code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
value = ins.quad[2] offset = ins.quad[1] indirect = offset[0] == '*' if indirect: offset = offset[1:] I = int(offset) if I >= 0: I += 4 # Return Address + "push IX" output = _32bit_oper(value) if indirect: output.append('ld bc, %i' % I) output.append('call __PISTORE32') REQUIRES.add('pistore32.asm') return output # direct store output.append('ld bc, %i' % I) output.append('call __PSTORE32') REQUIRES.add('pstore32.asm') return output
def _pstore32(ins)
Stores 2nd parameter at stack pointer (SP) + X, being X 1st parameter. 1st operand must be a SIGNED integer.
6.403168
6.706625
0.954753
value = ins.quad[2] offset = ins.quad[1] indirect = offset[0] == '*' if indirect: offset = offset[1:] I = int(offset) if I >= 0: I += 4 # Return Address + "push IX" output = _f16_oper(value) if indirect: output.append('ld bc, %i' % I) output.append('call __PISTORE32') REQUIRES.add('pistore32.asm') return output # direct store output.append('ld bc, %i' % I) output.append('call __PSTORE32') REQUIRES.add('pstore32.asm') return output
def _pstoref16(ins)
Stores 2nd parameter at stack pointer (SP) + X, being X 1st parameter. 1st operand must be a SIGNED integer.
7.046725
7.219427
0.976078
value = ins.quad[2] offset = ins.quad[1] indirect = offset[0] == '*' if indirect: offset = offset[1:] I = int(offset) if I >= 0: I += 4 # Return Address + "push IX" output = _float_oper(value) if indirect: output.append('ld hl, %i' % I) output.append('call __PISTOREF') REQUIRES.add('storef.asm') return output # direct store output.append('ld hl, %i' % I) output.append('call __PSTOREF') REQUIRES.add('pstoref.asm') return output
def _pstoref(ins)
Stores 2nd parameter at stack pointer (SP) + X, being X 1st parameter. 1st operand must be a SIGNED integer.
7.29921
7.471739
0.976909
output = [] temporal = False # 2nd operand first, because must go into the stack value = ins.quad[2] if value[0] == '*': value = value[1:] indirect = True else: indirect = False if value[0] == '_': output.append('ld de, (%s)' % value) if indirect: output.append('call __LOAD_DE_DE') REQUIRES.add('lddede.asm') elif value[0] == '#': output.append('ld de, %s' % value[1:]) else: output.append('pop de') temporal = value[0] != '$' if indirect: output.append('call __LOAD_DE_DE') REQUIRES.add('lddede.asm') # Now 1st operand value = ins.quad[1] if value[0] == '*': value = value[1:] indirect = True else: indirect = False I = int(value) if I >= 0: I += 4 # Return Address + "push IX" output.append('ld bc, %i' % I) if not temporal: if indirect: output.append('call __PISTORE_STR') REQUIRES.add('storestr.asm') else: output.append('call __PSTORE_STR') REQUIRES.add('pstorestr.asm') else: if indirect: output.append('call __PISTORE_STR2') REQUIRES.add('storestr2.asm') else: output.append('call __PSTORE_STR2') REQUIRES.add('pstorestr2.asm') return output
def _pstorestr(ins)
Stores 2nd parameter at stack pointer (SP) + X, being X 1st parameter. 1st operand must be a SIGNED integer. Note: This procedure proceeds as _pstore16, since STRINGS are 16bit pointers.
3.413299
3.405423
1.002313
assert type_ is None or isinstance(type_, SymbolTYPE) if func is not None: # Try constant-folding if is_number(operand): # e.g. ABS(-5) return SymbolNUMBER(func(operand.value), lineno=lineno) elif is_string(operand): # e.g. LEN("a") return SymbolSTRING(func(operand.text), lineno=lineno) if type_ is None: type_ = operand.type_ if operator == 'MINUS': if not type_.is_signed: type_ = type_.to_signed() operand = SymbolTYPECAST.make_node(type_, operand, lineno) elif operator == 'NOT': type_ = TYPE.ubyte return cls(operator, operand, lineno, type_)
def make_node(cls, lineno, operator, operand, func=None, type_=None)
Creates a node for a unary operation. E.g. -x or LEN(a$) Parameters: -func: lambda function used on constant folding when possible -type_: the resulting type (by default, the same as the argument). For example, for LEN (str$), result type is 'u16' and arg type is 'string'
4.567444
4.342848
1.051716
if type_ in cls.unsigned: return {TYPE.ubyte: TYPE.byte_, TYPE.uinteger: TYPE.integer, TYPE.ulong: TYPE.long_}[type_] if type_ in cls.decimals or type_ in cls.signed: return type_ return cls.unknown
def to_signed(cls, type_)
Return signed type or equivalent
5.29723
4.96972
1.065901
NAME_TYPES = {cls.TYPE_NAMES[x]: x for x in cls.TYPE_NAMES} return NAME_TYPES.get(typename, None)
def to_type(cls, typename)
Converts a type ID to name. On error returns None
4.671248
4.186557
1.115773
op = float(op) negative = op < 0 if negative: op = -op DE = int(op) HL = int((op - DE) * 2**16) & 0xFFFF DE &= 0xFFFF if negative: # Do C2 DE ^= 0xFFFF HL ^= 0xFFFF DEHL = ((DE << 16) | HL) + 1 HL = DEHL & 0xFFFF DE = (DEHL >> 16) & 0xFFFF return (DE, HL)
def f16(op)
Returns a floating point operand converted to 32 bits unsigned int. Negative numbers are returned in 2 complement. The result is returned in a tuple (DE, HL) => High16 (Int part), Low16 (Decimal part)
4.110703
3.517698
1.168577
ins.quad = [x for x in ins.quad] for i in range(2, len(ins.quad)): if is_float(ins.quad[i]): de, hl = f16(ins.quad[i]) ins.quad[i] = str((de << 16) | hl) ins.quad = tuple(ins.quad) return ins
def _f16_to_32bit(ins)
If any of the operands within the ins(truction) are numeric, convert them to its 32bit representation, otherwise leave them as they are.
4.084955
4.042381
1.010532
op1, op2 = tuple(ins.quad[2:]) if _f_ops(op1, op2) is not None: op1, op2 = _f_ops(op1, op2) if op2 == 1: # A * 1 => A output = _f16_oper(op1) output.append('push de') output.append('push hl') return output if op2 == -1: return _neg32(ins) output = _f16_oper(op1) if op2 == 0: output.append('ld hl, 0') output.append('ld e, h') output.append('ld d, l') output.append('push de') output.append('push hl') return output output = _f16_oper(op1, str(op2)) output.append('call __MULF16') output.append('push de') output.append('push hl') REQUIRES.add('mulf16.asm') return output
def _mulf16(ins)
Multiplies 2 32bit (16.16) fixed point numbers. The result is pushed onto the stack.
3.757456
3.779647
0.994129
op1, op2 = tuple(ins.quad[2:]) if is_float(op2): if float(op2) == 1: output = _f16_oper(op1) output.append('push de') output.append('push hl') return output if float(op2) == -1: return _negf(ins) rev = not is_float(op1) and op1[0] != 't' and op2[0] == 't' output = _f16_oper(op1, op2, reversed=rev) output.append('call __DIVF16') output.append('push de') output.append('push hl') REQUIRES.add('divf16.asm') return output
def _divf16(ins)
Divides 2 32bit (16.16) fixed point numbers. The result is pushed onto the stack. Optimizations: * If 2nd operand is 1, do nothing * If 2nd operand is -1, do NEG32
4.877874
4.969093
0.981643
raise InvalidICError(str(quad), "Invalid quad code params for '%s' (expected %i, but got %i)" % (quad, QUADS[quad][0], nparams) )
def throw_invalid_quad_params(quad, QUADS, nparams)
Exception raised when an invalid number of params in the quad code has been emmitted.
7.879777
7.499469
1.050711
def bin32(f): result = '' a = int(f) & 0xFFFFFFFF # ensures int 32 for i in range(32): result = str(a % 2) + result a = a >> 1 return result def bindec32(f): result = '0' a = f if f >= 1: result = bin32(f) result += '.' c = int(a) for i in range(32): a -= c a *= 2 c = int(a) result += str(c) return result e = 0 # exponent s = 1 if x < 0 else 0 # sign m = abs(x) # mantissa while m >= 1: m /= 2.0 e += 1 while 0 < m < 0.5: m *= 2.0 e -= 1 M = bindec32(m)[3:] M = str(s) + M E = bin32(e + 128)[-8:] if x != 0 else bin32(0)[-8:] return M, E
def fp(x)
Returns a floating point number as EXP+128, Mantissa
3.567224
3.462639
1.030204
def bin2hex(y): return "%02X" % int(y, 2) M, E = fp(x) C = '0' + bin2hex(E) + 'h' ED = '0' + bin2hex(M[8:16]) + bin2hex(M[:8]) + 'h' LH = '0' + bin2hex(M[24:]) + bin2hex(M[16:24]) + 'h' return C, ED, LH
def immediate_float(x)
Returns C DE HL as values for loading and immediate floating point.
4.099208
4.020427
1.019595
if stopOn is None: for i in self.children: i.inorder(funct) else: for i in self.children: if i.inorder(funct) == stopOn: return stopOn return funct(self)
def inorder(self, funct, stopOn=None)
Iterates in order, calling the function with the current node. If stopOn is set to True or False, it will stop on true or false.
2.518456
2.474535
1.017749
if funct(self.symbol) == stopOn and stopOn is not None: return stopOn if stopOn is None: for i in self.children: i.preorder(funct) else: for i in self.children: if i.preorder(funct) == stopOn: return stopOn
def preorder(self, funct, stopOn=None)
Iterates in preorder, calling the function with the current node. If stopOn is set to True or False, it will stop on true or false.
2.911538
2.97795
0.977699
if stopOn is None: for i in range(len(self.children) - 1, -1, -1): self.children[i].postorder(funct) else: for i in range(len(self.children) - 1, -1, -1): if self.children[i].postorder(funct) == stopOn: return stopOn return funct(self.symbol)
def postorder(self, funct, stopOn=None)
Iterates in postorder, calling the function with the current node. If stopOn is set to True or False, it will stop on true or false.
1.936263
1.929191
1.003665
result = clss(symbol) for i in nexts: if i is None: continue if not isinstance(i, clss): raise NotAnAstError(i) result.appendChild(i) return result
def makenode(clss, symbol, *nexts)
Stores the symbol in an AST instance, and left and right to the given ones
4.618403
4.226429
1.092744
global OUTPUT global INCLUDED global CURRENT_DIR global ENABLED global INCLUDEPATH global IFDEFS global ID_TABLE global CURRENT_FILE global_.FILENAME = '(stdin)' OUTPUT = '' INCLUDED = {} CURRENT_DIR = '' pwd = get_include_path() INCLUDEPATH = [os.path.join(pwd, 'library'), os.path.join(pwd, 'library-asm')] ENABLED = True IFDEFS = [] global_.has_errors = 0 global_.error_msg_cache.clear() parser.defaulted_states = {} ID_TABLE = DefinesTable() del CURRENT_FILE[:]
def init()
Initializes the preprocessor
9.944012
10.028498
0.991575
f1 = os.path.basename(sys.argv[0]).lower() # script filename f2 = os.path.basename(sys.executable).lower() # Executable filename # If executable filename and script name are the same, we are if f1 == f2 or f2 == f1 + '.exe': # under a "compiled" python binary result = os.path.dirname(os.path.realpath(sys.executable)) else: result = os.path.dirname(os.path.realpath(__file__)) return result
def get_include_path()
Default include path using a tricky sys calls.
3.997144
3.874913
1.031544
fname = api.utils.sanitize_filename(fname) i_path = [CURRENT_DIR] + INCLUDEPATH if local_first else list(INCLUDEPATH) i_path.extend(OPTIONS.include_path.value.split(':') if OPTIONS.include_path.value else []) if os.path.isabs(fname): if os.path.isfile(fname): return fname else: for dir_ in i_path: path = api.utils.sanitize_filename(os.path.join(dir_, fname)) if os.path.exists(path): return path error(lineno, "file '%s' not found" % fname) return ''
def search_filename(fname, lineno, local_first)
Search a filename into the list of the include path. If local_first is true, it will try first in the current directory of the file being analyzed.
3.692836
3.332031
1.108284
global CURRENT_DIR filename = search_filename(filename, lineno, local_first) if filename not in INCLUDED.keys(): INCLUDED[filename] = [] if len(CURRENT_FILE) > 0: # Added from which file, line INCLUDED[filename].append((CURRENT_FILE[-1], lineno)) CURRENT_FILE.append(filename) CURRENT_DIR = os.path.dirname(filename) return LEXER.include(filename)
def include_file(filename, lineno, local_first)
Performs a file inclusion (#include) in the preprocessor. Writes down that "filename" was included at the current file, at line <lineno>. If local_first is True, then it will first search the file in the local path before looking for it in the include path chain. This is used when doing a #include "filename".
4.592426
5.149939
0.891744
filename = search_filename(filename, lineno, local_first) if filename not in INCLUDED.keys(): # If not already included return include_file(filename, lineno, local_first) # include it and return # Now checks if the file has been included more than once if len(INCLUDED[filename]) > 1: warning(lineno, "file '%s' already included more than once, in file " "'%s' at line %i" % (filename, INCLUDED[filename][0][0], INCLUDED[filename][0][1])) # Empty file (already included) LEXER.next_token = '_ENDFILE_' return ''
def include_once(filename, lineno, local_first)
Performs a file inclusion (#include) in the preprocessor. Writes down that "filename" was included at the current file, at line <lineno>. The file is ignored if it was previuosly included (a warning will be emitted though). If local_first is True, then it will first search the file in the local path before looking for it in the include path chain. This is used when doing a #include "filename".
5.449557
5.860834
0.929826
try: tmp = [str(x()) if isinstance(x, MacroCall) else x for x in p[1]] except PreprocError as v: error(v.lineno, v.message) tmp.append(p[2]) p[0] = tmp
def p_program_tokenstring(p)
program : defs NEWLINE
6.532991
6.370153
1.025563
global CURRENT_DIR p[0] = [p[1] + p[2]] + p[3] + [p[4]] CURRENT_FILE.pop() # Remove top of the stack CURRENT_DIR = os.path.dirname(CURRENT_FILE[-1])
def p_include_file(p)
include_file : include NEWLINE program _ENDFILE_
4.60081
4.148034
1.109154
global CURRENT_DIR p[0] = [p[1] + p[2]] + p[3] + [p[4]] CURRENT_FILE.pop() # Remove top of the stack CURRENT_DIR = os.path.dirname(CURRENT_FILE[-1])
def p_include_once_ok(p)
include_file : include_once NEWLINE program _ENDFILE_
4.646745
4.03983
1.150233
if ENABLED: p[0] = include_file(p[2], p.lineno(2), local_first=True) else: p[0] = [] p.lexer.next_token = '_ENDFILE_'
def p_include(p)
include : INCLUDE STRING
9.08909
8.682608
1.046816
if ENABLED: p[0] = include_file(p[2], p.lineno(2), local_first=False) else: p[0] = [] p.lexer.next_token = '_ENDFILE_'
def p_include_fname(p)
include : INCLUDE FILENAME
9.414836
8.857437
1.06293
if ENABLED: p[0] = include_once(p[3], p.lineno(3), local_first=True) else: p[0] = [] if not p[0]: p.lexer.next_token = '_ENDFILE_'
def p_include_once(p)
include_once : INCLUDE ONCE STRING
7.961067
7.92886
1.004062
p[0] = [] if ENABLED: p[0] = include_once(p[3], p.lineno(3), local_first=False) else: p[0] = [] if not p[0]: p.lexer.next_token = '_ENDFILE_'
def p_include_once_fname(p)
include_once : INCLUDE ONCE FILENAME
7.455809
6.768832
1.101491
if ENABLED: if p[4]: if SPACES.match(p[4][0]): p[4][0] = p[4][0][1:] else: warning(p.lineno(1), "missing whitespace after the macro name") ID_TABLE.define(p[2], args=p[3], value=p[4], lineno=p.lineno(2), fname=CURRENT_FILE[-1]) p[0] = []
def p_define(p)
define : DEFINE ID params defs
5.95494
5.571095
1.068899
# Defines the 'epsilon' parameter p[0] = [ID('', value='', args=None, lineno=p.lineno(1), fname=CURRENT_FILE[-1])]
def p_define_params_empty(p)
params : LP RP
25.30998
26.433193
0.957507
for i in p[2]: if not isinstance(i, ID): error(p.lineno(3), '"%s" might not appear in a macro parameter list' % str(i)) p[0] = None return names = [x.name for x in p[2]] for i in range(len(names)): if names[i] in names[i + 1:]: error(p.lineno(3), 'Duplicated name parameter "%s"' % (names[i])) p[0] = None return p[0] = p[2]
def p_define_params_paramlist(p)
params : LP paramlist RP
3.130396
3.141921
0.996332
p[0] = [ID(p[1], value='', args=None, lineno=p.lineno(1), fname=CURRENT_FILE[-1])]
def p_paramlist_single(p)
paramlist : ID
14.520524
12.274528
1.18298
p[0] = p[1] + [ID(p[3], value='', args=None, lineno=p.lineno(1), fname=CURRENT_FILE[-1])]
def p_paramlist_paramlist(p)
paramlist : paramlist COMMA ID
13.483508
10.254329
1.314909
global ENABLED if ENABLED: p[0] = [p[2]] + p[3] p[0] += ['#line %i "%s"' % (p.lineno(4) + 1, CURRENT_FILE[-1])] else: p[0] = ['#line %i "%s"' % (p.lineno(4) + 1, CURRENT_FILE[-1])] ENABLED = IFDEFS[-1][0] IFDEFS.pop()
def p_ifdef(p)
ifdef : if_header NEWLINE program ENDIF
4.042553
3.815121
1.059613
global ENABLED p[0] = p[1] + p[2] p[0] += ['#line %i "%s"' % (p.lineno(3) + 1, CURRENT_FILE[-1])] ENABLED = IFDEFS[-1][0] IFDEFS.pop()
def p_ifdef_else(p)
ifdef : ifdefelsea ifdefelseb ENDIF
7.774165
7.146805
1.087782
global ENABLED if ENABLED: p[0] = [p[2]] + p[3] else: p[0] = [] ENABLED = not ENABLED
def p_ifdef_else_a(p)
ifdefelsea : if_header NEWLINE program
4.143275
4.014042
1.032195
global ENABLED if ENABLED: p[0] = ['#line %i "%s"%s' % (p.lineno(1) + 1, CURRENT_FILE[-1], p[2])] p[0] += p[3] else: p[0] = []
def p_ifdef_else_b(p)
ifdefelseb : ELSE NEWLINE program
5.336611
5.109688
1.04441
global ENABLED IFDEFS.append((ENABLED, p.lineno(2))) ENABLED = ID_TABLE.defined(p[2])
def p_if_header(p)
if_header : IFDEF ID
24.548096
15.838132
1.549936
global ENABLED IFDEFS.append((ENABLED, p.lineno(2))) ENABLED = not ID_TABLE.defined(p[2])
def p_ifn_header(p)
if_header : IFNDEF ID
26.175632
19.087532
1.371347
global ENABLED IFDEFS.append((ENABLED, p.lineno(1))) ENABLED = bool(int(p[2])) if p[2].isdigit() else ID_TABLE.defined(p[2])
def p_if_expr_header(p)
if_header : IF expr
13.017517
11.669338
1.115532
a = int(p[1]) if p[1].isdigit() else 0 b = int(p[3]) if p[3].isdigit() else 0 p[0] = '1' if a < b else '0'
def p_exprlt(p)
expr : expr LT expr
2.815493
2.442285
1.152811
a = int(p[1]) if p[1].isdigit() else 0 b = int(p[3]) if p[3].isdigit() else 0 p[0] = '1' if a <= b else '0'
def p_exprle(p)
expr : expr LE expr
3.031064
2.478031
1.223174
a = int(p[1]) if p[1].isdigit() else 0 b = int(p[3]) if p[3].isdigit() else 0 p[0] = '1' if a > b else '0'
def p_exprgt(p)
expr : expr GT expr
2.74121
2.410606
1.137146
a = int(p[1]) if p[1].isdigit() else 0 b = int(p[3]) if p[3].isdigit() else 0 p[0] = '1' if a >= b else '0'
def p_exprge(p)
expr : expr GE expr
2.909868
2.499303
1.164272
global CURRENT_DIR prev_dir = CURRENT_DIR CURRENT_FILE.append(filename) CURRENT_DIR = os.path.dirname(CURRENT_FILE[-1]) LEXER.input(input_, filename) LEXER.lex.begin(state) parser.parse(lexer=LEXER, debug=OPTIONS.Debug.value > 2) CURRENT_FILE.pop() CURRENT_DIR = prev_dir
def filter_(input_, filename='<internal>', state='INITIAL')
Filter the input string thought the preprocessor. result is appended to OUTPUT global str
4.953292
5.074691
0.976078
if name is None: tplot_names = list(data_quants.keys()) for i in tplot_names: del data_quants[i] return if not isinstance(name, list): name = [name] entries = [] ### for i in name: if ('?' in i) or ('*' in i): for j in data_quants.keys(): var_verif = fnmatch.fnmatch(data_quants[j].name, i) if var_verif == 1: entries.append(data_quants[j].name) else: continue for key in entries: if key in data_quants: del data_quants[key] ### elif i not in data_quants.keys(): print(str(i) + " is currently not in pytplot.") return else: temp_data_quants = data_quants[i] str_name = temp_data_quants.name del data_quants[str_name] return
def del_data(name=None)
This function will delete tplot variables that are already stored in memory. Parameters: name : str Name of the tplot variable to be deleted. If no name is provided, then all tplot variables will be deleted. Returns: None Examples: >>> # Delete Variable 1 >>> import pytplot >>> pytplot.del_data("Variable1")
3.625292
3.446289
1.051941
if not isinstance(min, (int, float, complex)): min = tplot_utilities.str_to_int(min) if not isinstance(max, (int, float, complex)): max = tplot_utilities.str_to_int(max) if 'x_range' in tplot_opt_glob: lim_info['xlast'] = tplot_opt_glob['x_range'] else: lim_info['xfull'] = Range1d(min, max) lim_info['xlast'] = Range1d(min, max) tplot_opt_glob['x_range'] = [min, max] return
def xlim(min, max)
This function will set the x axis range for all time series plots Parameters: min : flt The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" max : flt The time to end all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.xlim(1500249600, 1500249600 + 86400) >>> # The same as above, but using different inputs >>> pytplot.xlim("2017-07-17 00:00:00", "2017-07-18 00:00:00")
2.890041
3.104169
0.931019
if name not in data_quants.keys(): print("That name is currently not in pytplot.") return temp_data_quant = data_quants[name] temp_data_quant.zaxis_opt['z_range'] = [min, max] return
def zlim(name, min, max)
This function will set the z axis range displayed for a specific tplot variable. This is only used for spec plots, where the z axis represents the magnitude of the values in each bin. Parameters: name : str The name of the tplot variable that you wish to set z limits for. min : flt The start of the z axis. max : flt The end of the z axis. Returns: None Examples: >>> # Change the z range of Variable1 >>> import pytplot >>> x_data = [1,2,3] >>> y_data = [ [1,2,3] , [4,5,6], [7,8,9] ] >>> v_data = [1,2,3] >>> pytplot.store_data("Variable3", data={'x':x_data, 'y':y_data, 'v':v_data}) >>> pytplot.zlim('Variable1', 2, 3)
7.276906
6.287845
1.157297
if name not in data_quants.keys(): print("That name is currently not in pytplot.") return temp_data_quant = data_quants[name] temp_data_quant.yaxis_opt['y_range'] = [min, max] return
def ylim(name, min, max)
This function will set the y axis range displayed for a specific tplot variable. Parameters: name : str The name of the tplot variable that you wish to set y limits for. min : flt The start of the y axis. max : flt The end of the y axis. Returns: None Examples: >>> # Change the y range of Variable1 >>> import pytplot >>> x_data = [1,2,3,4,5] >>> y_data = [1,2,3,4,5] >>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data}) >>> pytplot.ylim('Variable1', 2, 4)
7.010754
6.313552
1.110429
if 'title_size' in pytplot.tplot_opt_glob: size = pytplot.tplot_opt_glob['title_size'] if 'title_text' in pytplot.tplot_opt_glob: if pytplot.tplot_opt_glob['title_text'] != '': layout.addItem(LabelItem(pytplot.tplot_opt_glob['title_text'], size=size, color='k'), row=0, col=0) return True return False
def _set_pyqtgraph_title(layout)
Private function to add a title to the first row of the window. Returns True if a Title is set. Else, returns False.
2.50631
2.295563
1.091806
global data_quants if name not in data_quants.keys(): print("That name is currently not in pytplot") return temp_data_quant = data_quants[name] data_val = temp_data_quant.data.values time_val = temp_data_quant.data.index return(time_val, data_val)
def get_data(name)
This function extracts the data from the Tplot Variables stored in memory. Parameters: name : str Name of the tplot variable Returns: time_val : pandas dataframe index data_val : list Examples: >>> # Retrieve the data from Variable 1 >>> import pytplot >>> x_data = [1,2,3,4,5] >>> y_data = [1,2,3,4,5] >>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data}) >>> time, data = pytplot.get_data("Variable1")
4.416694
3.774332
1.170192
#check if old name is in current dictionary if old_name not in pytplot.data_quants.keys(): print("That name is currently not in pytplot") return #if old name input is a number, convert to corresponding name if isinstance(old_name, int): old_name = pytplot.data_quants[old_name].name #remake dictionary with new name in old name's slot d = pytplot.data_quants d2 = OrderedDict([(new_name, v) if k == old_name else (k, v) for k, v in d.items()]) data_quants = d2 for key in d2: data_quants[key].name = key pytplot.data_quants = data_quants return
def tplot_rename(old_name, new_name)
This function will rename tplot variables that are already stored in memory. Parameters: old_name : str Old name of the Tplot Variable new_name : str New name of the Tplot Variable Returns: None Examples: >>> # Rename Variable 1 to Variable 2 >>> import pytplot >>> pytplot.tplot_rename("Variable1", "Variable2")
3.284808
3.257736
1.00831
if self.spec_bins is None: return if len(self.spec_bins) == len(self.data.index): self.spec_bins_time_varying = True break_top_loop = False for index, row in self.spec_bins.iterrows(): if row.isnull().values.all(): continue else: for i in row.index: if np.isfinite(row[i]) and np.isfinite(row[i + 1]): ascending = row[i] < row[i + 1] break_top_loop = True break else: continue if break_top_loop: break else: ascending = self.spec_bins[0].iloc[0] < self.spec_bins[1].iloc[0] return ascending
def _check_spec_bins_ordering(self)
This is a private function of the TVar object, this is run during object creation to check if spec_bins are ascending or descending
3.070861
2.823816
1.087486
index = 0 return_names=[] for key, _ in data_quants.items(): if isinstance(data_quants[key].data, list): if isinstance(key, str): names_to_print = data_quants[key].name + " data from: " for name in data_quants[key].data: names_to_print = names_to_print + " " + name print(index, ":", names_to_print) index+=1 else: if isinstance(key, str): names_to_print = data_quants[key].name print(index, ":", names_to_print) index+=1 return_names.append(names_to_print) return return_names
def tplot_names()
This function will print out and return a list of all current Tplot Variables stored in the memory. Parameters: None Returns: list : list of str A list of all Tplot Variables stored in the memory Examples: >>> import pytplot >>> x_data = [1,2,3,4,5] >>> y_data = [1,2,3,4,5] >>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data}) >>> tnames = pyplot.tplot_names() 0 : Variable 1
2.850114
3.049534
0.934607
if name not in data_quants.keys(): print("That name is currently not in pytplot") return print("Start Time: " + tplot_utilities.int_to_str(data_quants[name].trange[0])) print("End Time: " + tplot_utilities.int_to_str(data_quants[name].trange[1])) return(data_quants[name].trange[0], data_quants[name].trange[1])
def get_timespan(name)
This function extracts the time span from the Tplot Variables stored in memory. Parameters: name : str Name of the tplot variable Returns: time_begin : float The beginning of the time series time_end : float The end of the time series Examples: >>> # Retrieve the time span from Variable 1 >>> import pytplot >>> x_data = [1,2,3,4,5] >>> y_data = [1,2,3,4,5] >>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data}) >>> time1, time2 = pytplot.get_timespan("Variable1")
3.567539
3.461306
1.030692
if keyword is 'days': dt *= 86400 elif keyword is 'hours': dt *= 3600 elif keyword is 'minutes': dt *= 60 elif keyword is 'seconds': dt *= 1 else: print("Invalid 'keyword' option.\nEnum(None, 'hours', 'minutes', 'seconds', 'days')") if not isinstance(t1, (int, float, complex)): t1 = tplot_utilities.str_to_int(t1) t2 = t1+dt xlim(t1, t2) return
def timespan(t1, dt, keyword = 'days')
This function will set the time range for all time series plots. This is a wrapper for the function "xlim" to better handle time axes. Parameters: t1 : flt/str The time to start all time series plots. Can be given in seconds since epoch, or as a string in the format "YYYY-MM-DD HH:MM:SS" dt : flt The time duration of the plots. Default is number of days. keyword : str Sets the units of the "dt" variable. Days, hours, minutes, and seconds are all accepted. Returns: None Examples: >>> # Set the timespan to be 2017-07-17 00:00:00 plus 1 day >>> import pytplot >>> pytplot.timespan(1500249600, 1) >>> # The same as above, but using different inputs >>> pytplot.timespan("2017-07-17 00:00:00", 24, keyword='hours')
3.468701
3.342823
1.037656
option = option.lower() temp = tplot_utilities.set_tplot_options(option, value, pytplot.tplot_opt_glob) pytplot.tplot_opt_glob = temp return
def tplot_options(option, value)
This function allows the user to set several global options for the generated plots. Parameters: option : str The name of the option. See section below value : str/int/float/list The value of the option. See section below. Options: ============ ========== ===== Options Value type Notes ============ ========== ===== title str Title of the the entire output title_size int Font size of the output wsize [int, int] [height, width], pixel size of the plot window title_align int Offset position in pixels of the title var_label srt Name of the tplot variable to be used as another x axis alt_range [flt, flt] The min and max altitude to be plotted on all alt plots map_x_range [int, int] The min and max longitude to be plotted on all map plots map_y_range [int, int] The min and max latitude to be plotted on all map plots x_range [flt, flt] The min and max x_range (usually time) to be plotted on all Spec/1D plots data_gap int Number of seconds with consecutive nan values allowed before no interp should occur crosshair bool Option allowing crosshairs and crosshair legend roi [str, str] Times between which there's a region of interest for a user ============ ========== ===== Returns: None Examples: >>> # Set the plot title >>> import pytplot >>> pytplot.tplot_options('title', 'SWEA Data for Orbit 1563') >>> # Set the window size >>> pytplot.tplot_options('wsize', [1000,500])
5.601828
9.34497
0.599448
if isinstance(names,int): names = list(data_quants.keys())[names-1] if not isinstance(names, list): names = [names] #Check that we have all available data for name in names: if isinstance(data_quants[name].data, list): for data_name in data_quants[name].data: if data_name not in names: names.append(data_name) #Pickle it up to_pickle =[] for name in names: if name not in data_quants.keys(): print("That name is currently not in pytplot") return to_pickle.append(data_quants[name]) num_quants = len(to_pickle) to_pickle = [num_quants] + to_pickle temp_tplot_opt_glob = tplot_opt_glob to_pickle.append(temp_tplot_opt_glob) if filename==None: filename='var_'+'-'.join(names)+'.pytplot' pickle.dump(to_pickle, open(filename, "wb")) return
def tplot_save(names, filename=None)
This function will save tplot variables into a single file by using the python "pickle" function. This file can then be "restored" using tplot_restore. This is useful if you want to end the pytplot session, but save all of your data/options. All variables and plot options can be read back into tplot with the "tplot_restore" command. Parameters: names : str/list A string or a list of strings of the tplot variables you would like saved. filename : str, optional The filename where you want to save the file. Returns: None Examples: >>> # Save a single tplot variable >>> import pytplot >>> x_data = [1,2,3,4,5] >>> y_data = [1,2,3,4,5] >>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data}) >>> pytplot.ylim('Variable1', 2, 4) >>> pytplot.save('Variable1', filename='C:/temp/variable1.pytplot')
3.489798
3.655058
0.954786
if isinstance(name, int): name = list(data_quants.keys())[name-1] if not isinstance(name, list): name = [name] name_num = len(name) ymin = None ymax = None for i in range(name_num): if name[i] not in data_quants.keys(): print(str(name[i]) + " is currently not in pytplot.") return temp_data_quant = data_quants[name[i]] yother = temp_data_quant.data if trg is not None: for column_name in yother.columns: y = yother[column_name] trunc_tempt_data_quant = y.truncate(before=trg[0], after=trg[1]) loc_min = trunc_tempt_data_quant.min(skipna=True) loc_max = trunc_tempt_data_quant.max(skipna=True) if (ymin is None) or (loc_min < ymin): ymin = loc_min if (ymax is None) or (loc_max > ymax): ymax = loc_max else: for column_name in yother.columns: y = yother[column_name] loc_min = y.min(skipna=True) loc_max = y.max(skipna=False) if (ymin is None) or (loc_min < ymin): ymin = loc_min if (ymax is None) or (loc_max > ymax): ymax = loc_max print("Y Minimum: " + str(ymin)) print("Y Maximum: " + str(ymax)) return ymin, ymax
def get_ylimits(name, trg=None)
This function will get extract the y-limits from the Tplot Variables stored in memory. Parameters: name : str Name of the tplot variable trg : list, optional The time range that you would like to look in Returns: ymin : float The minimum value of y ymax : float The maximum value of y Examples: >>> # Retrieve the y-limits from Variable 1 >>> import pytplot >>> x_data = [1,2,3,4,5] >>> y_data = [1,2,3,4,5] >>> pytplot.store_data("Variable1", data={'x':x_data, 'y':y_data}) >>> y1, y2 = pytplot.get_ylimits("Variable1")
2.10468
2.085504
1.009195
todaystring = datetime.datetime.now().strftime('%Y-%m-%d %H%M%S') extra_layouts['time_stamp'] = todaystring else: if 'time_stamp' in extra_layouts: del extra_layouts['time_stamp'] return
def timestamp(val): if val is 'on'
This function will turn on a time stamp that shows up at the bottom of every generated plot. Parameters val str A string that can either be 'on' or 'off'. Returns None Examples # Turn on the timestamp import pytplot pytplot.timestamp('on')
4.836646
7.171728
0.674405
''' I have no idea why, but we need to generate the picture after painting otherwise it draws incorrectly. ''' if self.picturenotgened: self.generatePicture(self.getBoundingParents()[0].rect()) self.picturenotgened = False pg.ImageItem.paint(self, p, *args) self.generatePicture(self.getBoundingParents()[0].rect())
def paint(self, p, *args)
I have no idea why, but we need to generate the picture after painting otherwise it draws incorrectly.
8.278251
3.933718
2.104434
profile = debug.Profiler() gotNewData = False if image is None: if self.image is None: return else: gotNewData = True shapeChanged = (self.image is None or image.shape != self.image.shape) image = image.view(np.ndarray) if self.image is None or image.dtype != self.image.dtype: self._effectiveLut = None self.image = image if self.image.shape[0] > 2**15-1 or self.image.shape[1] > 2**15-1: if 'autoDownsample' not in kargs: kargs['autoDownsample'] = True if shapeChanged: self.prepareGeometryChange() self.informViewBoundsChanged() profile() if autoLevels is None: if 'levels' in kargs: autoLevels = False else: autoLevels = True if autoLevels: img = self.image while img.size > 2**16: img = img[::2, ::2] mn, mx = img.min(), img.max() if mn == mx: mn = 0 mx = 255 kargs['levels'] = [mn,mx] profile() self.setOpts(update=False, **kargs) profile() self.qimage = None self.update() profile() if gotNewData: self.sigImageChanged.emit()
def setImage(self, image=None, autoLevels=None, **kargs)
Same this as ImageItem.setImage, but we don't update the drawing
2.92837
2.78448
1.051676
if root is None: root = self.item preItems = [] postItems = [] if isinstance(root, QtGui.QGraphicsScene): childs = [i for i in root.items() if i.parentItem() is None] rootItem = [] else: # CHANGE: For GraphicsLayouts, there is no function for childItems(), so I just # replaced it with .items() try: childs = root.childItems() except: childs = root.items() rootItem = [root] childs.sort(key=lambda a: a.zValue()) while len(childs) > 0: ch = childs.pop(0) tree = self.getPaintItems(ch) if int(ch.flags() & ch.ItemStacksBehindParent) > 0 or ( ch.zValue() < 0 and int(ch.flags() & ch.ItemNegativeZStacksBehindParent) > 0): preItems.extend(tree) else: postItems.extend(tree) return preItems + rootItem + postItems
def getPaintItems(self, root=None)
Return a list of all items that should be painted in the correct order.
3.669547
3.546712
1.034633
''' A dataframe (more accurately a dictionary of dataframes, e.g. mat, mat_up...) can be passed to run_norm and a normalization will be run ( e.g. zscore) on either the rows or columns ''' # df here is actually a dictionary of several dataframes, 'mat', 'mat_orig', # etc if df is None: df = net.dat_to_df() if norm_type == 'zscore': df = zscore_df(df, axis, keep_orig) if norm_type == 'qn': df = qn_df(df, axis, keep_orig) net.df_to_dat(df)
def run_norm(net, df=None, norm_type='zscore', axis='row', keep_orig=False)
A dataframe (more accurately a dictionary of dataframes, e.g. mat, mat_up...) can be passed to run_norm and a normalization will be run ( e.g. zscore) on either the rows or columns
5.883853
2.744676
2.143733
''' do quantile normalization of a dataframe dictionary, does not write to net ''' df_qn = {} for mat_type in df: inst_df = df[mat_type] # using transpose to do row qn if axis == 'row': inst_df = inst_df.transpose() missing_values = inst_df.isnull().values.any() # make mask of missing values if missing_values: # get nan mask missing_mask = pd.isnull(inst_df) # tmp fill in na with zero, will not affect qn inst_df = inst_df.fillna(value=0) # calc common distribution common_dist = calc_common_dist(inst_df) # swap in common distribution inst_df = swap_in_common_dist(inst_df, common_dist) # swap back in missing values if missing_values: inst_df = inst_df.mask(missing_mask, other=np.nan) # using transpose to do row qn if axis == 'row': inst_df = inst_df.transpose() df_qn[mat_type] = inst_df return df_qn
def qn_df(df, axis='row', keep_orig=False)
do quantile normalization of a dataframe dictionary, does not write to net
3.938115
3.311168
1.189343
''' calculate a common distribution (for col qn only) that will be used to qn ''' # axis is col tmp_arr = np.array([]) col_names = df.columns.tolist() for inst_col in col_names: # sort column tmp_vect = df[inst_col].sort_values(ascending=False).values # stacking rows vertically (will transpose) if tmp_arr.shape[0] == 0: tmp_arr = tmp_vect else: tmp_arr = np.vstack((tmp_arr, tmp_vect)) tmp_arr = tmp_arr.transpose() common_dist = tmp_arr.mean(axis=1) return common_dist
def calc_common_dist(df)
calculate a common distribution (for col qn only) that will be used to qn
4.859018
3.429543
1.416812
''' take the zscore of a dataframe dictionary, does not write to net (self) ''' df_z = {} for mat_type in df: if keep_orig and mat_type == 'mat': mat_orig = deepcopy(df[mat_type]) inst_df = df[mat_type] if axis == 'row': inst_df = inst_df.transpose() df_z[mat_type] = (inst_df - inst_df.mean())/inst_df.std() if axis == 'row': df_z[mat_type] = df_z[mat_type].transpose() if keep_orig: df_z['mat_orig'] = mat_orig return df_z
def zscore_df(df, axis='row', keep_orig=False)
take the zscore of a dataframe dictionary, does not write to net (self)
3.237395
2.253799
1.436417
''' calculate pvalue of category closeness ''' # calculate the distance between the data points within the same category and # compare to null distribution for inst_rc in ['row', 'col']: inst_nodes = deepcopy(net.dat['nodes'][inst_rc]) inst_index = deepcopy(net.dat['node_info'][inst_rc]['clust']) # reorder based on clustered order inst_nodes = [ inst_nodes[i] for i in inst_index] # make distance matrix dataframe dm = dist_matrix_lattice(inst_nodes) node_infos = list(net.dat['node_info'][inst_rc].keys()) all_cats = [] for inst_info in node_infos: if 'dict_cat_' in inst_info: all_cats.append(inst_info) for cat_dict in all_cats: tmp_dict = net.dat['node_info'][inst_rc][cat_dict] pval_name = cat_dict.replace('dict_','pval_') net.dat['node_info'][inst_rc][pval_name] = {} for cat_name in tmp_dict: subset = tmp_dict[cat_name] inst_median = calc_median_dist_subset(dm, subset) hist = calc_hist_distances(dm, subset, inst_nodes) pval = 0 for i in range(len(hist['prob'])): if i == 0: pval = hist['prob'][i] if i >= 1: if inst_median >= hist['bins'][i]: pval = pval + hist['prob'][i] net.dat['node_info'][inst_rc][pval_name][cat_name] = pval
def main(net)
calculate pvalue of category closeness
4.127836
3.850813
1.071939
''' 1) check that rows are strings (in case of numerical names) 2) check for tuples, and in that case load tuples to categories ''' import numpy as np from ast import literal_eval as make_tuple test = {} test['row'] = df['mat'].index.tolist() test['col'] = df['mat'].columns.tolist() # if type( test_row ) is not str and type( test_row ) is not tuple: found_tuple = {} found_number = {} for inst_rc in ['row','col']: inst_name = test[inst_rc][0] found_tuple[inst_rc] = False found_number[inst_rc] = False if type(inst_name) != tuple: if type(inst_name) is int or type(inst_name) is float or type(inst_name) is np.int64: found_number[inst_rc] = True else: check_open = inst_name[0] check_comma = inst_name.find(',') check_close = inst_name[-1] if check_open == '(' and check_close == ')' and check_comma > 0 \ and check_comma < len(inst_name): found_tuple[inst_rc] = True # convert to tuple if necessary ################################################# if found_tuple['row']: row_names = df['mat'].index.tolist() row_names = [make_tuple(x) for x in row_names] df['mat'].index = row_names if found_tuple['col']: col_names = df['mat'].columns.tolist() col_names = [make_tuple(x) for x in col_names] df['mat'].columns = col_names # convert numbers to string if necessary ################################################# if found_number['row']: row_names = df['mat'].index.tolist() row_names = [str(x) for x in row_names] df['mat'].index = row_names if found_number['col']: col_names = df['mat'].columns.tolist() col_names = [str(x) for x in col_names] df['mat'].columns = col_names return df
def main(df)
1) check that rows are strings (in case of numerical names) 2) check for tuples, and in that case load tuples to categories
2.55089
2.097193
1.216335
''' This is always run when data is loaded. ''' from . import categories # check if df has unique values df['mat'] = make_unique_labels.main(net, df['mat']) net.dat['mat'] = df['mat'].values net.dat['nodes']['row'] = df['mat'].index.tolist() net.dat['nodes']['col'] = df['mat'].columns.tolist() for inst_rc in ['row', 'col']: if type(net.dat['nodes'][inst_rc][0]) is tuple: # get the number of categories from the length of the tuple # subtract 1 because the name is the first element of the tuple num_cat = len(net.dat['nodes'][inst_rc][0]) - 1 net.dat['node_info'][inst_rc]['full_names'] = net.dat['nodes']\ [inst_rc] for inst_rcat in range(num_cat): net.dat['node_info'][inst_rc]['cat-' + str(inst_rcat)] = \ [i[inst_rcat + 1] for i in net.dat['nodes'][inst_rc]] net.dat['nodes'][inst_rc] = [i[0] for i in net.dat['nodes'][inst_rc]] if 'mat_up' in df: net.dat['mat_up'] = df['mat_up'].values net.dat['mat_dn'] = df['mat_dn'].values if 'mat_orig' in df: net.dat['mat_orig'] = df['mat_orig'].values categories.dict_cat(net, define_cat_colors=define_cat_colors)
def df_to_dat(net, df, define_cat_colors=False)
This is always run when data is loaded.
3.234675
3.032104
1.066809
''' convert list to numpy array - numpy arrays can not be saved as json ''' import numpy as np self.dat['mat'] = np.asarray(self.dat['mat'])
def mat_to_numpy_arr(self)
convert list to numpy array - numpy arrays can not be saved as json
10.79878
4.99942
2.160007
''' cluster net.dat and make visualization json, net.viz. optionally leave out dendrogram colorbar groups with dendro argument ''' import scipy from copy import deepcopy from scipy.spatial.distance import pdist from . import categories, make_viz, cat_pval dm = {} for inst_rc in ['row', 'col']: tmp_mat = deepcopy(net.dat['mat']) dm[inst_rc] = calc_distance_matrix(tmp_mat, inst_rc, dist_type) # save directly to dat structure node_info = net.dat['node_info'][inst_rc] node_info['ini'] = list(range( len(net.dat['nodes'][inst_rc]), -1, -1)) # cluster if run_clustering is True: node_info['clust'], node_info['group'] = \ clust_and_group(net, dm[inst_rc], linkage_type=linkage_type) else: dendro = False node_info['clust'] = node_info['ini'] # sorting if run_rank is True: node_info['rank'] = sort_rank_nodes(net, inst_rc, 'sum') node_info['rankvar'] = sort_rank_nodes(net, inst_rc, 'var') else: node_info['rank'] = node_info['ini'] node_info['rankvar'] = node_info['ini'] ################################## if ignore_cat is False: categories.calc_cat_clust_order(net, inst_rc) if calc_cat_pval is True: cat_pval.main(net) # make the visualization json make_viz.viz_json(net, dendro, links) return dm
def cluster_row_and_col(net, dist_type='cosine', linkage_type='average', dendro=True, run_clustering=True, run_rank=True, ignore_cat=False, calc_cat_pval=False, links=False)
cluster net.dat and make visualization json, net.viz. optionally leave out dendrogram colorbar groups with dendro argument
4.439873
3.449449
1.287125
''' find out how many row and col categories are available ''' # count the number of row categories rcat_line = lines[0].split('\t') # calc the number of row names and categories num_rc = 0 found_end = False # skip first tab for inst_string in rcat_line[1:]: if inst_string == '': if found_end is False: num_rc = num_rc + 1 else: found_end = True max_rcat = 15 if max_rcat > len(lines): max_rcat = len(lines) - 1 num_cc = 0 for i in range(max_rcat): ccat_line = lines[i + 1].split('\t') # make sure that line has length greater than one to prevent false cats from # trailing new lines at end of matrix if ccat_line[0] == '' and len(ccat_line) > 1: num_cc = num_cc + 1 num_labels = {} num_labels['row'] = num_rc + 1 num_labels['col'] = num_cc + 1 return num_labels
def check_categories(lines)
find out how many row and col categories are available
4.194168
3.729551
1.124577
''' make a dictionary of node-category associations ''' # print('---------------------------------') # print('---- dict_cat: before setting cat colors') # print('---------------------------------\n') # print(define_cat_colors) # print(net.viz['cat_colors']) net.persistent_cat = True for inst_rc in ['row', 'col']: inst_keys = list(net.dat['node_info'][inst_rc].keys()) all_cats = [x for x in inst_keys if 'cat-' in x] for inst_name_cat in all_cats: dict_cat = {} tmp_cats = net.dat['node_info'][inst_rc][inst_name_cat] tmp_nodes = net.dat['nodes'][inst_rc] for i in range(len(tmp_cats)): inst_cat = tmp_cats[i] inst_node = tmp_nodes[i] if inst_cat not in dict_cat: dict_cat[inst_cat] = [] dict_cat[inst_cat].append(inst_node) tmp_name = 'dict_' + inst_name_cat.replace('-', '_') net.dat['node_info'][inst_rc][tmp_name] = dict_cat # merge with old cat_colors by default cat_colors = net.viz['cat_colors'] if define_cat_colors == True: cat_number = 0 for inst_rc in ['row', 'col']: inst_keys = list(net.dat['node_info'][inst_rc].keys()) all_cats = [x for x in inst_keys if 'cat-' in x] for cat_index in all_cats: if cat_index not in cat_colors[inst_rc]: cat_colors[inst_rc][cat_index] = {} cat_names = sorted(list(set(net.dat['node_info'][inst_rc][cat_index]))) # loop through each category name and assign a color for tmp_name in cat_names: # using the same rules as the front-end to define cat_colors inst_color = get_cat_color(cat_number + cat_names.index(tmp_name)) check_name = tmp_name # check if category is string type and non-numeric try: float(check_name) is_string_cat = False except: is_string_cat = True if is_string_cat == True: # check for default non-color if ': ' in check_name: check_name = check_name.split(': ')[1] # if check_name == 'False' or check_name == 'false': if 'False' in check_name or 'false' in check_name: inst_color = '#eee' if 'Not ' in check_name: inst_color = '#eee' # print('cat_colors') # print('----------') # print(cat_colors[inst_rc][cat_index]) # do not overwrite old colors if tmp_name not in cat_colors[inst_rc][cat_index] and is_string_cat: cat_colors[inst_rc][cat_index][tmp_name] = inst_color # print('overwrite: ' + tmp_name + ' -> ' + str(inst_color)) cat_number = cat_number + 1 net.viz['cat_colors'] = cat_colors
def dict_cat(net, define_cat_colors=False)
make a dictionary of node-category associations
2.814317
2.763659
1.01833
''' cluster category subset of data ''' from .__init__ import Network from copy import deepcopy from . import calc_clust, run_filter inst_keys = list(net.dat['node_info'][inst_rc].keys()) all_cats = [x for x in inst_keys if 'cat-' in x] if len(all_cats) > 0: for inst_name_cat in all_cats: tmp_name = 'dict_' + inst_name_cat.replace('-', '_') dict_cat = net.dat['node_info'][inst_rc][tmp_name] unordered_cats = dict_cat.keys() ordered_cats = order_categories(unordered_cats) # this is the ordering of the columns based on their category, not # including their clustering ordering within category all_cat_orders = [] tmp_names_list = [] for inst_cat in ordered_cats: inst_nodes = dict_cat[inst_cat] tmp_names_list.extend(inst_nodes) # cat_net = deepcopy(Network()) # cat_net.dat['mat'] = deepcopy(net.dat['mat']) # cat_net.dat['nodes'] = deepcopy(net.dat['nodes']) # cat_df = cat_net.dat_to_df() # sub_df = {} # if inst_rc == 'col': # sub_df['mat'] = cat_df['mat'][inst_nodes] # elif inst_rc == 'row': # # need to transpose df # cat_df['mat'] = cat_df['mat'].transpose() # sub_df['mat'] = cat_df['mat'][inst_nodes] # sub_df['mat'] = sub_df['mat'].transpose() # # filter matrix before clustering # ################################### # threshold = 0.0001 # sub_df = run_filter.df_filter_row_sum(sub_df, threshold) # sub_df = run_filter.df_filter_col_sum(sub_df, threshold) # # load back to dat # cat_net.df_to_dat(sub_df) # cat_mat_shape = cat_net.dat['mat'].shape # print('***************') # try: # if cat_mat_shape[0]>1 and cat_mat_shape[1] > 1 and all_are_numbers == False: # calc_clust.cluster_row_and_col(cat_net, 'cos') # inst_cat_order = cat_net.dat['node_info'][inst_rc]['clust'] # else: # inst_cat_order = list(range(len(cat_net.dat['nodes'][inst_rc]))) # except: # inst_cat_order = list(range(len(cat_net.dat['nodes'][inst_rc]))) # prev_order_len = len(all_cat_orders) # # add prev order length to the current order number # inst_cat_order = [i + prev_order_len for i in inst_cat_order] # all_cat_orders.extend(inst_cat_order) # # generate ordered list of row/col names, which will be used to # # assign the order to specific nodes # names_clust_list = [x for (y, x) in sorted(zip(all_cat_orders, # tmp_names_list))] names_clust_list = tmp_names_list # calc category-cluster order final_order = [] for i in range(len(net.dat['nodes'][inst_rc])): inst_node_name = net.dat['nodes'][inst_rc][i] inst_node_num = names_clust_list.index(inst_node_name) final_order.append(inst_node_num) inst_index_cat = inst_name_cat.replace('-', '_') + '_index' net.dat['node_info'][inst_rc][inst_index_cat] = final_order
def calc_cat_clust_order(net, inst_rc)
cluster category subset of data
3.039285
2.975288
1.021509
''' If categories are strings, then simple ordering is fine. If categories are values then I'll need to order based on their values. The final ordering is given as the original categories (including titles) in a ordered list. ''' no_titles = remove_titles(unordered_cats) all_are_numbers = check_all_numbers(no_titles) if all_are_numbers: ordered_cats = order_cats_based_on_values(unordered_cats, no_titles) else: ordered_cats = sorted(unordered_cats) return ordered_cats
def order_categories(unordered_cats)
If categories are strings, then simple ordering is fine. If categories are values then I'll need to order based on their values. The final ordering is given as the original categories (including titles) in a ordered list.
6.115845
2.214345
2.761921
''' Load file as a string. ''' load_data.load_file_as_string(self, file_string, filename=filename)
def load_file_as_string(self, file_string, filename='')
Load file as a string.
4.571833
4.003247
1.142031
''' Load Clustergrammer's dat format (saved as JSON). ''' inst_dat = self.load_json_to_dict(filename) load_data.load_data_to_net(self, inst_dat)
def load_data_file_to_net(self, filename)
Load Clustergrammer's dat format (saved as JSON).
10.455465
4.024589
2.597896
''' The main function performs hierarchical clustering, optionally generates filtered views (e.g. row-filtered views), and generates the :``visualization_json``. ''' initialize_net.viz(self) make_clust_fun.make_clust(self, dist_type=dist_type, run_clustering=run_clustering, dendro=dendro, requested_views=views, linkage_type=linkage_type, sim_mat=sim_mat, filter_sim=filter_sim, calc_cat_pval=calc_cat_pval, run_enrichr=run_enrichr, enrichrgram=enrichrgram)
def cluster(self, dist_type='cosine', run_clustering=True, dendro=True, views=['N_row_sum', 'N_row_var'], linkage_type='average', sim_mat=False, filter_sim=0.1, calc_cat_pval=False, run_enrichr=None, enrichrgram=None)
The main function performs hierarchical clustering, optionally generates filtered views (e.g. row-filtered views), and generates the :``visualization_json``.
4.494601
2.32679
1.931675
''' Load Pandas DataFrame. ''' # self.__init__() self.reset() df_dict = {} df_dict['mat'] = deepcopy(df) # always define category colors if applicable when loading a df data_formats.df_to_dat(self, df_dict, define_cat_colors=True)
def load_df(self, df)
Load Pandas DataFrame.
14.096099
12.843867
1.097496
''' Load Pandas DataFrame (will be deprecated). ''' data_formats.df_to_dat(self, df, define_cat_colors)
def df_to_dat(self, df, define_cat_colors=False)
Load Pandas DataFrame (will be deprecated).
10.156842
4.452537
2.281136
''' Generate a widget visualization using the widget. The export_viz_to_widget method passes the visualization JSON to the instantiated widget, which is returned and visualized on the front-end. ''' if hasattr(self, 'widget_class') == True: # run clustering if necessary if len(self.viz['row_nodes']) == 0: self.cluster() self.widget_instance = self.widget_class(network = self.export_viz_to_widget(which_viz)) return self.widget_instance else: print('Can not make widget because Network has no attribute widget_class') print('Please instantiate Network with clustergrammer_widget using: Network(clustergrammer_widget)')
def widget(self, which_viz='viz')
Generate a widget visualization using the widget. The export_viz_to_widget method passes the visualization JSON to the instantiated widget, which is returned and visualized on the front-end.
8.29629
4.326435
1.917581
''' Export a DataFrame from the front-end visualization. For instance, a user can filter to show only a single cluster using the dendrogram and then get a dataframe of this cluster using the widget_df method. ''' if hasattr(self, 'widget_instance') == True: if self.widget_instance.mat_string != '': tmp_net = deepcopy(Network()) df_string = self.widget_instance.mat_string tmp_net.load_file_as_string(df_string) df = tmp_net.export_df() return df else: return self.export_df() else: if hasattr(self, 'widget_class') == True: print('Please make the widget before exporting the widget DataFrame.') print('Do this using the widget method: net.widget()') else: print('Can not make widget because Network has no attribute widget_class') print('Please instantiate Network with clustergrammer_widget using: Network(clustergrammer_widget)')
def widget_df(self)
Export a DataFrame from the front-end visualization. For instance, a user can filter to show only a single cluster using the dendrogram and then get a dataframe of this cluster using the widget_df method.
7.456887
4.46862
1.668723
''' Save dat or viz as a JSON to file. ''' export_data.write_json_to_file(self, net_type, filename, indent)
def write_json_to_file(self, net_type, filename, indent='no-indent')
Save dat or viz as a JSON to file.
9.580324
3.421215
2.80027
''' Filter a network's rows or columns based on the sum across rows or columns. ''' inst_df = self.dat_to_df() if inst_rc == 'row': inst_df = run_filter.df_filter_row_sum(inst_df, threshold, take_abs) elif inst_rc == 'col': inst_df = run_filter.df_filter_col_sum(inst_df, threshold, take_abs) self.df_to_dat(inst_df)
def filter_sum(self, inst_rc, threshold, take_abs=True)
Filter a network's rows or columns based on the sum across rows or columns.
3.15746
2.483143
1.271558
''' Filter the matrix rows or columns based on sum/variance, and only keep the top N. ''' inst_df = self.dat_to_df() inst_df = run_filter.filter_N_top(inst_rc, inst_df, N_top, rank_type) self.df_to_dat(inst_df)
def filter_N_top(self, inst_rc, N_top, rank_type='sum')
Filter the matrix rows or columns based on sum/variance, and only keep the top N.
5.721913
3.169202
1.805475
''' Filter the matrix rows or columns based on num_occur values being above a threshold (in absolute value). ''' inst_df = self.dat_to_df() inst_df = run_filter.filter_threshold(inst_df, inst_rc, threshold, num_occur) self.df_to_dat(inst_df)
def filter_threshold(self, inst_rc, threshold, num_occur=1)
Filter the matrix rows or columns based on num_occur values being above a threshold (in absolute value).
6.373182
3.442139
1.851518
''' Filter the matrix based on their category. cat_index is the index of the category, the first category has index=1. ''' run_filter.filter_cat(self, axis, cat_index, cat_name)
def filter_cat(self, axis, cat_index, cat_name)
Filter the matrix based on their category. cat_index is the index of the category, the first category has index=1.
7.433342
2.904372
2.559363
''' Trim values at input thresholds using pandas function ''' df = self.export_df() df = df.clip(lower=lower, upper=upper) self.load_df(df)
def clip(self, lower=None, upper=None)
Trim values at input thresholds using pandas function
8.466238
3.902894
2.169221
''' Normalize the matrix rows or columns using Z-score (zscore) or Quantile Normalization (qn). Users can optionally pass in a DataFrame to be normalized (and this will be incorporated into the Network object). ''' normalize_fun.run_norm(self, df, norm_type, axis, keep_orig)
def normalize(self, df=None, norm_type='zscore', axis='row', keep_orig=False)
Normalize the matrix rows or columns using Z-score (zscore) or Quantile Normalization (qn). Users can optionally pass in a DataFrame to be normalized (and this will be incorporated into the Network object).
10.732241
2.51876
4.260922
''' Downsample the matrix rows or columns (currently supporting kmeans only). Users can optionally pass in a DataFrame to be downsampled (and this will be incorporated into the network object). ''' return downsample_fun.main(self, df, ds_type, axis, num_samples, random_state)
def downsample(self, df=None, ds_type='kmeans', axis='row', num_samples=100, random_state=1000)
Downsample the matrix rows or columns (currently supporting kmeans only). Users can optionally pass in a DataFrame to be downsampled (and this will be incorporated into the network object).
11.35239
2.695847
4.211066
''' Return random sample of matrix. ''' if df is None: df = self.dat_to_df() if axis == 'row': axis = 0 if axis == 'col': axis = 1 df = self.export_df() df = df.sample(n=num_samples, replace=replace, weights=weights, random_state=random_state, axis=axis) self.load_df(df)
def random_sample(self, num_samples, df=None, replace=False, weights=None, random_state=100, axis='row')
Return random sample of matrix.
3.369272
2.992014
1.126088
''' Add categories to rows or columns using cat_data array of objects. Each object in cat_data is a dictionary with one key (category title) and value (rows/column names) that have this category. Categories will be added onto the existing categories and will be added in the order of the objects in the array. Example ``cat_data``:: [ { "title": "First Category", "cats": { "true": [ "ROS1", "AAK1" ] } }, { "title": "Second Category", "cats": { "something": [ "PDK4" ] } } ] ''' for inst_data in cat_data: categories.add_cats(self, axis, inst_data)
def add_cats(self, axis, cat_data)
Add categories to rows or columns using cat_data array of objects. Each object in cat_data is a dictionary with one key (category title) and value (rows/column names) that have this category. Categories will be added onto the existing categories and will be added in the order of the objects in the array. Example ``cat_data``:: [ { "title": "First Category", "cats": { "true": [ "ROS1", "AAK1" ] } }, { "title": "Second Category", "cats": { "something": [ "PDK4" ] } } ]
7.195297
1.500161
4.796349
''' Add Enrichr gene enrichment results to your visualization (where your rows are genes). Run enrichrgram before clustering to incldue enrichment results as row categories. Enrichrgram can also be run on the front-end using the Enrichr logo at the top left. Set lib to the Enrichr library that you want to use for enrichment analysis. Libraries included: * ChEA_2016 * KEA_2015 * ENCODE_TF_ChIP-seq_2015 * ENCODE_Histone_Modifications_2015 * Disease_Perturbations_from_GEO_up * Disease_Perturbations_from_GEO_down * GO_Molecular_Function_2015 * GO_Biological_Process_2015 * GO_Cellular_Component_2015 * Reactome_2016 * KEGG_2016 * MGI_Mammalian_Phenotype_Level_4 * LINCS_L1000_Chem_Pert_up * LINCS_L1000_Chem_Pert_down ''' df = self.export_df() df, bar_info = enr_fun.add_enrichr_cats(df, axis, lib) self.load_df(df) self.dat['enrichrgram_lib'] = lib self.dat['row_cat_bars'] = bar_info
def enrichrgram(self, lib, axis='row')
Add Enrichr gene enrichment results to your visualization (where your rows are genes). Run enrichrgram before clustering to incldue enrichment results as row categories. Enrichrgram can also be run on the front-end using the Enrichr logo at the top left. Set lib to the Enrichr library that you want to use for enrichment analysis. Libraries included: * ChEA_2016 * KEA_2015 * ENCODE_TF_ChIP-seq_2015 * ENCODE_Histone_Modifications_2015 * Disease_Perturbations_from_GEO_up * Disease_Perturbations_from_GEO_down * GO_Molecular_Function_2015 * GO_Biological_Process_2015 * GO_Cellular_Component_2015 * Reactome_2016 * KEGG_2016 * MGI_Mammalian_Phenotype_Level_4 * LINCS_L1000_Chem_Pert_up * LINCS_L1000_Chem_Pert_down
5.336521
1.569959
3.399146
''' Loads gene expression data from 10x in sparse matrix format and returns a Pandas dataframe ''' import pandas as pd from scipy import io from scipy import sparse from ast import literal_eval as make_tuple # matrix Matrix = io.mmread( inst_path + 'matrix.mtx') mat = Matrix.todense() # genes filename = inst_path + 'genes.tsv' f = open(filename, 'r') lines = f.readlines() f.close() # # add unique id to all genes # genes = [] # unique_id = 0 # for inst_line in lines: # inst_line = inst_line.strip().split() # if len(inst_line) > 1: # inst_gene = inst_line[1] # else: # inst_gene = inst_line[0] # genes.append(inst_gene + '_' + str(unique_id)) # unique_id = unique_id + 1 # add unique id only to duplicate genes ini_genes = [] for inst_line in lines: inst_line = inst_line.strip().split() if len(inst_line) > 1: inst_gene = inst_line[1] else: inst_gene = inst_line[0] ini_genes.append(inst_gene) gene_name_count = pd.Series(ini_genes).value_counts() duplicate_genes = gene_name_count[gene_name_count > 1].index.tolist() dup_index = {} genes = [] for inst_row in ini_genes: # add index to non-unique genes if inst_row in duplicate_genes: # calc_non-unque index if inst_row not in dup_index: dup_index[inst_row] = 1 else: dup_index[inst_row] = dup_index[inst_row] + 1 new_row = inst_row + '_' + str(dup_index[inst_row]) else: new_row = inst_row genes.append(new_row) # barcodes filename = inst_path + 'barcodes.tsv' f = open(filename, 'r') lines = f.readlines() f.close() cell_barcodes = [] for inst_bc in lines: inst_bc = inst_bc.strip().split('\t') # remove dash from barcodes if necessary if '-' in inst_bc[0]: inst_bc[0] = inst_bc[0].split('-')[0] cell_barcodes.append(inst_bc[0]) # parse tuples if necessary try: cell_barcodes = [make_tuple(x) for x in cell_barcodes] except: pass try: genes = [make_tuple(x) for x in genes] except: pass # make dataframe df = pd.DataFrame(mat, index=genes, columns=cell_barcodes) return df
def load_gene_exp_to_df(inst_path)
Loads gene expression data from 10x in sparse matrix format and returns a Pandas dataframe
2.245439
2.134105
1.052169
''' Calculate the similarity of samples from the same and different categories. The cat_index gives the index of the category, where 1 in the first category ''' cols = df.columns.tolist() if type(precalc_dist) == bool: # compute distnace between rows (transpose to get cols as rows) dist_arr = 1 - pdist(df.transpose(), metric=dist_type) else: dist_arr = precalc_dist # generate sample names with categories sample_combos = list(combinations(range(df.shape[1]),2)) sample_names = [str(ind) + '_same' if cols[x[0]][cat_index] == cols[x[1]][cat_index] else str(ind) + '_different' for ind, x in enumerate(sample_combos)] ser_dist = pd.Series(data=dist_arr, index=sample_names) # find same-cat sample comparisons same_cat = [x for x in sample_names if x.split('_')[1] == 'same'] # find diff-cat sample comparisons diff_cat = [x for x in sample_names if x.split('_')[1] == 'different'] # make series of same and diff category sample comparisons ser_same = ser_dist[same_cat] ser_same.name = 'Same Category' ser_diff = ser_dist[diff_cat] ser_diff.name = 'Different Category' sim_dict = {} roc_data = {} sim_data = {} sim_dict['same'] = ser_same sim_dict['diff'] = ser_diff pval_dict = {} ttest_stat, pval_dict['ttest'] = ttest_ind(ser_diff, ser_same, equal_var=equal_var) ttest_stat, pval_dict['mannwhitney'] = mannwhitneyu(ser_diff, ser_same) if calc_roc: # calc AUC true_index = list(np.ones(sim_dict['same'].shape[0])) false_index = list(np.zeros(sim_dict['diff'].shape[0])) y_true = true_index + false_index true_val = list(sim_dict['same'].get_values()) false_val = list(sim_dict['diff'].get_values()) y_score = true_val + false_val fpr, tpr, thresholds = roc_curve(y_true, y_score) inst_auc = auc(fpr, tpr) if plot_roc: plt.figure() plt.plot(fpr, tpr) plt.plot([0, 1], [0, 1], color='navy', linestyle='--') plt.figure(figsize=(10,10)) print('AUC', inst_auc) roc_data['true'] = y_true roc_data['score'] = y_score roc_data['fpr'] = fpr roc_data['tpr'] = tpr roc_data['thresholds'] = thresholds roc_data['auc'] = inst_auc sim_data['sim_dict'] = sim_dict sim_data['pval_dict'] = pval_dict sim_data['roc_data'] = roc_data return sim_data
def sim_same_and_diff_category_samples(self, df, cat_index=1, dist_type='cosine', equal_var=False, plot_roc=True, precalc_dist=False, calc_roc=True)
Calculate the similarity of samples from the same and different categories. The cat_index gives the index of the category, where 1 in the first category
2.313072
2.156646
1.072532
''' Generate signatures for column categories ''' df_t = df_ini.transpose() # remove columns with constant values df_t = df_t.loc[:, (df_t != df_t.iloc[0]).any()] df = self.row_tuple_to_multiindex(df_t) cell_types = sorted(list(set(df.index.get_level_values(category_level).tolist()))) keep_genes = [] keep_genes_dict = {} gene_pval_dict = {} all_fold_info = {} for inst_ct in cell_types: inst_ct_mat = df.xs(key=inst_ct, level=category_level) inst_other_mat = df.drop(inst_ct, level=category_level) # save mean values and fold change fold_info = {} fold_info['cluster_mean'] = inst_ct_mat.mean() fold_info['other_mean'] = inst_other_mat.mean() fold_info['log2_fold'] = fold_info['cluster_mean']/fold_info['other_mean'] fold_info['log2_fold'] = fold_info['log2_fold'].apply(np.log2) all_fold_info[inst_ct] = fold_info inst_stats, inst_pvals = ttest_ind(inst_ct_mat, inst_other_mat, axis=0, equal_var=equal_var) ser_pval = pd.Series(data=inst_pvals, index=df.columns.tolist()).sort_values() if num_top_dims == False: ser_pval_keep = ser_pval[ser_pval < pval_cutoff] else: ser_pval_keep = ser_pval[:num_top_dims] gene_pval_dict[inst_ct] = ser_pval_keep inst_keep = ser_pval_keep.index.tolist() keep_genes.extend(inst_keep) keep_genes_dict[inst_ct] = inst_keep keep_genes = sorted(list(set(keep_genes))) df_gbm = df.groupby(level=category_level).mean().transpose() cols = df_gbm.columns.tolist() new_cols = [] for inst_col in cols: new_col = (inst_col, category_level + ': ' + inst_col) new_cols.append(new_col) df_gbm.columns = new_cols df_sig = df_gbm.ix[keep_genes] if len(keep_genes) == 0 and verbose: print('found no informative dimensions') df_gene_pval = pd.concat(gene_pval_dict, axis=1, sort=False) return df_sig, keep_genes_dict, df_gene_pval, all_fold_info
def generate_signatures(self, df_ini, category_level, pval_cutoff=0.05, num_top_dims=False, verbose=True, equal_var=False)
Generate signatures for column categories
2.431461
2.429037
1.000998
''' Predict category using signature ''' keep_rows = df_sig_ini.index.tolist() data_rows = df_data_ini.index.tolist() common_rows = list(set(data_rows).intersection(keep_rows)) df_data = deepcopy(df_data_ini.ix[common_rows]) df_sig = deepcopy(df_sig_ini.ix[common_rows]) # calculate sim_mat of df_data and df_sig cell_types = df_sig.columns.tolist() barcodes = df_data.columns.tolist() sim_mat = 1 - pairwise_distances(df_sig.transpose(), df_data.transpose(), metric=dist_type) df_sim = pd.DataFrame(data=sim_mat, index=cell_types, columns=barcodes).transpose() # get the top column value (most similar signature) df_sim_top = df_sim.idxmax(axis=1) # get the maximum similarity of a cell to a cell type definition max_sim = df_sim.max(axis=1) unknown_cells = max_sim[max_sim < unknown_thresh].index.tolist() # assign unknown cells (need category of same name) df_sim_top[unknown_cells] = 'Unknown' # add predicted category name to top list top_list = df_sim_top.get_values() top_list = [ predict_level + ': ' + x[0] if type(x) is tuple else predict_level + ': ' + x for x in top_list] # add cell type category to input data df_cat = deepcopy(df_data) cols = df_cat.columns.tolist() new_cols = [] # check whether the columns have the true category available has_truth = False if type(cols[0]) is tuple: has_truth = True if has_truth: new_cols = [tuple(list(a) + [b]) for a,b in zip(cols, top_list)] else: new_cols = [tuple([a] + [b]) for a,b in zip(cols, top_list)] # transfer new categories df_cat.columns = new_cols # keep track of true and predicted labels y_info = {} y_info['true'] = [] y_info['pred'] = [] if has_truth: y_info['true'] = [x[truth_level].split(': ')[1] for x in cols] y_info['pred'] = [x.split(': ')[1] for x in top_list] return df_cat, df_sim.transpose(), y_info
def predict_cats_from_sigs(self, df_data_ini, df_sig_ini, dist_type='cosine', predict_level='Predict Category', truth_level=1, unknown_thresh=-1)
Predict category using signature
2.951412
2.955857
0.998496