code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
# Extract AMS part of ystep argument so that it is not # affected by the main part of the ystep amidx = self.index_addmsk() Yi = self.cbpdn.AX[amidx] + self.cbpdn.U[amidx] # Perform main part of ystep from inner cbpdn object self.inner_ystep() # Apply mask to AMS component and insert into Y from inner # cbpdn object Yi[np.where(self.W.astype(np.bool))] = 0.0 self.cbpdn.Y[amidx] = Yi
def ystep(self)
This method is inserted into the inner cbpdn object, replacing its own ystep method, thereby providing a hook for applying the additional steps necessary for the AMS method.
12.227668
7.712631
1.585408
# Get inner cbpdn object gvar gv = self.inner_obfn_gvar().copy() # Set slice corresponding to the coefficient map of the final # filter (the impulse inserted for the AMS method) to zero so # that it does not affect the results (e.g. l1 norm) computed # from this variable by the inner cbpdn object gv[..., -self.cri.Cd:] = 0 return gv
def obfn_gvar(self)
This method is inserted into the inner cbpdn object, replacing its own obfn_gvar method, thereby providing a hook for applying the additional steps necessary for the AMS method.
21.560003
12.817202
1.682115
Di = np.concatenate((D, sl.atleast_nd(D.ndim, self.imp)), axis=D.ndim-1) self.cbpdn.setdict(Di)
def setdict(self, D=None)
Set dictionary array.
14.124273
13.999721
1.008897
if D is not None: self.D = np.asarray(D, dtype=self.dtype) self.Df = sl.rfftn(self.D, self.cri.Nv, self.cri.axisN) if self.opt['HighMemSolve'] and self.cri.Cd == 1: self.c = sl.solvedbd_sm_c( self.Df, np.conj(self.Df), (self.mu / self.rho) * self.GHGf + 1.0, self.cri.axisM) else: self.c = None
def setdict(self, D=None)
Set dictionary array.
6.535255
6.388721
1.022936
g0v = self.obfn_g0(self.obfn_g0var()) g1v = self.obfn_g1(self.obfn_g1var()) rgr = sl.rfl2norm2(np.sqrt(self.GHGf * np.conj(self.Xf) * self.Xf), self.cri.Nv, self.cri.axisN)/2.0 obj = g0v + self.lmbda*g1v + self.mu*rgr return (obj, g0v, g1v, rgr)
def eval_objfn(self)
Compute components of regularisation function as well as total contribution to objective function.
6.949391
6.396599
1.08642
r return np.sum(np.abs(self.W * self.obfn_g0var()))
def obfn_g0(self, Y0)
r"""Compute :math:`g_0(\mathbf{y}_0)` component of ADMM objective function.
21.162226
17.850582
1.18552
if self.opt['HighMemSolve'] and self.cri.Cd == 1: self.c = sl.solvedbd_sm_c( self.Df, np.conj(self.Df), (self.mu / self.rho) * self.GHGf + 1.0, self.cri.axisM)
def rhochange(self)
Updated cached c array when rho changes.
24.35239
21.617069
1.126535
# Call solve method of inner cbpdn object Xi = self.cbpdn.solve() # Copy attributes from inner cbpdn object self.timer = self.cbpdn.timer self.itstat = self.cbpdn.itstat # Return result of inner cbpdn object return Xi
def solve(self)
Call the solve method of the inner cbpdn object and return the result.
6.022942
3.424233
1.758917
if X is None: X = self.getcoef() Xf = sl.rfftn(X, None, self.cbpdn.cri.axisN) slc = (slice(None),)*self.dimN + \ (slice(self.chncs[b], self.chncs[b+1]),) Sf = np.sum(self.cbpdn.Df[slc] * Xf, axis=self.cbpdn.cri.axisM) return sl.irfftn(Sf, self.cbpdn.cri.Nv, self.cbpdn.cri.axisN)
def reconstruct(self, b, X=None)
Reconstruct representation of signal b in signal set.
4.84065
4.610575
1.049901
# Check that nstnm is an attribute of cls if nstnm in cls.__dict__: # Get the attribute of cls by its name nst = cls.__dict__[nstnm] # Check that the attribute is a class if isinstance(nst, type): # Get the module in which the outer class is defined mdl = sys.modules[cls.__module__] # Construct an extended name by concatenating inner and outer # names extnm = cls.__name__ + nst.__name__ # Allow lookup of the nested class within the module via # its extended name setattr(mdl, extnm, nst) # Change the nested class name to the extended name nst.__name__ = extnm return cls
def _fix_nested_class_lookup(cls, nstnm)
Fix name lookup problem that prevents pickling of classes with nested class definitions. The approach is loosely based on that implemented at https://git.io/viGqU , simplified and modified to work in both Python 2.7 and Python 3.x. Parameters ---------- cls : class Outer class to which fix is to be applied nstnm : string Name of nested (inner) class to be renamed
3.728541
3.550979
1.050004
# Extended name for the class that will be added to the module namespace extnm = '_' + cls.__name__ + '_' + pstfx # Get the module in which the dynamic class is defined mdl = sys.modules[cls.__module__] # Allow lookup of the dynamically generated class within the module via # its extended name setattr(mdl, extnm, cls) # Change the dynamically generated class name to the extended name if hasattr(cls, '__qualname__'): cls.__qualname__ = extnm else: cls.__name__ = extnm
def _fix_dynamic_class_lookup(cls, pstfx)
Fix name lookup problem that prevents pickling of dynamically defined classes. Parameters ---------- cls : class Dynamically generated class to which fix is to be applied pstfx : string Postfix that can be used to identify dynamically generated classes that are equivalent by construction
4.364373
4.472595
0.975803
if fmtmap is None: fmtmap = {} fwdthn = fprec + fwdthdlt # Construct a list specifying the format string for each field. # Use format string from fmtmap if specified, otherwise use # a %d specifier with field width fwdth0 for the first field, # or a %e specifier with field width fwdthn and precision # fprec fldfmt = [fmtmap[lbl] if lbl in fmtmap else (('%%%dd' % (fwdth0)) if idx == 0 else (('%%%d.%de' % (fwdthn, fprec)))) for idx, lbl in enumerate(hdrlbl)] fmtstr = (' ').join(fldfmt) # Construct a list of field widths for each field by extracting # field widths from field format strings cre = re.compile(r'%-?(\d+)') fldwid = [] for fmt in fldfmt: mtch = cre.match(fmt) if mtch is None: raise ValueError("Format string '%s' does not contain field " "width" % fmt) else: fldwid.append(int(mtch.group(1))) # Construct list of field header strings formatted to the # appropriate field width, and join to construct a combined field # header string hdrlst = [('%-*s' % (w, t)) for t, w in zip(hdrlbl, fldwid)] hdrstr = (' ').join(hdrlst) return hdrstr, fmtstr, len(hdrstr)
def solve_status_str(hdrlbl, fmtmap=None, fwdth0=4, fwdthdlt=6, fprec=2)
Construct header and format details for status display of an iterative solver. Parameters ---------- hdrlbl : tuple of strings Tuple of field header strings fmtmap : dict or None, optional (default None) A dict providing a mapping from field header strings to print format strings, providing a mechanism for fields with print formats that depart from the standard format fwdth0 : int, optional (default 4) Number of characters in first field formatted for integers fwdthdlt : int, optional (default 6) The width of fields formatted for floats is the sum of the value of this parameter and the field precision fprec : int, optional (default 2) Precision of fields formatted for floats Returns ------- hdrstr : string Complete header string fmtstr : string Complete print formatting string for numeric values nsep : integer Number of characters in separator string
3.659066
3.41891
1.070244
# Take no action of self.dtype exists and is not None if not hasattr(self, 'dtype') or self.dtype is None: # DataType option overrides explicitly specified data type if opt['DataType'] is None: self.dtype = dtype else: self.dtype = np.dtype(opt['DataType'])
def set_dtype(self, opt, dtype)
Set the `dtype` attribute. If opt['DataType'] has a value other than None, it overrides the `dtype` parameter of this method. No changes are made if the `dtype` attribute already exists and has a value other than 'None'. Parameters ---------- opt : :class:`cdict.ConstrainedDict` object Algorithm options dtype : data-type Data type for working variables (overridden by 'DataType' option)
6.041076
4.819912
1.253358
# If `val` is None and `dval` is not None, replace it with dval if dval is not None and val is None: val = dval # If dtype is not None, assume val is numeric and convert it to # type dtype if dtype is not None and val is not None: if isinstance(dtype, type): val = dtype(val) else: val = dtype.type(val) # Set attribute value depending on reset flag and whether the # attribute exists and is None if reset or not hasattr(self, name) or \ (hasattr(self, name) and getattr(self, name) is None): setattr(self, name, val)
def set_attr(self, name, val, dval=None, dtype=None, reset=False)
Set an object attribute by its name. The attribute value can be specified as a primary value `val`, and as default value 'dval` that will be used if the primary value is None. This arrangement allows an attribute to be set from an entry in an options object, passed as `val`, while specifying a default value to use, passed as `dval` in the event that the options entry is None. Unless `reset` is True, the attribute is only set if it doesn't exist, or if it exists with value None. This arrangement allows for attributes to be set in both base and derived class initialisers, with the derived class value taking preference. Parameters ---------- name : string Attribute name val : any Primary attribute value dval : any Default attribute value in case `val` is None dtype : data-type, optional (default None) If the `dtype` parameter is not None, the attribute `name` is set to `val` (which is assumed to be of numeric type) after conversion to the specified type. reset : bool, optional (default False) Flag indicating whether attribute assignment should be conditional on the attribute not existing or having value None. If False, an attribute value other than None will not be overwritten.
2.847087
2.656147
1.071886
rank = comm.Get_rank() # Id of this process size = comm.Get_size() # Total number of processes in communicator end = 0 # The scan should be done with ints, not floats ranklen = int(arrlen / size) if rank < arrlen % size: ranklen += 1 # Compute upper limit based on the sizes covered by the processes # with less rank end = comm.scan(sendobj=ranklen, op=MPI.SUM) begin = end - ranklen return (begin, end)
def _get_rank_limits(comm, arrlen)
Determine the chunk of the grid that has to be computed per process. The grid has been 'flattened' and has arrlen length. The chunk assigned to each process depends on its rank in the MPI communicator. Parameters ---------- comm : MPI communicator object Describes topology of network: number of processes, rank arrlen : int Number of points in grid search. Returns ------- begin : int Index, with respect to 'flattened' grid, where the chunk for this process starts. end : int Index, with respect to 'flattened' grid, where the chunk for this process ends.
6.298768
7.143213
0.881784
# Open status display fmtstr, nsep = self.display_start() # Start solve timer self.timer.start(['solve', 'solve_wo_func', 'solve_wo_rsdl', 'solve_wo_btrack']) # Main optimisation iterations for self.k in range(self.k, self.k + self.opt['MaxMainIter']): # Update record of X from previous iteration self.store_prev() # Compute backtracking if self.opt['BackTrack', 'Enabled'] and self.k >= 0: self.timer.stop('solve_wo_btrack') # Compute backtracking self.backtracking() self.timer.start('solve_wo_btrack') else: # Compute just proximal step self.proximal_step() # Update by combining previous iterates self.combination_step() # Compute residuals and stopping thresholds self.timer.stop(['solve_wo_rsdl', 'solve_wo_btrack']) if not self.opt['FastSolve']: frcxd, adapt_tol = self.compute_residuals() self.timer.start('solve_wo_rsdl') # Compute and record other iteration statistics and # display iteration stats if Verbose option enabled self.timer.stop(['solve_wo_func', 'solve_wo_rsdl', 'solve_wo_btrack']) if not self.opt['FastSolve']: itst = self.iteration_stats(self.k, frcxd) self.itstat.append(itst) self.display_status(fmtstr, itst) self.timer.start(['solve_wo_func', 'solve_wo_rsdl', 'solve_wo_btrack']) # Call callback function if defined if self.opt['Callback'] is not None: if self.opt['Callback'](self): break # Stop if residual-based stopping tolerances reached if not self.opt['FastSolve']: if frcxd < adapt_tol: break # Increment iteration count self.k += 1 # Record solve time self.timer.stop(['solve', 'solve_wo_func', 'solve_wo_rsdl', 'solve_wo_btrack']) # Print final separator string if Verbose option enabled self.display_end(nsep) return self.getmin()
def solve(self)
Start (or re-start) optimisation. This method implements the framework for the iterations of a FISTA algorithm. There is sufficient flexibility in overriding the component methods that it calls that it is usually not necessary to override this method in derived clases. If option ``Verbose`` is ``True``, the progress of the optimisation is displayed at every iteration. At termination of this method, attribute :attr:`itstat` is a list of tuples representing statistics of each iteration, unless option ``FastSolve`` is ``True`` and option ``Verbose`` is ``False``. Attribute :attr:`timer` is an instance of :class:`.util.Timer` that provides the following labelled timers: ``init``: Time taken for object initialisation by :meth:`__init__` ``solve``: Total time taken by call(s) to :meth:`solve` ``solve_wo_func``: Total time taken by call(s) to :meth:`solve`, excluding time taken to compute functional value and related iteration statistics ``solve_wo_rsdl`` : Total time taken by call(s) to :meth:`solve`, excluding time taken to compute functional value and related iteration statistics as well as time take to compute residuals ``solve_wo_btrack`` : Total time taken by call(s) to :meth:`solve`, excluding time taken to compute functional value and related iteration statistics as well as time take to compute residuals and implemented ``BackTrack`` mechanism
4.200945
3.408813
1.232378
if grad is None: grad = self.eval_grad() V = self.Y - (1. / self.L) * grad self.X = self.eval_proxop(V) return grad
def proximal_step(self, grad=None)
Compute proximal update (gradient descent + regularization).
6.553319
6.237304
1.050665
# Update t step tprv = self.t self.t = 0.5 * float(1. + np.sqrt(1. + 4. * tprv**2)) # Update Y if not self.opt['FastSolve']: self.Yprv = self.Y.copy() self.Y = self.X + ((tprv - 1.) / self.t) * (self.X - self.Xprv)
def combination_step(self)
Build next update by a smart combination of previous updates. (standard FISTA :cite:`beck-2009-fast`).
5.54596
5.047621
1.098727
gradY = self.eval_grad() # Given Y(f), this updates computes gradY(f) maxiter = self.L_maxiter iterBTrack = 0 linesearch = 1 while linesearch and iterBTrack < maxiter: self.proximal_step(gradY) # Given gradY(f), L, this updates X(f) f = self.obfn_f(self.var_x()) Dxy = self.eval_Dxy() Q = self.obfn_f(self.var_y()) + \ self.eval_linear_approx(Dxy, gradY) + \ (self.L / 2.) * np.linalg.norm(Dxy.flatten(), 2)**2 if f <= Q: linesearch = 0 else: self.L *= self.L_gamma_u iterBTrack += 1 self.F = f self.Q = Q self.iterBTrack = iterBTrack # Update auxiliary sequence self.combination_step()
def standard_backtrack(self)
Estimate step size L by computing a linesearch that guarantees that F <= Q according to the standard FISTA backtracking strategy in :cite:`beck-2009-fast`. This also updates variable Y.
6.459764
5.784864
1.116666
self.L *= self.L_gamma_d maxiter = self.L_maxiter iterBTrack = 0 linesearch = 1 self.store_Yprev() while linesearch and iterBTrack < maxiter: t = float(1. + np.sqrt(1. + 4. * self.L * self.Tk)) / (2. * self.L) T = self.Tk + t y = (self.Tk * self.var_xprv() + t * self.ZZ) / T self.update_var_y(y) gradY = self.proximal_step() # Given Y(f), L, this updates X(f) f = self.obfn_f(self.var_x()) Dxy = self.eval_Dxy() Q = self.obfn_f(self.var_y()) + \ self.eval_linear_approx(Dxy, gradY) + \ (self.L / 2.) * np.linalg.norm(Dxy.flatten(), 2)**2 if f <= Q: linesearch = 0 else: self.L *= self.L_gamma_u iterBTrack += 1 self.Tk = T self.ZZ += (t * self.L * (self.var_x() - self.var_y())) self.F = f self.Q = Q self.iterBTrack = iterBTrack
def robust_backtrack(self)
Estimate step size L by computing a linesearch that guarantees that F <= Q according to the robust FISTA backtracking strategy in :cite:`florea-2017-robust`. This also updates all the supporting variables.
5.558023
5.233961
1.061915
r = self.rsdl() adapt_tol = self.opt['RelStopTol'] if self.opt['AutoStop', 'Enabled']: adapt_tol = self.tau0 / (1. + self.k) return r, adapt_tol
def compute_residuals(self)
Compute residuals and stopping thresholds.
11.950301
9.632377
1.240639
dict = {'Itn': 'Iter'} dict.update(cls.hdrval_objfun) dict.update({'Rsdl': 'Rsdl', 'F': 'F_Btrack', 'Q': 'Q_Btrack', 'It_Bt': 'IterBTrack', 'L': 'L'}) return dict
def hdrval(cls)
Construct dictionary mapping display column title to IterationStats entries.
11.914172
11.775415
1.011784
tk = self.timer.elapsed(self.opt['IterTimer']) tpl = (k,) + self.eval_objfn() + \ (frcxd, self.F, self.Q, self.iterBTrack, self.L) + \ self.itstat_extra() + (tk,) return type(self).IterationStats(*tpl)
def iteration_stats(self, k, frcxd)
Construct iteration stats record tuple.
12.796123
10.833296
1.181185
fval = self.obfn_f(self.X) gval = self.obfn_g(self.X) obj = fval + gval return (obj, fval, gval)
def eval_objfn(self)
Compute components of objective function as well as total contribution to objective function.
3.906413
3.385605
1.15383
if gradf is None: gradf = self.eval_grad() self.Vf[:] = self.Yf - (1. / self.L) * gradf V = sl.irfftn(self.Vf, self.cri.Nv, self.cri.axisN) self.X[:] = self.eval_proxop(V) self.Xf = sl.rfftn(self.X, None, self.cri.axisN) return gradf
def proximal_step(self, gradf=None)
Compute proximal update (gradient descent + constraint). Variables are mapped back and forth between input and frequency domains.
5.157978
4.792406
1.076282
# Update t step tprv = self.t self.t = 0.5 * float(1. + np.sqrt(1. + 4. * tprv**2)) # Update Y if not self.opt['FastSolve']: self.Yfprv = self.Yf.copy() self.Yf = self.Xf + ((tprv - 1.) / self.t) * (self.Xf - self.Xfprv)
def combination_step(self)
Update auxiliary state by a smart combination of previous updates in the frequency domain (standard FISTA :cite:`beck-2009-fast`).
6.152603
5.671999
1.084733
r return np.sum(np.real(np.conj(Dxy) * gradY))
def eval_linear_approx(self, Dxy, gradY)
r"""Compute term :math:`\langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle` (in frequency domain) that is part of the quadratic function :math:`Q_L` used for backtracking. Since this class computes the backtracking in the DFT, it is important to preserve the DFT scaling.
9.453895
7.436784
1.271234
r = np.asarray(vref, dtype=np.float64).ravel() c = np.asarray(vcmp, dtype=np.float64).ravel() return np.mean(np.abs(r - c)**2)
def mse(vref, vcmp)
Compute Mean Squared Error (MSE) between two images. Parameters ---------- vref : array_like Reference image vcmp : array_like Comparison image Returns ------- x : float MSE between `vref` and `vcmp`
2.358032
2.491932
0.946267
dv = np.var(vref) with np.errstate(divide='ignore'): rt = dv / mse(vref, vcmp) return 10.0 * np.log10(rt)
def snr(vref, vcmp)
Compute Signal to Noise Ratio (SNR) of two images. Parameters ---------- vref : array_like Reference image vcmp : array_like Comparison image Returns ------- x : float SNR of `vcmp` with respect to `vref`
4.513562
5.886715
0.766737
if rng is None: rng = vref.max() - vref.min() dv = (rng + 0.0)**2 with np.errstate(divide='ignore'): rt = dv / mse(vref, vcmp) return 10.0 * np.log10(rt)
def psnr(vref, vcmp, rng=None)
Compute Peak Signal to Noise Ratio (PSNR) of two images. The PSNR calculation defaults to using the less common definition in terms of the actual range (i.e. max minus min) of the reference signal instead of the maximum possible range for the data type (i.e. :math:`2^b-1` for a :math:`b` bit representation). Parameters ---------- vref : array_like Reference image vcmp : array_like Comparison image rng : None or int, optional (default None) Signal range, either the value to use (e.g. 255 for 8 bit samples) or None, in which case the actual range of the reference signal is used Returns ------- x : float PSNR of `vcmp` with respect to `vref`
3.906975
4.410536
0.885828
msedeg = mse(vref, vdeg) mserst = mse(vref, vrst) with np.errstate(divide='ignore'): rt = msedeg / mserst return 10.0 * np.log10(rt)
def isnr(vref, vdeg, vrst)
Compute Improvement Signal to Noise Ratio (ISNR) for reference, degraded, and restored images. Parameters ---------- vref : array_like Reference image vdeg : array_like Degraded image vrst : array_like Restored image Returns ------- x : float ISNR of `vrst` with respect to `vref` and `vdeg`
3.357614
3.987182
0.842102
blrvar = np.var(vblr) nsevar = np.var(vnsy - vblr) with np.errstate(divide='ignore'): rt = blrvar / nsevar return 10.0 * np.log10(rt)
def bsnr(vblr, vnsy)
Compute Blurred Signal to Noise Ratio (BSNR) for a blurred and noisy image. Parameters ---------- vblr : array_like Blurred noise free image vnsy : array_like Blurred image with additive noise Returns ------- x : float BSNR of `vnsy` with respect to `vblr` and `vdeg`
4.302083
4.584685
0.93836
# Calculate difference, promoting to float if vref and vcmp have integer # dtype emap = np.asarray(vref, dtype=np.float64) - \ np.asarray(vcmp, dtype=np.float64) # Input images in reference code on which this implementation is # based are assumed to be on range [0,...,255]. if rescale: emap *= (255.0 / vref.max()) sigma = 0.8 herr = ndimage.filters.gaussian_filter(emap, sigma) score = np.mean(herr**2) return score
def pamse(vref, vcmp, rescale=True)
Compute Perceptual-fidelity Aware Mean Squared Error (PAMSE) IQA metric :cite:`xue-2013-perceptual`. This implementation is a translation of the reference Matlab implementation provided by the authors of :cite:`xue-2013-perceptual`. Parameters ---------- vref : array_like Reference image vcmp : array_like Comparison image rescale : bool, optional (default True) Rescale inputs so that `vref` has a maximum value of 255, as assumed by reference implementation Returns ------- score : float PAMSE IQA metric
5.663913
5.489201
1.031828
# Input images in reference code on which this implementation is # based are assumed to be on range [0,...,255]. if rescale: scl = (255.0 / vref.max()) else: scl = np.float32(1.0) T = 170.0 dwn = 2 dx = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]]) / 3.0 dy = dx.T ukrn = np.ones((2, 2)) / 4.0 aveY1 = signal.convolve2d(scl * vref, ukrn, mode='same', boundary='symm') aveY2 = signal.convolve2d(scl * vcmp, ukrn, mode='same', boundary='symm') Y1 = aveY1[0::dwn, 0::dwn] Y2 = aveY2[0::dwn, 0::dwn] IxY1 = signal.convolve2d(Y1, dx, mode='same', boundary='symm') IyY1 = signal.convolve2d(Y1, dy, mode='same', boundary='symm') grdMap1 = np.sqrt(IxY1**2 + IyY1**2) IxY2 = signal.convolve2d(Y2, dx, mode='same', boundary='symm') IyY2 = signal.convolve2d(Y2, dy, mode='same', boundary='symm') grdMap2 = np.sqrt(IxY2**2 + IyY2**2) quality_map = (2*grdMap1*grdMap2 + T) / (grdMap1**2 + grdMap2**2 + T) score = np.std(quality_map) if returnMap: return (score, quality_map) else: return score
def gmsd(vref, vcmp, rescale=True, returnMap=False)
Compute Gradient Magnitude Similarity Deviation (GMSD) IQA metric :cite:`xue-2014-gradient`. This implementation is a translation of the reference Matlab implementation provided by the authors of :cite:`xue-2014-gradient`. Parameters ---------- vref : array_like Reference image vcmp : array_like Comparison image rescale : bool, optional (default True) Rescale inputs so that `vref` has a maximum value of 255, as assumed by reference implementation returnMap : bool, optional (default False) Flag indicating whether quality map should be returned in addition to scalar score Returns ------- score : float GMSD IQA metric quality_map : ndarray Quality map
2.369661
2.285211
1.036955
# Extract method selection argument or set default if 'method' in kwargs: method = kwargs['method'] del kwargs['method'] else: method = 'cns' # Assign base class depending on method selection argument if method == 'ism': base = ConvCnstrMODMaskDcpl_IterSM elif method == 'cg': base = ConvCnstrMODMaskDcpl_CG elif method == 'cns': base = ConvCnstrMODMaskDcpl_Consensus else: raise ValueError('Unknown ConvCnstrMODMaskDcpl solver method %s' % method) # Nested class with dynamically determined inheritance class ConvCnstrMODMaskDcpl(base): def __init__(self, *args, **kwargs): super(ConvCnstrMODMaskDcpl, self).__init__(*args, **kwargs) # Allow pickling of objects of type ConvCnstrMODMaskDcpl _fix_dynamic_class_lookup(ConvCnstrMODMaskDcpl, method) # Return object of the nested class type return ConvCnstrMODMaskDcpl(*args, **kwargs)
def ConvCnstrMODMaskDcpl(*args, **kwargs)
A wrapper function that dynamically defines a class derived from one of the implementations of the Convolutional Constrained MOD with Mask Decoupling problems, and returns an object instantiated with the provided. parameters. The wrapper is designed to allow the appropriate object to be created by calling this function using the same syntax as would be used if it were a class. The specific implementation is selected by use of an additional keyword argument 'method'. Valid values are: - ``'ism'`` : Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_IterSM`. This method works well for a small number of training images, but is very slow for larger training sets. - ``'cg'`` : Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_CG`. This method is slower than ``'ism'`` for small training sets, but has better run time scaling as the training set grows. - ``'cns'`` : Use the implementation defined in :class:`.ConvCnstrMODMaskDcpl_Consensus`. This method is the best choice for large training sets. The default value is ``'cns'``.
3.524389
2.565576
1.373722
# Assign base class depending on method selection argument if method == 'ism': base = ConvCnstrMODMaskDcpl_IterSM.Options elif method == 'cg': base = ConvCnstrMODMaskDcpl_CG.Options elif method == 'cns': base = ConvCnstrMODMaskDcpl_Consensus.Options else: raise ValueError('Unknown ConvCnstrMODMaskDcpl solver method %s' % method) # Nested class with dynamically determined inheritance class ConvCnstrMODMaskDcplOptions(base): def __init__(self, opt): super(ConvCnstrMODMaskDcplOptions, self).__init__(opt) # Allow pickling of objects of type ConvCnstrMODMaskDcplOptions _fix_dynamic_class_lookup(ConvCnstrMODMaskDcplOptions, method) # Return object of the nested class type return ConvCnstrMODMaskDcplOptions(opt)
def ConvCnstrMODMaskDcplOptions(opt=None, method='cns')
A wrapper function that dynamically defines a class derived from the Options class associated with one of the implementations of the Convolutional Constrained MOD with Mask Decoupling problem, and returns an object instantiated with the provided parameters. The wrapper is designed to allow the appropriate object to be created by calling this function using the same syntax as would be used if it were a class. The specific implementation is selected by use of an additional keyword argument 'method'. Valid values are as specified in the documentation for :func:`ConvCnstrMODMaskDcpl`.
3.765089
3.562943
1.056736
if self.opt['Y0'] is None: return np.zeros(ushape, dtype=self.dtype) else: # If initial Y is non-zero, initial U is chosen so that # the relevant dual optimality criterion (see (3.10) in # boyd-2010-distributed) is satisfied. Ub0 = (self.W**2) * self.block_sep0(self.Y) / self.rho Ub1 = self.block_sep1(self.Y) return self.block_cat(Ub0, Ub1)
def uinit(self, ushape)
Return initialiser for working variable U
7.614602
7.113163
1.070494
r if self.opt['LinSolveCheck']: Zop = lambda x: sl.inner(self.Zf, x, axis=self.cri.axisM) ZHop = lambda x: sl.inner(np.conj(self.Zf), x, axis=self.cri.axisK) ax = ZHop(Zop(self.Xf)) + self.Xf self.xrrs = sl.rrs(ax, b) else: self.xrrs = None
def xstep_check(self, b)
r"""Check the minimisation of the Augmented Lagrangian with respect to :math:`\mathbf{x}` by method `xstep` defined in derived classes. This method should be called at the end of any `xstep` method.
8.155298
8.05528
1.012417
r AXU = self.AX + self.U Y0 = (self.rho*(self.block_sep0(AXU) - self.S)) / (self.W**2 + self.rho) Y1 = self.Pcn(self.block_sep1(AXU)) self.Y = self.block_cat(Y0, Y1)
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
11.955232
10.629848
1.124685
self.AXnr = self.cnst_A(self.X, self.Xf) if self.rlx == 1.0: self.AX = self.AXnr else: alpha = self.rlx self.AX = alpha*self.AXnr + (1-alpha)*self.block_cat( self.var_y0() + self.S, self.var_y1())
def relax_AX(self)
Implement relaxation if option ``RelaxParam`` != 1.0.
7.152822
6.593637
1.084807
r return np.swapaxes( Y[(slice(None),)*self.blkaxis + (slice(0, self.blkidx),)], self.cri.axisK, self.cri.axisM)
def block_sep0(self, Y)
r"""Separate variable into component corresponding to :math:`\mathbf{y}_0` in :math:`\mathbf{y}\;\;`. The method from parent class :class:`.ADMMTwoBlockCnstrnt` is overridden here to allow swapping of K (multi-image) and M (filter) axes in block 0 so that it can be concatenated on axis M with block 1. This is necessary because block 0 has the dimensions of S while block 1 has the dimensions of D. Handling of multi-channel signals substantially complicate this issue. There are two multi-channel cases: multi-channel dictionary and signal (Cd = C > 1), and single-channel dictionary with multi-channel signal (Cd = 1, C > 1). In the former case, S and D shapes are (N x C x K x 1) and (N x C x 1 x M) respectively. In the latter case, :meth:`.__init__` has already taken care of combining C (multi-channel) and K (multi-image) axes in S, so the S and D shapes are (N x 1 x C K x 1) and (N x 1 x 1 x M) respectively.
12.225887
11.334359
1.078657
r return np.concatenate((np.swapaxes(Y0, self.cri.axisK, self.cri.axisM), Y1), axis=self.blkaxis)
def block_cat(self, Y0, Y1)
r"""Concatenate components corresponding to :math:`\mathbf{y}_0` and :math:`\mathbf{y}_1` to form :math:`\mathbf{y}\;\;`. The method from parent class :class:`.ADMMTwoBlockCnstrnt` is overridden here to allow swapping of K (multi-image) and M (filter) axes in block 0 so that it can be concatenated on axis M with block 1. This is necessary because block 0 has the dimensions of S while block 1 has the dimensions of D. Handling of multi-channel signals substantially complicate this issue. There are two multi-channel cases: multi-channel dictionary and signal (Cd = C > 1), and single-channel dictionary with multi-channel signal (Cd = 1, C > 1). In the former case, S and D shapes are (N x C x K x 1) and (N x C x 1 x M) respectively. In the latter case, :meth:`.__init__` has already taken care of combining C (multi-channel) and K (multi-image) axes in S, so the S and D shapes are (N x 1 x C K x 1) and (N x 1 x 1 x M) respectively.
12.573731
9.642084
1.304047
r # This calculation involves non-negligible computational cost. It # should be possible to disable relevant diagnostic information # (dual residual) to avoid this cost. Y0f = sl.rfftn(Y0, None, self.cri.axisN) return sl.irfftn(sl.inner(np.conj(self.Zf), Y0f, axis=self.cri.axisK), self.cri.Nv, self.cri.axisN)
def cnst_A0T(self, Y0)
r"""Compute :math:`A_0^T \mathbf{y}_0` component of :math:`A^T \mathbf{y}` (see :meth:`.ADMMTwoBlockCnstrnt.cnst_AT`).
9.822392
9.259719
1.060766
dfd = self.obfn_g0(self.obfn_g0var()) cns = self.obfn_g1(self.obfn_g1var()) return (dfd, cns)
def eval_objfn(self)
Compute components of regularisation function as well as total contribution to objective function.
7.549992
6.788647
1.11215
r return np.linalg.norm((self.Pcn(Y1) - Y1))
def obfn_g1(self, Y1)
r"""Compute :math:`g_1(\mathbf{y_1})` component of ADMM objective function.
20.126724
18.154442
1.108639
return self.rho*np.linalg.norm(self.cnst_AT(self.U))
def rsdl_s(self, Yprev, Y)
Compute dual residual vector.
21.36132
18.776247
1.137678
r self.YU[:] = self.Y - self.U self.block_sep0(self.YU)[:] += self.S YUf = sl.rfftn(self.YU, None, self.cri.axisN) b = sl.inner(np.conj(self.Zf), self.block_sep0(YUf), axis=self.cri.axisK) + self.block_sep1(YUf) self.Xf[:] = sl.solvemdbi_ism(self.Zf, 1.0, b, self.cri.axisM, self.cri.axisK) self.X = sl.irfftn(self.Xf, self.cri.Nv, self.cri.axisN) self.xstep_check(b)
def xstep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`.
6.254999
5.856908
1.067969
super(ConvCnstrMODMaskDcpl_Consensus, self).relax_AX() self.AX1nr = sl.irfftn(sl.inner(self.Zf, self.swapaxes(self.Xf), axis=self.cri.axisM), self.cri.Nv, self.cri.axisN) if self.rlx == 1.0: self.AX1 = self.AX1nr else: alpha = self.rlx self.AX1 = alpha*self.AX1nr + (1-alpha)*(self.Y1 + self.S)
def relax_AX(self)
The parent class method that this method overrides only implements the relaxation step for the variables of the baseline consensus algorithm. This method calls the overridden method and then implements the relaxation step for the additional variables required for the mask decoupling modification to the baseline algorithm.
8.452846
7.280375
1.161045
self.YU1[:] = self.Y1 - self.U1 self.ZSf = np.conj(self.Zf) * (self.Sf + sl.rfftn( self.YU1, None, self.cri.axisN)) rho = self.rho self.rho = 1.0 super(ConvCnstrMODMaskDcpl_Consensus, self).xstep() self.rho = rho
def xstep(self)
The xstep of the baseline consensus class from which this class is derived is re-used to implement the xstep of the modified algorithm by replacing ``self.ZSf``, which is constant in the baseline algorithm, with a quantity derived from the additional variables ``self.Y1`` and ``self.U1``. It is also necessary to set the penalty parameter to unity for the duration of the x step.
14.0013
7.814492
1.791709
super(ConvCnstrMODMaskDcpl_Consensus, self).ystep() AXU1 = self.AX1 + self.U1 self.Y1 = self.rho*(AXU1 - self.S) / (self.W**2 + self.rho)
def ystep(self)
The parent class ystep method is overridden to allow also performing the ystep for the additional variables introduced in the modification to the baseline algorithm.
19.719498
16.462637
1.197833
super(ConvCnstrMODMaskDcpl_Consensus, self).ustep() self.U1 += self.AX1 - self.Y1 - self.S
def ustep(self)
The parent class ystep method is overridden to allow also performing the ystep for the additional variables introduced in the modification to the baseline algorithm.
35.940769
34.290634
1.048122
r Ef = sl.inner(self.Zf, self.obfn_fvarf(), axis=self.cri.axisM) \ - self.Sf return (np.linalg.norm(self.W * sl.irfftn(Ef, self.cri.Nv, self.cri.axisN))**2) / 2.0
def obfn_dfd(self)
r"""Compute data fidelity term :math:`(1/2) \| W \left( \sum_m \mathbf{d}_m * \mathbf{x}_m - \mathbf{s} \right) \|_2^2`.
12.523978
12.950996
0.967028
# The full primary residual is straightforward to compute from # the primary residuals for the baseline algorithm and for the # additional variables r0 = self.rsdl_r(self.AXnr, self.Y) r1 = self.AX1nr - self.Y1 - self.S r = np.sqrt(np.sum(r0**2) + np.sum(r1**2)) # The full dual residual is more complicated to compute than the # full primary residual ATU = self.swapaxes(self.U) + sl.irfftn( np.conj(self.Zf) * sl.rfftn(self.U1, self.cri.Nv, self.cri.axisN), self.cri.Nv, self.cri.axisN) s = self.rho * np.linalg.norm(ATU) # The normalisation factor for the full primal residual is also not # straightforward nAX = np.sqrt(np.linalg.norm(self.AXnr)**2 + np.linalg.norm(self.AX1nr)**2) nY = np.sqrt(np.linalg.norm(self.Y)**2 + np.linalg.norm(self.Y1)**2) rn = max(nAX, nY, np.linalg.norm(self.S)) # The normalisation factor for the full dual residual is # straightforward to compute sn = self.rho * np.sqrt(np.linalg.norm(self.U)**2 + np.linalg.norm(self.U1)**2) # Final residual values and stopping tolerances depend on # whether standard or normalised residuals are specified via the # options object if self.opt['AutoRho', 'StdResiduals']: epri = np.sqrt(self.Nc)*self.opt['AbsStopTol'] + \ rn*self.opt['RelStopTol'] edua = np.sqrt(self.Nx)*self.opt['AbsStopTol'] + \ sn*self.opt['RelStopTol'] else: if rn == 0.0: rn = 1.0 if sn == 0.0: sn = 1.0 r /= rn s /= sn epri = np.sqrt(self.Nc)*self.opt['AbsStopTol']/rn + \ self.opt['RelStopTol'] edua = np.sqrt(self.Nx)*self.opt['AbsStopTol']/sn + \ self.opt['RelStopTol'] return r, s, epri, edua
def compute_residuals(self)
Compute residuals and stopping thresholds. The parent class method is overridden to ensure that the residual calculations include the additional variables introduced in the modification to the baseline algorithm.
3.894473
3.692116
1.054808
super(RobustPCA, self).solve() return self.X, self.Y
def solve(self)
Start (or re-start) optimisation.
15.100923
12.232013
1.234541
r self.X, self.ss = sp.prox_nuclear(self.S - self.Y - self.U, 1/self.rho)
def xstep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`.
26.283745
18.246349
1.440493
r self.Y = np.asarray(sp.prox_l1(self.S - self.AX - self.U, self.lmbda/self.rho), dtype=self.dtype)
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
16.272482
11.890792
1.368494
if self.opt['fEvalX']: return self.X else: return self.cnst_c() - self.cnst_B(self.Y)
def obfn_fvar(self)
Variable to be evaluated in computing regularisation term, depending on 'fEvalX' option value.
14.122071
7.300998
1.934266
if self.opt['fEvalX']: rnn = np.sum(self.ss) else: rnn = sp.norm_nuclear(self.obfn_fvar()) rl1 = np.sum(np.abs(self.obfn_gvar())) cns = np.linalg.norm(self.X + self.Y - self.S) obj = rnn + self.lmbda*rl1 return (obj, rnn, rl1, cns)
def eval_objfn(self)
Compute components of objective function as well as total contribution to objective function.
8.285515
7.579284
1.093179
vn = np.sqrt(np.sum(v**2, 0)) vn[vn == 0] = 1.0 return np.asarray(v / vn, dtype=v.dtype)
def normalise(v)
Normalise columns of matrix. Parameters ---------- v : array_like Array with columns to be normalised Returns ------- vnrm : ndarray Normalised array
3.470863
4.154955
0.835355
self.Z = np.asarray(Z, dtype=self.dtype) self.SZT = self.S.dot(Z.T) # Factorise dictionary for efficient solves self.lu, self.piv = sl.lu_factor(Z, self.rho) self.lu = np.asarray(self.lu, dtype=self.dtype)
def setcoef(self, Z)
Set coefficient array.
6.670438
6.222125
1.072051
r self.X = np.asarray(sl.lu_solve_AATI(self.Z, self.rho, self.SZT + self.rho*(self.Y - self.U), self.lu, self.piv,), dtype=self.dtype)
def xstep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`.
20.295996
15.869741
1.278912
self.lu, self.piv = sl.lu_factor(self.Z, self.rho) self.lu = np.asarray(self.lu, dtype=self.dtype)
def rhochange(self)
Re-factorise matrix when rho changes
6.706736
4.853309
1.381889
@functools.wraps(func) def wrapped(*args, **kwargs): args = list(args) for n, a in enumerate(args): if isinstance(a, np.ndarray): args[n] = cp.asarray(a) for k, v in kwargs.items(): if isinstance(v, np.ndarray): kwargs[k] = cp.asarray(v) rtn = func(*args, **kwargs) if isinstance(rtn, (list, tuple)): for n, a in enumerate(rtn): if isinstance(a, cp.core.core.ndarray): rtn[n] = cp.asnumpy(a) else: if isinstance(rtn, cp.core.core.ndarray): rtn = cp.asnumpy(rtn) return rtn return wrapped
def cupy_wrapper(func)
A wrapper function that converts numpy ndarray arguments to cupy arrays, and convert any cupy arrays returned by the wrapped function into numpy ndarrays.
1.500666
1.450309
1.034722
# Convert int axis into a tuple if isinstance(axis, int): axis = (axis,) # Handle negative axis indices axis = tuple([k if k >= 0 else x.ndim + k for k in axis]) # Complement of axis set on full set of axes of input v caxis = tuple(set(range(x.ndim)) - set(axis)) # Permute axes of x (generalised transpose) so that axes over # which operation is to be applied are all at the end prm = caxis + axis xt = np.transpose(x, axes=prm) xts = xt.shape # Reshape into a 2D array with the axes specified by the axis # parameter flattened into an index along rows, and the remaining # axes flattened into an index aalong the columns xtr = xt.reshape((np.product(xts[0:len(caxis)]), -1)) # Return reshaped array and a tuple containing the information # necessary to undo the entire operation return xtr, (xts, prm)
def ndto2d(x, axis=-1)
Convert a multi-dimensional array into a 2d array, with the axes specified by the `axis` parameter flattened into an index along rows, and the remaining axes flattened into an index along the columns. This operation can not be properly achieved by a simple reshape operation since a reshape would shuffle element order if the axes to be grouped together were not consecutive: this is avoided by first permuting the axes so that the grouped axes are consecutive. Parameters ---------- x : array_like Multi-dimensional input array axis : int or tuple of ints, optional (default -1) Axes of `x` to be grouped together to form the rows of the output 2d array. Returns ------- xtr : ndarray 2D output array rsi : tuple A tuple containing the details of transformation applied in the conversion to 2D
6.075932
4.691793
1.295013
# Extract components of conversion information tuple xts = rsi[0] prm = rsi[1] # Reshape x to the shape obtained after permuting axes in ndto2d xt = xtr.reshape(xts) # Undo axis permutation performed in ndto2d x = np.transpose(xt, np.argsort(prm)) # Return array with shape corresponding to that of the input to ndto2d return x
def ndfrom2d(xtr, rsi)
Undo the array shape conversion applied by :func:`ndto2d`, returning the input 2D array to its original shape. Parameters ---------- xtr : array_like Two-dimensional input array rsi : tuple A tuple containing the shape of the axis-permuted array and the permutation order applied in :func:`ndto2d`. Returns ------- x : ndarray Multi-dimensional output array
8.286704
6.52033
1.270903
r AXU = self.AX + self.U self.Y[..., 0:-1] = sp.prox_l2(AXU[..., 0:-1], self.mu/self.rho) self.Y[..., -1] = sp.prox_l1(AXU[..., -1], (self.lmbda/self.rho) * self.Wl1)
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
7.71509
6.738295
1.144962
rl1 = np.linalg.norm((self.Wl1 * self.obfn_g1var()).ravel(), 1) rtv = np.sum(np.sqrt(np.sum(self.obfn_g0var()**2, axis=-1))) return (self.lmbda*rl1 + self.mu*rtv, rl1, rtv)
def obfn_reg(self)
Compute regularisation term and contribution to objective function.
6.693721
5.717762
1.170689
r if Xf is None: Xf = sl.rfftn(X, axes=self.cri.axisN) return self.Wtv[..., np.newaxis] * sl.irfftn( self.Gf * Xf[..., np.newaxis], self.cri.Nv, axes=self.cri.axisN)
def cnst_A0(self, X, Xf=None)
r"""Compute :math:`A_0 \mathbf{x}` component of ADMM problem constraint. In this case :math:`A_0 \mathbf{x} = (\Gamma_0^T \;\; \Gamma_1^T \;\; \ldots )^T \mathbf{x}`.
6.154924
5.979457
1.029345
r return np.concatenate((self.cnst_A0(X, Xf), self.cnst_A1(X)), axis=-1)
def cnst_A(self, X, Xf=None)
r"""Compute :math:`A \mathbf{x}` component of ADMM problem constraint. In this case :math:`A \mathbf{x} = (\Gamma_0^T \;\; \Gamma_1^T \;\; \ldots \;\; I)^T \mathbf{x}`.
6.685651
7.274501
0.919053
r return np.sum(self.cnst_A0T(X), axis=-1) + self.cnst_A1T(X)
def cnst_AT(self, X)
r"""Compute :math:`A^T \mathbf{x}` where :math:`A \mathbf{x}` is a component of ADMM problem constraint. In this case :math:`A^T \mathbf{x} = (\Gamma_0^T \;\; \Gamma_1^T \;\; \ldots \;\; I) \mathbf{x}`.
7.844149
7.456191
1.052032
# We need to keep the non-relaxed version of AX since it is # required for computation of primal residual r self.AXnr = self.cnst_A(self.X, self.Xf) if self.rlx == 1.0: # If RelaxParam option is 1.0 there is no relaxation self.AX = self.AXnr else: # Avoid calling cnst_c() more than once in case it is expensive # (e.g. due to allocation of a large block of memory) if not hasattr(self, '_cnst_c'): self._cnst_c = self.cnst_c() # Compute relaxed version of AX alpha = self.rlx self.AX = alpha*self.AXnr - (1-alpha)*(self.cnst_B(self.Y) - self._cnst_c)
def relax_AX(self)
Implement relaxation if option ``RelaxParam`` != 1.0.
5.636659
5.013283
1.124345
if D is not None: self.D = np.asarray(D, dtype=self.dtype) self.Df = sl.rfftn(self.D, self.cri.Nv, self.cri.axisN) self.GDf = self.Gf * (self.Wtv * self.Df)[..., np.newaxis] # Compute D^H S self.DSf = np.conj(self.Df) * self.Sf if self.cri.Cd > 1: self.DSf = np.sum(self.DSf, axis=self.cri.axisC, keepdims=True)
def setdict(self, D=None)
Set dictionary array.
4.428289
4.414048
1.003226
Y1 = Y[..., self.cri.M:] # If cri.Cd > 1 (multi-channel dictionary), we need to undo the # reshape performed in block_cat if self.cri.Cd > 1: shp = list(Y1.shape) shp[self.cri.axisM] = self.cri.dimN shp[self.cri.axisC] = self.cri.Cd Y1 = Y1.reshape(shp) # Axes are swapped here for similar reasons to those # motivating swapping in cbpdn.ConvTwoBlockCnstrnt.block_sep0 Y1 = np.swapaxes(Y1[..., np.newaxis], self.cri.axisM, -1) return Y1
def block_sep1(self, Y)
Separate variable into component corresponding to Y1 in Y.
7.185776
6.920424
1.038343
# Axes are swapped here for similar reasons to those # motivating swapping in cbpdn.ConvTwoBlockCnstrnt.block_cat Y1sa = np.swapaxes(Y1, self.cri.axisM, -1)[..., 0] # If cri.Cd > 1 (multi-channel dictionary) Y0 has a singleton # channel axis but Y1 has a non-singleton channel axis. To make # it possible to concatenate Y0 and Y1, we reshape Y1 by a # partial ravel of axisM and axisC onto axisM. if self.cri.Cd > 1: shp = list(Y1sa.shape) shp[self.cri.axisM] *= shp[self.cri.axisC] shp[self.cri.axisC] = 1 Y1sa = Y1sa.reshape(shp) return np.concatenate((Y0, Y1sa), axis=self.cri.axisM)
def block_cat(self, Y0, Y1)
Concatenate components corresponding to Y0 and Y1 blocks into Y.
6.200484
6.289706
0.985815
r AXU = self.AX + self.U self.block_sep0(self.Y)[:] = sp.prox_l1( self.block_sep0(AXU), (self.lmbda/self.rho) * self.Wl1) self.block_sep1(self.Y)[:] = sp.prox_l2( self.block_sep1(AXU), self.mu/self.rho, axis=(self.cri.axisC, -1))
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
8.49893
7.674831
1.107377
# Use of self.block_sep0(self.AXnr) instead of self.cnst_A0(self.X) # reduces number of calls to self.cnst_A0 return self.var_y0() if self.opt['gEvalY'] else \ self.block_sep0(self.AXnr)
def obfn_g0var(self)
Variable to be evaluated in computing the TV regularisation term, depending on the ``gEvalY`` option value.
15.614508
11.347817
1.375992
r # Use of self.block_sep1(self.AXnr) instead of self.cnst_A1(self.X) # reduces number of calls to self.cnst_A0 return self.var_y1() if self.opt['gEvalY'] else \ self.block_sep1(self.AXnr)
def obfn_g1var(self)
r"""Variable to be evaluated in computing the :math:`\ell_1` regularisation term, depending on the ``gEvalY`` option value.
19.168615
14.12709
1.356869
r if Xf is None: Xf = sl.rfftn(X, axes=self.cri.axisN) return sl.irfftn(sl.inner( self.GDf, Xf[..., np.newaxis], axis=self.cri.axisM), self.cri.Nv, self.cri.axisN)
def cnst_A1(self, X, Xf=None)
r"""Compute :math:`A_1 \mathbf{x}` component of ADMM problem constraint. In this case :math:`A_1 \mathbf{x} = (\Gamma_0^T \;\; \Gamma_1^T \;\; \ldots )^T \mathbf{x}`.
6.114775
5.646993
1.082837
r Y1f = sl.rfftn(Y1, None, axes=self.cri.axisN) return sl.irfftn(np.conj(self.GDf) * Y1f, self.cri.Nv, self.cri.axisN)
def cnst_A1T(self, Y1)
r"""Compute :math:`A_1^T \mathbf{y}_1` component of :math:`A^T \mathbf{y}`. In this case :math:`A_1^T \mathbf{y}_1 = (\Gamma_0^T \;\; \Gamma_1^T \;\; \ldots) \mathbf{y}_1`.
7.094579
7.301353
0.97168
r return self.cnst_A0T(self.block_sep0(Y)) + \ np.sum(self.cnst_A1T(self.block_sep1(Y)), axis=-1)
def cnst_AT(self, Y)
r"""Compute :math:`A^T \mathbf{y}`. In this case :math:`A^T \mathbf{y} = (I \;\; \Gamma_0^T \;\; \Gamma_1^T \;\; \ldots) \mathbf{y}`.
7.278774
6.485399
1.122333
self.D = np.asarray(D, dtype=self.dtype) self.DTS = self.D.T.dot(self.S) # Factorise dictionary for efficient solves self.lu, self.piv = sl.cho_factor(self.D, self.rho) self.lu = np.asarray(self.lu, dtype=self.dtype)
def setdict(self, D)
Set dictionary array.
5.44842
5.121305
1.063873
r self.X = np.asarray(sl.cho_solve_ATAI( self.D, self.rho, self.DTS + self.rho * (self.Y - self.U), self.lu, self.piv), dtype=self.dtype) if self.opt['LinSolveCheck']: b = self.DTS + self.rho * (self.Y - self.U) ax = self.D.T.dot(self.D.dot(self.X)) + self.rho*self.X self.xrrs = sl.rrs(ax, b) else: self.xrrs = None
def xstep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`.
6.5609
5.928817
1.106612
r return 0.5*np.linalg.norm((self.D.dot(self.obfn_fvar()) - self.S))**2
def obfn_dfd(self)
r"""Compute data fidelity term :math:`(1/2) \| D \mathbf{x} - \mathbf{s} \|_2^2`.
14.818292
9.643889
1.536547
self.lu, self.piv = sl.cho_factor(self.D, self.rho) self.lu = np.asarray(self.lu, dtype=self.dtype)
def rhochange(self)
Re-factorise matrix when rho changes.
7.126117
5.195018
1.371721
r self.Y = np.asarray(sp.prox_l1(self.AX + self.U, (self.lmbda / self.rho) * self.wl1), dtype=self.dtype) super(BPDN, self).ystep()
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
12.416013
9.578526
1.296234
r self.Y = np.asarray(sp.prox_l1l2( self.AX + self.U, (self.lmbda / self.rho) * self.wl1, self.mu / self.rho, axis=-1), dtype=self.dtype) GenericBPDN.ystep(self)
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
12.015044
10.28943
1.167708
r self.Y = np.asarray(sp.proj_l1(self.AX + self.U, self.gamma, axis=0), dtype=self.dtype) super(BPDNProjL1, self).ystep()
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
15.875358
12.187541
1.302589
dfd = self.obfn_dfd() prj = sp.proj_l1(self.obfn_gvar(), self.gamma, axis=0) cns = np.linalg.norm(prj - self.obfn_gvar()) return (dfd, cns)
def eval_objfn(self)
Compute components of regularisation function as well as total contribution to objective function.
10.054409
8.559482
1.174652
if self.opt['Y0'] is None: return np.zeros(ushape, dtype=self.dtype) else: # If initial Y is non-zero, initial U is chosen so that # the relevant dual optimality criterion (see (3.10) in # boyd-2010-distributed) is satisfied. U0 = np.sign(self.block_sep0(self.Y)) / self.rho U1 = self.block_sep1(self.Y) - self.S return self.block_cat(U0, U1)
def uinit(self, ushape)
Return initialiser for working variable U.
7.910183
7.284658
1.085869
self.D = np.asarray(D, dtype=self.dtype) # Factorise dictionary for efficient solves self.lu, self.piv = sl.cho_factor(self.D, 1.0) self.lu = np.asarray(self.lu, dtype=self.dtype)
def setdict(self, D)
Set dictionary array.
5.623528
5.161973
1.089415
r YU = self.Y - self.U self.X = np.asarray(sl.cho_solve_ATAI( self.D, 1.0, self.block_sep0(YU) + self.D.T.dot(self.block_sep1(YU)), self.lu, self.piv), dtype=self.dtype)
def xstep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`.
11.759018
10.354983
1.13559
r AXU = self.AX + self.U Y0 = np.asarray(sp.prox_l1(self.block_sep0(AXU), self.wl1 / self.rho), dtype=self.dtype) if self.opt['NonNegCoef']: Y0[Y0 < 0.0] = 0.0 Y1 = sl.proj_l2ball(self.block_sep1(AXU), self.S, self.epsilon, axes=0) self.Y = self.block_cat(Y0, Y1)
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
8.203942
7.548796
1.086788
r obj = np.linalg.norm((self.wl1 * self.obfn_g0var()).ravel(), 1) cns = np.linalg.norm(sl.proj_l2ball( self.obfn_g1var(), self.S, self.epsilon, axes=0) - self.obfn_g1var()) return (obj, cns)
def eval_objfn(self)
r"""Compute components of objective function as well as total contribution to objective function. The objective function is :math:`\| \mathbf{x} \|_1` and the constraint violation measure is :math:`P(\mathbf{x}) - \mathbf{x}` where :math:`P(\mathbf{x})` is the projection into the constraint set.
11.313956
9.695802
1.166892
if self.opt['Y0'] is None: return np.zeros(ushape, dtype=self.dtype) else: # If initial Y is non-zero, initial U is chosen so that # the relevant dual optimality criterion (see (3.10) in # boyd-2010-distributed) is satisfied. return (self.Wdf/self.rho)*np.sign(self.Y)
def uinit(self, ushape)
Return initialiser for working variable U.
9.645727
8.659322
1.113913
r self.X = sl.idctii(self.Gamma*sl.dctii(self.Y + self.S - self.U, axes=self.axes), axes=self.axes) if self.opt['LinSolveCheck']: self.xrrs = sl.rrs( self.X + (self.lmbda/self.rho) * sl.idctii((self.Alpha**2) * sl.dctii(self.X, axes=self.axes), axes=self.axes), self.Y + self.S - self.U) else: self.xrrs = None
def xstep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{x}`.
6.709798
6.105496
1.098977
r self.Y = sp.prox_l1(self.AX - self.S + self.U, self.Wdf / self.rho)
def ystep(self)
r"""Minimise Augmented Lagrangian with respect to :math:`\mathbf{y}`.
33.684063
22.966116
1.466685
self.Gamma = 1.0 / (1.0 + (self.lmbda/self.rho)*(self.Alpha**2))
def rhochange(self)
Action to be taken when rho parameter is changed.
9.106956
6.954474
1.30951
if self.opt['gEvalY']: return self.Y else: return self.cnst_A(self.X) - self.cnst_c()
def obfn_gvar(self)
Variable to be evaluated in computing regularisation term, depending on 'gEvalY' option value.
15.600191
7.136277
2.186041
r gvr = self.obfn_gvar() dfd = np.sum(np.abs(self.Wdf * gvr)) reg = 0.5*np.linalg.norm( sl.idctii(self.Alpha*sl.dctii(self.X, axes=self.axes), axes=self.axes))**2 obj = dfd + self.lmbda*reg return (obj, dfd, reg)
def eval_objfn(self)
r"""Compute components of objective function as well as total contribution to objective function. Data fidelity term is :math:`(1/2) \| \mathbf{x} - \mathbf{s} \|_2^2` and regularisation term is :math:`\| D \mathbf{x} \|_2^2`.
9.883881
8.432636
1.172099
GPUInfo = namedtuple('GPUInfo', ['name', 'driver', 'totalmem', 'freemem']) gpus = GPUtil.getGPUs() info = [] for g in gpus: info.append(GPUInfo(g.name, g.driver, g.memoryTotal, g.memoryFree)) return info
def gpu_info()
Return a list of namedtuples representing attributes of each GPU device.
2.457144
2.165399
1.134731