code
string | signature
string | docstring
string | loss_without_docstring
float64 | loss_with_docstring
float64 | factor
float64 |
---|---|---|---|---|---|
# Extended filename used for output images
extfnm = fnm + '_files'
# Directory into which output images are written
extpth = os.path.join(pth, extfnm)
# Make output image directory if it doesn't exist
mkdir(extpth)
# Iterate over output images in resources dict
for r in res['outputs'].keys():
# New name for current output image
rnew = re.sub('output', fnm, r)
# Partial path for current output image
rpth = os.path.join(extfnm, rnew)
# In RST text, replace old output name with the new one
txt = re.sub('\.\. image:: ' + r, '.. image:: ' + rpth, txt, re.M)
# Full path of the current output image
fullrpth = os.path.join(pth, rpth)
# Write the current output image to disk
with open(fullrpth, 'wb') as fo:
fo.write(res['outputs'][r])
# Remove trailing whitespace in RST text
txt = re.sub(r'[ \t]+$', '', txt, flags=re.M)
# Write RST text to disk
with open(os.path.join(pth, fnm + '.rst'), 'wt') as fo:
fo.write(txt) | def write_notebook_rst(txt, res, fnm, pth) | Write the converted notebook text `txt` and resources `res` to
filename `fnm` in directory `pth`. | 3.327784 | 3.316674 | 1.00335 |
# Read the notebook file
ntbk = nbformat.read(npth, nbformat.NO_CONVERT)
# Convert notebook object to rstpth
notebook_object_to_rst(ntbk, rpth, rdir, cr) | def notebook_to_rst(npth, rpth, rdir, cr=None) | Convert notebook at `npth` to rst document at `rpth`, in directory
`rdir`. Parameter `cr` is a CrossReferenceLookup object. | 4.28669 | 4.469654 | 0.959065 |
# Parent directory of file rpth
rdir = os.path.dirname(rpth)
# File basename
rb = os.path.basename(os.path.splitext(rpth)[0])
# Pre-process notebook prior to conversion to rst
if cr is not None:
preprocess_notebook(ntbk, cr)
# Convert notebook to rst
rex = RSTExporter()
rsttxt, rstres = rex.from_notebook_node(ntbk)
# Replace `` with ` in sphinx cross-references
rsttxt = re.sub(r':([^:]+):``(.*?)``', r':\1:`\2`', rsttxt)
# Insert a cross-reference target at top of file
reflbl = '.. _examples_' + os.path.basename(rdir) + '_' + \
rb.replace('-', '_') + ':\n'
rsttxt = reflbl + rsttxt
# Write the converted rst to disk
write_notebook_rst(rsttxt, rstres, rb, rdir) | def notebook_object_to_rst(ntbk, rpth, cr=None) | Convert notebook object `ntbk` to rst document at `rpth`, in
directory `rdir`. Parameter `cr` is a CrossReferenceLookup
object. | 4.182382 | 4.127025 | 1.013413 |
# Read entire text of script at spth
with open(spth) as f:
stxt = f.read()
# Process script text
stxt = preprocess_script_string(stxt)
# Convert script text to notebook object
nbs = script_string_to_notebook_object(stxt)
# Read notebook file npth
nbn = nbformat.read(npth, as_version=4)
# Overwrite markdown cells in nbn with those from nbs
try:
replace_markdown_cells(nbs, nbn)
except ValueError:
raise ValueError('mismatch between source script %s and notebook %s' %
(spth, npth))
# Convert notebook object to rst
notebook_object_to_rst(nbn, rpth) | def script_and_notebook_to_rst(spth, npth, rpth) | Convert a script and the corresponding executed notebook to rst.
The script is converted to notebook format *without* replacement
of sphinx cross-references with links to online docs, and the
resulting markdown cells are inserted into the executed notebook,
which is then converted to rst. | 3.795858 | 3.728009 | 1.0182 |
# Ensure that output directory exists
mkdir(rpth)
# Iterate over index files
for fp in glob(os.path.join(spth, '*.rst')) + \
glob(os.path.join(spth, '*', '*.rst')):
# Index basename
b = os.path.basename(fp)
# Index dirname
dn = os.path.dirname(fp)
# Name of subdirectory of examples directory containing current index
sd = os.path.split(dn)
# Set d to the name of the subdirectory of the root directory
if dn == spth: # fp is the root directory index file
d = ''
else: # fp is a subdirectory index file
d = sd[-1]
# Path to corresponding subdirectory in docs directory
fd = os.path.join(rpth, d)
# Ensure notebook subdirectory exists
mkdir(fd)
# Filename of index file to be constructed
fn = os.path.join(fd, b)
# Process current index file if corresponding notebook file
# doesn't exist, or is older than index file
if update_required(fp, fn):
print('Converting %s ' % os.path.join(d, b),
end='\r')
# Convert script index to docs index
rst_to_docs_rst(fp, fn)
# Iterate over example scripts
for fp in sorted(glob(os.path.join(spth, '*', '*.py'))):
# Name of subdirectory of examples directory containing current script
d = os.path.split(os.path.dirname(fp))[1]
# Script basename
b = os.path.splitext(os.path.basename(fp))[0]
# Path to corresponding notebook
fn = os.path.join(npth, d, b + '.ipynb')
# Path to corresponding sphinx doc file
fr = os.path.join(rpth, d, b + '.rst')
# Only proceed if script and notebook exist
if os.path.exists(fp) and os.path.exists(fn):
# Convert notebook to rst if notebook is newer than rst
# file or if rst file doesn't exist
if update_required(fn, fr):
fnb = os.path.join(d, b + '.ipynb')
print('Processing %s ' % fnb, end='\r')
script_and_notebook_to_rst(fp, fn, fr)
else:
print('WARNING: script %s or notebook %s not found' %
(fp, fn)) | def make_example_scripts_docs(spth, npth, rpth) | Generate rst docs from example scripts. Arguments `spth`, `npth`,
and `rpth` are the top-level scripts directory, the top-level
notebooks directory, and the top-level output directory within the
docs respectively. | 3.176129 | 3.157211 | 1.005992 |
# An initial '.' indicates a partial name
if name[0] == '.':
# Find matches for the partial name in the string
# containing all full names for this role
ptrn = r'(?<= )[^,]*' + name + r'(?=,)'
ml = re.findall(ptrn, self.rolnam[role])
# Handle cases depending on the number of returned matches,
# raising an error if exactly one match is not found
if len(ml) == 0:
raise KeyError('name matching %s not found' % name,
'name', len(ml))
elif len(ml) > 1:
raise KeyError('multiple names matching %s found' % name,
'name', len(ml))
else:
return ml[0]
else:
# The absence of an initial '.' indicates a full
# name. Return the name if it is present in the inventory,
# otherwise raise an error
try:
dom = IntersphinxInventory.roledomain[role]
except KeyError:
raise KeyError('role %s not found' % role, 'role', 0)
if name in self.inv[dom]:
return name
else:
raise KeyError('name %s not found' % name, 'name', 0) | def get_full_name(self, role, name) | If ``name`` is already the full name of an object, return
``name``. Otherwise, if ``name`` is a partial object name,
look up the full name and return it. | 4.388003 | 4.367621 | 1.004667 |
# Expand partial names to full names
name = self.get_full_name(role, name)
# Look up domain corresponding to role
dom = IntersphinxInventory.roledomain[role]
# Get the inventory entry tuple corresponding to the name
# of the referenced type
itpl = self.inv[dom][name]
# Get the required path postfix from the inventory entry
# tuple
path = itpl[2]
# Construct link url, appending the base url or note
# depending on the addbase flag
return self.baseurl + path if self.addbase else path | def get_docs_url(self, role, name) | Get a url for the online docs corresponding to a sphinx cross
reference :role:`name`. | 11.182654 | 10.650919 | 1.049924 |
n = len(self.baseurl)
return url[0:n] == self.baseurl | def matching_base_url(self, url) | Return True if the initial part of `url` matches the base url
passed to the initialiser of this object, and False otherwise. | 7.895651 | 4.918129 | 1.605417 |
# Raise an exception if the initial part of url does not match
# the base url for this object
n = len(self.baseurl)
if url[0:n] != self.baseurl:
raise KeyError('base of url %s does not match base url %s' %
(url, self.baseurl))
# The reverse lookup key is either the full url or the postfix
# to the base url, depending on flag addbase
if self.addbase:
pstfx = url[n:]
else:
pstfx = url
# Look up the cross-reference role and referenced object
# name via the postfix to the base url
role, name = self.revinv[pstfx]
# If the label string is provided and is shorter than the name
# string we have lookup up, assume it is a partial name for
# the same object: append a '.' at the front and use it as the
# object name in the cross-reference
if label is not None and len(label) < len(name):
name = '.' + label
# Construct cross-reference
ref = ':%s:`%s`' % (role, name)
return ref | def get_sphinx_ref(self, url, label=None) | Get an internal sphinx cross reference corresponding to `url`
into the online docs, associated with a link with label `label`
(if not None). | 6.29922 | 6.282485 | 1.002664 |
# Initialise dicts
revinv = {}
rolnam = {}
# Iterate over domain keys in inventory dict
for d in inv:
# Since keys seem to be duplicated, ignore those not
# starting with 'py:'
if d[0:3] == 'py:' and d in IntersphinxInventory.domainrole:
# Get role corresponding to current domain
r = IntersphinxInventory.domainrole[d]
# Initialise role-specific name lookup string
rolnam[r] = ''
# Iterate over all type names for current domain
for n in inv[d]:
# Get the url postfix string for the current
# domain and type name
p = inv[d][n][2]
# Allow lookup of role and object name tuple from
# url postfix
revinv[p] = (r, n)
# Append object name to a string for this role,
# allowing regex searching for partial names
rolnam[r] += ' ' + n + ','
return revinv, rolnam | def inventory_maps(inv) | Construct dicts facilitating information lookup in an
inventory dict. A reversed dict allows lookup of a tuple
specifying the sphinx cross-reference role and the name of the
referenced type from the intersphinx inventory url postfix
string. A role-specific name lookup string allows the set of all
names corresponding to a specific role to be searched via regex. | 8.273963 | 5.19421 | 1.592921 |
if role == 'cite':
# If the cross-reference is a citation, make sure that
# the cite key is in the sphinx environment bibtex cache.
# If it is, construct the url from the cite key, otherwise
# raise an exception
if name not in self.env.bibtex_cache.get_all_cited_keys():
raise KeyError('cite key %s not found' % name, 'cite', 0)
url = self.baseurl + 'zreferences.html#' + name
elif role == 'ref':
try:
reftpl = self.env.domaindata['std']['labels'][name]
except Exception:
raise KeyError('ref label %s not found' % name, 'ref', 0)
url = self.baseurl + reftpl[0] + '.html#' + reftpl[1]
else:
# If the cross-reference is not a citation, try to look it
# up in each of the IntersphinxInventory objects in our list
url = None
for ii in self.invlst:
try:
url = ii.get_docs_url(role, name)
except KeyError as ex:
# Re-raise the exception if multiple matches found,
# otherwise ignore it
if ex.args[1] == 'role' or ex.args[2] > 1:
raise ex
else:
# If an exception was not raised, the lookup must
# have succeeded: break from the loop to terminate
# further searching
break
if url is None:
raise KeyError('name %s not found' % name, 'name', 0)
return url | def get_docs_url(self, role, name) | Get the online docs url for sphinx cross-reference :role:`name`. | 4.617155 | 4.379669 | 1.054225 |
if role == 'cite':
# Get the string used as the citation label in the text
try:
cstr = self.env.bibtex_cache.get_label_from_key(name)
except Exception:
raise KeyError('cite key %s not found' % name, 'cite', 0)
# The link label is the citation label (number) enclosed
# in square brackets
return '[%s]' % cstr
elif role == 'ref':
try:
reftpl = self.env.domaindata['std']['labels'][name]
except Exception:
raise KeyError('ref label %s not found' % name, 'ref', 0)
return reftpl[2]
else:
# Use the object name as a label, omiting any initial '.'
if name[0] == '.':
return name[1:]
else:
return name | def get_docs_label(self, role, name) | Get an appropriate label to use in a link to the online docs. | 5.039724 | 4.921941 | 1.02393 |
# A url is assumed to correspond to a citation if it contains
# 'zreferences.html#'
if 'zreferences.html#' in url:
key = url.partition('zreferences.html#')[2]
ref = ':cite:`%s`' % key
else:
# If the url does not correspond to a citation, try to look it
# up in each of the IntersphinxInventory objects in our list
ref = None
# Iterate over IntersphinxInventory objects in our list
for ii in self.invlst:
# If the baseurl for the current IntersphinxInventory
# object matches the url, try to look up the reference
# from the url and terminate the loop of the look up
# succeeds
if ii.matching_base_url(url):
ref = ii.get_sphinx_ref(url, label)
break
if ref is None:
raise KeyError('no match found for url %s' % url)
return ref | def get_sphinx_ref(self, url, label=None) | Get an internal sphinx cross reference corresponding to `url`
into the online docs, associated with a link with label `label`
(if not None). | 5.598146 | 5.571361 | 1.004808 |
# Find sphinx cross-references
mi = re.finditer(r':([^:]+):`([^`]+)`', txt)
if mi:
# Iterate over match objects in iterator returned by re.finditer
for mo in mi:
# Initialize link label and url for substitution
lbl = None
url = None
# Get components of current match: full matching text, the
# role label in the reference, and the name of the
# referenced type
mtxt = mo.group(0)
role = mo.group(1)
name = mo.group(2)
# If role is 'ref', the name component is in the form
# label <name>
if role == 'ref':
ma = re.match(r'\s*([^\s<]+)\s*<([^>]+)+>', name)
if ma:
name = ma.group(2)
lbl = ma.group(1)
# Try to look up the current cross-reference. Issue a
# warning if the lookup fails, and do the substitution
# if it succeeds.
try:
url = self.get_docs_url(role, name)
if role != 'ref':
lbl = self.get_docs_label(role, name)
except KeyError as ex:
if len(ex.args) == 1 or ex.args[1] != 'role':
print('Warning: %s' % ex.args[0])
else:
# If the cross-reference lookup was successful, replace
# it with an appropriate link to the online docs
rtxt = '[%s](%s)' % (lbl, url)
txt = re.sub(mtxt, rtxt, txt, flags=re.M)
return txt | def substitute_ref_with_url(self, txt) | In the string `txt`, replace sphinx references with
corresponding links to online docs. | 3.98022 | 3.763788 | 1.057504 |
# Find links
mi = re.finditer(r'\[([^\]]+|\[[^\]]+\])\]\(([^\)]+)\)', txt)
if mi:
# Iterate over match objects in iterator returned by
# re.finditer
for mo in mi:
# Get components of current match: full matching text,
# the link label, and the postfix to the base url in the
# link url
mtxt = mo.group(0)
lbl = mo.group(1)
url = mo.group(2)
# Try to look up the current link url. Issue a warning if
# the lookup fails, and do the substitution if it succeeds.
try:
ref = self.get_sphinx_ref(url, lbl)
except KeyError as ex:
print('Warning: %s' % ex.args[0])
else:
txt = re.sub(re.escape(mtxt), ref, txt)
return txt | def substitute_url_with_ref(self, txt) | In the string `txt`, replace links to online docs with
corresponding sphinx cross-references. | 4.647452 | 4.390683 | 1.058481 |
# Extract method selection argument or set default
if 'method' in kwargs:
method = kwargs['method']
del kwargs['method']
else:
method = 'cns'
# Assign base class depending on method selection argument
if method == 'ism':
base = ConvCnstrMOD_IterSM
elif method == 'cg':
base = ConvCnstrMOD_CG
elif method == 'cns':
base = ConvCnstrMOD_Consensus
else:
raise ValueError('Unknown ConvCnstrMOD solver method %s' % method)
# Nested class with dynamically determined inheritance
class ConvCnstrMOD(base):
def __init__(self, *args, **kwargs):
super(ConvCnstrMOD, self).__init__(*args, **kwargs)
# Allow pickling of objects of type ConvCnstrMOD
_fix_dynamic_class_lookup(ConvCnstrMOD, method)
# Return object of the nested class type
return ConvCnstrMOD(*args, **kwargs) | def ConvCnstrMOD(*args, **kwargs) | A wrapper function that dynamically defines a class derived from
one of the implementations of the Convolutional Constrained MOD
problems, and returns an object instantiated with the provided
parameters. The wrapper is designed to allow the appropriate
object to be created by calling this function using the same
syntax as would be used if it were a class. The specific
implementation is selected by use of an additional keyword
argument 'method'. Valid values are:
- ``'ism'`` :
Use the implementation defined in :class:`.ConvCnstrMOD_IterSM`. This
method works well for a small number of training images, but is very
slow for larger training sets.
- ``'cg'`` :
Use the implementation defined in :class:`.ConvCnstrMOD_CG`. This
method is slower than ``'ism'`` for small training sets, but has better
run time scaling as the training set grows.
- ``'cns'`` :
Use the implementation defined in :class:`.ConvCnstrMOD_Consensus`.
This method is the best choice for large training sets.
The default value is ``'cns'``. | 3.844175 | 2.80593 | 1.370018 |
# Assign base class depending on method selection argument
if method == 'ism':
base = ConvCnstrMOD_IterSM.Options
elif method == 'cg':
base = ConvCnstrMOD_CG.Options
elif method == 'cns':
base = ConvCnstrMOD_Consensus.Options
else:
raise ValueError('Unknown ConvCnstrMOD solver method %s' % method)
# Nested class with dynamically determined inheritance
class ConvCnstrMODOptions(base):
def __init__(self, opt):
super(ConvCnstrMODOptions, self).__init__(opt)
# Allow pickling of objects of type ConvCnstrMODOptions
_fix_dynamic_class_lookup(ConvCnstrMODOptions, method)
# Return object of the nested class type
return ConvCnstrMODOptions(opt) | def ConvCnstrMODOptions(opt=None, method='cns') | A wrapper function that dynamically defines a class derived from
the Options class associated with one of the implementations of
the Convolutional Constrained MOD problem, and returns an object
instantiated with the provided parameters. The wrapper is designed
to allow the appropriate object to be created by calling this
function using the same syntax as would be used if it were a
class. The specific implementation is selected by use of an
additional keyword argument 'method'. Valid values are as
specified in the documentation for :func:`ConvCnstrMOD`. | 4.286292 | 4.048053 | 1.058853 |
if self.opt['Y0'] is None:
return np.zeros(ushape, dtype=self.dtype)
else:
# If initial Y is non-zero, initial U is chosen so that
# the relevant dual optimality criterion (see (3.10) in
# boyd-2010-distributed) is satisfied.
return self.Y | def uinit(self, ushape) | Return initialiser for working variable U | 9.347448 | 8.536878 | 1.094949 |
D = self.Y
if crop:
D = cr.bcrop(D, self.cri.dsz, self.cri.dimN)
return D | def getdict(self, crop=True) | Get final dictionary. If ``crop`` is ``True``, apply
:func:`.cnvrep.bcrop` to returned array. | 14.269937 | 12.435812 | 1.147487 |
r
self.Y = self.Pcn(self.AX + self.U) | def ystep(self) | r"""Minimise Augmented Lagrangian with respect to
:math:`\mathbf{y}`. | 72.078835 | 48.815643 | 1.476552 |
return self.Xf if self.opt['fEvalX'] else \
sl.rfftn(self.Y, None, self.cri.axisN) | def obfn_fvarf(self) | Variable to be evaluated in computing data fidelity term,
depending on 'fEvalX' option value. | 23.949556 | 12.820977 | 1.867998 |
dfd = self.obfn_dfd()
cns = self.obfn_cns()
return (dfd, cns) | def eval_objfn(self) | Compute components of objective function as well as total
contribution to objective function. | 10.39892 | 7.81406 | 1.330796 |
r
return np.linalg.norm((self.Pcn(self.obfn_gvar()) - self.obfn_gvar())) | def obfn_cns(self) | r"""Compute constraint violation measure :math:`\| P(\mathbf{y}) -
\mathbf{y}\|_2`. | 16.607697 | 10.950132 | 1.516666 |
if D is None:
Df = self.Xf
else:
Df = sl.rfftn(D, None, self.cri.axisN)
Sf = np.sum(self.Zf * Df, axis=self.cri.axisM)
return sl.irfftn(Sf, self.cri.Nv, self.cri.axisN) | def reconstruct(self, D=None) | Reconstruct representation. | 3.721742 | 3.610311 | 1.030865 |
r
self.cgit = None
self.YU[:] = self.Y - self.U
b = self.ZSf + self.rho*sl.rfftn(self.YU, None, self.cri.axisN)
self.Xf[:], cgit = sl.solvemdbi_cg(self.Zf, self.rho, b,
self.cri.axisM, self.cri.axisK,
self.opt['CG', 'StopTol'],
self.opt['CG', 'MaxIter'], self.Xf)
self.cgit = cgit
self.X = sl.irfftn(self.Xf, self.cri.Nv, self.cri.axisN)
self.xstep_check(b) | def xstep(self) | r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`. | 8.578735 | 7.131407 | 1.202951 |
if self.opt['Y0'] is None:
return np.zeros(ushape, dtype=self.dtype)
else:
# If initial Y is non-zero, initial U is chosen so that
# the relevant dual optimality criterion (see (3.10) in
# boyd-2010-distributed) is satisfied.
return np.repeat(self.Y[..., np.newaxis],
self.Nb, axis=-1)/self.rho | def uinit(self, ushape) | Return initialiser for working variable U. | 8.846716 | 8.071373 | 1.096061 |
r
# This test reflects empirical evidence that two slightly
# different implementations are faster for single or
# multi-channel data. This kludge is intended to be temporary.
if self.cri.Cd > 1:
for i in range(self.Nb):
self.xistep(i)
else:
self.YU[:] = self.Y[..., np.newaxis] - self.U
b = np.swapaxes(self.ZSf[..., np.newaxis], self.cri.axisK, -1) \
+ self.rho*sl.rfftn(self.YU, None, self.cri.axisN)
for i in range(self.Nb):
self.Xf[..., i] = sl.solvedbi_sm(
self.Zf[..., [i], :], self.rho, b[..., i],
axis=self.cri.axisM)
self.X = sl.irfftn(self.Xf, self.cri.Nv, self.cri.axisN)
if self.opt['LinSolveCheck']:
ZSfs = np.sum(self.ZSf, axis=self.cri.axisK, keepdims=True)
YU = np.sum(self.Y[..., np.newaxis] - self.U, axis=-1)
b = ZSfs + self.rho*sl.rfftn(YU, None, self.cri.axisN)
Xf = self.swapaxes(self.Xf)
Zop = lambda x: sl.inner(self.Zf, x, axis=self.cri.axisM)
ZHop = lambda x: np.conj(self.Zf) * x
ax = np.sum(ZHop(Zop(Xf)) + self.rho*Xf, axis=self.cri.axisK,
keepdims=True)
self.xrrs = sl.rrs(ax, b)
else:
self.xrrs = None | def xstep(self) | r"""Minimise Augmented Lagrangian with respect to block vector
:math:`\mathbf{x} = \left( \begin{array}{ccc} \mathbf{x}_0^T &
\mathbf{x}_1^T & \ldots \end{array} \right)^T\;`. | 4.98174 | 4.794158 | 1.039127 |
r
self.YU[:] = self.Y - self.U[..., i]
b = np.take(self.ZSf, [i], axis=self.cri.axisK) + \
self.rho*sl.rfftn(self.YU, None, self.cri.axisN)
self.Xf[..., i] = sl.solvedbi_sm(np.take(
self.Zf, [i], axis=self.cri.axisK),
self.rho, b, axis=self.cri.axisM)
self.X[..., i] = sl.irfftn(self.Xf[..., i], self.cri.Nv,
self.cri.axisN) | def xistep(self, i) | r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`
component :math:`\mathbf{x}_i`. | 6.631153 | 6.316051 | 1.049889 |
r
Y = self.obfn_gvar()
return np.linalg.norm((self.Pcn(Y) - Y)) | def obfn_cns(self) | r"""Compute constraint violation measure :math:`\| P(\mathbf{y})
- \mathbf{y}\|_2`. | 22.186373 | 16.525465 | 1.342557 |
# If the dictionary has a single channel but the input (and
# therefore also the coefficient map array) has multiple
# channels, the channel index and multiple image index have
# the same behaviour in the dictionary update equation: the
# simplest way to handle this is to just reshape so that the
# channels also appear on the multiple image index.
if self.cri.Cd == 1 and self.cri.C > 1:
Z = Z.reshape(self.cri.Nv + (1,) + (self.cri.Cx * self.cri.K,) +
(self.cri.M,))
self.Z = np.asarray(Z, dtype=self.dtype)
self.Zf = sl.rfftn(self.Z, self.cri.Nv, self.cri.axisN) | def setcoef(self, Z) | Set coefficient array. | 8.908943 | 8.448788 | 1.054464 |
# Compute X D - S
Ryf = self.eval_Rf(self.Yf)
gradf = sl.inner(np.conj(self.Zf), Ryf, axis=self.cri.axisK)
# Multiple channel signal, single channel dictionary
if self.cri.C > 1 and self.cri.Cd == 1:
gradf = np.sum(gradf, axis=self.cri.axisC, keepdims=True)
return gradf | def eval_grad(self) | Compute gradient in Fourier domain. | 8.620804 | 7.638571 | 1.128589 |
diff = self.Xf - self.Yfprv
return sl.rfl2norm2(diff, self.X.shape, axis=self.cri.axisN) | def rsdl(self) | Compute fixed point residual in Fourier domain. | 33.370571 | 18.908241 | 1.764869 |
r
Ef = self.eval_Rf(self.Xf)
return sl.rfl2norm2(Ef, self.S.shape, axis=self.cri.axisN) / 2.0 | def obfn_dfd(self) | r"""Compute data fidelity term :math:`(1/2) \| \sum_m
\mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \|_2^2`. | 25.578798 | 21.841705 | 1.171099 |
r
return np.linalg.norm((self.Pcn(self.X) - self.X)) | def obfn_cns(self) | r"""Compute constraint violation measure :math:`\|
P(\mathbf{y}) - \mathbf{y}\|_2`. | 20.5343 | 13.969906 | 1.469895 |
r
if Xf is None:
Xf = self.Xf
Rf = self.eval_Rf(Xf)
return 0.5 * np.linalg.norm(Rf.flatten(), 2)**2 | def obfn_f(self, Xf=None) | r"""Compute data fidelity term :math:`(1/2) \| \sum_m
\mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \|_2^2`.
This is used for backtracking. Since the backtracking is
computed in the DFT, it is important to preserve the
DFT scaling. | 5.155694 | 5.134714 | 1.004086 |
r
Ef = self.eval_Rf(self.Xf)
E = sl.irfftn(Ef, self.cri.Nv, self.cri.axisN)
return (np.linalg.norm(self.W * E)**2) / 2.0 | def obfn_dfd(self) | r"""Compute data fidelity term :math:`(1/2) \sum_k \| W (\sum_m
\mathbf{d}_m * \mathbf{x}_{k,m} - \mathbf{s}_k) \|_2^2` | 11.29002 | 10.965078 | 1.029634 |
r
if Xf is None:
Xf = self.Xf
Rf = self.eval_Rf(Xf)
R = sl.irfftn(Rf, self.cri.Nv, self.cri.axisN)
WRf = sl.rfftn(self.W * R, self.cri.Nv, self.cri.axisN)
return 0.5 * np.linalg.norm(WRf.flatten(), 2)**2 | def obfn_f(self, Xf=None) | r"""Compute data fidelity term :math:`(1/2) \sum_k \| W (\sum_m
\mathbf{d}_m * \mathbf{x}_{k,m} - \mathbf{s}_k) \|_2^2`.
This is used for backtracking. Since the backtracking is
computed in the DFT, it is important to preserve the
DFT scaling. | 4.466607 | 4.165499 | 1.072286 |
clsmod = {'admm': admm_cbpdn.ConvBPDN,
'fista': fista_cbpdn.ConvBPDN}
if label in clsmod:
return clsmod[label]
else:
raise ValueError('Unknown ConvBPDN solver method %s' % label) | def cbpdn_class_label_lookup(label) | Get a CBPDN class from a label string. | 4.692989 | 4.366402 | 1.074796 |
dflt = copy.deepcopy(cbpdn_class_label_lookup(method).Options.defaults)
if method == 'admm':
dflt.update({'MaxMainIter': 1, 'AutoRho':
{'Period': 10, 'AutoScaling': False,
'RsdlRatio': 10.0, 'Scaling': 2.0,
'RsdlTarget': 1.0}})
else:
dflt.update({'MaxMainIter': 1, 'BackTrack':
{'gamma_u': 1.2, 'MaxIter': 50}})
return dflt | def ConvBPDNOptionsDefaults(method='admm') | Get defaults dict for the ConvBPDN class specified by the ``method``
parameter. | 5.04611 | 4.964925 | 1.016352 |
# Assign base class depending on method selection argument
base = cbpdn_class_label_lookup(method).Options
# Nested class with dynamically determined inheritance
class ConvBPDNOptions(base):
def __init__(self, opt):
super(ConvBPDNOptions, self).__init__(opt)
# Allow pickling of objects of type ConvBPDNOptions
_fix_dynamic_class_lookup(ConvBPDNOptions, method)
# Return object of the nested class type
return ConvBPDNOptions(opt) | def ConvBPDNOptions(opt=None, method='admm') | A wrapper function that dynamically defines a class derived from
the Options class associated with one of the implementations of
the Convolutional BPDN problem, and returns an object
instantiated with the provided parameters. The wrapper is designed
to allow the appropriate object to be created by calling this
function using the same syntax as would be used if it were a
class. The specific implementation is selected by use of an
additional keyword argument 'method'. Valid values are as
specified in the documentation for :func:`ConvBPDN`. | 7.792745 | 6.993777 | 1.11424 |
# Extract method selection argument or set default
method = kwargs.pop('method', 'admm')
# Assign base class depending on method selection argument
base = cbpdn_class_label_lookup(method)
# Nested class with dynamically determined inheritance
class ConvBPDN(base):
def __init__(self, *args, **kwargs):
super(ConvBPDN, self).__init__(*args, **kwargs)
# Allow pickling of objects of type ConvBPDN
_fix_dynamic_class_lookup(ConvBPDN, method)
# Return object of the nested class type
return ConvBPDN(*args, **kwargs) | def ConvBPDN(*args, **kwargs) | A wrapper function that dynamically defines a class derived from
one of the implementations of the Convolutional Constrained MOD
problems, and returns an object instantiated with the provided
parameters. The wrapper is designed to allow the appropriate
object to be created by calling this function using the same
syntax as would be used if it were a class. The specific
implementation is selected by use of an additional keyword
argument 'method'. Valid values are:
- ``'admm'`` :
Use the implementation defined in :class:`.admm.cbpdn.ConvBPDN`.
- ``'fista'`` :
Use the implementation defined in :class:`.fista.cbpdn.ConvBPDN`.
The default value is ``'admm'``. | 5.938691 | 5.218736 | 1.137956 |
clsmod = {'ism': admm_ccmod.ConvCnstrMOD_IterSM,
'cg': admm_ccmod.ConvCnstrMOD_CG,
'cns': admm_ccmod.ConvCnstrMOD_Consensus,
'fista': fista_ccmod.ConvCnstrMOD}
if label in clsmod:
return clsmod[label]
else:
raise ValueError('Unknown ConvCnstrMOD solver method %s' % label) | def ccmod_class_label_lookup(label) | Get a CCMOD class from a label string. | 5.044937 | 5.372272 | 0.93907 |
dflt = copy.deepcopy(ccmod_class_label_lookup(method).Options.defaults)
if method == 'fista':
dflt.update({'MaxMainIter': 1, 'BackTrack':
{'gamma_u': 1.2, 'MaxIter': 50}})
else:
dflt.update({'MaxMainIter': 1, 'AutoRho':
{'Period': 10, 'AutoScaling': False,
'RsdlRatio': 10.0, 'Scaling': 2.0,
'RsdlTarget': 1.0}})
return dflt | def ConvCnstrMODOptionsDefaults(method='fista') | Get defaults dict for the ConvCnstrMOD class specified by the
``method`` parameter. | 5.393535 | 5.10053 | 1.057446 |
# Assign base class depending on method selection argument
base = ccmod_class_label_lookup(method).Options
# Nested class with dynamically determined inheritance
class ConvCnstrMODOptions(base):
def __init__(self, opt):
super(ConvCnstrMODOptions, self).__init__(opt)
# Allow pickling of objects of type ConvCnstrMODOptions
_fix_dynamic_class_lookup(ConvCnstrMODOptions, method)
# Return object of the nested class type
return ConvCnstrMODOptions(opt) | def ConvCnstrMODOptions(opt=None, method='fista') | A wrapper function that dynamically defines a class derived from
the Options class associated with one of the implementations of
the Convolutional Constrained MOD problem, and returns an object
instantiated with the provided parameters. The wrapper is designed
to allow the appropriate object to be created by calling this
function using the same syntax as would be used if it were a
class. The specific implementation is selected by use of an
additional keyword argument 'method'. Valid values are as
specified in the documentation for :func:`ConvCnstrMOD`. | 6.609409 | 6.12456 | 1.079165 |
# Extract method selection argument or set default
method = kwargs.pop('method', 'fista')
# Assign base class depending on method selection argument
base = ccmod_class_label_lookup(method)
# Nested class with dynamically determined inheritance
class ConvCnstrMOD(base):
def __init__(self, *args, **kwargs):
super(ConvCnstrMOD, self).__init__(*args, **kwargs)
# Allow pickling of objects of type ConvCnstrMOD
_fix_dynamic_class_lookup(ConvCnstrMOD, method)
# Return object of the nested class type
return ConvCnstrMOD(*args, **kwargs) | def ConvCnstrMOD(*args, **kwargs) | A wrapper function that dynamically defines a class derived from
one of the implementations of the Convolutional Constrained MOD
problems, and returns an object instantiated with the provided
parameters. The wrapper is designed to allow the appropriate
object to be created by calling this function using the same
syntax as would be used if it were a class. The specific
implementation is selected by use of an additional keyword
argument 'method'. Valid values are:
- ``'ism'`` :
Use the implementation defined in :class:`.ConvCnstrMOD_IterSM`. This
method works well for a small number of training images, but is very
slow for larger training sets.
- ``'cg'`` :
Use the implementation defined in :class:`.ConvCnstrMOD_CG`. This
method is slower than ``'ism'`` for small training sets, but has better
run time scaling as the training set grows.
- ``'cns'`` :
Use the implementation defined in :class:`.ConvCnstrMOD_Consensus`.
This method is a good choice for large training sets.
- ``'fista'`` :
Use the implementation defined in :class:`.fista.ccmod.ConvCnstrMOD`.
This method is the best choice for large training sets.
The default value is ``'fista'``. | 5.706865 | 5.095749 | 1.119927 |
if self.opt['AccurateDFid']:
if self.dmethod == 'fista':
D = self.dstep.getdict(crop=False)
else:
D = self.dstep.var_y()
if self.xmethod == 'fista':
X = self.xstep.getcoef()
else:
X = self.xstep.var_y()
Df = sl.rfftn(D, self.xstep.cri.Nv, self.xstep.cri.axisN)
Xf = sl.rfftn(X, self.xstep.cri.Nv, self.xstep.cri.axisN)
Sf = self.xstep.Sf
Ef = sl.inner(Df, Xf, axis=self.xstep.cri.axisM) - Sf
dfd = sl.rfl2norm2(Ef, self.xstep.S.shape,
axis=self.xstep.cri.axisN) / 2.0
rl1 = np.sum(np.abs(X))
return dict(DFid=dfd, RegL1=rl1,
ObjFun=dfd + self.xstep.lmbda * rl1)
else:
return None | def evaluate(self) | Evaluate functional value of previous iteration. | 4.466753 | 4.215888 | 1.059505 |
if self.opt['AccurateDFid']:
D = self.dstep.var_y()
X = self.xstep.var_y()
S = self.xstep.S
dfd = 0.5*np.linalg.norm((D.dot(X) - S))**2
rl1 = np.sum(np.abs(X))
return dict(DFid=dfd, RegL1=rl1, ObjFun=dfd+self.xstep.lmbda*rl1)
else:
return None | def evaluate(self) | Evaluate functional value of previous iteration | 7.305434 | 6.369809 | 1.146884 |
return not os.path.exists(pth1) or not os.path.exists(pth2) or \
os.stat(pth1).st_mtime > os.stat(pth2).st_mtime | def is_newer_than(pth1, pth2) | Return true if either file pth1 or file pth2 don't exist, or if
pth1 has been modified more recently than pth2 | 2.534363 | 2.315168 | 1.094678 |
sz = int(np.product(shape))
csz = sz * np.dtype(dtype).itemsize
raw = mp.RawArray('c', csz)
return np.frombuffer(raw, dtype=dtype, count=sz).reshape(shape) | def mpraw_as_np(shape, dtype) | Construct a numpy array of the specified shape and dtype for which the
underlying storage is a multiprocessing RawArray in shared memory.
Parameters
----------
shape : tuple
Shape of numpy array
dtype : data-type
Data type of array
Returns
-------
arr : ndarray
Numpy array | 3.46387 | 3.730947 | 0.928416 |
return np.ascontiguousarray(np.swapaxes(x[np.newaxis, ...], 0, axis+1)) | def swap_axis_to_0(x, axis) | Insert a new singleton axis at position 0 and swap it with the
specified axis. The resulting array has an additional dimension,
with ``axis`` + 1 (which was ``axis`` before the insertion of the
new axis) of ``x`` at position 0, and a singleton axis at position
``axis`` + 1.
Parameters
----------
x : ndarray
Input array
axis : int
Index of axis in ``x`` to swap to axis index 0.
Returns
-------
arr : ndarray
Output array | 4.615553 | 7.016592 | 0.657806 |
globals()[mpv] = mpraw_as_np(npv.shape, npv.dtype)
globals()[mpv][:] = npv | def init_mpraw(mpv, npv) | Set a global variable as a multiprocessing RawArray in shared
memory with a numpy array wrapper and initialise its value.
Parameters
----------
mpv : string
Name of global variable to set
npv : ndarray
Numpy array to use as initialiser for global variable value | 5.73545 | 5.529434 | 1.037258 |
global mp_DSf
# Set working dictionary for cbpdn step and compute DFT of dictionary
# D and of D^T S
mp_Df[:] = sl.rfftn(mp_D_Y, mp_cri.Nv, mp_cri.axisN)
if mp_cri.Cd == 1:
mp_DSf[:] = np.conj(mp_Df) * mp_Sf
else:
mp_DSf[:] = sl.inner(np.conj(mp_Df[np.newaxis, ...]), mp_Sf,
axis=mp_cri.axisC+1) | def cbpdn_setdict() | Set the dictionary for the cbpdn stage. There are no parameters
or return values because all inputs and outputs are from and to
global variables. | 8.878844 | 8.866396 | 1.001404 |
YU = mp_Z_Y[k] - mp_Z_U[k]
b = mp_DSf[k] + mp_xrho * sl.rfftn(YU, None, mp_cri.axisN)
if mp_cri.Cd == 1:
Xf = sl.solvedbi_sm(mp_Df, mp_xrho, b, axis=mp_cri.axisM)
else:
Xf = sl.solvemdbi_ism(mp_Df, mp_xrho, b, mp_cri.axisM, mp_cri.axisC)
mp_Z_X[k] = sl.irfftn(Xf, mp_cri.Nv, mp_cri.axisN) | def cbpdn_xstep(k) | Do the X step of the cbpdn stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 5.904515 | 5.868493 | 1.006138 |
mp_Z_X[k] = mp_xrlx * mp_Z_X[k] + (1 - mp_xrlx) * mp_Z_Y[k] | def cbpdn_relax(k) | Do relaxation for the cbpdn stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 7.49721 | 7.376577 | 1.016353 |
AXU = mp_Z_X[k] + mp_Z_U[k]
mp_Z_Y[k] = sp.prox_l1(AXU, (mp_lmbda/mp_xrho)) | def cbpdn_ystep(k) | Do the Y step of the cbpdn stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 13.108836 | 11.797667 | 1.111138 |
# Set working coefficient maps for ccmod step and compute DFT of
# coefficient maps Z and Z^T S
mp_Zf[k] = sl.rfftn(mp_Z_Y[k], mp_cri.Nv, mp_cri.axisN)
mp_ZSf[k] = np.conj(mp_Zf[k]) * mp_Sf[k] | def ccmod_setcoef(k) | Set the coefficient maps for the ccmod stage. The only parameter is
the slice index `k` and there are no return values; all inputs and
outputs are from and to global variables. | 13.060806 | 12.280555 | 1.063536 |
YU = mp_D_Y - mp_D_U[k]
b = mp_ZSf[k] + mp_drho * sl.rfftn(YU, None, mp_cri.axisN)
Xf = sl.solvedbi_sm(mp_Zf[k], mp_drho, b, axis=mp_cri.axisM)
mp_D_X[k] = sl.irfftn(Xf, mp_cri.Nv, mp_cri.axisN) | def ccmod_xstep(k) | Do the X step of the ccmod stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 8.761149 | 8.650258 | 1.012819 |
mAXU = np.mean(mp_D_X + mp_D_U, axis=0)
mp_D_Y[:] = mp_dprox(mAXU) | def ccmod_ystep() | Do the Y step of the ccmod stage. There are no parameters
or return values because all inputs and outputs are from and to
global variables. | 16.151426 | 14.369185 | 1.124032 |
cbpdn_xstep(k)
if mp_xrlx != 1.0:
cbpdn_relax(k)
cbpdn_ystep(k)
cbpdn_ustep(k)
ccmod_setcoef(k)
ccmod_xstep(k)
if mp_drlx != 1.0:
ccmod_relax(k) | def step_group(k) | Do a single iteration over cbpdn and ccmod steps that can be
performed independently for each slice `k` of the input data set. | 6.401753 | 5.005707 | 1.278891 |
YU0 = mp_Z_Y0[k] + mp_S[k] - mp_Z_U0[k]
YU1 = mp_Z_Y1[k] - mp_Z_U1[k]
if mp_cri.Cd == 1:
b = np.conj(mp_Df) * sl.rfftn(YU0, None, mp_cri.axisN) + \
sl.rfftn(YU1, None, mp_cri.axisN)
Xf = sl.solvedbi_sm(mp_Df, 1.0, b, axis=mp_cri.axisM)
else:
b = sl.inner(np.conj(mp_Df), sl.rfftn(YU0, None, mp_cri.axisN),
axis=mp_cri.axisC) + \
sl.rfftn(YU1, None, mp_cri.axisN)
Xf = sl.solvemdbi_ism(mp_Df, 1.0, b, mp_cri.axisM, mp_cri.axisC)
mp_Z_X[k] = sl.irfftn(Xf, mp_cri.Nv, mp_cri.axisN)
mp_DX[k] = sl.irfftn(sl.inner(mp_Df, Xf), mp_cri.Nv, mp_cri.axisN) | def cbpdnmd_xstep(k) | Do the X step of the cbpdn stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 3.324509 | 3.271733 | 1.016131 |
mp_Z_X[k] = mp_xrlx * mp_Z_X[k] + (1 - mp_xrlx) * mp_Z_Y1[k]
mp_DX[k] = mp_xrlx * mp_DX[k] + (1 - mp_xrlx) * (mp_Z_Y0[k] + mp_S[k]) | def cbpdnmd_relax(k) | Do relaxation for the cbpdn stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 4.202227 | 4.150481 | 1.012467 |
if mp_W.shape[0] > 1:
W = mp_W[k]
else:
W = mp_W
AXU0 = mp_DX[k] - mp_S[k] + mp_Z_U0[k]
AXU1 = mp_Z_X[k] + mp_Z_U1[k]
mp_Z_Y0[k] = mp_xrho*AXU0 / (W**2 + mp_xrho)
mp_Z_Y1[k] = sp.prox_l1(AXU1, (mp_lmbda/mp_xrho)) | def cbpdnmd_ystep(k) | Do the Y step of the cbpdn stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 4.984846 | 5.002069 | 0.996557 |
mp_Z_U0[k] += mp_DX[k] - mp_Z_Y0[k] - mp_S[k]
mp_Z_U1[k] += mp_Z_X[k] - mp_Z_Y1[k] | def cbpdnmd_ustep(k) | Do the U step of the cbpdn stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 5.516077 | 5.345995 | 1.031815 |
# Set working coefficient maps for ccmod step and compute DFT of
# coefficient maps Z
mp_Zf[k] = sl.rfftn(mp_Z_Y1[k], mp_cri.Nv, mp_cri.axisN) | def ccmodmd_setcoef(k) | Set the coefficient maps for the ccmod stage. The only parameter is
the slice index `k` and there are no return values; all inputs and
outputs are from and to global variables. | 27.22682 | 24.516476 | 1.110552 |
YU0 = mp_D_Y0 - mp_D_U0[k]
YU1 = mp_D_Y1[k] + mp_S[k] - mp_D_U1[k]
b = sl.rfftn(YU0, None, mp_cri.axisN) + \
np.conj(mp_Zf[k]) * sl.rfftn(YU1, None, mp_cri.axisN)
Xf = sl.solvedbi_sm(mp_Zf[k], 1.0, b, axis=mp_cri.axisM)
mp_D_X[k] = sl.irfftn(Xf, mp_cri.Nv, mp_cri.axisN)
mp_DX[k] = sl.irfftn(sl.inner(Xf, mp_Zf[k]), mp_cri.Nv, mp_cri.axisN) | def ccmodmd_xstep(k) | Do the X step of the ccmod stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 4.273917 | 4.201213 | 1.017305 |
mp_D_X[k] = mp_drlx * mp_D_X[k] + (1 - mp_drlx) * mp_D_Y0
mp_DX[k] = mp_drlx * mp_DX[k] + (1 - mp_drlx) * (mp_D_Y1[k] + mp_S[k]) | def ccmodmd_relax(k) | Do relaxation for the ccmod stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | 4.116242 | 4.072294 | 1.010792 |
mAXU = np.mean(mp_D_X + mp_D_U0, axis=0)
mp_D_Y0[:] = mp_dprox(mAXU)
AXU1 = mp_DX - mp_S + mp_D_U1
mp_D_Y1[:] = mp_drho*AXU1 / (mp_W**2 + mp_drho) | def ccmodmd_ystep() | Do the Y step of the ccmod stage. There are no parameters
or return values because all inputs and outputs are from and to
global variables. | 10.880256 | 9.987291 | 1.08941 |
cbpdnmd_xstep(k)
if mp_xrlx != 1.0:
cbpdnmd_relax(k)
cbpdnmd_ystep(k)
cbpdnmd_ustep(k)
ccmodmd_setcoef(k)
ccmodmd_xstep(k)
if mp_drlx != 1.0:
ccmodmd_relax(k) | def md_step_group(k) | Do a single iteration over cbpdn and ccmod steps that can be
performed independently for each slice `k` of the input data set. | 6.150316 | 5.120872 | 1.201029 |
# If the nproc parameter of __init__ is zero, just iterate
# over the K consensus instances instead of using
# multiprocessing to do the computations in parallel. This is
# useful for debugging and timing comparisons.
if self.nproc == 0:
for k in range(self.xstep.cri.K):
step_group(k)
else:
self.pool.map(step_group, range(self.xstep.cri.K))
ccmod_ystep()
ccmod_ustep()
cbpdn_setdict() | def step(self) | Do a single iteration over all cbpdn and ccmod steps. Those that
are not coupled on the K axis are performed in parallel. | 11.461105 | 7.917269 | 1.447608 |
# Construct tuple of status display column titles and set status
# display strings
hdrtxt = ['Itn', 'Fnc', 'DFid', u('Regℓ1')]
hdrstr, fmtstr, nsep = common.solve_status_str(
hdrtxt, fwdth0=type(self).fwiter, fprec=type(self).fpothr)
# Print header and separator strings
if self.opt['Verbose']:
if self.opt['StatusHeader']:
print(hdrstr)
print("-" * nsep)
# Reset timer
self.timer.start(['solve', 'solve_wo_eval'])
# Create process pool
if self.nproc > 0:
self.pool = mp.Pool(processes=self.nproc)
for self.j in range(self.j, self.j + self.opt['MaxMainIter']):
# Perform a set of update steps
self.step()
# Evaluate functional
self.timer.stop('solve_wo_eval')
fnev = self.evaluate()
self.timer.start('solve_wo_eval')
# Record iteration stats
tk = self.timer.elapsed('solve')
itst = self.IterationStats(*((self.j,) + fnev + (tk,)))
self.itstat.append(itst)
# Display iteration stats if Verbose option enabled
if self.opt['Verbose']:
print(fmtstr % itst[:-1])
# Call callback function if defined
if self.opt['Callback'] is not None:
if self.opt['Callback'](self):
break
# Clean up process pool
if self.nproc > 0:
self.pool.close()
self.pool.join()
# Increment iteration count
self.j += 1
# Record solve time
self.timer.stop(['solve', 'solve_wo_eval'])
# Print final separator string if Verbose option enabled
if self.opt['Verbose'] and self.opt['StatusHeader']:
print("-" * nsep)
# Return final dictionary
return self.getdict() | def solve(self) | Start (or re-start) optimisation. This method implements the
framework for the alternation between `X` and `D` updates in a
dictionary learning algorithm.
If option ``Verbose`` is ``True``, the progress of the
optimisation is displayed at every iteration. At termination
of this method, attribute :attr:`itstat` is a list of tuples
representing statistics of each iteration.
Attribute :attr:`timer` is an instance of :class:`.util.Timer`
that provides the following labelled timers:
``init``: Time taken for object initialisation by
:meth:`__init__`
``solve``: Total time taken by call(s) to :meth:`solve`
``solve_wo_func``: Total time taken by call(s) to
:meth:`solve`, excluding time taken to compute functional
value and related iteration statistics | 5.215775 | 4.518962 | 1.154198 |
global mp_Z_Y
return np.swapaxes(mp_Z_Y, 0, self.xstep.cri.axisK+1)[0] | def getcoef(self) | Get final coefficient map array. | 30.981756 | 24.452286 | 1.267029 |
X = mp_Z_Y
Xf = mp_Zf
Df = mp_Df
Sf = mp_Sf
Ef = sl.inner(Df[np.newaxis, ...], Xf,
axis=self.xstep.cri.axisM+1) - Sf
Ef = np.swapaxes(Ef, 0, self.xstep.cri.axisK+1)[0]
dfd = sl.rfl2norm2(Ef, self.xstep.S.shape,
axis=self.xstep.cri.axisN)/2.0
rl1 = np.sum(np.abs(X))
obj = dfd + self.xstep.lmbda*rl1
return (obj, dfd, rl1) | def evaluate(self) | Evaluate functional value of previous iteration. | 7.2521 | 6.858596 | 1.057374 |
# If the nproc parameter of __init__ is zero, just iterate
# over the K consensus instances instead of using
# multiprocessing to do the computations in parallel. This is
# useful for debugging and timing comparisons.
if self.nproc == 0:
for k in range(self.xstep.cri.K):
md_step_group(k)
else:
self.pool.map(md_step_group, range(self.xstep.cri.K))
ccmodmd_ystep()
ccmodmd_ustep()
cbpdnmd_setdict() | def step(self) | Do a single iteration over all cbpdn and ccmod steps. Those that
are not coupled on the K axis are performed in parallel. | 12.190627 | 8.724504 | 1.397286 |
global mp_D_Y0
D = mp_D_Y0
if crop:
D = cr.bcrop(D, self.dstep.cri.dsz, self.dstep.cri.dimN)
return D | def getdict(self, crop=True) | Get final dictionary. If ``crop`` is ``True``, apply
:func:`.cnvrep.bcrop` to returned array. | 16.059628 | 12.853119 | 1.249473 |
global mp_Z_Y1
return np.swapaxes(mp_Z_Y1, 0, self.xstep.cri.axisK+1)[0] | def getcoef(self) | Get final coefficient map array. | 29.463621 | 23.799263 | 1.238006 |
if self.opt['AccurateDFid']:
DX = self.reconstruct()
W = self.dstep.W
S = self.dstep.S
else:
W = mp_W
S = mp_S
Xf = mp_Zf
Df = mp_Df
DX = sl.irfftn(sl.inner(
Df[np.newaxis, ...], Xf, axis=self.xstep.cri.axisM+1),
self.xstep.cri.Nv,
np.array(self.xstep.cri.axisN) + 1)
dfd = (np.linalg.norm(W * (DX - S))**2) / 2.0
rl1 = np.sum(np.abs(self.getcoef()))
obj = dfd + self.xstep.lmbda*rl1
return (obj, dfd, rl1) | def evaluate(self) | Evaluate functional value of previous iteration. | 8.116821 | 7.466968 | 1.08703 |
if self.opt['AutoRho', 'Enabled']:
tau = self.rho_tau
mu = self.rho_mu
xi = self.rho_xi
if k != 0 and cp.mod(k + 1, self.opt['AutoRho', 'Period']) == 0:
if self.opt['AutoRho', 'AutoScaling']:
if s == 0.0 or r == 0.0:
rhomlt = tau
else:
rhomlt = cp.sqrt(r / (s * xi) if r > s * xi
else (s * xi) / r)
if rhomlt > tau:
rhomlt = tau
else:
rhomlt = tau
rsf = 1.0
if r > xi * mu * s:
rsf = rhomlt
elif s > (mu / xi) * r:
rsf = 1.0 / rhomlt
self.rho *= float(rsf)
self.U /= rsf
if rsf != 1.0:
self.rhochange() | def _update_rho(self, k, r, s) | Patched version of :func:`sporco.admm.admm.ADMM.update_rho`. | 4.428314 | 4.151277 | 1.066735 |
self.D = np.asarray(D, dtype=self.dtype) | def setdict(self, D) | Set dictionary array. | 7.052281 | 4.696606 | 1.50157 |
# Compute D^T(D Y - S)
return self.D.T.dot(self.D.dot(self.Y) - self.S) | def eval_grad(self) | Compute gradient in spatial domain for variable Y. | 6.762136 | 5.570749 | 1.213865 |
return np.asarray(sp.prox_l1(V, (self.lmbda / self.L) * self.wl1),
dtype=self.dtype) | def eval_proxop(self, V) | Compute proximal operator of :math:`g`. | 9.144237 | 8.256569 | 1.10751 |
return np.linalg.norm((self.X - self.Yprv).ravel()) | def rsdl(self) | Compute fixed point residual. | 23.807873 | 11.803642 | 2.016994 |
dfd = self.obfn_f()
reg = self.obfn_reg()
obj = dfd + reg[0]
return (obj, dfd) + reg[1:] | def eval_objfn(self) | Compute components of objective function as well as total
contribution to objective function. | 7.992234 | 6.703826 | 1.19219 |
r
if X is None:
X = self.X
return 0.5 * np.linalg.norm((self.D.dot(X) - self.S).ravel())**2 | def obfn_f(self, X=None) | r"""Compute data fidelity term :math:`(1/2) \| D \mathbf{x} -
\mathbf{s} \|_2^2`. | 5.135604 | 3.706573 | 1.38554 |
if X is None:
X = self.X
return self.D.dot(self.X) | def reconstruct(self, X=None) | Reconstruct representation. | 4.728995 | 4.186249 | 1.12965 |
if D is not None:
self.D = np.asarray(D, dtype=self.dtype)
self.Df = sl.rfftn(self.D, self.cri.Nv, self.cri.axisN) | def setdict(self, D=None) | Set dictionary array. | 4.981694 | 4.857226 | 1.025625 |
# Compute D X - S
Ryf = self.eval_Rf(self.Yf)
# Compute D^H Ryf
gradf = np.conj(self.Df) * Ryf
# Multiple channel signal, multiple channel dictionary
if self.cri.Cd > 1:
gradf = np.sum(gradf, axis=self.cri.axisC, keepdims=True)
return gradf | def eval_grad(self) | Compute gradient in Fourier domain. | 11.308169 | 9.464366 | 1.194815 |
return sl.inner(self.Df, Vf, axis=self.cri.axisM) - self.Sf | def eval_Rf(self, Vf) | Evaluate smooth term in Vf. | 24.099583 | 20.431479 | 1.179532 |
return sp.prox_l1(V, (self.lmbda / self.L) * self.wl1) | def eval_proxop(self, V) | Compute proximal operator of :math:`g`. | 12.882721 | 11.722901 | 1.098936 |
dfd = self.obfn_dfd()
reg = self.obfn_reg()
obj = dfd + reg[0]
return (obj, dfd) + reg[1:] | def eval_objfn(self) | Compute components of objective function as well as total
contribution to objective function. | 7.674099 | 6.096067 | 1.258861 |
if X is None:
X = self.X
Xf = sl.rfftn(X, None, self.cri.axisN)
Sf = np.sum(self.Df * Xf, axis=self.cri.axisM)
return sl.irfftn(Sf, self.cri.Nv, self.cri.axisN) | def reconstruct(self, X=None) | Reconstruct representation. | 3.678732 | 3.496037 | 1.052258 |
# Compute D X - S
self.Ryf[:] = self.eval_Rf(self.Yf)
# Map to spatial domain to multiply by mask
Ry = sl.irfftn(self.Ryf, self.cri.Nv, self.cri.axisN)
# Multiply by mask
self.WRy[:] = (self.W**2) * Ry
# Map back to frequency domain
WRyf = sl.rfftn(self.WRy, self.cri.Nv, self.cri.axisN)
gradf = np.conj(self.Df) * WRyf
# Multiple channel signal, multiple channel dictionary
if self.cri.Cd > 1:
gradf = np.sum(gradf, axis=self.cri.axisC, keepdims=True)
return gradf | def eval_grad(self) | Compute gradient in Fourier domain. | 6.267098 | 5.748644 | 1.090187 |
return D.reshape(D.shape[0:dimN] + (Cd,) + (1,) + (M,)) | def stdformD(D, Cd, M, dimN=2) | Reshape dictionary array (`D` in :mod:`.admm.cbpdn` module, `X` in
:mod:`.admm.ccmod` module) to internal standard form.
Parameters
----------
D : array_like
Dictionary array
Cd : int
Size of dictionary channel index
M : int
Number of filters in dictionary
dimN : int, optional (default 2)
Number of problem spatial indices
Returns
-------
Dr : ndarray
Reshaped dictionary array | 6.362753 | 7.093311 | 0.897007 |
r
# Number of dimensions in input array `S`
sdim = cri.dimN + cri.dimC + cri.dimK
if W.ndim < sdim:
if W.size == 1:
# Weight array is a scalar
shpW = (1,) * (cri.dimN + 3)
else:
# Invalid weight array shape
raise ValueError('weight array must be scalar or have at least '
'the same number of dimensions as input array')
elif W.ndim == sdim:
# Weight array has the same number of dimensions as the input array
shpW = W.shape + (1,) * (3 - cri.dimC - cri.dimK)
else:
# Weight array has more dimensions than the input array
if W.ndim == cri.dimN + 3:
# Weight array is already of the appropriate shape
shpW = W.shape
else:
# Assume that the final axis in the input array is the filter
# index
shpW = W.shape[0:-1] + (1,) * (2 - cri.dimC - cri.dimK) + \
W.shape[-1:]
return shpW | def l1Wshape(W, cri) | r"""Get appropriate internal shape (see
:class:`CSC_ConvRepIndexing`) for an :math:`\ell_1` norm weight
array `W`, as in option ``L1Weight`` in
:class:`.admm.cbpdn.ConvBPDN.Options` and related options classes.
The external shape of `W` depends on the external shape of input
data array `S` and the size of the final axis (i.e. the number of
filters) in dictionary array `D`. The internal shape of the
weight array `W` is required to be compatible for multiplication
with the internal sparse representation array `X`. The simplest
criterion for ensuring that the external `W` is compatible with
`S` is to ensure that `W` has shape ``S.shape + D.shape[-1:]``,
except that non-singleton dimensions may be replaced with
singleton dimensions. If `W` has a single additional axis that is
neither a spatial axis nor a filter axis, it is assigned as a
channel or multi-signal axis depending on the corresponding
assignement in `S`.
Parameters
----------
W : array_like
Weight array
cri : :class:`CSC_ConvRepIndexing` object
Object specifying convolutional representation dimensions
Returns
-------
shp : tuple
Appropriate internal weight array shape | 3.388158 | 3.039612 | 1.114668 |
# Number of axes in W available for C and/or K axes
ckdim = W.ndim - cri.dimN
if ckdim >= 2:
# Both C and K axes are present in W
shpW = W.shape + (1,) if ckdim == 2 else W.shape
elif ckdim == 1:
# Exactly one of C or K axes is present in W
if cri.C == 1 and cri.K > 1:
# Input S has a single channel and multiple signals
shpW = W.shape[0:cri.dimN] + (1, W.shape[cri.dimN]) + (1,)
elif cri.C > 1 and cri.K == 1:
# Input S has multiple channels and a single signal
shpW = W.shape[0:cri.dimN] + (W.shape[cri.dimN], 1) + (1,)
else:
# Input S has multiple channels and signals: resolve ambiguity
# by taking extra axis in W as a channel axis
shpW = W.shape[0:cri.dimN] + (W.shape[cri.dimN], 1) + (1,)
else:
# Neither C nor K axis is present in W
shpW = W.shape + (1,) * (3 - ckdim)
return shpW | def mskWshape(W, cri) | Get appropriate internal shape (see
:class:`CSC_ConvRepIndexing` and :class:`CDU_ConvRepIndexing`) for
data fidelity term mask array `W`. The external shape of `W`
depends on the external shape of input data array `S`. The
simplest criterion for ensuring that the external `W` is
compatible with `S` is to ensure that `W` has the same shape as
`S`, except that non-singleton dimensions in `S` may be singleton
dimensions in `W`. If `W` has a single non-spatial axis, it is
assigned as a channel or multi-signal axis depending on the
corresponding assignement in `S`.
Parameters
----------
W : array_like
Data fidelity term weight/mask array
cri : :class:`CSC_ConvRepIndexing` object or :class:`CDU_ConvRepIndexing`\
object
Object specifying convolutional representation dimensions
Returns
-------
shp : tuple
Appropriate internal mask array shape | 3.054755 | 2.822952 | 1.082114 |
vz = v.copy()
if isinstance(dsz[0], tuple):
# Multi-scale dictionary specification
axisN = tuple(range(0, dimN))
m0 = 0 # Initial index of current block of equi-sized filters
# Iterate over distinct filter sizes
for mb in range(0, len(dsz)):
# Determine end index of current block of filters
if isinstance(dsz[mb][0], tuple):
m1 = m0 + dsz[mb][0][-1]
c0 = 0 # Init. idx. of current chnl-block of equi-sized flt.
for cb in range(0, len(dsz[mb])):
c1 = c0 + dsz[mb][cb][-2]
# Construct slice corresponding to cropped part of
# current block of filters in output array and set from
# input array
cbslc = tuple([slice(0, x) for x in dsz[mb][cb][0:dimN]]
) + (slice(c0, c1),) + (Ellipsis,) + \
(slice(m0, m1),)
vz[cbslc] -= np.mean(v[cbslc], axisN)
c0 = c1 # Update initial index for start of next block
else:
m1 = m0 + dsz[mb][-1]
# Construct slice corresponding to cropped part of
# current block of filters in output array and set from
# input array
mbslc = tuple([slice(0, x) for x in dsz[mb][0:-1]]
) + (Ellipsis,) + (slice(m0, m1),)
vz[mbslc] -= np.mean(v[mbslc], axisN)
m0 = m1 # Update initial index for start of next block
else:
# Single scale dictionary specification
axisN = tuple(range(0, dimN))
axnslc = tuple([slice(0, x) for x in dsz[0:dimN]])
vz[axnslc] -= np.mean(v[axnslc], axisN)
return vz | def zeromean(v, dsz, dimN=2) | Subtract mean value from each filter in the input array v. The
`dsz` parameter specifies the support sizes of each filter using the
same format as the `dsz` parameter of :func:`bcrop`. Support sizes
must be taken into account to ensure that the mean values are
computed over the correct number of samples, ignoring the
zero-padded region in which the filter is embedded.
Parameters
----------
v : array_like
Input dictionary array
dsz : tuple
Filter support size(s)
dimN : int, optional (default 2)
Number of spatial dimensions
Returns
-------
vz : ndarray
Dictionary array with filter means subtracted | 2.925233 | 2.752953 | 1.06258 |
r
axisN = tuple(range(0, dimN))
vn = np.sqrt(np.sum(v**2, axisN, keepdims=True))
vn[vn == 0] = 1.0
return np.asarray(v / vn, dtype=v.dtype) | def normalise(v, dimN=2) | r"""Normalise vectors, corresponding to slices along specified number
of initial spatial dimensions of an array, to have unit
:math:`\ell_2` norm. The remaining axes enumerate the distinct
vectors to be normalised.
Parameters
----------
v : array_like
Array with components to be normalised
dimN : int, optional (default 2)
Number of initial dimensions over which norm should be computed
Returns
-------
vnrm : ndarray
Normalised array | 3.829268 | 4.18968 | 0.913976 |
vp = np.zeros(Nv + v.shape[len(Nv):], dtype=v.dtype)
axnslc = tuple([slice(0, x) for x in v.shape])
vp[axnslc] = v
return vp | def zpad(v, Nv) | Zero-pad initial axes of array to specified size. Padding is
applied to the right, top, etc. of the array indices.
Parameters
----------
v : array_like
Array to be padded
Nv : tuple
Sizes to which each of initial indices should be padded
Returns
-------
vp : ndarray
Padded array | 4.871636 | 4.618695 | 1.054765 |
if crp:
def zpadfn(x):
return x
else:
def zpadfn(x):
return zpad(x, Nv)
if zm:
def zmeanfn(x):
return zeromean(x, dsz, dimN)
else:
def zmeanfn(x):
return x
return normalise(zmeanfn(zpadfn(bcrop(x, dsz, dimN))), dimN + dimC) | def Pcn(x, dsz, Nv, dimN=2, dimC=1, crp=False, zm=False) | Constraint set projection for convolutional dictionary update
problem.
Parameters
----------
x : array_like
Input array
dsz : tuple
Filter support size(s), specified using the same format as the `dsz`
parameter of :func:`bcrop`
Nv : tuple
Sizes of problem spatial indices
dimN : int, optional (default 2)
Number of problem spatial indices
dimC : int, optional (default 1)
Number of problem channel indices
crp : bool, optional (default False)
Flag indicating whether the result should be cropped to the support
of the largest filter in the dictionary.
zm : bool, optional (default False)
Flag indicating whether the projection function should include
filter mean subtraction
Returns
-------
y : ndarray
Projection of input onto constraint set | 3.358868 | 3.775939 | 0.889545 |
fncdict = {(False, False): _Pcn,
(False, True): _Pcn_zm,
(True, False): _Pcn_crp,
(True, True): _Pcn_zm_crp}
fnc = fncdict[(crp, zm)]
return functools.partial(fnc, dsz=dsz, Nv=Nv, dimN=dimN, dimC=dimC) | def getPcn(dsz, Nv, dimN=2, dimC=1, crp=False, zm=False) | Construct the constraint set projection function for convolutional
dictionary update problem.
Parameters
----------
dsz : tuple
Filter support size(s), specified using the same format as the `dsz`
parameter of :func:`bcrop`
Nv : tuple
Sizes of problem spatial indices
dimN : int, optional (default 2)
Number of problem spatial indices
dimC : int, optional (default 1)
Number of problem channel indices
crp : bool, optional (default False)
Flag indicating whether the result should be cropped to the support
of the largest filter in the dictionary.
zm : bool, optional (default False)
Flag indicating whether the projection function should include
filter mean subtraction
Returns
-------
fn : function
Constraint set projection function | 2.343852 | 2.847099 | 0.823242 |
return normalise(zpad(bcrop(x, dsz, dimN), Nv), dimN + dimC) | def _Pcn(x, dsz, Nv, dimN=2, dimC=1) | Projection onto dictionary update constraint set: support
projection and normalisation. The result has the full spatial
dimensions of the input.
Parameters
----------
x : array_like
Input array
dsz : tuple
Filter support size(s), specified using the same format as the
`dsz` parameter of :func:`bcrop`
Nv : tuple
Sizes of problem spatial indices
dimN : int, optional (default 2)
Number of problem spatial indices
dimC : int, optional (default 1)
Number of problem channel indices
Returns
-------
y : ndarray
Projection of input onto constraint set | 12.526287 | 15.383444 | 0.814271 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.