code
string
signature
string
docstring
string
loss_without_docstring
float64
loss_with_docstring
float64
factor
float64
''' Generate confusion matrix from y_info ''' a = deepcopy(y_info['true']) true_count = dict((i, a.count(i)) for i in set(a)) a = deepcopy(y_info['pred']) pred_count = dict((i, a.count(i)) for i in set(a)) sorted_cats = sorted(list(set(y_info['true'] + y_info['pred']))) conf_mat = confusion_matrix(y_info['true'], y_info['pred'], sorted_cats) df_conf = pd.DataFrame(conf_mat, index=sorted_cats, columns=sorted_cats) total_correct = np.trace(df_conf) total_pred = df_conf.sum().sum() fraction_correct = total_correct/float(total_pred) # calculate ser_correct correct_list = [] cat_counts = df_conf.sum(axis=1) all_cols = df_conf.columns.tolist() for inst_cat in all_cols: inst_correct = df_conf[inst_cat].loc[inst_cat] / cat_counts[inst_cat] correct_list.append(inst_correct) ser_correct = pd.Series(data=correct_list, index=all_cols) populations = {} populations['true'] = true_count populations['pred'] = pred_count return df_conf, populations, ser_correct, fraction_correct
def confusion_matrix_and_correct_series(self, y_info)
Generate confusion matrix from y_info
2.583829
2.582159
1.000647
''' load data into nodes and mat, also convert mat to numpy array''' net.dat['nodes'] = inst_net['nodes'] net.dat['mat'] = inst_net['mat'] data_formats.mat_to_numpy_arr(net)
def load_data_to_net(net, inst_net)
load data into nodes and mat, also convert mat to numpy array
7.712164
4.54656
1.696264
''' export json string of dat ''' import json from copy import deepcopy if net_type == 'dat': exp_dict = deepcopy(net.dat) if type(exp_dict['mat']) is not list: exp_dict['mat'] = exp_dict['mat'].tolist() if 'mat_orig' in exp_dict: exp_dict['mat_orig'] = exp_dict['mat_orig'].tolist() elif net_type == 'viz': exp_dict = net.viz elif net_type == 'sim_row': exp_dict = net.sim['row'] elif net_type == 'sim_col': exp_dict = net.sim['col'] # make json if indent == 'indent': exp_json = json.dumps(exp_dict, indent=2) else: exp_json = json.dumps(exp_dict) return exp_json
def export_net_json(net, net_type, indent='no-indent')
export json string of dat
2.720608
2.572315
1.05765
''' This will export the matrix in net.dat or a dataframe (optional df in arguments) as a tsv file. Row/column categories will be saved as tuples in tsv, which can be read back into the network object. ''' import pandas as pd if df is None: df = net.dat_to_df() return df['mat'].to_csv(filename, sep='\t')
def write_matrix_to_tsv(net, filename=None, df=None)
This will export the matrix in net.dat or a dataframe (optional df in arguments) as a tsv file. Row/column categories will be saved as tuples in tsv, which can be read back into the network object.
10.155687
2.219037
4.576619
''' Run in load_data module (which runs when file is loaded or dataframe is loaded), check for duplicate row/col names, and add index to names if necesary ''' if df is None: df = net.export_df() # rows ############# rows = df.index.tolist() if type(rows[0]) is str: if len(rows) != len(list(set(rows))): new_rows = add_index_list(rows) df.index = new_rows elif type(rows[0]) is tuple: row_names = [] for inst_row in rows: row_names.append(inst_row[0]) if len(row_names) != len(list(set(row_names))): row_names = add_index_list(row_names) # add back to tuple new_rows = [] for inst_index in range(len(rows)): inst_row = rows[inst_index] new_row = list(inst_row) new_row[0] = row_names[inst_index] new_row = tuple(new_row) new_rows.append(new_row) df.index = new_rows # cols ############# cols = df.columns.tolist() if type(cols[0]) is str: # list column names if len(cols) != len(list(set(cols))): new_cols = add_index_list(cols) df.columns = new_cols elif type(cols[0]) is tuple: col_names = [] for inst_col in cols: col_names.append(inst_col[0]) if len(col_names) != len(list(set(col_names))): col_names = add_index_list(col_names) # add back to tuple new_cols = [] for inst_index in range(len(cols)): inst_col = cols[inst_index] new_col = list(inst_col) new_col[0] = col_names[inst_index] new_col = tuple(new_col) new_cols.append(new_col) df.columns = new_cols # return dataframe with unique names return df
def main(net, df=None)
Run in load_data module (which runs when file is loaded or dataframe is loaded), check for duplicate row/col names, and add index to names if necesary
2.10398
1.641267
1.281924
class NPM(BaseCommand): description = 'install package.json dependencies using npm' def run(self): if skip_npm: log.info('Skipping npm-installation') return node_package = path or HERE node_modules = pjoin(node_package, 'node_modules') is_yarn = os.path.exists(pjoin(node_package, 'yarn.lock')) npm_cmd = npm if npm is None: if is_yarn: npm_cmd = ['yarn'] else: npm_cmd = ['npm'] if not which(npm_cmd[0]): log.error("`{0}` unavailable. If you're running this command " "using sudo, make sure `{0}` is availble to sudo" .format(npm_cmd[0])) return if force or is_stale(node_modules, pjoin(node_package, 'package.json')): log.info('Installing build dependencies with npm. This may ' 'take a while...') run(npm_cmd + ['install'], cwd=node_package) if build_dir and source_dir and not force: should_build = is_stale(build_dir, source_dir) else: should_build = True if should_build: run(npm_cmd + ['run', build_cmd], cwd=node_package) return NPM
def install_npm(path=None, build_dir=None, source_dir=None, build_cmd='build', force=False, npm=None)
Return a Command for managing an npm installation. Note: The command is skipped if the `--skip-npm` flag is used. Parameters ---------- path: str, optional The base path of the node package. Defaults to the repo root. build_dir: str, optional The target build directory. If this and source_dir are given, the JavaScript will only be build if necessary. source_dir: str, optional The source code directory. build_cmd: str, optional The npm command to build assets to the build_dir. npm: str or list, optional. The npm executable name, or a tuple of ['node', executable].
3.013625
2.777075
1.08518
if parts[0] in ('.', ''): parts = parts[1:] return pjoin(*parts).replace(os.sep, '/')
def _glob_pjoin(*parts)
Join paths for glob processing
3.5307
3.512542
1.005169
# Extract the existing data files into a staging object. file_data = defaultdict(list) for (path, files) in existing or []: file_data[path] = files # Extract the files and assign them to the proper data # files path. for (path, dname, pattern) in data_specs or []: if os.path.isabs(dname): dname = os.path.relpath(dname, top) dname = dname.replace(os.sep, '/') offset = 0 if dname in ('.', '') else len(dname) + 1 files = _get_files(_glob_pjoin(dname, pattern), top=top) for fname in files: # Normalize the path. root = os.path.dirname(fname) full_path = _glob_pjoin(path, root[offset:]) print(dname, root, full_path, offset) if full_path.endswith('/'): full_path = full_path[:-1] file_data[full_path].append(fname) # Construct the data files spec. data_files = [] for (path, files) in file_data.items(): data_files.append((path, files)) return data_files
def _get_data_files(data_specs, existing, top=HERE)
Expand data file specs into valid data files metadata. Parameters ---------- data_specs: list of tuples See [create_cmdclass] for description. existing: list of tuples The existing distrubution data_files metadata. Returns ------- A valid list of data_files items.
3.291406
3.351249
0.982143
if not isinstance(file_patterns, (list, tuple)): file_patterns = [file_patterns] for i, p in enumerate(file_patterns): if os.path.isabs(p): file_patterns[i] = os.path.relpath(p, top) matchers = [_compile_pattern(p) for p in file_patterns] files = set() for root, dirnames, filenames in os.walk(top): # Don't recurse into node_modules if 'node_modules' in dirnames: dirnames.remove('node_modules') for m in matchers: for filename in filenames: fn = os.path.relpath(_glob_pjoin(root, filename), top) fn = fn.replace(os.sep, '/') if m(fn): files.add(fn.replace(os.sep, '/')) return list(files)
def _get_files(file_patterns, top=HERE)
Expand file patterns to a list of paths. Parameters ----------- file_patterns: list or str A list of glob patterns for the data file locations. The globs can be recursive if they include a `**`. They should be relative paths from the top directory or absolute paths. top: str the directory to consider for data files Note: Files in `node_modules` are ignored.
2.300898
2.325896
0.989252
if file_patterns is None: file_patterns = ['*'] return _get_files(file_patterns, _glob_pjoin(HERE, root))
def _get_package_data(root, file_patterns=None)
Expand file patterns to a list of `package_data` paths. Parameters ----------- root: str The relative path to the package root from `HERE`. file_patterns: list or str, optional A list of glob patterns for the data file locations. The globs can be recursive if they include a `**`. They should be relative paths from the root or absolute paths. If not given, all files will be used. Note: Files in `node_modules` are ignored.
5.764047
6.285498
0.917039
''' filter rows in matrix at some threshold and remove columns that have a sum below this threshold ''' from copy import deepcopy from .__init__ import Network net = Network() if take_abs is True: df_copy = deepcopy(df['mat'].abs()) else: df_copy = deepcopy(df['mat']) ini_rows = df_copy.index.values.tolist() df_copy = df_copy.transpose() tmp_sum = df_copy.sum(axis=0) tmp_sum = tmp_sum.abs() tmp_sum.sort_values(inplace=True, ascending=False) tmp_sum = tmp_sum[tmp_sum > threshold] keep_rows = sorted(tmp_sum.index.values.tolist()) if len(keep_rows) < len(ini_rows): df['mat'] = grab_df_subset(df['mat'], keep_rows=keep_rows) if 'mat_up' in df: df['mat_up'] = grab_df_subset(df['mat_up'], keep_rows=keep_rows) df['mat_dn'] = grab_df_subset(df['mat_dn'], keep_rows=keep_rows) if 'mat_orig' in df: df['mat_orig'] = grab_df_subset(df['mat_orig'], keep_rows=keep_rows) return df
def df_filter_row_sum(df, threshold, take_abs=True)
filter rows in matrix at some threshold and remove columns that have a sum below this threshold
2.624914
2.275199
1.153707
''' filter columns in matrix at some threshold and remove rows that have all zero values ''' from copy import deepcopy from .__init__ import Network net = Network() if take_abs is True: df_copy = deepcopy(df['mat'].abs()) else: df_copy = deepcopy(df['mat']) df_copy = df_copy.transpose() df_copy = df_copy[df_copy.sum(axis=1) > threshold] df_copy = df_copy.transpose() df_copy = df_copy[df_copy.sum(axis=1) > 0] if take_abs is True: inst_rows = df_copy.index.tolist() inst_cols = df_copy.columns.tolist() df['mat'] = grab_df_subset(df['mat'], inst_rows, inst_cols) if 'mat_up' in df: df['mat_up'] = grab_df_subset(df['mat_up'], inst_rows, inst_cols) df['mat_dn'] = grab_df_subset(df['mat_dn'], inst_rows, inst_cols) if 'mat_orig' in df: df['mat_orig'] = grab_df_subset(df['mat_orig'], inst_rows, inst_cols) else: df['mat'] = df_copy return df
def df_filter_col_sum(df, threshold, take_abs=True)
filter columns in matrix at some threshold and remove rows that have all zero values
2.33588
2.037461
1.146466
''' Filter a network's rows or cols based on num_occur values being above a threshold (in absolute_value) ''' from copy import deepcopy inst_df = deepcopy(df['mat']) if inst_rc == 'col': inst_df = inst_df.transpose() inst_df = inst_df.abs() ini_rows = inst_df.index.values.tolist() inst_df[inst_df < threshold] = 0 inst_df[inst_df >= threshold] = 1 tmp_sum = inst_df.sum(axis=1) tmp_sum = tmp_sum[tmp_sum >= num_occur] keep_names = tmp_sum.index.values.tolist() if inst_rc == 'row': if len(keep_names) < len(ini_rows): df['mat'] = grab_df_subset(df['mat'], keep_rows=keep_names) if 'mat_up' in df: df['mat_up'] = grab_df_subset(df['mat_up'], keep_rows=keep_names) df['mat_dn'] = grab_df_subset(df['mat_dn'], keep_rows=keep_names) if 'mat_orig' in df: df['mat_orig'] = grab_df_subset(df['mat_orig'], keep_rows=keep_names) elif inst_rc == 'col': inst_df = inst_df.transpose() inst_rows = inst_df.index.values.tolist() inst_cols = keep_names df['mat'] = grab_df_subset(df['mat'], inst_rows, inst_cols) if 'mat_up' in df: df['mat_up'] = grab_df_subset(df['mat_up'], inst_rows, inst_cols) df['mat_dn'] = grab_df_subset(df['mat_dn'], inst_rows, inst_cols) if 'mat_orig' in df: df['mat_orig'] = grab_df_subset(df['mat_orig'], inst_rows, inst_cols) return df
def filter_threshold(df, inst_rc, threshold, num_occur=1)
Filter a network's rows or cols based on num_occur values being above a threshold (in absolute_value)
2.089944
1.786433
1.169898
flags = CompilerFlags(0) if not isinstance(bytecode, (_bytecode.Bytecode, _bytecode.ConcreteBytecode, _bytecode.ControlFlowGraph)): msg = ('Expected a Bytecode, ConcreteBytecode or ControlFlowGraph ' 'instance not %s') raise ValueError(msg % bytecode) instructions = (bytecode.get_instructions() if isinstance(bytecode, _bytecode.ControlFlowGraph) else bytecode) instr_names = {i.name for i in instructions if not isinstance(i, (_bytecode.SetLineno, _bytecode.Label))} if not (instr_names & {'STORE_NAME', 'LOAD_NAME', 'DELETE_NAME'}): flags |= CompilerFlags.OPTIMIZED flags |= bytecode.flags & (CompilerFlags.NEWLOCALS | CompilerFlags.VARARGS | CompilerFlags.VARKEYWORDS | CompilerFlags.NESTED) if instr_names & {'YIELD_VALUE', 'YIELD_FROM'}: if not is_async and not bytecode.flags & CompilerFlags.ASYNC_GENERATOR: flags |= CompilerFlags.GENERATOR else: flags |= CompilerFlags.ASYNC_GENERATOR if not (instr_names & {'LOAD_CLOSURE', 'LOAD_DEREF', 'STORE_DEREF', 'DELETE_DEREF', 'LOAD_CLASSDEREF'}): flags |= CompilerFlags.NOFREE if (not (bytecode.flags & CompilerFlags.ITERABLE_COROUTINE or flags & CompilerFlags.ASYNC_GENERATOR) and (instr_names & {'GET_AWAITABLE', 'GET_AITER', 'GET_ANEXT', 'BEFORE_ASYNC_WITH', 'SETUP_ASYNC_WITH'} or bytecode.flags & CompilerFlags.COROUTINE)): flags |= CompilerFlags.COROUTINE flags |= bytecode.flags & CompilerFlags.ITERABLE_COROUTINE flags |= bytecode.flags & CompilerFlags.FUTURE_GENERATOR_STOP if ([bool(flags & getattr(CompilerFlags, k)) for k in ('COROUTINE', 'ITERABLE_COROUTINE', 'GENERATOR', 'ASYNC_GENERATOR')].count(True) > 1): raise ValueError("Code should not have more than one of the " "following flag set : generator, coroutine, " "iterable coroutine and async generator, got:" "%s" % flags) return flags
def infer_flags(bytecode, is_async=False)
Infer the proper flags for a bytecode based on the instructions.
2.68668
2.661506
1.009459
used_blocks = set() for block in self: target_block = block.get_jump() if target_block is not None: used_blocks.add(id(target_block)) labels = {} jumps = [] instructions = [] for block in self: if id(block) in used_blocks: new_label = Label() labels[id(block)] = new_label instructions.append(new_label) for instr in block: # don't copy SetLineno objects if isinstance(instr, (Instr, ConcreteInstr)): instr = instr.copy() if isinstance(instr.arg, BasicBlock): jumps.append(instr) instructions.append(instr) # Map to new labels for instr in jumps: instr.arg = labels[id(instr.arg)] bytecode = _bytecode.Bytecode() bytecode._copy_attr_from(self) bytecode.argnames = list(self.argnames) bytecode[:] = instructions return bytecode
def to_bytecode(self)
Convert to Bytecode.
3.566756
3.456543
1.031885
if stacksize is None: stacksize = self.compute_stacksize() bc = self.to_bytecode() return bc.to_code(stacksize=stacksize)
def to_code(self, stacksize=None)
Convert to code.
4.109174
3.123897
1.3154
self._set(name, arg, self._lineno)
def set(self, name, arg=UNSET)
Modify the instruction in-place. Replace name and arg attributes. Don't modify lineno.
15.839335
9.907252
1.598762
global _tf_version_string, _tf_version _tf_version_string = tf.__version__ _tf_version = _parse_tf_version(_tf_version_string) if order is not None: optimize(order)
def setup(tf, order=None)
Sets up global variables (currently only the tensorflow version) to adapt to peculiarities of different tensorflow versions. This function should only be called before :py:class:`Model` creation, not for evaluation. Therefore, the tensorflow module *tf* must be passed: .. code-block:: python import tensorflow as tf import tfdeploy as td td.setup(tf) # ... Also, when *order* is not *None*, it is forwarded to :py:func:`optimize` for convenience.
3.445187
3.200597
1.07642
if not isinstance(order, (list, tuple)): order = [order] for op in Operation.__subclasses__(): for impl in order: if impl in op.impls: op.use_impl(impl) break
def optimize(order)
optimize(impl) Tries to set the implementation type of all registered :py:class:`Operation` classes to *impl*. This has no effect when an op does not implement that type. The behavior is equivalent to: .. code-block:: python for op in Operation.__subclasses__(): if impl in op.impls: op.use_impl(impl) *impl* can also be a list or tuple of valid implementation types representing a preferred order.
4.448362
2.387743
1.862999
offset = depth * indent line = "td tensor: %s" % td_tensor.name if td_tensor.value is not None: line += " (%s)" % (",".join(str(i) for i in td_tensor.value.shape),) print(offset + line) if td_tensor.op and (max_depth < 0 or max_depth > depth): print_op(td_tensor.op, indent=indent, max_depth=max_depth, depth=depth+1)
def print_tensor(td_tensor, indent="| ", max_depth=-1, depth=0)
print_tensor(td_tensor, indent=" ", max_depth=-1) Prints the dependency graph of a :py:class:`Tensor` *td_tensor*, where each new level is indented by *indent*. When *max_depth* is positive, the graph is truncated at that depth, where each tensor and each op count as a level.
2.874099
3.121644
0.920701
offset = depth * indent line = "td op: %s (%s)" % (td_op.name, ",".join(td_op.types)) print(offset + line) if max_depth < 0 or max_depth > depth: for td_tensor in td_op.inputs: print_tensor(td_tensor, indent=indent, max_depth=max_depth, depth=depth+1)
def print_op(td_op, indent="| ", max_depth=-1, depth=0)
print_op(td_op, indent=" ", max_depth=-1) Prints the dependency graph of a :py:class:`Operation` *td_op*, where each new level is indented by *indent*. When *max_depth* is positive, the graph is truncated at that depth, where each tensor and each op count as a level.
2.85594
3.294827
0.866795
offset = depth * indent shape = tuple(int(i) for i in tf_tensor.get_shape()) line = "tf tensor: %s (%s)" % (tf_tensor.name, ",".join(str(i) for i in shape)) print(offset + line) if tf_tensor.op and (max_depth < 0 or max_depth > depth): print_tf_op(tf_tensor.op, indent=indent, max_depth=max_depth, depth=depth+1)
def print_tf_tensor(tf_tensor, indent="| ", max_depth=-1, depth=0)
print_tf_tensor(tf_tensor, indent=" ", max_depth=-1) Prints the dependency graph of a tensorflow tensor *tf_tensor*, where each new level is indented by *indent*. When *max_depth* is positive, the graph is truncated at that depth, where each tensor and each op count as a level.
2.749057
2.971262
0.925215
offset = depth * indent line = "tf op: %s (%s)" % (tf_op.name, tf_op.type) print(offset + line) if max_depth < 0 or max_depth > depth: for tf_tensor in tf_op.inputs: print_tf_tensor(tf_tensor, indent=indent, max_depth=max_depth, depth=depth+1)
def print_tf_op(tf_op, indent="| ", max_depth=-1, depth=0)
print_tf_op(tf_tensor, indent=" ", max_depth=-1) Prints the dependency graph of a tensorflow operation *tf_op*, where each new level is indented by *indent*. When *max_depth* is positive, the graph is truncated at that depth, where each tensor and each op count as a level.
2.461185
2.864372
0.859241
return np.linspace(start, stop, num=num, dtype=np.float32),
def LinSpace(start, stop, num)
Linspace op.
3.631397
3.945607
0.920365
return np.arange(start, limit, delta, dtype=np.int32),
def Range(start, limit, delta)
Range op.
4.600969
5.235152
0.878861
if seed: np.random.seed(seed) return np.random.normal(size=reduce(mul, shape)).reshape(shape).astype(dtype_map[dtype]),
def RandomStandardNormal(shape, dtype, seed)
Standard (mu=0, sigma=1) gaussian op.
4.552612
4.6658
0.975741
if seed: np.random.seed(seed) n = reduce(mul, shape) r = np.empty(n, dtype=dtype_map[dtype]) idxs = np.ones(n, dtype=np.bool) while n: r[idxs] = np.random.normal(size=n) idxs = np.abs(r) > 2 n = np.sum(idxs) return r.reshape(shape),
def TruncatedNormal(shape, dtype, seed)
Standard (mu=0, sigma=1) gaussian op with truncation above 2 sigma.
3.19168
3.207171
0.99517
if seed: np.random.seed(seed) return np.random.uniform(size=shape).astype(dtype_map[dtype]),
def RandomUniform(shape, dtype, seed)
Random uniform op.
3.503533
3.838511
0.912732
if seed: np.random.seed(seed) return np.random.randint(minval, maxval, size=shape),
def RandomUniformInt(shape, minval, maxval, seed)
Random uniform int op.
2.71525
3.075612
0.882833
if seed: np.random.seed(seed) r = a.copy() np.random.shuffle(r) return r,
def RandomShuffle(a, seed)
Random uniform op.
2.78267
3.176006
0.876154
return np.array([len(a.shape)], dtype=np.int32),
def Rank(a)
Rank op.
8.843553
8.067099
1.096249
if not squeeze_dims: squeeze_dims = list(range(len(a.shape))) slices = [(0 if (dim == 1 and i in squeeze_dims) else slice(None)) \ for i, dim in enumerate(a.shape)] return np.copy(a)[slices],
def Squeeze(a, squeeze_dims)
Squeeze op, i.e. removes singular axes.
3.279469
3.429935
0.956132
shape = list(a.shape) if dim >= 0: shape.insert(dim, 1) else: shape.insert(len(shape) + dim + 1, 1) return np.copy(a).reshape(*shape),
def ExpandDims(a, dim)
Expand dim op, i.e. add singular axis at dim.
2.469491
2.479747
0.995864
return np.copy(a)[[slice(*tpl) for tpl in zip(begin, begin+size)]],
def Slice(a, begin, size)
Slicing op.
7.878357
9.068686
0.868743
return tuple(np.split(np.copy(a), n, axis=axis))
def Split(axis, a, n)
Split op with n splits.
4.688277
5.609359
0.835795
return tuple(np.split(np.copy(a), np.cumsum(splits), axis=axis))
def SplitV(a, splits, axis)
Split op with multiple split sizes.
4.17034
4.71657
0.884189
axis = inputs.pop() return np.concatenate(inputs, axis=axis),
def ConcatV2(inputs)
Concat op.
9.644657
10.78195
0.894519
return tuple(np.squeeze(b, axis=axis) for b in np.split(a, num, axis=axis))
def Unpack(a, num, axis)
Unpack op.
3.298717
4.186443
0.787952
r = np.copy(a) invidxs = (len(r.shape) - 1) * [slice(None)] if seq_dim < batch_dim: invidxs[seq_dim] = slice(None, None, -1) else: invidxs[seq_dim - 1] = slice(None, None, -1) _invidxs = tuple(invidxs) selidxs = len(r.shape) * [slice(None)] for i, l in enumerate(seq_lengths): if not l: continue selidxs[batch_dim] = i selidxs[seq_dim] = slice(0, l) _selidxs = tuple(selidxs) r[_selidxs] = a[_selidxs][_invidxs] return r,
def ReverseSequence(a, seq_lengths, seq_dim, batch_dim)
Sequential reverse op.
2.218508
2.228698
0.995428
idxs = tuple(slice(None, None, 2 * int(i not in axes) - 1) for i in range(len(a.shape))) return np.copy(a[idxs]),
def ReverseV2(a, axes)
Reverse op.
4.553762
4.645198
0.980316
return sp.special.betainc(a, b, x),
def Betainc(a, b, x)
Complemented, incomplete gamma op.
5.504312
5.29425
1.039677
r = np.zeros(2 * a.shape, dtype=a.dtype) for idx, v in np.ndenumerate(a): r[2 * idx] = v return r,
def Diag(a)
Diag op.
3.793443
3.774704
1.004964
r = np.zeros(a.shape[:-2] + (min(a.shape[-2:]),)) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.diagonal(a[pos]) return r,
def MatrixDiagPart(a)
Batched diag op that returns only the diagonal elements.
3.066764
3.214586
0.954015
return np.dot(a if not transpose_a else np.transpose(a), b if not transpose_b else np.transpose(b)),
def MatMul(a, b, transpose_a, transpose_b)
Matrix multiplication op.
2.799559
2.953671
0.947824
return np.linalg.inv(a if not adj else _adjoint(a)),
def MatrixInverse(a, adj)
Matrix inversion op.
8.435327
8.34704
1.010577
return np.linalg.solve(a if not adj else _adjoint(a), rhs),
def MatrixSolve(a, rhs, adj)
Matrix solve op.
8.352999
8.636946
0.967124
trans = 0 if not adj else 2 r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = sp.linalg.solve_triangular(a[pos] if not adj else np.conj(a[pos]), rhs[pos], trans=trans, lower=lower) return r,
def MatrixTriangularSolve(a, rhs, lower, adj)
Matrix triangular solve op.
4.273401
4.319919
0.989232
r = np.empty(rhs.shape).astype(a.dtype) for coord in np.ndindex(a.shape[:-2]): pos = coord + (Ellipsis,) r[pos] = np.linalg.lstsq(a[pos], rhs[pos])[0] return r,
def MatrixSolveLs(a, rhs, l2_reg)
Matrix least-squares solve op.
3.646143
3.567899
1.02193
shape = list(a.shape) shape[-2] += 1 return np.append(*np.linalg.eig(a)).reshape(*shape),
def SelfAdjointEig(a)
Eigen decomp op.
7.056018
7.587093
0.930003
u, s, v = np.linalg.svd(a, full_matrices=full, compute_uv=uv) return s, u, v
def Svd(a, uv, full)
Single value decomp op.
2.434459
2.496447
0.975169
return np.sum(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
def Sum(a, axis, keep_dims)
Sum reduction op.
3.880393
4.047409
0.958735
return np.prod(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
def Prod(a, axis, keep_dims)
Prod reduction op.
3.886592
3.999415
0.97179
return np.amin(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
def Min(a, axis, keep_dims)
Min reduction op.
4.372643
4.389674
0.99612
return np.amax(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
def Max(a, axis, keep_dims)
Max reduction op.
4.028647
4.240833
0.949966
return np.mean(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
def Mean(a, axis, keep_dims)
Mean reduction op.
3.773323
4.106915
0.918773
return np.all(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
def All(a, axis, keep_dims)
All reduction op.
3.945342
4.268853
0.924216
return np.any(a, axis=axis if not isinstance(axis, np.ndarray) else tuple(axis), keepdims=keep_dims),
def Any(a, axis, keep_dims)
Any reduction op.
3.909226
4.432742
0.881898
func = lambda idxs: reduce(np.add, a[idxs]) return seg_map(func, a, ids),
def SegmentSum(a, ids, *args)
Segmented sum op.
10.756198
9.263833
1.161096
func = lambda idxs: reduce(np.multiply, a[idxs]) return seg_map(func, a, ids),
def SegmentProd(a, ids)
Segmented prod op.
9.657506
8.893114
1.085953
func = lambda idxs: np.amin(a[idxs], axis=0) return seg_map(func, a, ids),
def SegmentMin(a, ids)
Segmented min op.
7.016713
6.775658
1.035577
func = lambda idxs: np.amax(a[idxs], axis=0) return seg_map(func, a, ids),
def SegmentMax(a, ids)
Segmented max op.
6.347635
6.041828
1.050615
func = lambda idxs: np.mean(a[idxs], axis=0) return seg_map(func, a, ids),
def SegmentMean(a, ids)
Segmented mean op.
5.727454
5.616382
1.019776
func = lambda _idxs: np.divide(reduce(np.add, a[idxs][_idxs]), np.math.sqrt(len(_idxs))) return seg_map(func, a, ids),
def SparseSegmentSqrtN(a, idxs, ids)
Sparse segmented sum / sqrt(n=len(idxs)) op.
8.728653
8.338761
1.046757
d = np.setdiff1d(a, b) return d, np.searchsorted(a, d).astype(np.int32)
def ListDiff(a, b)
List diff op.
3.933892
4.249426
0.925747
_, idxs, inv = np.unique(a, return_index=True, return_inverse=True) return np.copy(a)[np.sort(idxs)], idxs[inv].astype(dtype_map[t])
def Unique(a, t)
Unique op.
3.504902
3.820215
0.917462
return np.where(a < 0, np.subtract(np.exp(a), 1), a),
def Elu(a)
Elu op.
5.172436
4.733149
1.092811
return np.divide(a, np.add(np.abs(a), 1)),
def Softsign(a)
Softsign op.
4.234314
5.114306
0.827935
e = np.exp(a) return np.divide(e, np.sum(e, axis=-1, keepdims=True)),
def Softmax(a)
Softmax op.
3.082639
3.282941
0.938987
if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _conv_patches(a, f, 3 * [strides], padding.decode("ascii")) conv = np.sum(patches, axis=tuple(range(-f.ndim, -1))) if data_format.decode("ascii") == "NCHW": conv = np.rollaxis(conv, -1, 1) return conv,
def Conv1D(a, f, strides, padding, data_format)
1D conv op.
3.535972
3.594656
0.983675
patches = _conv_patches(a, f, strides, padding.decode("ascii")) return np.sum(patches, axis=tuple(range(-f.ndim, -1))),
def Conv3D(a, f, strides, padding)
3D conv op.
6.987578
7.070533
0.988268
if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _pool_patches(a, k, strides, padding.decode("ascii")) pool = np.average(patches, axis=tuple(range(-len(k), 0))) if data_format.decode("ascii") == "NCHW": pool = np.rollaxis(pool, -1, 1) return pool,
def AvgPool(a, k, strides, padding, data_format)
Average pooling op.
3.007273
3.080016
0.976382
if data_format.decode("ascii") == "NCHW": a = np.rollaxis(a, 1, -1), patches = _pool_patches(a, k, strides, padding.decode("ascii")) pool = np.amax(patches, axis=tuple(range(-len(k), 0))) if data_format.decode("ascii") == "NCHW": pool = np.rollaxis(pool, -1, 1) return pool,
def MaxPool(a, k, strides, padding, data_format)
Maximum pooling op.
3.06828
3.134064
0.97901
patches = _pool_patches(a, k, strides, padding.decode("ascii")) return np.average(patches, axis=tuple(range(-len(k), 0))),
def AvgPool3D(a, k, strides, padding)
Average 3D pooling op.
5.699454
5.900015
0.966007
patches = _pool_patches(a, k, strides, padding.decode("ascii")) return np.amax(patches, axis=tuple(range(-len(k), 0))),
def MaxPool3D(a, k, strides, padding)
Maximum 3D pooling op.
5.708325
5.912484
0.96547
tensors = tuple(self._get(name, **kwargs) for name in names) return tensors[0] if len(names) == 1 else tensors
def get(self, *names, **kwargs)
get(*names, key=None) Returns one or more :py:class:`Tensor` instances given by *names* using a deep lookup within the model. If *key* is not *None*, only the root tensor with that *key* is traversed. *None* is returned when no tensor was found. In case a tensor is passed, it's name is used for the lookup.
3.649331
3.366309
1.084075
if not isinstance(tensor, Tensor): tensor = Tensor(tensor, tf_sess, **kwargs) if key is None: if len(self.roots) == 0: key = 0 else: key = max(self.roots.keys()) + 1 self.roots[key] = tensor
def add(self, tensor, tf_sess=None, key=None, **kwargs)
Adds a new root *tensor* for a *key* which, if *None*, defaults to a consecutive number. When *tensor* is not an instance of :py:class:`Tensor` but an instance of ``tensorflow.Tensor``, it is converted first. In that case, *tf_sess* should be a valid tensorflow session and *kwargs* are forwarded to the :py:class:`Tensor` constructor.
2.441759
1.95871
1.246616
path = os.path.expandvars(os.path.expanduser(path)) with open(path, "rb") as f: roots = pickle.load(f) for key, tensor in roots.items(): self.add(tensor, key=key)
def load(self, path)
Loads all tensors from a file defined by *path* and adds them to the root set.
3.116846
2.333605
1.335636
path = os.path.expandvars(os.path.expanduser(path)) with open(path, "wb") as f: pickle.dump(self.roots, f)
def save(self, path)
Saves all tensors of the root set to a file defined by *path*.
2.988476
2.474138
1.207886
# create empty tensor ensembles with our method tensor_ensembles = [TensorEnsemble([], self.method) for name in names] # loop over models, collect and add tensors for model in self.models: tensors = model.get(*names, **kwargs) if not isinstance(tensors, tuple): tensors = (tensors,) for i, t in enumerate(tensors if isinstance(tensors, tuple) else (tensors,)): tensor_ensembles[i].tensors.append(t) return tensor_ensembles[0] if len(names) == 1 else tuple(tensor_ensembles)
def get(self, *names, **kwargs)
get(*names, key=None) Returns one or more :py:class:`TensorEnsemble` instances given by *names* using a deep lookup within all read models. Each returned tensor ensemble will have ``len(models)`` tensors. If a model does not contain a specific tensor defined by a specific *name*, the associated ensemble tensor will contain a *None* for that model in its tensors. If *key* is not *None*, only the root tensors with that *key* are traversed.
3.445448
3.203067
1.075671
for path in paths: self.models.append(Model(path))
def load(self, paths)
Loads models from a list of *paths*.
5.865807
4.503778
1.302419
# first, check that the length of all feed_dict keys match our own length for tensor_ensemble in feed_dict: if len(tensor_ensemble.tensors) != len(self.tensors): raise EnsembleMismatchException("incompatible lengths of tensors: %d, %d" \ % (len(self.tensors), len(tensor_ensemble.tensors))) # create a joined uuid _uuid = uuid4() # prepare feed_dicts feed_dicts = [{} for _ in range(len(self.tensors))] for tensor_ensemble, value in feed_dict.items(): for i, tensor in enumerate(tensor_ensemble.tensors): if tensor is not None: feed_dicts[i][tensor] = value[i] if isinstance(value, (list, tuple)) else value # eval all tensors values = [t.eval(feed_dict=d, _uuid=_uuid) for t, d in zip(self.tensors, feed_dicts)] # return the computed ensemble value return self.func(values)
def eval(self, feed_dict=None)
Evaluates all contained tensors using a *feed_dict* and returns the ensemble value. The keys of *feed_dict* must be tensor ensembles. Its values can be batches, i.e., numpy arrays, or lists or tuples of batches. In the latter case, these lists or tuples must have the same length as the list of stored tensors as they will be mapped.
3.771421
3.134256
1.203291
if self.method == METHOD_MEAN: return self.func_mean(values) elif self.method == METHOD_MAX: return self.func_max(values) elif self.method == METHOD_MIN: return self.func_min(values) elif self.method == METHOD_CUSTOM: return self.func_custom(values) else: raise UnknownEnsembleMethodException(self.method)
def func(self, values)
The actual ensembling logic that combines multiple *values*. The method call is forwareded tothe ensemble method-specific variant which is determined using *method*.
2.128255
1.88165
1.131058
# make a list of all the keys that are detected pressed = [] # set all pins pins to be inputs w/pullups for pin in self.row_pins+self.col_pins: pin.direction = Direction.INPUT pin.pull = Pull.UP for row in range(len(self.row_pins)): # set one row low at a time self.row_pins[row].direction = Direction.OUTPUT self.row_pins[row].value = False # check the column pins, which ones are pulled down for col in range(len(self.col_pins)): if not self.col_pins[col].value: pressed.append(self.keys[row][col]) # reset the pin to be an input self.row_pins[row].direction = Direction.INPUT self.row_pins[row].pull = Pull.UP return pressed
def pressed_keys(self)
An array containing all detected keys that are pressed from the initalized list-of-lists passed in during creation
3.26381
3.234778
1.008975
load_times = [] search_str = '{0}_load_time'.format(asset_type) for har_page in self.pages: val = getattr(har_page, search_str, None) if val is not None: load_times.append(val) return load_times
def get_load_times(self, asset_type)
Just a ``list`` of the load times of a certain asset type for each page :param asset_type: ``str`` of the asset type to return load times for
3.173211
3.418531
0.928238
load_times = [] # Handle edge cases like TTFB if asset_type == 'ttfb': for page in self.pages: if page.time_to_first_byte is not None: load_times.append(page.time_to_first_byte) elif asset_type not in self.asset_types and asset_type != 'page': raise ValueError('asset_type must be one of:\nttfb\n{0}'.format( '\n'.join(self.asset_types))) else: load_times = self.get_load_times(asset_type) if not load_times or not sum(load_times): return 0 return round(stdev(load_times), self.decimal_precision)
def get_stdev(self, asset_type)
Returns the standard deviation for a set of a certain asset type. :param asset_type: ``str`` of the asset type to calculate standard deviation for. :returns: A ``int`` or ``float`` of standard deviation, depending on the self.decimal_precision
3.157869
3.138515
1.006166
pages = [] for har_dict in self.har_data: har_parser = HarParser(har_data=har_dict) if self.page_id: for page in har_parser.pages: if page.page_id == self.page_id: pages.append(page) else: pages = pages + har_parser.pages return pages
def pages(self)
The aggregate pages of all the parser objects.
3.068554
2.619679
1.171347
ttfb = [] for page in self.pages: if page.time_to_first_byte is not None: ttfb.append(page.time_to_first_byte) return round(mean(ttfb), self.decimal_precision)
def time_to_first_byte(self)
The aggregate time to first byte for all pages.
2.889148
2.468868
1.170232
load_times = self.get_load_times('page') return round(mean(load_times), self.decimal_precision)
def page_load_time(self)
The average total load time for all runs (not weighted).
7.685127
6.3099
1.217948
load_times = self.get_load_times('js') return round(mean(load_times), self.decimal_precision)
def js_load_time(self)
Returns aggregate javascript load time.
6.810428
5.384786
1.264754
load_times = self.get_load_times('css') return round(mean(load_times), self.decimal_precision)
def css_load_time(self)
Returns aggregate css load time for all pages.
6.580968
5.385409
1.222
load_times = self.get_load_times('image') return round(mean(load_times), self.decimal_precision)
def image_load_time(self)
Returns aggregate image load time for all pages.
6.826415
5.581131
1.223124
load_times = self.get_load_times('html') return round(mean(load_times), self.decimal_precision)
def html_load_time(self)
Returns aggregate html load time for all pages.
6.956481
5.364771
1.296697
load_times = self.get_load_times('audio') return round(mean(load_times), self.decimal_precision)
def audio_load_time(self)
Returns aggregate audio load time for all pages.
6.877628
5.753539
1.195373
load_times = self.get_load_times('video') return round(mean(load_times), self.decimal_precision)
def video_load_time(self)
Returns aggregate video load time for all pages.
6.948451
5.740906
1.210341
if header_type not in entry: raise ValueError('Invalid header_type, should be either:\n\n' '* \'request\'\n*\'response\'') # TODO - headers are empty in some HAR data.... need fallbacks here for h in entry[header_type]['headers']: if h['name'].lower() == header.lower() and h['value'] is not None: if regex and re.search(value, h['value'], flags=re.IGNORECASE): return True elif value == h['value']: return True return False
def match_headers(self, entry, header_type, header, value, regex=True)
Function to match headers. Since the output of headers might use different case, like: 'content-type' vs 'Content-Type' This function is case-insensitive :param entry: entry object :param header_type: ``str`` of header type. Valid values: * 'request' * 'response' :param header: ``str`` of the header to search for :param value: ``str`` of value to search for :param regex: ``bool`` indicating whether to use regex or exact match :returns: a ``bool`` indicating whether a match was found
4.57447
4.726161
0.967904
mimeType = entry['response']['content']['mimeType'] if regex and re.search(content_type, mimeType, flags=re.IGNORECASE): return True elif content_type == mimeType: return True return False
def match_content_type(entry, content_type, regex=True)
Matches the content type of a request using the mimeType metadata. :param entry: ``dict`` of a single entry from a HarPage :param content_type: ``str`` of regex to use for finding content type :param regex: ``bool`` indicating whether to use regex or exact match.
3.212099
3.790036
0.847511
if regex: return re.search(request_type, entry['request']['method'], flags=re.IGNORECASE) is not None else: return entry['request']['method'] == request_type
def match_request_type(self, entry, request_type, regex=True)
Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match
2.287145
3.590488
0.637001
response_version = entry['response']['httpVersion'] if regex: return re.search(http_version, response_version, flags=re.IGNORECASE) is not None else: return response_version == http_version
def match_http_version(entry, http_version, regex=True)
Helper function that returns entries with a request type matching the given `request_type` argument. :param entry: entry object to analyze :param request_type: ``str`` of request type to match :param regex: ``bool`` indicating whether to use a regex or string match
2.437244
3.491544
0.698042
if regex: return re.search(status_code, str(entry['response']['status'])) is not None else: return str(entry['response']['status']) == status_code
def match_status_code(self, entry, status_code, regex=True)
Helper function that returns entries with a status code matching then given `status_code` argument. NOTE: This is doing a STRING comparison NOT NUMERICAL :param entry: entry object to analyze :param status_code: ``str`` of status code to search for :param request_type: ``regex`` of request type to match
2.65735
4.619057
0.575301
results = dict() for asset in asset_list: time_key = dateutil.parser.parse(asset['startedDateTime']) load_time = int(asset['time']) # Add the start time and asset to the results dict if time_key in results: results[time_key].append(asset) else: results[time_key] = [asset] # For each millisecond the asset was loading, insert the asset # into the appropriate key of the results dict. Starting the range() # index at 1 because we already inserted the first millisecond. for _ in range(1, load_time): time_key = time_key + datetime.timedelta(milliseconds=1) if time_key in results: results[time_key].append(asset) else: results[time_key] = [asset] return results
def create_asset_timeline(self, asset_list)
Returns a ``dict`` of the timeline for the requested assets. The key is a datetime object (down to the millisecond) of ANY time where at least one of the requested assets was loaded. The value is a ``list`` of ALL assets that were loading at that time. :param asset_list: ``list`` of the assets to create a timeline for.
3.474136
3.232685
1.074691