns
-------
reject : array, bool
True if a hypothesis is rejected, False if not
pvals_corrected : array
P-values adjusted for multiple hypothesis testing using the Holm
procedure.
See also
--------
bonf : Bonferroni correction
fdr : Benjamini/Hochberg and Benjamini/Yekutieli FDR correction
Notes
-----
From Wikipedia:
In statistics, the Holm–Bonferroni method (also called the Holm method) is
used to counteract the problem of multiple comparisons. It is intended to
control the family-wise error rate and offers a simple test uniformly more
powerful than the Bonferroni correction.
The Holm adjusted p-values are the running maximum of the sorted p-values
divided by the corresponding increasing alpha level:
.. math::
\\frac{\\alpha}{n}, \\frac{\\alpha}{n-1}, ..., \\frac{\\alpha}{1}
where :math:`n` is the number of test.
The full mathematical formula is:
.. math::
\\widetilde {p}_{{(i)}}=\\max _{{j\\leq i}}\\left\\{(n-j+1)p_{{(j)}}
\\right\\}_{{1}}
Note that NaN values are not taken into account in the p-values correction.
References
----------
- Holm, S. (1979). A simple sequentially rejective multiple test procedure.
Scandinavian journal of statistics, 65-70.
- https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
Examples
--------
>>> from pingouin import holm
>>> pvals = [.50, .003, .32, .054, .0003]
>>> reject, pvals_corr = holm(pvals, alpha=.05)
>>> print(reject, pvals_corr)
[False True False False True] [0.64 0.012 0.64 0.162 0.0015] | 3.086741 | 3.187692 | 0.968331 |
from pingouin import anova
# Check dataframe
if any(v is None for v in [data, groups, raters, scores]):
raise ValueError('Data, groups, raters and scores must be specified')
assert isinstance(data, pd.DataFrame), 'Data must be a pandas dataframe.'
# Check that scores is a numeric variable
assert data[scores].dtype.kind in 'fi', 'Scores must be numeric.'
# Check that data are fully balanced
if data.groupby(raters)[scores].count().nunique() > 1:
raise ValueError('Data must be balanced.')
# Extract sizes
k = data[raters].nunique()
# n = data[groups].nunique()
# ANOVA and ICC
aov = anova(dv=scores, data=data, between=groups, detailed=True)
icc = (aov.loc[0, 'MS'] - aov.loc[1, 'MS']) / \
(aov.loc[0, 'MS'] + (k - 1) * aov.loc[1, 'MS'])
# Confidence interval
alpha = 1 - ci
df_num, df_den = aov.loc[0, 'DF'], aov.loc[1, 'DF']
f_lower = aov.loc[0, 'F'] / f.isf(alpha / 2, df_num, df_den)
f_upper = aov.loc[0, 'F'] * f.isf(alpha / 2, df_den, df_num)
lower = (f_lower - 1) / (f_lower + k - 1)
upper = (f_upper - 1) / (f_upper + k - 1)
return round(icc, 6), np.round([lower, upper], 3) | def intraclass_corr(data=None, groups=None, raters=None, scores=None, ci=.95) | Intra-class correlation coefficient.
Parameters
----------
data : pd.DataFrame
Dataframe containing the variables
groups : string
Name of column in data containing the groups.
raters : string
Name of column in data containing the raters (scorers).
scores : string
Name of column in data containing the scores (ratings).
ci : float
Confidence interval
Returns
-------
icc : float
Intraclass correlation coefficient
ci : list
Lower and upper confidence intervals
Notes
-----
The intraclass correlation (ICC) assesses the reliability of ratings by
comparing the variability of different ratings of the same subject to the
total variation across all ratings and all subjects. The ratings are
quantitative (e.g. Likert scale).
Inspired from:
http://www.real-statistics.com/reliability/intraclass-correlation/
Examples
--------
ICC of wine quality assessed by 4 judges.
>>> import pingouin as pg
>>> data = pg.read_dataset('icc')
>>> pg.intraclass_corr(data=data, groups='Wine', raters='Judge',
... scores='Scores', ci=.95)
(0.727526, array([0.434, 0.927])) | 3.029181 | 3.12096 | 0.970592 |
# eq. 2.3
f = a[0]*math.log(r-1.) + \
a[1]*math.log(r-1.)**2 + \
a[2]*math.log(r-1.)**3 + \
a[3]*math.log(r-1.)**4
# eq. 2.7 and 2.8 corrections
if r == 3:
f += -0.002 / (1. + 12. * _phi(p)**2)
if v <= 4.364:
f += 1./517. - 1./(312.*(v,1e38)[np.isinf(v)])
else:
f += 1./(191.*(v,1e38)[np.isinf(v)])
return -f | def _func(a, p, r, v) | calculates f-hat for the coefficients in a, probability p,
sample mean difference r, and degrees of freedom v. | 4.707823 | 4.664648 | 1.009256 |
# There are more generic ways of doing this but profiling
# revealed that selecting these points is one of the slow
# things that is easy to change. This is about 11 times
# faster than the generic algorithm it is replacing.
#
# it is possible that different break points could yield
# better estimates, but the function this is refactoring
# just used linear distance.
if p >= .99:
return .990, .995, .999
elif p >= .975:
return .975, .990, .995
elif p >= .95:
return .950, .975, .990
elif p >= .9125:
return .900, .950, .975
elif p >= .875:
return .850, .900, .950
elif p >= .825:
return .800, .850, .900
elif p >= .7625:
return .750, .800, .850
elif p >= .675:
return .675, .750, .800
elif p >= .500:
return .500, .675, .750
else:
return .100, .500, .675 | def _select_ps(p) | returns the points to use for interpolating p | 3.265475 | 3.192173 | 1.022963 |
# This one is is about 30 times faster than
# the generic algorithm it is replacing.
if v >= 120.:
return 60, 120, inf
elif v >= 60.:
return 40, 60, 120
elif v >= 40.:
return 30, 40, 60
elif v >= 30.:
return 24, 30, 40
elif v >= 24.:
return 20, 24, 30
elif v >= 19.5:
return 19, 20, 24
if p >= .9:
if v < 2.5:
return 1, 2, 3
else:
if v < 3.5:
return 2, 3, 4
vi = int(round(v))
return vi - 1, vi, vi + 1 | def _select_vs(v, p) | returns the points to use for interpolating v | 3.10561 | 3.155258 | 0.984265 |
# interpolate v (p should be in table)
# ordinate: y**2
# abcissa: 1./v
# find the 3 closest v values
# only p >= .9 have table values for 1 degree of freedom.
# The boolean is used to index the tuple and append 1 when
# p >= .9
v0, v1, v2 = _select_vs(v, p)
# y = f - 1.
y0_sq = (_func(A[(p,v0)], p, r, v0) + 1.)**2.
y1_sq = (_func(A[(p,v1)], p, r, v1) + 1.)**2.
y2_sq = (_func(A[(p,v2)], p, r, v2) + 1.)**2.
# if v2 is inf set to a big number so interpolation
# calculations will work
if v2 > 1e38: v2 = 1e38
# transform v
v_, v0_, v1_, v2_ = 1./v, 1./v0, 1./v1, 1./v2
# calculate derivatives for quadratic interpolation
d2 = 2.*((y2_sq-y1_sq)/(v2_-v1_) - \
(y0_sq-y1_sq)/(v0_-v1_)) / (v2_-v0_)
if (v2_ + v0_) >= (v1_ + v1_):
d1 = (y2_sq-y1_sq) / (v2_-v1_) - 0.5*d2*(v2_-v1_)
else:
d1 = (y1_sq-y0_sq) / (v1_-v0_) + 0.5*d2*(v1_-v0_)
d0 = y1_sq
# calculate y
y = math.sqrt((d2/2.)*(v_-v1_)**2. + d1*(v_-v1_)+ d0)
return y | def _interpolate_v(p, r, v) | interpolates v based on the values in the A table for the
scalar value of r and th | 4.141158 | 4.200194 | 0.985945 |
## print 'q',p
# r is interpolated through the q to y here we only need to
# account for when p and/or v are not found in the table.
global A, p_keys, v_keys
if p < .1 or p > .999:
raise ValueError('p must be between .1 and .999')
if p < .9:
if v < 2:
raise ValueError('v must be > 2 when p < .9')
else:
if v < 1:
raise ValueError('v must be > 1 when p >= .9')
# The easy case. A tabled value is requested.
#numpy 1.4.1: TypeError: unhashable type: 'numpy.ndarray' :
p = float(p)
if isinstance(v, np.ndarray):
v = v.item()
if (p,v) in A:
y = _func(A[(p,v)], p, r, v) + 1.
elif p not in p_keys and v not in v_keys+([],[1])[p>=.90]:
# find the 3 closest v values
v0, v1, v2 = _select_vs(v, p)
# find the 3 closest p values
p0, p1, p2 = _select_ps(p)
# calculate r0, r1, and r2
r0_sq = _interpolate_p(p, r, v0)**2
r1_sq = _interpolate_p(p, r, v1)**2
r2_sq = _interpolate_p(p, r, v2)**2
# transform v
v_, v0_, v1_, v2_ = 1./v, 1./v0, 1./v1, 1./v2
# calculate derivatives for quadratic interpolation
d2 = 2.*((r2_sq-r1_sq)/(v2_-v1_) - \
(r0_sq-r1_sq)/(v0_-v1_)) / (v2_-v0_)
if (v2_ + v0_) >= (v1_ + v1_):
d1 = (r2_sq-r1_sq) / (v2_-v1_) - 0.5*d2*(v2_-v1_)
else:
d1 = (r1_sq-r0_sq) / (v1_-v0_) + 0.5*d2*(v1_-v0_)
d0 = r1_sq
# calculate y
y = math.sqrt((d2/2.)*(v_-v1_)**2. + d1*(v_-v1_)+ d0)
elif v not in v_keys+([],[1])[p>=.90]:
y = _interpolate_v(p, r, v)
elif p not in p_keys:
y = _interpolate_p(p, r, v)
return math.sqrt(2) * -y * \
scipy.stats.t.isf((1. + p) / 2., max(v, 1e38)) | def _qsturng(p, r, v) | scalar version of qsturng | 3.828829 | 3.862076 | 0.991391 |
if all(map(_isfloat, [p, r, v])):
return _qsturng(p, r, v)
return _vqsturng(p, r, v) | def qsturng(p, r, v) | Approximates the quantile p for a studentized range
distribution having v degrees of freedom and r samples
for probability p.
Parameters
----------
p : (scalar, array_like)
The cumulative probability value
p >= .1 and p <=.999
(values under .5 are not recommended)
r : (scalar, array_like)
The number of samples
r >= 2 and r <= 200
(values over 200 are permitted but not recommended)
v : (scalar, array_like)
The sample degrees of freedom
if p >= .9:
v >=1 and v >= inf
else:
v >=2 and v >= inf
Returns
-------
q : (scalar, array_like)
approximation of the Studentized Range | 4.22055 | 5.961322 | 0.707989 |
if q < 0.:
raise ValueError('q should be >= 0')
opt_func = lambda p, r, v : abs(_qsturng(p, r, v) - q)
if v == 1:
if q < _qsturng(.9, r, 1):
return .1
elif q > _qsturng(.999, r, 1):
return .001
return 1. - fminbound(opt_func, .9, .999, args=(r,v))
else:
if q < _qsturng(.1, r, v):
return .9
elif q > _qsturng(.999, r, v):
return .001
return 1. - fminbound(opt_func, .1, .999, args=(r,v)) | def _psturng(q, r, v) | scalar version of psturng | 2.587962 | 2.603131 | 0.994173 |
if all(map(_isfloat, [q, r, v])):
return _psturng(q, r, v)
return _vpsturng(q, r, v) | def psturng(q, r, v) | Evaluates the probability from 0 to q for a studentized
range having v degrees of freedom and r samples.
Parameters
----------
q : (scalar, array_like)
quantile value of Studentized Range
q >= 0.
r : (scalar, array_like)
The number of samples
r >= 2 and r <= 200
(values over 200 are permitted but not recommended)
v : (scalar, array_like)
The sample degrees of freedom
if p >= .9:
v >=1 and v >= inf
else:
v >=2 and v >= inf
Returns
-------
p : (scalar, array_like)
1. - area from zero to q under the Studentized Range
distribution. When v == 1, p is bound between .001
and .1, when v > 1, p is bound between .001 and .9.
Values between .5 and .9 are 1st order appoximations. | 4.242949 | 7.722878 | 0.5494 |
if self._consumer_fn is not None:
raise ValueError('Consumer function is already defined for this '
'Stream instance')
if not any([asyncio.iscoroutine(fn), asyncio.iscoroutinefunction(fn)]):
raise ValueError('Consumer function must be a coroutine')
self._consumer_fn = fn | def consumer(self, fn) | Consumer decorator
:param fn: coroutine consumer function
Example:
>>> api = StreamingAPI('my_service_key')
>>> stream = api.get_stream()
>>> @stream.consumer
>>> @asyncio.coroutine
>>> def handle_event(payload):
>>> print(payload) | 3.60603 | 3.701343 | 0.974249 |
if self._consumer_fn is None:
raise ValueError('Consumer function is not defined yet')
logger.info('Start consuming the stream')
@asyncio.coroutine
def worker(conn_url):
extra_headers = {
'Connection': 'upgrade',
'Upgrade': 'websocket',
'Sec-Websocket-Version': 13,
}
ws = yield from websockets.connect(
conn_url, extra_headers=extra_headers)
if ws is None:
raise RuntimeError("Couldn't connect to the '%s'" % conn_url)
try:
while True:
message = yield from ws.recv()
yield from self._consumer_fn(message)
finally:
yield from ws.close()
if loop is None:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
task = worker(conn_url=self._conn_url)
if timeout:
logger.info('Running task with timeout %s sec', timeout)
loop.run_until_complete(
asyncio.wait_for(task, timeout=timeout))
else:
loop.run_until_complete(task)
except asyncio.TimeoutError:
logger.info('Timeout is reached. Closing the loop')
loop.close()
except KeyboardInterrupt:
logger.info('Closing the loop')
loop.close() | def consume(self, timeout=None, loop=None) | Start consuming the stream
:param timeout: int: if it's given then it stops consumer after given
number of seconds | 2.492908 | 2.49255 | 1.000143 |
resp = requests.post(url=self.REQUEST_URL.format(**self._params),
json={'rule': {'value': value, 'tag': tag}})
return resp.json() | def add_rule(self, value, tag) | Add a new rule
:param value: str
:param tag: str
:return: dict of a json response | 5.431916 | 5.405386 | 1.004908 |
resp = requests.delete(url=self.REQUEST_URL.format(**self._params),
json={'tag': tag})
return resp.json() | def remove_rule(self, tag) | Remove a rule by tag | 7.831454 | 7.610659 | 1.029011 |
if not isinstance(data, dict):
raise ValueError('Data must be dict. %r is passed' % data)
values_dict = {}
for key, value in data.items():
items = []
if isinstance(value, six.string_types):
items.append(value)
elif isinstance(value, Iterable):
for v in value:
# Convert to str int values
if isinstance(v, int):
v = str(v)
try:
item = six.u(v)
except TypeError:
item = v
items.append(item)
value = ','.join(items)
values_dict[key] = value
return values_dict | def stringify_values(data) | Coerce iterable values to 'val1,val2,valN'
Example:
fields=['nickname', 'city', 'can_see_all_posts']
--> fields='nickname,city,can_see_all_posts'
:param data: dict
:return: converted values dict | 2.836832 | 2.831727 | 1.001803 |
parsed_url = urlparse(url)
if fragment:
url_query = parse_qsl(parsed_url.fragment)
else:
url_query = parse_qsl(parsed_url.query)
# login_response_url_query can have multiple key
url_query = dict(url_query)
return url_query | def parse_url_query_params(url, fragment=True) | Parse url query params
:param fragment: bool: flag is used for parsing oauth url
:param url: str: url string
:return: dict | 3.225599 | 3.519151 | 0.916584 |
if parser is None:
parser = bs4.BeautifulSoup(html, 'html.parser')
forms = parser.find_all('form')
if not forms:
raise VkParseError('Action form is not found in the html \n%s' % html)
if len(forms) > 1:
raise VkParseError('Find more than 1 forms to handle:\n%s', forms)
form = forms[0]
return form.get('action') | def parse_form_action_url(html, parser=None) | Parse <form action="(.+)"> url
:param html: str: raw html text
:param parser: bs4.BeautifulSoup: html parser
:return: url str: for example: /login.php?act=security_check&to=&hash=12346 | 3.412153 | 3.502926 | 0.974086 |
if parser is None:
parser = bs4.BeautifulSoup(html, 'html.parser')
fields = parser.find_all('span', {'class': 'field_prefix'})
if not fields:
raise VkParseError(
'No <span class="field_prefix">...</span> in the \n%s' % html)
result = []
for f in fields:
value = f.get_text().replace(six.u('\xa0'), '')
result.append(value)
return tuple(result) | def parse_masked_phone_number(html, parser=None) | Get masked phone number from security check html
:param html: str: raw html text
:param parser: bs4.BeautifulSoup: html parser
:return: tuple of phone prefix and suffix, for example: ('+1234', '89')
:rtype : tuple | 3.416479 | 3.375423 | 1.012163 |
if parser is None:
parser = bs4.BeautifulSoup(html, 'html.parser')
# Check warnings
warnings = parser.find_all('div', {'class': 'service_msg_warning'})
if warnings:
raise VkPageWarningsError('; '.join([w.get_text() for w in warnings]))
return True | def check_html_warnings(html, parser=None) | Check html warnings
:param html: str: raw html text
:param parser: bs4.BeautifulSoup: html parser
:raise VkPageWarningsError: in case of found warnings | 4.057122 | 2.866462 | 1.415376 |
if self._http_session is None:
session = VerboseHTTPSession()
session.headers.update(self.DEFAULT_HTTP_HEADERS)
self._http_session = session
return self._http_session | def http_session(self) | HTTP Session property
:return: vk_requests.utils.VerboseHTTPSession instance | 3.594725 | 2.652027 | 1.355463 |
response = http_session.get(self.LOGIN_URL)
action_url = parse_form_action_url(response.text)
# Stop login it action url is not found
if not action_url:
logger.debug(response.text)
raise VkParseError("Can't parse form action url")
login_form_data = {'email': self._login, 'pass': self._password}
login_response = http_session.post(action_url, login_form_data)
logger.debug('Cookies: %s', http_session.cookies)
response_url_query = parse_url_query_params(
login_response.url, fragment=False)
logger.debug('response_url_query: %s', response_url_query)
act = response_url_query.get('act')
# Check response url query params firstly
if 'sid' in response_url_query:
self.require_auth_captcha(
response=login_response,
query_params=response_url_query,
login_form_data=login_form_data,
http_session=http_session)
elif act == 'authcheck':
self.require_2fa(html=login_response.text,
http_session=http_session)
elif act == 'security_check':
self.require_phone_number(html=login_response.text,
session=http_session)
session_cookies = ('remixsid' in http_session.cookies,
'remixsid6' in http_session.cookies)
if any(session_cookies):
logger.info('VK session is established')
return True
else:
message = 'Authorization error: incorrect password or ' \
'authentication code'
logger.error(message)
raise VkAuthError(message) | def do_login(self, http_session) | Do vk login
:param http_session: vk_requests.utils.VerboseHTTPSession: http session | 3.286106 | 3.211532 | 1.023221 |
logger.info('Doing implicit flow authorization, app_id=%s', self.app_id)
auth_data = {
'client_id': self.app_id,
'display': 'mobile',
'response_type': 'token',
'scope': self.scope,
'redirect_uri': 'https://oauth.vk.com/blank.html',
'v': self.api_version
}
response = session.post(url=self.AUTHORIZE_URL,
data=stringify_values(auth_data))
url_query_params = parse_url_query_params(response.url)
if 'expires_in' in url_query_params:
logger.info('Token will be expired in %s sec.' %
url_query_params['expires_in'])
if 'access_token' in url_query_params:
return url_query_params
# Permissions are needed
logger.info('Getting permissions')
action_url = parse_form_action_url(response.text)
logger.debug('Response form action: %s', action_url)
if action_url:
response = session.get(action_url)
url_query_params = parse_url_query_params(response.url)
return url_query_params
try:
response_json = response.json()
except ValueError: # not JSON in response
error_message = 'OAuth2 grant access error'
logger.error(response.text)
else:
error_message = 'VK error: [{}] {}'.format(
response_json['error'], response_json['error_description'])
logger.error('Permissions obtained')
raise VkAuthError(error_message) | def do_implicit_flow_authorization(self, session) | Standard OAuth2 authorization method. It's used for getting access token
More info: https://vk.com/dev/implicit_flow_user | 2.930217 | 2.760979 | 1.061296 |
logger.info('Doing direct authorization, app_id=%s', self.app_id)
auth_data = {
'client_id': self.app_id,
'client_secret': self._client_secret,
'username': self._login,
'password': self._password,
'grant_type': 'password',
'2fa_supported': self._two_fa_supported,
'scope': self.scope,
'v': self.api_version
}
response = session.post(url=self.DIRECT_AUTHORIZE_URL,
data=stringify_values(auth_data))
try:
response_json = response.json()
except ValueError: # not JSON in response
error_message = 'OAuth2 grant access error'
logger.error(response.text)
raise VkAuthError(error_message)
else:
if 'access_token' in response_json:
return response_json
if response_json['error'] == 'need_validation':
return self.direct_auth_require_2fa(session, auth_data)
elif response_json['error'] == 'need_captcha':
return self.direct_auth_require_captcha(session, response_json, auth_data)
else:
error_message = 'VK error: [{}] {}'.format(
response_json['error'], response_json['error_description'])
raise VkAuthError(error_message) | def do_direct_authorization(self, session) | Direct Authorization, more info: https://vk.com/dev/auth_direct | 2.810893 | 2.547714 | 1.1033 |
logger.info('Captcha is needed. Query params: %s', query_params)
form_text = response.text
action_url = parse_form_action_url(form_text)
logger.debug('form action url: %s', action_url)
if not action_url:
raise VkAuthError('Cannot find form action url')
captcha_sid, captcha_url = parse_captcha_html(
html=response.text, response_url=response.url)
logger.info('Captcha url %s', captcha_url)
login_form_data['captcha_sid'] = captcha_sid
login_form_data['captcha_key'] = self.get_captcha_key(captcha_url)
response = http_session.post(action_url, login_form_data)
return response | def require_auth_captcha(self, response, query_params,
login_form_data, http_session) | Resolve auth captcha case
:param response: http response
:param query_params: dict: response query params, for example:
{'s': '0', 'email': 'my@email', 'dif': '1', 'role': 'fast', 'sid': '1'}
:param login_form_data: dict
:param http_session: requests.Session
:return: :raise VkAuthError: | 2.61096 | 2.561393 | 1.019352 |
if self._service_token:
logger.info('Use service token: %s',
5 * '*' + self._service_token[50:])
return self._service_token
if not all([self.app_id, self._login, self._password]):
raise ValueError(
'app_id=%s, login=%s password=%s (masked) must be given'
% (self.app_id, self._login,
'*' * len(self._password) if self._password else 'None'))
logger.info("Getting access token for user '%s'" % self._login)
with self.http_session as s:
if self._client_secret:
url_query_params = self.do_direct_authorization(session=s)
else:
self.do_login(http_session=s)
url_query_params = self.do_implicit_flow_authorization(session=s)
logger.debug('url_query_params: %s', url_query_params)
if 'access_token' in url_query_params:
logger.info('Access token has been gotten')
return url_query_params['access_token']
else:
raise VkAuthError('OAuth2 authorization error. Url params: %s'
% url_query_params) | def _get_access_token(self) | Get access token using app_id, login and password OR service token
(service token docs: https://vk.com/dev/service_token | 3.691658 | 3.2966 | 1.119838 |
if self.interactive:
print('Open CAPTCHA image url in your browser and enter it below: ',
captcha_image_url)
captcha_key = raw_input('Enter CAPTCHA key: ')
return captcha_key
else:
raise VkAuthError(
'Captcha is required. Use interactive mode to enter it '
'manually') | def get_captcha_key(self, captcha_image_url) | Read CAPTCHA key from user input | 5.421278 | 4.923237 | 1.101161 |
logger.debug('Prepare API Method request %r', request)
response = self._send_api_request(request=request,
captcha_response=captcha_response)
response.raise_for_status()
response_or_error = json.loads(response.text)
logger.debug('response: %s', response_or_error)
if 'error' in response_or_error:
error_data = response_or_error['error']
vk_error = VkAPIError(error_data)
if vk_error.is_captcha_needed():
captcha_key = self.get_captcha_key(vk_error.captcha_img_url)
if not captcha_key:
raise vk_error
# Retry http request with captcha info attached
captcha_response = {
'sid': vk_error.captcha_sid,
'key': captcha_key,
}
return self.make_request(
request, captcha_response=captcha_response)
elif vk_error.is_access_token_incorrect():
logger.info(
'Authorization failed. Access token will be dropped')
self._access_token = None
return self.make_request(request)
else:
raise vk_error
elif 'execute_errors' in response_or_error:
# can take place while running .execute vk method
# See more: https://vk.com/dev/execute
raise VkAPIError(response_or_error['execute_errors'][0])
elif 'response' in response_or_error:
return response_or_error['response'] | def make_request(self, request, captcha_response=None) | Make api request helper function
:param request: vk_requests.api.Request instance
:param captcha_response: None or dict, e.g {'sid': <sid>, 'key': <key>}
:return: dict: json decoded http response | 2.970418 | 2.868356 | 1.035582 |
url = self.API_URL + request.method_name
# Prepare request arguments
method_kwargs = {'v': self.api_version}
# Shape up the request data
for values in (request.method_args,):
method_kwargs.update(stringify_values(values))
if self.is_token_required() or self._service_token:
# Auth api call if access_token hadn't been gotten earlier
method_kwargs['access_token'] = self.access_token
if captcha_response:
method_kwargs['captcha_sid'] = captcha_response['sid']
method_kwargs['captcha_key'] = captcha_response['key']
http_params = dict(url=url,
data=method_kwargs,
**request.http_params)
logger.debug('send_api_request:http_params: %s', http_params)
response = self.http_session.post(**http_params)
return response | def _send_api_request(self, request, captcha_response=None) | Prepare and send HTTP API request
:param request: vk_requests.api.Request instance
:param captcha_response: None or dict
:return: HTTP response | 4.520301 | 4.148309 | 1.089673 |
session = VKSession(app_id=app_id,
user_login=login,
user_password=password,
phone_number=phone_number,
scope=scope,
service_token=service_token,
api_version=api_version,
interactive=interactive,
client_secret=client_secret,
two_fa_supported = two_fa_supported,
two_fa_force_sms=two_fa_force_sms)
return API(session=session, http_params=http_params) | def create_api(app_id=None, login=None, password=None, phone_number=None,
scope='offline', api_version='5.92', http_params=None,
interactive=False, service_token=None, client_secret=None,
two_fa_supported=False, two_fa_force_sms=False) | Factory method to explicitly create API with app_id, login, password
and phone_number parameters.
If the app_id, login, password are not passed, then token-free session
will be created automatically
:param app_id: int: vk application id, more info: https://vk.com/dev/main
:param login: str: vk login
:param password: str: vk password
:param phone_number: str: phone number with country code (+71234568990)
:param scope: str or list of str: vk session scope
:param api_version: str: vk api version, check https://vk.com/dev/versions
:param interactive: bool: flag which indicates to use InteractiveVKSession
:param service_token: str: new way of querying vk api, instead of getting
oauth token
:param http_params: dict: requests http parameters passed along
:param client_secret: str: secure application key for Direct Authorization,
more info: https://vk.com/dev/auth_direct
:param two_fa_supported: bool: enable two-factor authentication for Direct Authorization,
more info: https://vk.com/dev/auth_direct
:param two_fa_force_sms: bool: force SMS two-factor authentication for Direct Authorization
if two_fa_supported is True, more info: https://vk.com/dev/auth_direct
:return: api instance
:rtype : vk_requests.api.API | 1.78163 | 1.947158 | 0.91499 |
if self._process_result:
self._result = self._process_result(value)
self._raw_result = value | def result(self, value) | The result of the command. | 5.998717 | 5.87366 | 1.021291 |
path = '/'.join(str(v) for v in self._path)
return 'coaps://{}:5684/{}'.format(host, path) | def url(self, host) | Generate url for coap client. | 4.941291 | 3.46072 | 1.427822 |
for k, v in a.items():
if isinstance(v, dict):
item = b.setdefault(k, {})
self._merge(v, item)
elif isinstance(v, list):
item = b.setdefault(k, [{}])
if len(v) == 1 and isinstance(v[0], dict):
self._merge(v[0], item[0])
else:
b[k] = v
else:
b[k] = v
return b | def _merge(self, a, b) | Merges a into b. | 1.811612 | 1.74703 | 1.036967 |
if command2 is None:
return
self._data = self._merge(command2._data, self._data) | def combine_data(self, command2) | Combines the data for this command with another. | 5.635996 | 4.370011 | 1.289698 |
try:
with open(filename, encoding='utf-8') as fdesc:
return json.loads(fdesc.read())
except FileNotFoundError:
# This is not a fatal error
_LOGGER.debug('JSON file not found: %s', filename)
except ValueError as error:
_LOGGER.exception('Could not parse JSON content: %s', filename)
raise PytradfriError(error)
except OSError as error:
_LOGGER.exception('JSON file reading failed: %s', filename)
raise PytradfriError(error)
return {} | def load_json(filename: str) -> Union[List, Dict] | Load JSON data from a file and return as dict or list.
Defaults to returning empty dict if file is not found. | 2.730969 | 2.80824 | 0.972484 |
try:
data = json.dumps(config, sort_keys=True, indent=4)
with open(filename, 'w', encoding='utf-8') as fdesc:
fdesc.write(data)
return True
except TypeError as error:
_LOGGER.exception('Failed to serialize to JSON: %s',
filename)
raise PytradfriError(error)
except OSError as error:
_LOGGER.exception('Saving JSON file failed: %s',
filename)
raise PytradfriError(error) | def save_json(filename: str, config: Union[List, Dict]) | Save JSON data to a file.
Returns True on success. | 2.788369 | 2.631617 | 1.059565 |
return [k for k, b in self._lookup.items() if b & selection] | def get_selected_keys(self, selection) | Return a list of keys for the given selection. | 8.932598 | 6.595808 | 1.354284 |
return [v for b, v in self._choices if b & selection] | def get_selected_values(self, selection) | Return a list of values for the given selection. | 14.955264 | 11.215895 | 1.333399 |
output = output.strip()
_LOGGER.debug('Received: %s', output)
if not output:
return None
elif 'decrypt_verify' in output:
raise RequestError(
'Please compile coap-client without debug output. See '
'instructions at '
'https://github.com/ggravlingen/pytradfri#installation')
elif output.startswith(CLIENT_ERROR_PREFIX):
raise ClientError(output)
elif output.startswith(SERVER_ERROR_PREFIX):
raise ServerError(output)
elif not parse_json:
return output
return json.loads(output) | def _process_output(output, parse_json=True) | Process output. | 5.036912 | 4.874663 | 1.033284 |
@wraps(api)
def retry_api(*args, **kwargs):
for i in range(1, retries + 1):
try:
return api(*args, **kwargs)
except RequestTimeout:
if i == retries:
raise
return retry_api | def retry_timeout(api, retries=3) | Retry API call when a timeout occurs. | 2.452056 | 2.263923 | 1.0831 |
if api_command.observe:
self._observe(api_command)
return
method = api_command.method
path = api_command.path
data = api_command.data
parse_json = api_command.parse_json
url = api_command.url(self._host)
proc_timeout = self._timeout
if timeout is not None:
proc_timeout = timeout
command = self._base_command(method)
kwargs = {
'stderr': subprocess.DEVNULL,
'timeout': proc_timeout,
'universal_newlines': True,
}
if data is not None:
kwargs['input'] = json.dumps(data)
command.append('-f')
command.append('-')
_LOGGER.debug('Executing %s %s %s: %s', self._host, method, path,
data)
else:
_LOGGER.debug('Executing %s %s %s', self._host, method, path)
command.append(url)
try:
return_value = subprocess.check_output(command, **kwargs)
except subprocess.TimeoutExpired:
raise RequestTimeout() from None
except subprocess.CalledProcessError as err:
raise RequestError(
'Error executing request: {}'.format(err)) from None
api_command.result = _process_output(return_value, parse_json)
return api_command.result | def _execute(self, api_command, *, timeout=None) | Execute the command. | 2.578862 | 2.525974 | 1.020938 |
if not isinstance(api_commands, list):
return self._execute(api_commands, timeout=timeout)
command_results = []
for api_command in api_commands:
result = self._execute(api_command, timeout=timeout)
command_results.append(result)
return command_results | def request(self, api_commands, *, timeout=None) | Make a request. Timeout is in seconds. | 2.22601 | 2.083992 | 1.068147 |
path = api_command.path
duration = api_command.observe_duration
if duration <= 0:
raise ValueError("Observation duration has to be greater than 0.")
url = api_command.url(self._host)
err_callback = api_command.err_callback
command = (self._base_command('get')
+ ['-s', str(duration), '-B', str(duration), url])
kwargs = {
'stdout': subprocess.PIPE,
'stderr': subprocess.DEVNULL,
'universal_newlines': True
}
try:
proc = subprocess.Popen(command, **kwargs)
except subprocess.CalledProcessError as err:
raise RequestError(
'Error executing request: %s'.format(err)) from None
output = ''
open_obj = 0
start = time()
for data in iter(lambda: proc.stdout.read(1), ''):
if data == '\n':
_LOGGER.debug('Observing stopped for %s after %.1fs',
path, time() - start)
err_callback(RequestError("Observing stopped."))
break
if data == '{':
open_obj += 1
elif data == '}':
open_obj -= 1
output += data
if open_obj == 0:
api_command.result = _process_output(output)
output = '' | def _observe(self, api_command) | Observe an endpoint. | 3.511969 | 3.414367 | 1.028586 |
if not self._psk:
# Backup the real identity.
existing_psk_id = self._psk_id
# Set the default identity and security key for generation.
self._psk_id = 'Client_identity'
self._psk = security_key
# Ask the Gateway to generate the psk for the identity.
self._psk = self.request(Gateway().generate_psk(existing_psk_id))
# Restore the real identity.
self._psk_id = existing_psk_id
return self._psk | def generate_psk(self, security_key) | Generate and set a psk from the security key. | 4.508446 | 4.34705 | 1.037128 |
return datetime.time(
self.task_start_parameters[
ATTR_SMART_TASK_TRIGGER_TIME_START_HOUR],
self.task_start_parameters[
ATTR_SMART_TASK_TRIGGER_TIME_START_MIN]) | def task_start_time(self) | Return the time the task starts.
Time is set according to iso8601. | 5.035065 | 4.949285 | 1.017332 |
return TaskControl(
self,
self.state,
self.path,
self._gateway) | def task_control(self) | Method to control a task. | 17.442301 | 15.421797 | 1.131016 |
return [StartActionItem(
self._task,
i,
self.state,
self.path,
self.raw) for i in range(len(self.raw))] | def tasks(self) | Return task objects of the task control. | 11.722322 | 10.533955 | 1.112813 |
# This is to calculate the difference between local time
# and the time in the gateway
d1 = self._gateway.get_gateway_info().current_time
d2 = dt.utcnow()
diff = d1 - d2
newtime = dt(100, 1, 1, hour, minute, 00) - diff
command = {
ATTR_SMART_TASK_TRIGGER_TIME_INTERVAL:
[{
ATTR_SMART_TASK_TRIGGER_TIME_START_HOUR: newtime.hour,
ATTR_SMART_TASK_TRIGGER_TIME_START_MIN: newtime.minute
}]
}
return self._task.set_values(command) | def set_dimmer_start_time(self, hour, minute) | Set start time for task (hh:mm) in iso8601.
NB: dimmer starts 30 mins before time in app | 4.753451 | 4.765817 | 0.997405 |
return [StartActionItem(
self.start_action,
i,
self.state,
self.path,
self.raw) for i in range(
len(self.raw[ROOT_START_ACTION]))] | def devices(self) | Return state of start action task. | 11.430624 | 7.929393 | 1.441551 |
json_list = {}
z = 0
for x in self._raw[ROOT_START_ACTION]:
if z != self.index:
json_list.update(x)
z = z + 1
return json_list | def devices_dict(self) | Return state of start action task. | 8.759686 | 6.782763 | 1.291463 |
return StartActionItemController(
self,
self.raw,
self.state,
self.path,
self.devices_dict) | def item_controller(self) | Method to control a task. | 18.329113 | 16.329796 | 1.122434 |
command = {
ATTR_START_ACTION: {
ATTR_DEVICE_STATE: self.state,
ROOT_START_ACTION: [{
ATTR_ID: self.raw[ATTR_ID],
ATTR_LIGHT_DIMMER: dimmer,
ATTR_TRANSITION_TIME: self.raw[ATTR_TRANSITION_TIME]
}, self.devices_dict]
}
}
return self.set_values(command) | def set_dimmer(self, dimmer) | Set final dimmer value for task. | 6.041952 | 5.868448 | 1.029566 |
command = {
ATTR_START_ACTION: {
ATTR_DEVICE_STATE: self.state,
ROOT_START_ACTION: [{
ATTR_ID: self.raw[ATTR_ID],
ATTR_LIGHT_DIMMER: self.raw[ATTR_LIGHT_DIMMER],
ATTR_TRANSITION_TIME: transition_time * 10 * 60
}, self.devices_dict]
}
}
return self.set_values(command) | def set_transition_time(self, transition_time) | Set time (mins) for light transition. | 6.247237 | 5.684238 | 1.099046 |
def observe_callback(value):
self.raw = value
callback(self)
return Command('get', self.path, process_result=observe_callback,
err_callback=err_callback,
observe=True,
observe_duration=duration) | def observe(self, callback, err_callback, duration=60) | Observe resource and call callback when updated. | 6.80237 | 6.123836 | 1.110802 |
def process_result(result):
self.raw = result
return Command('get', self.path, process_result=process_result) | def update(self) | Update the group.
Returns a Command. | 10.080923 | 9.733917 | 1.035649 |
def process_result(result):
return result[ATTR_PSK]
return Command('post', [ROOT_GATEWAY, ATTR_AUTH], {
ATTR_IDENTITY: identity
}, process_result=process_result) | def generate_psk(self, identity) | Generates the PRE_SHARED_KEY from the gateway.
Returns a Command. | 12.611272 | 9.796833 | 1.28728 |
def process_result(result):
return [line.split(';')[0][2:-1] for line in result.split(',')]
return Command('get', ['.well-known', 'core'], parse_json=False,
process_result=process_result) | def get_endpoints(self) | Return all available endpoints on the gateway.
Returns a Command. | 8.277596 | 7.319159 | 1.130949 |
def process_result(result):
return [self.get_device(dev) for dev in result]
return Command('get', [ROOT_DEVICES], process_result=process_result) | def get_devices(self) | Return the devices linked to the gateway.
Returns a Command. | 8.475373 | 7.646162 | 1.108448 |
def process_result(result):
return Device(result)
return Command('get', [ROOT_DEVICES, device_id],
process_result=process_result) | def get_device(self, device_id) | Return specified device.
Returns a Command. | 10.300258 | 9.698241 | 1.062075 |
def process_result(result):
return [self.get_group(group) for group in result]
return Command('get', [ROOT_GROUPS], process_result=process_result) | def get_groups(self) | Return the groups linked to the gateway.
Returns a Command. | 8.620298 | 7.584568 | 1.136558 |
def process_result(result):
return Group(self, result)
return Command('get', [ROOT_GROUPS, group_id],
process_result=process_result) | def get_group(self, group_id) | Return specified group.
Returns a Command. | 9.293819 | 9.567601 | 0.971384 |
def process_result(result):
return GatewayInfo(result)
return Command('get',
[ROOT_GATEWAY, ATTR_GATEWAY_INFO],
process_result=process_result) | def get_gateway_info(self) | Return the gateway info.
Returns a Command. | 11.398709 | 9.516211 | 1.19782 |
mood_parent = self._get_mood_parent()
def process_result(result):
return [self.get_mood(mood, mood_parent=mood_parent) for mood in
result]
return Command('get', [ROOT_MOODS, mood_parent],
process_result=process_result) | def get_moods(self) | Return moods defined on the gateway.
Returns a Command. | 5.708956 | 5.086179 | 1.122445 |
if mood_parent is None:
mood_parent = self._get_mood_parent()
def process_result(result):
return Mood(result, mood_parent)
return Command('get', [ROOT_MOODS, mood_parent, mood_id],
mood_parent, process_result=process_result) | def get_mood(self, mood_id, *, mood_parent=None) | Return a mood.
Returns a Command. | 4.269593 | 3.934708 | 1.085111 |
def process_result(result):
return [self.get_smart_task(task) for task in result]
return Command('get', [ROOT_SMART_TASKS],
process_result=process_result) | def get_smart_tasks(self) | Return the transitions linked to the gateway.
Returns a Command. | 7.285981 | 6.87191 | 1.060256 |
def process_result(result):
return SmartTask(self, result)
return Command('get', [ROOT_SMART_TASKS, task_id],
process_result=process_result) | def get_smart_task(self, task_id) | Return specified transition.
Returns a Command. | 8.039356 | 8.277949 | 0.971177 |
if ATTR_FIRST_SETUP not in self.raw:
return None
return datetime.utcfromtimestamp(self.raw[ATTR_FIRST_SETUP]) | def first_setup(self) | This is a guess of the meaning of this value. | 5.068933 | 4.001746 | 1.26668 |
if DeviceInfo.ATTR_POWER_SOURCE not in self.raw:
return None
return DeviceInfo.VALUE_POWER_SOURCES.get(self.power_source, 'Unknown') | def power_source_str(self) | String representation of current power source. | 7.028918 | 6.134669 | 1.14577 |
return [Light(self._device, i) for i in range(len(self.raw))] | def lights(self) | Return light objects of the light control. | 9.83152 | 7.199836 | 1.36552 |
return self.set_values({
ATTR_DEVICE_STATE: int(state)
}, index=index) | def set_state(self, state, *, index=0) | Set state of a light. | 8.374441 | 6.743827 | 1.241794 |
self._value_validate(dimmer, RANGE_BRIGHTNESS, "Dimmer")
values = {
ATTR_LIGHT_DIMMER: dimmer
}
if transition_time is not None:
values[ATTR_TRANSITION_TIME] = transition_time
return self.set_values(values, index=index) | def set_dimmer(self, dimmer, *, index=0, transition_time=None) | Set dimmer value of a light.
transition_time: Integer representing tenth of a second (default None) | 3.459108 | 3.459369 | 0.999925 |
self._value_validate(color_temp, RANGE_MIREDS, "Color temperature")
values = {
ATTR_LIGHT_MIREDS: color_temp
}
if transition_time is not None:
values[ATTR_TRANSITION_TIME] = transition_time
return self.set_values(values, index=index) | def set_color_temp(self, color_temp, *, index=0, transition_time=None) | Set color temp a light. | 3.85257 | 3.572184 | 1.078492 |
values = {
ATTR_LIGHT_COLOR_HEX: color,
}
if transition_time is not None:
values[ATTR_TRANSITION_TIME] = transition_time
return self.set_values(values, index=index) | def set_hex_color(self, color, *, index=0, transition_time=None) | Set hex color of the light. | 3.018871 | 2.66609 | 1.132322 |
self._value_validate(color_x, RANGE_X, "X color")
self._value_validate(color_y, RANGE_Y, "Y color")
values = {
ATTR_LIGHT_COLOR_X: color_x,
ATTR_LIGHT_COLOR_Y: color_y
}
if transition_time is not None:
values[ATTR_TRANSITION_TIME] = transition_time
return self.set_values(values, index=index) | def set_xy_color(self, color_x, color_y, *, index=0, transition_time=None) | Set xy color of the light. | 2.435217 | 2.252311 | 1.081208 |
self._value_validate(hue, RANGE_HUE, "Hue")
self._value_validate(saturation, RANGE_SATURATION, "Saturation")
values = {
ATTR_LIGHT_COLOR_SATURATION: saturation,
ATTR_LIGHT_COLOR_HUE: hue
}
if brightness is not None:
values[ATTR_LIGHT_DIMMER] = brightness
self._value_validate(brightness, RANGE_BRIGHTNESS, "Brightness")
if transition_time is not None:
values[ATTR_TRANSITION_TIME] = transition_time
return self.set_values(values, index=index) | def set_hsb(self, hue, saturation, brightness=None, *, index=0,
transition_time=None) | Set HSB color settings of the light. | 2.218825 | 2.104539 | 1.054304 |
if value is not None and (value < rnge[0] or value > rnge[1]):
raise ValueError('%s value must be between %d and %d.'
% (identifier, rnge[0], rnge[1])) | def _value_validate(self, value, rnge, identifier="Given") | Make sure a value is within a given range | 2.343742 | 2.249189 | 1.042039 |
assert len(self.raw) == 1, \
'Only devices with 1 light supported'
return Command('put', self._device.path, {
ATTR_LIGHT_CONTROL: [
values
]
}) | def set_values(self, values, *, index=0) | Set values on light control.
Returns a Command. | 17.206543 | 11.059608 | 1.5558 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.