code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
# Ensure axis specification is positive
if axis < 0:
axis = b.ndim + axis
# Insert singleton axis into b
bx = np.expand_dims(b, axis)
# Calculate index of required singleton axis in a and insert it
axshp = [1] * bx.ndim
axshp[axis:axis + 2] = a.shape
ax = a.reshape(axshp)
# Calculate indexing expression required to remove singleton axis in
# product
idxexp = [slice(None)] * bx.ndim
idxexp[axis + 1] = 0
# Compute and return product
return np.sum(ax * bx, axis=axis+1, keepdims=True)[tuple(idxexp)] | def dot(a, b, axis=-2) | Compute the matrix product of `a` and the specified axes of `b`,
with broadcasting over the remaining axes of `b`. This function is
a generalisation of :func:`numpy.dot`, supporting sum product over
an arbitrary axis instead of just over the last axis.
If `a` and `b` are both 2D arrays, `dot` gives the same result as
:func:`numpy.dot`. If `b` has more than 2 axes, the result is
obtained as follows (where `a` has shape ``(M0, M1)`` and `b` has
shape ``(N0, N1, ..., M1, Nn, ...)``):
#. Reshape `a` to shape ``( 1, 1, ..., M0, M1, 1, ...)``
#. Reshape `b` to shape ``(N0, N1, ..., 1, M1, Nn, ...)``
#. Take the broadcast product and sum over the specified axis (the
axis with dimension `M1` in this example) to give an array of
shape ``(N0, N1, ..., M0, 1, Nn, ...)``
#. Remove the singleton axis created by the summation to give
an array of shape ``(N0, N1, ..., M0, Nn, ...)``
Parameters
----------
a : array_like, 2D
First component of product
b : array_like, 2D or greater
Second component of product
axis : integer, optional (default -2)
Axis of `b` over which sum is to be taken
Returns
-------
prod : ndarray
Matrix product of `a` and specified axes of `b`, with broadcasting
over the remaining axes of `b` | 5.045208 | 4.113511 | 1.226497 |
r
a = np.conj(ah)
if c is None:
c = solvedbi_sm_c(ah, a, rho, axis)
if have_numexpr:
cb = inner(c, b, axis=axis)
return ne.evaluate('(b - (a * cb)) / rho')
else:
return (b - (a * inner(c, b, axis=axis))) / rho | def solvedbi_sm(ah, rho, b, c=None, axis=4) | r"""
Solve a diagonal block linear system with a scaled identity term
using the Sherman-Morrison equation.
The solution is obtained by independently solving a set of linear
systems of the form (see :cite:`wohlberg-2016-efficient`)
.. math::
(\rho I + \mathbf{a} \mathbf{a}^H ) \; \mathbf{x} = \mathbf{b} \;\;.
In this equation inner products and matrix products are taken along
the specified axis of the corresponding multi-dimensional arrays; the
solutions are independent over the other axes.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
rho : float
Linear system parameter :math:`\rho`
b : array_like
Linear system component :math:`\mathbf{b}`
c : array_like, optional (default None)
Solution component :math:`\mathbf{c}` that may be pre-computed using
:func:`solvedbi_sm_c` and cached for re-use.
axis : int, optional (default 4)
Axis along which to solve the linear system
Returns
-------
x : ndarray
Linear system solution :math:`\mathbf{x}` | 4.511488 | 4.442008 | 1.015642 |
r
return ah / (inner(ah, a, axis=axis) + rho) | def solvedbi_sm_c(ah, a, rho, axis=4) | r"""
Compute cached component used by :func:`solvedbi_sm`.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
a : array_like
Linear system component :math:`\mathbf{a}`
rho : float
Linear system parameter :math:`\rho`
axis : int, optional (default 4)
Axis along which to solve the linear system
Returns
-------
c : ndarray
Argument :math:`\mathbf{c}` used by :func:`solvedbi_sm` | 19.065075 | 31.937714 | 0.596946 |
r
a = np.conj(ah)
if c is None:
c = solvedbd_sm_c(ah, a, d, axis)
if have_numexpr:
cb = inner(c, b, axis=axis)
return ne.evaluate('(b - (a * cb)) / d')
else:
return (b - (a * inner(c, b, axis=axis))) / d | def solvedbd_sm(ah, d, b, c=None, axis=4) | r"""
Solve a diagonal block linear system with a diagonal term
using the Sherman-Morrison equation.
The solution is obtained by independently solving a set of linear
systems of the form (see :cite:`wohlberg-2016-efficient`)
.. math::
(\mathbf{d} + \mathbf{a} \mathbf{a}^H ) \; \mathbf{x} = \mathbf{b} \;\;.
In this equation inner products and matrix products are taken along
the specified axis of the corresponding multi-dimensional arrays; the
solutions are independent over the other axes.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
d : array_like
Linear system parameter :math:`\mathbf{d}`
b : array_like
Linear system component :math:`\mathbf{b}`
c : array_like, optional (default None)
Solution component :math:`\mathbf{c}` that may be pre-computed using
:func:`solvedbd_sm_c` and cached for re-use.
axis : int, optional (default 4)
Axis along which to solve the linear system
Returns
-------
x : ndarray
Linear system solution :math:`\mathbf{x}` | 4.560352 | 4.355503 | 1.047032 |
r
return (ah / d) / (inner(ah, (a / d), axis=axis) + 1.0) | def solvedbd_sm_c(ah, a, d, axis=4) | r"""
Compute cached component used by :func:`solvedbd_sm`.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
a : array_like
Linear system component :math:`\mathbf{a}`
d : array_like
Linear system parameter :math:`\mathbf{d}`
axis : int, optional (default 4)
Axis along which to solve the linear system
Returns
-------
c : ndarray
Argument :math:`\mathbf{c}` used by :func:`solvedbd_sm` | 13.377511 | 18.784956 | 0.71214 |
r
if axisM < 0:
axisM += ah.ndim
if axisK < 0:
axisK += ah.ndim
K = ah.shape[axisK]
a = np.conj(ah)
gamma = np.zeros(a.shape, a.dtype)
dltshp = list(a.shape)
dltshp[axisM] = 1
delta = np.zeros(dltshp, a.dtype)
slcnc = (slice(None),) * axisK
alpha = np.take(a, [0], axisK) / rho
beta = b / rho
del b
for k in range(0, K):
slck = slcnc + (slice(k, k + 1),)
gamma[slck] = alpha
delta[slck] = 1.0 + inner(ah[slck], gamma[slck], axis=axisM)
d = gamma[slck] * inner(ah[slck], beta, axis=axisM)
beta[:] -= d / delta[slck]
if k < K - 1:
alpha[:] = np.take(a, [k + 1], axisK) / rho
for l in range(0, k + 1):
slcl = slcnc + (slice(l, l + 1),)
d = gamma[slcl] * inner(ah[slcl], alpha, axis=axisM)
alpha[:] -= d / delta[slcl]
return beta | def solvemdbi_ism(ah, rho, b, axisM, axisK) | r"""
Solve a multiple diagonal block linear system with a scaled
identity term by iterated application of the Sherman-Morrison
equation. The computation is performed in a way that avoids
explictly constructing the inverse operator, leading to an
:math:`O(K^2)` time cost.
The solution is obtained by independently solving a set of linear
systems of the form (see :cite:`wohlberg-2016-efficient`)
.. math::
(\rho I + \mathbf{a}_0 \mathbf{a}_0^H + \mathbf{a}_1 \mathbf{a}_1^H +
\; \ldots \; + \mathbf{a}_{K-1} \mathbf{a}_{K-1}^H) \; \mathbf{x} =
\mathbf{b}
where each :math:`\mathbf{a}_k` is an :math:`M`-vector.
The sums, inner products, and matrix products in this equation are taken
along the M and K axes of the corresponding multi-dimensional arrays;
the solutions are independent over the other axes.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
rho : float
Linear system parameter :math:`\rho`
b : array_like
Linear system component :math:`\mathbf{b}`
axisM : int
Axis in input corresponding to index m in linear system
axisK : int
Axis in input corresponding to index k in linear system
Returns
-------
x : ndarray
Linear system solution :math:`\mathbf{x}` | 2.717565 | 2.761887 | 0.983952 |
r
axisM = dimN + 2
slcnc = (slice(None),) * axisK
M = ah.shape[axisM]
K = ah.shape[axisK]
a = np.conj(ah)
Ainv = np.ones(ah.shape[0:dimN] + (1,)*4) * \
np.reshape(np.eye(M, M) / rho, (1,)*(dimN + 2) + (M, M))
for k in range(0, K):
slck = slcnc + (slice(k, k + 1),) + (slice(None), np.newaxis,)
Aia = inner(Ainv, np.swapaxes(a[slck], dimN + 2, dimN + 3),
axis=dimN + 3)
ahAia = 1.0 + inner(ah[slck], Aia, axis=dimN + 2)
ahAi = inner(ah[slck], Ainv, axis=dimN + 2)
AiaahAi = Aia * ahAi
Ainv = Ainv - AiaahAi / ahAia
return np.sum(Ainv * np.swapaxes(b[(slice(None),) * b.ndim +
(np.newaxis,)], dimN + 2, dimN + 3),
dimN + 3) | def solvemdbi_rsm(ah, rho, b, axisK, dimN=2) | r"""
Solve a multiple diagonal block linear system with a scaled
identity term by repeated application of the Sherman-Morrison
equation. The computation is performed by explictly constructing
the inverse operator, leading to an :math:`O(K)` time cost and
:math:`O(M^2)` memory cost, where :math:`M` is the dimension of
the axis over which inner products are taken.
The solution is obtained by independently solving a set of linear
systems of the form (see :cite:`wohlberg-2016-efficient`)
.. math::
(\rho I + \mathbf{a}_0 \mathbf{a}_0^H + \mathbf{a}_1 \mathbf{a}_1^H +
\; \ldots \; + \mathbf{a}_{K-1} \mathbf{a}_{K-1}^H) \; \mathbf{x} =
\mathbf{b}
where each :math:`\mathbf{a}_k` is an :math:`M`-vector.
The sums, inner products, and matrix products in this equation are taken
along the M and K axes of the corresponding multi-dimensional arrays;
the solutions are independent over the other axes.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
rho : float
Linear system parameter :math:`\rho`
b : array_like
Linear system component :math:`\mathbf{b}`
axisK : int
Axis in input corresponding to index k in linear system
dimN : int, optional (default 2)
Number of spatial dimensions arranged as leading axes in input array.
Axis M is taken to be at dimN+2.
Returns
-------
x : ndarray
Linear system solution :math:`\mathbf{x}` | 3.608816 | 3.525124 | 1.023742 |
r
a = np.conj(ah)
if isn is not None:
isn = isn.ravel()
Aop = lambda x: inner(ah, x, axis=axisM)
AHop = lambda x: inner(a, x, axis=axisK)
AHAop = lambda x: AHop(Aop(x))
vAHAoprI = lambda x: AHAop(x.reshape(b.shape)).ravel() + rho * x.ravel()
lop = LinearOperator((b.size, b.size), matvec=vAHAoprI, dtype=b.dtype)
vx, cgit = _cg_wrapper(lop, b.ravel(), isn, tol, mit)
return vx.reshape(b.shape), cgit | def solvemdbi_cg(ah, rho, b, axisM, axisK, tol=1e-5, mit=1000, isn=None) | r"""
Solve a multiple diagonal block linear system with a scaled
identity term using Conjugate Gradient (CG) via
:func:`scipy.sparse.linalg.cg`.
The solution is obtained by independently solving a set of linear
systems of the form (see :cite:`wohlberg-2016-efficient`)
.. math::
(\rho I + \mathbf{a}_0 \mathbf{a}_0^H + \mathbf{a}_1 \mathbf{a}_1^H +
\; \ldots \; + \mathbf{a}_{K-1} \mathbf{a}_{K-1}^H) \; \mathbf{x} =
\mathbf{b}
where each :math:`\mathbf{a}_k` is an :math:`M`-vector.
The inner products and matrix products in this equation are taken
along the M and K axes of the corresponding multi-dimensional arrays;
the solutions are independent over the other axes.
Parameters
----------
ah : array_like
Linear system component :math:`\mathbf{a}^H`
rho : float
Parameter rho
b : array_like
Linear system component :math:`\mathbf{b}`
axisM : int
Axis in input corresponding to index m in linear system
axisK : int
Axis in input corresponding to index k in linear system
tol : float
CG tolerance
mit : int
CG maximum iterations
isn : array_like
CG initial solution
Returns
-------
x : ndarray
Linear system solution :math:`\mathbf{x}`
cgit : int
Number of CG iterations | 4.917366 | 4.449656 | 1.105112 |
r
N, M = A.shape
# If N < M it is cheaper to factorise A*A^T + rho*I and then use the
# matrix inversion lemma to compute the inverse of A^T*A + rho*I
if N >= M:
lu, piv = linalg.lu_factor(A.T.dot(A) +
rho * np.identity(M, dtype=A.dtype),
check_finite=check_finite)
else:
lu, piv = linalg.lu_factor(A.dot(A.T) +
rho * np.identity(N, dtype=A.dtype),
check_finite=check_finite)
return lu, piv | def lu_factor(A, rho, check_finite=True) | r"""
Compute LU factorisation of either :math:`A^T A + \rho I` or
:math:`A A^T + \rho I`, depending on which matrix is smaller.
Parameters
----------
A : array_like
Array :math:`A`
rho : float
Scalar :math:`\rho`
check_finite : bool, optional (default False)
Flag indicating whether the input array should be checked for Inf
and NaN values
Returns
-------
lu : ndarray
Matrix containing U in its upper triangle, and L in its lower triangle,
as returned by :func:`scipy.linalg.lu_factor`
piv : ndarray
Pivot indices representing the permutation matrix P, as returned by
:func:`scipy.linalg.lu_factor` | 2.891607 | 2.764239 | 1.046077 |
r
N, M = A.shape
if N >= M:
x = linalg.lu_solve((lu, piv), b, check_finite=check_finite)
else:
x = (b - A.T.dot(linalg.lu_solve((lu, piv), A.dot(b), 1,
check_finite=check_finite))) / rho
return x | def lu_solve_ATAI(A, rho, b, lu, piv, check_finite=True) | r"""
Solve the linear system :math:`(A^T A + \rho I)\mathbf{x} = \mathbf{b}`
or :math:`(A^T A + \rho I)X = B` using :func:`scipy.linalg.lu_solve`.
Parameters
----------
A : array_like
Matrix :math:`A`
rho : float
Scalar :math:`\rho`
b : array_like
Vector :math:`\mathbf{b}` or matrix :math:`B`
lu : array_like
Matrix containing U in its upper triangle, and L in its lower triangle,
as returned by :func:`scipy.linalg.lu_factor`
piv : array_like
Pivot indices representing the permutation matrix P, as returned by
:func:`scipy.linalg.lu_factor`
check_finite : bool, optional (default False)
Flag indicating whether the input array should be checked for Inf
and NaN values
Returns
-------
x : ndarray
Solution to the linear system | 3.312725 | 3.492816 | 0.948439 |
r
N, M = A.shape
# If N < M it is cheaper to factorise A*A^T + rho*I and then use the
# matrix inversion lemma to compute the inverse of A^T*A + rho*I
if N >= M:
c, lwr = linalg.cho_factor(
A.T.dot(A) + rho * np.identity(M, dtype=A.dtype), lower=lower,
check_finite=check_finite)
else:
c, lwr = linalg.cho_factor(
A.dot(A.T) + rho * np.identity(N, dtype=A.dtype), lower=lower,
check_finite=check_finite)
return c, lwr | def cho_factor(A, rho, lower=False, check_finite=True) | r"""
Compute Cholesky factorisation of either :math:`A^T A + \rho I` or
:math:`A A^T + \rho I`, depending on which matrix is smaller.
Parameters
----------
A : array_like
Array :math:`A`
rho : float
Scalar :math:`\rho`
lower : bool, optional (default False)
Flag indicating whether lower or upper triangular factors are
computed
check_finite : bool, optional (default False)
Flag indicating whether the input array should be checked for Inf
and NaN values
Returns
-------
c : ndarray
Matrix containing lower or upper triangular Cholesky factor,
as returned by :func:`scipy.linalg.cho_factor`
lwr : bool
Flag indicating whether the factor is lower or upper triangular | 2.967652 | 2.745861 | 1.080773 |
r
N, M = A.shape
if N >= M:
x = linalg.cho_solve((c, lwr), b, check_finite=check_finite)
else:
x = (b - A.T.dot(linalg.cho_solve((c, lwr), A.dot(b),
check_finite=check_finite))) / rho
return x | def cho_solve_ATAI(A, rho, b, c, lwr, check_finite=True) | r"""
Solve the linear system :math:`(A^T A + \rho I)\mathbf{x} = \mathbf{b}`
or :math:`(A^T A + \rho I)X = B` using :func:`scipy.linalg.cho_solve`.
Parameters
----------
A : array_like
Matrix :math:`A`
rho : float
Scalar :math:`\rho`
b : array_like
Vector :math:`\mathbf{b}` or matrix :math:`B`
c : array_like
Matrix containing lower or upper triangular Cholesky factor,
as returned by :func:`scipy.linalg.cho_factor`
lwr : bool
Flag indicating whether the factor is lower or upper triangular
Returns
-------
x : ndarray
Solution to the linear system | 3.211295 | 3.192982 | 1.005735 |
xpd = ((0, 0),)*ax + (pd,) + ((0, 0),)*(x.ndim-ax-1)
return np.pad(x, xpd, 'constant') | def zpad(x, pd, ax) | Zero-pad array `x` with `pd = (leading, trailing)` zeros on axis `ax`.
Parameters
----------
x : array_like
Array to be padded
pd : tuple
Sequence of two ints (leading,trailing) specifying number of zeros
for padding
ax : int
Axis to be padded
Returns
-------
xp : array_like
Padded array | 4.40975 | 4.905936 | 0.89886 |
slc = (slice(None),)*ax + (slice(-1, None),)
xg = np.roll(x, -1, axis=ax) - x
xg[slc] = 0.0
return xg | def Gax(x, ax) | Compute gradient of `x` along axis `ax`.
Parameters
----------
x : array_like
Input array
ax : int
Axis on which gradient is to be computed
Returns
-------
xg : ndarray
Output array | 4.137503 | 3.111021 | 1.32995 |
slc0 = (slice(None),) * ax
xg = np.roll(x, 1, axis=ax) - x
xg[slc0 + (slice(0, 1),)] = -x[slc0 + (slice(0, 1),)]
xg[slc0 + (slice(-1, None),)] = x[slc0 + (slice(-2, -1),)]
return xg | def GTax(x, ax) | Compute transpose of gradient of `x` along axis `ax`.
Parameters
----------
x : array_like
Input array
ax : int
Axis on which gradient transpose is to be computed
Returns
-------
xg : ndarray
Output array | 3.180163 | 2.698149 | 1.178646 |
r
if dtype is None:
dtype = np.float32
g = np.zeros([2 if k in axes else 1 for k in range(ndim)] +
[len(axes),], dtype)
for k in axes:
g[(0,) * k + (slice(None),) + (0,) * (g.ndim - 2 - k) + (k,)] = \
np.array([1, -1])
Gf = rfftn(g, axshp, axes=axes)
GHGf = np.sum(np.conj(Gf) * Gf, axis=-1).real
return Gf, GHGf | def GradientFilters(ndim, axes, axshp, dtype=None) | r"""
Construct a set of filters for computing gradients in the frequency
domain.
Parameters
----------
ndim : integer
Total number of dimensions in array in which gradients are to be
computed
axes : tuple of integers
Axes on which gradients are to be computed
axshp : tuple of integers
Shape of axes on which gradients are to be computed
dtype : dtype
Data type of output arrays
Returns
-------
Gf : ndarray
Frequency domain gradient operators :math:`\hat{G}_i`
GHGf : ndarray
Sum of products :math:`\sum_i \hat{G}_i^H \hat{G}_i` | 4.250098 | 3.572716 | 1.189599 |
# See https://stackoverflow.com/a/37977222
return np.divide(x, y, out=np.zeros_like(x), where=(y != 0)) | def zdivide(x, y) | Return `x`/`y`, with 0 instead of NaN where `y` is 0.
Parameters
----------
x : array_like
Numerator
y : array_like
Denominator
Returns
-------
z : ndarray
Quotient `x`/`y` | 3.656089 | 4.316605 | 0.846983 |
r
d = np.sqrt(np.sum((b - s)**2, axis=axes, keepdims=True))
p = zdivide(b - s, d)
return np.asarray((d <= r) * b + (d > r) * (s + r*p), b.dtype) | def proj_l2ball(b, s, r, axes=None) | r"""
Project :math:`\mathbf{b}` into the :math:`\ell_2` ball of radius
:math:`r` about :math:`\mathbf{s}`, i.e.
:math:`\{ \mathbf{x} : \|\mathbf{x} - \mathbf{s} \|_2 \leq r \}`.
Note that ``proj_l2ball(b, s, r)`` is equivalent to
:func:`.prox.proj_l2` ``(b - s, r) + s``.
Parameters
----------
b : array_like
Vector :math:`\mathbf{b}` to be projected
s : array_like
Centre of :math:`\ell_2` ball :math:`\mathbf{s}`
r : float
Radius of ball
axes : sequence of ints, optional (default all axes)
Axes over which to compute :math:`\ell_2` norms
Returns
-------
x : ndarray
Projection of :math:`\mathbf{b}` into ball | 5.355899 | 6.231267 | 0.85952 |
r
dtype = np.float32 if u.dtype == np.float16 else u.dtype
up = np.asarray(u, dtype=dtype)
if fn is None:
return up
else:
v = fn(up, *args, **kwargs)
if isinstance(v, tuple):
vp = tuple([np.asarray(vk, dtype=u.dtype) for vk in v])
else:
vp = np.asarray(v, dtype=u.dtype)
return vp | def promote16(u, fn=None, *args, **kwargs) | r"""
Utility function for use with functions that do not support arrays
of dtype ``np.float16``. This function has two distinct modes of
operation. If called with only the `u` parameter specified, the
returned value is either `u` itself if `u` is not of dtype
``np.float16``, or `u` promoted to ``np.float32`` dtype if it is. If
the function parameter `fn` is specified then `u` is conditionally
promoted as described above, passed as the first argument to
function `fn`, and the returned values are converted back to dtype
``np.float16`` if `u` is of that dtype. Note that if parameter `fn`
is specified, it may not be be specified as a keyword argument if it
is followed by any non-keyword arguments.
Parameters
----------
u : array_like
Array to be promoted to np.float32 if it is of dtype ``np.float16``
fn : function or None, optional (default None)
Function to be called with promoted `u` as first parameter and
\*args and \*\*kwargs as additional parameters
*args
Variable length list of arguments for function `fn`
**kwargs
Keyword arguments for function `fn`
Returns
-------
up : ndarray
Conditionally dtype-promoted version of `u` if `fn` is None,
or value(s) returned by `fn`, converted to the same dtype as `u`,
if `fn` is a function | 2.785697 | 2.418876 | 1.151649 |
if u.ndim >= n:
return u
else:
return u.reshape(u.shape + (1,)*(n-u.ndim)) | def atleast_nd(n, u) | If the input array has fewer than n dimensions, append singleton
dimensions so that it is n dimensional. Note that the interface
differs substantially from that of :func:`numpy.atleast_3d` etc.
Parameters
----------
n : int
Minimum number of required dimensions
u : array_like
Input array
Returns
-------
v : ndarray
Output array with at least n dimensions | 3.144657 | 3.113307 | 1.010069 |
# Convert negative axis to positive
if axis < 0:
axis = u.ndim + axis
# Construct axis selection slice
slct0 = (slice(None),) * axis
return [u[slct0 + (k,)] for k in range(u.shape[axis])] | def split(u, axis=0) | Split an array into a list of arrays on the specified axis. The length
of the list is the shape of the array on the specified axis, and the
corresponding axis is removed from each entry in the list. This function
does not have the same behaviour as :func:`numpy.split`.
Parameters
----------
u : array_like
Input array
axis : int, optional (default 0)
Axis on which to split the input array
Returns
-------
v : list of ndarray
List of arrays | 4.818234 | 5.636601 | 0.854812 |
r, c = A[0].shape
B = np.zeros((len(A) * r, len(A) * c), dtype=A[0].dtype)
for k in range(len(A)):
for l in range(len(A)):
kl = np.mod(k + l, len(A))
B[r*kl:r*(kl + 1), c*k:c*(k + 1)] = A[l]
return B | def blockcirculant(A) | Construct a block circulant matrix from a tuple of arrays. This is a
block-matrix variant of :func:`scipy.linalg.circulant`.
Parameters
----------
A : tuple of array_like
Tuple of arrays corresponding to the first block column of the output
block matrix
Returns
-------
B : ndarray
Output array | 2.547462 | 2.37328 | 1.073393 |
r
xfs = xf.shape
return (np.linalg.norm(xf)**2) / np.prod(np.array([xfs[k] for k in axis])) | def fl2norm2(xf, axis=(0, 1)) | r"""
Compute the squared :math:`\ell_2` norm in the DFT domain, taking
into account the unnormalised DFT scaling, i.e. given the DFT of a
multi-dimensional array computed via :func:`fftn`, return the
squared :math:`\ell_2` norm of the original array.
Parameters
----------
xf : array_like
Input array
axis : sequence of ints, optional (default (0,1))
Axes on which the input is in the frequency domain
Returns
-------
x : float
:math:`\|\mathbf{x}\|_2^2` where the input array is the result of
applying :func:`fftn` to the specified axes of multi-dimensional
array :math:`\mathbf{x}` | 6.920177 | 7.162596 | 0.966155 |
r
scl = 1.0 / np.prod(np.array([xs[k] for k in axis]))
slc0 = (slice(None),) * axis[-1]
nrm0 = np.linalg.norm(xf[slc0 + (0,)])
idx1 = (xs[axis[-1]] + 1) // 2
nrm1 = np.linalg.norm(xf[slc0 + (slice(1, idx1),)])
if xs[axis[-1]] % 2 == 0:
nrm2 = np.linalg.norm(xf[slc0 + (slice(-1, None),)])
else:
nrm2 = 0.0
return scl*(nrm0**2 + 2.0*nrm1**2 + nrm2**2) | def rfl2norm2(xf, xs, axis=(0, 1)) | r"""
Compute the squared :math:`\ell_2` norm in the DFT domain, taking
into account the unnormalised DFT scaling, i.e. given the DFT of a
multi-dimensional array computed via :func:`rfftn`, return the
squared :math:`\ell_2` norm of the original array.
Parameters
----------
xf : array_like
Input array
xs : sequence of ints
Shape of original array to which :func:`rfftn` was applied to
obtain the input array
axis : sequence of ints, optional (default (0,1))
Axes on which the input is in the frequency domain
Returns
-------
x : float
:math:`\|\mathbf{x}\|_2^2` where the input array is the result of
applying :func:`rfftn` to the specified axes of multi-dimensional
array :math:`\mathbf{x}` | 2.711129 | 2.660058 | 1.019199 |
r
nrm = np.linalg.norm(b.ravel())
if nrm == 0.0:
return 1.0
else:
return np.linalg.norm((ax - b).ravel()) / nrm | def rrs(ax, b) | r"""
Compute relative residual :math:`\|\mathbf{b} - A \mathbf{x}\|_2 /
\|\mathbf{b}\|_2` of the solution to a linear equation :math:`A \mathbf{x}
= \mathbf{b}`. Returns 1.0 if :math:`\mathbf{b} = 0`.
Parameters
----------
ax : array_like
Linear component :math:`A \mathbf{x}` of equation
b : array_like
Constant component :math:`\mathbf{b}` of equation
Returns
-------
x : float
Relative residual | 4.191793 | 3.465128 | 1.209708 |
if self.opt['Y0'] is None:
return np.zeros(ushape, dtype=self.dtype)
else:
# If initial Y is non-zero, initial U is chosen so that
# the relevant dual optimality criterion (see (3.10) in
# boyd-2010-distributed) is satisfied.
Yss = np.sqrt(np.sum(self.Y**2, axis=self.S.ndim, keepdims=True))
return (self.lmbda/self.rho)*sl.zdivide(self.Y, Yss) | def uinit(self, ushape) | Return initialiser for working variable U. | 8.34551 | 7.805245 | 1.069218 |
r
ngsit = 0
gsrrs = np.inf
while gsrrs > self.opt['GSTol'] and ngsit < self.opt['MaxGSIter']:
self.X = self.GaussSeidelStep(self.S, self.X,
self.cnst_AT(self.Y-self.U),
self.rho, self.lcw, self.Wdf2)
gsrrs = sl.rrs(
self.rho*self.cnst_AT(self.cnst_A(self.X)) +
self.Wdf2*self.X, self.Wdf2*self.S +
self.rho*self.cnst_AT(self.Y - self.U))
ngsit += 1
self.xs = (ngsit, gsrrs) | def xstep(self) | r"""Minimise Augmented Lagrangian with respect to
:math:`\mathbf{x}`. | 7.138218 | 6.805196 | 1.048936 |
r
self.Y = np.asarray(sp.prox_l2(
self.AX + self.U, (self.lmbda/self.rho)*self.Wtvna,
axis=self.saxes), dtype=self.dtype) | def ystep(self) | r"""Minimise Augmented Lagrangian with respect to
:math:`\mathbf{y}`. | 19.687817 | 15.559288 | 1.265342 |
r
dfd = 0.5*(np.linalg.norm(self.Wdf * (self.X - self.S))**2)
reg = np.sum(self.Wtv * np.sqrt(np.sum(self.obfn_gvar()**2,
axis=self.saxes)))
obj = dfd + self.lmbda*reg
return (obj, dfd, reg) | def eval_objfn(self) | r"""Compute components of objective function as well as total
contribution to objective function. Data fidelity term is
:math:`(1/2) \| \mathbf{x} - \mathbf{s} \|_2^2` and
regularisation term is :math:`\| W_{\mathrm{tv}}
\sqrt{(G_r \mathbf{x})^2 + (G_c \mathbf{x})^2}\|_1`. | 8.130146 | 6.037546 | 1.346598 |
r
return np.sum(np.concatenate(
[sl.GTax(X[..., ax], ax)[..., np.newaxis] for ax in self.axes],
axis=X.ndim-1), axis=X.ndim-1) | def cnst_AT(self, X) | r"""Compute :math:`A^T \mathbf{x}` where :math:`A \mathbf{x}` is
a component of ADMM problem constraint. In this case
:math:`A^T \mathbf{x} = (G_r^T \;\; G_c^T) \mathbf{x}`. | 10.511413 | 10.867236 | 0.967257 |
r
return np.zeros(self.S.shape + (len(self.axes),), self.dtype) | def cnst_c(self) | r"""Compute constant component :math:`\mathbf{c}` of ADMM problem
constraint. In this case :math:`\mathbf{c} = \mathbf{0}`. | 18.988905 | 14.925332 | 1.27226 |
sz = [1,] * self.S.ndim
for ax in self.axes:
sz[ax] = self.S.shape[ax]
lcw = 2*len(self.axes)*np.ones(sz, dtype=self.dtype)
for ax in self.axes:
lcw[(slice(None),)*ax + ([0, -1],)] -= 1.0
return lcw | def LaplaceCentreWeight(self) | Centre weighting matrix for TV Laplacian. | 4.663939 | 4.073911 | 1.144831 |
Xss = np.zeros_like(S, dtype=self.dtype)
for ax in self.axes:
Xss += sl.zpad(X[(slice(None),)*ax + (slice(0, -1),)],
(1, 0), ax)
Xss += sl.zpad(X[(slice(None),)*ax + (slice(1, None),)],
(0, 1), ax)
return (rho*(Xss + ATYU) + W2*S) / (W2 + rho*lcw) | def GaussSeidelStep(self, S, X, ATYU, rho, lcw, W2) | Gauss-Seidel step for linear system in TV problem. | 4.048937 | 4.051074 | 0.999473 |
r
b = self.AHSf + self.rho*np.sum(
np.conj(self.Gf)*sl.rfftn(self.Y-self.U, axes=self.axes),
axis=self.Y.ndim-1)
self.Xf = b / (self.AHAf + self.rho*self.GHGf)
self.X = sl.irfftn(self.Xf, self.axsz, axes=self.axes)
if self.opt['LinSolveCheck']:
ax = (self.AHAf + self.rho*self.GHGf)*self.Xf
self.xrrs = sl.rrs(ax, b)
else:
self.xrrs = None | def xstep(self) | r"""Minimise Augmented Lagrangian with respect to
:math:`\mathbf{x}`. | 7.283704 | 6.95195 | 1.047721 |
r
Ef = self.Af * self.Xf - self.Sf
dfd = sl.rfl2norm2(Ef, self.S.shape, axis=self.axes) / 2.0
reg = np.sum(self.Wtv * np.sqrt(np.sum(self.obfn_gvar()**2,
axis=self.saxes)))
obj = dfd + self.lmbda*reg
return (obj, dfd, reg) | def eval_objfn(self) | r"""Compute components of objective function as well as total
contribution to objective function. Data fidelity term is
:math:`(1/2) \| H \mathbf{x} - \mathbf{s} \|_2^2` and
regularisation term is :math:`\| W_{\mathrm{tv}}
\sqrt{(G_r \mathbf{x})^2 + (G_c \mathbf{x})^2}\|_1`. | 10.688695 | 8.389261 | 1.274093 |
# Open status display
fmtstr, nsep = self.display_start()
# Start solve timer
self.timer.start(['solve', 'solve_wo_func', 'solve_wo_rsdl'])
# Main optimisation iterations
for self.k in range(self.k, self.k + self.opt['MaxMainIter']):
# Update record of Y from previous iteration
self.Yprev = self.Y.copy()
# X update
self.xstep()
# Implement relaxation if RelaxParam != 1.0
self.relax_AX()
# Y update
self.ystep()
# U update
self.ustep()
# Compute residuals and stopping thresholds
self.timer.stop('solve_wo_rsdl')
if self.opt['AutoRho', 'Enabled'] or not self.opt['FastSolve']:
r, s, epri, edua = self.compute_residuals()
self.timer.start('solve_wo_rsdl')
# Compute and record other iteration statistics and
# display iteration stats if Verbose option enabled
self.timer.stop(['solve_wo_func', 'solve_wo_rsdl'])
if not self.opt['FastSolve']:
itst = self.iteration_stats(self.k, r, s, epri, edua)
self.itstat.append(itst)
self.display_status(fmtstr, itst)
self.timer.start(['solve_wo_func', 'solve_wo_rsdl'])
# Automatic rho adjustment
self.timer.stop('solve_wo_rsdl')
if self.opt['AutoRho', 'Enabled'] or not self.opt['FastSolve']:
self.update_rho(self.k, r, s)
self.timer.start('solve_wo_rsdl')
# Call callback function if defined
if self.opt['Callback'] is not None:
if self.opt['Callback'](self):
break
# Stop if residual-based stopping tolerances reached
if self.opt['AutoRho', 'Enabled'] or not self.opt['FastSolve']:
if r < epri and s < edua:
break
# Increment iteration count
self.k += 1
# Record solve time
self.timer.stop(['solve', 'solve_wo_func', 'solve_wo_rsdl'])
# Print final separator string if Verbose option enabled
self.display_end(nsep)
return self.getmin() | def solve(self) | Start (or re-start) optimisation. This method implements the
framework for the iterations of an ADMM algorithm. There is
sufficient flexibility in overriding the component methods that
it calls that it is usually not necessary to override this method
in derived clases.
If option ``Verbose`` is ``True``, the progress of the
optimisation is displayed at every iteration. At termination
of this method, attribute :attr:`itstat` is a list of tuples
representing statistics of each iteration, unless option
``FastSolve`` is ``True`` and option ``Verbose`` is ``False``.
Attribute :attr:`timer` is an instance of :class:`.util.Timer`
that provides the following labelled timers:
``init``: Time taken for object initialisation by
:meth:`__init__`
``solve``: Total time taken by call(s) to :meth:`solve`
``solve_wo_func``: Total time taken by call(s) to
:meth:`solve`, excluding time taken to compute functional
value and related iteration statistics
``solve_wo_rsdl`` : Total time taken by call(s) to
:meth:`solve`, excluding time taken to compute functional
value and related iteration statistics as well as time take
to compute residuals and implemented ``AutoRho`` mechanism | 4.171473 | 3.362017 | 1.240765 |
warnings.warn("admm.ADMM.runtime attribute has been replaced by "
"an upgraded timer class: please see the documentation "
"for admm.ADMM.solve method and util.Timer class",
PendingDeprecationWarning)
return self.timer.elapsed('init') + self.timer.elapsed('solve') | def runtime(self) | Transitional property providing access to the new timer
mechanism. This will be removed in the future. | 11.985298 | 10.142421 | 1.1817 |
self.U += self.rsdl_r(self.AX, self.Y) | def ustep(self) | Dual variable update. | 42.3433 | 24.865105 | 1.702921 |
if self.opt['AutoRho', 'StdResiduals']:
r = np.linalg.norm(self.rsdl_r(self.AXnr, self.Y))
s = np.linalg.norm(self.rsdl_s(self.Yprev, self.Y))
epri = np.sqrt(self.Nc) * self.opt['AbsStopTol'] + \
self.rsdl_rn(self.AXnr, self.Y) * self.opt['RelStopTol']
edua = np.sqrt(self.Nx) * self.opt['AbsStopTol'] + \
self.rsdl_sn(self.U) * self.opt['RelStopTol']
else:
rn = self.rsdl_rn(self.AXnr, self.Y)
if rn == 0.0:
rn = 1.0
sn = self.rsdl_sn(self.U)
if sn == 0.0:
sn = 1.0
r = np.linalg.norm(self.rsdl_r(self.AXnr, self.Y)) / rn
s = np.linalg.norm(self.rsdl_s(self.Yprev, self.Y)) / sn
epri = np.sqrt(self.Nc) * self.opt['AbsStopTol'] / rn + \
self.opt['RelStopTol']
edua = np.sqrt(self.Nx) * self.opt['AbsStopTol'] / sn + \
self.opt['RelStopTol']
return r, s, epri, edua | def compute_residuals(self) | Compute residuals and stopping thresholds. | 2.527566 | 2.448122 | 1.032451 |
hdrmap = {'Itn': 'Iter'}
hdrmap.update(cls.hdrval_objfun)
hdrmap.update({'r': 'PrimalRsdl', 's': 'DualRsdl', u('ρ'): 'Rho'})
return hdrmap | def hdrval(cls) | Construct dictionary mapping display column title to
IterationStats entries. | 12.135178 | 10.390932 | 1.167862 |
tk = self.timer.elapsed(self.opt['IterTimer'])
tpl = (k,) + self.eval_objfn() + (r, s, epri, edua, self.rho) + \
self.itstat_extra() + (tk,)
return type(self).IterationStats(*tpl) | def iteration_stats(self, k, r, s, epri, edua) | Construct iteration stats record tuple. | 10.845898 | 9.256726 | 1.171677 |
if self.opt['AutoRho', 'Enabled']:
tau = self.rho_tau
mu = self.rho_mu
xi = self.rho_xi
if k != 0 and np.mod(k + 1, self.opt['AutoRho', 'Period']) == 0:
if self.opt['AutoRho', 'AutoScaling']:
if s == 0.0 or r == 0.0:
rhomlt = tau
else:
rhomlt = np.sqrt(r / (s * xi) if r > s * xi else
(s * xi) / r)
if rhomlt > tau:
rhomlt = tau
else:
rhomlt = tau
rsf = 1.0
if r > xi * mu * s:
rsf = rhomlt
elif s > (mu / xi) * r:
rsf = 1.0 / rhomlt
self.rho *= self.dtype.type(rsf)
self.U /= rsf
if rsf != 1.0:
self.rhochange() | def update_rho(self, k, r, s) | Automatic rho adjustment. | 4.101105 | 3.938606 | 1.041258 |
if self.opt['Verbose']:
# If AutoRho option enabled rho is included in iteration status
if self.opt['AutoRho', 'Enabled']:
hdrtxt = type(self).hdrtxt()
else:
hdrtxt = type(self).hdrtxt()[0:-1]
# Call utility function to construct status display formatting
hdrstr, fmtstr, nsep = common.solve_status_str(
hdrtxt, fwdth0=type(self).fwiter, fprec=type(self).fpothr)
# Print header and separator strings
if self.opt['StatusHeader']:
print(hdrstr)
print("-" * nsep)
else:
fmtstr, nsep = '', 0
return fmtstr, nsep | def display_start(self) | Set up status display if option selected. NB: this method
assumes that the first entry is the iteration count and the last
is the rho value. | 11.446416 | 9.113526 | 1.255981 |
if self.opt['Verbose']:
hdrtxt = type(self).hdrtxt()
hdrval = type(self).hdrval()
itdsp = tuple([getattr(itst, hdrval[col]) for col in hdrtxt])
if not self.opt['AutoRho', 'Enabled']:
itdsp = itdsp[0:-1]
print(fmtstr % itdsp) | def display_status(self, fmtstr, itst) | Display current iteration status as selection of fields from
iteration stats tuple. | 8.225282 | 7.019906 | 1.171708 |
# Avoid calling cnst_c() more than once in case it is expensive
# (e.g. due to allocation of a large block of memory)
if not hasattr(self, '_cnst_c'):
self._cnst_c = self.cnst_c()
return AX + self.cnst_B(Y) - self._cnst_c | def rsdl_r(self, AX, Y) | Compute primal residual vector.
Overriding this method is required if methods :meth:`cnst_A`,
:meth:`cnst_AT`, :meth:`cnst_B`, and :meth:`cnst_c` are not
overridden. | 6.248271 | 4.110441 | 1.520098 |
# Avoid computing the norm of the value returned by cnst_c()
# more than once
if not hasattr(self, '_nrm_cnst_c'):
self._nrm_cnst_c = np.linalg.norm(self.cnst_c())
return max((np.linalg.norm(AX), np.linalg.norm(self.cnst_B(Y)),
self._nrm_cnst_c)) | def rsdl_rn(self, AX, Y) | Compute primal residual normalisation term.
Overriding this method is required if methods :meth:`cnst_A`,
:meth:`cnst_AT`, :meth:`cnst_B`, and :meth:`cnst_c` are not
overridden. | 4.669312 | 3.473482 | 1.344274 |
return self.rho * np.linalg.norm(self.cnst_AT(U)) | def rsdl_sn(self, U) | Compute dual residual normalisation term.
Overriding this method is required if methods :meth:`cnst_A`,
:meth:`cnst_AT`, :meth:`cnst_B`, and :meth:`cnst_c` are not
overridden. | 19.099251 | 7.039924 | 2.712991 |
if self.opt['ReturnVar'] == 'X':
return self.var_x()
elif self.opt['ReturnVar'] == 'Y0':
return self.var_y0()
elif self.opt['ReturnVar'] == 'Y1':
return self.var_y1()
else:
raise ValueError(self.opt['ReturnVar'] + ' is not a valid value'
'for option ReturnVar') | def getmin(self) | Get minimiser after optimisation. | 3.284064 | 2.885988 | 1.137934 |
r
return Y[(slice(None),)*self.blkaxis + (slice(0, self.blkidx),)] | def block_sep0(self, Y) | r"""Separate variable into component corresponding to
:math:`\mathbf{y}_0` in :math:`\mathbf{y}\;\;`. | 21.566307 | 21.383089 | 1.008568 |
r
return Y[(slice(None),)*self.blkaxis + (slice(self.blkidx, None),)] | def block_sep1(self, Y) | r"""Separate variable into component corresponding to
:math:`\mathbf{y}_1` in :math:`\mathbf{y}\;\;`. | 21.445894 | 21.124115 | 1.015233 |
r
return np.concatenate((Y0, Y1), axis=self.blkaxis) | def block_cat(self, Y0, Y1) | r"""Concatenate components corresponding to :math:`\mathbf{y}_0`
and :math:`\mathbf{y}_1` to form :math:`\mathbf{y}\;\;`. | 13.925213 | 15.602424 | 0.892503 |
self.AXnr = self.cnst_A(self.X)
if self.rlx == 1.0:
self.AX = self.AXnr
else:
if not hasattr(self, '_cnst_c0'):
self._cnst_c0 = self.cnst_c0()
if not hasattr(self, '_cnst_c1'):
self._cnst_c1 = self.cnst_c1()
alpha = self.rlx
self.AX = alpha*self.AXnr + (1 - alpha)*self.block_cat(
self.var_y0() + self._cnst_c0,
self.var_y1() + self._cnst_c1) | def relax_AX(self) | Implement relaxation if option ``RelaxParam`` != 1.0. | 3.432185 | 3.256296 | 1.054015 |
return self.var_y0() if self.opt['AuxVarObj'] else \
self.cnst_A0(self.X) - self.cnst_c0() | def obfn_g0var(self) | Variable to be evaluated in computing
:meth:`ADMMTwoBlockCnstrnt.obfn_g0`, depending on the ``AuxVarObj``
option value. | 19.50518 | 9.153038 | 2.131006 |
return self.var_y1() if self.opt['AuxVarObj'] else \
self.cnst_A1(self.X) - self.cnst_c1() | def obfn_g1var(self) | Variable to be evaluated in computing
:meth:`ADMMTwoBlockCnstrnt.obfn_g1`, depending on the ``AuxVarObj``
option value. | 19.827831 | 8.97306 | 2.209707 |
r
return self.obfn_g0(self.obfn_g0var()) + \
self.obfn_g1(self.obfn_g1var()) | def obfn_g(self, Y) | r"""Compute :math:`g(\mathbf{y}) = g_0(\mathbf{y}_0) +
g_1(\mathbf{y}_1)` component of ADMM objective function. | 6.574169 | 5.586282 | 1.176842 |
fval = self.obfn_f(self.obfn_fvar())
g0val = self.obfn_g0(self.obfn_g0var())
g1val = self.obfn_g1(self.obfn_g1var())
obj = fval + g0val + g1val
return (obj, fval, g0val, g1val) | def eval_objfn(self) | Compute components of objective function as well as total
contribution to objective function. | 2.89551 | 2.6038 | 1.112033 |
r
return self.block_cat(self.cnst_A0(X), self.cnst_A1(X)) | def cnst_A(self, X) | r"""Compute :math:`A \mathbf{x}` component of ADMM problem
constraint. | 9.749379 | 8.281299 | 1.177277 |
r
return self.cnst_A0T(self.block_sep0(Y)) + \
self.cnst_A1T(self.block_sep1(Y)) | def cnst_AT(self, Y) | r"""Compute :math:`A^T \mathbf{y}` where
.. math::
A^T \mathbf{y} = \left( \begin{array}{cc} A_0^T & A_1^T
\end{array} \right) \left( \begin{array}{c} \mathbf{y}_0
\\ \mathbf{y}_1 \end{array} \right) = A_0^T \mathbf{y}_0 +
A_1^T \mathbf{y}_1 \;\;. | 8.280594 | 6.190954 | 1.337531 |
if not hasattr(self, '_cnst_c0'):
self._cnst_c0 = self.cnst_c0()
if not hasattr(self, '_cnst_c1'):
self._cnst_c1 = self.cnst_c1()
return AX - self.block_cat(self.var_y0() + self._cnst_c0,
self.var_y1() + self._cnst_c1) | def rsdl_r(self, AX, Y) | Compute primal residual vector.
Overriding this method is required if methods :meth:`cnst_A`,
:meth:`cnst_AT`, :meth:`cnst_c0` and :meth:`cnst_c1` are not
overridden. | 3.342377 | 2.496702 | 1.338717 |
return self.rho * self.cnst_AT(Yprev - Y) | def rsdl_s(self, Yprev, Y) | Compute dual residual vector.
Overriding this method is required if methods :meth:`cnst_A`,
:meth:`cnst_AT`, :meth:`cnst_B`, and :meth:`cnst_c` are not
overridden. | 27.06551 | 9.005884 | 3.005314 |
if not hasattr(self, '_cnst_nrm_c'):
self._cnst_nrm_c = np.sqrt(np.linalg.norm(self.cnst_c0())**2 +
np.linalg.norm(self.cnst_c1())**2)
return max((np.linalg.norm(AX), np.linalg.norm(Y), self._cnst_nrm_c)) | def rsdl_rn(self, AX, Y) | Compute primal residual normalisation term.
Overriding this method is required if methods :meth:`cnst_A`,
:meth:`cnst_AT`, :meth:`cnst_B`, and :meth:`cnst_c` are not
overridden. | 3.33026 | 2.926719 | 1.137882 |
r
rho = self.Nb * self.rho
mAXU = np.mean(self.AX + self.U, axis=-1)
self.Y[:] = self.prox_g(mAXU, rho) | def ystep(self) | r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`. | 19.320677 | 16.494474 | 1.171342 |
self.AXnr = self.X
if self.rlx == 1.0:
self.AX = self.X
else:
alpha = self.rlx
self.AX = alpha*self.X + (1 - alpha)*self.Y[..., np.newaxis] | def relax_AX(self) | Implement relaxation if option ``RelaxParam`` != 1.0. | 5.406523 | 4.707885 | 1.148397 |
fval = self.obfn_f()
gval = self.obfn_g(self.obfn_gvar())
obj = fval + gval
return (obj, fval, gval) | def eval_objfn(self) | Compute components of objective function as well as total
contribution to objective function. | 5.121115 | 4.329742 | 1.182776 |
r
return self.X[..., i] if self.opt['fEvalX'] else self.Y | def obfn_fvar(self, i) | r"""Variable to be evaluated in computing :math:`f_i(\cdot)`,
depending on the ``fEvalX`` option value. | 49.952328 | 15.824932 | 3.156559 |
r
return self.Y if self.opt['gEvalY'] else np.mean(self.X, axis=-1) | def obfn_gvar(self) | r"""Variable to be evaluated in computing :math:`g(\cdot)`,
depending on the ``gEvalY`` option value. | 31.251888 | 13.245347 | 2.359462 |
r
obf = 0.0
for i in range(self.Nb):
obf += self.obfn_fi(self.obfn_fvar(i), i)
return obf | def obfn_f(self) | r"""Compute :math:`f(\mathbf{x}) = \sum_i f(\mathbf{x}_i)`
component of ADMM objective function. | 6.745583 | 6.715572 | 1.004469 |
# Since s = rho A^T B (y^(k+1) - y^(k)) and B = -(I I I ...)^T,
# the correct calculation here would involve replicating (Yprev - Y)
# on the axis on which the blocks of X are stacked. Since this would
# require allocating additional memory, and since it is only the norm
# of s that is required, instead of replicating the vector it is
# scaled to have the same l2 norm as the replicated vector
return np.sqrt(self.Nb) * self.rho * (Yprev - Y) | def rsdl_s(self, Yprev, Y) | Compute dual residual vector. | 14.021079 | 13.70647 | 1.022953 |
# The primal residual normalisation term is
# max( ||A x^(k)||_2, ||B y^(k)||_2 ) and B = -(I I I ...)^T.
# The scaling by sqrt(Nb) of the l2 norm of Y accounts for the
# block replication introduced by multiplication by B
return max((np.linalg.norm(AX), np.sqrt(self.Nb) * np.linalg.norm(Y))) | def rsdl_rn(self, AX, Y) | Compute primal residual normalisation term. | 14.777172 | 11.831332 | 1.248986 |
r
return prox_l2(prox_l1(v, alpha), beta, axis) | def prox_l1l2(v, alpha, beta, axis=None) | r"""Compute the proximal operator of the :math:`\ell_1` plus
:math:`\ell_2` norm (compound shrinkage/soft thresholding)
:cite:`wohlberg-2012-local` :cite:`chartrand-2013-nonconvex`
.. math::
\mathrm{prox}_{f}(\mathbf{v}) =
\mathcal{S}_{1,2,\alpha,\beta}(\mathbf{v}) =
\mathcal{S}_{2,\beta}(\mathcal{S}_{1,\alpha}(\mathbf{v}))
where :math:`f(\mathbf{x}) = \alpha \|\mathbf{x}\|_1 +
\beta \|\mathbf{x}\|_2`.
Parameters
----------
v : array_like
Input array :math:`\mathbf{v}`
alpha : float or array_like
Parameter :math:`\alpha`
beta : float or array_like
Parameter :math:`\beta`
axis : None or int or tuple of ints, optional (default None)
Axes of `v` over which to compute the :math:`\ell_2` norm. If
`None`, an entire multi-dimensional array is treated as a
vector. If axes are specified, then distinct norm values are
computed over the indices of the remaining axes of input array
`v`, which is equivalent to the proximal operator of the sum over
these values (i.e. an :math:`\ell_{2,1}` norm).
Returns
-------
x : ndarray
Output array | 9.253881 | 14.921535 | 0.62017 |
clsmod = {'admm': admm_cbpdn.ConvBPDNMaskDcpl,
'fista': fista_cbpdn.ConvBPDNMask}
if label in clsmod:
return clsmod[label]
else:
raise ValueError('Unknown ConvBPDNMask solver method %s' % label) | def cbpdnmsk_class_label_lookup(label) | Get a ConvBPDNMask class from a label string. | 5.713667 | 4.602045 | 1.24155 |
dflt = copy.deepcopy(cbpdnmsk_class_label_lookup(method).Options.defaults)
if method == 'admm':
dflt.update({'MaxMainIter': 1, 'AutoRho':
{'Period': 10, 'AutoScaling': False,
'RsdlRatio': 10.0, 'Scaling': 2.0,
'RsdlTarget': 1.0}})
else:
dflt.update({'MaxMainIter': 1, 'BackTrack':
{'gamma_u': 1.2, 'MaxIter': 50}})
return dflt | def ConvBPDNMaskOptionsDefaults(method='admm') | Get defaults dict for the ConvBPDNMask class specified by the
``method`` parameter. | 5.447215 | 5.388561 | 1.010885 |
# Assign base class depending on method selection argument
base = cbpdnmsk_class_label_lookup(method).Options
# Nested class with dynamically determined inheritance
class ConvBPDNMaskOptions(base):
def __init__(self, opt):
super(ConvBPDNMaskOptions, self).__init__(opt)
# Allow pickling of objects of type ConvBPDNOptions
_fix_dynamic_class_lookup(ConvBPDNMaskOptions, method)
# Return object of the nested class type
return ConvBPDNMaskOptions(opt) | def ConvBPDNMaskOptions(opt=None, method='admm') | A wrapper function that dynamically defines a class derived from
the Options class associated with one of the implementations of
the Convolutional BPDN problem, and returns an object
instantiated with the provided parameters. The wrapper is designed
to allow the appropriate object to be created by calling this
function using the same syntax as would be used if it were a
class. The specific implementation is selected by use of an
additional keyword argument 'method'. Valid values are as
specified in the documentation for :func:`ConvBPDN`. | 8.293381 | 7.671194 | 1.081107 |
# Extract method selection argument or set default
method = kwargs.pop('method', 'admm')
# Assign base class depending on method selection argument
base = cbpdnmsk_class_label_lookup(method)
# Nested class with dynamically determined inheritance
class ConvBPDNMask(base):
def __init__(self, *args, **kwargs):
super(ConvBPDNMask, self).__init__(*args, **kwargs)
# Allow pickling of objects of type ConvBPDNMask
_fix_dynamic_class_lookup(ConvBPDNMask, method)
# Return object of the nested class type
return ConvBPDNMask(*args, **kwargs) | def ConvBPDNMask(*args, **kwargs) | A wrapper function that dynamically defines a class derived from
one of the implementations of the Convolutional Constrained MOD
problems, and returns an object instantiated with the provided
parameters. The wrapper is designed to allow the appropriate
object to be created by calling this function using the same
syntax as would be used if it were a class. The specific
implementation is selected by use of an additional keyword
argument 'method'. Valid values are:
- ``'admm'`` :
Use the implementation defined in :class:`.admm.cbpdn.ConvBPDNMaskDcpl`.
- ``'fista'`` :
Use the implementation defined in :class:`.fista.cbpdn.ConvBPDNMask`.
The default value is ``'admm'``. | 6.331108 | 5.387259 | 1.1752 |
clsmod = {'ism': admm_ccmod.ConvCnstrMODMaskDcpl_IterSM,
'cg': admm_ccmod.ConvCnstrMODMaskDcpl_CG,
'cns': admm_ccmod.ConvCnstrMODMaskDcpl_Consensus,
'fista': fista_ccmod.ConvCnstrMODMask}
if label in clsmod:
return clsmod[label]
else:
raise ValueError('Unknown ConvCnstrMODMask solver method %s' % label) | def ccmodmsk_class_label_lookup(label) | Get a ConvCnstrMODMask class from a label string. | 5.711216 | 4.951214 | 1.153498 |
dflt = copy.deepcopy(ccmodmsk_class_label_lookup(method).Options.defaults)
if method == 'fista':
dflt.update({'MaxMainIter': 1, 'BackTrack':
{'gamma_u': 1.2, 'MaxIter': 50}})
else:
dflt.update({'MaxMainIter': 1, 'AutoRho':
{'Period': 10, 'AutoScaling': False,
'RsdlRatio': 10.0, 'Scaling': 2.0,
'RsdlTarget': 1.0}})
return dflt | def ConvCnstrMODMaskOptionsDefaults(method='fista') | Get defaults dict for the ConvCnstrMODMask class specified by the
``method`` parameter. | 5.611339 | 5.457842 | 1.028124 |
# Assign base class depending on method selection argument
base = ccmodmsk_class_label_lookup(method).Options
# Nested class with dynamically determined inheritance
class ConvCnstrMODMaskOptions(base):
def __init__(self, opt):
super(ConvCnstrMODMaskOptions, self).__init__(opt)
# Allow pickling of objects of type ConvCnstrMODMaskOptions
_fix_dynamic_class_lookup(ConvCnstrMODMaskOptions, method)
# Return object of the nested class type
return ConvCnstrMODMaskOptions(opt) | def ConvCnstrMODMaskOptions(opt=None, method='fista') | A wrapper function that dynamically defines a class derived from
the Options class associated with one of the implementations of
the Convolutional Constrained MOD problem, and returns an object
instantiated with the provided parameters. The wrapper is designed
to allow the appropriate object to be created by calling this
function using the same syntax as would be used if it were a
class. The specific implementation is selected by use of an
additional keyword argument 'method'. Valid values are as
specified in the documentation for :func:`ConvCnstrMODMask`. | 6.743622 | 6.31529 | 1.067825 |
# Extract method selection argument or set default
method = kwargs.pop('method', 'fista')
# Assign base class depending on method selection argument
base = ccmodmsk_class_label_lookup(method)
# Nested class with dynamically determined inheritance
class ConvCnstrMODMask(base):
def __init__(self, *args, **kwargs):
super(ConvCnstrMODMask, self).__init__(*args, **kwargs)
# Allow pickling of objects of type ConvCnstrMODMask
_fix_dynamic_class_lookup(ConvCnstrMODMask, method)
# Return object of the nested class type
return ConvCnstrMODMask(*args, **kwargs) | def ConvCnstrMODMask(*args, **kwargs) | A wrapper function that dynamically defines a class derived from
one of the implementations of the Convolutional Constrained MOD
problems, and returns an object instantiated with the provided
parameters. The wrapper is designed to allow the appropriate
object to be created by calling this function using the same
syntax as would be used if it were a class. The specific
implementation is selected by use of an additional keyword
argument 'method'. Valid values are:
- ``'ism'`` :
Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_IterSM`.
This method works well for a small number of training images, but is
very slow for larger training sets.
- ``'cg'`` :
Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_CG`.
This method is slower than ``'ism'`` for small training sets, but has
better run time scaling as the training set grows.
- ``'cns'`` :
Use the implementation defined in
:class:`.ConvCnstrMODMaskDcpl_Consensus`.
This method is a good choice for large training sets.
- ``'fista'`` :
Use the implementation defined in :class:`.fista.ccmod.ConvCnstrMODMask`.
This method is the best choice for large training sets.
The default value is ``'fista'``. | 5.785129 | 5.102219 | 1.133846 |
if D is None:
D = self.getdict(crop=False)
if X is None:
X = self.getcoef()
Df = sl.rfftn(D, self.xstep.cri.Nv, self.xstep.cri.axisN)
Xf = sl.rfftn(X, self.xstep.cri.Nv, self.xstep.cri.axisN)
DXf = sl.inner(Df, Xf, axis=self.xstep.cri.axisM)
return sl.irfftn(DXf, self.xstep.cri.Nv, self.xstep.cri.axisN) | def reconstruct(self, D=None, X=None) | Reconstruct representation. | 2.789108 | 2.706702 | 1.030445 |
if self.opt['AccurateDFid']:
DX = self.reconstruct()
S = self.xstep.S
dfd = (np.linalg.norm(self.xstep.W * (DX - S))**2) / 2.0
if self.xmethod == 'fista':
X = self.xstep.getcoef()
else:
X = self.xstep.var_y1()
rl1 = np.sum(np.abs(X))
return dict(DFid=dfd, RegL1=rl1,
ObjFun=dfd + self.xstep.lmbda * rl1)
else:
return None | def evaluate(self) | Evaluate functional value of previous iteration. | 7.754741 | 7.013851 | 1.105632 |
if dropext:
pth = os.path.splitext(pth)[0]
parts = os.path.split(pth)
if parts[0] == '':
return parts[1:]
elif len(parts[0]) == 1:
return parts
else:
return pathsplit(parts[0], dropext=False) + parts[1:] | def pathsplit(pth, dropext=True) | Split a path into a tuple of all of its components. | 2.268484 | 2.088471 | 1.086194 |
return not os.path.exists(dstpth) or \
os.stat(srcpth).st_mtime > os.stat(dstpth).st_mtime | def update_required(srcpth, dstpth) | If the file at `dstpth` is generated from the file at `srcpth`,
determine whether an update is required. Returns True if `dstpth`
does not exist, or if `srcpth` has been more recently modified
than `dstpth`. | 2.749337 | 2.686317 | 1.023459 |
# See https://stackoverflow.com/a/30981554
class MockConfig(object):
intersphinx_timeout = None
tls_verify = False
class MockApp(object):
srcdir = ''
config = MockConfig()
def warn(self, msg):
warnings.warn(msg)
return intersphinx.fetch_inventory(MockApp(), '', uri) | def fetch_intersphinx_inventory(uri) | Fetch and read an intersphinx inventory file at a specified uri,
which can either be a url (e.g. http://...) or a local file system
filename. | 4.728014 | 4.822243 | 0.98046 |
with open(pth, 'rb') as fo:
env = pickle.load(fo)
return env | def read_sphinx_environment(pth) | Read the sphinx environment.pickle file at path `pth`. | 4.496999 | 3.200447 | 1.405116 |
pthidx = {}
pthlst = []
with open(rstpth) as fd:
lines = fd.readlines()
for i, l in enumerate(lines):
if i > 0:
if re.match(r'^ \w+', l) is not None and \
re.match(r'^\w+', lines[i - 1]) is not None:
# List of subdirectories in order of appearance in index.rst
pthlst.append(lines[i - 1][:-1])
# Dict mapping subdirectory name to description
pthidx[lines[i - 1][:-1]] = l[2:-1]
return pthlst, pthidx | def parse_rst_index(rstpth) | Parse the top-level RST index file, at `rstpth`, for the example
python scripts. Returns a list of subdirectories in order of
appearance in the index file, and a dict mapping subdirectory name
to a description. | 3.310428 | 2.792147 | 1.185621 |
# Remove header comment
str = re.sub(r'^(#[^#\n]+\n){5}\n*', r'', str)
# Insert notebook plotting configuration function
str = re.sub(r'from sporco import plot', r'from sporco import plot'
'\nplot.config_notebook_plotting()',
str, flags=re.MULTILINE)
# Remove final input statement and preceding comment
str = re.sub(r'\n*# Wait for enter on keyboard.*\ninput().*\n*',
r'', str, flags=re.MULTILINE)
return str | def preprocess_script_string(str) | Process python script represented as string `str` in preparation
for conversion to a notebook. This processing includes removal of
the header comment, modification of the plotting configuration,
and replacement of certain sphinx cross-references with
appropriate links to online docs. | 7.132503 | 6.235024 | 1.143941 |
nb = py2jn.py_string_to_notebook(str)
py2jn.write_notebook(nb, pth) | def script_string_to_notebook(str, pth) | Convert a python script represented as string `str` to a notebook
with filename `pth`. | 5.198588 | 5.013117 | 1.036997 |
# Read entire text of example script
with open(spth) as f:
stxt = f.read()
# Process script text
stxt = preprocess_script_string(stxt)
# If the notebook file exists and has been executed, try to
# update markdown cells without deleting output cells
if os.path.exists(npth) and notebook_executed(npth):
# Read current notebook file
nbold = nbformat.read(npth, as_version=4)
# Construct updated notebook
nbnew = script_string_to_notebook_object(stxt)
if cr is not None:
notebook_substitute_ref_with_url(nbnew, cr)
# If the code cells of the two notebooks match, try to
# update markdown cells without deleting output cells
if same_notebook_code(nbnew, nbold):
try:
replace_markdown_cells(nbnew, nbold)
except Exception:
script_string_to_notebook_with_links(stxt, npth, cr)
else:
with open(npth, 'wt') as f:
nbformat.write(nbold, f)
else:
# Write changed text to output notebook file
script_string_to_notebook_with_links(stxt, npth, cr)
else:
# Write changed text to output notebook file
script_string_to_notebook_with_links(stxt, npth, cr) | def script_to_notebook(spth, npth, cr) | Convert the script at `spth` to a notebook at `npth`. Parameter `cr`
is a CrossReferenceLookup object. | 3.514211 | 3.559506 | 0.987275 |
if cr is None:
script_string_to_notebook(str, pth)
else:
ntbk = script_string_to_notebook_object(str)
notebook_substitute_ref_with_url(ntbk, cr)
with open(pth, 'wt') as f:
nbformat.write(ntbk, f) | def script_string_to_notebook_with_links(str, pth, cr=None) | Convert a python script represented as string `str` to a notebook
with filename `pth` and replace sphinx cross-references with links
to online docs. Parameter `cr` is a CrossReferenceLookup object. | 3.488066 | 3.283697 | 1.062238 |
# Read infile into a string
with open(infile, 'r') as fin:
rststr = fin.read()
# Convert string from rst to markdown
mdfmt = 'markdown_github+tex_math_dollars+fenced_code_attributes'
mdstr = pypandoc.convert_text(rststr, mdfmt, format='rst',
extra_args=['--atx-headers'])
# In links, replace .py extensions with .ipynb
mdstr = re.sub(r'\(([^\)]+).py\)', r'(\1.ipynb)', mdstr)
# Enclose the markdown within triple quotes and convert from
# python to notebook
mdstr = ''
nb = py2jn.py_string_to_notebook(mdstr)
py2jn.tools.write_notebook(nb, outfile, nbver=4) | def rst_to_notebook(infile, outfile) | Convert an rst file to a notebook file. | 5.148562 | 5.187156 | 0.99256 |
# Read infile into a string
with open(infile, 'r') as fin:
str = fin.read()
# Enclose the markdown within triple quotes and convert from
# python to notebook
str = ''
nb = py2jn.py_string_to_notebook(str)
py2jn.tools.write_notebook(nb, outfile, nbver=4) | def markdown_to_notebook(infile, outfile) | Convert a markdown file to a notebook file. | 7.926074 | 8.246153 | 0.961184 |
# Read infile into a list of lines
with open(infile, 'r') as fin:
rst = fin.readlines()
# Inspect outfile path components to determine whether outfile
# is in the root of the examples directory or in a subdirectory
# thererof
ps = pathsplit(outfile)[-3:]
if ps[-2] == 'examples':
ps = ps[-2:]
idx = 'index'
else:
idx = ''
# Output string starts with a cross-reference anchor constructed from
# the file name and path
out = '.. _' + '_'.join(ps) + ':\n\n'
# Iterate over lines from infile
it = iter(rst)
for line in it:
if line[0:12] == '.. toc-start': # Line has start of toc marker
# Initialise current toc array and iterate over lines until
# end of toc marker encountered
toc = []
for line in it:
if line == '\n': # Drop newline lines
continue
elif line[0:10] == '.. toc-end': # End of toc marker
# Add toctree section to output string
out += '.. toctree::\n :maxdepth: 1\n\n'
for c in toc:
out += ' %s <%s>\n' % c
break
else: # Still within toc section
# Extract link text and target url and append to
# toc array
m = re.search(r'`(.*?)\s*<(.*?)(?:.py)?>`', line)
if m:
if idx == '':
toc.append((m.group(1), m.group(2)))
else:
toc.append((m.group(1),
os.path.join(m.group(2), idx)))
else: # Not within toc section
out += line
with open(outfile, 'w') as fout:
fout.write(out) | def rst_to_docs_rst(infile, outfile) | Convert an rst file to a sphinx docs rst file. | 4.41179 | 4.403063 | 1.001982 |
# Convert notebook to RST text in string
rex = RSTExporter()
rsttxt = rex.from_filename(ntbkpth)[0]
# Clean up trailing whitespace
rsttxt = re.sub(r'\n ', r'', rsttxt, re.M | re.S)
pthidx = {}
pthlst = []
lines = rsttxt.split('\n')
for l in lines:
m = re.match(r'^-\s+`([^<]+)\s+<([^>]+).ipynb>`__', l)
if m:
# List of subdirectories in order of appearance in index.rst
pthlst.append(m.group(2))
# Dict mapping subdirectory name to description
pthidx[m.group(2)] = m.group(1)
return pthlst, pthidx | def parse_notebook_index(ntbkpth) | Parse the top-level notebook index file at `ntbkpth`. Returns a
list of subdirectories in order of appearance in the index file,
and a dict mapping subdirectory name to a description. | 4.742922 | 4.24518 | 1.117249 |
# Insert title text
txt = '\n\n'
return txt | def construct_notebook_index(title, pthlst, pthidx) | Construct a string containing a markdown format index for the list
of paths in `pthlst`. The title for the index is in `title`, and
`pthidx` is a dict giving label text for each path. | 26.759819 | 30.780321 | 0.869381 |
nb = nbformat.read(pth, as_version=4)
for n in range(len(nb['cells'])):
if nb['cells'][n].cell_type == 'code' and \
nb['cells'][n].execution_count is None:
return False
return True | def notebook_executed(pth) | Determine whether the notebook at `pth` has been executed. | 2.458794 | 2.184072 | 1.125785 |
# Notebooks do not match of the number of cells differ
if len(nb1['cells']) != len(nb2['cells']):
return False
# Iterate over cells in nb1
for n in range(len(nb1['cells'])):
# Notebooks do not match if corresponding cells have different
# types
if nb1['cells'][n]['cell_type'] != nb2['cells'][n]['cell_type']:
return False
# Notebooks do not match if source of corresponding code cells
# differ
if nb1['cells'][n]['cell_type'] == 'code' and \
nb1['cells'][n]['source'] != nb2['cells'][n]['source']:
return False
return True | def same_notebook_code(nb1, nb2) | Return true of the code cells of notebook objects `nb1` and `nb2`
are the same. | 2.407307 | 2.424102 | 0.993072 |
ep = ExecutePreprocessor(timeout=timeout, kernel_name=kernel)
nb = nbformat.read(npth, as_version=4)
t0 = timer()
ep.preprocess(nb, {'metadata': {'path': dpth}})
t1 = timer()
with open(npth, 'wt') as f:
nbformat.write(nb, f)
return t1 - t0 | def execute_notebook(npth, dpth, timeout=1200, kernel='python3') | Execute the notebook at `npth` using `dpth` as the execution
directory. The execution timeout and kernel are `timeout` and
`kernel` respectively. | 2.062433 | 2.114272 | 0.975481 |
# It is an error to attempt markdown replacement if src and dst
# have different numbers of cells
if len(src['cells']) != len(dst['cells']):
raise ValueError('notebooks do not have the same number of cells')
# Iterate over cells in src
for n in range(len(src['cells'])):
# It is an error to attempt markdown replacement if any
# corresponding pair of cells have different type
if src['cells'][n]['cell_type'] != dst['cells'][n]['cell_type']:
raise ValueError('cell number %d of different type in src and dst')
# If current src cell is a markdown cell, copy the src cell to
# the dst cell
if src['cells'][n]['cell_type'] == 'markdown':
dst['cells'][n]['source'] = src['cells'][n]['source'] | def replace_markdown_cells(src, dst) | Overwrite markdown cells in notebook object `dst` with corresponding
cells in notebook object `src`. | 3.238187 | 3.089492 | 1.048129 |
# Iterate over cells in notebook
for n in range(len(ntbk['cells'])):
# Only process cells of type 'markdown'
if ntbk['cells'][n]['cell_type'] == 'markdown':
# Get text of markdown cell
txt = ntbk['cells'][n]['source']
# Replace links to online docs with sphinx cross-references
txt = cr.substitute_ref_with_url(txt)
# Replace current cell text with processed text
ntbk['cells'][n]['source'] = txt | def notebook_substitute_ref_with_url(ntbk, cr) | In markdown cells of notebook object `ntbk`, replace sphinx
cross-references with links to online docs. Parameter `cr` is a
CrossReferenceLookup object. | 3.046232 | 2.382402 | 1.278639 |
# Iterate over cells in notebook
for n in range(len(ntbk['cells'])):
# Only process cells of type 'markdown'
if ntbk['cells'][n]['cell_type'] == 'markdown':
# Get text of markdown cell
txt = ntbk['cells'][n]['source']
# Replace links to online docs with sphinx cross-references
txt = cr.substitute_url_with_ref(txt)
# Replace current cell text with processed text
ntbk['cells'][n]['source'] = txt | def preprocess_notebook(ntbk, cr) | Process notebook object `ntbk` in preparation for conversion to an
rst document. This processing replaces links to online docs with
corresponding sphinx cross-references within the local docs.
Parameter `cr` is a CrossReferenceLookup object. | 3.306772 | 2.600254 | 1.271711 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.