hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
list
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
list
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
list
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
f788f931d4a28f803c07b6e69b05c5823cc5c0a2
7,785
py
Python
paddlenlp/utils/tools.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
paddlenlp/utils/tools.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
paddlenlp/utils/tools.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from .log import logger def static_params_to_dygraph(model, static_tensor_dict): """Simple tool for convert static paramters to dygraph paramters dict. **NOTE** The model must both support static graph and dygraph mode. Args: model (nn.Layer): the model of a neural network. static_tensor_dict (string): path of which locate the saved paramters in static mode. Usualy load by `paddle.static.load_program_state`. Returns: [tensor dict]: a state dict the same as the dygraph mode. """ state_dict = model.state_dict() # static_tensor_dict = paddle.static.load_program_state(static_params_path) ret_dict = dict() for n, p in state_dict.items(): if p.name not in static_tensor_dict: logger.info("%s paramter is missing from you state dict." % n) continue ret_dict[n] = static_tensor_dict[p.name] return ret_dict def dygraph_params_to_static(model, dygraph_tensor_dict, topo=None): """Simple tool for convert dygraph paramters to static paramters dict. **NOTE** The model must both support static graph and dygraph mode. Args: model (nn.Layer): the model of a neural network. dygraph_tensor_dict (string): path of which locate the saved paramters in static mode. Returns: [tensor dict]: a state dict the same as the dygraph mode. """ state_dict = model.state_dict() ret_dict = dict() for name, parm in state_dict.items(): if name not in dygraph_tensor_dict: logger.info("%s paramter is missing from you state dict." % name) continue tensor = dygraph_tensor_dict[name] if parm.is_distributed: assert topo is not None for dim, v in enumerate(tensor.shape): if parm.shape[dim] != v: break splited = np.split(tensor, topo.mp_info.size, axis=dim)[topo.mp_info.rank] ret_dict[parm.name] = splited else: ret_dict[parm.name] = tensor return ret_dict class TimeCostAverage(object): """ Simple tool for calcluating time average cost in the process of training and inferencing. """ def __init__(self): self.reset() def reset(self): """ Reset the recoder state, and reset the `cnt` to zero. """ self.cnt = 0 self.total_time = 0 def record(self, usetime): """ Recoding the time cost in current step and accumulating the `cnt`. """ self.cnt += 1 self.total_time += usetime def get_average(self): """ Returning the average time cost after the start of training. """ if self.cnt == 0: return 0 return self.total_time / self.cnt def get_env_device(): """ Return the device name of running enviroment. """ if paddle.is_compiled_with_cuda(): return 'gpu' elif paddle.is_compiled_with_npu(): return 'npu' elif paddle.is_compiled_with_rocm(): return 'rocm' elif paddle.is_compiled_with_xpu(): return 'xpu' return 'cpu' def compare_version(version, pair_version): """ Args: version (str): The first version string needed to be compared. The format of version string should be as follow : "xxx.yyy.zzz". pair_version (str): The second version string needed to be compared. The format of version string should be as follow : "xxx.yyy.zzz". Returns: int: The result of comparasion. 1 means version > pair_version; 0 means version = pair_version; -1 means version < pair_version. Examples: >>> compare_version("2.2.1", "2.2.0") >>> 1 >>> compare_version("2.2.0", "2.2.0") >>> 0 >>> compare_version("2.2.0-rc0", "2.2.0") >>> -1 >>> compare_version("2.3.0-rc0", "2.2.0") >>> 1 """ version = version.strip() pair_version = pair_version.strip() if version == pair_version: return 0 version_list = version.split(".") pair_version_list = pair_version.split(".") for version_code, pair_version_code in zip(version_list, pair_version_list): if not version_code.isnumeric(): return -1 if not pair_version_code.isnumeric(): return 1 if int(version_code) > int(pair_version_code): return 1 elif int(version_code) < int(pair_version_code): return -1 return 0 def get_bool_ids_greater_than(probs, limit=0.5, return_prob=False): """ Get idx of the last dimension in probability arrays, which is greater than a limitation. Args: probs (List[List[float]]): The input probability arrays. limit (float): The limitation for probability. return_prob (bool): Whether to return the probability Returns: List[List[int]]: The index of the last dimension meet the conditions. """ probs = np.array(probs) dim_len = len(probs.shape) if dim_len > 1: result = [] for p in probs: result.append(get_bool_ids_greater_than(p, limit, return_prob)) return result else: result = [] for i, p in enumerate(probs): if p > limit: if return_prob: result.append((i, p)) else: result.append(i) return result def get_span(start_ids, end_ids, with_prob=False): """ Get span set from position start and end list. Args: start_ids (List[int]/List[tuple]): The start index list. end_ids (List[int]/List[tuple]): The end index list. with_prob (bool): If True, each element for start_ids and end_ids is a tuple aslike: (index, probability). Returns: set: The span set without overlapping, every id can only be used once . """ if with_prob: start_ids = sorted(start_ids, key=lambda x: x[0]) end_ids = sorted(end_ids, key=lambda x: x[0]) else: start_ids = sorted(start_ids) end_ids = sorted(end_ids) start_pointer = 0 end_pointer = 0 len_start = len(start_ids) len_end = len(end_ids) couple_dict = {} while start_pointer < len_start and end_pointer < len_end: if with_prob: start_id = start_ids[start_pointer][0] end_id = end_ids[end_pointer][0] else: start_id = start_ids[start_pointer] end_id = end_ids[end_pointer] if start_id == end_id: couple_dict[end_ids[end_pointer]] = start_ids[start_pointer] start_pointer += 1 end_pointer += 1 continue if start_id < end_id: couple_dict[end_ids[end_pointer]] = start_ids[start_pointer] start_pointer += 1 continue if start_id > end_id: end_pointer += 1 continue result = [(couple_dict[end], end) for end in couple_dict] result = set(result) return result
32.169421
114
0.618754
581a1467384ed3c7465f96d2a89e8062848df008
4,811
py
Python
pacman-arch/test/pacman/util.py
Maxython/pacman-for-termux
3b208eb9274cbfc7a27fca673ea8a58f09ebad47
[ "MIT" ]
23
2021-05-21T19:11:06.000Z
2022-03-31T18:14:20.000Z
source/pacman-6.0.1/test/pacman/util.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
11
2021-05-21T12:08:44.000Z
2021-12-21T08:30:08.000Z
source/pacman-6.0.1/test/pacman/util.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
1
2021-09-26T08:44:40.000Z
2021-09-26T08:44:40.000Z
# Copyright (c) 2006 by Aurelien Foret <[email protected]> # Copyright (c) 2006-2021 Pacman Development Team <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os import re import hashlib import tap SELFPATH = os.path.abspath(os.path.dirname(__file__)) # ALPM PM_ROOT = "/" PM_DBPATH = "var/lib/pacman" PM_SYNCDBPATH = "var/lib/pacman/sync" PM_LOCK = "var/lib/pacman/db.lck" PM_CACHEDIR = "var/cache/pacman/pkg" PM_EXT_PKG = ".pkg.tar.gz" PM_HOOKDIR = "etc/pacman.d/hooks" # Pacman PACCONF = "etc/pacman.conf" # Pactest TMPDIR = "tmp" SYNCREPO = "var/pub" LOGFILE = "var/log/pactest.log" verbose = 0 def vprint(msg): if verbose: tap.diag(msg) # # Methods to generate files # def getfileinfo(filename): data = { 'changed': False, 'isdir': False, 'islink': False, 'link': None, 'hasperms': False, 'perms': None, } if filename[-1] == "*": data["changed"] = True filename = filename.rstrip("*") if filename.find(" -> ") != -1: filename, link = filename.split(" -> ") data["islink"] = True data["link"] = link elif filename.find("|") != -1: filename, perms = filename.split("|") data["hasperms"] = True data["perms"] = int(perms, 8) if filename[-1] == "/": data["isdir"] = True data["filename"] = filename return data def mkfile(base, name, data=""): info = getfileinfo(name) filename = info["filename"] path = os.path.join(base, filename) if info["isdir"]: if not os.path.isdir(path): os.makedirs(path, 0o755) return path dir_path = os.path.dirname(path) if dir_path and not os.path.isdir(dir_path): os.makedirs(dir_path, 0o755) if info["islink"]: os.symlink(info["link"], path) else: writedata(path, data) if info["perms"]: os.chmod(path, info["perms"]) return path def writedata(filename, data): if isinstance(data, list): data = "\n".join(data) fd = open(filename, "w") if data: fd.write(data) if data[-1] != "\n": fd.write("\n") fd.close() def mkcfgfile(filename, root, option, db): # Options data = ["[options]"] for key, value in option.items(): data.extend(["%s = %s" % (key, j) for j in value]) # Repositories # sort by repo name so tests can predict repo order, rather than be # subjects to the whims of python dict() ordering for key in sorted(db.keys()): if key != "local": value = db[key] data.append("[%s]\n" % (value.treename)) data.append("SigLevel = %s\n" % (value.getverify())) if value.syncdir: data.append("Server = file://%s" % (os.path.join(root, SYNCREPO, value.treename))) for optkey, optval in value.option.items(): data.extend(["%s = %s" % (optkey, j) for j in optval]) mkfile(root, filename, "\n".join(data)) # # MD5 helpers # def getmd5sum(filename): if not os.path.isfile(filename): return "" fd = open(filename, "rb") checksum = hashlib.md5() while 1: block = fd.read(32 * 1024) if not block: break checksum.update(block) fd.close() return checksum.hexdigest() def mkmd5sum(data): checksum = hashlib.md5() checksum.update(("%s\n" % data).encode('utf8')) return checksum.hexdigest() # # Miscellaneous # def which(filename, path=None): if not path: path = os.environ["PATH"].split(os.pathsep) for p in path: f = os.path.join(p, filename) if os.access(f, os.F_OK): return f return None def grep(filename, pattern): pat = re.compile(pattern) myfile = open(filename, 'r') for line in myfile: if pat.search(line): myfile.close() return True myfile.close() return False def mkdir(path): if os.path.isdir(path): return elif os.path.isfile(path): raise OSError("'%s' already exists and is not a directory" % path) os.makedirs(path, 0o755)
25.727273
98
0.594887
b72fe19d01acee6f62a8e04b5b867719df5a113e
2,562
py
Python
tests/onegov/core/test_elements.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/core/test_elements.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
tests/onegov/core/test_elements.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.core.utils import Bunch from onegov.core.elements import Link, Confirm, Intercooler def test_link(render_element): # text is translated result = render_element(Link(text="Settings", url='/settings')) assert result.pyquery('a').text() == "Settings" assert result.pyquery('a').attr('href') == '/settings' # other attributes are rendered result = render_element(Link(text='foo', url='#', attrs={ 'data-foo': 'bar' })) assert result.pyquery('a').attr('data-foo') == 'bar' # we show a hint if the link is hidden from public result = render_element(Link(text='hidden', url='#', model=Bunch( access='private' ))) def test_confirm_link(render_element): result = render_element(Link(text="Delete", url='#', traits=( Confirm( "Confirm?", "Extra...", "Yes", "No" ), ), attrs={'class': 'foo'})) assert result.pyquery('a').attr('data-confirm') == "Confirm?" assert result.pyquery('a').attr('data-confirm-extra') == "Extra..." assert result.pyquery('a').attr('data-confirm-yes') == "Yes" assert result.pyquery('a').attr('data-confirm-no') == "No" assert result.pyquery('a').attr('class') in ('foo confirm', 'confirm foo') def test_link_slots(): # make sure that the Link class as well as all its parents have # __slots__ defined (for some lookup speed and memory improvements) assert not hasattr(Link("Slots", '#'), '__dict__') def test_intercooler_link(render_element): result = render_element(Link(text="Delete", traits=Intercooler( request_method="POST", redirect_after='#redirect', target='#target' ))) assert result.pyquery('a').attr('ic-post-to') == '#' assert result.pyquery('a').attr('ic-target') == '#target' assert result.pyquery('a').attr('redirect-after') == '#redirect' assert result.pyquery('a').attr('href') is None def test_class_attributes(render_element): result = render_element(Link(text="Delete", attrs={ 'class': 'foo' })) assert result.pyquery('a').attr('class') == 'foo' result = render_element(Link(text="Delete", attrs={ 'class': ('foo', 'bar') })) assert result.pyquery('a').attr('class') in ('foo bar', 'bar foo') result = render_element(Link(text="Delete", attrs={ 'class': ('foo', 'bar') })) assert result.pyquery('a').attr('class') in ('foo bar', 'bar foo') result = render_element(Link(text="Delete")) assert result.pyquery('a').attr('class') is None
34.16
78
0.62178
b7d6b61bd5c672ea3b72fcf0504562145ddd5f77
6,503
py
Python
src/test/tests/hybrid/ddf_vs_dbinning.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
226
2018-12-29T01:13:49.000Z
2022-03-30T19:16:31.000Z
src/test/tests/hybrid/ddf_vs_dbinning.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
5,100
2019-01-14T18:19:25.000Z
2022-03-31T23:08:36.000Z
src/test/tests/hybrid/ddf_vs_dbinning.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
84
2019-01-24T17:41:50.000Z
2022-03-10T10:01:46.000Z
from visit_utils import * import math def setup_plot(): DeleteAllPlots() OpenDatabase(silo_data_path("rect3d.silo")) exprs.define("coords", "coord(quadmesh3d)",etype="vector") exprs.define("mesh_x_zonal","recenter(coords[0])") exprs.define("mesh_y_zonal","recenter(coords[1])") exprs.define("mass","d * volume(quadmesh3d)") AddPlot("Pseudocolor","mass") DrawPlots() def ddf(opts): # work around quirks related to the ddf pipeline expecting # vars to already exist predraw_vars = [ opts["codomain"]] predraw_vars.extend(opts["varnames"]) for v in predraw_vars: ChangeActivePlotsVar(v) atts = visit.ConstructDDFAttributes() ddf_op_map = {"avg": atts.Average, "min": atts.Minimum, "max": atts.Maximum, "stddev": atts.StandardDeviation, "var": atts.Variance, "sum": atts.Sum, "count": atts.Count, "rms": atts.RMS, "pdf": atts.PDF} atts.ddfName = opts["name"] atts.codomainName = opts["codomain"] atts.varnames = opts["varnames"] atts.ranges = opts["ranges"] atts.numSamples = opts["samples"] atts.statisticalOperator = ddf_op_map[opts["op"]] visit.ConstructDDF(atts) ndims = len(atts.numSamples) ddf_varname = "%s_%s_%dd" % (opts["codomain"],opts["op"],ndims) if len(atts.numSamples) == 1: src_fname = "%s.ultra" % atts.ddfName des_fname = "%s.ult" % (atts.ddfName) common.sexe("mv %s %s" % (src_fname, des_fname)) lines = open(des_fname).readlines() f = open(des_fname, "w") f.write("# %s\n" % (ddf_varname)) for l in lines[1:]: f.write(l) f.close() else: ofname = "%s.vtk" % atts.ddfName orig_vtk_var = "SCALARS %s float" % opts["codomain"] ddf_vtk_var = "SCALARS %s float" % ddf_varname data = open(ofname).read() f = open(ofname, "w") data = data.replace(orig_vtk_var,ddf_vtk_var) f.write(data) print("[ddf output: %s]" % ofname) return ofname def test_orig_mass(): setup_plot() Test("ddf_vs_dbinning_input_plot") res = query("Variable Sum") DeleteAllPlots() return res def test_dbinning_using_coords(): setup_plot() AddOperator("DataBinning") datts = DataBinningAttributes() datts.numDimensions = datts.Two datts.dim1BinBasedOn = datts.X datts.dim1SpecifyRange = 0 datts.dim1NumBins = 10 datts.dim2BinBasedOn = datts.Y datts.dim2SpecifyRange = 0 datts.dim2NumBins = 10 datts.outOfBoundsBehavior = datts.Clamp datts.reductionOperator = datts.Sum datts.varForReduction = "mass" datts.emptyVal = 0 datts.outputType = datts.OutputOnBins SetOperatorOptions(datts) DrawPlots() # we have to export b/c we can't query the # result of the operated created expr ... ofname = "dbin_mass_sum_using_coords" eatts = ExportDBAttributes() eatts.db_type = "VTK" eatts.filename = ofname ExportDatabase(eatts) DeleteAllPlots() dbin_varname = "%s_%s_%dd" % ("mass","sum",2) ofname += ".vtk" orig_vtk_var = "SCALARS %s float" % "operators/DataBinning" ddf_vtk_var = "SCALARS %s float" % dbin_varname data = open(ofname).read() f = open(ofname, "w") data = data.replace(orig_vtk_var,ddf_vtk_var) f.write(data) f.close() OpenDatabase(ofname) AddPlot("Pseudocolor","mass_sum_2d") DrawPlots() Test("ddf_vs_dbinning_dbin_coords_result") res = query("Variable Sum") DeleteAllPlots() CloseDatabase(ofname) return res def test_dbinning_using_coords_exprs(): setup_plot() AddOperator("DataBinning") datts = DataBinningAttributes() datts.numDimensions = datts.Two datts.dim1BinBasedOn = datts.Variable datts.dim1Var = "mesh_x_zonal" datts.dim1SpecifyRange = 0 datts.dim1NumBins = 10 datts.dim2BinBasedOn = datts.Variable datts.dim2Var = "mesh_y_zonal" datts.dim2SpecifyRange = 0 datts.dim2NumBins = 10 datts.outOfBoundsBehavior = datts.Clamp datts.reductionOperator = datts.Sum datts.varForReduction = "mass" datts.emptyVal = 0 datts.outputType = datts.OutputOnBins SetOperatorOptions(datts) DrawPlots() # we have to export b/c we can't query the # result of the operated created expr ... ofname = "dbin_mass_sum_using_coords_exprs" eatts = ExportDBAttributes() eatts.db_type = "VTK" eatts.filename = ofname ExportDatabase(eatts) DeleteAllPlots() dbin_varname = "%s_%s_%dd" % ("mass","sum",2) ofname += ".vtk" orig_vtk_var = "SCALARS %s float" % "operators/DataBinning" ddf_vtk_var = "SCALARS %s float" % dbin_varname data = open(ofname).read() f = open(ofname, "w") data = data.replace(orig_vtk_var,ddf_vtk_var) f.write(data) f.close() OpenDatabase(ofname) AddPlot("Pseudocolor","mass_sum_2d") DrawPlots() Test("ddf_vs_dbinning_dbin_coords_exprs_result") res = query("Variable Sum") DeleteAllPlots() CloseDatabase(ofname) return res def test_ddf(): setup_plot() ddf_opts = {"name": "ddf_mass_sum", "op" : "sum", "codomain" : "mass", "varnames" : ("mesh_x_zonal", "mesh_y_zonal"), "ranges" : (0,1, 0,1), "samples" : (10,10)} ddf(ddf_opts) DeleteAllPlots() OpenDatabase("ddf_mass_sum.vtk") AddPlot("Pseudocolor","mass_sum_2d") DrawPlots() Test("ddf_vs_dbinning_ddf_result") res = query("Variable Sum") DeleteAllPlots() CloseDatabase("ddf_mass_sum.vtk") return res orig_val = test_orig_mass() ddf_val = test_ddf() dbin_coords_val = test_dbinning_using_coords() dbin_cexprs_val = test_dbinning_using_coords_exprs() TestText("Orig","Mass Sum = %s" % orig_val) TestText("DDF","Mass Sum = %s" % ddf_val) TestText("DBIN with Coords","Mass Sum = %s" % dbin_coords_val) TestText("DBIN with Coords Exprs","Mass Sum = %s" % dbin_cexprs_val) TestValueLT("Orig Equals DDF",abs(orig_val - ddf_val), 1e-4 ) TestValueLT("Orig Equals DBIN with Coords",abs(orig_val - dbin_coords_val), 1e-4 ) TestValueLT("Orig Equals DBIN with Coords Exprs",abs(orig_val - dbin_cexprs_val), 1e-4 ) Exit()
30.530516
88
0.627403
4d101470bc24f374c184b991e70cd6bf397529a6
4,136
py
Python
python/en/archive/topics/command_line_arguments/command_line_arguments.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/topics/command_line_arguments/command_line_arguments.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/topics/command_line_arguments/command_line_arguments.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ command_line_arguments.py Draft: 2019-11-13 (Wed) This is a class version of test-getopt_full.py at https://github.com/aimldl/python3/blob/master/topics/command_line_arguments/test-getopt_full.py Example: $ python command_line_arguments.py -c conf.txt -i in.txt -o out.txt argc=7 argv=['-c', 'conf.txt', '-i', 'in.txt', '-o', 'out.txt'] sys.argv[0]=/home/aimldl/command_line_arguments.py sys.argv[1]=-c sys.argv[2]=conf.txt sys.argv[3]=-i sys.argv[4]=in.txt sys.argv[5]=-o sys.argv[6]=out.txt opts=[('-c', 'conf.txt'), ('-i', 'in.txt'), ('-o', 'out.txt')] args=[] config_file=conf.txt input_file=in.txt output_file=out.txt $ """ import sys, getopt class CommandLineArguments: # This class is assumed to be a singleton. # Constructor def __init__(self): pass # Member functions def print_inputs( self, argc, argv ): print(f"argc={argc}" ) print(f"argv={argv}" ) for index in range(argc): sys_argv = sys.argv[ index ] print(f"sys.argv[{index}]={sys_argv}" ) def main( self, argc, argv, debug=False ): if debug: self.print_inputs( argc, argv ) # When "$ python test-getopt_more.py" is run, bypass parse_arguments. # Otherwise TypeError occurs in "opts, args = getopt.getopt( argv, ... )". # TypeError: 'NoneType' object is not iterable if argc > 1: #parse_arguments( argc, argv ) self.parse_arguments( argc, argv, debug=True ) def parse_arguments( self, argc, argv, debug=False ): ''' opts,args = getopt.getopt( argv,"",[] ) Input argv is the (entire) argument list "" is a short option starting with a hyphen -. Example: -h An argument should be followed by a colon (:). [] is a long option start with two hyphens --. Example: --help An argument should be followed by an equal sign ('='). Output opts is a list of (option, value) pairs. args is the list of program arguments left after the option list was stripped. ''' assert isinstance(argc, int), 'argc must be an integer' assert isinstance(argv, list), 'argv must be a list' try: # YOU MAY CHANGE THIS PART short_options = "hc:i:o:" # Note : is used. long_options = ["help", "config=", "input=", "output="] # Note = is used. # YOU MAY CHANGE THIS PART opts,args = getopt.getopt( argv, short_options, long_options ) if debug: print(f"opts={opts}" ) print(f"args={args}" ) except getopt.GetoptError: self.usage() sys.exit(2) # YOU MAY CHANGE THIS PART config_file = '' input_file = '' output_file = '' # YOU MAY CHANGE THIS PART for opt, arg in opts: if opt in ("-h", "--help"): self.usage() sys.exit() # YOU MAY CHANGE THIS PART elif opt in ("-c", "--config"): config_file = arg if debug: print(f"config_file={config_file}" ) elif opt in ("-i", "--input"): input_file = arg if debug: print(f"input_file={input_file}" ) elif opt in ("-o","--output"): output_file = arg if debug: print(f"output_file={output_file}" ) # YOU MAY CHANGE THIS PART else : self.usage() sys.exit(2) def usage( self ): print("usage: $ python command_line_arguments.py -h") if __name__ == "__main__": cla = CommandLineArguments() # Process the command line arguments argc = len( sys.argv ) argv = sys.argv[1:] #cla.main( argc, argv ) cla.main( argc, argv, debug=True ) # EOF
31.815385
97
0.53119
4d18936f76d5e7b98eeb6d17d2257da2a066fdc2
385
py
Python
py-basics/src/lectures/lists/exercise2.py
AndrasTarlos/s4f
bfe2d631a9a2715953d8ac5ddc8ef97d3cefb426
[ "CC0-1.0" ]
null
null
null
py-basics/src/lectures/lists/exercise2.py
AndrasTarlos/s4f
bfe2d631a9a2715953d8ac5ddc8ef97d3cefb426
[ "CC0-1.0" ]
null
null
null
py-basics/src/lectures/lists/exercise2.py
AndrasTarlos/s4f
bfe2d631a9a2715953d8ac5ddc8ef97d3cefb426
[ "CC0-1.0" ]
4
2021-12-13T15:52:00.000Z
2022-03-28T13:54:53.000Z
""" List Exercise 2 Implementieren Sie die Funktion includes() zur Überprüfung, ob ein bestimmtes Element 'search_element' in der Liste enthalten ist. Benutzen Sie die nachfolgenden Tests zur Kontrolle. """ def includes(my_list, search_element): return search_element in my_list # Tests print(includes([1, 2, 3, 4], 3)) # -> True print(includes([1, 2, 3, 4], 5)) # -> False
24.0625
105
0.716883
421dc039646aa97978bd6e781f4546797741d924
645
py
Python
tests/test_datatypes.py
MZH-bust/genutil
f17190ec484d5844f8950908cc07556a5b1429e7
[ "MIT" ]
null
null
null
tests/test_datatypes.py
MZH-bust/genutil
f17190ec484d5844f8950908cc07556a5b1429e7
[ "MIT" ]
null
null
null
tests/test_datatypes.py
MZH-bust/genutil
f17190ec484d5844f8950908cc07556a5b1429e7
[ "MIT" ]
null
null
null
import pytest from genutil import datatypes class TestIsListOfStrings: @pytest.mark.parametrize( "test_parameter,expected", [ pytest.param(["this", "is", "a", "list", "of", "strings"], True, id="Param1 - List of Strings"), pytest.param("no list, but string", False, id="Param2 - String only"), pytest.param(["this", "is", "a", 9], False, id="Param3 - List contains int"), pytest.param(10, False, id="Param4 - only int"), ], ) def test_is_list_of_strings(self, test_parameter, expected): assert datatypes.is_list_of_strings(test_parameter) == expected
37.941176
108
0.615504
c4398fc2571aa2bf3c82a1ee5c5fd0508ff75b59
1,425
py
Python
7-assets/past-student-repos/data_struct_and_algo-master/max_sum_on_rotation.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
7-assets/past-student-repos/data_struct_and_algo-master/max_sum_on_rotation.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
7-assets/past-student-repos/data_struct_and_algo-master/max_sum_on_rotation.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
# Input: arr[] = {1, 20, 2, 10} # Output: 72 def single_rotation(arr,l): temp=arr[0] for i in range(l-1): arr[i]=arr[i+1] arr[l-1]=temp def sum_calculate(arr,l): sum=0 for i in range(l): sum=sum+arr[i]*(i) return sum def max_finder(arr,l): max=arr[0] for i in range(l): if max<arr[i]: max=arr[i] maximum=max for i in range(l): if max == arr[i]: temp=i index=temp+1 for j in range(index): single_rotation(arr,len(arr)) arr=[10, 1, 2, 3, 4, 5, 6, 7, 8, 9] max_finder(arr,len(arr)) result=sum_calculate(arr,len(arr)) print("Max sum is: "+ str(result)) #optimized approach # '''Python program to find maximum value of Sum(i*arr[i])''' # # returns max possible value of Sum(i*arr[i]) # def maxSum(arr): # # stores sum of arr[i] # arrSum = 0 # # stores sum of i*arr[i] # currVal = 0 # n = len(arr) # for i in range(0, n): # arrSum = arrSum + arr[i] # currVal = currVal + (i*arr[i]) # # initialize result # maxVal = currVal # # try all rotations one by one and find the maximum # # rotation sum # for j in range(1, n): # currVal = currVal + arrSum-n*arr[n-j] # if currVal > maxVal: # maxVal = currVal # # return result # return maxVal # # test maxsum(arr) function # arr = [10, 1, 2, 3, 4, 5, 6, 7, 8, 9] # print("Max sum is: ", maxSum(arr))
19
61
0.555789
6717d9c142e9411315a2a1880908e9b395f56901
14,833
py
Python
app/models.py
jkopka/price_tracker
370dd320a3d54a3bd955b62df337dfe87b58f7ee
[ "MIT" ]
null
null
null
app/models.py
jkopka/price_tracker
370dd320a3d54a3bd955b62df337dfe87b58f7ee
[ "MIT" ]
2
2020-07-04T18:44:37.000Z
2020-08-10T06:29:53.000Z
app/models.py
jkopka/price_tracker
370dd320a3d54a3bd955b62df337dfe87b58f7ee
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup import requests from urllib.parse import urljoin from re import sub from decimal import Decimal import numpy as np import matplotlib.pyplot as plt from flask import Markup from urllib.parse import urlparse import logging import time # Objekt für einzelne Suchen class SearchItem: def __init__(self, url): self.url = url self.all_prices = [] self.quantity = 0 self.quantity_ignored = 0 self.search_query = "" self.url_next_page = "" self.searched = False self.error = "" def get_search_query(self): return self.search_query def get_percentile(self, perc): # rint(self.all_prices) return np.percentile(self.all_prices, perc).round(2) def get_quantity(self): return self.quantity def get_quantity_ignored(self): return self.quantity_ignored # Plattform class Plattform: """ Zentrale Klasse für das Crawlen. Über init einrichten. Dann über .fetch() crawlen. """ def __init__(self, urls=[], keywords=[]): """ Initialisiert die Klasse. Zu übergebende Parameter: urls<liste>, keywords<liste> """ logging.basicConfig( format="%(asctime)s %(message)s", filename="logging.log", level=logging.INFO ) self.base_url_ebay_kleinanzeigen = "https://www.ebay-kleinanzeigen.de/" self.base_url_ebay_de = "https://www.ebay.de/" self.max_articles = 1000 self.urls = urls self.keywords = [element.lower() for element in keywords] # print(self.keywords) self.headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36" } self.proxies = { "http": None, "https": None, } search_items = [] for url in urls: # Für jeden übergebenen Link wird ein SearchItem angelegt. Hier wird auch direkt gecheckt, # ob die URL valid und ob es sich um die mobile Website handelt. if self.uri_validator(url) == True: print("--------") logging.info("URL: " + url) print("--------") search_items.append(SearchItem(self.get_web_version(url))) self.search_items = search_items def get_web_version(self, url): """ Funktion checkt, ob es sich bei dem Link um die mobile Website hält. Wenn ja, wird der Link zur Desktopversion geholt. Todo: Es fehlt noch der Teil für eBay.de """ # print(url) if "m.ebay-kleinanzeigen" in url: print("Mobile version detected!") r = requests.get(url, headers=self.headers, proxies=self.proxies) doc = BeautifulSoup(r.text.replace("&#8203", ""), "html.parser") url = urljoin( self.base_url_ebay_kleinanzeigen, doc.find(id="footer-webversion-link").get("href"), ) return url def uri_validator(self, x): """ Validiert ein URL """ try: result = urlparse(x) return all([result.scheme, result.netloc, result.path]) except: return False def set_max_articles(self, max_articles): """ Setzt die maximal zu crawlenden Artikel. """ self.max_articles = max_articles if max_articles > 0 else 1000 def fetch_url(self, url): """ Holt eine URL mittels requests und liefert das Response-Objekt zurück. """ try: # print('...fetching with headers',url) r = requests.get(url, headers=self.headers, proxies=self.proxies) r.raise_for_status() return r except: # print('fetch_url>except!', url) print(r.status_code) return r def fetch(self): """ .fetch crawled jede URL. Keine Parameter. Bei Erfolg True, bei einem Fehler False. """ if len(self.search_items) == 0: return False result = [] for search_item in self.search_items: # https://www.ebay-kleinanzeigen.de/s-boote-bootszubehoer/detmold/jolle/k0c211l1792r30 if "ebay-kleinanzeigen.de" in search_item.url: result.append(self.fetch_page_ebay_kleinanzeigen(search_item)) elif "ebay.de" in search_item.url: result.append(self.fetch_page_ebay_de(search_item)) else: print("Link unbekannt! -> ", search_item.url) # Momentan noch nicht implementiert! # elif search_item.site == 'ebay.de': # result.append(self.fetch_page_ebay_de(search_item)) # print(result) for res in result: if res == False: return False return True def fetch_page_ebay_kleinanzeigen(self, search_item): """Hole die Artikel der Seite. Übergabe von zu holender URL + aktuelle Anzahl der Artikel. Weitere Seiten werden über Rekursion bearbeitet. Rückgabe: Alle Artikelpreise als list, Anzahl der bearbeiteten Artikel """ keywords = self.keywords # Artikel holen article = self.fetch_url(search_item.url) if article == False: return False doc = BeautifulSoup(article.text.replace("&#8203", ""), "html.parser") doc_search_query = doc.find(id="site-search-query") # Falls der Titel 'Security Violation', mit False zurück if article.status_code == 503: search_item.error = doc.select_one("title").text.strip() print("Error-Code: ", article.status_code) # print(doc) return False if doc.select_one("title").text.strip() == "Security Violation (503)": print("Security Violation (503)") # print(doc) search_item.error = doc.select_one("title").text.strip() return False elif doc_search_query is None: print("None") # print(doc) search_item.error = "None" return False # Suchstring speichern search_item.search_query = doc_search_query.get("value") all_prices = [] for element in doc.select(".aditem"): # Link auf Artikel # link = element.select_one('.ellipsis').get('href') # Titel holen title = element.select_one(".ellipsis").text.strip().lower() # Titel nach Keywords ausschließen if [title for keyword in keywords if (keyword in title)]: # print('Keyword!Title') search_item.quantity_ignored += 1 continue # Anreisser-Description nach Keywords ausschließen descr = element.select_one(".aditem-main p").text.strip().lower() if [descr for keyword in keywords if (keyword in descr)]: # print('Keyword!Descr') search_item.quantity_ignored += 1 continue # Preis holen price = element.select_one(".aditem-details").strong.text.strip() # Preis säubern price = self.clean_price( price) if price == False: search_item.quantity_ignored += 1 continue # print(" # ", title, price) search_item.quantity += 1 all_prices.append(price) # Nächste Seite aufrufen next_page = doc.select_one(".pagination-next") # print(next_page) # Wenn Link auf nächste Seite und Anzahl der Anzeigen nicht über self.max_articles... if next_page and search_item.quantity < self.max_articles: search_item.url_next_page = urljoin( self.base_url_ebay_kleinanzeigen, next_page.get("href") ) # print(url_next_page) time.sleep(0.4) print("next page!", search_item.quantity) self.fetch_page_ebay_kleinanzeigen(search_item) if doc_search_query.get("value") in search_item.all_prices: print("alle_preise: url schon vorhanden!", doc_search_query.get("value")) search_item.all_prices.extend(all_prices) else: print( "alle_preise: url noch nicht vorhanden!", doc_search_query.get("value") ) search_item.all_prices = all_prices search_item.searched = True self.searched = True return True def fetch_page_ebay_de(self, search_item): """Hole die Artikel der Seite. Übergabe von zu holender URL + aktuelle Anzahl der Artikel. Weitere Seiten werden über Rekursion bearbeitet. Rückgabe: Alle Artikelpreise als list, Anzahl der bearbeiteten Artikel """ keywords = self.keywords # Artikel holen article = self.fetch_url(search_item.url) if article == False: return False doc = BeautifulSoup(article.text.replace("&#8203", ""), "html.parser") doc_search_query = doc.find(id="gh-ac") # Falls der Titel 'Security Violation', mit False zurück if article.status_code == 503: search_item.error = doc.select_one("title").text.strip() print("Error-Code: ", article.status_code) # print(doc) return False if doc.select_one("title").text.strip() == "Security Violation (503)": print("Security Violation (503)") # print(doc) search_item.error = doc.select_one("title").text.strip() return False elif doc_search_query is None: print("None") # print(doc) search_item.error = "None" return False # Suchstring speichern search_item.search_query = doc_search_query.get("value") all_prices = [] for element in doc.select(".sresult"): # Link auf Artikel # link = element.select_one('.ellipsis').get('href') # Titel holen title = ( element.select_one(".lvtitle") .text.replace("Neues Angebot", "") .strip() .lower() ) # Titel nach Keywords ausschließen if [title for keyword in keywords if (keyword in title)]: # print('Keyword!Title') search_item.quantity_ignored += 1 continue # Preis holen price = element.select_one(".lvprice").text.strip() # Preis säubern price = self.clean_price( price) if price == False: search_item.quantity_ignored += 1 continue # print(' # ', title, price) search_item.quantity += 1 all_prices.append(price) # print(title,': ', price) # Nächste Seite aufrufen next_page = doc.select_one(".pagn-next .gspr") # print(next_page) # Wenn Link auf nächste Seite und Anzahl der Anzeigen nicht über self.max_articles... if next_page and search_item.quantity < self.max_articles: search_item.url_next_page = urljoin( self.base_url_ebay_de, next_page.get("href") ) # print(url_next_page) time.sleep(0.4) print("next page!", search_item.quantity) self.fetch_page_ebay_kleinanzeigen(search_item) if doc_search_query.get("value") in search_item.all_prices: print("alle_preise: url schon vorhanden!", doc_search_query.get("value")) search_item.all_prices.extend(all_prices) else: print( "alle_preise: url noch nicht vorhanden!", doc_search_query.get("value") ) search_item.all_prices = all_prices search_item.searched = True self.searched = True return True def clean_price( self, price): ''' Original Preis übergeben und verschiedene Optionen filtern. False wird zurückgegeben, wenn der Preis nicht eindeutig ist. ''' cleaning_strings_cut = ('UVP','(','Bisher') if price == "VB" or price.strip() == "" or "bis" in price or "Zu verschenken" in price: return False for string_cut in cleaning_strings_cut: if string_cut in price: price = price[:price.index(string_cut)].strip() try: if '.' in price: price = price.replace('.','') price = float( price.replace(" €", "") .replace("EUR", "") .replace(',','.') .replace(" VB", "") .strip() ) except: return False return price def get_error(self): """ Liefert alle bisherigen Fehler zurück """ error = "" for search_item in self.search_items: if not search_item.error == "": error += Markup(search_item.url + ": " + search_item.error) return error def get_search_querys(self): """ Liefert zur Anzeige die Suchbegriffe. """ if len(self.search_items) > 1: search_querys_text = "" for search_item in self.search_items: if not search_querys_text == "": search_querys_text += " - " search_querys_text += search_item.search_query else: search_querys_text = self.search_items[0].search_query return search_querys_text def get_plot(self): """ Generiert den Boxplot für die URLs. Rückgabe ist ein png. """ import io import base64 import matplotlib from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas matplotlib.use("agg") fig, axs = plt.subplots() all_prices_list = [] labels_list = [] for search_item in self.search_items: all_prices_list.append(search_item.all_prices) labels_list.append(search_item.search_query) axs.boxplot(all_prices_list, labels=labels_list) # Convert plot to PNG image pngImage = io.BytesIO() FigureCanvas(fig).print_png(pngImage) # Encode PNG image to base64 string pngImageB64String = "data:image/png;base64," pngImageB64String += base64.b64encode(pngImage.getvalue()).decode("utf8") return pngImageB64String
34.819249
149
0.57035
3f3fa889de296183a0378e06a3c8af385a29f4c5
1,557
py
Python
Utils/MatlabWhistleDetection/python/extract_wav.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
15
2015-01-12T10:46:29.000Z
2022-03-28T05:13:14.000Z
Utils/MatlabWhistleDetection/python/extract_wav.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
2
2019-01-20T21:07:50.000Z
2020-01-22T14:00:28.000Z
Utils/MatlabWhistleDetection/python/extract_wav.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
5
2018-02-07T18:18:10.000Z
2019-10-15T17:01:41.000Z
import os import sys import getopt """ Extracts the audio from our game videos. This script expects that ffmpeg is installed and in the PYTHONPATH. Usage: python extract_wav.py -i <path_to_folder_where_mp4_files_are> """ def parse_arguments(argv): input_path = '' try: opts, args = getopt.getopt(argv, "hi:", ["ifile="]) except getopt.GetoptError: print('python extract_wav.py -i <path>') sys.exit(2) if opts is None: print('python extract_wav.py -i <path>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('python extract_wav.py -i <path>') sys.exit() elif opt in ("-i", "--ifile"): input_path = arg return input_path def extract_wav(input_path): for file in os.listdir(input_path): if file.endswith(".mp4") or file.endswith(".MP4"): file = os.path.join(input_path, file) filename = os.path.splitext(file)[0] print("Filename: ", filename) """ -map_channel: The first 0 is the input file id The next 1 is the stream specifier - should be the audio stream, 0 is video The next 0 is the channel id -ar 8000 resamples the channel to 8kHz """ os.system("ffmpeg -i {0} -map_channel 0.1.0 -ar 8000 {1}.wav".format(file, filename)) else: continue if __name__ == '__main__': path = parse_arguments(sys.argv[1:]) extract_wav(path)
27.803571
111
0.572897
58fb641ddef7dd56129d8590322e1acc160f4372
170
py
Python
exercises/ja/solution_02_10_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/ja/solution_02_10_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/ja/solution_02_10_01.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
import spacy nlp = spacy.load("ja_core_news_md") doc1 = nlp("暖かい夏の日です") doc2 = nlp("外は晴れています") # doc1とdoc2の類似度を取得 similarity = doc1.similarity(doc2) print(similarity)
15.454545
35
0.747059
18dd95fdf486775b427fa0e34f665f471886c16e
2,883
py
Python
ods2md.py
tuksik/kennytm-ods2md
cf5e322aa3e3d5eb4dcd72e9531ddb277854ea02
[ "MIT" ]
null
null
null
ods2md.py
tuksik/kennytm-ods2md
cf5e322aa3e3d5eb4dcd72e9531ddb277854ea02
[ "MIT" ]
null
null
null
ods2md.py
tuksik/kennytm-ods2md
cf5e322aa3e3d5eb4dcd72e9531ddb277854ea02
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2015, 2017 Kenny Chan # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT # OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import print_function import ezodf import sys import unicodedata # Ref: http://stackoverflow.com/a/31666966/224671 DISPLAY_WIDTH = { 'A': 1, 'F': 2, 'H': 1, 'N': 1, 'Na': 1, 'W': 2, } def display_text(cell): v = cell.value if isinstance(v, float): return '{:g}'.format(v) elif v is None: return '' else: return str(v) def display_len(s): return sum(DISPLAY_WIDTH[unicodedata.east_asian_width(c)] for c in s) def main(odf_path, out_file): ods = ezodf.opendoc(odf_path) for sheet in ods.sheets: column_widths = [max(display_len(display_text(cell)) for cell in column) for column in sheet.columns()] if not any(column_widths): continue print('##', sheet.name, file=out_file) printed_header = False for row in sheet.rows(): contents = [display_text(cell) for cell in row] if not any(contents): continue print('|', end='', file=out_file) for m, content in enumerate(contents): column_width = column_widths[m] if not column_width: continue disp_len = column_width + len(content) - display_len(content) print(' {0:<{1}}'.format(content, disp_len), end=' |', file=out_file) print(file=out_file) if not printed_header: printed_header = True print('|', end='', file=out_file) for w in column_widths: if w: print(':', '-' * (w+1), '|', sep='', end='', file=out_file) print(file=out_file) if __name__ == '__main__': main(sys.argv[1], sys.stdout)
34.73494
111
0.635796
e1409b6ab26fffacafd213ca4b4a376b80aed345
1,514
py
Python
14 Server, PDF Text extraction/scraper.py
manuelapaganini/20_21_Workfile
5ec3637d18cbd73256b56682d9b99547e21a24d9
[ "MIT" ]
6
2019-08-06T14:53:34.000Z
2020-10-16T19:44:16.000Z
14 Server, PDF Text extraction/scraper.py
manuelapaganini/20_21_Workfile
5ec3637d18cbd73256b56682d9b99547e21a24d9
[ "MIT" ]
1
2020-06-25T09:46:58.000Z
2020-06-25T09:46:58.000Z
14 Server, PDF Text extraction/scraper.py
manuelapaganini/20_21_Workfile
5ec3637d18cbd73256b56682d9b99547e21a24d9
[ "MIT" ]
2
2019-09-16T13:05:51.000Z
2019-09-27T09:07:49.000Z
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import Select import time import pandas as pd from bs4 import BeautifulSoup #Wir starten den Browser auf driver = webdriver.Chrome(executable_path='/usr/local/bin/chromedriver') #Und nun sagen wir dem Browser, welche Seite er besuchen sollte. driver.get('https://www.zefix.ch') #Geben wir ihm etwas ZEit time.sleep(10) #Und nun geben wir unseren Begriff ein. ZUerst suchen wir das richtige Feld. Wir benutzen dafür den Webinspector. #https://selenium-python.readthedocs.io/locating-elements.html search = driver.find_element_by_id('firm-name-fomfield') #Jetzt schicken wir das, was wir suchen wollen search.send_keys('bäckerei') #Und jetzt suchen wir nach dem Button click = driver.find_element_by_id('submit-search-btn') #Und wir klicken click.click() #Das kann dauern, bauen wir zur Not genügend Zeit ein. time.sleep(5) #Und jetzt speichern wir diese ganze Seite ab. Den Inhalt rausziehen wollen wir später. page = driver.page_source.encode('utf-8') button = driver.find_elements_by_class_name('btn')[14] with open("page.htm", "wb+") as file: file.write(page) file.close() #its the 14th page for elem in range(35): driver.find_elements_by_class_name('btn')[14].click() time.sleep(3) page = driver.page_source.encode('utf-8') with open("pages/page"+str(elem)+".htm", "wb+") as file: file.write(page) file.close()
36.926829
113
0.758256
beca66fd1093873b130ccbeef5e67429df005b04
315
py
Python
Packs/CaseManagement-Generic/Scripts/LinkIncidentsButton/LinkIncidentsButton.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/CaseManagement-Generic/Scripts/LinkIncidentsButton/LinkIncidentsButton.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/CaseManagement-Generic/Scripts/LinkIncidentsButton/LinkIncidentsButton.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto action = demisto.getArg('action') if action not in ['link', 'unlink']: action = 'link' demisto.results(demisto.executeCommand("linkIncidents", {"linkedIncidentIDs": demisto.getArg("linkedIncidentIDs"), "action": action}))
35
114
0.606349
3639e32504c69a680e54972a052608364a7f5904
3,532
py
Python
research/cv/ssd_resnet50/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/ssd_resnet50/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/ssd_resnet50/postprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """post process for 310 inference""" import os import argparse import numpy as np from PIL import Image from src.config import config from src.eval_utils import metrics batch_size = 1 parser = argparse.ArgumentParser(description="ssd acc calculation") parser.add_argument("--result_path", type=str, required=True, help="result files path.") parser.add_argument("--img_path", type=str, required=True, help="image file path.") parser.add_argument("--anno_file", type=str, required=True, help="annotation file.") parser.add_argument("--drop", action="store_true", help="drop iscrowd images or not.") args = parser.parse_args() def get_imgSize(file_name): img = Image.open(file_name) return img.size def get_result(result_path, img_id_file_path): """print the mAP""" if args.drop: from pycocotools.coco import COCO train_cls = config.classes train_cls_dict = {} for i, cls in enumerate(train_cls): train_cls_dict[cls] = i coco = COCO(args.anno_file) classs_dict = {} cat_ids = coco.loadCats(coco.getCatIds()) for cat in cat_ids: classs_dict[cat["id"]] = cat["name"] files = os.listdir(img_id_file_path) pred_data = [] for file in files: img_ids_name = file.split('.')[0] img_id = int(np.squeeze(img_ids_name)) if args.drop: anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None) anno = coco.loadAnns(anno_ids) annos = [] iscrowd = False for label in anno: bbox = label["bbox"] class_name = classs_dict[label["category_id"]] iscrowd = iscrowd or label["iscrowd"] if class_name in train_cls: x_min, x_max = bbox[0], bbox[0] + bbox[2] y_min, y_max = bbox[1], bbox[1] + bbox[3] annos.append(list(map(round, [y_min, x_min, y_max, x_max])) + [train_cls_dict[class_name]]) if iscrowd or (not annos): continue img_size = get_imgSize(os.path.join(img_id_file_path, file)) image_shape = np.array([img_size[1], img_size[0]]) result_path_0 = os.path.join(result_path, img_ids_name + "_0.bin") result_path_1 = os.path.join(result_path, img_ids_name + "_1.bin") boxes = np.fromfile(result_path_0, dtype=np.float32).reshape(config.num_ssd_boxes, 4) box_scores = np.fromfile(result_path_1, dtype=np.float32).reshape(config.num_ssd_boxes, config.num_classes) pred_data.append({ "boxes": boxes, "box_scores": box_scores, "img_id": img_id, "image_shape": image_shape }) mAP = metrics(pred_data, args.anno_file) print(f" mAP:{mAP}") if __name__ == '__main__': get_result(args.result_path, args.img_path)
39.244444
115
0.635617
367948e4f4cad432e628a0a5718fa9052acf05a5
2,538
py
Python
tests/test_tipc/bigru_crf/export_model.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
tests/test_tipc/bigru_crf/export_model.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
tests/test_tipc/bigru_crf/export_model.py
mukaiu/PaddleNLP
0315365dbafa6e3b1c7147121ba85e05884125a5
[ "Apache-2.0" ]
null
null
null
# -*- coding: UTF-8 -*- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import paddle from paddle.static import InputSpec import paddlenlp as ppnlp from paddlenlp.data import Vocab from data import load_vocab from model import BiGruCrf # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--data_dir", type=str, default=None, help="The folder where the dataset is located.") parser.add_argument("--params_path", type=str, default='./checkpoints/final.pdparams', help="The path of model parameter to be loaded.") parser.add_argument("--output_path", type=str, default='./infer_model', help="The path of model parameter in static graph to be saved.") parser.add_argument("--emb_dim", type=int, default=128, help="The dimension in which a word is embedded.") parser.add_argument("--hidden_size", type=int, default=128, help="The number of hidden nodes in the GRU layer.") args = parser.parse_args() # yapf: enable def main(): word_vocab = load_vocab(os.path.join(args.data_dir, 'word.dic')) label_vocab = load_vocab(os.path.join(args.data_dir, 'tag.dic')) model = BiGruCrf(args.emb_dim, args.hidden_size, len(word_vocab), len(label_vocab)) state_dict = paddle.load(args.params_path) model.set_dict(state_dict) model.eval() model = paddle.jit.to_static(model, input_spec=[ InputSpec(shape=[None, None], dtype="int64", name='token_ids'), InputSpec(shape=[None], dtype="int64", name='length') ]) # Save in static graph model. paddle.jit.save(model, os.path.join(args.output_path, "inference")) if __name__ == "__main__": main()
39.65625
136
0.639086
62d4a793bd739cd33232d2134880a8d12117672b
914
py
Python
tf/clasificador2/clasificador_dir.py
alffore/lokroids-python
ac3bbc328140e53ab181034d2e3d5d5d17dc9203
[ "MIT" ]
null
null
null
tf/clasificador2/clasificador_dir.py
alffore/lokroids-python
ac3bbc328140e53ab181034d2e3d5d5d17dc9203
[ "MIT" ]
null
null
null
tf/clasificador2/clasificador_dir.py
alffore/lokroids-python
ac3bbc328140e53ab181034d2e3d5d5d17dc9203
[ "MIT" ]
null
null
null
# coding=UTF-8 import cv2 import sys import os import tensorflow as tf import filetype CATEGORIAS = ['dormido', 'despierto', 'otro'] IMG_SIZE = int(sys.argv[3]) def preparaimg(filepath): img_array = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE) new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE)) return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1) model = tf.keras.models.load_model(sys.argv[1]) path = sys.argv[2] for img in os.listdir(path): tipo_archivo = filetype.guess(os.path.join(path, img)) if tipo_archivo is not None and tipo_archivo.mime == 'image/jpeg': prediction = model.predict([preparaimg(os.path.join(path, img))]) print(img + " " + str(prediction[0])) # print(img + " " + str(np.dot(prediction[0], [1, 0, 0]))) top_k = prediction[0].argsort()[-len(prediction[0]):][::-1] print(img+' '+str(top_k[0])+" "+CATEGORIAS[top_k[0]])
28.5625
73
0.658643
3dab09c9f18895b904125d9ba2ec741590c1da28
1,372
py
Python
Packs/ServiceNow/Scripts/ServiceNowIncidentStatus/ServiceNowIncidentStatus.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/ServiceNow/Scripts/ServiceNowIncidentStatus/ServiceNowIncidentStatus.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/ServiceNow/Scripts/ServiceNowIncidentStatus/ServiceNowIncidentStatus.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto # noqa: F401 from CommonServerPython import * # noqa: F401 COLORS = { '1 - New': '#00CD33', # (success green) '2 - In Progress': '#7995D4', # (royal blue) '3 - On Hold': '#FF9000', # (warning orange) '4 - Awaiting Caller': '#FF9000', # (warning orange) '5 - Awaiting Evidence': '#FF9000', # (warning orange) '6 - Resolved': '#89A5C1', # (polo) '7 - Closed': '#9AA0A3', # (natural grey) '8 - Canceled': '#FF1744' # (alert-red) } TEXT = { '1 - New': 'New', '2 - In Progress': 'In Progress', '3 - On Hold': 'On-Hold', '4 - Awaiting Caller': 'Awaiting Caller', '5 - Awaiting Evidence': 'Awaiting Evidence', '6 - Resolved': 'Resolved', '7 - Closed': 'Closed', '8 - Canceled': 'Canceled' } incident = demisto.incidents() service_now_state = (incident[0].get('CustomFields', {}).get('servicenowstate')) try: text_color = COLORS[service_now_state] text_content = TEXT[service_now_state] except Exception as e: demisto.debug(f'SnowIncidentStatus debug - state is: {service_now_state}\n{e}') text_color = '#000000' text_content = 'Pending Update' html = f"<div style='color:{text_color};text-align:center;'><h2>{text_content}</h2></div>" demisto.results({ 'ContentsFormat': formats['html'], 'Type': entryTypes['note'], 'Contents': html })
30.488889
90
0.61516
3dd1f074801fdda6a493b5523fc6da4e546d091d
14,609
py
Python
mltrain-nips-2017/lu_jensen/visdial_workshop.pytorch/train/train_G.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
1
2019-05-10T09:16:23.000Z
2019-05-10T09:16:23.000Z
mltrain-nips-2017/lu_jensen/visdial_workshop.pytorch/train/train_G.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
null
null
null
mltrain-nips-2017/lu_jensen/visdial_workshop.pytorch/train/train_G.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
1
2019-10-14T07:30:18.000Z
2019-10-14T07:30:18.000Z
from __future__ import print_function import argparse import os import random import sys sys.path.append(os.getcwd()) import pdb import time import numpy as np import json import progressbar import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable from misc.utils import repackage_hidden, clip_gradient, adjust_learning_rate, \ decode_txt, sample_batch_neg, l2_norm import misc.dataLoader as dl import misc.model as model from misc.encoder_QIH import _netE from misc.netG import _netG import datetime parser = argparse.ArgumentParser() parser.add_argument('--input_img_h5', default='data/vdl_img_vgg.h5', help='path to dataset, now hdf5 file') parser.add_argument('--input_ques_h5', default='data/visdial_data.h5', help='path to dataset, now hdf5 file') parser.add_argument('--input_json', default='data/visdial_params.json', help='path to dataset, now hdf5 file') parser.add_argument('--outf', default='./save', help='folder to output images and model checkpoints') parser.add_argument('--encoder', default='G_QIH_VGG', help='what encoder to use.') parser.add_argument('--model_path', default='', help='folder to output images and model checkpoints') parser.add_argument('--num_val', default=0, help='number of image split out as validation set.') parser.add_argument('--niter', type=int, default=50, help='number of epochs to train for') parser.add_argument('--start_epoch', type=int, default=0, help='start of epochs to train for') parser.add_argument('--negative_sample', type=int, default=20, help='folder to output images and model checkpoints') parser.add_argument('--neg_batch_sample', type=int, default=30, help='folder to output images and model checkpoints') parser.add_argument('--workers', type=int, help='number of data loading workers', default=6) parser.add_argument('--batchSize', type=int, default=128, help='input batch size') parser.add_argument('--save_iter', type=int, default=1, help='number of epochs to train for') parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)') parser.add_argument('--lr', type=float, default=0.0004, help='learning rate for, default=0.00005') parser.add_argument('--beta1', type=float, default=0.8, help='beta1 for adam. default=0.5') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--verbose' , action='store_true', help='show the sampled caption') parser.add_argument('--conv_feat_size', type=int, default=512, help='input batch size') parser.add_argument('--model', type=str, default='LSTM', help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)') parser.add_argument('--ninp', type=int, default=300, help='size of word embeddings') parser.add_argument('--nhid', type=int, default=512, help='humber of hidden units per layer') parser.add_argument('--nlayers', type=int, default=1, help='number of layers') parser.add_argument('--dropout', type=int, default=0.5, help='number of layers') parser.add_argument('--clip', type=float, default=5, help='gradient clipping') parser.add_argument('--margin', type=float, default=2, help='number of epochs to train for') parser.add_argument('--log_interval', type=int, default=50, help='how many iterations show the log info') opt = parser.parse_args() print(opt) opt.manualSeed = random.randint(1, 10000) # fix seed print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") if opt.model_path != '': print("=> loading checkpoint '{}'".format(opt.model_path)) checkpoint = torch.load(opt.model_path) model_path = opt.model_path opt = checkpoint['opt'] opt.start_epoch = checkpoint['epoch'] opt.model_path = model_path opt.batchSize = 128 opt.niter = 100 else: t = datetime.datetime.now() cur_time = '%s-%s-%s' %(t.day, t.month, t.hour) save_path = os.path.join(opt.outf, opt.encoder + '.' + cur_time) try: os.makedirs(save_path) except OSError: pass #################################################################################### # Data Loader #################################################################################### dataset = dl.train(input_img_h5=opt.input_img_h5, input_ques_h5=opt.input_ques_h5, input_json=opt.input_json, negative_sample = opt.negative_sample, num_val = opt.num_val, data_split = 'train') dataset_val = dl.validate(input_img_h5=opt.input_img_h5, input_ques_h5=opt.input_ques_h5, input_json=opt.input_json, negative_sample = opt.negative_sample, num_val = opt.num_val, data_split = 'test') dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batchSize, shuffle=True, num_workers=int(opt.workers)) dataloader_val = torch.utils.data.DataLoader(dataset_val, batch_size=5, shuffle=False, num_workers=int(opt.workers)) #################################################################################### # Build the Model #################################################################################### vocab_size = dataset.vocab_size ques_length = dataset.ques_length ans_length = dataset.ans_length + 1 his_length = dataset.ques_length + dataset.ans_length itow = dataset.itow img_feat_size = opt.conv_feat_size netE = _netE(opt.model, opt.ninp, opt.nhid, opt.nlayers, opt.dropout, img_feat_size) netW = model._netW(vocab_size, opt.ninp, opt.dropout) netG = _netG(opt.model, vocab_size, opt.ninp, opt.nhid, opt.nlayers, opt.dropout) critG = model.LMCriterion() sampler = model.gumbel_sampler() if opt.cuda: netW.cuda() netE.cuda() netG.cuda() critG.cuda() sampler.cuda() if opt.model_path != '': netW.load_state_dict(checkpoint['netW']) netE.load_state_dict(checkpoint['netE']) netG.load_state_dict(checkpoint['netG']) # training function def train(epoch): netW.train() netE.train() netG.train() lr = adjust_learning_rate(optimizer, epoch, opt.lr) data_iter = iter(dataloader) ques_hidden = netE.init_hidden(opt.batchSize) hist_hidden = netE.init_hidden(opt.batchSize) average_loss = 0 count = 0 i = 0 total_loss = 0 while i < len(dataloader): data = data_iter.next() image, history, question, answer, answerT, answerLen, answerIdx, \ questionL, negAnswer, negAnswerLen, negAnswerIdx = data batch_size = question.size(0) image = image.view(-1, img_feat_size) img_input.data.resize_(image.size()).copy_(image) for rnd in range(10): ques = question[:,rnd,:].t() his = history[:,:rnd+1,:].clone().view(-1, his_length).t() ans, tans = answer[:,rnd,:].t(), answerT[:,rnd,:].t() his_input.data.resize_(his.size()).copy_(his) ques_input.data.resize_(ques.size()).copy_(ques) ans_input.data.resize_(ans.size()).copy_(ans) ans_target.data.resize_(tans.size()).copy_(tans) ques_emb = netW(ques_input, format = 'index') his_emb = netW(his_input, format = 'index') ques_hidden = repackage_hidden(ques_hidden, batch_size) hist_hidden = repackage_hidden(hist_hidden, his_input.size(1)) encoder_feat, ques_hidden = netE(ques_emb, his_emb, img_input, \ ques_hidden, hist_hidden, rnd+1) _, ques_hidden = netG(encoder_feat.view(1,-1,opt.ninp), ques_hidden) ans_emb = netW(ans_input) logprob, ques_hidden = netG(ans_emb, ques_hidden) loss = critG(logprob, ans_target.view(-1, 1)) loss = loss / torch.sum(ans_target.data.gt(0)) average_loss += loss.data[0] total_loss += loss.data[0] # do backward. netW.zero_grad() netE.zero_grad() netG.zero_grad() loss.backward() optimizer.step() count += 1 i += 1 if i % opt.log_interval == 0: average_loss /= count print("step {} / {} (epoch {}), g_loss {:.3f}, lr = {:.6f}"\ .format(i, len(dataloader), epoch, average_loss, lr)) average_loss = 0 count = 0 return total_loss / (10 * i), lr def val(): netE.eval() netW.eval() netG.eval() data_iter_val = iter(dataloader_val) ques_hidden = netE.init_hidden(opt.batchSize) hist_hidden = netE.init_hidden(opt.batchSize) i = 0 average_loss = 0 rank_all_tmp = [] while i < len(dataloader_val): data = data_iter_val.next() image, history, question, answer, answerT, questionL, opt_answer, \ opt_answerT, answer_ids, answerLen, opt_answerLen, img_id = data batch_size = question.size(0) image = image.view(-1, img_feat_size) img_input.data.resize_(image.size()).copy_(image) for rnd in range(10): # get the corresponding round QA and history. ques, tans = question[:,rnd,:].t(), opt_answerT[:,rnd,:].clone().view(-1, ans_length).t() his = history[:,:rnd+1,:].clone().view(-1, his_length).t() ans = opt_answer[:,rnd,:,:].clone().view(-1, ans_length).t() gt_id = answer_ids[:,rnd] his_input.data.resize_(his.size()).copy_(his) ques_input.data.resize_(ques.size()).copy_(ques) ans_input.data.resize_(ans.size()).copy_(ans) ans_target.data.resize_(tans.size()).copy_(tans) gt_index.data.resize_(gt_id.size()).copy_(gt_id) ques_emb = netW(ques_input, format = 'index') his_emb = netW(his_input, format = 'index') ques_hidden = repackage_hidden(ques_hidden, batch_size) hist_hidden = repackage_hidden(hist_hidden, his_input.size(1)) encoder_feat, ques_hidden = netE(ques_emb, his_emb, img_input, \ ques_hidden, hist_hidden, rnd+1) _, ques_hidden = netG(encoder_feat.view(1,-1,opt.ninp), ques_hidden) hidden_replicated = [] for hid in ques_hidden: hidden_replicated.append(hid.view(opt.nlayers, batch_size, 1, \ opt.nhid).expand(opt.nlayers, batch_size, 100, opt.nhid).clone().view(opt.nlayers, -1, opt.nhid)) hidden_replicated = tuple(hidden_replicated) ans_emb = netW(ans_input, format = 'index') output, _ = netG(ans_emb, hidden_replicated) logprob = - output logprob_select = torch.gather(logprob, 1, ans_target.view(-1,1)) mask = ans_target.data.eq(0) # generate the mask if isinstance(logprob, Variable): mask = Variable(mask, volatile=logprob.volatile) logprob_select.masked_fill_(mask.view_as(logprob_select), 0) prob = logprob_select.view(ans_length, -1, 100).sum(0).view(-1,100) for b in range(batch_size): gt_index.data[b] = gt_index.data[b] + b*100 gt_score = prob.view(-1).index_select(0, gt_index) sort_score, sort_idx = torch.sort(prob, 1) count = sort_score.lt(gt_score.view(-1,1).expand_as(sort_score)) rank = count.sum(1) + 1 rank_all_tmp += list(rank.view(-1).data.cpu().numpy()) i += 1 return rank_all_tmp, average_loss #################################################################################### # Main #################################################################################### img_input = torch.FloatTensor(opt.batchSize, 49, 512) ques_input = torch.LongTensor(ques_length, opt.batchSize) his_input = torch.LongTensor(his_length, opt.batchSize) ans_input = torch.LongTensor(ans_length, opt.batchSize) ans_target = torch.LongTensor(ans_length, opt.batchSize) ans_sample = torch.LongTensor(1, opt.batchSize) noise_input = torch.FloatTensor(opt.batchSize) gt_index = torch.LongTensor(opt.batchSize) if opt.cuda: img_input, his_input = img_input.cuda(), his_input.cuda() ques_input, ans_input = ques_input.cuda(), ans_input.cuda() ans_target, ans_sample = ans_target.cuda(), ans_sample.cuda() noise_input = noise_input.cuda() gt_index = gt_index.cuda() ques_input = Variable(ques_input) ans_input = Variable(ans_input) ans_target = Variable(ans_target) ans_sample = Variable(ans_sample) noise_input = Variable(noise_input) img_input = Variable(img_input) his_input = Variable(his_input) gt_index = Variable(gt_index) optimizer = optim.Adam([{'params': netW.parameters()}, {'params': netG.parameters()}, {'params': netE.parameters()}], lr=opt.lr, betas=(opt.beta1, 0.999)) history = [] for epoch in range(opt.start_epoch+1, opt.niter): t = time.time() train_loss, lr = train(epoch) print ('Epoch: %d learningRate %4f train loss %4f Time: %3f' % (epoch, lr, train_loss, time.time()-t)) print('Evaluating ... ') rank_all, val_loss = val() R1 = np.sum(np.array(rank_all)==1) / float(len(rank_all)) R5 = np.sum(np.array(rank_all)<=5) / float(len(rank_all)) R10 = np.sum(np.array(rank_all)<=10) / float(len(rank_all)) ave = np.sum(np.array(rank_all)) / float(len(rank_all)) mrr = np.sum(1/(np.array(rank_all, dtype='float'))) / float(len(rank_all)) print ('%d/%d: mrr: %f R1: %f R5 %f R10 %f Mean %f' %(epoch, len(dataloader_val), mrr, R1, R5, R10, ave)) train_his = {'loss': train_loss} val_his = {'R1': R1, 'R5':R5, 'R10': R10, 'Mean':ave, 'mrr':mrr} history.append({'epoch':epoch, 'train': train_his, 'val': val_his}) # saving the model. if epoch % opt.save_iter == 0: torch.save({'epoch': epoch, 'opt': opt, 'netW': netW.state_dict(), 'netG': netG.state_dict(), 'netE': netE.state_dict()}, '%s/epoch_%d.pth' % (save_path, epoch)) json.dump(history, open('%s/log.json' %(save_path), 'w'))
39.590786
118
0.630912
9abde9590954dcb678193a7a66faed82267b7746
192
py
Python
top/clearlight/base/runoob/error/error_01.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
1
2020-01-16T09:23:43.000Z
2020-01-16T09:23:43.000Z
top/clearlight/base/runoob/error/error_01.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
null
null
null
top/clearlight/base/runoob/error/error_01.py
ClearlightY/Python_learn
93b9b7efae5a1cf05faf8ee7c5e36dcc99c7a232
[ "Apache-2.0" ]
null
null
null
def mye(level): if level < 1: raise Exception("Invalid level!") # 触发异常后,后面的代码就不会再执行 try: mye(0) # 触发异常 except Exception as err: print(1, err) else: print(2)
14.769231
41
0.578125
772f6e8f3bcedc9cbec66eab050585305eca1dc8
3,318
py
Python
thread_float_bbs.py
ikeikeikeike/scrapy-2ch-summary-spider
7142693f25025a09390377649a727cfd33d15af3
[ "MIT" ]
2
2015-01-12T08:23:35.000Z
2017-07-28T15:02:26.000Z
thread_float_bbs.py
ikeikeikeike/scrapy-2ch-summary-spider
7142693f25025a09390377649a727cfd33d15af3
[ "MIT" ]
null
null
null
thread_float_bbs.py
ikeikeikeike/scrapy-2ch-summary-spider
7142693f25025a09390377649a727cfd33d15af3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import itertools from scrapy.spider import BaseSpider from scrapy.selector import Selector from scrapy.http.request import Request import feedparser from scrapy_mongodb import MongoDBPipeline collection = None def _request_ignores(url, settings=None): """ すでに登録済みはリクエストしない """ global collection if not collection and settings: collection = MongoDBPipeline(settings).collection row = collection.find_one({'url': url}) return row and len(row.get('contents', [])) > 0 class ThreadFloatBbsSpider(BaseSpider): """ For 2ch summary site. """ def __init__(self, *args, **kwargs): super(BaseSpider, self).__init__(*args, **kwargs) self.feeds = None def parse(self, response): """ main """ return self._parse_response(response, self._rdf_to_links) def _rdf_to_links(self, response): """ rdf fileからlinkを抽出する """ self.feeds = feedparser.parse(response.url) for feed in self.feeds['entries']: yield feed['link'] def _parse_response(self, response, rdf_to_links): """ 処理を単体にする """ links = rdf_to_links(response) for link in links: if not _request_ignores(link, self.settings): yield self._move_to_spider_page(response, link) def _move_to_spider_page(self, response, link): """ move to spider page(scrape page) """ return Request(link, callback=self.spider_page, method="GET") def request_title(self, url, item): """ Request url with item. """ if url: request = Request(url, callback=self._parse_title, method="GET", dont_filter=True) request.meta['item'] = item yield request else: yield item def _parse_title(self, response): """ Scraping title from url. """ sel = Selector(response) item = response.request.meta['item'] item['source_title'] = self.get_text(sel.xpath('//h1')) yield item def get_text(self, selector): """ textが存在すれば値を返す """ text = selector.xpath('text()').extract() if len(text) < 1: return elif not text[0]: return else: return text[0].strip() def get_feed(self, url): """ feedを返す """ predicate = lambda f: f['link'] == url return itertools.ifilter(predicate, self.feeds['entries']).next() class SequenceAppend(object): """ 数字の場合indexを進める """ def __init__(self, template): self.template = template self.items = [] def append(self, item): if not self.items: base = self.template.copy() else: base = self.items[-1].copy() self._sequence_loop(base, base) self.items.append(dict(base, **item)) def result(self): return self.items def _sequence_loop(self, base, item): for key, value in item.iteritems(): if value is int: value = 0 elif isinstance(value, int): value += 1 elif isinstance(value, long): value += 1L base.update({key: value})
25.921875
73
0.57173
62724a923dd489807922b5dc845a52a4c8ed8c56
394
py
Python
sakf/db/nosql/nosql.py
spdir/sakf
9a07c5f90765201a42d524dc6d4554f4ccd3c750
[ "Apache-2.0" ]
null
null
null
sakf/db/nosql/nosql.py
spdir/sakf
9a07c5f90765201a42d524dc6d4554f4ccd3c750
[ "Apache-2.0" ]
null
null
null
sakf/db/nosql/nosql.py
spdir/sakf
9a07c5f90765201a42d524dc6d4554f4ccd3c750
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import jdb2 from sakf.conf import globalConfig def nosqlDB(): """ creat nodb db obj :return: """ _nosql_conf = globalConfig.config.get('nodb') _nosqlFile = _nosql_conf.get('file') _dump_time = _nosql_conf.get('dump_time') _dump = _nosql_conf.get('dump', False) noSql = jdb2.NoSql(dump=_dump, nosqlFile=_nosqlFile, dumpTime=_dump_time) return noSql
23.176471
75
0.700508
6593b826e62099da56eb2eadb02bfa96e0211a8d
787
py
Python
Problems/Depth-First Search/easy/CousinsBT/cousins_in_bt.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
1
2021-08-16T14:52:05.000Z
2021-08-16T14:52:05.000Z
Problems/Depth-First Search/easy/CousinsBT/cousins_in_bt.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
Problems/Depth-First Search/easy/CousinsBT/cousins_in_bt.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
from typing import Optional # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def isCousins(self, root: Optional[TreeNode], x: int, y: int) -> bool: compare = [] def check(cur_node: Optional[TreeNode], depth: int, prev_node: int): if not cur_node: return if cur_node.val == x: compare.append((depth, prev_node)) if cur_node.val == y: compare.append((depth, prev_node)) check(cur_node.left, depth + 1, cur_node.val) check(cur_node.right, depth + 1, cur_node.val) check(root, 0, -1) return compare[0][0] == compare[1][0] and compare[0][1] != compare[1][1]
26.233333
76
0.597205
b2384000bdcd943fb13098761f1cc4096d467b87
3,740
py
Python
models/syntaxsql/net_utils.py
inyukwo1/qgm_decoder
70e60afec140ec3e2ee04f980a384e1cf28d761c
[ "MIT" ]
null
null
null
models/syntaxsql/net_utils.py
inyukwo1/qgm_decoder
70e60afec140ec3e2ee04f980a384e1cf28d761c
[ "MIT" ]
null
null
null
models/syntaxsql/net_utils.py
inyukwo1/qgm_decoder
70e60afec140ec3e2ee04f980a384e1cf28d761c
[ "MIT" ]
null
null
null
def to_batch_seq(batch): q_seq = [] history = [] label = [] for item in batch: q_seq.append(item['question_tokens']) history.append(item["history"]) label.append(item["label"]) return q_seq, history, label # CHANGED def to_batch_tables(batch, table_type): # col_lens = [] col_seq = [] tname_seqs = [] par_tnum_seqs = [] foreign_keys = [] for item in batch: ts = item["ts"] tname_toks = [x.split(" ") for x in ts[0]] col_type = ts[2] cols = [x.split(" ") for xid, x in ts[1]] tab_seq = [xid for xid, x in ts[1]] cols_add = [] for tid, col, ct in zip(tab_seq, cols, col_type): col_one = [ct] if tid == -1: tabn = ["all"] else: if table_type == "no": tabn = [] elif table_type == "struct": tabn = [] else: tabn = tname_toks[tid] for t in tabn: if t not in col: col_one.append(t) col_one.extend(col) cols_add.append(col_one) col_seq.append(cols_add) tname_seqs.append(tname_toks) par_tnum_seqs.append(tab_seq) foreign_keys.append(ts[3]) return col_seq, tname_seqs, par_tnum_seqs, foreign_keys def to_batch_from_candidates(par_tab_nums, batch): from_candidates = [] for idx, item in enumerate(batch): table_candidate = item["from"] col_candidates = [0] for col, par in enumerate(par_tab_nums[idx]): if str(par) in table_candidate: col_candidates.append(col) from_candidates.append(col_candidates) return from_candidates def make_compound_table(dev_db_compound_num, table_dict, my_db_id, db_ids): if dev_db_compound_num == 0: return table_dict[my_db_id] selected_db_ids = random.sample(db_ids, dev_db_compound_num) if my_db_id in selected_db_ids: selected_db_ids.remove(my_db_id) compound_table = deepcopy(table_dict[my_db_id]) for dev_db_id in selected_db_ids: new_table = table_dict[dev_db_id] if random.randint(0, 10) < 5: new_table = compound_table compound_table = deepcopy(table_dict[dev_db_id]) compound_table = append_table(compound_table, new_table) return compound_table def append_table(compound_table, new_table): for table_name in new_table["table_names"]: if table_name in compound_table["table_names"]: return compound_table new_table_offset = len(compound_table["table_names"]) new_column_offset = len(compound_table["column_names"]) - 1 compound_table["table_names"].extend(new_table["table_names"]) compound_table["table_names_original"].extend(new_table["table_names_original"]) for p in new_table["primary_keys"]: compound_table["primary_keys"].append(p + new_column_offset) for f, p in new_table["foreign_keys"]: compound_table["foreign_keys"].append([f + new_column_offset, p + new_column_offset]) compound_table["column_types"].extend(new_table["column_types"]) for t, name in new_table["column_names_original"][1:]: compound_table["column_names_original"].append([t + new_table_offset, name]) for t, name in new_table["column_names"][1:]: compound_table["column_names"].append([t + new_table_offset, name]) return compound_table def index_to_column_name(index, table): column_name = table["column_names"][index][1] table_index = table["column_names"][index][0] table_name = table["table_names"][table_index] return table_name, column_name, index
35.961538
93
0.631818
b2ad2f6ba80c0b860b88095f733e43696a7ffe64
718
py
Python
turngen/test_mcts.py
amrohendawi/AlphaZero-implementation
42103e63308ba256208b6dd6ddcbef2e797e9932
[ "MIT" ]
null
null
null
turngen/test_mcts.py
amrohendawi/AlphaZero-implementation
42103e63308ba256208b6dd6ddcbef2e797e9932
[ "MIT" ]
null
null
null
turngen/test_mcts.py
amrohendawi/AlphaZero-implementation
42103e63308ba256208b6dd6ddcbef2e797e9932
[ "MIT" ]
null
null
null
import montecarlo as mc import state as s import numpy as np import alphazero.NeuralNet as nn def main(): monteCarlo = mc.MCTS(2) nnet = nn.NeuralNet() board = np.array([ -1, 1, 1, 1, 1, 1, 1,-1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 0, -1, 4, 4, 4, 4, 4, 4,-1]).reshape(8, 8) player = 0 state = s.State(board, player) turn = monteCarlo.search(state, nnet) print(turn) if __name__ == "__main__": main()
27.615385
63
0.4039
a79de92abde8a036971edb9e164fe877f323fa18
554
py
Python
rename.py
loublock/Adam-Soundbox
ba859411a5c289c4ea61735233906d657785071d
[ "MIT" ]
1
2020-08-24T19:27:48.000Z
2020-08-24T19:27:48.000Z
rename.py
loublock/Adam-Soundbox
ba859411a5c289c4ea61735233906d657785071d
[ "MIT" ]
null
null
null
rename.py
loublock/Adam-Soundbox
ba859411a5c289c4ea61735233906d657785071d
[ "MIT" ]
null
null
null
import os path = 'SD_CARD/MP3/' count = 1 for filename in os.listdir('SD_CARD/MP3/'): if count > 9 and count <= 99: os.rename(r'SD_CARD/MP3/' + filename,r'SD_CARD/MP3/00' + str(count) + '.mp3') elif count > 99 and count <= 999: os.rename(r'SD_CARD/MP3/' + filename,r'SD_CARD/MP3/0' + str(count) + '.mp3') elif count > 999: os.rename(r'SD_CARD/MP3/' + filename,r'SD_CARD/MP3/' + str(count) + '.mp3') else: os.rename(r'SD_CARD/MP3/' + filename,r'SD_CARD/MP3/000' + str(count) + '.mp3') count += 1
32.588235
86
0.584838
ac393dd807b5c59556b193ea8bb84dc1c5bb967f
2,716
py
Python
Python/Buch_Python3_Das_umfassende_Praxisbuch/Kapitel_07_Sequenzen_Mengen_und_Generatoren/06_voting_example/06_voting_example.py
Apop85/Scripts
e71e1c18539e67543e3509c424c7f2d6528da654
[ "MIT" ]
null
null
null
Python/Buch_Python3_Das_umfassende_Praxisbuch/Kapitel_07_Sequenzen_Mengen_und_Generatoren/06_voting_example/06_voting_example.py
Apop85/Scripts
e71e1c18539e67543e3509c424c7f2d6528da654
[ "MIT" ]
6
2020-12-24T15:15:09.000Z
2022-01-13T01:58:35.000Z
Python/Buch_Python3_Das_umfassende_Praxisbuch/Kapitel_07_Sequenzen_Mengen_und_Generatoren/06_voting_example/06_voting_example.py
Apop85/Scripts
1d8dad316c55e1f1343526eac9e4b3d0909e4873
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- ### # File: 06_voting_example.py # Project: Kapitel_07_Sequenzen_Mengen_und_Generatoren # Created Date: Sunday 03.03.2019, 20:34 # Author: Apop85 # ----- # Last Modified: Monday 04.03.2019, 12:20 # ----- # Copyright (c) 2019 Apop85 # This software is published under the MIT license. # Check http://www.opensource.org/licenses/MIT for further informations # ----- # Description: Example Chapter 7. Page 217. Create a list of parties and use the List to vote. ### import os os.chdir(os.path.dirname(__file__)) def create_chart_file(item_list): file_writer=open('.\\charts.txt', 'w') for i in range(len(item_list)): file_writer.write(str(i)+',0,'+item_list[i]+'\n') file_writer.close() def get_candidates(): file_reader=open('.\\charts.txt', 'r') lines=file_reader.readlines() file_reader.close() overall_list=[] for line in lines: overall_list.append([]) for item in line.split(','): if item.isdecimal(): overall_list[-1]+=[int(item)] else: overall_list[-1]+=[item.strip('\n')] return overall_list def do_vote(chart_list): while True: print('Index'.center(15)+'|'+'Votes'.center(15)+'|'+'Partie'.center(15)) print(''.center(47, '-')) for item in chart_list: for value in item: print(str(value).center(15), end='') if item.index(value) != len(item)-1: print('|', end='') print() vote=input('Vote for your partie: ') if vote.isdecimal() and 0 <= int(vote) < len(chart_list): chart_list[int(vote)][1]+=1 elif vote == '': return print_winner(chart_list) else: print('Invalid choice.') def print_winner(chart_list): most_votes=[0,0] # Find the partie with the highes vote for i in range(len(chart_list)): if chart_list[i][1] > most_votes[1]: most_votes=[i,chart_list[i][1]] winner=(chart_list[most_votes[0]][-1],most_votes[1]) # Check if there are other parties with the same amount of votes for i in range(len(chart_list)): if chart_list[i][1] == most_votes[1] and i != most_votes[0]: if type(winner[0]) == str: winner=[winner[0],chart_list[i][-1]],winner[1] else: winner[0]+=[chart_list[i][-1]] if winner[1] == 0: winner=('No winner',0) return winner parties=['CVP','SVP','SP','FDP','Gruene','BDP','EVP'] create_chart_file(parties) chart_list=get_candidates() winner=do_vote(chart_list) print('Winner is: '+str(winner[0])+' with '+str(winner[1])+' votes!')
33.530864
94
0.594256
3bfa4b294340d6fee73a1d146009ab06204ed881
8,331
py
Python
contrib/0.挖宝行动/youzidata-机坪跑道航空器识别/src/data/yolo_dataset.py
huaweicloud/ModelArts-Lab
75d06fb70d81469cc23cd422200877ce443866be
[ "Apache-2.0" ]
1,045
2019-05-09T02:50:43.000Z
2022-03-31T06:22:11.000Z
contrib/0.挖宝行动/youzidata-机坪跑道航空器识别/src/data/yolo_dataset.py
huaweicloud/ModelArts-Lab
75d06fb70d81469cc23cd422200877ce443866be
[ "Apache-2.0" ]
1,468
2019-05-16T00:48:18.000Z
2022-03-08T04:12:44.000Z
contrib/0.挖宝行动/youzidata-机坪跑道航空器识别/src/data/yolo_dataset.py
huaweicloud/ModelArts-Lab
75d06fb70d81469cc23cd422200877ce443866be
[ "Apache-2.0" ]
1,077
2019-05-09T02:50:53.000Z
2022-03-27T11:05:32.000Z
# Copyright 2018 Deep Learning Service of Huawei Cloud. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import, division, print_function import os import numpy as np from moxing.framework import file from data.yolo_load.detection_dataset import Detection_dataset from utils.read_image_to_list import get_image_list from mxnet import gluon, io, nd def _pad_arrs_to_max_length(arrs, max_gt_box_number, pad_axis=0, pad_val=-1): """Inner Implementation of the Pad batchify""" if not isinstance(arrs[0], (nd.NDArray, np.ndarray)): arrs = [np.asarray(ele) for ele in arrs] max_size = max_gt_box_number ret_shape = list(arrs[0].shape) ret_shape[pad_axis] = max_size ret_shape = (len(arrs), ) + tuple(ret_shape) ret = nd.full(shape=ret_shape, val=pad_val, dtype=arrs[0].dtype) for i, arr in enumerate(arrs): if arr.shape[pad_axis] == max_size: ret[i] = arr else: slices = [slice(None) for _ in range(arr.ndim)] slices[pad_axis] = slice(0, arr.shape[pad_axis]) slices = [slice(i, i + 1)] + slices ret[tuple(slices)] = arr return ret class _train_batchify_fn(object): def __init__(self, max_gt_box_number): self._max_gt_box_number = max_gt_box_number def __call__(self, data): """Collate train data into batch.""" img_data = nd.stack(*[item[0] for item in data]) center_targets = nd.stack(*[item[1] for item in data]) scale_targets = nd.stack(*[item[2] for item in data]) weights = nd.stack(*[item[3] for item in data]) objectness = nd.stack(*[item[4] for item in data]) class_targets = nd.stack(*[item[5] for item in data]) gt_bboxes = _pad_arrs_to_max_length([item[6] for item in data], self._max_gt_box_number, pad_axis=0, pad_val=-1) batch_data = io.DataBatch(data=[img_data], label=[gt_bboxes, objectness, center_targets, scale_targets, weights, class_targets]) return batch_data class _val_batchify_fn(object): def __init__(self, max_gt_box_number): self._max_gt_box_number = max_gt_box_number def __call__(self, data): """Collate train data into batch.""" img_data = nd.stack(*[item[0] for item in data]) gt_bboxes = _pad_arrs_to_max_length([item[1] for item in data], self._max_gt_box_number, pad_axis=0, pad_val=-1) batch_data = io.DataBatch(data=[img_data], label=[gt_bboxes]) return batch_data def _get_provide_data(next_batch): next_data = next_batch.data return [io.DataDesc(name='data', shape=next_data[0].shape)] def _get_provide_label(next_batch, gt_boxes_shape=(32, 56, 4), is_train=True): next_label = next_batch.label if is_train: provide_label = [io.DataDesc(name='gt_boxes', shape=next_label[0].shape), io.DataDesc(name='obj_t', shape=next_label[1].shape), io.DataDesc(name='centers_t', shape=next_label[2].shape), io.DataDesc(name='scales_t', shape=next_label[3].shape), io.DataDesc(name='weights_t', shape=next_label[4].shape), io.DataDesc(name='clas_t', shape=next_label[5].shape)] else: provide_label = None return provide_label def _reset(): pass def get_data_iter(data_path, train_file=None, val_file=None, split_spec=1, hyper_train={}, hyper_val={}, **kwargs): train_set = None val_set = None train_list = None val_list = None if train_file is not None: assert file.exists(train_file), 'not found train file' train_path = file.read(train_file).split("\n")[0:-1] train_list = [path.replace('\r', '').split(' ') for path in train_path] train_list = [[os.path.join(data_path, path[0]), os.path.join(data_path, path[1])] for path in train_list] if val_file is not None: assert file.exists(val_file), 'not found val file' val_path = file.read(val_file).split("\n")[0:-1] val_list = [path.replace('\r', '').split(' ') for path in val_path] val_list = [[os.path.join(data_path, path[0]), os.path.join(data_path, path[1])] for path in val_list] if train_file is None and val_file is None: train_list, val_list, _ = get_image_list(data_path, split_spec) if 'anchors' not in kwargs: kwargs['anchors'] = [[116, 90, 156, 198, 373, 326], [30, 61, 62, 45, 59, 119], [10, 13, 16, 30, 33, 23]] if 'offsets' not in kwargs: kwargs['offsets'] = [(13, 13), (26, 26), (52, 52)] if train_list is not None and len(train_list) > 0: dataset = Detection_dataset(img_list=train_list, index_file=hyper_train.get( 'index_file', None), width=hyper_train.get('width', 416), height=hyper_train.get('height', 416), is_train=True, ** kwargs) max_gt_box_number = max([len(item) for item in dataset.label_cache]) batch_size = hyper_train.get('batch_size', 32) train_set = gluon.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=hyper_train.get('shuffle', True), batchify_fn=_train_batchify_fn(max_gt_box_number), last_batch='rollover', num_workers=hyper_train.get('preprocess_threads', 4)) next_data_batch = next(iter(train_set)) setattr(train_set, 'reset', _reset) setattr(train_set, 'provide_data', _get_provide_data(next_data_batch)) setattr(train_set, 'provide_label', _get_provide_label( next_data_batch, (batch_size, max_gt_box_number, 4), is_train=True)) if val_list is not None and len(val_list) > 0: assert 'index_file' in hyper_val and file.exists( hyper_val['index_file']), 'not found label name file' dataset = Detection_dataset(img_list=val_list, index_file=hyper_val.get( 'index_file'), width=hyper_val.get('width', 416), height=hyper_val.get('height', 416), is_train=False, ** kwargs) max_gt_box_number = max([len(item) for item in dataset.label_cache]) batch_size = hyper_val.get('batch_size', 32) val_set = gluon.data.DataLoader( dataset=dataset, batch_size=batch_size, shuffle=hyper_val.get('shuffle', True), batchify_fn=_val_batchify_fn(max_gt_box_number), last_batch='keep', num_workers=hyper_val.get('preprocess_threads', 4)) next_data_batch = next(iter(val_set)) setattr(val_set, 'reset', _reset) setattr(val_set, 'provide_data', _get_provide_data(next_data_batch)) setattr(val_set, 'provide_label', _get_provide_label( next_data_batch, is_train=False)) return train_set, val_set
45.774725
80
0.580483
ce2254fb627e25c68c6cea60e4ad2d54c2a44a57
145
py
Python
hardware/chip/rtl872xd/hal/hal_test/uart/ucube.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
4,538
2017-10-20T05:19:03.000Z
2022-03-30T02:29:30.000Z
hardware/chip/rtl872xd/hal/hal_test/uart/ucube.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
1,088
2017-10-21T07:57:22.000Z
2022-03-31T08:15:49.000Z
hardware/chip/rtl872xd/hal/hal_test/uart/ucube.py
wstong999/AliOS-Things
6554769cb5b797e28a30a4aa89b3f4cb2ef2f5d9
[ "Apache-2.0" ]
1,860
2017-10-20T05:22:35.000Z
2022-03-27T10:54:14.000Z
src = Split(''' uart_test.c ''') component = aos_component('uart_test', src) component.add_cflags('-Wall') component.add_cflags('-Werror')
16.111111
43
0.689655
024e111fd4f6f72908ffde93407e9cbee5a5191b
124
py
Python
tests/conftest.py
Kludex/fastapi-template
47256eb8f8c7439a4d669172d94ce84c62cdb25a
[ "MIT" ]
14
2021-03-27T22:18:56.000Z
2022-03-21T19:04:48.000Z
tests/conftest.py
Kludex/fastapi-template
47256eb8f8c7439a4d669172d94ce84c62cdb25a
[ "MIT" ]
33
2021-03-28T21:06:22.000Z
2022-03-07T14:18:26.000Z
tests/conftest.py
Kludex/fastapi-template
47256eb8f8c7439a4d669172d94ce84c62cdb25a
[ "MIT" ]
null
null
null
import pathlib import pytest @pytest.fixture() def root_dir() -> pathlib.PosixPath: return pathlib.Path().absolute()
13.777778
36
0.725806
ce48e39d702f37a92e96b02b7bc8ff6f0a2fe3c4
7,560
py
Python
Sephrasto.py
JoergRue/Sephrasto
a4fa3c2c1b095b674a9e71416ca448e3be3de225
[ "MIT" ]
null
null
null
Sephrasto.py
JoergRue/Sephrasto
a4fa3c2c1b095b674a9e71416ca448e3be3de225
[ "MIT" ]
null
null
null
Sephrasto.py
JoergRue/Sephrasto
a4fa3c2c1b095b674a9e71416ca448e3be3de225
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 23 21:30:34 2017 @author: Aeolitus """ from PyQt5 import QtWidgets, QtCore, QtGui import sys import logging import os.path import MainWindow import CharakterEditor import DatenbankEdit import CharakterMain import DatenbankMain from Wolke import Wolke import yaml from EinstellungenWrapper import EinstellungenWrapper import Version loglevels = {0: logging.ERROR, 1: logging.WARNING, 2: logging.DEBUG} logging.basicConfig(filename="sephrasto.log", \ level=loglevels[Wolke.Settings['Logging']], \ format="%(asctime)s | %(levelname)s | %(filename)s::%(funcName)s(%(lineno)d) | %(message)s") def sephrasto_excepthook(exc_type, exc_value, tb): traceback = [' Traceback (most recent call last):'] while tb: filename = tb.tb_frame.f_code.co_filename name = tb.tb_frame.f_code.co_name lineno = tb.tb_lineno traceback.append(' File "%.500s", line %d, in %.500s' %(filename, lineno, name)) tb = tb.tb_next # Exception type and value exception = ' %s: %s' %(exc_type.__name__, exc_value) logging.critical(exception + "\n".join(traceback)) #Try to show message box, hopefully its not a crash in Qt messagebox = QtWidgets.QMessageBox() messagebox.setWindowTitle("Fehler!") messagebox.setText("Unerwarteter Fehler:" + exception + ". Bei Fragen zum diesem Fehler bitte sephrasto.log mitsenden.") messagebox.setIcon(QtWidgets.QMessageBox.Critical) messagebox.setStandardButtons(QtWidgets.QMessageBox.Ok) messagebox.exec_() class MainWindowWrapper(object): ''' Main Class responsible for running the entire application. Just shows three buttons and handles the execution of the individual subparts. ''' def __init__(self): sys.excepthook = sephrasto_excepthook ''' Initializes the GUI and connects the buttons. ''' self._version_ = "v" + str(Version._sephrasto_version_major) + "." + str(Version._sephrasto_version_minor) + "." + str(Version._sephrasto_version_build) logging.critical("Starte Sephrasto " + self._version_) #critical so it's always printed, independent of the debug level setting super().__init__() #Make sure the application scales properly, i.e. in Win10 users can change the UI scale in the display settings if hasattr(QtCore.Qt, 'AA_EnableHighDpiScaling'): QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling, True) if hasattr(QtCore.Qt, 'AA_UseHighDpiPixmaps'): QtWidgets.QApplication.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps, True) self.app = QtCore.QCoreApplication.instance() if self.app is None: self.app = QtWidgets.QApplication(sys.argv) #self.app.setStyleSheet("*[readOnly=\"true\"] { background-color: #F5F5F5 } QAbstractScrollArea #scrollAreaWidgetContents { background-color: #FFFFFF }") self.app.setStyleSheet(""" *[readOnly=\"true\"] { background-color: #FFFFFF; border: none } QAbstractScrollArea #scrollAreaWidgetContents { background-color: #FFFFFF } """) self.Form = QtWidgets.QWidget() self.ui = MainWindow.Ui_Form() self.ui.setupUi(self.Form) self.ui.buttonNew.clicked.connect(self.createNew) self.ui.buttonEdit.clicked.connect(self.editExisting) self.ui.buttonRules.clicked.connect(self.editRuleset) self.ui.buttonSettings.clicked.connect(self.editSettings) self.ui.labelVersion.setText(self._version_ + " - by Aeolitus ") self.app.setWindowIcon(QtGui.QIcon('icon_large.png')) # Get the Settings loaded EinstellungenWrapper.load() logging.getLogger().setLevel(loglevels[Wolke.Settings['Logging']]) self.Form.show() sys.exit(self.app.exec_()) def createNew(self): ''' Creates a new CharakterEditor which is empty and shows it. ''' self.ed = CharakterEditor.Editor(self.savePathUpdated) if self.ed.noDatabase: raise Exception("Konnte datenbank.xml nicht finden") self.ed.formMain = QtWidgets.QWidget() self.ed.ui = CharakterMain.Ui_formMain() self.ed.ui.setupUi(self.ed.formMain) self.ed.ui.tabs.removeTab(0) self.ed.ui.tabs.removeTab(0) self.ed.setupMainForm() self.savePathUpdated() self.ed.formMain.show() def editExisting(self): ''' Creates a CharakterEditor for an existing character and shows it. ''' if os.path.isdir(Wolke.Settings['Pfad-Chars']): startDir = Wolke.Settings['Pfad-Chars'] else: startDir = "" spath, _ = QtWidgets.QFileDialog.getOpenFileName(None,"Charakter laden...",startDir,"XML-Datei (*.xml)") if spath == "": return if not spath.endswith(".xml"): spath = spath + ".xml" try: self.ed = CharakterEditor.Editor(self.savePathUpdated, spath) except Exception as e: logging.error("Sephrasto Fehlercode " + str(Wolke.Fehlercode) + ". Exception: " + str(e)) infoBox = QtWidgets.QMessageBox() infoBox.setIcon(QtWidgets.QMessageBox.Information) if Wolke.Fehlercode <= -40 and Wolke.Fehlercode > -80: infoBox.setText("Charakterdatei öffnen fehlgeschlagen") infoBox.setInformativeText("Die XML-Datei konnte nicht gelesen werden.\n\ Fehlercode: " + str(Wolke.Fehlercode) + "\n\ Fehlermeldung: " + Wolke.ErrorCode[Wolke.Fehlercode] + "\n") infoBox.setWindowTitle("Fehlerhafte Datei") else: infoBox.setText("Ein unerwarteter Fehler ist aufgetreten!") infoBox.setInformativeText("Ein Fehler ist aufgetreten. Versuche, Sephrasto neu zu starten?\n\ Fehlercode: " + str(Wolke.Fehlercode) + "\n") infoBox.setWindowTitle("Unbekannter Fehler") infoBox.setStandardButtons(QtWidgets.QMessageBox.Ok) infoBox.setEscapeButton(QtWidgets.QMessageBox.Close) infoBox.exec_() else: if self.ed.noDatabase: raise Exception("Konnte datenbank.xml nicht finden") self.ed.formMain = QtWidgets.QWidget() self.ed.ui = CharakterMain.Ui_formMain() self.ed.ui.setupUi(self.ed.formMain) self.ed.ui.tabs.removeTab(0) self.ed.ui.tabs.removeTab(0) self.ed.setupMainForm() self.savePathUpdated() self.ed.formMain.show() def editRuleset(self): ''' Creates the DatenbankEdit Form and shows the contents of datenbank.xml. ''' self.D = DatenbankEdit.DatenbankEdit() self.D.Form = QtWidgets.QWidget() self.D.ui = DatenbankMain.Ui_Form() self.D.ui.setupUi(self.D.Form) self.D.setupGUI() self.D.Form.show() def editSettings(self): EinstellungenWrapper() def savePathUpdated(self): file = " - Neuer Charakter" if self.ed.savepath: file = " - " + os.path.basename(self.ed.savepath) rules = "" if Wolke.DB.datei: rules = " (" + os.path.basename(Wolke.DB.datei) + ")" self.ed.formMain.setWindowTitle("Sephrasto" + file + rules) if __name__ == "__main__": itm = MainWindowWrapper()
40.427807
161
0.63836
0cc57be939cacc9e98dc3136d3ccf6ef1562d646
1,912
py
Python
codeit/oop/transports.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
codeit/oop/transports.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
codeit/oop/transports.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
from vehicle import Vehicle class Bicycle(Vehicle): max_speed = 15 def __init__(self, speed): self._speed = speed @property def speed(self): return self._speed @speed.setter def speed(self, new_value): self._speed = new_value if 0 <= new_value <= Bicycle.max_speed else 0 def start(self): print('자전거 페달 돌리기 시작합니다.') self.speed = self.max_speed / 3 def __str__(self): return f'이 자전거는 현재 {self.speed}km/h로 주행 중입니다.' class NormalCar(Vehicle): def __init__(self, speed, max_speed): self._speed = 0 self.max_speed = max_speed @property def speed(self): return self._speed @speed.setter def speed(self, new_value): self._speed = new_value if 0 <= new_value <= self.max_speed else 0 def start(self): print('일반 자동차 시동겁니다.') self.speed = self.max_speed / 2 def __str__(self): return f'이 일반 자동차는 현재 {self.speed}km/h로 주행 중입니다.' class SportsCar(Vehicle): def __init__(self, speed, max_speed): self._speed = speed self.max_speed = max_speed @property def speed(self): return self._speed @speed.setter def speed(self, new_value): self._speed = new_value if 0 <= new_value <= self.max_speed else 0 def start(self): print('스포츠카 시동겁니다.') self.speed = self.max_speed def __str__(self): return f'이 스포츠카는 현재 {self.speed}km/h로 주행 중입니다.' if __name__ == '__main__': # 자전거 인스턴스 bicycle = Bicycle(0) # 일반 자동차 인스턴스 car = NormalCar(0, 100) # 스포츠카 인스턴스 sports_car = SportsCar(0, 200) # 정의한 인스턴스들을 모두 주행 시작시킨다 bicycle.start() car.start() sports_car.start() # 자전거의 속도를 출력한다 print(bicycle) # 자전거만 주행을 멈춰준다 bicycle.stop() # 결과 값을 출력한다 print(bicycle) print(car) print(sports_car)
20.126316
77
0.598849
b2d2ed6b1a8a1264916646d07cfdf043ed82812c
3,914
py
Python
src/onegov/election_day/layouts/default.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/election_day/layouts/default.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/election_day/layouts/default.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from babel import Locale from cached_property import cached_property from datetime import datetime from onegov.ballot import VoteCollection from onegov.core.i18n import SiteLocale from onegov.core.layout import ChameleonLayout from onegov.core.static import StaticFile from onegov.election_day import _ from onegov.election_day.collections import ArchivedResultCollection from onegov.user import Auth class DefaultLayout(ChameleonLayout): day_long_format = 'skeleton:MMMMd' date_long_format = 'long' datetime_long_format = 'medium' docs_base_url = 'https://github.com/OneGov/onegov-cloud' \ '/tree/master/docs/api/election_day' def __init__(self, model, request): super().__init__(model, request) self.request.include('common') self.request.include('chosen') self.request.include('custom') if 'headerless' in request.params: request.browser_session['headerless'] = True if 'headerful' in request.params: if request.browser_session.has('headerless'): del request.browser_session['headerless'] def title(self): return '' @cached_property def principal(self): return self.request.app.principal @cached_property def has_districts(self): return self.principal.has_districts @cached_property def homepage_link(self): return self.request.link(self.principal) def get_opendata_link(self, lang): return f"{self.docs_base_url}/open_data_{lang}.md" @cached_property def opendata_link(self): lang = (self.request.locale or 'en')[:2] return self.get_opendata_link(lang) @cached_property def terms_icon(self): static_file = StaticFile.from_application( self.app, 'images/terms_by.svg' ) return self.request.link(static_file) @cached_property def terms_link(self): lang = (self.request.locale or 'en')[:2] return "https://opendata.swiss/{}/terms-of-use".format(lang) @cached_property def format_description_link(self): lang = (self.request.locale or 'en')[:2] return f"{self.docs_base_url}/format__{lang}.md" @cached_property def font_awesome_path(self): static_file = StaticFile.from_application( self.app, 'font-awesome/css/font-awesome.min.css') return self.request.link(static_file) def get_topojson_link(self, id, year): return self.request.link( StaticFile('mapdata/{}/{}.json'.format(year, id)) ) @cached_property def copyright_year(self): return datetime.utcnow().year @cached_property def manage_link(self): return self.request.link(VoteCollection(self.app.session())) @cached_property def login_link(self): if not self.request.is_logged_in: return self.request.link( Auth.from_request(self.request, to=self.manage_link), name='login' ) @cached_property def logout_link(self): if self.request.is_logged_in: return self.request.link( Auth.from_request(self.request), name='logout') @cached_property def archive(self): return ArchivedResultCollection(self.request.session) @cached_property def locales(self): to = self.request.url def get_name(locale): return Locale.parse(locale).get_language_name().capitalize() def get_link(locale): return self.request.link(SiteLocale(locale, to)) return [ (get_name(locale), get_link(locale)) for locale in sorted(self.app.locales) ] def format_name(self, item): if hasattr(item, 'entity_id'): return item.name if item.entity_id else _("Expats") return item.name or _("Expats")
29.428571
72
0.655084
0bf75ffc14183ea1a2ac1a22331593a7ef86822e
1,620
py
Python
PMIa/2014/VINOGRADOVA_J_S/task_7_48.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
PMIa/2014/VINOGRADOVA_J_S/task_7_48.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
PMIa/2014/VINOGRADOVA_J_S/task_7_48.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
# Задача 6. Вариант 48. # Создайте игру, в которой компьютер загадывает название одной из двадцати # башен Московского кремля, а игрок должен его угадать. # Vinogradova J. # 31.03.2016 import random name = random.randint(1,12) if name == 1 : name = 'Беклемишевская' elif name == 2 : name = 'Константино-Еленинская' elif name == 3 : name = 'Набатная' elif name == 4 : name = 'Царская' elif name == 5 : name = 'Спасская' elif name == 6 : name = 'Сенатская' elif name == 7 : name = 'Никольская' elif name == 8 : name = 'Собакина' elif name == 9 : name = 'Граненая' elif name == 10 : name = 'Троицкая' elif name == 11 : name = 'Кутафья' elif name == 12 : name = 'Комендатская' elif name == 13 : name = 'Оружейная' elif name == 14 : name = 'Боровицкая' elif name == 15 : name = 'Водовзводная' elif name == 16 : name = 'Благовещенская' elif name == 17 : name = 'Тайницкая' elif name == 18 : name = 'Первая Безымянная' elif name == 19 : name = 'Вторая Безымянная' else : name = 'Петровская' trial = 19 bonus = 11000 while trial > 0 : answer = input('\nКак Вы думаете, какая башня загадана? ') if answer == name : print('\nВы угадали!') print('Вам начислено', bonus, 'баллов.') break else : print('\nВы не угадали!!!') if trial > 1 : print('Попробуйте еще раз.') else : print('Правильный ответ: ', name) trial -= 1 bonus -= 1000 input('\n\nНажмите Enter для выхода.')
22.816901
75
0.558025
f0f764b0db8aca5c56a82e63ae276f69198633e6
903
py
Python
kernel/blog/migrations/0002_auto_20180605_1353.py
sageteam/behpack
3b8afb81dc7da70807308af4c8a2d2ab92b1a133
[ "MIT" ]
null
null
null
kernel/blog/migrations/0002_auto_20180605_1353.py
sageteam/behpack
3b8afb81dc7da70807308af4c8a2d2ab92b1a133
[ "MIT" ]
null
null
null
kernel/blog/migrations/0002_auto_20180605_1353.py
sageteam/behpack
3b8afb81dc7da70807308af4c8a2d2ab92b1a133
[ "MIT" ]
null
null
null
# Generated by Django 2.0.6 on 2018-06-05 09:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0001_initial'), ] operations = [ migrations.AlterField( model_name='news', name='sku', field=models.CharField(default='vxY6mlScUwA', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='newsmovies', name='sku', field=models.CharField(default='HXFm4TZBuwI', help_text='Unique code for refrence to supervisors', max_length=15), ), migrations.AlterField( model_name='newsphotos', name='sku', field=models.CharField(default='xPBjYllJVBs', help_text='Unique code for refrence to supervisors', max_length=15), ), ]
31.137931
126
0.612403
0b15922f9b1b565f5c12d8838021c8e30ac2f17a
808
py
Python
535-encode-and-decode-tinyurl/535-encode-and-decode-tinyurl.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
2
2021-12-05T14:29:06.000Z
2022-01-01T05:46:13.000Z
535-encode-and-decode-tinyurl/535-encode-and-decode-tinyurl.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
535-encode-and-decode-tinyurl/535-encode-and-decode-tinyurl.py
hyeseonko/LeetCode
48dfc93f1638e13041d8ce1420517a886abbdc77
[ "MIT" ]
null
null
null
class Codec: def __init__(self): self.codec_dict = dict() self.codec_reversed = dict() self.codec_len = 0 def encode(self, longUrl: str) -> str: """Encodes a URL to a shortened URL. """ if longUrl not in self.codec_dict: self.codec_dict[longUrl]=self.codec_len self.codec_reversed[self.codec_len] = longUrl self.codec_len+=1 return "http://tinyurl.com/{}".format(self.codec_dict[longUrl]) def decode(self, shortUrl: str) -> str: """Decodes a shortened URL to its original URL. """ val = int(shortUrl.split("/")[-1]) return self.codec_reversed[val] # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.decode(codec.encode(url))
32.32
71
0.600248
acbbe6f47814bc2d3c6890dde8a7d1503844ddbb
34,894
py
Python
exportmodul.py
MaliziaGrimm/Lohnvorerfassung-50a-fuer-DATEV
41b99deacc5bfee6562907de109a8ad5af917d01
[ "MIT" ]
null
null
null
exportmodul.py
MaliziaGrimm/Lohnvorerfassung-50a-fuer-DATEV
41b99deacc5bfee6562907de109a8ad5af917d01
[ "MIT" ]
null
null
null
exportmodul.py
MaliziaGrimm/Lohnvorerfassung-50a-fuer-DATEV
41b99deacc5bfee6562907de109a8ad5af917d01
[ "MIT" ]
null
null
null
from flask import Flask from flask import request, render_template import os, time, csv from flask_sqlalchemy import SQLAlchemy from sqlalchemy import create_engine from sqlalchemy import Column, Integer, Text, MetaData, Table, DATE from sqlalchemy.sql import select, update import datenbank_obj, funktionen, setting import pandas as pd import datetime def export_steuer(var_abrmonat, var_abrjahr, var_beraternummer, var_mandantennummer): # nur für Auswahl Monat/Jahr return def export_steuerli(var_abrmonat, var_abrjahr, var_beraternummer, var_mandantennummer): # brauche ich für Auswahl der Datensätze ggf. # aktuell werden alle erfassten DS exportiert, die noch nicht exportert wurden # unabhängig vom Erfassungsmonat return def export_steuerliste(var_abrmonat, var_abrjahr, var_beraternummer, var_mandantennummer): # der eigentliche ExcelExport bzw. # PDF Druck (geplant) var_stmonat=request.form["form_stmonat"] var_stjahr=request.form["form_stjahr"] engine = create_engine('sqlite:///daten/abrechnungsdaten.db') metadata = datenbank_obj.getdbmetadata(engine) abrechnungsdaten = datenbank_obj.abrechnungsdaten_dbobj(metadata) metadata.create_all() if var_stmonat=="01" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"01\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="02" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"02\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="03" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"03\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="04" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"04\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="05" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"05\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="06" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"06\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="07" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"07\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="08" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"08\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="09" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"09\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="10" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"10\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="11" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"11\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="12" and var_stjahr=="2022": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"12\" AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) elif var_stmonat=="01" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"01\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="02" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"02\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="03" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"03\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="04" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"04\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="05" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"05\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="06" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"06\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="07" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"07\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="08" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"08\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="09" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"09\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="10" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"10\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="11" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"11\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="12" and var_stjahr=="2023": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"12\" AND abrechnungsdaten.abrechnungsjahr==\"2023\" ", engine) elif var_stmonat=="01" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"01\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="02" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"02\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="03" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"03\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="04" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"04\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="05" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"05\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="06" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"06\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="07" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"07\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="08" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"08\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="09" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"09\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="10" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"10\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="11" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"11\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="12" and var_stjahr=="2024": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"12\" AND abrechnungsdaten.abrechnungsjahr==\"2024\" ", engine) elif var_stmonat=="01" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"01\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="02" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"02\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="03" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"03\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="04" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"04\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="05" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"05\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="06" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"06\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="07" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"07\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="08" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"08\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="09" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"09\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="10" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"10\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="11" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"11\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) elif var_stmonat=="12" and var_stjahr=="2025": result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==\"12\" AND abrechnungsdaten.abrechnungsjahr==\"2025\" ", engine) else: var_version_titel = setting.Version_Titel var_version_program = setting.Version_Program var_text=("Zeitraum nicht verfügbar!") return render_template('/index.html', v_text=var_text, v_bnr=var_beraternummer, v_mdt=var_mandantennummer, v_heute="Fehler !", v_monat=var_abrmonat, v_jahr=var_abrjahr, v_version_program=var_version_program, v_version_titel=var_version_titel) ### variabler Monat aktuell nicht abfragebar - result = pd.read_sql("SELECT * FROM abrechnungsdaten WHERE abrechnungsdaten.abrechnungsmonat==var_stmonat AND abrechnungsdaten.abrechnungsjahr==\"2022\" ", engine) result.to_csv("export/"+var_beraternummer+"_"+var_mandantennummer+"_"+var_stmonat+"_"+var_stjahr+"_Export_Monatsauswertung_16.csv", sep=';', encoding='utf-16', index=False, mode='w') result.to_csv("export/"+var_beraternummer+"_"+var_mandantennummer+"_"+var_stmonat+"_"+var_stjahr+"_Export_Monatsauswertung_8.csv", sep=';', encoding='utf-8', index=False, mode='w') # Zwischendatei anlegen für Buchungsliste Agenturprovision AG Anteil result.to_csv("daten/ZW_Buchungsliste_AGP_AG.txt", sep='|', encoding='utf-8', index=False, header=False, mode='w') result.to_csv("daten/ZW_Buchungsliste_AGP_AN.txt", sep='|', encoding='utf-8', index=False, header=False, mode='w') # Quell und Zieldatei öffnen - Agenturprov AG Werte in Buchungsliste zu schreiben filequelle=open("daten/ZW_Buchungsliste_AGP_AG.txt") fileziel=open("export/"+var_beraternummer+"_"+var_mandantennummer+"_"+var_stmonat+"_"+var_stjahr+"_AGP_AGWerte_Buchungsliste.csv","w", encoding='utf-8') #Beschreibung der Felder aus der Quelldatei #stelle 1 = Satznummer; stelle 2 = BNR; stelle 3 = Mdt; stelle 4 = PNR; stelle 5 = Lohnart; stelle 6 = LohnartText; stelle 7 = Wert; stelle 8 = Kostenstelle; stelle 9 = Kostenträger; #stelle 10 = Art der Tätigkeit; stelle 11 = Freitext; stelle 12 = Buchungsmonat; stelle 13 = Buchungsjahr; stelle 14 = %Agentur gesamt; stelle 15 = %Agentur AN Anteil; stelle 16 = agenturprovwert_AN; #stelle 17 = agenturprovwert_AG, stelle 18 = lohnartustabzug; stelle 19 = ustwert; stelle 20 = kontoust; stelle 21 = exportlodas; stelle 22 = exportlohnundgehalt; stelle 23 = exportwiederholung; #stelle 24 = exportdatum; stelle 25 = Agenturnummer AGP_Gegenkonto = funktionen.fibukonten_dic_lesen("konto_ggagp") #Beschreibung Exportdatei #AGP Gegenkonto (aus dict); Agentur (Personenkonto Rewe) wird auf 99988 gesetzt falls leer; Wert AGP AG in -; Buchungsdatum mit 01MMJJJJ; freier Text als Buchungstext 120 Zeichen ????? for x in filequelle: stelle1,stelle2,stelle3,stelle4,stelle5,stelle6,stelle7,stelle8,stelle9,stelle10,stelle11,stelle12,stelle13,stelle14,stelle15,stelle16,stelle17,stelle18,stelle19,stelle20,stelle21,stelle22,stelle23,stelle24,stelle25=x.split("|") stelle25 = (stelle25.strip()) if str(stelle17) != "0.0" and str(stelle17) != "0": if stelle25 == "": stelle25 = "99988" fileziel.write(AGP_Gegenkonto+";"+stelle25+";"+stelle17+";01"+stelle12+stelle13+";"+stelle8+";"+stelle9+";PNR: "+stelle4+" AGP %: "+stelle14+" davon AGP AN %: "+stelle15+" Text:"+stelle11+";0\n") filequelle.close() fileziel.close() # Quell und Zieldatei öffnen - AGP Werte um Buchungsliste zu schreiben filequelle=open("daten/ZW_Buchungsliste_AGP_AN.txt") fileziel=open("export/"+var_beraternummer+"_"+var_mandantennummer+"_"+var_stmonat+"_"+var_stjahr+"_AGP_ANWerte_Buchungsliste.csv","w", encoding='utf-8') # Buchungsliste Agenturprov AN Werte schreiben AGP_AN_Gegenkonto = funktionen.fibukonten_dic_lesen("konto_ggagpan") #Beschreibung Exportdatei #AGP Gegenkonto (aus dict); Agentur (Personenkonto Rewe) wird auf 99988 gesetzt falls leer; Wert AGP AN in -; Buchungsdatum mit 01MMJJJJ; freier Text als Buchungstext 120 Zeichen ????? for x in filequelle: stelle1,stelle2,stelle3,stelle4,stelle5,stelle6,stelle7,stelle8,stelle9,stelle10,stelle11,stelle12,stelle13,stelle14,stelle15,stelle16,stelle17,stelle18,stelle19,stelle20,stelle21,stelle22,stelle23,stelle24,stelle25=x.split("|") stelle25 = (stelle25.strip()) if str(stelle16) != "0.0" and str(stelle16) != "0": if stelle25 == "": stelle25 = "99988" fileziel.write(AGP_AN_Gegenkonto+";"+stelle25+";"+stelle16+";01"+stelle12+stelle13+";"+stelle8+";"+stelle9+";PNR: "+stelle4+" AGP %: "+stelle14+" davon AGP AN %: "+stelle15+" Text:"+stelle11+";0\n") filequelle.close() fileziel.close() #Beschreibung der Felder aus der Quelldatei #stelle 1 = Satznummer; stelle 2 = BNR; stelle 3 = Mdt; stelle 4 = PNR; stelle 5 = Lohnart; stelle 6 = LohnartText; stelle 7 = Wert; stelle 8 = Kostenstelle; stelle 9 = Kostenträger; #stelle 10 = Art der Tätigkeit; stelle 11 = Freitext; stelle 12 = Buchungsmonat; stelle 13 = Buchungsjahr; stelle 14 = %Agentur gesamt; stelle 15 = %Agentur AN Anteil; stelle 16 = agenturprovwert_AN; #stelle 17 = agenturprovwert_AG, stelle 18 = lohnartustabzug; stelle 19 = ustwert; stelle 20 = kontoust; stelle 21 = exportlodas; stelle 22 = exportlohnundgehalt; stelle 23 = exportwiederholung; #stelle 24 = exportdatum; stelle 25 = Agenturnummer # Quell und Zieldatei öffnen - AGP Werte um Buchungsliste zu schreiben filequelle=open("daten/ZW_Buchungsliste_AGP_AG.txt") fileziel=open("export/"+var_beraternummer+"_"+var_mandantennummer+"_"+var_stmonat+"_"+var_stjahr+"_AG_USt_Werte_Buchungsliste.csv","w", encoding='utf-8') # Buchungsliste Agenturprov AN Werte schreiben AG_USt_konto = funktionen.fibukonten_dic_lesen("konto_ust19") GG_AG_USt_konto = funktionen.fibukonten_dic_lesen("konto_ggust19") #Beschreibung Exportdatei #AG USt Gegenkonto (aus dict); Agentur (Personenkonto Rewe) wird auf "unbekannt" gesetzt falls leer; Buchungsdatum mit 01MMJJJJ; freier Text als Buchungstext 120 Zeichen ????? for x in filequelle: stelle1,stelle2,stelle3,stelle4,stelle5,stelle6,stelle7,stelle8,stelle9,stelle10,stelle11,stelle12,stelle13,stelle14,stelle15,stelle16,stelle17,stelle18,stelle19,stelle20,stelle21,stelle22,stelle23,stelle24,stelle25=x.split("|") stelle25 = (stelle25.strip()) if str(stelle18) == "0" and str(stelle19) != "0" and str(stelle19) != "0.0": if str(stelle16) != "0.0" and str(stelle16) != "0": if stelle25 == "": stelle25 = "AG unbekannt" fileziel.write(AG_USt_konto+";"+GG_AG_USt_konto+";"+stelle19+";01"+stelle12+stelle13+";"+stelle8+";"+stelle9+";PNR: "+stelle4+" Agentur: "+stelle25+" Text:"+stelle11+";0\n") filequelle.close() fileziel.close() ##################### PDF Block --------------------------- - NOCH OFFEN # ##################### komplett entfernt if result.shape[0] != 0: var_text = result.shape[0] var_text="Es wurden "+str(var_text)+" Datensätze in die Datei Export_Steuer exportiert. Weitere Auswertungen stehen zur Verfügung." else: var_text="Es wurden keine Datensätze als Steuerwerte exportiert" return var_text, var_stmonat, var_stjahr def export_csv(var_abrmonat, var_abrjahr, var_beraternummer, var_mandantennummer): engine = create_engine('sqlite:///daten/abrechnungsdaten.db') metadata = datenbank_obj.getdbmetadata(engine) abrechnungsdaten = datenbank_obj.abrechnungsdaten_dbobj(metadata) metadata.create_all() result = pd.read_sql("SELECT * FROM abrechnungsdaten", engine) result.to_csv("export/"+var_beraternummer+"_"+var_mandantennummer+"_"+var_abrmonat+"_"+var_abrjahr+"_Export.csv", sep=';', encoding='utf-16', index=False, mode='w') if result.shape[0] != 0: var_text = result.shape[0] var_text="Es wurden "+str(var_text)+" Datensätze als csv Daten exportiert." else: var_text="Es wurden keine Datensätze als csv Daten exportiert" # Export alle DS nach Excel return var_text ## sollte nach vielen anpassungen nicht mehr funktionieren - ungeprüft def export_lohnundgehalt(var_abrmonat, var_abrjahr, var_beraternummer, var_mandantenummer): engine = create_engine('sqlite:///daten/abrechnungsdaten.db') metadata = datenbank_obj.getdbmetadata(engine) abrechnungsdaten = datenbank_obj.abrechnungsdaten_dbobj(metadata) metadata.create_all() if request.method == 'POST': neuedatei = open("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"LuG.txt", "w") neuedatei.write(var_beraternummer+";"+var_mandantenummer+";"+var_abrmonat+"/"+var_abrjahr+"\n") neuedatei.close() # Export der Lohnarten und Nettobe/abzüge result = pd.read_sql("SELECT abrechnungsdaten.PNR, abrechnungsdaten.lohnart, abrechnungsdaten.wert, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.exportlohnundgehalt==\"N\" ", engine) result.to_csv("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"LuG.txt", sep=';', encoding='utf-8', index=False, header=False, mode='a') ### NEU AGP und UST auch in LUG Datei # Export der USt in Zwischendatei result = pd.read_sql('SELECT abrechnungsdaten.PNR, abrechnungsdaten.lohnartustabzug, abrechnungsdaten.ustwert, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.ustwert != "0" AND abrechnungsdaten.exportlohnundgehalt==\"N\" ', engine) result.to_csv("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"LuG.txt", sep=';', encoding='utf-8', index=False, header=False, mode='a') # Export der Agenturprovision in Zwischendatei result = pd.read_sql('SELECT abrechnungsdaten.PNR, abrechnungsdaten.agenturprovwert_AN, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.agenturprovwert_AN != "0" AND abrechnungsdaten.exportlohnundgehalt==\"N\" ', engine) result.to_csv("daten/ZW_LuG_AGP.txt", sep='|', encoding='utf-8', index=False, header=False, mode='w') ############ # Quell und Zieldatei öffnen - AGP Werte um Lohnart einzufügen filequelle=open("daten/ZW_LuG_AGP.txt") fileziel=open("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"LuG.txt","a", encoding='utf-8') #Beschreibung der Felder aus der Quelldatei #stelle 1 = PNR; stelle 2 = Wert; stelle 3 = Kostenstelle; stelle 4 = Kostentraeger AGP_Lohnart = funktionen.lohnarten_dic_lesen("loa_nb6") for x in filequelle: stelle1,stelle2,stelle3,stelle4=x.split("|") stelle4 = (stelle4.strip()) # stelle2 = stelle2.replace(".", ",") fileziel.write(stelle1+";"+AGP_Lohnart+";"+stelle2+";"+stelle3+";"+stelle4+"\n") filequelle.close() fileziel.close() hdatum = datetime.datetime.now() hdatum = hdatum.strftime("%d.%m.%Y") conn = engine.connect() abrechnungsdatenupdate = abrechnungsdaten.update().where(abrechnungsdaten.c.exportlohnundgehalt=="N").values(exportlohnundgehalt="J", exportlodas="X", exportwiederholung="X", abrechnungsmonat=var_abrmonat, abrechnungsjahr=var_abrjahr, exportdatum=str(hdatum)) conn.execute(abrechnungsdatenupdate) abrechnungsdatenupdate = abrechnungsdaten.select() conn.execute(abrechnungsdatenupdate).fetchall() if result.shape[0] != 0: var_text = result.shape[0] var_text="Es wurden "+str(var_text)+" Datensätze für Lohn und Gehalt exportiert." filequelle=open("daten/abrechnungszeitraum.txt","r", encoding='utf-8') for x in filequelle: var_abrmonat,var_abrjahr=x.split("|") break var_abrmonat = int(var_abrmonat)+1 if var_abrmonat < 10: var_abrmonat = str(var_abrmonat) var_abrmonat = "0"+var_abrmonat else: var_abrmonat = str(var_abrmonat) if var_abrmonat == "13": var_abrmonat = "01" var_abrjahr = int(var_abrjahr)+1 var_abrjahr = str(var_abrjahr) filequelle=open("daten/abrechnungszeitraum.txt","w") filequelle.write(var_abrmonat+"|"+var_abrjahr) filequelle.close() else: var_text="Es wurden keine Datensätze für Lohn und Gehalt exportiert" pass else: var_text="Es werden die Datensätze der Monatsübersicht für Lohn und Gehalt exportiert" pass return var_text ### Export Lodas in Funktion aktuell 2022-02-14 mit AGP und USt ### Tabellen auf Netto und Brutto geändert ### NEU* 20220402 USt wenn AG übernimmt - LOA 0 in SQL DB ### USt wenn AN trägt Nettoabzug in SQl DB def export_lodas(var_abrmonat, var_abrjahr, var_beraternummer, var_mandantenummer): engine = create_engine('sqlite:///daten/abrechnungsdaten.db') metadata = datenbank_obj.getdbmetadata(engine) abrechnungsdaten = datenbank_obj.abrechnungsdaten_dbobj(metadata) metadata.create_all() if request.method == 'POST': if os.path.exists("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"_Lodas.txt"): ## Datei öffnen und Daten werden angehangen fileziel=open("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"_Lodas.txt","a") fileziel.write("\n* Stunden zur Abrechnung von Mitarbeitern\n") fileziel.write("[Bewegungsdaten]\n") else: ## Datei neu öffnen und Kopfdaten schreiben fileziel=open("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"_Lodas.txt","w") # schreiben in Lodas Importdatei fileziel.write("[Allgemein]\nZiel=LODAS\nVersion_SST=1.0\nBeraterNr=") fileziel.write(var_beraternummer) fileziel.write("\nMandantenNr=") fileziel.write(var_mandantenummer) fileziel.write("\nDatumsformat=JJJJ-MM-TT") fileziel.write("\nStringbegrenzer='") fileziel.write("\n\n* LEGENDE:\n* Datei erzeugt mit Tool ARMTool\n* AP: Andreé Rosenkranz; [email protected]\n\n") fileziel.write("* Satzbeschreibungen zur Übergabe von Bewegungsdaten für Mitarbeiter\n[Satzbeschreibung]\n") # fileziel.write("\n10;u_lod_bwd_buchung_brutto;abrechnung_zeitraum#bwd;pnr#bwd;la_eigene#bwd;brutto_fest_bez#bwd;kostenstelle#bwd;kostentraeger#bwd;") # fileziel.write("\n11;u_lod_bwd_buchung_netto;abrechnung_zeitraum#bwd;pnr#bwd;nba_nr#bwd;netto_betrag#bwd;") fileziel.write("\n10;u_lod_bwd_buchung_standard;abrechnung_zeitraum#bwd;pnr#bwd;la_eigene#bwd;bs_nr#bwd;bs_wert_butab#bwd;kostenstelle#bwd;kostentraeger#bwd;") fileziel.write("\n\n") fileziel.write("* Werte zur Abrechnung von Mitarbeitern\n\n") fileziel.write("[Bewegungsdaten]\n\n") # Export der USt in Zwischendatei # Neu* 20220401 ohne USt AG result = pd.read_sql('SELECT abrechnungsdaten.PNR, abrechnungsdaten.lohnartustabzug, abrechnungsdaten.ustwert, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.ustwert != "0" AND abrechnungsdaten.exportlodas==\"N\" ', engine) result = pd.read_sql('SELECT abrechnungsdaten.PNR, abrechnungsdaten.lohnartustabzug, abrechnungsdaten.ustwert, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.lohnartustabzug != "0" AND abrechnungsdaten.exportlodas==\"N\" ', engine) result.to_csv("daten/ZW_Lodas_USt.txt", sep='|', encoding='utf-8', index=False, header=False, mode='w') # Export der Agenturprovision AN in Zwischendatei result = pd.read_sql('SELECT abrechnungsdaten.PNR, abrechnungsdaten.agenturprovwert_AN, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.agenturprovwert_AN != "0" AND abrechnungsdaten.exportlodas==\"N\" ', engine) result.to_csv("daten/ZW_Lodas_AGP_AN.txt", sep='|', encoding='utf-8', index=False, header=False, mode='w') # Export der Agenturprovision AG in Zwischendatei result = pd.read_sql('SELECT abrechnungsdaten.PNR, abrechnungsdaten.agenturprovwert_AG, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.agenturprovwert_AG != "0" AND abrechnungsdaten.exportlodas==\"N\" ', engine) result.to_csv("daten/ZW_Lodas_AGP_AG.txt", sep='|', encoding='utf-8', index=False, header=False, mode='w') # Export der Lohnarten und Nettobe/abzüge result = pd.read_sql('SELECT abrechnungsdaten.PNR, abrechnungsdaten.lohnart, abrechnungsdaten.wert, abrechnungsdaten.kostenstelle, abrechnungsdaten.kostentraeger FROM abrechnungsdaten WHERE abrechnungsdaten.exportlodas==\"N\" ', engine) result.to_csv("daten/ZW_Lodas.txt", sep='|', encoding='utf-8', index=False, header=False, mode='w') ############ # Quell und Zieldatei öffnen - AGP Werte filequelle=open("daten/ZW_Lodas_AGP_AN.txt") fileziel=open("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"_Lodas.txt","a", encoding='utf-8') #Beschreibung der Felder aus der Quelldatei #stelle 1 = PNR; stelle 2 = Wert; stelle 3 = Kostenstelle; stelle 4 = Kostentraeger AGP_Lohnart = funktionen.lohnarten_dic_lesen("loa_nb6") for x in filequelle: stelle1,stelle2,stelle3,stelle4=x.split("|") stelle4 = (stelle4.strip()) var_bs = "3" stelle2 = stelle2.replace(".", ",") # fileziel.write("11;"+var_abrjahr+"-"+var_abrmonat+"-01;"+stelle1+";"+AGP_Lohnart+";"+stelle2+";"+stelle3+";"+stelle4+";\n") fileziel.write("10;"+var_abrjahr+"-"+var_abrmonat+"-01;"+stelle1+";"+AGP_Lohnart+";"+var_bs+";"+stelle2+";"+stelle3+";"+stelle4+";\n") filequelle.close() fileziel.close() ############ # Quell und Zieldatei öffnen - USt Werte filequelle=open("daten/ZW_Lodas_Ust.txt") fileziel=open("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"_Lodas.txt","a", encoding='utf-8') #Beschreibung der Felder aus der Quelldatei #stelle 1 = PNR; stelle 2 = Lohnart; stelle 3 = Wert; stelle 4 = Kostenstelle; stelle 5 = Kostentraeger for x in filequelle: stelle1,stelle2,stelle3,stelle4,stelle5=x.split("|") stelle5 = (stelle5.strip()) if int(stelle2) > 8999: var_bs = "3" var_sa = "11" else: var_bs = "2" var_sa = "10" stelle3 = stelle3.replace(".", ",") # fileziel.write(var_sa+";"+var_abrjahr+"-"+var_abrmonat+"-01;"+stelle1+";"+stelle2+";"+stelle3+";"+stelle4+";"+stelle5+";\n") fileziel.write("10;"+var_abrjahr+"-"+var_abrmonat+"-01;"+stelle1+";"+stelle2+";"+var_bs+";"+stelle3+";"+stelle4+";"+stelle5+";\n") filequelle.close() fileziel.close() filequelle=open("daten/ZW_Lodas.txt") fileziel=open("export/"+var_beraternummer+"_"+var_mandantenummer+"_"+var_abrmonat+"_"+var_abrjahr+"_Lodas.txt","a", encoding='utf-8') #Beschreibung der Felder aus der Quelldatei #stelle 1 = PNR; stelle 2 = Lohnart; stelle 3 = Wert; stelle 4 = Kostenstelle; stelle 5 = Kostentraeger for x in filequelle: stelle1,stelle2,stelle3,stelle4,stelle5=x.split("|") stelle5 = (stelle5.strip()) if int(stelle2) > 8999: var_bs = "3" var_sa = "11" else: var_bs = "2" var_sa = "10" stelle3 = stelle3.replace(".", ",") # fileziel.write(var_sa+";"+var_abrjahr+"-"+var_abrmonat+"-01;"+stelle1+";"+stelle2+";"+stelle3+";"+stelle4+";"+stelle5+";\n") fileziel.write("10;"+var_abrjahr+"-"+var_abrmonat+"-01;"+stelle1+";"+stelle2+";"+var_bs+";"+stelle3+";"+stelle4+";"+stelle5+";\n") fileziel.write("\n\n[Hinweisdaten]\n\nDaten uebernommen aus Erfassungstool ARMTool\nfuer die korrekte Berechnung saemtlicher Werte ist allein der Anwender verantwortlich!\n") #Dateien schließen filequelle.close() fileziel.close() ###################### hdatum = datetime.datetime.now() hdatum = hdatum.strftime("%d.%m.%Y") conn = engine.connect() abrechnungsdatenupdate = abrechnungsdaten.update().where(abrechnungsdaten.c.exportlodas=="N").values(exportlohnundgehalt="X", exportlodas="J", exportwiederholung="X", abrechnungsmonat=var_abrmonat, abrechnungsjahr=var_abrjahr, exportdatum=str(hdatum)) conn.execute(abrechnungsdatenupdate) abrechnungsdatenupdate = abrechnungsdaten.select() conn.execute(abrechnungsdatenupdate).fetchall() if result.shape[0] != 0: var_text = result.shape[0] var_text="Es wurden "+str(var_text)+" Datensätze für Lodas exportiert." filequelle=open("daten/abrechnungszeitraum.txt","r", encoding='utf-8') for x in filequelle: var_abrmonat,var_abrjahr=x.split("|") break var_abrmonat = int(var_abrmonat)+1 if var_abrmonat < 10: var_abrmonat = str(var_abrmonat) var_abrmonat = "0"+var_abrmonat else: var_abrmonat = str(var_abrmonat) if var_abrmonat == "13": var_abrmonat = "01" var_abrjahr = int(var_abrjahr)+1 var_abrjahr = str(var_abrjahr) filequelle=open("daten/abrechnungszeitraum.txt","w") filequelle.write(var_abrmonat+"|"+var_abrjahr) filequelle.close() pass else: var_text="Es wurden keine Datensätze für Lodas exportiert" pass else: var_text="Es werden die Datensätze der Monatsübersicht für Lodas exportiert" pass return var_text
70.635628
316
0.681865
c5ea4da058d255d3e25980e8b5d5bf136c0cc014
3,119
py
Python
python/oneflow/nn/modules/in_top_k.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
1
2021-09-13T02:34:53.000Z
2021-09-13T02:34:53.000Z
python/oneflow/nn/modules/in_top_k.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
null
null
null
python/oneflow/nn/modules/in_top_k.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
1
2021-01-17T03:34:39.000Z
2021-01-17T03:34:39.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import oneflow as flow from oneflow.framework.tensor import register_tensor_op from oneflow.nn.module import Module class InTopk(Module): def __init__(self, k) -> None: super().__init__() self._in_top_k = ( flow.builtin_op("in_top_k") .Input("targets") .Input("predictions") .Output("out") .Attr("k", k) .Build() ) def forward(self, targets, predictions): assert ( targets.shape[0] == predictions.shape[0] ), "The num of targets must equal the num of predictions" assert len(targets.shape) == 1, "The dimension of targets must be 1" assert len(predictions.shape) == 2, "The dimension of predictions must be 2" return self._in_top_k(targets, predictions) def in_top_k_op(targets, predictions, k): """Says whether the targets are in the top K predictions. Args: targets (Tensor): the target tensor of type int32 or int64. predictions (Tensor): the predictions tensor of type float32 . k (int): Number of top elements to look at for computing precision. Returns: oneflow.Tensor: A Tensor of type bool. Computed Precision at k as a bool Tensor. For example: .. code-block:: python >>> import oneflow as flow >>> import numpy as np >>> targets1 = flow.Tensor(np.array([3, 1]), dtype=flow.int32) >>> predictions1 = flow.Tensor(np.array([[0.0, 1.0, 2.0, 3.0], [3.0, 2.0, 1.0, 0.0],]), dtype=flow.float32) >>> out1 = flow.in_top_k(targets1, predictions1, k=1) >>> out1 tensor([1, 0], dtype=oneflow.int8) >>> out2 = flow.in_top_k(targets1, predictions1, k=2) >>> out2 tensor([1, 1], dtype=oneflow.int8) >>> targets2 = flow.Tensor(np.array([3, 1]), dtype=flow.int32, device=flow.device('cuda')) >>> predictions2 = flow.Tensor(np.array([[0.0, 1.0, 2.0, 3.0], [3.0, 2.0, 1.0, 0.0],]), dtype=flow.float32, device=flow.device('cuda')) >>> out3 = flow.in_top_k(targets2, predictions2, k=1) >>> out3 tensor([1, 0], device='cuda:0', dtype=oneflow.int8) """ return InTopk(k=k)(targets, predictions)[0] @register_tensor_op("in_top_k") def in_top_k_op_tensor(targets, predictions, k): """ in_top_k() -> Tensor See :func:`oneflow.in_top_k` """ return InTopk(k=k)(targets, predictions)[0] if __name__ == "__main__": import doctest doctest.testmod(raise_on_error=True)
33.537634
143
0.639307
a8795bb44959370b2560cf2e7355d2e856b814cc
1,866
py
Python
infrastructure/cosmosdb.py
lizzyTheLizard/homeserver-azure
e79bd23ea09a1ce1a77afd73bb9acfd402dfdc57
[ "MIT" ]
null
null
null
infrastructure/cosmosdb.py
lizzyTheLizard/homeserver-azure
e79bd23ea09a1ce1a77afd73bb9acfd402dfdc57
[ "MIT" ]
null
null
null
infrastructure/cosmosdb.py
lizzyTheLizard/homeserver-azure
e79bd23ea09a1ce1a77afd73bb9acfd402dfdc57
[ "MIT" ]
null
null
null
from azwrapper import * def createCosmosDBAccount(group, accountName): if resourceExists(group, accountName): print('ComsosDB already exists: ' + accountName) else: print('Create database ' + accountName) createDbAccount = "cosmosdb create -g {} -n {} --capabilities {}" azSafe(createDbAccount.format(group, accountName, "EnableServerless")) def createCosmosDBDatabases(group, accountName, configuration): if configuration is None: return; checkDBExistence = "cosmosdb sql database list -g {} -a {}" resultList = azSafe(checkDBExistence.format(group, accountName)) createDatabase = "cosmosdb sql database create -g {} -a {} -n {}" for databaseName in configuration: resourceExists = any(elem["name"] == databaseName for elem in resultList) if resourceExists: print('database already exists ' + databaseName) else: azSafe(createDatabase.format(group, accountName, databaseName)) _createCosmosDBContainers(group, accountName, databaseName, configuration[databaseName]) def _createCosmosDBContainers(group, accountName, databaseName, containers): if containers is None: return; checkContainerExistence = "cosmosdb sql container list -g {} -a {} -d {}" resultList = azSafe(checkContainerExistence.format(group, accountName, databaseName)) createContainer = "cosmosdb sql container create -g {} -a {} -d {} -n {} --partition-key-path {}" for containerName in containers: resourceExists = any(elem["name"] == containerName for elem in resultList) if resourceExists: print('container already exists ' + containerName) else: containerKey = containers[containerName] azSafe(createContainer.format(group, accountName, databaseName, containerName, containerKey))
50.432432
105
0.692926
a87f7aed36e7fc9a75ee23496f61ca32906a59c8
17,187
py
Python
Packs/CadoResponse/Integrations/CadoResponse/CadoResponse.py
cstone112/content
7f039931b8cfc20e89df52d895440b7321149a0d
[ "MIT" ]
2
2021-12-06T21:38:24.000Z
2022-01-13T08:23:36.000Z
Packs/CadoResponse/Integrations/CadoResponse/CadoResponse.py
cstone112/content
7f039931b8cfc20e89df52d895440b7321149a0d
[ "MIT" ]
87
2022-02-23T12:10:53.000Z
2022-03-31T11:29:05.000Z
Packs/CadoResponse/Integrations/CadoResponse/CadoResponse.py
cstone112/content
7f039931b8cfc20e89df52d895440b7321149a0d
[ "MIT" ]
2
2022-01-05T15:27:01.000Z
2022-02-01T19:27:43.000Z
''' Cado Response API Integration for the Cortex XSOAR Platform ''' import time import traceback from typing import Any, Dict, Optional from CommonServerPython import * from CommonServerUserPython import * import demistomock as demisto import requests ''' Module Level Declarations ''' requests.packages.urllib3.disable_warnings() CadoResponseCombinedOutput = Union[Dict[str, Any], List[Dict[str, Any]]] DATE_FORMAT: str = '%Y-%m-%dT%H:%M:%SZ' ''' Cado Response API Client Code ''' class Client(BaseClient): ''' Client that makes HTTP requests to the Cado Response API ''' def heartbeat(self) -> Dict[str, Any]: ''' Calls the GET /api/v2/system/status endpoint to verify everything is working :return JSON response from /system/status endpoint :rtype Dict[str, Any] ''' return self._http_request( method='GET', url_suffix='/system/status' ) def create_project(self, project_name: str, project_description: Optional[str]) -> Dict[str, Any]: ''' Calls the POST /api/v2/projects endpoint to create a new project with given parameters :param str project_name: Name of the project :param Optional[str] project_description: Description for the project :return JSON response from /projects endpoint :rtype Dict[str, Any] ''' if not project_name.endswith('_XSOAR'): project_name += '_XSOAR' if not project_description: project_description = 'This is a project in Cado Response created through Cortex XSOAR!' payload: Dict[str, Any] = { 'caseName': project_name, 'description': project_description } return self._http_request( method='POST', url_suffix='/projects', json_data=payload ) def get_project(self, project_id: Optional[int]) -> Dict[str, Any]: ''' Calls the GET /api/v2/projects endpoint to retrieve a project with given parameters :param Optional[int] project_id: ID of the project to retrieve :return JSON response from /projects endpoint :rtype Dict[str, Any] ''' if not project_id: project_id = demisto.params().get('CadoResponse_DefaultProject', 1) return self._http_request( method='GET', url_suffix=f'/projects/{project_id}' ) def list_projects(self, limit: int) -> List[Dict[str, Any]]: ''' Calls the GET /api/v2/projects endpoint to retrieve a list of created projects :return JSON response from /projects endpoint :rtype Dict[str, Any] ''' data: List[Dict[str, Any]] = self._http_request( method='GET', url_suffix='/projects' ) return data[:limit] def get_pipeline(self, pipeline_id: Optional[int], project_id: Optional[int]) -> Dict[str, Any]: ''' Calls the GET /api/v2/tasks/pipelines endpoint to retrieve details about a given pipeline :param Optional[int] pipeline_id: The id of the pipeline to retrieve :param Optional[int] project_id: The id of the project the pipeline belongs to :return JSON response from /tasks/pipelines endpoint :rtype Dict[str, Any] ''' if not pipeline_id: return {} if not project_id: project_id = demisto.params().get('CadoResponse_DefaultProject', 1) return self._http_request( method='GET', url_suffix='/tasks/pipelines', params={ 'project_id': project_id, 'pipeline_id': pipeline_id } ) def list_pipelines(self, project_id: Optional[int], limit: int) -> List[Dict[str, Any]]: ''' Calls the GET /api/v2/tasks/pipelines endpoint to retrieve details about all of a projects pipelines :param Optional[int] project_id: The id of the project the pipeline belongs to :return JSON response from /tasks/pipelines endpoint :rtype Dict[str, Any] ''' if not project_id: project_id = demisto.params().get('CadoResponse_DefaultProject', 1) data: Dict[str, Any] = self._http_request( method='GET', url_suffix='/tasks/pipelines', params={ 'project_id': project_id, } ) pipelines: List[Dict[str, Any]] = data['pipelines'] return pipelines[:limit] def list_instances(self, project_id: Optional[int], region: Optional[str], limit: int) -> List[Dict[str, Any]]: ''' Calls the GET /api/v2/projects/{id}/imports/ec2 endpoint to retrieve details about a regions EC2 instances :param Optional[int] project_id: The id of the project to query available instances in :param Optional[str] region: The AWS region to search instances in :return JSON response from /projects/{id}/imports/ec2 endpoint :rtype Dict[str, Any] ''' if not project_id: project_id = demisto.params().get('CadoResponse_DefaultProject', 1) if not region: region = demisto.params().get('CadoResponse_DefaultRegion', 'us-east-1') data: Dict[str, Any] = self._http_request( method='GET', url_suffix=f'/projects/{project_id}/imports/ec2', params={ 'region': region } ) instances: List[Dict[str, Any]] = data['instances'] return instances[:limit] def list_buckets(self, project_id: Optional[int], limit: int) -> Dict[str, Any]: ''' Calls the GET /api/v2/projects/{id}/imports/s3 endpoint to retrieve details about all the available S3 buckets :param Optional[int] project_id: The id of the project to query available buckets in :return JSON response from /projects/{id}/imports/s3 endpoint :rtype Dict[str, Any] ''' if not project_id: project_id = demisto.params().get('CadoResponse_DefaultProject', 1) data: Dict[str, Any] = self._http_request( method='GET', url_suffix=f'/projects/{project_id}/imports/s3' ) data['buckets'] = data['buckets'][:limit] return data def trigger_instance_acquisition(self, project_id: Optional[int], instance_id: Optional[str], region: Optional[str], bucket: Optional[str], compress: bool = True, include_disks: bool = True, include_hash: bool = False, include_logs: bool = True, include_screenshot: bool = True) -> Dict[str, Any]: ''' Calls the POST /api/v2/projects/{id}/imports/ec2 endpoint to trigger an acquisition of a given instance :param Optional[int] project_id: The ID of the project you wish to attach the acquisition to :param str instance_id: ID of the EC2 instance to acquire :param Optional[str] region: AWS region in which the EC2 instance is located :param Optional[str] bucket: S3 bucket where the uploaded disk image resides :param bool compress: Flag indicating if disk compression is enabled :param bool include_disks: Flag indicating if we include disk image in the acquisition :param bool include_hash: Flag indicating if we calculate the hash of the disk :param bool include_logs: Flag indicating if we include system logs in the acquisition :param bool include_screenshot: Flag indicating if we include a screenshot of the system in the acquisition :return JSON response from /projects/{id}/imports/ec2 endpoint :rtype Dict[str, Any] ''' if not project_id: project_id = demisto.params().get('CadoResponse_DefaultProject', 1) if not region: region = demisto.params().get('CadoResponse_DefaultRegion', 'us-east-1') if not bucket: bucket = demisto.params().get('CadoResponse_DefaultBucket', 'cado-default-bucket') payload: Dict[str, Any] = { 'bucket': bucket, 'compress': compress, 'include_disks': include_disks, 'include_hash': include_hash, 'include_logs': include_logs, 'include_screenshot': include_screenshot, 'instance_id': instance_id, 'region': region } return self._http_request( method='POST', url_suffix=f'/projects/{project_id}/imports/ec2', json_data=payload ) def trigger_bucket_acquisition(self, project_id: Optional[int], bucket: Optional[str], file_name: Optional[str]) -> Dict[str, Any]: ''' Calls the POST /api/v2/projects/{id}/imports/s3 endpoint to trigger an acquisition of a given bucket or file :param Optional[int] project_id: The ID of the project you wish to attach the acquisition to :param Optional[str] bucket: The S3 bucket name containing the file :param str file_name: The name of the file to process :return JSON response from /projects/{id}/imports/ec2 endpoint :rtype Dict[str, Any] ''' if not project_id: project_id = demisto.params().get('CadoResponse_DefaultProject', 1) if not bucket: bucket = demisto.params().get('CadoResponse_DefaultBucket', 'cado-default-bucket') payload: Dict[str, Any] = { 'bucket': bucket, 'file_name': file_name } return self._http_request( method='POST', url_suffix=f'/projects/{project_id}/imports/s3', json_data=payload ) ''' Command Line Handlers ''' def test_module(client: Client) -> str: ''' Command handler for !test-module ''' result: Dict[str, Any] = client.heartbeat() status: Optional[str] = result['status'] if status is not None and status == 'Running': return 'ok' return 'Cado Response is not running' def create_project_command(client: Client, args: Dict[str, Any]) -> CommandResults: ''' Command handler for cado-create-project ''' unix_timestamp: str = str(int(time.time())) project_name: str = args.get('project_name', unix_timestamp) project_description: Optional[str] = args.get('project_description', None) result: Dict[str, Any] = client.create_project(project_name, project_description) return CommandResults( outputs_prefix='CadoResponse.Project', outputs_key_field='id', outputs=result ) def list_project_command(client: Client, args: Dict[str, Any]) -> CommandResults: ''' Command handler for cado-list-project ''' project_id: Optional[int] = args.get('project_id', None) limit: int = int(args.get('limit', 50)) if project_id: result: Any = client.get_project(project_id) else: result = client.list_projects(limit) return CommandResults( outputs_prefix='CadoResponse.Projects', outputs_key_field='id', outputs=result ) def get_pipeline_command(client: Client, args: Dict[str, Any]) -> CommandResults: ''' Command handler for cado-get-pipeline ''' project_id: Optional[int] = args.get('project_id', None) limit: int = int(args.get('limit', 50)) pipeline_id: Optional[int] = args.get('pipeline_id', None) if pipeline_id: result: CadoResponseCombinedOutput = client.get_pipeline(pipeline_id, project_id) else: result = client.list_pipelines(project_id, limit) return CommandResults( outputs_prefix='CadoResponse.Pipelines', outputs_key_field='pipeline_id', outputs=result ) def list_ec2_command(client: Client, args: Dict[str, Any]) -> CommandResults: ''' Command handler for cado-list-ec2 ''' project_id: Optional[int] = args.get('project_id', None) region: Optional[str] = args.get('region', None) limit: int = int(args.get('limit', 100)) result: List[Dict[str, Any]] = client.list_instances(project_id, region, limit) return CommandResults( outputs_prefix='CadoResponse.EC2Instances', outputs_key_field='id', outputs=result ) def list_s3_command(client: Client, args: Dict[str, Any]) -> CommandResults: ''' Command handler for cado-list-s3 ''' project_id: Optional[int] = args.get('project_id', None) limit: int = int(args.get('limit', 100)) result: Dict[str, Any] = client.list_buckets(project_id, limit) return CommandResults( outputs_prefix='CadoResponse.S3Buckets', outputs=result ) def trigger_ec2_command(client: Client, args: Dict[str, Any]) -> CommandResults: ''' Command handler for cado-trigger-ec2 ''' project_id: Optional[int] = args.get('project_id', None) instance_id: Optional[str] = args.get('instance_id', None) region: Optional[str] = args.get('region', None) bucket: Optional[str] = args.get('bucket', None) compress: bool = args.get('compress', True) include_disks: bool = args.get('include_disks', True) include_hash: bool = args.get('include_hash', False) include_logs: bool = args.get('include_logs', True) include_screenshot: bool = args.get('include_screenshot', True) if not instance_id: raise DemistoException('region is a required parameter!') result: Dict[str, Any] = client.trigger_instance_acquisition( project_id, instance_id, region, bucket, compress, include_disks, include_hash, include_logs, include_screenshot ) return CommandResults( outputs_prefix='CadoResponse.EC2Acquistion', outputs_key_field='pipeline_id', outputs=result ) def trigger_s3_command(client: Client, args: Dict[str, Any]) -> CommandResults: ''' Command handler for cado-trigger-s3 ''' project_id: Optional[int] = args.get('project_id', None) bucket: Optional[str] = args.get('bucket', None) file_name: Optional[str] = args.get('file_name', None) if not bucket: raise DemistoException('bucket is a required parameter!') if not file_name: raise DemistoException('file_name is a required parameter!') result: Dict[str, Any] = client.trigger_bucket_acquisition(project_id, bucket, file_name) return CommandResults( outputs_prefix='CadoResponse.S3Acquisition', outputs_key_field='pipeline_id', outputs=result.get('pipelines') ) ''' Helper Functions ''' def enrich_errors(message: str, command: str) -> str: ''' Helper function to return better error messages. :param str message: Error message :param str command: Calling command :return: A better error message :rtype str ''' if command == 'cado-create-project' and 'Project name already exists' in message: return f'Project name {demisto.args().get("project_name")} already exists!' else: return f'Failed to execute {demisto.command()} command.\nError:\n{message}' ''' Entrypoint ''' def main() -> None: api_key: str = demisto.params().get('apikey') base_url: str = urljoin(demisto.params()['url'], '/api/v2') verify_certificate: bool = not demisto.params().get('insecure', False) proxy: bool = demisto.params().get('proxy', False) command: str = demisto.command() args: Dict[str, Any] = demisto.args() headers: Dict[str, Any] = { 'Authorization': f'Bearer {api_key}' } try: client: Client = Client( base_url=base_url, verify=verify_certificate, headers=headers, proxy=proxy ) if command == 'test-module': return_results(test_module(client)) elif command == 'cado-create-project': return_results(create_project_command(client, args)) elif command == 'cado-list-project': return_results(list_project_command(client, args)) elif command == 'cado-get-pipeline': return_results(get_pipeline_command(client, args)) elif command == 'cado-list-ec2': return_results(list_ec2_command(client, args)) elif command == 'cado-list-s3': return_results(list_s3_command(client, args)) elif command == 'cado-trigger-ec2': return_results(trigger_ec2_command(client, args)) elif command == 'cado-trigger-s3': return_results(trigger_s3_command(client, args)) except Exception as e: message: str = str(e) if '404' in message: return_results(f'Nothing found for {command}') else: demisto.error(traceback.format_exc()) return_error(enrich_errors(message, command), error=e) if __name__ in ('__main__', '__builtin__', 'builtins'): main()
34.512048
120
0.62588
a89f298697050a2c424f873ab03e66ee832c4dc3
35
py
Python
lib/python3.5/tarfile.py
hwroitzsch/BikersLifeSaver
469c738fdd6352c44a3f20689b17fa8ac04ad8a2
[ "MIT" ]
1
2020-08-16T04:04:23.000Z
2020-08-16T04:04:23.000Z
lib/python3.5/tarfile.py
hwroitzsch/BikersLifeSaver
469c738fdd6352c44a3f20689b17fa8ac04ad8a2
[ "MIT" ]
5
2020-06-05T18:53:24.000Z
2021-12-13T19:49:15.000Z
lib/python3.5/tarfile.py
hwroitzsch/BikersLifeSaver
469c738fdd6352c44a3f20689b17fa8ac04ad8a2
[ "MIT" ]
null
null
null
/usr/local/lib/python3.5/tarfile.py
35
35
0.8
76872eea649dcd5c2106cccdf2659c2c3759be61
3,024
py
Python
computer-networking-a-top-down-approach/cp2/email.py
Jocs/reading-notes
26b8331877a2de034b8860bc3e3967893112d52d
[ "MIT" ]
3
2021-08-04T07:59:48.000Z
2022-03-26T23:58:17.000Z
computer-networking-a-top-down-approach/cp2/email.py
Jocs/reading-notes
26b8331877a2de034b8860bc3e3967893112d52d
[ "MIT" ]
null
null
null
computer-networking-a-top-down-approach/cp2/email.py
Jocs/reading-notes
26b8331877a2de034b8860bc3e3967893112d52d
[ "MIT" ]
null
null
null
from socket import * msg = "I love computer networks!" contenttype = "text/plain" endmsg = "\r\n.\r\n" # Choose a mail server (e.g. Google mail server) and call it mailserver mailserver = 'smtp.126.com' #Fill in start #Fill in end # Create socket called clientSocket and establish a TCP connection with mailserver #Fill in start clientSocket = socket(AF_INET, SOCK_STREAM) clientSocket.connect((mailserver, 25)) #Fill in end recv = clientSocket.recv(1024) print(recv) if recv[:3] != '220': print('220 reply not received from server: connect.') # Send HELO command and print server response. heloCommand = 'HELO Alice\r\n' clientSocket.send(heloCommand.encode()) recv1 = clientSocket.recv(1024) print(recv1) if recv1[:3] != '250': print('250 reply not received from server.: hello') # Auth authCommand = 'AUTH LOGIN\r\n' clientSocket.send(authCommand.encode()) recv2 = clientSocket.recv(1024) print(recv2) if recv2[:3] != '334': print('334 replay not received from server.: auth') # set username and password username = 'bHVvcmFuMTk4OEAxMjYuY29t\r\n' password = '******\r\n' clientSocket.sendall(username) recv3 = clientSocket.recv(1024) print(recv3) if recv3[:3] != '334': print('334 replay not received from server.: username') clientSocket.sendall(password) recv4 = clientSocket.recv(1024) print(recv4) if recv4[:3] != '235': print('235 replay not received from server.: password') # Send MAIL FROM command and print server response. # Fill in start fromCommand = 'MAIL FROM: <[email protected]>\r\n' clientSocket.sendall(fromCommand.encode()) recv5 = clientSocket.recv(1024) print(recv5) if recv5[:3] != '250': print('250 replay not received from server.: mail from') # Fill in end # Send RCPT TO command and print server response. # Fill in start toCommand = 'RCPT TO: <[email protected]>\r\n' clientSocket.sendall(toCommand.encode()) recv6 = clientSocket.recv(1024) print(recv6) if recv6[:3] != '250': print('250 replay not received from server.: mail to') # Fill in end # Send DATA command and print server response. # Fill in start dataCommand = 'DATA\r\n' clientSocket.send(dataCommand.encode()) recv7 = clientSocket.recv(1024) print(recv7) if recv7[:3] != '250': print('250 replay not received from server.: data') # Fill in end # Send message data. fromaddress = '[email protected]' toaddress = '[email protected]' subject = 'email from script' message = 'from:' + fromaddress + '\r\n' message += 'to:' + toaddress + '\r\n' message += 'subject:' + subject + '\r\n' message += 'Content-Type:' + contenttype + '\t\n' message += '\r\n' + msg clientSocket.sendall(message.encode()) # Message ends with a single period. clientSocket.sendall(endmsg.encode()) recv9 = clientSocket.recv(1024).decode() print(recv9) if (recv9[:3] != '250'): print('250 reply not received from server') # Message ends with a single period. # Fill in start clientSocket.sendall('QUIT\r\n'.encode()) # Fill in end # Send QUIT command and get server response. # Fill in start clientSocket.close() # Fill in end
28.8
82
0.719907
4fb1670a959d3fb2101469c3784de01390232933
18,818
py
Python
hihope_neptune-oh_hid/00_src/v0.1/third_party/LVM2/daemons/lvmdbusd/cmdhandler.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
1
2022-02-15T08:51:55.000Z
2022-02-15T08:51:55.000Z
hihope_neptune-oh_hid/00_src/v0.3/third_party/LVM2/daemons/lvmdbusd/cmdhandler.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
null
null
null
hihope_neptune-oh_hid/00_src/v0.3/third_party/LVM2/daemons/lvmdbusd/cmdhandler.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2015-2016 Red Hat, Inc. All rights reserved. # # This copyrighted material is made available to anyone wishing to use, # modify, copy, or redistribute it subject to the terms and conditions # of the GNU General Public License v.2. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from subprocess import Popen, PIPE import time import threading from itertools import chain import collections import traceback import os from lvmdbusd import cfg from lvmdbusd.utils import pv_dest_ranges, log_debug, log_error, add_no_notify from lvmdbusd.lvm_shell_proxy import LVMShellProxy try: import simplejson as json except ImportError: import json SEP = '{|}' total_time = 0.0 total_count = 0 # We need to prevent different threads from using the same lvm shell # at the same time. cmd_lock = threading.RLock() class LvmExecutionMeta(object): def __init__(self, start, ended, cmd, ec, stdout_txt, stderr_txt): self.lock = threading.RLock() self.start = start self.ended = ended self.cmd = cmd self.ec = ec self.stdout_txt = stdout_txt self.stderr_txt = stderr_txt def __str__(self): with self.lock: return "EC= %d for %s\n" \ "STARTED: %f, ENDED: %f\n" \ "STDOUT=%s\n" \ "STDERR=%s\n" % \ (self.ec, str(self.cmd), self.start, self.ended, self.stdout_txt, self.stderr_txt) class LvmFlightRecorder(object): def __init__(self, size=16): self.queue = collections.deque(maxlen=size) def add(self, lvm_exec_meta): self.queue.append(lvm_exec_meta) def dump(self): with cmd_lock: if len(self.queue): log_error("LVM dbus flight recorder START") for c in self.queue: log_error(str(c)) log_error("LVM dbus flight recorder END") cfg.blackbox = LvmFlightRecorder() def _debug_c(cmd, exit_code, out): log_error('CMD= %s' % ' '.join(cmd)) log_error(("EC= %d" % exit_code)) log_error(("STDOUT=\n %s\n" % out[0])) log_error(("STDERR=\n %s\n" % out[1])) def call_lvm(command, debug=False): """ Call an executable and return a tuple of exitcode, stdout, stderr :param command: Command to execute :param debug: Dump debug to stdout """ # print 'STACK:' # for line in traceback.format_stack(): # print line.strip() # Prepend the full lvm executable so that we can run different versions # in different locations on the same box command.insert(0, cfg.LVM_CMD) command = add_no_notify(command) process = Popen(command, stdout=PIPE, stderr=PIPE, close_fds=True, env=os.environ) out = process.communicate() stdout_text = bytes(out[0]).decode("utf-8") stderr_text = bytes(out[1]).decode("utf-8") if debug or process.returncode != 0: _debug_c(command, process.returncode, (stdout_text, stderr_text)) return process.returncode, stdout_text, stderr_text # The actual method which gets called to invoke the lvm command, can vary # from forking a new process to using lvm shell _t_call = call_lvm def _shell_cfg(): global _t_call # noinspection PyBroadException try: lvm_shell = LVMShellProxy() _t_call = lvm_shell.call_lvm cfg.SHELL_IN_USE = lvm_shell return True except Exception: _t_call = call_lvm cfg.SHELL_IN_USE = None log_error(traceback.format_exc()) log_error("Unable to utilize lvm shell, dropping back to fork & exec") return False def set_execution(shell): global _t_call with cmd_lock: # If the user requested lvm shell and we are currently setup that # way, just return if cfg.SHELL_IN_USE and shell: return True else: if not shell and cfg.SHELL_IN_USE: cfg.SHELL_IN_USE.exit_shell() cfg.SHELL_IN_USE = None _t_call = call_lvm if shell: if cfg.args.use_json: return _shell_cfg() else: return False return True def time_wrapper(command, debug=False): global total_time global total_count with cmd_lock: start = time.time() results = _t_call(command, debug) ended = time.time() total_time += (ended - start) total_count += 1 cfg.blackbox.add(LvmExecutionMeta(start, ended, command, *results)) return results call = time_wrapper # Default cmd # Place default arguments for every command here. def _dc(cmd, args): c = [cmd, '--noheading', '--separator', '%s' % SEP, '--nosuffix', '--unbuffered', '--units', 'b'] c.extend(args) return c def parse(out): rc = [] for line in out.split('\n'): # This line includes separators, so process them if SEP in line: elem = line.split(SEP) cleaned_elem = [] for e in elem: e = e.strip() cleaned_elem.append(e) if len(cleaned_elem) > 1: rc.append(cleaned_elem) else: t = line.strip() if len(t) > 0: rc.append(t) return rc def parse_column_names(out, column_names): lines = parse(out) rc = [] for i in range(0, len(lines)): d = dict(list(zip(column_names, lines[i]))) rc.append(d) return rc def options_to_cli_args(options): rc = [] for k, v in list(dict(options).items()): if k.startswith("-"): rc.append(k) else: rc.append("--%s" % k) if v != "": rc.append(str(v)) return rc def pv_remove(device, remove_options): cmd = ['pvremove'] cmd.extend(options_to_cli_args(remove_options)) cmd.append(device) return call(cmd) def _qt(tag_name): return '@%s' % tag_name def _tag(operation, what, add, rm, tag_options): cmd = [operation] cmd.extend(options_to_cli_args(tag_options)) if isinstance(what, list): cmd.extend(what) else: cmd.append(what) if add: cmd.extend(list(chain.from_iterable( ('--addtag', _qt(x)) for x in add))) if rm: cmd.extend(list(chain.from_iterable( ('--deltag', _qt(x)) for x in rm))) return call(cmd, False) def pv_tag(pv_devices, add, rm, tag_options): return _tag('pvchange', pv_devices, add, rm, tag_options) def vg_tag(vg_name, add, rm, tag_options): return _tag('vgchange', vg_name, add, rm, tag_options) def lv_tag(lv_name, add, rm, tag_options): return _tag('lvchange', lv_name, add, rm, tag_options) def vg_rename(vg, new_name, rename_options): cmd = ['vgrename'] cmd.extend(options_to_cli_args(rename_options)) cmd.extend([vg, new_name]) return call(cmd) def vg_remove(vg_name, remove_options): cmd = ['vgremove'] cmd.extend(options_to_cli_args(remove_options)) cmd.extend(['-f', vg_name]) return call(cmd) def vg_lv_create(vg_name, create_options, name, size_bytes, pv_dests): cmd = ['lvcreate'] cmd.extend(options_to_cli_args(create_options)) cmd.extend(['--size', str(size_bytes) + 'B']) cmd.extend(['--name', name, vg_name, '--yes']) pv_dest_ranges(cmd, pv_dests) return call(cmd) def vg_lv_snapshot(vg_name, snapshot_options, name, size_bytes): cmd = ['lvcreate'] cmd.extend(options_to_cli_args(snapshot_options)) cmd.extend(["-s"]) if size_bytes != 0: cmd.extend(['--size', str(size_bytes) + 'B']) cmd.extend(['--name', name, vg_name]) return call(cmd) def _vg_lv_create_common_cmd(create_options, size_bytes, thin_pool): cmd = ['lvcreate'] cmd.extend(options_to_cli_args(create_options)) if not thin_pool: cmd.extend(['--size', str(size_bytes) + 'B']) else: cmd.extend(['--thin', '--size', str(size_bytes) + 'B']) cmd.extend(['--yes']) return cmd def vg_lv_create_linear(vg_name, create_options, name, size_bytes, thin_pool): cmd = _vg_lv_create_common_cmd(create_options, size_bytes, thin_pool) cmd.extend(['--name', name, vg_name]) return call(cmd) def vg_lv_create_striped(vg_name, create_options, name, size_bytes, num_stripes, stripe_size_kb, thin_pool): cmd = _vg_lv_create_common_cmd(create_options, size_bytes, thin_pool) cmd.extend(['--stripes', str(num_stripes)]) if stripe_size_kb != 0: cmd.extend(['--stripesize', str(stripe_size_kb)]) cmd.extend(['--name', name, vg_name]) return call(cmd) def _vg_lv_create_raid(vg_name, create_options, name, raid_type, size_bytes, num_stripes, stripe_size_kb): cmd = ['lvcreate'] cmd.extend(options_to_cli_args(create_options)) cmd.extend(['--type', raid_type]) cmd.extend(['--size', str(size_bytes) + 'B']) if num_stripes != 0: cmd.extend(['--stripes', str(num_stripes)]) if stripe_size_kb != 0: cmd.extend(['--stripesize', str(stripe_size_kb)]) cmd.extend(['--name', name, vg_name, '--yes']) return call(cmd) def vg_lv_create_raid(vg_name, create_options, name, raid_type, size_bytes, num_stripes, stripe_size_kb): cmd = ['lvcreate'] cmd.extend(options_to_cli_args(create_options)) return _vg_lv_create_raid(vg_name, create_options, name, raid_type, size_bytes, num_stripes, stripe_size_kb) def vg_lv_create_mirror( vg_name, create_options, name, size_bytes, num_copies): cmd = ['lvcreate'] cmd.extend(options_to_cli_args(create_options)) cmd.extend(['--type', 'mirror']) cmd.extend(['--mirrors', str(num_copies)]) cmd.extend(['--size', str(size_bytes) + 'B']) cmd.extend(['--name', name, vg_name, '--yes']) return call(cmd) def vg_create_cache_pool(md_full_name, data_full_name, create_options): cmd = ['lvconvert'] cmd.extend(options_to_cli_args(create_options)) cmd.extend(['--type', 'cache-pool', '--force', '-y', '--poolmetadata', md_full_name, data_full_name]) return call(cmd) def vg_create_thin_pool(md_full_name, data_full_name, create_options): cmd = ['lvconvert'] cmd.extend(options_to_cli_args(create_options)) cmd.extend(['--type', 'thin-pool', '--force', '-y', '--poolmetadata', md_full_name, data_full_name]) return call(cmd) def lv_remove(lv_path, remove_options): cmd = ['lvremove'] cmd.extend(options_to_cli_args(remove_options)) cmd.extend(['-f', lv_path]) return call(cmd) def lv_rename(lv_path, new_name, rename_options): cmd = ['lvrename'] cmd.extend(options_to_cli_args(rename_options)) cmd.extend([lv_path, new_name]) return call(cmd) def lv_resize(lv_full_name, size_change, pv_dests, resize_options): cmd = ['lvresize', '--force'] cmd.extend(options_to_cli_args(resize_options)) if size_change < 0: cmd.append("-L-%dB" % (-size_change)) else: cmd.append("-L+%dB" % (size_change)) cmd.append(lv_full_name) pv_dest_ranges(cmd, pv_dests) return call(cmd) def lv_lv_create(lv_full_name, create_options, name, size_bytes): cmd = ['lvcreate'] cmd.extend(options_to_cli_args(create_options)) cmd.extend(['--virtualsize', str(size_bytes) + 'B', '-T']) cmd.extend(['--name', name, lv_full_name, '--yes']) return call(cmd) def lv_cache_lv(cache_pool_full_name, lv_full_name, cache_options): # lvconvert --type cache --cachepool VG/CachePoolLV VG/OriginLV cmd = ['lvconvert'] cmd.extend(options_to_cli_args(cache_options)) cmd.extend(['-y', '--type', 'cache', '--cachepool', cache_pool_full_name, lv_full_name]) return call(cmd) def lv_detach_cache(lv_full_name, detach_options, destroy_cache): cmd = ['lvconvert'] if destroy_cache: option = '--uncache' else: # Currently fairly dangerous # see: https://bugzilla.redhat.com/show_bug.cgi?id=1248972 option = '--splitcache' cmd.extend(options_to_cli_args(detach_options)) # needed to prevent interactive questions cmd.extend(["--yes", "--force"]) cmd.extend([option, lv_full_name]) return call(cmd) def supports_json(): cmd = ['help'] rc, out, err = call(cmd) if rc == 0: if cfg.SHELL_IN_USE: return True else: if 'fullreport' in err: return True return False def lvm_full_report_json(): pv_columns = ['pv_name', 'pv_uuid', 'pv_fmt', 'pv_size', 'pv_free', 'pv_used', 'dev_size', 'pv_mda_size', 'pv_mda_free', 'pv_ba_start', 'pv_ba_size', 'pe_start', 'pv_pe_count', 'pv_pe_alloc_count', 'pv_attr', 'pv_tags', 'vg_name', 'vg_uuid', 'pv_missing'] pv_seg_columns = ['pvseg_start', 'pvseg_size', 'segtype', 'pv_uuid', 'lv_uuid', 'pv_name'] vg_columns = ['vg_name', 'vg_uuid', 'vg_fmt', 'vg_size', 'vg_free', 'vg_sysid', 'vg_extent_size', 'vg_extent_count', 'vg_free_count', 'vg_profile', 'max_lv', 'max_pv', 'pv_count', 'lv_count', 'snap_count', 'vg_seqno', 'vg_mda_count', 'vg_mda_free', 'vg_mda_size', 'vg_mda_used_count', 'vg_attr', 'vg_tags'] lv_columns = ['lv_uuid', 'lv_name', 'lv_path', 'lv_size', 'vg_name', 'pool_lv_uuid', 'pool_lv', 'origin_uuid', 'origin', 'data_percent', 'lv_attr', 'lv_tags', 'vg_uuid', 'lv_active', 'data_lv', 'metadata_lv', 'lv_parent', 'lv_role', 'lv_layout', 'snap_percent', 'metadata_percent', 'copy_percent', 'sync_percent', 'lv_metadata_size', 'move_pv', 'move_pv_uuid'] lv_seg_columns = ['seg_pe_ranges', 'segtype', 'lv_uuid'] cmd = _dc('fullreport', [ '-a', # Need hidden too '--configreport', 'pv', '-o', ','.join(pv_columns), '--configreport', 'vg', '-o', ','.join(vg_columns), '--configreport', 'lv', '-o', ','.join(lv_columns), '--configreport', 'seg', '-o', ','.join(lv_seg_columns), '--configreport', 'pvseg', '-o', ','.join(pv_seg_columns), '--reportformat', 'json' ]) rc, out, err = call(cmd) if rc == 0: # With the current implementation, if we are using the shell then we # are using JSON and JSON is returned back to us as it was parsed to # figure out if we completed OK or not if cfg.SHELL_IN_USE: assert(type(out) == dict) return out else: return json.loads(out) return None def pv_retrieve_with_segs(device=None): d = [] err = "" out = "" rc = 0 columns = ['pv_name', 'pv_uuid', 'pv_fmt', 'pv_size', 'pv_free', 'pv_used', 'dev_size', 'pv_mda_size', 'pv_mda_free', 'pv_ba_start', 'pv_ba_size', 'pe_start', 'pv_pe_count', 'pv_pe_alloc_count', 'pv_attr', 'pv_tags', 'vg_name', 'vg_uuid', 'pvseg_start', 'pvseg_size', 'segtype', 'pv_missing'] # Lvm has some issues where it returns failure when querying pvs when other # operations are in process, see: # https://bugzilla.redhat.com/show_bug.cgi?id=1274085 for i in range(0, 10): cmd = _dc('pvs', ['-o', ','.join(columns)]) if device: cmd.extend(device) rc, out, err = call(cmd) if rc == 0: d = parse_column_names(out, columns) break else: time.sleep(0.2) log_debug("LVM Bug workaround, retrying pvs command...") if rc != 0: msg = "We were unable to get pvs to return without error after " \ "trying 10 times, RC=%d, STDERR=(%s), STDOUT=(%s)" % \ (rc, err, out) log_error(msg) raise RuntimeError(msg) return d def pv_resize(device, size_bytes, create_options): cmd = ['pvresize'] cmd.extend(options_to_cli_args(create_options)) if size_bytes != 0: cmd.extend(['--yes', '--setphysicalvolumesize', str(size_bytes) + 'B']) cmd.extend([device]) return call(cmd) def pv_create(create_options, devices): cmd = ['pvcreate', '-ff'] cmd.extend(options_to_cli_args(create_options)) cmd.extend(devices) return call(cmd) def pv_allocatable(device, yes, allocation_options): yn = 'n' if yes: yn = 'y' cmd = ['pvchange'] cmd.extend(options_to_cli_args(allocation_options)) cmd.extend(['-x', yn, device]) return call(cmd) def pv_scan(activate, cache, device_paths, major_minors, scan_options): cmd = ['pvscan'] cmd.extend(options_to_cli_args(scan_options)) if activate: cmd.extend(['--activate', "ay"]) if cache: cmd.append('--cache') if len(device_paths) > 0: for d in device_paths: cmd.append(d) if len(major_minors) > 0: for mm in major_minors: cmd.append("%s:%s" % (mm)) return call(cmd) def vg_create(create_options, pv_devices, name): cmd = ['vgcreate'] cmd.extend(options_to_cli_args(create_options)) cmd.append(name) cmd.extend(pv_devices) return call(cmd) def vg_change(change_options, name): cmd = ['vgchange'] cmd.extend(options_to_cli_args(change_options)) cmd.append(name) return call(cmd) def vg_reduce(vg_name, missing, pv_devices, reduce_options): cmd = ['vgreduce'] cmd.extend(options_to_cli_args(reduce_options)) if missing: cmd.append('--removemissing') elif len(pv_devices) == 0: cmd.append('--all') cmd.append(vg_name) cmd.extend(pv_devices) return call(cmd) def vg_extend(vg_name, extend_devices, extend_options): cmd = ['vgextend'] cmd.extend(options_to_cli_args(extend_options)) cmd.append(vg_name) cmd.extend(extend_devices) return call(cmd) def _vg_value_set(name, arguments, options): cmd = ['vgchange'] cmd.extend(options_to_cli_args(options)) cmd.append(name) cmd.extend(arguments) return call(cmd) def vg_allocation_policy(vg_name, policy, policy_options): return _vg_value_set(vg_name, ['--alloc', policy], policy_options) def vg_max_pv(vg_name, number, max_options): return _vg_value_set(vg_name, ['--maxphysicalvolumes', str(number)], max_options) def vg_max_lv(vg_name, number, max_options): return _vg_value_set(vg_name, ['-l', str(number)], max_options) def vg_uuid_gen(vg_name, ignore, options): assert ignore is None return _vg_value_set(vg_name, ['--uuid'], options) def activate_deactivate(op, name, activate, control_flags, options): cmd = [op] cmd.extend(options_to_cli_args(options)) op = '-a' if control_flags: # Autoactivation if (1 << 0) & control_flags: op += 'a' # Exclusive locking (Cluster) if (1 << 1) & control_flags: op += 'e' # Local node activation if (1 << 2) & control_flags: op += 'l' # Activation modes if (1 << 3) & control_flags: cmd.extend(['--activationmode', 'complete']) elif (1 << 4) & control_flags: cmd.extend(['--activationmode', 'partial']) # Ignore activation skip if (1 << 5) & control_flags: cmd.append('--ignoreactivationskip') if activate: op += 'y' else: op += 'n' cmd.append(op) cmd.append(name) return call(cmd) def vg_retrieve(vg_specific): if vg_specific: assert isinstance(vg_specific, list) columns = ['vg_name', 'vg_uuid', 'vg_fmt', 'vg_size', 'vg_free', 'vg_sysid', 'vg_extent_size', 'vg_extent_count', 'vg_free_count', 'vg_profile', 'max_lv', 'max_pv', 'pv_count', 'lv_count', 'snap_count', 'vg_seqno', 'vg_mda_count', 'vg_mda_free', 'vg_mda_size', 'vg_mda_used_count', 'vg_attr', 'vg_tags'] cmd = _dc('vgs', ['-o', ','.join(columns)]) if vg_specific: cmd.extend(vg_specific) d = [] rc, out, err = call(cmd) if rc == 0: d = parse_column_names(out, columns) return d def lv_retrieve_with_segments(): columns = ['lv_uuid', 'lv_name', 'lv_path', 'lv_size', 'vg_name', 'pool_lv_uuid', 'pool_lv', 'origin_uuid', 'origin', 'data_percent', 'lv_attr', 'lv_tags', 'vg_uuid', 'lv_active', 'data_lv', 'metadata_lv', 'seg_pe_ranges', 'segtype', 'lv_parent', 'lv_role', 'lv_layout', 'snap_percent', 'metadata_percent', 'copy_percent', 'sync_percent', 'lv_metadata_size', 'move_pv', 'move_pv_uuid'] cmd = _dc('lvs', ['-a', '-o', ','.join(columns)]) rc, out, err = call(cmd) d = [] if rc == 0: d = parse_column_names(out, columns) return d if __name__ == '__main__': pv_data = pv_retrieve_with_segs() for p in pv_data: print(str(p))
24.924503
78
0.691306
8b2bff222da0952a2a2b2adcc82956a89e5eecd6
679
py
Python
Algorithms/DynamicProgramming/Longest Common Subsequence/lcs_dynamic.py
Nidita/Data-Structures-Algorithms
7b5198c8d37e9a70dd0885c6eef6dddd9d85d74a
[ "MIT" ]
26
2019-07-17T11:05:43.000Z
2022-02-06T08:31:40.000Z
Algorithms/DynamicProgramming/Longest Common Subsequence/lcs_dynamic.py
Nidita/Data-Structures-Algorithms
7b5198c8d37e9a70dd0885c6eef6dddd9d85d74a
[ "MIT" ]
7
2019-07-16T19:52:25.000Z
2022-01-08T08:03:44.000Z
Algorithms/DynamicProgramming/Longest Common Subsequence/lcs_dynamic.py
Nidita/Data-Structures-Algorithms
7b5198c8d37e9a70dd0885c6eef6dddd9d85d74a
[ "MIT" ]
19
2020-01-14T02:44:28.000Z
2021-12-27T17:31:59.000Z
def lcs(s1, s2, x, y): if arr[x-1][y-1] != -1: return arr[x-1][y-1] if x==0 or y==0: arr[x-1][y-1] = 0 return 0 elif s1[x-1] == s2[y-1]: arr[x-1][y-1] = 1 + lcs(s1, s2, x-1, y-1) return arr[x-1][y-1] else: arr[x-1][y-1] = max(lcs(s1, s2, x-1, y), lcs(s1, s2, x, y-1)) return arr[x-1][y-1] input_string_1 = 'AGGTABPIXIL' input_string_2 = 'GXTXAYBPXL' arr = [[-1 for i in range(len(input_string_2))] for i in range(len(input_string_1))] import time init = time.time() print(lcs(input_string_1, input_string_2, len(input_string_1), len(input_string_2))) end = time.time() print((end - init) * 1000)
21.21875
84
0.555228
50ad6f764c13e48dce605fcce721d08f212c4bdb
170
py
Python
exercises/fr/exc_01_02_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/exc_01_02_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/fr/exc_01_02_01.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
# Importe spaCy import ____ # Crée l'objet nlp français nlp = ____ # Traite un texte doc = nlp("Ceci est une phrase.") # Affiche le texte du document print(____.text)
14.166667
33
0.717647
ba24c1927a095432b0acf43547b2e9f348a098b7
38,795
py
Python
Packs/Netskope/Integrations/NetskopeAPIv1/NetskopeAPIv1.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
2
2021-12-06T21:38:24.000Z
2022-01-13T08:23:36.000Z
Packs/Netskope/Integrations/NetskopeAPIv1/NetskopeAPIv1.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
61
2021-10-07T08:54:38.000Z
2022-03-31T10:25:35.000Z
Packs/Netskope/Integrations/NetskopeAPIv1/NetskopeAPIv1.py
jrauen/content
81a92be1cbb053a5f26a6f325eff3afc0ca840e0
[ "MIT" ]
2
2022-01-05T15:27:01.000Z
2022-02-01T19:27:43.000Z
# type: ignore from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple from urllib.parse import urljoin import urllib3 import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * # disable insecure warnings urllib3.disable_warnings() DEFAULT_PAGE = 1 DEFAULT_LIMIT = 50 DEFAULT_MAX_FETCH = DEFAULT_LIMIT DEFAULT_EVENTS_FETCH = DEFAULT_LIMIT DEFAULT_EVENT_TYPE = 'application' DEFAULT_FIRST_FETCH = '7 days' MAX_LIMIT = 100 MAX_FETCH = 200 MAX_EVENTS_FETCH = 200 TIME_PERIOD_MAPPING = { 'Last 60 Minutes': 3600, 'Last 24 Hours': 86400, 'Last 7 Days': 604800, 'Last 30 Days': 2592000, 'Last 60 Days': 5184000, 'Last 90 Days': 7776000 } class Client(BaseClient): """ Client for Netskope RESTful API. Args: base_url (str): The base URL of Netskope. token (str): The token to authenticate against Netskope API. use_ssl (bool): Specifies whether to verify the SSL certificate or not. use_proxy (bool): Specifies if to use XSOAR proxy settings. """ def __init__(self, base_url: str, token: str, use_ssl: bool, use_proxy: bool): super().__init__(urljoin(base_url, '/api/v1/'), verify=use_ssl, proxy=use_proxy) self._session.params['token'] = token def list_events_request(self, query: Optional[str] = None, event_type: Optional[str] = None, timeperiod: Optional[int] = None, start_time: Optional[int] = None, end_time: Optional[int] = None, insertion_start_time: Optional[int] = None, insertion_end_time: Optional[int] = None, limit: Optional[int] = None, skip: Optional[int] = None, unsorted: Optional[bool] = None) -> Dict[str, Any]: """ Get events extracted from SaaS traffic and or logs. Args: query (Optional[str]): Free query to filter the events. event_type (Optional[str]): Select events by their type. timeperiod (Optional[int]): Get all events from a certain time period. start_time (Optional[int]): Restrict events to those that have timestamps greater than the provided timestamp. end_time (Optional[int]): Restrict events to those that have timestamps less than or equal to the provided timestamp. insertion_start_time (Optional[int]): Restrict events to those that were inserted to the system after the provided timestamp. insertion_end_time (Optional[int]): Restrict events to those that were inserted to the system before the provided timestamp. limit (Optional[int]): The maximum amount of events to retrieve (up to 10000 events). skip (Optional[int]): The skip number of the events to retrieve (minimum is 1). unsorted (Optional[bool]): If true, the returned data will not be sorted (useful for improved performance). Returns: Dict[str, Any]: Netskope events. """ body = remove_empty_elements({ 'query': query, 'type': event_type, 'timeperiod': timeperiod, 'starttime': start_time, 'endtime': end_time, 'insertionstarttime': insertion_start_time, 'insertionendtime': insertion_end_time, 'limit': limit, 'skip': skip, 'unsorted': unsorted }) return self._http_request(method='POST', url_suffix='events', json_data=body) def list_alerts_request(self, query: Optional[str] = None, alert_type: Optional[str] = None, acked: Optional[bool] = None, timeperiod: Optional[int] = None, start_time: Optional[int] = None, end_time: Optional[int] = None, insertion_start_time: Optional[int] = None, insertion_end_time: Optional[int] = None, limit: Optional[int] = None, skip: Optional[int] = None, unsorted: Optional[bool] = None) -> Dict[str, Any]: """ Get alerts generated by Netskope, including policy, DLP, and watch list alerts. Args: query (Optional[str]): Free query to filter the alerts. alert_type (Optional[str]): Select alerts by their type. acked (Optional[bool]): Whether to retrieve acknowledged alerts or not. timeperiod (Optional[int]): Get alerts from certain time period. start_time (Optional[int]): Restrict alerts to those that have timestamps greater than the provided timestamp. end_time (Optional[int]): Restrict alerts to those that have timestamps less than or equal to the provided timestamp. insertion_start_time (Optional[int]): Restrict alerts which have been inserted into the system after the provided timestamp. insertion_end_time (Optional[int]): Restrict alerts which have been inserted into the system before the provided timestamp. limit (Optional[int]): The maximum number of alerts to return (up to 10000). skip (Optional[int]): The skip number of the alerts to retrieve (minimum is 1). unsorted (Optional[bool]): If true, the returned data will not be sorted (useful for improved performance). Returns: Dict[str, Any]: Netskope alerts. """ body = remove_empty_elements({ 'query': query, 'alert_type': alert_type, 'acked': acked, 'timeperiod': timeperiod, 'starttime': start_time, 'endtime': end_time, 'insertionstarttime': insertion_start_time, 'insertionendtime': insertion_end_time, 'limit': limit, 'skip': skip, 'unsorted': unsorted }) return self._http_request(method='POST', url_suffix='alerts', json_data=body) def list_quarantined_files_request(self, start_time: Optional[int] = None, end_time: Optional[int] = None, limit: Optional[int] = None, skip: Optional[int] = None) -> Dict[str, Any]: """ List all quarantined files. Args: start_time (Optional[int]): Get files last modified within a certain time period. end_time (Optional[int]): Get files last modified within a certain time period. limit (Optional[int]): The maximum amount of clients to retrieve (up to 10000). skip (Optional[int]): The skip number of the clients to retrieve (minimum is 1). Returns: Dict[str, Any]: Netskope quarantine files. """ body = remove_empty_elements({ 'starttime': start_time, 'endtime': end_time, 'limit': limit, 'skip': skip, 'op': 'get-files' }) return self._http_request(method='POST', url_suffix='quarantine', json_data=body) def get_quarantined_file_request(self, quarantine_profile_id: str, file_id: str) -> bytes: """ Download a quarantined file. Args: quarantine_profile_id (str): The ID of quarantine profile. file_id (str): The ID of the quarantined file. Returns: bytes: The quarantined file content. """ body = { 'quarantine_profile_id': quarantine_profile_id, 'file_id': file_id, 'op': 'download-url' } return self._http_request(method='POST', url_suffix='quarantine', json_data=body, resp_type='content') def update_quarantined_file_request(self, quarantine_profile_id: str, file_id: str, action: str) -> None: """ Take an action on a quarantined file. Args: quarantine_profile_id (str): The profile id of the quarantined file. file_id (str): The id of the quarantined file. action (str): Action to be performed on a quarantined. """ body = { 'quarantine_profile_id': quarantine_profile_id, 'file_id': file_id, 'action': action, 'op': 'take-action' } self._http_request(method='POST', url_suffix='quarantine', json_data=body, resp_type='text') def update_url_list_request(self, name: str, urls: List[str]) -> None: """ Update the URL List with the values provided. Args: name (str): Name of an existing URL List shown in the Netskope UI on the URL List skip. urls (List[str]): The content of the URL list. """ body = {'name': name, 'list': ','.join(urls)} self._http_request(method='POST', url_suffix='updateUrlList', json_data=body) def update_file_hash_list_request(self, name: str, hashes: List[str]) -> None: """ Update file hash list with the values provided. Args: name (str): Name of an existing file hash list shown in the Netskope UI on the file hash list skip. hashes (str): List of file hashes (md5 or sha256). """ body = {'name': name, 'list': ','.join(hashes)} return self._http_request(method='POST', url_suffix='updateFileHashList', json_data=body) def list_clients_request(self, query: Optional[str] = None, limit: Optional[int] = None, skip: Optional[int] = None) -> Dict[str, Any]: """ Get information about the Netskope clients. Args: query (Optional[str]): Free query on the clients, based on the client fields. limit (Optional[int]): The maximum amount of clients to retrieve (up to 10000). skip (Optional[int]): The skip number of the clients to retrieve (minimum is 1). Returns: Dict[str, Any]: The clients information. """ body = remove_empty_elements({'query': query, 'limit': limit, 'skip': skip}) return self._http_request(method='POST', url_suffix='clients', params=body) def _http_request(self, *args, **kwargs): response = super()._http_request(*args, **kwargs) if isinstance(response, dict) and 'errors' in response: errors = '\n'.join(response['errors']) raise DemistoException(f'Invalid API call: {errors}', res=response) return response def arg_to_boolean(arg: Optional[str]) -> Optional[bool]: """ Converts an XSOAR argument to a Python boolean or None. Args: arg (Optional[str]): The argument to convert. Returns: Optional[bool]: A boolean if arg can be converted, or None if arg is None. """ if arg is None: return None return argToBoolean(arg) def arg_to_seconds_timestamp(arg: Optional[str]) -> Optional[int]: """ Converts an XSOAR date string argument to a timestamp in seconds. Args: arg (Optional[str]): The argument to convert. Returns: Optional[int]: A timestamp if arg can be converted, or None if arg is None. """ if arg is None: return None return date_to_seconds_timestamp(arg_to_datetime(arg)) def date_to_seconds_timestamp(date_str_or_dt: Union[str, datetime]) -> int: """ Converts date string or datetime object to a timestamp in seconds. Args: date_str_or_dt (Union[str, datetime]): The datestring or datetime. Returns: int: The timestamp in seconds. """ return date_to_timestamp(date_str_or_dt) // 1000 def validate_time_arguments(start_time: Optional[int] = None, end_time: Optional[int] = None, insertion_start_time: Optional[int] = None, insertion_end_time: Optional[int] = None, timeperiod: Optional[int] = None) -> None: """ Validates time arguments from the user. The user must provide one of the following: - start_time and end_time. - insertion_start_time and insertion_end_time. - timeperiod. Args: start_time (Optional[int], optional): The start time to fetch from the API. end_time (Optional[int], optional): The end time to fetch from the API. insertion_start_time (Optional[int], optional): The insertion start time to fetch from the API. insertion_end_time (Optional[int], optional): The insertion end time to fetch from the API. timeperiod (Optional[str], optional): The timeperiod to fetch from the API. Raises: DemistoException: The user did not provide valid timestamp. """ combination = (all((start_time, end_time)), all( (insertion_start_time, insertion_end_time)), bool(timeperiod)) if not any(combination): raise DemistoException('Missing time arguments. Please provide start_time and end_time, ' 'or insertion_start_time and or insertion_end_time or timeperiod.') if combination.count(True) > 1: raise DemistoException( 'Invalid time arguments. Please provide only start_time and end_time, ' 'or insertion_start_time and or insertion_end_time or timeperiod. ' 'You must not combine between the mentioned options.') def validate_fetch_params(max_fetch: int, max_events_fetch: int, fetch_events: bool, first_fetch: str, event_types: List[str]) -> None: """ Validates the parameters for fetch incident command. Args: max_fetch: (int): The maximum number of incidents for one fetch. max_events_fetch (int) The maximum number of events per incident for one fetch. fetch_events (bool): Whether or not fetch events when fetching incident. first_fetch: (str): First fetch time in words. """ if first_fetch: arg_to_datetime(first_fetch) # verify that it is a date. if max_fetch > MAX_FETCH: return_error(f'The Maximum number of incidents per fetch should not exceed {MAX_FETCH}.') if fetch_events and max_events_fetch > MAX_EVENTS_FETCH: return_error( f'The Maximum number of events for each incident per fetch should not exceed {MAX_EVENTS_FETCH}.' ) if not isinstance(event_types, list): return_error('The fetched event types must be a list.') def get_pagination_readable_message(header: str, page: int, limit: int) -> str: return f'{header}\n Current page size: {limit}\n Showing page {page} out of others that may exist.' def get_pagination_arguments(args: Dict[str, Any]) -> Tuple[int, int, int]: """ Gets and validates pagination arguments for client (skip and limit). Args: args (Dict[str, Any]): The command arguments (page and limit). Returns: Tuple[int, int]: The page, calculated skip and limit after validation. """ page = arg_to_number(args.get('page', DEFAULT_PAGE)) limit = arg_to_number(args.get('limit', DEFAULT_LIMIT)) if page < 1: raise DemistoException('Page argument must be greater than 1') if not 1 <= limit <= MAX_LIMIT: raise DemistoException(f'Limit argument must be between 1 to {MAX_LIMIT}') return page, (page - 1) * limit, limit def list_events_command(client: Client, args: Dict[str, str]) -> CommandResults: """ Get events extracted from SaaS traffic and or logs. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ query = args.get('query') event_type = args['event_type'] timeperiod = TIME_PERIOD_MAPPING.get(args.get('timeperiod')) start_time = arg_to_seconds_timestamp(args.get('start_time')) end_time = arg_to_seconds_timestamp(args.get('end_time')) insertion_start_time = arg_to_seconds_timestamp(args.get('insertion_start_time')) insertion_end_time = arg_to_seconds_timestamp(args.get('insertion_end_time')) page, skip, limit = get_pagination_arguments(args) unsorted = arg_to_boolean(args.get('unsorted')) validate_time_arguments(start_time=start_time, end_time=end_time, timeperiod=timeperiod, insertion_start_time=insertion_start_time, insertion_end_time=insertion_end_time) response = client.list_events_request(query=query, event_type=event_type, timeperiod=timeperiod, start_time=start_time, end_time=end_time, insertion_start_time=insertion_start_time, insertion_end_time=insertion_end_time, limit=limit, skip=skip, unsorted=unsorted) outputs = deepcopy(response['data']) for event in outputs: event['event_id'] = event['_id'] event['timestamp'] = timestamp_to_datestring(event['timestamp'] * 1000) readable_output = tableToMarkdown( get_pagination_readable_message('Events List:', page=page, limit=limit), outputs, removeNull=True, headers=['event_id', 'timestamp', 'type', 'access_method', 'app', 'traffic_type'], headerTransform=string_to_table_header) return CommandResults(outputs_prefix='Netskope.Event', outputs_key_field='event_id', outputs=outputs, readable_output=readable_output, raw_response=response) def list_alerts_command(client: Client, args: Dict[str, str]) -> CommandResults: """ Get alerts generated by Netskope, including policy, DLP, and watch list alerts. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ query = args.get('query') alert_type = args.get('alert_type') acked = arg_to_boolean(args.get('acked')) timeperiod = TIME_PERIOD_MAPPING.get(args.get('timeperiod')) start_time = arg_to_seconds_timestamp(args.get('start_time')) end_time = arg_to_seconds_timestamp(args.get('end_time')) insertion_start_time = arg_to_seconds_timestamp(args.get('insertion_start_time')) insertion_end_time = arg_to_seconds_timestamp(args.get('insertion_end_time')) page, skip, limit = get_pagination_arguments(args) unsorted = arg_to_boolean(args.get('unsorted')) validate_time_arguments(start_time=start_time, end_time=end_time, timeperiod=timeperiod, insertion_start_time=insertion_start_time, insertion_end_time=insertion_end_time) response = client.list_alerts_request(query=query, alert_type=alert_type, acked=acked, timeperiod=timeperiod, start_time=start_time, end_time=end_time, insertion_start_time=insertion_start_time, insertion_end_time=insertion_end_time, limit=limit, skip=skip, unsorted=unsorted) outputs = deepcopy(response['data']) for alert in outputs: alert['alert_id'] = alert['_id'] alert['timestamp'] = timestamp_to_datestring(alert['timestamp'] * 1000) readable_output = tableToMarkdown( get_pagination_readable_message('Alerts List:', page=page, limit=limit), outputs, removeNull=True, headers=['alert_id', 'alert_name', 'alert_type', 'timestamp', 'action'], headerTransform=string_to_table_header) return CommandResults(outputs_prefix='Netskope.Alert', outputs_key_field='alert_id', outputs=outputs, readable_output=readable_output, raw_response=response) def list_quarantined_files_command(client: Client, args: Dict[str, str]) -> CommandResults: """ List all quarantined files. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ start_time = arg_to_seconds_timestamp(args.get('start_time')) end_time = arg_to_seconds_timestamp(args.get('end_time')) page, skip, limit = get_pagination_arguments(args) response = client.list_quarantined_files_request(start_time=start_time, end_time=end_time, limit=limit, skip=skip) outputs = dict_safe_get(response, ['data', 'quarantined']) for output in outputs: for file_output in output['files']: file_output['quarantine_profile_id'] = output['quarantine_profile_id'] file_output['quarantine_profile_name'] = output['quarantine_profile_name'] outputs = sum((output['files'] for output in outputs), []) readable_header = get_pagination_readable_message('Quarantined Files List:', page=page, limit=limit) readable_output = tableToMarkdown(readable_header, outputs, removeNull=True, headers=[ 'quarantine_profile_id', 'quarantine_profile_name', 'file_id', 'original_file_name', 'policy' ], headerTransform=string_to_table_header) return CommandResults(outputs_prefix='Netskope.Quarantine', outputs_key_field='file_id', outputs=outputs, readable_output=readable_output, raw_response=response) def get_quarantined_file_command(client: Client, args: Dict[str, str]) -> CommandResults: """ Download a quarantined file. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ quarantine_profile_id = args['quarantine_profile_id'] file_id = args['file_id'] response = client.get_quarantined_file_request(quarantine_profile_id=quarantine_profile_id, file_id=file_id) return fileResult(filename=f'{file_id}.zip', data=response, file_type=EntryType.FILE) def update_quarantined_file_command(client: Client, args: Dict[str, str]) -> CommandResults: """ Take an action on a quarantined file. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ quarantine_profile_id = args['quarantine_profile_id'] file_id = args['file_id'] action = args['action'] client.update_quarantined_file_request(quarantine_profile_id=quarantine_profile_id, file_id=file_id, action=action) readable_output = f'## The file {file_id} was successfully {action}ed!' return CommandResults(readable_output=readable_output) def update_url_list_command(client: Client, args: Dict[str, str]) -> CommandResults: """ Update the URL List with the values provided. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ name = args['name'] urls = argToList(args['urls']) client.update_url_list_request(name=name, urls=urls) outputs = {'name': name, 'URL': urls} readable_output = f'URL List {name}:\n{", ".join(urls)}' return CommandResults(outputs_prefix='Netskope.URLList', outputs_key_field='name', outputs=outputs, readable_output=readable_output) def update_file_hash_list_command(client: Client, args: Dict[str, str]) -> CommandResults: """ Update file hash list with the values provided. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ name = args.get('name') hashes = argToList(args.get('hash')) client.update_file_hash_list_request(name=name, hashes=hashes) outputs = {'name': name, 'hash': hashes} readable_output = f'Hash List {name}:\n{", ".join(hashes)}' return CommandResults(outputs_prefix='Netskope.FileHashList', outputs_key_field='name', outputs=outputs, readable_output=readable_output) def list_clients_command(client: Client, args: Dict[str, str]) -> CommandResults: """ Get information about the Netskope clients. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ query = args.get('query') page, skip, limit = get_pagination_arguments(args) response = client.list_clients_request(query=query, limit=limit, skip=skip) outputs = [client['attributes'] for client in response['data']] for output in outputs: output['client_id'] = output['_id'] readable_header = get_pagination_readable_message('Clients List:', page=page, limit=limit) readable_output = tableToMarkdown( readable_header, outputs, removeNull=True, headers=['client_id', 'client_version', 'device_id', 'user_added_time'], headerTransform=string_to_table_header) return CommandResults(outputs_prefix='Netskope.Client', outputs_key_field='client_id', outputs=outputs, readable_output=readable_output, raw_response=response) def list_host_associated_user_command(client: Client, args: Dict[str, str]) -> CommandResults: """ List all users of certain host by its hostname. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ hostname = args['hostname'] page, skip, limit = get_pagination_arguments(args) response = client.list_clients_request(query=f'host_info.hostname eq {hostname}', limit=limit, skip=skip) outputs = sum((client['attributes'].get('users') for client in response['data']), []) for output in outputs: output['user_id'] = output['_id'] readable_header = get_pagination_readable_message(f'Users Associated With {hostname}:', page=page, limit=limit) readable_output = tableToMarkdown(readable_header, outputs, removeNull=True, headers=['user_id', 'username', 'user_source'], headerTransform=string_to_table_header) return CommandResults(outputs_prefix='Netskope.User', outputs_key_field='user_id', outputs=outputs, readable_output=readable_output, raw_response=response) def list_user_associated_host_command(client: Client, args: Dict[str, str]) -> CommandResults: """ List all hosts related to a certain username. Args: client (client): The Netskope client. args (Dict[str, Any]): Command arguments from XSOAR. Returns: CommandResults: Command results with raw response, outputs and readable outputs. """ username = args['username'] page, skip, limit = get_pagination_arguments(args) response = client.list_clients_request(query=f'username eq {username}', limit=limit, skip=skip) outputs = [] for client in response['data']: attributes = client['attributes'] agent_status = dict_safe_get(attributes, ['last_event', 'status']) outputs.append({'agent_status': agent_status, **attributes['host_info']}) readable_header = get_pagination_readable_message(f'Hosts Associated With {username}:', page=page, limit=limit) readable_output = tableToMarkdown(readable_header, outputs, removeNull=True, headers=['hostname', 'os_version', 'agent_status'], headerTransform=string_to_table_header) return CommandResults(outputs_prefix='Netskope.Host', outputs_key_field='nsdeviceuid', outputs=outputs, readable_output=readable_output, raw_response=response) def test_module(client: Client, max_fetch: int, first_fetch: str, fetch_events: bool, max_events_fetch: int, event_types: List[str]) -> str: """ Validates all integration parameters, and tests connection to Netskope instance. """ validate_fetch_params(max_fetch, max_events_fetch, fetch_events, first_fetch, event_types) client.list_alerts_request(limit=1, skip=0, start_time=date_to_seconds_timestamp(datetime.now()), end_time=date_to_seconds_timestamp(datetime.now())) return 'ok' def fetch_multiple_type_events(client: Client, max_fetch: int, start_time: int, event_types: List[str], query: Optional[str]) -> List[Dict[str, Any]]: """ Fetches events from multiple types. The function makes an API call for each type, since the API requires specifying the event type. Args: client (Client): The Netskope client. max_fetch (int): The maximum amount of events to fetch for each type. start_time (int): The time to fetch the events from. event_types (List[str]): The event types to fetch as incidents. query (Optional[str]): Query for filtering the events. Returns: List[Dict[str, Any]]: The fetched events. """ events = [] if event_types: max_fetch = max_fetch // len(event_types) for event_type in event_types: new_events = client.list_events_request(start_time=start_time, end_time=date_to_seconds_timestamp(datetime.now()), limit=max_fetch, unsorted=False, event_type=event_type, query=query)['data'] for event in new_events: event['event_id'] = event['_id'] event['incident_type'] = event_type events.extend(new_events) return events def fetch_incidents(client: Client, max_fetch: int, first_fetch: str, fetch_events: bool, max_events_fetch: int, event_types: List[str], alerts_query: Optional[str], events_query: Optional[str]) -> None: """ Fetches alerts and events as incidents. Args: client (Client): The Netskope client. max_fetch (int): Maximum number of incidents to fetch. first_fetch (str): The timestamp to fetch the incidents from. max_events_fetch (int): Maximum number of events to fetch. event_types (List[str]): The type of events to fetch. alerts_query (Optional[str]): Query for filtering the fetched alerts. events_query (Optional[str]): Query for filtering the fetched events. """ validate_fetch_params(max_fetch, max_events_fetch, fetch_events, first_fetch, event_types) last_run = demisto.getLastRun() or {} first_fetch = arg_to_seconds_timestamp(first_fetch) last_alert_time = last_run.get('last_alert_time') or first_fetch alerts = client.list_alerts_request(start_time=last_alert_time, end_time=date_to_seconds_timestamp(datetime.now()), limit=max_fetch, query=alerts_query, unsorted=False)['data'] last_event_time = last_run.get('last_event_time') or first_fetch if fetch_events: events = fetch_multiple_type_events(client, max_fetch=max_events_fetch, start_time=last_event_time, event_types=event_types, query=events_query) else: events = [] incidents = [] for alert in alerts: alert['incident_type'] = alert['alert_type'] incidents.append({ 'name': alert['alert_name'], 'occurred': timestamp_to_datestring(alert['timestamp']), 'rawJSON': json.dumps(alert) }) for event in events: incidents.append({ 'name': event['event_id'], 'occurred': timestamp_to_datestring(event['timestamp']), 'rawJSON': json.dumps(event) }) # The alerts and events are sorted in descending order. # Also, we increment the timestamp in one second to avoid duplicates. demisto.setLastRun({ 'last_alert_time': alerts[0]['timestamp'] + 1 if alerts else last_alert_time, 'last_event_time': events[0]['timestamp'] + 1 if events else last_event_time }) demisto.incidents(incidents) def main(): params = demisto.params() url = params['url'] token = params['credentials']['password'] use_ssl = not params.get('insecure', False) use_proxy = params.get('proxy', False) max_fetch = arg_to_number(params.get('max_fetch', DEFAULT_MAX_FETCH)) first_fetch = params.get('first_fetch', DEFAULT_FIRST_FETCH) fetch_events = argToBoolean(params.get('fetch_events', False)) event_types = argToList(params.get('fetch_event_types', DEFAULT_EVENT_TYPE)) max_events_fetch = arg_to_number(params.get('max_events_fetch', DEFAULT_EVENTS_FETCH)) client = Client(url, token, use_ssl, use_proxy) commands = { 'netskope-event-list': list_events_command, 'netskope-alert-list': list_alerts_command, 'netskope-quarantined-file-list': list_quarantined_files_command, 'netskope-quarantined-file-get': get_quarantined_file_command, 'netskope-quarantined-file-update': update_quarantined_file_command, 'netskope-url-list-update': update_url_list_command, 'netskope-file-hash-list-update': update_file_hash_list_command, 'netskope-client-list': list_clients_command, 'netskope-host-associated-user-list': list_host_associated_user_command, 'netskope-user-associated-host-list': list_user_associated_host_command, } try: command = demisto.command() if command == 'test-module': return_results( test_module(client, max_fetch=max_fetch, first_fetch=first_fetch, fetch_events=fetch_events, max_events_fetch=max_events_fetch, event_types=event_types)) elif command == 'fetch-incidents': fetch_incidents(client, max_fetch=max_fetch, first_fetch=first_fetch, fetch_events=fetch_events, max_events_fetch=max_events_fetch, event_types=event_types, alerts_query=demisto.params().get('alert_query'), events_query=demisto.params().get('events_query')) elif command in commands: return_results(commands[command](client, demisto.args())) else: raise NotImplementedError(f'The command {command} does not exist!') except Exception as e: demisto.error(traceback.format_exc()) return_error(f'Failed to execute {demisto.command()} command.\nError:\n{e}') if __name__ in ('__main__', '__builtin__', 'builtins'): main()
40.53814
129
0.593143
e84d456546a7effda0c065864dac6f4667e69a6e
1,691
py
Python
Packs/GoogleChronicleBackstory/Scripts/ExtractDomainFromIOCDomainMatchRes/ExtractDomainFromIOCDomainMatchRes_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/GoogleChronicleBackstory/Scripts/ExtractDomainFromIOCDomainMatchRes/ExtractDomainFromIOCDomainMatchRes_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/GoogleChronicleBackstory/Scripts/ExtractDomainFromIOCDomainMatchRes/ExtractDomainFromIOCDomainMatchRes_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
from unittest.mock import patch import demistomock as demisto import ExtractDomainFromIOCDomainMatchRes ARGS = {'json_response': "{\"Artifact\": \"e9428.b.akamaiedge.net\", \"IocIngestTime\": \"2020-07-17T20:00:00Z\", " "\"FirstAccessedTime\": \"2018-11-05T12:01:29Z\", \"LastAccessedTime\": " "\"2018-11-09T11:51:03Z\", \"Sources\": [{ \"Category\": \"Observed serving executable\", " "\"IntRawConfidenceScore\": 0, \"NormalizedConfidenceScore\": \"Low\", \"RawSeverity\": " "\"Low\", \"Source\": \"ET Intelligence Rep List\"}]}"} def test_main_success(mocker): """ When main function is called, get_entry_context should be called. """ mocker.patch.object(demisto, 'args', return_value=ARGS) mocker.patch.object(ExtractDomainFromIOCDomainMatchRes, 'get_entry_context', return_value={}) ExtractDomainFromIOCDomainMatchRes.main() assert ExtractDomainFromIOCDomainMatchRes.get_entry_context.called @patch('ExtractDomainFromIOCDomainMatchRes.return_error') def test_main_failure(mock_return_error, capfd, mocker): """ When main function gets some exception then valid message should be printed. """ mocker.patch.object(demisto, 'args', return_value=ARGS) mocker.patch.object(ExtractDomainFromIOCDomainMatchRes, 'get_entry_context', side_effect=Exception) with capfd.disabled(): ExtractDomainFromIOCDomainMatchRes.main() mock_return_error.assert_called_once_with('Error occurred while extracting Domain from IOC Domain Matches ' 'response:\n')
44.5
116
0.662921
fa24c06f6cb71d0d132ad5eaf12a37f9f961d403
3,896
py
Python
examples/relationship/manytoonefield/views.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
5
2020-07-14T07:48:10.000Z
2021-12-20T21:20:10.000Z
examples/relationship/manytoonefield/views.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
7
2021-03-26T03:13:38.000Z
2022-03-12T00:42:03.000Z
examples/relationship/manytoonefield/views.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
1
2021-02-16T07:04:25.000Z
2021-02-16T07:04:25.000Z
from django.shortcuts import render, HttpResponse from .models import Reporter, Article from datetime import date def single_create(request): # 测试用例-1: 创建一条维表数据和一条主表数据. # 1. 创建维表数据. # INSERT INTO `manytoonefield_reporter` (`first_name`, `last_name`, `email`) # VALUES ('John', 'Smith', '[email protected]') # RETURNING `manytoonefield_reporter`.`id`; r = Reporter(first_name='John', last_name='Smith', email='[email protected]') r.save() # 2. 创建主表数据, 同时将维表数据作为参数 # INSERT INTO `manytoonefield_article` (`headline`, `pub_date`, `reporter_id`) # VALUES ('This is a test', '2005-07-27', 1) # RETURNING `manytoonefield_article`.`id`; a = Article(headline="This is a test", pub_date=date(2005, 7, 27), reporter=r) a.save() # 3. 正向查询. # SELECT `manytoonefield_article`.`id`, # `manytoonefield_article`.`headline`, # `manytoonefield_article`.`pub_date`, # `manytoonefield_article`.`reporter_id` # FROM `manytoonefield_article` # WHERE `manytoonefield_article`.`id` = 1 LIMIT 21; af = Article.objects.get(pk=1) # N+1 查询 # SELECT `manytoonefield_reporter`.`id`, # `manytoonefield_reporter`.`first_name`, # `manytoonefield_reporter`.`last_name`, # `manytoonefield_reporter`.`email` # FROM `manytoonefield_reporter` # WHERE `manytoonefield_reporter`.`id` = 1 LIMIT 21; print("af.reporter.id: ", af.reporter.id) # 4. 反向查询. # SELECT `manytoonefield_reporter`.`id`, # `manytoonefield_reporter`.`first_name`, # `manytoonefield_reporter`.`last_name`, # `manytoonefield_reporter`.`email` # FROM `manytoonefield_reporter` # WHERE `manytoonefield_reporter`.`id` = 1 LIMIT 21; r = Reporter.objects.get(pk=1) # SELECT `manytoonefield_article`.`id`, # `manytoonefield_article`.`headline`, # `manytoonefield_article`.`pub_date`, # `manytoonefield_article`.`reporter_id` # FROM `manytoonefield_article` # WHERE `manytoonefield_article`.`reporter_id` = 1 LIMIT 21; # TODO: 为什么 all 对应的是limit 21? print(r.article_set.all()) return HttpResponse("view_create") def multi_create(request): # 测试用例-2: 创建一条维表数据和多条主表数据. # 1. 创建维表数据. r = Reporter.objects.create(first_name='John', last_name='Smith', email='[email protected]') # 2. 创建30条主表数据, 同时将维表数据作为参数 for i in range(30): Article.objects.create(headline=f"This is a test-{i}", pub_date=date(2005, 7, 27), reporter=r) # 3. 正向查询 af = Article.objects.get(pk=1) # Article 是 Many; Reporter 是 One; print("af.reporter.id: ", af.reporter.id) # 触发N+1; # 4. 反向查询 # SELECT `manytoonefield_reporter`.`id`, # `manytoonefield_reporter`.`first_name`, # `manytoonefield_reporter`.`last_name`, # `manytoonefield_reporter`.`email` # FROM `manytoonefield_reporter` # WHERE `manytoonefield_reporter`.`id` = 1 LIMIT 21; r = Reporter.objects.get(pk=1) # SELECT `manytoonefield_article`.`id`, # `manytoonefield_article`.`headline`, # `manytoonefield_article`.`pub_date`, # `manytoonefield_article`.`reporter_id` # FROM `manytoonefield_article` # WHERE `manytoonefield_article`.`reporter_id` = 1 LIMIT 21 articles = r.article_set.all() print("articles: ", articles) # SELECT `manytoonefield_article`.`id`, # `manytoonefield_article`.`headline`, # `manytoonefield_article`.`pub_date`, # `manytoonefield_article`.`reporter_id` # FROM `manytoonefield_article` # WHERE `manytoonefield_article`.`reporter_id` = 1; for article in articles: print("article.id: ", article.id) return HttpResponse("view_query")
42.813187
118
0.630903
fa4e1e4a8bcd6ba18676178d49cdccda27580841
1,657
py
Python
Curso-Em-Video-Python/1Materias/20_Funcoes/#021 função parte 2.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
Curso-Em-Video-Python/1Materias/20_Funcoes/#021 função parte 2.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
Curso-Em-Video-Python/1Materias/20_Funcoes/#021 função parte 2.py
pedrohd21/Cursos-Feitos
b223aad83867bfa45ad161d133e33c2c200d42bd
[ "MIT" ]
null
null
null
'''print('Ajuda Interativa') print('Usando o help(e o comando)') #help(print)''' #exemplo DOCTRINGS** '''def contador(i, f, p): """ -> faz uma contagem e mostra na tela. :param i: Inicio da contagem :param f: Fim da contagem :param p: Passo da contagem :return: sem retorno """ c = i while c <= f: print(f'{c} ', end='') c += p print('FIM!') resp = notas(10, 9, 8, sit=True)# Notas mostra a doctrings help(contador)''' #Exemplo parametros opcionais '''def soma(a=0, b=0, c=0): """ -> Faz a soma de três valores e mostra o resultado na tela. :param a: primeiro valor :param b: Segundo valor :param c: terceiro valor :return: """ s = a + b + c print(f'A soma vale {s}') soma(3, 2, 9)''' #Escopo de Variavel '''def teste(b): global a # faz o A valer oq ta dentro da função a = 8 b += 4 c = 2 print(f'A dentro vale {a}') print(f'B dentro vale {b}') print(f'C dentro vale {c}') a = 5 teste(a) print(f'A fora vale {a}')''' #Retornando Valores '''def soma(a=0, b=0, c=0): s = a + b + c return s r1 = soma(3, 2, 5) r2 = soma(2, 2) r3 = soma(6) print(f'Os resultados foram {r1}, {r2}, {r3}')''' #Exercicio aula print('Fatorial') def fatorial(num=1): f = 1 for c in range(num, 0, -1): f *= c return f f1 = fatorial(5) f2 = fatorial(4) f3 = fatorial() print(f'Os resultados são {f1}, {f2}, {f3}') print('Par e impar') def par(n=0): if n % 2 == 0: return True else: return False num = int(input('Digite um numero: ')) if par(num): print('É par!') else: print('Não é par!')
18.411111
63
0.554013
ad4de6af8414028b9dbc8d7ea1bd1128514f7053
12,216
py
Python
Beginner/03. Python/buscas-heuristicas.py
ankita080208/Hacktoberfest
2be849e89285260e7b6672f42979943ad6bbec78
[ "MIT" ]
1
2021-10-06T13:55:02.000Z
2021-10-06T13:55:02.000Z
Beginner/03. Python/buscas-heuristicas.py
ankita080208/Hacktoberfest
2be849e89285260e7b6672f42979943ad6bbec78
[ "MIT" ]
null
null
null
Beginner/03. Python/buscas-heuristicas.py
ankita080208/Hacktoberfest
2be849e89285260e7b6672f42979943ad6bbec78
[ "MIT" ]
null
null
null
#'Importa pacote Numpy e renomeia com NP' import numpy as np #'Importa módulo base.funcoes e renomeia para FN' import base.funcoes as fn from base.grafo import Aresta #'De Pillow importar Image, ImageDraw' from PIL import Image, ImageDraw #'De queue=fila importar Queue, LifoQueue' from queue import Queue, LifoQueue, PriorityQueue from base.queues import ReversePriorityQueue #'De base.funcoes importar addQueue' from base.funcoes import addQueue #'Criando classe chamada Buscas(parâmetro{object}):' class Buscas(object): #'Definindo função de inicialização para a classe buscas=self' def __init__(self): #'buscas=self aponta para visitado que é um array vazio' self.visitado = [] #'self aponta para marcado que é um array vazio' self.marcado = [] #'self aponta para resultado que é um arrayvazio' self.resultado = [] def drawPoint(self, data, aresta, color): if color == 'branco': data[aresta.line][aresta.column] = [255, 255, 255, 255] elif color == 'cinza': data[aresta.line][aresta.column] = [0, 0, 135, 255] else: data[aresta.line][aresta.column] = [255, 69, 0, 255] class BuscaLargura(Buscas): # Variaveis que serão utilizadas durante a busca def __init__(self): super().__init__() self.cor = {} self.pred = {} self.d = {} # Nome da busca self.name = "Busca Largura" def search(self, data, estado_pai): for v in fn.list_state(estado_pai, []): self.d[v] = np.inf self.cor[v] = 'branco' # branco cinza e preto # Marca os estados como none, para saber quais os estados que se deve passar novamente self.pred[v] = None self.drawPoint(data, v, self.cor[v]) # Marca o estado pai como cinza self.cor[estado_pai] = 'cinza' self.d[estado_pai] = 0 self.drawPoint(data, estado_pai, self.cor[estado_pai]) Q = Queue() Q.put(estado_pai) # Verifica se tem algum estado pai na minha lista, caso tenha ele entra no while while not Q.empty(): u = Q.get_nowait() # Caso o atual "u" que é minha lista de estados pai, contenha o estado pai objetivo, então sai do while if u.goal: break # para cada filho na lista de filhos do pai a ser analisado for v in u.children: # se sua cor for branca, eu troco ela pra cinza if self.cor[v] == 'branco': self.cor[v] = 'cinza' self.d[v] = self.d[u] + 1 self.pred[v] = u self.drawPoint(data, v, self.cor[v]) self.visitado.append((u, v)) Q.put(v) self.cor[u] = 'preto' self.drawPoint(data, u, self.cor[u]) self.resultado = [key for key in self.cor if self.cor[key] == 'preto'] # Salva uma imagem com os dados coletados nos passos anteriores e com os estados visitados pintados fn.save_image(data, "Resolucao-Largura.png") class BuscaProfundidade(Buscas): # Variaveis que serão utilizadas durante a busca def __init__(self): super().__init__() self.cor = {} self.pred = {} self.d = {} # Nome da busca self.name = "Busca Profundidade" def search(self, data, estado_pai): for v in fn.list_state(estado_pai, []): self.d[v] = np.inf self.cor[v] = 'branco' # branco cinza e preto # Marca os estados como none, para saber quais os estados que se deve passar novamente self.pred[v] = None self.drawPoint(data, v, self.cor[v]) # Marca o estado pai como cinza self.cor[estado_pai] = 'cinza' self.d[estado_pai] = 0 self.drawPoint(data, estado_pai, self.cor[estado_pai]) Q = LifoQueue() Q.put(estado_pai) # Verifica se tem algum estado pai na minha lista, caso tenha ele entra no while while not Q.empty(): u = Q.get_nowait() # Caso o atual "u" que é minha lista de estados pai, contenha o estado pai objetivo, então sai do while if u.goal: break # para cada filho na lista de filhos do pai a ser analisado for v in u.children: # se sua cor for branca, eu troco ela pra cinza if self.cor[v] == 'branco': self.cor[v] = 'cinza' self.d[v] = self.d[u] + 1 self.pred[v] = u self.drawPoint(data, v, self.cor[v]) self.visitado.append((u, v)) Q.put(v) self.cor[u] = 'preto' self.drawPoint(data, u, self.cor[u]) self.resultado = [key for key in self.cor if self.cor[key] == 'preto'] # Salva uma imagem com os dados coletados nos passos anteriores e com os estados visitados pintados fn.save_image(data, "Resolucao-Largura.png") # NÃO UTILIZADO. # class BuscaProfundidade(Buscas): # # Variaveis que serão utilizadas durante a busca # def __init__(self): # super().__init__() # self.cor = {} # self.pred = {} # self.d = {} # self.f = {} # # Nome da busca # self.name = "Busca Profundidade" # def search(self, data, estado_pai): # # tempo inicial # tempo = 0 # # Para cada estado possivel a partir do estado pai, ele armazena estes estados em uma lista e os coloca todos como cor branca # for v in fn.list_state(estado_pai, []): # # cores possíveis: branco, cinza e preto # self.cor[v] = 'branco' # self.pred[v] = None # for v in fn.list_state(estado_pai, []): # # para cada filho na lista, verifica-se se ele é branco # if self.cor[v] == 'branco': # tempo = self.visit(estado_pai, v, tempo) # self.resultado = [key for key in self.cor if self.cor[key] == 'preto'] # def visit(self, G, s, tempo): # tempo = tempo + 1 # self.d[s] = tempo # self.cor[s] = 'cinza' # for v in G.children: # if self.cor[v] == 'branco': # self.pred[v] = s # self.visitado.append((s, v)) # tempo = self.visit(G, v, tempo) # self.cor[s] = 'preto' # self.tempo = tempo + 1 # self.f[s] = tempo # return tempo class BuscaCustoUniforme(Buscas): """ Algoritmo Busca - Uniforme 1. Definir um conjunto L de nós iniciais 2. Ordene L em ordem crescente de custo 3. Se L é vazio Então Busca não foi bem sucedida Senão seja n o primeiro nó de L; 4. Se n é um nó objetivo Então Retornar caminho do nó inicial até N; Parar Senão Remover n de L; Adicionar em L todos os nós filhos de n, rotulando cada nó com o seu caminho até o nó inicial; Ordene L em ordem crescente de custo; Volte ao passo 3. """ def __init__(self): # Variaveis que serão utilizadas durante a busca super().__init__() self.cor = {} # Nome da busca self.name = "Busca Custo Uniforme" def geraResultado(self): self.resultado = [key for key in self.cor if self.cor[key] == 'preto'] def search(self, data, estado_pai): frontier = PriorityQueue() frontier.put((0, estado_pai)) # se a fila dos estados pai não estiver vazia, entra no while while not frontier.empty(): ucs_w, current_node = frontier.get() #Pega o estado atual da minha lista "frontier", ao andar pega o estaddo atual e o coloca na lista de estados visitados self.visitado.append(current_node) # Se o estado atual for o objetivo, finaliza a busca if current_node.goal: # print("Cheguei no final! ", current_node) return # para cada estado filho for node in current_node.children: custo = current_node.arestas[node].custo filho = current_node.arestas[node].g_fim if not filho in self.visitado: self.resultado.append((current_node, filho)) frontier.put( (custo, filho) ) class BuscaGreedy(Buscas): """ Algoritmo Busca - Uniforme 1. Definir um conjunto L de nós iniciais 2. Ordene L em ordem crescente de custo 3. Se L é vazio Então Busca não foi bem sucedida Senão seja n o primeiro nó de L; 4. Se n é um nó objetivo Então Retornar caminho do nó inicial até N; Parar Senão Remover n de L; Adicionar em L todos os nós filhos de n, rotulando cada nó com o seu caminho até o nó inicial; Ordene L em ordem crescente de custo; Volte ao passo 3. """ def __init__(self): # Variaveis que serão utilizadas durante a busca super().__init__() self.cor = {} self.H = {} # Nome da busca self.name = "Busca Greedy (Gulosa)" def search(self, data, estado_pai): frontier = PriorityQueue() frontier.put((0, estado_pai)) # Se a minha lista de estados pai não estiver vazia, entra no while while not frontier.empty(): ucs_w, current_node = frontier.get_nowait() # O estado atual a ser analizado é adcionado na lista de visitados self.visitado.append(current_node) # Se o estado atual for o fim, finaliza o while if current_node.goal: # print("Cheguei no final! ", current_node) return # Para cada estado filho for node in current_node.children: # Adiciona seu custo com uma busca heuristica custo = current_node.arestas[node].custoH filho = current_node.arestas[node].g_fim if not filho in self.visitado: self.resultado.append((current_node, filho)) frontier.put( (custo, filho) ) class BuscaAEstrela(Buscas): # Variaveis que serão utilizadas durante a busca def __init__(self): super().__init__() # Nome da busca self.name = "Busca A* (A Estrela)" self.came_from = {} self.cost_so_far = {} def search(self, data, estado_pai): frontier = PriorityQueue() frontier.put((0, estado_pai)) self.cost_so_far[estado_pai] = 0 # Se minha lista de pais não for vazia, entra no while while not frontier.empty(): ucs_w, current = frontier.get_nowait() # adiciona o atual estado a ser analizado na lista de visitados self.visitado.append(current) # Se o estado atual for o estado final, sai do while if current.goal: # print("Cheguei no final! ", current_node) return # Para o proximo estado na lista de filhos for next in current.children: # Ele recebera um novo custo sendo este custo a soma da distancia ja andada para chegar até ele, # Mais a heuristica dele mesmo até o final new_cost = ucs_w + current.arestas[next].custo filho = current.arestas[next].g_fim # se o custo do proximo filho a ser comparado não for maior que o do filho analizado anteriormente, # ou o novo custo for menor que a distancia que ele ja percorreu ele entra no if if next not in self.cost_so_far or new_cost < ucs_w: priority = new_cost + current.arestas[next].custoH self.resultado.append((current, filho)) frontier.put((priority, filho))
34.803419
135
0.563032
ada0a3f19ebd4f734d0b9a458bc4f2e1505253c6
783
py
Python
UFV---Python/Trabalho Mat. Disc/rascunho.py
Vith-MCB/UFV
9d96fecdc9ffde2563f9f397bcdb39d95aaf7e69
[ "MIT" ]
1
2022-01-25T16:52:26.000Z
2022-01-25T16:52:26.000Z
UFV---Python/Trabalho Mat. Disc/rascunho.py
Vith-MCB/UFV
9d96fecdc9ffde2563f9f397bcdb39d95aaf7e69
[ "MIT" ]
null
null
null
UFV---Python/Trabalho Mat. Disc/rascunho.py
Vith-MCB/UFV
9d96fecdc9ffde2563f9f397bcdb39d95aaf7e69
[ "MIT" ]
null
null
null
# input n = int(input()) cont1 = int(input()) conttot = 1 # grafo contador = 0 g = [[0 for i in range(n)] for j in range(n)] lista = input().split() for col in range(n): for linha in range(n): g[col][linha] = int(lista[contador]) contador += 1 if col == linha: g[col][linha] = 0 # Lista De Contaminados contaminados = [] contaminados.append(cont1) # Descobrindo Contaminados for linha in range(n): if g[cont1][linha] == 1: contaminados.append(linha) g[cont1][linha] = 0 conttot += 1 while True: for y in range(n): if g[linha][y] == 1 and y != cont1 and linha not in contaminados: contaminados.append(linha) conttot += 1 print(conttot)
23.029412
81
0.551724
7e949d1be8b4b1624b308071102466425b0db545
800
py
Python
undumb.py
pierce403/undumb
966d15a1010ad675054c1fdde253448c7d50cb09
[ "Apache-2.0" ]
1
2020-08-11T05:01:05.000Z
2020-08-11T05:01:05.000Z
undumb.py
pierce403/undumb
966d15a1010ad675054c1fdde253448c7d50cb09
[ "Apache-2.0" ]
null
null
null
undumb.py
pierce403/undumb
966d15a1010ad675054c1fdde253448c7d50cb09
[ "Apache-2.0" ]
null
null
null
import re import sys if(len(sys.argv)>1): file = open(sys.argv[1], encoding = "ISO-8859-1") else: file = open(sys.stdin.fileno(), encoding = "ISO-8859-1") minlength = 8 maxlength = 20 specials = re.compile('[@_!#$%^&*()<>?/\|}{~:]') lowers = re.compile('[abcdefghijklmnopqrstuvwxyz]') uppers = re.compile('[ABCDEFGHIJKLMNOPQRSTUVWXYZ]') numeric = re.compile('[0123456789]') while 1: words = file.readlines(100000) if not words: break for word in words: word=word.strip() if(len(word)<minlength): continue if(len(word)>maxlength): continue if(None==specials.search(word)): continue if(None==lowers.search(word)): continue if(None==uppers.search(word)): continue if(None==numeric.search(word)): continue print(word)
22.222222
58
0.63375
bc1e72531c888ffd6f8a9aa21c25be6502ced3a4
99
py
Python
backend/apps/ineedstudent/apps.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
3
2020-03-27T20:39:31.000Z
2020-03-31T20:24:55.000Z
backend/apps/ineedstudent/apps.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
21
2020-03-28T09:57:15.000Z
2020-03-31T11:38:00.000Z
backend/apps/ineedstudent/apps.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
null
null
null
from django.apps import AppConfig class IneedstudentConfig(AppConfig): name = 'ineedstudent'
16.5
36
0.777778
cb2cc562d1c939cd1753a77b41c7d4d1890aa287
2,340
py
Python
Co-Simulation/Sumo/sumo-1.7.0/tools/build/typemap.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
4
2020-11-13T02:35:56.000Z
2021-03-29T20:15:54.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/build/typemap.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
9
2020-12-09T02:12:39.000Z
2021-02-18T00:15:28.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/build/typemap.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
1
2020-11-20T19:31:26.000Z
2020-11-20T19:31:26.000Z
#!/usr/bin/env python # Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.org/sumo # Copyright (C) 2015-2020 German Aerospace Center (DLR) and others. # This program and the accompanying materials are made available under the # terms of the Eclipse Public License 2.0 which is available at # https://www.eclipse.org/legal/epl-2.0/ # This Source Code may also be made available under the following Secondary # Licenses when the conditions for such availability set forth in the Eclipse # Public License 2.0 are satisfied: GNU General Public License, version 2 # or later which is available at # https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html # SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later # @file typemap.py # @author Michael Behrisch # @date 2015-07-06 """ This script rebuilds "src/netimport/typemap.h" and "src/polyconvert/pc_typemap.h", the files representing the default typemaps. It does this by parsing the data from the sumo data dir. """ from __future__ import print_function from __future__ import absolute_import import sys from os.path import dirname, exists, getmtime, join def writeTypeMap(typemapFile, typemap): with open(typemapFile, 'w') as f: for format, mapFile in sorted(typemap.items()): print("const std::string %sTypemap =" % format, file=f) for line in open(mapFile): print('"%s"' % line.replace('"', r'\"').replace('\n', r'\n'), file=f) print(";", file=f) def generateTypeMap(typemapFile, formats, suffix): typemapDataDir = join(dirname(__file__), '..', '..', 'data', 'typemap') typemap = {} maxTime = 0 for format in formats: typemap[format] = join(typemapDataDir, format + suffix) if exists(typemap[format]): maxTime = max(maxTime, getmtime(typemap[format])) if not exists(typemapFile) or maxTime > getmtime(typemapFile): writeTypeMap(typemapFile, typemap) if __name__ == "__main__": srcDir = join(dirname(__file__), '..', '..', 'src') if len(sys.argv) > 1: srcDir = sys.argv[1] generateTypeMap(join(srcDir, 'netimport', 'typemap.h'), ("opendrive", "osm"), "Netconvert.typ.xml") generateTypeMap(join(srcDir, 'polyconvert', 'pc_typemap.h'), ("navteq", "osm", "visum"), "Polyconvert.typ.xml")
40.344828
115
0.680769
3842ea2b47a34f7d49abb2340d79662e97807666
472
py
Python
pythonProj/FZPython/taskCenter/dailyTickData.py
iHamburg/FZQuant
86b750ec33d01badfd3f324d6f1599118b9bf8ff
[ "MIT" ]
null
null
null
pythonProj/FZPython/taskCenter/dailyTickData.py
iHamburg/FZQuant
86b750ec33d01badfd3f324d6f1599118b9bf8ff
[ "MIT" ]
null
null
null
pythonProj/FZPython/taskCenter/dailyTickData.py
iHamburg/FZQuant
86b750ec33d01badfd3f324d6f1599118b9bf8ff
[ "MIT" ]
2
2019-04-10T10:05:00.000Z
2021-11-24T17:17:23.000Z
""" 获取实时盘口数据 """ import tushare as ts from pymongo import MongoClient import json import time stockList = ['600196','601933','600703'] # 根据stock列表获得实时数据, df = ts.get_realtime_quotes(stockList) #Single stock symbol # print(df) # conn = MongoClient('121.42.26.144', 27017) while True: # 每隔3秒执行一次数据 time.sleep(3) df = ts.get_realtime_quotes(stockList) #Single stock symbol print(df) # conn.db.tickdata.insert(json.loads(df.to_json(orient='records')))
20.521739
71
0.713983
69b0b6a4eff52152771be7b2f24bd2e2a56e40d2
901
py
Python
0088merge-sorted-array.py
meat00/my-leetcode-python
8312de396b29e1d6dd54a65f87fa0511eb400faa
[ "MIT" ]
null
null
null
0088merge-sorted-array.py
meat00/my-leetcode-python
8312de396b29e1d6dd54a65f87fa0511eb400faa
[ "MIT" ]
null
null
null
0088merge-sorted-array.py
meat00/my-leetcode-python
8312de396b29e1d6dd54a65f87fa0511eb400faa
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- class Solution: def merge(self, nums1, m: int, nums2, n: int) -> None: """ Do not return anything, modify nums1 in-place instead. """ for i in range(m): nums1[-1-i] = nums1[m-1-i] i = 0 j = 0 k = 0 while i < m and j < n: if nums1[-m+i] < nums2[j]: nums1[k] = nums1[-m+i] i += 1 else: nums1[k] = nums2[j] j += 1 k += 1 while i < m: nums1[k] = nums1[-m+i] i += 1 k += 1 while j < n: nums1[k] = nums2[j] j += 1 k += 1 if __name__ == "__main__": s = Solution() nums1 = [1, 2, 3, 0, 0, 0] m = 3 nums2 = [2, 5, 6] n = 3 s.merge(nums1, m, nums2, n) print(nums1)
22.525
62
0.374029
3864e2aa61bdb12eff257d3cbadcdb4edbbe581e
114
py
Python
python_gui_tkinter/KALU/GARBAGE1/SAFE28JUL/test.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python_gui_tkinter/KALU/GARBAGE1/SAFE28JUL/test.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python_gui_tkinter/KALU/GARBAGE1/SAFE28JUL/test.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
from AppOperations import AppOperations as ao from AppOperations import Rec ao.reset_slno() #print(Rec.timestmp())
28.5
45
0.824561
aab5aa24a847ec42ce8ae7235d2646ee49fe8cfa
5,706
py
Python
Utils/py/PathPlanner/LPG.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
Utils/py/PathPlanner/LPG.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
Utils/py/PathPlanner/LPG.py
tarsoly/NaoTH
dcd2b67ef6bf9953c81d3e1b26e543b5922b7d52
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
from __future__ import division import sys import math import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Circle import matplotlib as mpl import Queue as Q import copy import time base = 1.1789 minimal_cell = 100 angular_part = 16 parameter_s = 0.5 robot_radius = 0 def get_r(coords): return math.floor(math.log(((math.sqrt(np.power(coords[0], 2) + np.power(coords[1], 2)) * (base - 1)) / minimal_cell) + 1, base)) def get_inv_r(r): return (np.exp(np.log(base)*r) - 1) * minimal_cell / (base - 1) def get_a(coords, rot): return math.floor((angular_part / (2*np.pi)) * (angle(coords) - rot) + 0.5) def angle(coords): if (coords[0] == 0): return np.arctan2(coords[1], 1) else: return np.arctan2(coords[1], coords[0]) def get_cell_mid((r, a), rot): # returns cell mid from polar coordinates prd = (((np.power(base, r+0.5) - 1) * minimal_cell) / (base - 1)) return (np.cos(a * (2*np.pi/16) + rot) * prd, np.sin(a * (2*np.pi/16) + rot) * prd) def get_cell(coords, rot): return (get_r(coords), get_a(coords, rot)) def dist(a, b): (x1, y1) = (a[0], a[1]) (x2, y2) = (b[0], b[1]) return np.sqrt(np.power(x1 - x2, 2) + np.power(y1 - y2, 2)) def dist_cell(a, b, rot): (x1, y1) = get_cell_mid(a, rot) (x2, y2) = get_cell_mid(b, rot) return np.sqrt(np.power(x1 - x2, 2) + np.power(y1 - y2, 2)) def obst_func(cell, obst, rot): # obst is obstacle coordinates in x, y r_f = obst[2] cell_mid = get_cell_mid(cell, rot) dist_to_obst_mid = dist(cell_mid, obst) obst_dist_to_mid = dist(obst, (0, 0)) r_d = obst_dist_to_mid / 10 # parameters a = r_f - r_d # cost of constant part r = r_f + r_d # radius of constant part s = parameter_s*r # radius of linear decreasing part return np.maximum(np.minimum(1 - ((dist_to_obst_mid - r) / s), 1), 0) * a # A STAR IMPLEMENTATION def a_star_search(start, goal, obstacles, rot): openlist = Q.PriorityQueue() closedlist = set() openlist.put((0, start)) came_from = {} cost_so_far = {} came_from[start] = None cost_so_far[start] = 0 start = time.time() while not openlist.empty(): current = openlist.get()[1] if current == goal: break closedlist.add(current) for r in [0, -1, 1]: for a in [0, -1, 1]: the_next = (current[0] + r, current[1] + a) if the_next in closedlist: continue # initialize cost_so_far if math.isnan(cost_so_far[current]): cost_so_far[current] = 0 # cell cost without obstacles new_cost = cost_so_far[current] + dist_cell(current, the_next, rot) # add obstacle costs to cell for obst in obstacles: new_cost += obst_func(the_next, obst, rot) # add to or update openlist if the_next not in cost_so_far or new_cost < cost_so_far[the_next]: cost_so_far[the_next] = new_cost priority = new_cost + dist_cell(the_next, goal, rot) openlist.put((priority, the_next)) came_from[the_next] = current if time.time() - start > 10: return None, None return came_from, cost_so_far def compute_waypoints(tar, obstacles, rot, rot_a): start = get_cell(tar, rot) target = (0, rot_a) (a, b) = a_star_search(start, target, obstacles, rot) if a is None: return None the_next = target the_path = [the_next] while a[the_next] in a: the_next = a[the_next] the_path.append(the_next) return the_path def compute_gait(the_path, target, rot): (x, y) = (0, 0) for k in range(0, len(the_path)): (x, y) = get_cell_mid(the_path[k], rot) if (np.absolute(x) >= 60) or (np.absolute(y) >= 60): break distance = dist((x, y), (0, 0)) max_steplength = min(60, max(-60, distance)) gait = (x / distance * max_steplength, y / distance * max_steplength) if np.sqrt(np.power(gait[0], 2) + np.power(gait[1], 2)) > np.sqrt(np.power(target[0], 2) + np.power(target[1], 2)): gait = target return gait def draw_LPG(ax, robot_pos, rot): a_length = 2*math.pi / angular_part radius = 60000 a = (np.arange(0, angular_part) + 0.5) * a_length x = np.cos(a + rot) * radius y = np.sin(a + rot) * radius # draw rings for k in range(0, 17): rad = get_inv_r(k) ax.add_artist(Circle(xy=(robot_pos[0], robot_pos[1]), radius=rad, fill=False, color='black', alpha=.25)) # draw angular partitions for k in range(0, len(x)): ax.plot([0 + robot_pos[0], x[k] + robot_pos[0]], [0 + robot_pos[1], y[k] + robot_pos[1]], 'black', alpha=.25) def draw_waypoints(ax, waypoints, robot_pos, rot): # draw waypoint cells for k in waypoints: (way_x, way_y) = get_cell_mid(k, rot) ax.plot(way_x + robot_pos[0], way_y + robot_pos[1], ".", c='blue') def draw_obstacles(ax, robot_pos, obstacles): # draw obstacles if obstacles: for k in obstacles: ax.add_artist(Circle(xy=(k[0], k[1]), radius=k[2]+(dist(k, robot_pos)/10) + (k[2]+(dist(k, robot_pos)/10) * parameter_s), fill=True, color='blue', alpha=.25)) ax.add_artist(Circle(xy=(k[0], k[1]), radius=k[2]+dist(k, robot_pos)/10, fill=True, color='red', alpha=.25)) ax.add_artist(Circle(xy=(k[0], k[1]), radius=10, fill=True, color='black'))
33.174419
170
0.578339
fadc9bf4539325b36b93f4d31e6ebd90427b62db
7,743
py
Python
src/bo4e/bo/marktlokation.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
1
2022-03-02T12:49:44.000Z
2022-03-02T12:49:44.000Z
src/bo4e/bo/marktlokation.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
21
2022-02-04T07:38:46.000Z
2022-03-28T14:01:53.000Z
src/bo4e/bo/marktlokation.py
bo4e/BO4E-python
28b12f853c8a496d14b133759b7aa2d6661f79a0
[ "MIT" ]
null
null
null
""" Contains Marktlokation class and corresponding marshmallow schema for de-/serialization """ import attr from marshmallow import fields from marshmallow_enum import EnumField # type:ignore[import] from bo4e.bo.geschaeftsobjekt import Geschaeftsobjekt, GeschaeftsobjektSchema from bo4e.bo.geschaeftspartner import Geschaeftspartner, GeschaeftspartnerSchema from bo4e.com.adresse import Adresse, AdresseSchema from bo4e.com.geokoordinaten import Geokoordinaten, GeokoordinatenSchema from bo4e.com.katasteradresse import Katasteradresse, KatasteradresseSchema from bo4e.com.messlokationszuordnung import Messlokationszuordnung, MesslokationszuordnungSchema from bo4e.enum.bilanzierungsmethode import Bilanzierungsmethode from bo4e.enum.botyp import BoTyp from bo4e.enum.energierichtung import Energierichtung from bo4e.enum.gasqualitaet import Gasqualitaet from bo4e.enum.gebiettyp import Gebiettyp from bo4e.enum.netzebene import Netzebene from bo4e.enum.sparte import Sparte from bo4e.enum.verbrauchsart import Verbrauchsart from bo4e.validators import validate_marktlokations_id # pylint: disable=too-many-instance-attributes, too-few-public-methods @attr.s(auto_attribs=True, kw_only=True) class Marktlokation(Geschaeftsobjekt): """ Object containing information about a Marktlokation .. HINT:: `Marktlokation JSON Schema <https://json-schema.app/view/%23?url=https://raw.githubusercontent.com/Hochfrequenz/BO4E-python/main/json_schemas/bo/MarktlokationSchema.json>`_ """ # required attributes bo_typ: BoTyp = attr.ib(default=BoTyp.MARKTLOKATION) #: Identifikationsnummer einer Marktlokation, an der Energie entweder verbraucht, oder erzeugt wird. marktlokations_id: str = attr.ib(validator=validate_marktlokations_id) #: Sparte der Marktlokation, z.B. Gas oder Strom sparte: Sparte #: Kennzeichnung, ob Energie eingespeist oder entnommen (ausgespeist) wird energierichtung: Energierichtung #: Die Bilanzierungsmethode, RLM oder SLP bilanzierungsmethode: Bilanzierungsmethode netzebene: Netzebene """ Netzebene, in der der Bezug der Energie erfolgt. Bei Strom Spannungsebene der Lieferung, bei Gas Druckstufe. Beispiel Strom: Niederspannung Beispiel Gas: Niederdruck. """ # optional attributes #: Verbrauchsart der Marktlokation. verbrauchsart: Verbrauchsart = attr.ib(default=None) #: Gibt an, ob es sich um eine unterbrechbare Belieferung handelt unterbrechbar: bool = attr.ib(default=None) #: Codenummer des Netzbetreibers, an dessen Netz diese Marktlokation angeschlossen ist. netzbetreibercodenr: str = attr.ib(default=None) #: Typ des Netzgebietes, z.B. Verteilnetz gebietstyp: Gebiettyp = attr.ib(default=None) #: Die ID des Gebietes in der ene't-Datenbank netzgebietsnr: str = attr.ib(default=None) # todo: rename to "id" (see 2021-12-15 update) #: Bilanzierungsgebiet, dem das Netzgebiet zugeordnet ist - im Falle eines Strom Netzes bilanzierungsgebiet: str = attr.ib(default=None) #: Codenummer des Grundversorgers, der für diese Marktlokation zuständig ist grundversorgercodenr: str = attr.ib(default=None) #: Die Gasqualität in diesem Netzgebiet. H-Gas oder L-Gas. Im Falle eines Gas-Netzes gasqualitaet: Gasqualitaet = attr.ib(default=None) #: Geschäftspartner, dem diese Marktlokation gehört endkunde: Geschaeftspartner = attr.ib(default=None) zugehoerige_messlokation: Messlokationszuordnung = attr.ib(default=None) # todo: rename to plural """ Aufzählung der Messlokationen, die zu dieser Marktlokation gehören. Es können 3 verschiedene Konstrukte auftreten: Beziehung 1 : 0 : Hier handelt es sich um Pauschalanlagen ohne Messung. D.h. die Verbrauchsdaten sind direkt über die Marktlokation abgreifbar. Beziehung 1 : 1 : Das ist die Standard-Beziehung für die meisten Fälle. In diesem Fall gibt es zu einer Marktlokation genau eine Messlokation. Beziehung 1 : N : Hier liegt beispielsweise eine Untermessung vor. Der Verbrauch einer Marklokation berechnet sich hier aus mehreren Messungen. Es gibt praktisch auch noch die Beziehung N : 1, beispielsweise bei einer Zweirichtungsmessung bei der durch eine Messeinrichtung die Messung sowohl für die Einspreiseseite als auch für die Aussspeiseseite erfolgt. Da Abrechnung und Bilanzierung jedoch für beide Marktlokationen getrennt erfolgt, werden nie beide Marktlokationen gemeinsam betrachtet. Daher lässt sich dieses Konstrukt auf zwei 1:1-Beziehung zurückführen, wobei die Messlokation in beiden Fällen die gleiche ist. In den Zuordnungen sind ist die arithmetische Operation mit der der Verbrauch einer Messlokation zum Verbrauch einer Marktlokation beitrögt mit aufgeführt. Der Standard ist hier die Addition. """ # only one of the following three optional attributes can be set #: Die Adresse, an der die Energie-Lieferung oder -Einspeisung erfolgt lokationsadresse: Adresse = attr.ib(default=None) geoadresse: Geokoordinaten = attr.ib(default=None) """ Alternativ zu einer postalischen Adresse kann hier ein Ort mittels Geokoordinaten angegeben werden (z.B. zur Identifikation von Sendemasten). """ katasterinformation: Katasteradresse = attr.ib(default=None) """ Alternativ zu einer postalischen Adresse und Geokoordinaten kann hier eine Ortsangabe mittels Gemarkung und Flurstück erfolgen. """ # todo: add kundengruppe # pylint:disable=unused-argument @lokationsadresse.validator @geoadresse.validator @katasterinformation.validator def validate_address_info(self, address_attribute, value): """Checks that there is one and only one valid adress given.""" all_address_attributes = [ self.lokationsadresse, self.geoadresse, self.katasterinformation, ] amount_of_given_address_infos = len([i for i in all_address_attributes if i is not None]) if amount_of_given_address_infos != 1: raise ValueError("No or more than one address information is given.") class MarktlokationSchema(GeschaeftsobjektSchema): """ Schema for de-/serialization of Marktlokation. Inherits from GeschaeftsobjektSchema. """ # class_name is needed to use the correct schema for deserialisation. # see function `deserialize` in geschaeftsobjekt.py class_name = Marktlokation # required attributes marktlokations_id = fields.Str(data_key="marktlokationsId") sparte = EnumField(Sparte) energierichtung = EnumField(Energierichtung) bilanzierungsmethode = EnumField(Bilanzierungsmethode) netzebene = EnumField(Netzebene) # optional attributes verbrauchsart = EnumField(Verbrauchsart, load_default=None) unterbrechbar = fields.Bool(load_default=None) netzbetreibercodenr = fields.Str(load_default=None) gebietstyp = EnumField(Gebiettyp, load_default=None) netzgebietsnr = fields.Str(load_default=None) bilanzierungsgebiet = fields.Str(load_default=None) grundversorgercodenr = fields.Str(load_default=None) gasqualitaet = EnumField(Gasqualitaet, load_default=None) endkunde = fields.Nested(GeschaeftspartnerSchema, load_default=None) zugehoerige_messlokation = fields.List( fields.Nested(MesslokationszuordnungSchema), load_default=None, data_key="zugehoerigeMesslokation" ) # only one of the following three optional attributes can be set lokationsadresse = fields.Nested(AdresseSchema, load_default=None) geoadresse = fields.Nested(GeokoordinatenSchema, load_default=None) katasterinformation = fields.Nested(KatasteradresseSchema, load_default=None)
47.213415
180
0.767661
35a4b7c239146705ae98c9ce84c0a611d5d09b7d
1,020
py
Python
python/python_backup/wisp_old/archives/test3.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/python_backup/wisp_old/archives/test3.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/python_backup/wisp_old/archives/test3.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
import tkinter as tk def populate(frame): '''Put in some fake data''' for row in range(100): tk.Label(frame, text="%s" % row, width=3, borderwidth="1", relief="solid").grid(row=row, column=0) t="this is the second column for row %s" %row tk.Label(frame, text=t).grid(row=row, column=1) tk.Entry(frame).grid(row=row, column=2) def onFrameConfigure(canvas): '''Reset the scroll region to encompass the inner frame''' canvas.configure(scrollregion=canvas.bbox("all")) root = tk.Tk() canvas = tk.Canvas(root, borderwidth=0, background="#ffffff") frame = tk.Frame(canvas, background="#ffffff") vsb = tk.Scrollbar(root, orient="vertical", command=canvas.yview) canvas.configure(yscrollcommand=vsb.set) vsb.pack(side="right", fill="y") canvas.pack(side="left", fill="both", expand=True) canvas.create_window((4,4), window=frame, anchor="nw") frame.bind("<Configure>", lambda event, canvas=canvas: onFrameConfigure(canvas)) populate(frame) root.mainloop()
34
80
0.680392
ea28cd016775170d9f5df70e42ab1a9b9f1f1670
5,533
py
Python
research/audio/fcn-4/infer/utils/mxbase_get_auc.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/audio/fcn-4/infer/utils/mxbase_get_auc.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/audio/fcn-4/infer/utils/mxbase_get_auc.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# coding:utf-8 """ Copyright 2021 Huawei Technologies Co., Ltd Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import sys import numpy as np import pandas as pd def str2digit(s): """ string to digit """ if s.isdigit(): return int(s) return s def simplify_tagging_info(info_path="../data/config/", label_file="annotations_final.csv"): """ simplify_tagging_info """ print("-"*25, "now in function simplify_tagging_info", "-"*25) T = [] with open(os.path.join(info_path, label_file), 'rb') as info: data = info.readline() while data: T.append([str2digit(i[1:-1]) for i in data.strip().decode('utf-8').split("\t")]) data = info.readline() annotation = pd.DataFrame(T[1:], columns=T[0]) count = [] for i in annotation.columns[1:-2]: count.append([annotation[i].sum() / len(annotation), i]) count = sorted(count) full_label = [] for i in count[-50:]: full_label.append(i[1]) simplied_tag = [] for i in T[1:]: index = [k for k, x in enumerate(i) if x == 1] label = [T[0][k] for k in index] L = [str(0) for _ in range(50)] L.append(i[-1]) for j in label: if j in full_label: ind = full_label.index(j) L[ind] = '1' simplied_tag.append(L) txt_save_path = os.path.join(info_path, "music_tagging_tmp.txt") np.savetxt(txt_save_path, np.array(simplied_tag), fmt='%s', delimiter=',') csv_save_path = os.path.join(info_path, "music_tagging_tmp.csv") np.savetxt(csv_save_path, np.array(simplied_tag), fmt='%s', delimiter=',') print("successfully save tagging info in:\n", info_path) return simplied_tag def get_labels(info_list, infer_result_path): """ get_labels """ print("-"*25, "now in function get_labels", "-"*25) label_list = [] pred_list = [] print("info list length:\n", len(info_list)) for label_info in info_list: [_, file_name] = os.path.split(label_info[-1]) file_name = file_name[:-4] + ".txt" rst_file = os.path.join(infer_result_path, file_name) if os.path.exists(rst_file): true_label = np.array([str2digit(i) for i in label_info[:-1]]) rst_data = np.loadtxt(rst_file, delimiter=',') label_list.append(true_label) pred_list.append(rst_data) return label_list, pred_list def compute_auc(labels_list, preds_list): """ The AUC calculation function Input: labels_list: list of true label preds_list: list of predicted label Outputs Float, means of AUC """ print("-"*25, "now in function compute_auc", "-"*25) auc = [] if labels_list.shape[0] <= 0: return "label list is None!" print("shape of labels_list", labels_list.shape) print("shape of preds_list", preds_list.shape) n_bins = labels_list.shape[0] // 2 if labels_list.ndim == 1: labels_list = labels_list.reshape(-1, 1) preds_list = preds_list.reshape(-1, 1) for i in range(labels_list.shape[1]): labels = labels_list[:, i] preds = preds_list[:, i] postive_len = labels.sum() negative_len = labels.shape[0] - postive_len total_case = postive_len * negative_len positive_histogram = np.zeros((n_bins)) negative_histogram = np.zeros((n_bins)) bin_width = 1.0 / n_bins for j, _ in enumerate(labels): nth_bin = int(preds[j] // bin_width) if nth_bin == n_bins: nth_bin = nth_bin - 1 if labels[j]: positive_histogram[nth_bin] = positive_histogram[nth_bin] + 1 else: negative_histogram[nth_bin] = negative_histogram[nth_bin] + 1 accumulated_negative = 0 satisfied_pair = 0 for k in range(n_bins): satisfied_pair += ( positive_histogram[k] * accumulated_negative + positive_histogram[k] * negative_histogram[k] * 0.5) accumulated_negative += negative_histogram[k] auc.append(satisfied_pair / total_case) return np.mean(auc) if __name__ == "__main__": if len(sys.argv) < 3: print("Error-three arguments are required, your command should be like this:") print(" python mxbase_get_auc.py info_file_path info_filename infer_results_path") print("For example:") print(" python mxbase_get_auc.py ../data/config/ annotations_final.csv ../mxbase/results/infer_results") else: base_info_path = sys.argv[1] info_file_name = sys.argv[2] base_result_path = sys.argv[3] simp_info_tags = simplify_tagging_info(base_info_path, info_file_name) _label_list, _pred_list = get_labels(simp_info_tags, base_result_path) auc_val = compute_auc(np.array(_label_list), np.array(_pred_list)) print("-" * 27 + " Validation Performance " + "-" * 27) print("AUC: {:.5f}\n".format(auc_val))
37.134228
114
0.628411
575d446b1875d8a5d0653247ca05134efd4ea1e2
2,409
py
Python
users/serializers.py
rocky-roll-call/rrc-backend
02e8e11c3dab7661e48650e2e861a4a97788a4ce
[ "MIT" ]
null
null
null
users/serializers.py
rocky-roll-call/rrc-backend
02e8e11c3dab7661e48650e2e861a4a97788a4ce
[ "MIT" ]
null
null
null
users/serializers.py
rocky-roll-call/rrc-backend
02e8e11c3dab7661e48650e2e861a4a97788a4ce
[ "MIT" ]
null
null
null
""" Serializers to convert API data to and from the database """ from django.contrib.auth.hashers import make_password from django.contrib.auth.models import User from rest_framework.serializers import ModelSerializer from .models import Profile, UserPhoto class UserSerializer(ModelSerializer): """ A serializer for the default auth.User model """ class Meta: model = User fields = ( "id", "username", "email", "password", "last_login", "date_joined", "profile", ) read_only_fields = ("id", "date_joined", "profile") extra_kwargs = {"password": {"write_only": True}} def create(self, validated_data): user = User.objects.create( email=validated_data["email"], username=validated_data["username"], password=make_password(validated_data["password"]), ) user.save() return user class ProfileSerializer(ModelSerializer): """ A serializer for the users.Profile model """ class Meta: model = Profile fields = ( "id", "user", "name", "alt", "display_name", "age", "image", "bio", "location", "external_url", "facebook_url", "twitter_user", "instagram_user", "show_email", "searchable", "email_confirmed", "birth_date", "photos", ) read_only_fields = ("id", "user", "display_name", "age", "photos") class PublicProfileSerializer(ModelSerializer): """ A serializer for a user's public profile """ class Meta: model = Profile fields = ( "id", "display_name", "age", "image", "bio", "location", "external_url", "facebook_url", "twitter_user", "instagram_user", "photos", ) class UserPhotoSerializer(ModelSerializer): """ A serializer for the users.UserPhoto model """ class Meta: model = UserPhoto fields = ("id", "profile", "image", "description", "created") read_only_fields = ("id", "profile", "image", "created")
23.851485
74
0.515982
57c8c5e2bf31423c6e4182faf3ddad0eb33fdc06
537
py
Python
06.BinarySearch/min/B2805-M.py
SP2021-2/Algorithm
2e629eb5234212fad8bbc11491aad068e5783780
[ "MIT" ]
1
2021-11-21T06:03:06.000Z
2021-11-21T06:03:06.000Z
06.BinarySearch/min/B2805-M.py
SP2021-2/Algorithm
2e629eb5234212fad8bbc11491aad068e5783780
[ "MIT" ]
2
2021-10-13T07:21:09.000Z
2021-11-14T13:53:08.000Z
06.BinarySearch/min/B2805-M.py
SP2021-2/Algorithm
2e629eb5234212fad8bbc11491aad068e5783780
[ "MIT" ]
null
null
null
import sys num , need = map(int, input().split()) arr = list(map(int, input().split())) #sys.stdin.readline().strip() high = max(arr) low = 1 def cutTree(mid): sum = 0 for i in arr: if(mid < i): sum += i - mid return sum check = 0 while low <= high: #print("high, low : " , high ,",",low) mid = (high + low)//2 #print("mid : " , mid) sum = cutTree(mid) #print("sum : ",sum) if sum >= need: low = mid + 1 elif sum < need: high = mid - 1 print(high)
17.322581
42
0.493482
17acd44b2823516e5d98e96db26b6112f10205bc
965
py
Python
plugins/tff_backend/migrations/_007_referral_in_user_data.py
threefoldfoundation/app_backend
b3cea2a3ff9e10efcc90d3d6e5e8e46b9e84312a
[ "Apache-2.0" ]
null
null
null
plugins/tff_backend/migrations/_007_referral_in_user_data.py
threefoldfoundation/app_backend
b3cea2a3ff9e10efcc90d3d6e5e8e46b9e84312a
[ "Apache-2.0" ]
178
2017-08-02T12:58:06.000Z
2017-12-20T15:01:12.000Z
plugins/tff_backend/migrations/_007_referral_in_user_data.py
threefoldfoundation/app_backend
b3cea2a3ff9e10efcc90d3d6e5e8e46b9e84312a
[ "Apache-2.0" ]
2
2018-01-10T10:43:12.000Z
2018-03-18T10:42:23.000Z
# -*- coding: utf-8 -*- # Copyright 2017 GIG Technology NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.3@@ from framework.bizz.job import run_job from plugins.tff_backend.bizz.user import store_referral_in_user_data from plugins.tff_backend.models.user import TffProfile def migrate(dry_run=False): run_job(_profiles_with_referrer, [], store_referral_in_user_data, []) def _profiles_with_referrer(): return TffProfile.query()
33.275862
74
0.767876
102ee09bcc7103b2bffb1124afb43dd99b75ca8a
5,224
py
Python
MyNaiveBayes.py
hakimkt/SAIVS
c310bd7c9426f0d21efeea8866cf6b881b7e8530
[ "Apache-2.0" ]
40
2018-10-29T02:29:13.000Z
2021-11-23T13:14:50.000Z
MyNaiveBayes.py
5l1v3r1/SAIVS
aa62451665b6398ba329d68592bf4313be60a886
[ "Apache-2.0" ]
1
2021-02-23T12:27:28.000Z
2021-02-23T12:27:28.000Z
MyNaiveBayes.py
5l1v3r1/SAIVS
aa62451665b6398ba329d68592bf4313be60a886
[ "Apache-2.0" ]
29
2018-10-29T02:29:17.000Z
2022-03-17T06:31:35.000Z
#!/usr/bin/python #coding:utf-8 import os import sys import math import pickle # NaiveBayesで種々の分類を実行 class Classify(): def __init__(self): # 訓練済みデータを格納するpklファイルパスを定義 self.bin_nb_okng_body_path = os.path.join('.\\data', 'nb_okng_classify_body.pkl') self.bin_nb_page_type_body_path = os.path.join('.\\data', 'nb_page_type_classify_body.pkl') # ストップワード辞書のファイルパスを定義 self.txt_stop_words_list_path = os.path.join('.\\data', 'stop_words.txt') # レスポンスデータから遷移の成否を分類 def classify_flow_okng(self, str_response): # 訓練済みデータ(pkl)の読み込み if os.path.exists(self.bin_nb_okng_body_path): with open(self.bin_nb_okng_body_path, 'rb') as file_read: obj_naive_bayes = pickle.load(file_read) # 訓練済みのデータ(pkl)がない場合は処理を修了 else: print "PKL File NOT FOUND." return '' # 分類対象のレスポンスデータを指定し分類を実行 str_category, int_score = obj_naive_bayes.classify(str_response) return str_category, int_score # レスポンスデータからページの種類を分類 def classify_page_type(self, lst_page_type): # 訓練済みデータ(pkl)の読み込み obj_naive_bayes = None if os.path.exists(self.bin_nb_page_type_body_path): with open(self.bin_nb_page_type_body_path, 'rb') as file_read: obj_naive_bayes = pickle.load(file_read) # 訓練済みのデータ(pkl)がない場合は処理を修了 else: print "not found pkl(nb_page_type_classify_body.pkl)." return '' # 分類対象のtitleタグの値を指定し分類を実行 str_category, int_score = obj_naive_bayes.classify(lst_page_type) return str_category # ストップワードを削除 def remove_stop_words(self, lst_orig_text): # ストップワード辞書の読み込み if os.path.exists(self.txt_stop_words_list_path): with open(self.txt_stop_words_list_path, 'r') as file_read: str_read_text = file_read.read() lst_stop_words = str_read_text.split('\n') file_read.close() lst_edited_text = [] int_idx = 0 while int_idx < len(lst_orig_text): int_idx2 = 0 bol_match_flag = False while int_idx2 < len(lst_stop_words): if lst_orig_text[int_idx] == lst_stop_words[int_idx2]: bol_match_flag = True int_idx2 += 1 # オリジナルwordがストップワードに含まれていない場合 if bol_match_flag is False: lst_edited_text.append(lst_orig_text[int_idx]) int_idx += 1 return lst_edited_text # ストップワード辞書がない場合は処理を修了 else: print "not found stop_words.txt." return lst_orig_text class NaiveBayes: def __init__(self): self.vocabularies = set() self.word_count = {} self.category_count = {} # カテゴリ単位でカウント(Bag-of-Wordsの作成) def word_count_up(self, word, category): self.word_count.setdefault(category, {}) self.word_count[category].setdefault(word, 0) self.word_count[category][word] += 1 self.vocabularies.add(word) # カテゴリ数のカウント def category_count_up(self, category): self.category_count.setdefault(category, 0) self.category_count[category] += 1 # 画面名とカテゴリを基に学習 def train(self, doc, category): #カテゴリ単位でカウントする self.word_count_up(doc, category) #カテゴリ数をカウントする self.category_count_up(category) # ベイズ定理における事前確率の計算 def prior_prob(self, category): num_of_categories = sum(self.category_count.values()) num_of_docs_of_the_category = self.category_count[category] return float(num_of_docs_of_the_category) / float(num_of_categories) def num_of_appearance(self, word, category): if word in self.word_count[category]: return self.word_count[category][word] return 0 # ベイズ定理の計算 def word_prob(self, word, category): # ラプラス・スムージング numerator = self.num_of_appearance(word, category) + 1 denominator = sum(self.word_count[category].values()) + len(self.vocabularies) prob = float(numerator) / float(denominator) return prob # 分類対象の文字列が各カテゴリに含まれる確率を計算 def score(self, tpl_classify_text, category): score = math.log(self.prior_prob(category)) for word in tpl_classify_text: score += math.log(self.word_prob(word, category)) return score # 分類の実行 def classify(self, lst_classify_text): best_guessed_category = None max_prob_before = -sys.maxsize # カテゴリ単位で類似度のスコアを算出 for category in self.category_count.keys(): # 予測したい文章 prob = self.score(tuple(lst_classify_text), category) # 予測したい文章を、スコアの最も大きいカテゴリに分類する if prob > max_prob_before: max_prob_before = prob best_guessed_category = category # 分類したカテゴリとスコアを返却 return best_guessed_category, max_prob_before
33.487179
100
0.605475
1088f0cf4fe8f58837847c8d44ed70a295f79b15
2,480
py
Python
src/deal_files.py
Times125/Emotion-Analyse
b5d9f23fdf6c75f57f5cf20d58834a095b0c7e1e
[ "Apache-2.0" ]
11
2018-01-16T06:39:00.000Z
2021-11-28T11:46:41.000Z
src/deal_files.py
Times125/Emotion-Analyse
b5d9f23fdf6c75f57f5cf20d58834a095b0c7e1e
[ "Apache-2.0" ]
null
null
null
src/deal_files.py
Times125/Emotion-Analyse
b5d9f23fdf6c75f57f5cf20d58834a095b0c7e1e
[ "Apache-2.0" ]
2
2019-08-16T14:53:37.000Z
2019-08-17T02:01:22.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @Author:lch02 @Time: 2017/12/25 14:46 @Description: 处理xlxsw中的文本,将其中的数据(160w条)导出 """ import os import re import pickle from nltk import regexp_tokenize from nltk.corpus import stopwords from config import test_path from openpyxl import load_workbook from multiprocessing import Pool __author__ = 'lch02' """ 将Excle中的数据导出 """ def export_data(): pool = Pool() files = ['Sentiment0.xlsx', 'Sentiment4.xlsx'] for i in range(2): pool.apply_async(deal_doc, args=(i, files[i])) pool.close() pool.join() print 'import' def deal_doc(cat, fn): file_name = os.path.join(test_path, fn) wb = load_workbook(file_name, read_only=True) ws = wb.active neg = [] pos = [] if cat == 0: for row in ws.iter_rows('A:B'): label = row[0].value content = row[1].value if content is not None: content = text_parse(content) if len(content) == 0: continue elif label == 0 and len(content) != 0: neg.append(content) neg_file = os.path.join(test_path, 'neg_review.pkl') # 消极语料 with open(neg_file, 'wb') as f: pickle.dump(neg, f) else: for row in ws.iter_rows('A:B'): label = row[0].value content = row[1].value if content is not None: content = text_parse(content) if len(content) == 0: continue elif label == 4 and len(content) != 0: pos.append(content) pos_file = os.path.join(test_path, 'pos_review.pkl') # 积极语料 with open(pos_file, 'wb') as f: pickle.dump(pos, f) """ 文本处理:取词、去停用词等 """ def text_parse(input_text, language='en'): sentence = input_text.strip().lower() sentence = re.sub(r'@\s*[\w]+ | ?#[\w]+ | ?&[\w]+; | ?[^\x00-\xFF]+', '', sentence) special_tag = set( ['.', ',', '#', '!', '(', ')', '*', '`', ':', '"', '‘', '’', '“', '”', '@', ':', '^', '/', ']', '[', ';', '=', '_']) pattern = r""" (?x)(?:[a-z]\.)+ | \d+(?:\.\d+)?%?\w+ | \w+(?:[-']\w+)*""" word_list = regexp_tokenize(sentence, pattern) if language == 'en': filter_word = [w for w in word_list if w not in stopwords.words('english') and w not in special_tag] # 去停用词和特殊标点符号 return filter_word
29.879518
124
0.515726
10abffd57deb1a4efdc92c688f38e868db500bfb
1,335
py
Python
src/lcdoc/mkdocs/lp/plugs/drawio/__init__.py
axiros/docutools
f99874a64afba8f5bc740049d843151ccd9ceaf7
[ "BSD-2-Clause" ]
24
2021-10-04T22:11:59.000Z
2022-02-02T21:51:43.000Z
src/lcdoc/mkdocs/lp/plugs/drawio/__init__.py
axiros/docutools
f99874a64afba8f5bc740049d843151ccd9ceaf7
[ "BSD-2-Clause" ]
2
2021-10-04T21:51:30.000Z
2021-10-05T14:15:31.000Z
src/lcdoc/mkdocs/lp/plugs/drawio/__init__.py
axiros/docutools
f99874a64afba8f5bc740049d843151ccd9ceaf7
[ "BSD-2-Clause" ]
null
null
null
""" ### `drawio` Automatically includes an svg, based on .drawio file changes. """ import json import subprocess as sp from lcdoc import lp from lcdoc.tools import file_hash, app, dirname, exists, os, read_file, write_file, os multi_line_to_list = True req_kw = ['fn', 'src'] def run(cmd, kw): """ """ D = lp.page_dir(kw) src = kw['abs_src'] if not exists(src): return 'Not found: %s' % src fn = kw['fn'] if not fn or fn[0] == '/': return lp.err('Require relative fn', have=fn) ffn = D + fn os.makedirs(dirname(ffn), exist_ok=True) fn_src_info = ffn + '.src' if exists(fn_src_info): oldmtime, oldhsh = json.loads(read_file(fn_src_info)) else: oldmtime, oldhsh = 0, 0 mtime = os.stat(src).st_mtime have, hsh = False, None if mtime == oldmtime: have = True else: hsh = file_hash(src) if hsh == oldhsh: have = True if not have: create_new_svg(src, ffn, kw) write_file(fn_src_info, json.dumps([mtime, hsh or file_hash(src)])) return {'res': '![](%s)' % fn, 'formatted': True} def create_new_svg(fn_src, fn_svg, kw): app.info('Exporting drawio', src=fn_src, svg=fn_svg) d = os.environ.get('drawio', 'drawio') sp.call([d, '--output', fn_svg, '--export', fn_src])
25.188679
86
0.595506
875dde80a08590b75ccd856d48fdea2d4ae6724f
2,784
py
Python
02_context.py
melandresen/Ich-Daten
87362aa8060865d2d33443054297214bd80526fe
[ "Apache-2.0" ]
null
null
null
02_context.py
melandresen/Ich-Daten
87362aa8060865d2d33443054297214bd80526fe
[ "Apache-2.0" ]
null
null
null
02_context.py
melandresen/Ich-Daten
87362aa8060865d2d33443054297214bd80526fe
[ "Apache-2.0" ]
null
null
null
import os import pandas as pd import re def update_indices(span_start, span_end, string): match = re.search("[Ii]ch", string) start_corr = span_start + match.start(0) end_corr = span_end - len(string) + match.end(0) return start_corr, end_corr def extended_search(text, start_index, end_index, tolerance_window): while tolerance_window < 30: span_start = start_index - tolerance_window span_end = end_index + tolerance_window span = text[span_start : span_end] if re.search("Ich| ich|^ich", span): status = "rough_match_{}".format(tolerance_window) start_index_corr, end_index_corr = update_indices(span_start, span_end, span) target = text[start_index_corr:end_index_corr] context_before = text[start_index_corr - context_size : start_index_corr] match = target context_after = text[end_index_corr : end_index_corr + context_size] return status, context_before, match, context_after tolerance_window += 5 else: return "no_match", "None", "None", "None" def get_context(directory, data_table, context_size): """nach den dazugehörigen Textstellen im Korpus suchen und zur Tabelle hinzufügen""" context_data = pd.DataFrame(columns=["status", "context_before", "match", "context_after"]) for start_index, end_index, file_name, index in zip( data_table["StartChar"], data_table["EndChar"], data_table["Text_korr"], data_table.index ): if os.path.isfile(directory + file_name): with open(directory + file_name, "r") as in_file: text = in_file.read() text = re.sub("[\t\n]", " ", text) target = text[start_index:end_index] if re.fullmatch("[Ii]ch", target): context_data.loc[index] = [ "fullmatch", text[start_index - context_size : start_index], target, text[end_index : end_index + context_size], ] else: status, context_before, match, context_after = extended_search( text, start_index, end_index, 5 ) context_data.loc[index] = [status, context_before, match, context_after] else: # PDFs werden zur Zeit übergangen context_data.loc[index] = ["PDF", "PDF", "PDF", "PDF"] result = pd.concat([data_table, context_data], axis=1) return result corpus_directory = "data/corpus/" context_size = 150 data_table = pd.read_csv("results/01_mapping.txt", sep="\t", index_col=0) data_table = get_context(corpus_directory, data_table, context_size) data_table.to_csv("results/02_context.txt", sep="\t")
33.95122
97
0.62967
5e6cef070a741281952542c67242e44998f24d2d
726
py
Python
order/migrations/0010_auto_20201203_1426.py
hhdMrLion/Product-System
e870225ab10c32688a87426d5943d922c47c4404
[ "MIT" ]
1
2021-06-18T03:03:42.000Z
2021-06-18T03:03:42.000Z
order/migrations/0010_auto_20201203_1426.py
hhdMrLion/Product-System
e870225ab10c32688a87426d5943d922c47c4404
[ "MIT" ]
null
null
null
order/migrations/0010_auto_20201203_1426.py
hhdMrLion/Product-System
e870225ab10c32688a87426d5943d922c47c4404
[ "MIT" ]
null
null
null
# Generated by Django 2.2.16 on 2020-12-03 06:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('order', '0009_auto_20201203_1410'), ] operations = [ migrations.AlterField( model_name='order', name='order_status', field=models.SmallIntegerField(choices=[(3, '生产中'), (2, '待生产'), (4, '待发货'), (1, '备料中')], default=2, verbose_name='订单状态'), ), migrations.AlterField( model_name='order', name='sn', field=models.CharField(default=1, max_length=32, unique=True, verbose_name='订单编号'), preserve_default=False, ), ]
29.04
134
0.559229
21b0b6ef09081080c08a08dca17dbd50bf6f03dd
72
py
Python
Dinsel/ex3/ex3.py
appfs/appfs
8cbbfa0e40e4d4a75a498ce8dd894bb2fbc3a9e3
[ "MIT" ]
11
2017-04-21T11:39:55.000Z
2022-02-11T20:25:18.000Z
Dinsel/ex3/ex3.py
appfs/appfs
8cbbfa0e40e4d4a75a498ce8dd894bb2fbc3a9e3
[ "MIT" ]
69
2017-04-26T09:30:38.000Z
2017-08-01T11:31:21.000Z
Dinsel/ex3/ex3.py
appfs/appfs
8cbbfa0e40e4d4a75a498ce8dd894bb2fbc3a9e3
[ "MIT" ]
53
2017-04-20T16:16:11.000Z
2017-07-19T12:53:01.000Z
#!/usr/bin/env python with open(__file__) as fname: print(fname.read())
24
49
0.722222
9cae12c7b07e7617324c5978fde17b09cc1eb0e4
2,178
py
Python
research/cv/sknet/src/util.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
1
2021-11-18T08:17:44.000Z
2021-11-18T08:17:44.000Z
research/cv/sknet/src/util.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
null
null
null
research/cv/sknet/src/util.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
2
2019-09-01T06:17:04.000Z
2019-10-04T08:39:45.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ network operations """ import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.common import dtype as mstype class GroupConv(nn.Cell): """ group convolution operation. Args: in_channels (int): Input channels of feature map. out_channels (int): Output channels of feature map. kernel_size (int): Size of convolution kernel. stride (int): Stride size for the group convolution layer. Returns: tensor, output tensor. """ def __init__(self, in_channels, out_channels, kernel_size, stride, pad_mode="pad", pad=0, groups=1, has_bias=False): super(GroupConv, self).__init__() assert in_channels % groups == 0 and out_channels % groups == 0 self.groups = groups self.convs = nn.CellList() self.op_split = P.Split(axis=1, output_num=self.groups) self.op_concat = P.Concat(axis=1) self.cast = P.Cast() for _ in range(groups): self.convs.append(nn.Conv2d(in_channels//groups, out_channels//groups, kernel_size=kernel_size, stride=stride, has_bias=has_bias, padding=pad, pad_mode=pad_mode, group=1)) def construct(self, x): features = self.op_split(x) outputs = () for i in range(self.groups): outputs = outputs + (self.convs[i](self.cast(features[i], mstype.float32)),) out = self.op_concat(outputs) return out
39.6
120
0.636823
b48f72baf888034c5ea9cf3c4ad814f4ef5eb7e7
6,705
py
Python
shinrl/solvers/base/solver.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
34
2021-12-09T07:12:57.000Z
2022-03-11T08:17:20.000Z
shinrl/solvers/base/solver.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
null
null
null
shinrl/solvers/base/solver.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
4
2021-12-11T07:48:01.000Z
2022-03-01T23:50:33.000Z
""" Author: Toshinori Kitamura Affiliation: NAIST & OSX """ from __future__ import annotations import inspect import random from abc import ABC, abstractmethod, abstractstaticmethod from itertools import count from typing import Dict, Iterator, List, Optional, Type import gym import jax import numpy as np import structlog from chex import PRNGKey from tqdm import tqdm from shinrl import ShinEnv from .config import SolverConfig from .history import History class BaseSolver(ABC, History): """ Base class to implement solvers. The results are treated by the inherited History class. # MixIn: Our Solver interface adopts "mixin" mechanism to realize the flexible behavior. The `make_mixin` method should return mixins that have necessary methods such as `evaluate` and `step` functions. See [shinrl/solvers/vi/discrete/solver.py] for an example implementation. """ _id: Iterator[int] = count(0) DefaultConfig = SolverConfig # ########## YOU NEED TO IMPLEMENT HERE ########## @abstractstaticmethod def make_mixins(env: gym.Env, config: SolverConfig) -> List[Type[object]]: """Make a list of mixins from env and config""" pass @abstractmethod def evaluate(self) -> Dict[str, float]: """Evaluate the solver and return the dict of results. Called every self.config.eval_interval steps.""" pass @abstractmethod def step(self) -> Dict[str, float]: """Execute the solver by one step and return the dict of results.""" pass # ################################################ @staticmethod def factory( env: gym.Env, config: SolverConfig, mixins: List[Type[object]], ) -> BaseSolver: """Instantiate a solver with mixins and initialize it.""" class MixedSolver(*mixins): pass solver = MixedSolver() solver.mixins = mixins methods = inspect.getmembers(solver, predicate=inspect.ismethod) solver.methods_str = [method[1].__qualname__ for method in methods] solver.initialize(env, config) return solver def __init__(self) -> None: self.env_id: int = -1 self.solver_id: str = f"{type(self).__name__}-{next(self._id)}" self.logger = structlog.get_logger(solver_id=self.solver_id, env_id=None) self.is_initialized: bool = False self.env = None self.key: PRNGKey = None self.mixins: List[Type] = [] self.methods_str: List[str] = [] def initialize( self, env: gym.Env, config: Optional[SolverConfig] = None, ) -> None: """Set the env and initialize the history. Args: env (gym.Env): Environment to solve.. config (SolverConfig, optional): Configuration of an algorithm. """ self.init_history() self.set_config(config) self.set_env(env) self.seed(self.config.seed) self.is_initialized = True if self.config.verbose: self.logger.info( "Solver is initialized.", mixins=self.mixins, methods=self.methods_str ) def seed(self, seed: int = 0) -> None: self.key = jax.random.PRNGKey(seed) self.env.seed(seed) random.seed(seed) np.random.seed(seed) @property def is_shin_env(self) -> bool: if isinstance(self.env, gym.Wrapper): return isinstance(self.env.unwrapped, ShinEnv) else: return isinstance(self.env, ShinEnv) def set_env(self, env: gym.Env, reset: bool = True) -> None: """Set the environment to self.env. Args: env (gym.Env): Environment to solve. reset (bool): Reset the env if True """ if isinstance(env.action_space, gym.spaces.Box): is_high_normalized = (env.action_space.high == 1.0).all() is_low_normalized = (env.action_space.low == -1.0).all() assert_msg = """ Algorithms in ShinRL assume that the env.actions_space is in range [-1, 1]. Please wrap the env by shinrl.NormalizeActionWrapper. """ assert is_high_normalized and is_low_normalized, assert_msg self.env = env # Check discount factor if self.is_shin_env: if self.config.discount != env.config.discount: self.logger.warning( f"env.config.discount != solver.config.discount ({env.config.discount} != {self.config.discount}). \ This may cause an unexpected behavior." ) self.dS, self.dA, self.horizon = env.dS, env.dA, env.config.horizon # Reset env if necessary if reset: if isinstance(self.env, gym.wrappers.Monitor): # With Monitor, reset() cannot be called unless the episode is over. if self.env.stats_recorder.steps is None: self.env.obs = self.env.reset() else: done = False while not done: _, _, done, _ = self.env.step(self.env.action_space.sample()) self.env.obs = self.env.reset() else: self.env.obs = self.env.reset() else: assert hasattr( env, "obs" ), 'env must have attribute "obs". Do env.obs = obs before calling "set_env".' self.env_id += 1 self.logger = structlog.get_logger(solver_id=self.solver_id, env_id=self.env_id) if self.config.verbose: self.logger.info("set_env is called.") def run(self) -> None: """ Run the solver with the step function. Call self.evaluate() every [eval_interval] steps. """ assert self.is_initialized, '"self.initialize" is not called.' num_steps = self.config.steps_per_epoch for _ in tqdm(range(num_steps), desc=f"Epoch {self.n_epoch}"): # Do evaluation if self.n_step % self.config.eval_interval == 0: eval_res = self.evaluate() for key, val in eval_res.items(): self.add_scalar(key, val) # Do one-step update step_res = self.step() for key, val in step_res.items(): self.add_scalar(key, val) self.n_step += 1 self.n_epoch += 1 if self.config.verbose: self.logger.info( f"Epoch {self.n_epoch} has ended.", epoch_summary=self.recent_summary(num_steps), data=list(self.data.keys()), )
34.209184
120
0.587323
2590d3bc780b4146ff7f23d380a633901e96a1ff
142
py
Python
MiniProjects/Python-Challenges/Password_Gen.py
GitInitDev/ZohoUniv
966704837e65f58b52492b56d08e7958df3d220a
[ "Unlicense" ]
null
null
null
MiniProjects/Python-Challenges/Password_Gen.py
GitInitDev/ZohoUniv
966704837e65f58b52492b56d08e7958df3d220a
[ "Unlicense" ]
null
null
null
MiniProjects/Python-Challenges/Password_Gen.py
GitInitDev/ZohoUniv
966704837e65f58b52492b56d08e7958df3d220a
[ "Unlicense" ]
null
null
null
import random char = 'qwertyuiopasdfghjklzxcvbnm!@#$%^&*(()' stren = 10 password = "".join(random.sample(char , stren)) print (password)
23.666667
48
0.669014
25b53a178f0eaa0c9af5577e4a3ff3f2ba9ddd5f
1,251
py
Python
Test.py
ShuboshaKuro/SimpleGameEngine
01da061fe931ec0ade898b82baa93c591eacbb43
[ "MIT" ]
null
null
null
Test.py
ShuboshaKuro/SimpleGameEngine
01da061fe931ec0ade898b82baa93c591eacbb43
[ "MIT" ]
null
null
null
Test.py
ShuboshaKuro/SimpleGameEngine
01da061fe931ec0ade898b82baa93c591eacbb43
[ "MIT" ]
null
null
null
import numpy as np import os from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # has to change whenever noise_width and noise_height change in the PerlinNoise.hpp file DIMENSION1 = 200 DIMENSION2 = 200 # works if the working directory is set path = os.path.dirname(os.path.realpath(__file__)) FILENAME = path + "\input0.txt" if __name__ == '__main__': string = open(FILENAME, '+r') noise = np.fromstring(string.read(), sep=" ", dtype=float).reshape(DIMENSION2, DIMENSION1) # Build a grid by the 2 dimensions Xr = np.arange(DIMENSION1) Yr = np.arange(DIMENSION2) X, Y = np.meshgrid(Xr, Yr) # Build a figure with 2 subplots, the first is 3D fig = plt.figure() fig.suptitle("3D and 2D heighmap") colormap = 'coolwarm' ax = fig.add_subplot(2, 1, 1, projection='3d') surf = ax.plot_surface(X, Y, noise, rstride=1, cstride=1, cmap=colormap, linewidth=0, antialiased=False) ax2 = fig.add_subplot(2, 1, 2) im = ax2.imshow(noise, cmap=colormap, interpolation='nearest') # swap the Y axis so it aligns with the 3D plot ax2.invert_yaxis() # add an explanatory colour bar plt.colorbar(im, orientation='horizontal') # Show the image plt.show()
27.8
108
0.689848
d353a668d33712371061f7bfd82f3ba63ccb884e
1,877
py
Python
leetcode/serialize-and-deserialize-binary-tree/solution.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
11
2019-02-08T06:54:34.000Z
2021-08-07T18:57:39.000Z
leetcode/serialize-and-deserialize-binary-tree/solution.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
1
2019-05-21T08:14:10.000Z
2019-05-21T08:14:10.000Z
leetcode/serialize-and-deserialize-binary-tree/solution.py
mmcloughlin/problems
6095842ffe007a12ec8c2093850515aa4e046616
[ "MIT" ]
null
null
null
import struct class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Codec: def serialize(self, root): """Encodes a tree to a single string. :type root: TreeNode :rtype: str """ if root is None: return struct.pack('i', 0) l = self.serialize(root.left) r = self.serialize(root.right) return struct.pack('i', len(l)) + struct.pack('i', root.val) + l + r def deserialize(self, data): """Decodes your encoded data to tree. :type data: str :rtype: TreeNode """ len_l = struct.unpack('i', data[:4])[0] if len_l == 0: return None data = data[4:] # val val = struct.unpack('i', data[:4])[0] data = data[4:] # left l = self.deserialize(data[:len_l]) data = data[len_l:] # right r = self.deserialize(data) # build the node node = TreeNode(val) node.left = l node.right = r return node # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.deserialize(codec.serialize(root)) def node(x, l=None, r=None): n = TreeNode(x) n.left = l n.right = r return n def trees_equal(a, b): if a is None and b is None: return True if a is None or b is None: return False return ( a.val == b.val and trees_equal(a.left, b.left) and trees_equal(a.right, b.right) ) def test(): root = node( 1, node(2), node( 3, node(4), node(5), ), ) codec = Codec() got = codec.deserialize(codec.serialize(root)) assert trees_equal(root, got) if __name__ == '__main__': test()
20.626374
76
0.514651
d36fbff74f07f79524ba41fa627d903538351ac5
475
py
Python
deprecated/RasaNLU/src/rasaTrain.py
th-koeln-intia/ip-sprachassistent-team2
b8f8a20011bc766b1937566ee5a8786ee32bb3c5
[ "MIT" ]
1
2020-12-09T23:14:19.000Z
2020-12-09T23:14:19.000Z
deprecated/RasaNLU/src/rasaTrain.py
th-koeln-intia/ip-sprachassistent-team2
b8f8a20011bc766b1937566ee5a8786ee32bb3c5
[ "MIT" ]
1
2020-09-30T08:58:14.000Z
2020-10-14T13:55:14.000Z
deprecated/RasaNLU/src/rasaTrain.py
th-koeln-intia/ip-sprachassistent-team2
b8f8a20011bc766b1937566ee5a8786ee32bb3c5
[ "MIT" ]
1
2020-09-17T17:04:11.000Z
2020-09-17T17:04:11.000Z
from rasa_nlu.training_data import load_data from rasa_nlu import config from rasa_nlu.model import Trainer def train(model_dir="./models", project="default", data_dir="./intents"): training_data = load_data(data_dir) trainer = Trainer(config.load("nlu_config.yml")) trainer.train(training_data) model_directory = trainer.persist(model_dir, fixed_model_name=project) print(model_directory) if __name__ == '__main__': train(project="Info-Projekt")
29.6875
74
0.757895
1a3ece3b49e6e7901d088b748a11e4b43a2e9bce
138
py
Python
Sketche/title.py
kantel/p5
2ef14191c35fdb056b44624c6ff0ff764c88cc30
[ "MIT" ]
null
null
null
Sketche/title.py
kantel/p5
2ef14191c35fdb056b44624c6ff0ff764c88cc30
[ "MIT" ]
null
null
null
Sketche/title.py
kantel/p5
2ef14191c35fdb056b44624c6ff0ff764c88cc30
[ "MIT" ]
null
null
null
from p5 import * def setup(): title("🐍 Jörgs Python Sketch 🐍".encode("utf-8")) def draw(): background(245, 245, 245) run()
13.8
52
0.586957
46cb478c44288acd22123b079969ab88e333de41
146
py
Python
saku/auction/apps.py
Mehdi-MosTafavi/Saku-Backend
348a1a676ffc8ddd9077f8c94733c5f6dce98fbd
[ "MIT" ]
null
null
null
saku/auction/apps.py
Mehdi-MosTafavi/Saku-Backend
348a1a676ffc8ddd9077f8c94733c5f6dce98fbd
[ "MIT" ]
null
null
null
saku/auction/apps.py
Mehdi-MosTafavi/Saku-Backend
348a1a676ffc8ddd9077f8c94733c5f6dce98fbd
[ "MIT" ]
null
null
null
from django.apps import AppConfig class AuctionConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'auction'
20.857143
56
0.760274
20166dff6b10b36f23bf6275623fcc30a520ef4e
244
py
Python
Python-programming-3/ascii.py
sanxy/hacktoberfest-1
913582b310688d496602e8b1bc9166cb64866e38
[ "MIT" ]
null
null
null
Python-programming-3/ascii.py
sanxy/hacktoberfest-1
913582b310688d496602e8b1bc9166cb64866e38
[ "MIT" ]
1
2020-10-24T18:08:27.000Z
2020-10-24T18:10:52.000Z
Python-programming-3/ascii.py
sanxy/hacktoberfest-1
913582b310688d496602e8b1bc9166cb64866e38
[ "MIT" ]
4
2020-10-24T14:01:29.000Z
2020-10-25T09:21:07.000Z
# Python program to print # ASCII Value of Character # In c we can assign different # characters of which we want ASCII value c = 'g' # print the ASCII value of assigned character in c print("The ASCII value of '" + c + "' is", ord(c))
24.4
51
0.680328
6444e8f4d74e1d3a00ed257386acab8f6f38462e
897
py
Python
HackerEarth_problems/13 Reasons Why/solution1.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
2
2020-10-17T12:50:42.000Z
2020-10-17T12:50:49.000Z
HackerEarth_problems/13 Reasons Why/solution1.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
null
null
null
HackerEarth_problems/13 Reasons Why/solution1.py
gbrls/CompetitiveCode
b6f1b817a655635c3c843d40bd05793406fea9c6
[ "MIT" ]
1
2020-12-29T16:46:18.000Z
2020-12-29T16:46:18.000Z
''' Problem: 13 Reasons Why Given 3 integers A, B, C. Do the following steps- Swap A and B. Multiply A by C. Add C to B. Output new values of A and B. ''' # When ran, you will see a blank line, as that is needed for the submission. # If you are debugging and want it to be easier, change it too # input = input("Numbers: ") # Collects the input input = input() # Puts the input in the list, it's cutting them due to the space between the numbers. inputList = input.split(" ") # Since A and B are being swapped, A is given inputList[1], which was B's input. Vice Versa for B. # C is just given the third input, which was C. A = int(inputList[1]) B = int(inputList[0]) C = int(inputList[2]) # Multiplies A * C. A = A * C # Adds C + B. B = C + B # Converts them to strings since the submission needs to be one line. A = str(A) B = str(B) # Prints the answer. print(A + " " + B)
24.916667
98
0.662207
3764765a408de9f3ab9a2e62174d54e08bd084e9
527
py
Python
server/apps/movie/adminx.py
Mayandev/django_morec
8d115f76ad69d7aa78b07dc06aa7047979ad134b
[ "MIT" ]
129
2019-04-20T08:23:25.000Z
2022-03-14T10:02:23.000Z
server/apps/movie/adminx.py
heartplus/django_morec
8d115f76ad69d7aa78b07dc06aa7047979ad134b
[ "MIT" ]
9
2019-05-19T15:06:17.000Z
2021-12-14T06:47:14.000Z
server/apps/movie/adminx.py
heartplus/django_morec
8d115f76ad69d7aa78b07dc06aa7047979ad134b
[ "MIT" ]
34
2019-05-06T06:37:17.000Z
2021-12-09T02:27:58.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019-04-19 20:45 # @Author : Mayandev # @Site : https://github.com/Mayandev/ # @File : adminx.py # @Software: PyCharm import xadmin from .models import Movie, Genre class MovieAdmin(object): list_display = ['id', 'closest_movie', 'doubanId'] model_icon = 'fa fa-ticket' class GenreAdmin(object): list_display = ['id', 'genre'] model_icon = 'fa fa-ticket' xadmin.site.register(Movie, MovieAdmin) xadmin.site.register(Genre, GenreAdmin)
18.821429
54
0.660342
03bda1d222a249c9fd6e62c3dc9d059b6da67f6a
446
py
Python
exercises/pt/solution_01_03_02.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/pt/solution_01_03_02.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/pt/solution_01_03_02.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
# Importar a classe da língua inglesa (English) e criar um objeto nlp from spacy.lang.en import English nlp = English() # Processar o texto doc = nlp("I like tree kangaroos and narwhals.") # Uma partição do Doc para "tree kangaroos" tree_kangaroos = doc[2:4] print(tree_kangaroos.text) # Uma partição do Doc para "tree kangaroos and narwhals" (sem incluir o ".") tree_kangaroos_and_narwhals = doc[2:6] print(tree_kangaroos_and_narwhals.text)
27.875
76
0.762332
20810687c51cbb1a65e77504b29548d915b2e407
171
py
Python
02_Python/functions.py
DaviNakamuraCardoso/Harvard-CS50-Web-Programming
afec745eede41f7b294c3ee6ebaff9ac042e5e4c
[ "MIT" ]
null
null
null
02_Python/functions.py
DaviNakamuraCardoso/Harvard-CS50-Web-Programming
afec745eede41f7b294c3ee6ebaff9ac042e5e4c
[ "MIT" ]
null
null
null
02_Python/functions.py
DaviNakamuraCardoso/Harvard-CS50-Web-Programming
afec745eede41f7b294c3ee6ebaff9ac042e5e4c
[ "MIT" ]
null
null
null
def main(): for i in range(10): print(f"The square of {i} is {square(i)}") return def square(n): return n**2 if __name__ == '__main__': main()
13.153846
50
0.54386
643e431e28c0c195f6258a3a158f9de4a2b572c0
736
py
Python
tests/test_testing.py
tkamenoko/spangle
068479660a03239aa69c935d7ca0418c491d92da
[ "MIT" ]
2
2019-11-17T06:38:56.000Z
2019-12-01T15:32:03.000Z
tests/test_testing.py
tkamenoko/spangle
068479660a03239aa69c935d7ca0418c491d92da
[ "MIT" ]
null
null
null
tests/test_testing.py
tkamenoko/spangle
068479660a03239aa69c935d7ca0418c491d92da
[ "MIT" ]
null
null
null
import asyncio from asyncio import sleep from spangle.api import Api from spangle.handler_protocols import RequestHandlerProtocol from ward import fixture, raises, test, using @fixture def api(): return Api() @fixture @using(api=api) def timeout(api: Api): @api.route("/timeout") class Timeout: async def on_get(self, req, resp): await sleep(1) return resp return Timeout @test("Client cancells a request after specified seconds") # type: ignore @using(api=api, timeout=timeout) async def _(api: Api, timeout: type[RequestHandlerProtocol]): async with api.client() as client: with raises(asyncio.TimeoutError): await client.get("/timeout", timeout=0.001)
23
74
0.691576
a68edaa4ffdc8b0f4c9c5edcf020b638b5b5c299
1,085
py
Python
Problems/BinarySearch/Hard/SplitArrayLargestSum/split_array_largest_sum.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
Problems/BinarySearch/Hard/SplitArrayLargestSum/split_array_largest_sum.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
Problems/BinarySearch/Hard/SplitArrayLargestSum/split_array_largest_sum.py
dolong2110/Algorithm-By-Problems-Python
31ecc7367aaabdd2b0ac0af7f63ca5796d70c730
[ "MIT" ]
null
null
null
from functools import lru_cache from typing import List # DP - Top-Down def splitArray(self, nums: List[int], m: int) -> int: n = len(nums) ps = [0] for num in nums: ps.append(ps[-1] + num) @lru_cache(None) def dp(i: int, c: int) -> int: if i == n: return 0 if c == 1: return ps[-1] - ps[i] ans = float('inf') for j in range(i, n): l, r = ps[j + 1] - ps[i], dp(j + 1, c - 1) ans = min(ans, max(l, r)) if l > r: break return ans return dp(0, m) # BST def splitArray(self, nums: List[int], m: int) -> int: def helper(c: int, mid: int): cur_sum, cuts = 0, 0 for x in nums: cur_sum += x if cur_sum > mid: cur_sum = x cuts += 1 return cuts + 1 <= c l, r, res = max(nums), sum(nums), -1 while l <= r: mid = (l + r) >> 1 if helper(m, mid): ans, r = mid, mid - 1 else: l = mid + 1 return ans
21.7
54
0.428571
5b300286bbd0afaf046bc7ddfda9a7f00bec8be6
1,799
py
Python
testcode/tok.py
Cl3V0r/MLSeminar
d05f171a9b7d773ea123e1919e07312a7f0c9fe8
[ "MIT" ]
null
null
null
testcode/tok.py
Cl3V0r/MLSeminar
d05f171a9b7d773ea123e1919e07312a7f0c9fe8
[ "MIT" ]
null
null
null
testcode/tok.py
Cl3V0r/MLSeminar
d05f171a9b7d773ea123e1919e07312a7f0c9fe8
[ "MIT" ]
null
null
null
#!usr/bin/env python #coding:utf8 from nltk.tokenize import TweetTokenizer from nltk.stem.cistem import Cistem from nltk.corpus import stopwords import nltk from sklearn.feature_extraction.text import CountVectorizer import matplotlib.pyplot as plt from wordcloud import WordCloud from pathlib import Path from sklearn.cluster import KMeans from sklearn.manifold import TSNE nltk.download('stopwords') tknzr= TweetTokenizer() stemmer = Cistem(True) file_in = open("../data/postillon.txt", "r") file_out = open("../build/preprocessed/postillon_stem.txt", "w") for line in file_in: tokenized = tknzr.tokenize(line) for word in tokenized: if word in stopwords.words('german'): tokenized.remove(word) word = stemmer.stem(word) token_text = " ".join(tokenized) file_out.write(token_text+'\n') file_in.close() file_out.close() data = open("../build/preprocessed/postillon_stem.txt", "r") vectorizer = CountVectorizer(max_features=1000, ngram_range=(1, 3)) X = vectorizer.fit_transform(data).toarray() #print(vectorizer.get_feature_names()) #print(X) contents = Path("../build/preprocessed/postillon_stem.txt").read_text() wordcloud = WordCloud(background_color='white', width=1920, height=1080 ).generate(contents) plt.imshow(wordcloud) plt.axis('off') plt.savefig("../build/plots/postillonWordcloud.pdf") plt.clf() X_embedded = TSNE(n_components=2).fit_transform(X) kmeans = KMeans(n_clusters=12) kmeans.fit(X_embedded) #print(kmeans.labels_) plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=kmeans.labels_, cmap='rainbow') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], color='black') plt.savefig("../build/plots/tSNE_kNN_postillon.pdf")
32.125
81
0.716509
5b91aebc7e18c8a8d4f2c5b8c278295d0821b5e8
4,218
py
Python
SichereEntnahme.py
ThoEngel/rentenplanung
879c9a678ba1ff951a1f92b0c42673a7943a18e6
[ "MIT" ]
3
2022-01-01T18:24:46.000Z
2022-01-08T15:28:46.000Z
SichereEntnahme.py
ThoEngel/Finanzen-Simuliert
879c9a678ba1ff951a1f92b0c42673a7943a18e6
[ "MIT" ]
null
null
null
SichereEntnahme.py
ThoEngel/Finanzen-Simuliert
879c9a678ba1ff951a1f92b0c42673a7943a18e6
[ "MIT" ]
null
null
null
''' Vorsicht vor der 4%-Regel Sicher Entnahmerate https://www.finanzen-erklaert.de/vorsicht-vor-der-4-regel/ ''' import pandas as pd import time from SEsimulation.mDate import mDate from SEsimulation import SEsimulation import plotly.express as px import numpy as np def optimize(s, probability, loBound, hiBound): """ Optimiere auf die max. mögliche Entnahme bei einer vorgegebenen Fehlerquote Returns: widthdrawal: max. mögliche prozentuale Entnahme """ n_ret_months = s.simulation['n_ret_years'] * 12 accuracy = 0.01 # Genauigkeit der Optimierung # Vorbereitung der Optimierung deltaWidthdrawal = (hiBound - loBound) / 2 percWidthdrawal = loBound + deltaWidthdrawal cnt = 0 curProb = 0 # Optimization by successiv approximation while (deltaWidthdrawal > accuracy) or (curProb > probability): cnt += 1 s.withdrawal['fixed_pct'] = percWidthdrawal s.init_simulation() s.simulate() survival = [trial_dict['exhaustion'] for trial_dict in s.latest_simulation] curProb = 100 * (len(survival) - survival.count(n_ret_months)) / len(survival) if s.visualization['textoutput'] == True: print(cnt, '. Entnahme: ', percWidthdrawal, ' Ausfallwahrscheinlichkeit: ', curProb, '%') deltaWidthdrawal /= 2 if deltaWidthdrawal <= accuracy / 10: break if curProb > probability: percWidthdrawal -= deltaWidthdrawal else: percWidthdrawal += deltaWidthdrawal return percWidthdrawal print('Start') starttime = time.time() # Lesen monatliche S&P500 Daten RETURN_FILE = 'real_return_df.pickle' real_return_df = pd.read_pickle(RETURN_FILE) # Konfiguration der Entnahme Simulation config = { 'date': {'start': mDate(1, 2022), # Start Datum 'start_retirement': mDate(1, 2022)}, # Start der Entnahme 'assets': {'depot': 500000, # Depotvolumen zum Startzeitpunkt 'fees': 0.00}, # Jährliche Depotgebühren in % 'simulation': {'returns_df': real_return_df, # S&P500 Daten 'n_ret_years': 30}, # Simulationsdauer in Jahren 'withdrawal': {'fixed_pct': 4.0}, # Proz. Entnahmerate pro Jahr vom Startdepot 'pension': {'point': np.array([0]), # Anzahl erworbener Rentenpunkte 'point_add': np.array([0.0]), # Rentenpunktzuwachs pro Jahr 'start_date': [mDate(1, 3000)], # Beginn der gesetzlichen Rente 'name': {'John Doe'}, # Name des Rentenbeziehers 'point_value': 0.0, # aktueller Rentenpunktwert 'point_value_inc': 0.0}, # Proz. Steigerung des Rentenpunktwertes 'visualization': {'textoutput': True} # Textueller Zwischenausgaben als Debug Info } err_rates = [0.0, 0.1, 0.5, 1.0] # Fehlerraten [%] years = [10, 12, 14, 16, 18, 20, 22, 25, 28, 31, 35, 39, 44, 49, 55, 60] # Dauer der Entnahme in Jahre df = pd.DataFrame(columns=err_rates, index=years) # Optimierungsgrenzen der proz. Entnahme: loBound = 2 # Untere Grenze der Optimierung hiBound = 8 # Obere Grenze der Optimierung column_indexer = 0 for err_rate in err_rates: row_indexer = 0 hiBound = 8 for year in years: # Update Laufzeit config['simulation']['n_ret_years'] = year s = SEsimulation.SEsimulation(config) widthdraw = optimize(s, err_rate, loBound, hiBound) print('\n', year, ' Jahre, Entnahme: ', widthdraw, '% @Risk: ', err_rate, '%\n') df.iloc[row_indexer, column_indexer] = widthdraw row_indexer += 1 hiBound = widthdraw column_indexer += 1 fig = px.line(df) fig.update_layout( title="Sichere jährliche Entnahmerate nach Laufzeit mit Inflationsanpassung", xaxis_title="Laufzeit [Jahre]", yaxis_title="Sichere Entnahme [%]", legend_title="Fehlerquote [%]", font=dict( family="Courier New, monospace", size=18, color="RebeccaPurple" ) ) fig.show() endTime = time.time() print('\nSimulationsdauer: %5.2f sec.' % (endTime - starttime))
31.477612
103
0.631342
5b9bf844c4b3f56ac874807da7d365032010e1ef
295
py
Python
PSA/psaExceptions.py
SECURED-FP7/secured-psa-nsm
20c8f790ebc2d2aa8c33bda1e047f8f29275a0be
[ "Apache-2.0" ]
null
null
null
PSA/psaExceptions.py
SECURED-FP7/secured-psa-nsm
20c8f790ebc2d2aa8c33bda1e047f8f29275a0be
[ "Apache-2.0" ]
null
null
null
PSA/psaExceptions.py
SECURED-FP7/secured-psa-nsm
20c8f790ebc2d2aa8c33bda1e047f8f29275a0be
[ "Apache-2.0" ]
null
null
null
# -*- Mode:Python;indent-tabs-mode:nil; -*- # # File: psaExceptions.py # Created: 05/09/2014 # Author: BSC # # Description: # Custom execption class to manage error in the PSC # class psaExceptions( object ): class confRetrievalFailed( Exception ): pass
19.666667
57
0.620339
f3a5fab66ceedfb341431e9840acd30ba94bdbc7
38
py
Python
python/testlint/testlint/util.py
mpsonntag/snippets
fc3cc42ea49b885c1f29c0aef1379055a931a978
[ "BSD-3-Clause" ]
null
null
null
python/testlint/testlint/util.py
mpsonntag/snippets
fc3cc42ea49b885c1f29c0aef1379055a931a978
[ "BSD-3-Clause" ]
null
null
null
python/testlint/testlint/util.py
mpsonntag/snippets
fc3cc42ea49b885c1f29c0aef1379055a931a978
[ "BSD-3-Clause" ]
null
null
null
def add_yourself(a): return a + a
12.666667
20
0.631579
caf2517dfa6294e5eb94ac336f65b2026a084016
14,489
py
Python
scripts/signal_marker_processing/marker_aggregation.py
CsabaWirnhardt/cbm
1822addd72881057af34ac6a7c2a1f02ea511225
[ "BSD-3-Clause" ]
17
2021-01-18T07:27:01.000Z
2022-03-10T12:26:21.000Z
scripts/signal_marker_processing/marker_aggregation.py
CsabaWirnhardt/cbm
1822addd72881057af34ac6a7c2a1f02ea511225
[ "BSD-3-Clause" ]
4
2021-04-29T11:20:44.000Z
2021-12-06T10:19:17.000Z
scripts/signal_marker_processing/marker_aggregation.py
CsabaWirnhardt/cbm
1822addd72881057af34ac6a7c2a1f02ea511225
[ "BSD-3-Clause" ]
47
2021-01-21T08:25:22.000Z
2022-03-21T14:28:42.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : Daniele Borio # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD # Created on Sun Sep 26 15:34:44 2021 import numpy as np """ Summary: Class for aggregating dictionaries of markers in a single list of consecutive composite markers """ class marker_aggregator : """ Summary: Class responsible for aggregating markers """ def __init__(self, options : dict ) : """ Summary: Object constructor. Arguments: options - dictionary with the options specifying the operations to be performed. Returns: Nothing. """ if "marker-aggregator" not in options : raise Exception("marker-aggregator.__init__() - missing options") else : self.action_list = options["marker-aggregator"] return def aggregate_markers(self, markers : dict) -> list : """ Summary: Function responsible for aggregating markers. Arguments: markers - dictionary of the markers to be aggregated Returns: mark_list - list of aggregated markers """ marker_dict = markers marker_list = [] # There is nothing to aggregate if len(markers) == 0 : return [] # check if there are actions to perform if not any(["action" in item for item in self.action_list]) : # there is nothing do # just use the fist list in the marker dictionary marker_list = list(markers.values())[0] return marker_list for action in self.action_list : if action["action"] == "confirm": marker_dict, marker_list = self.confirm(marker_dict, marker_list, action) elif action["action"] == "aggregate": marker_dict, marker_list = self.aggregate(marker_dict, marker_list, action) elif action["action"] == "merge": marker_dict, marker_list = self.merge(marker_dict, marker_list, action) else : raise Exception("marker-aggregator.aggregate_markers() - unknown action") return marker_list def aggregate(self, marker_dict : dict, marker_list : list, action : dict) : """ Summary: Markers from two time series are aggregated eventually forming aggregated markers. Arguments: marker_dict - dictionary of the markers to be aggregated marker_list - list of previously processed markers Returns: marker_dict - dictionary of the markers to be aggregated marker_list - list of previously processed markers action - dictionary specifing the action to be performed """ if len(action["signals"]) == 1 : marker_list1 = marker_list if action["signals"][0] in marker_dict : marker_list2 = marker_dict[action["signals"][0]] else : marker_list2 = [] elif len(action["signals"]) == 2 : marker_list1 = marker_dict[action["signals"][0]] if action["signals"][0] in marker_dict : marker_list1 = marker_dict[action["signals"][0]] else : marker_list1 = [] if action["signals"][1] in marker_dict : marker_list2 = marker_dict[action["signals"][1]] else : marker_list2 = [] else : raise Exception("marker-aggregator.aggregate() - signals not specified") if len(marker_list2) == 0: if "outname" in action : marker_dict[action["outname"]] = marker_list1 return marker_dict, marker_list else : return marker_dict, marker_list1 if len(marker_list1) == 0: if "outname" in action : marker_dict[action["outname"]] = marker_list2 return marker_dict, marker_list else : return marker_dict, marker_list2 # overlapping if "overlap" in action : overlap_th = action["overlap"] else : overlap_th = 0 m1_ov_markers = [] m2_ov_markers = [] m1_markers = [] m2_markers = [] ov = [] for m1 in marker_list1 : overlapping = [m1.overlap_in_days(x) for x in marker_list2] max_overlap = max(overlapping) if max_overlap > overlap_th : m2 = marker_list2[np.argmax(overlapping)] m1_ov_markers.append(m1) m2_ov_markers.append(m2) ov.append(max_overlap) jj = 1 while jj < len(m2_ov_markers) : m2 = m2_ov_markers[jj] m2_old = m2_ov_markers[jj - 1] if m2 == m2_old : if ov[jj] > ov[jj - 1] : m2_ov_markers.pop(jj - 1) m1_ov_markers.pop(jj - 1) ov.pop(jj - 1) else : m2_ov_markers.pop(jj) m1_ov_markers.pop(jj) ov.pop(jj) else : jj += 1 # Now aggregate the markers overlapping_markers = [] for ii, m1 in enumerate(m1_ov_markers) : overlapping_markers.append(m1.merge_markers(m2_ov_markers[ii])) for m1 in marker_list1 : if m1 not in m1_ov_markers : m1_markers.append(m1) for m2 in marker_list2 : if m2 not in m2_ov_markers : m2_markers.append(m2) output_list = marker_aggregator.merge_event_list(overlapping_markers, m1_markers) output_list = marker_aggregator.merge_event_list(output_list, m2_markers) # Now generate the output if "outname" in action : marker_dict[action["outname"]] = output_list return marker_dict, marker_list else : return marker_dict, output_list def confirm(self, marker_dict : dict, marker_list, action : dict) : """ Summary: Markers in a time series are confirmed by the markers in another time series Arguments: marker_dict - dictionary of the markers to be aggregated marker_list - list of previously processed markers Returns: marker_dict - dictionary of the markers to be aggregated marker_list - list of previously processed markers action - dictiory with the parameters for merging the markers """ if len(action["signals"]) == 1 : marker_list1 = marker_list if action["signals"][0] in marker_dict : marker_list2 = marker_dict[action["signals"][0]] else : marker_list2 = [] elif len(action["signals"]) == 2 : if action["signals"][0] in marker_dict : marker_list1 = marker_dict[action["signals"][0]] else : marker_list1 = [] if action["signals"][1] in marker_dict : marker_list2 = marker_dict[action["signals"][1]] else : marker_list2 = [] else : raise Exception("marker-aggregator.confirm() - signals not specified") if len(marker_list2) == 0 : # No possibility to confirm if "outname" in action : marker_dict[action["outname"]] = [] return marker_dict, marker_list else : return marker_dict, [] # convert into a numpy array for convenience marker_array = np.array(marker_list2) # overlapping if "overlap" in action : overlap_th = action["overlap"] else : overlap_th = 0 confirmed_list = [] # now confirm the first marker series with the second for marker in marker_list1 : # find the overlapping between the markers of the two list f = lambda x: marker.overlap_in_days(x) vf = np.vectorize(f) overlap = max(vf(marker_array)) if overlap > overlap_th : confirmed_list.append(marker) if "outname" in action : marker_dict[action["outname"]] = confirmed_list return marker_dict, marker_list else : return marker_dict, confirmed_list def merge(self, marker_dict : dict, marker_list, action : dict) : """ Summary: Markers from two time series are merged: no co-existence is foreseen. Arguments: marker_dict - dictionary of the markers to be aggregated marker_list - list of previously processed markers Returns: marker_dict - dictionary of the markers to be aggregated marker_list - list of previously processed markers action - dictionary specifing the action to be performed """ if len(action["signals"]) == 1 : marker_list1 = marker_list if action["signals"][0] in marker_dict : marker_list2 = marker_dict[action["signals"][0]] else : marker_list2 = [] elif len(action["signals"]) == 2 : if action["signals"][0] in marker_dict : marker_list1 = marker_dict[action["signals"][0]] else : marker_list1 = [] if action["signals"][1] in marker_dict : marker_list2 = marker_dict[action["signals"][1]] else : marker_list2 = [] else : raise Exception("marker-aggregator.merge() - signals not specified") if len(marker_list2) == 0: if "outname" in action : marker_dict[action["outname"]] = marker_list1 return marker_dict, marker_list else : return marker_dict, marker_list1 if len(marker_list1) == 0: if "outname" in action : marker_dict[action["outname"]] = marker_list2 return marker_dict, marker_list else : return marker_dict, marker_list2 # The second time series has precedence on the first output_list = [] ii = 0 jj = 0 m1 = marker_list1[ii] m2 = marker_list2[jj] while ii < len(marker_list1) and jj < len(marker_list2) : if m1 < m2 : output_list.append(m1) ii += 1 if ii < len(marker_list1) : m1 = marker_list1[ii] elif m2 < m1 : output_list.append(m2) jj += 1 if jj < len(marker_list2) : m2 = marker_list2[jj] else : # the two markers overlap if m1.start_date < m2.start_date : m_new = m1.trim_right(m2.start_date) output_list.append(m_new) output_list.append(m2) jj += 1 if m2.stop_date < m1.stop_date : # m2 is totally contained in m1 - split in 3 events m1 = m1.trim_left(m2.stop_date) else : ii += 1 if ii < len(marker_list1) : m1 = marker_list1[ii] if jj < len(marker_list2) : m2 = marker_list2[jj] else : if m2.stop_date < m1.stop_date : m1 = m1.trim_left(m2.stop_date) output_list.append(m2) jj += 1 if jj < len(marker_list2) : m2 = marker_list2[jj] else : # m1 is completely in m2 - This should not happen ii += 1 if ii < len(marker_list1) : m1 = marker_list1[ii] # Now check if there are remaining markers in the two lists while ii < len(marker_list1) : output_list.append(m1) ii += 1 if ii < len(marker_list1) : m1 = marker_list1[ii] while jj < len(marker_list2) : output_list.append(marker_list2[jj]) jj += 1 # Now generate the output if "outname" in action : marker_dict[action["outname"]] = output_list return marker_dict, marker_list else : return marker_dict, output_list @staticmethod def merge_event_list(list1, list2) : output_list = [] ii = 0 jj = 0 while (ii < len(list1)) and (jj < len(list2)) : m1 = list1[ii] m2 = list2[jj] if m1.start_date < m2.start_date : output_list.append(m1) ii += 1 else: output_list.append(m2) jj += 1 while ii < len(list1) : output_list.append(list1[ii]) ii += 1 while jj < len(list2) : output_list.append(list2[jj]) jj += 1 return output_list
34.415677
99
0.494168
caf8d2e93123505a305327145631a51379f4be2b
693
py
Python
tests/test_cli.py
datumbox/model-index
a39af5f8aaa2a90b8fc7180744a855282360067a
[ "MIT" ]
12
2021-02-26T08:19:00.000Z
2022-01-26T14:00:16.000Z
tests/test_cli.py
datumbox/model-index
a39af5f8aaa2a90b8fc7180744a855282360067a
[ "MIT" ]
null
null
null
tests/test_cli.py
datumbox/model-index
a39af5f8aaa2a90b8fc7180744a855282360067a
[ "MIT" ]
3
2021-03-19T13:51:56.000Z
2021-08-25T05:25:52.000Z
from click.testing import CliRunner from modelindex.commands.cli import cli def test_cli_invocation(): runner = CliRunner() result = runner.invoke(cli) assert result.exit_code == 0 def test_cli_check_ok(): runner = CliRunner() result = runner.invoke(cli, ["check", "tests/test-mi/11_markdown/rexnet.md"]) assert result.exit_code == 0 assert "Checking" in result.output assert "All good" in result.output def test_cli_check_fail(): runner = CliRunner() result = runner.invoke(cli, ["check", "tests/test-mi/01_base"]) assert result.exit_code == 0 assert "Path to README file docs/inception-v3-readme.md is not a valid file" in result.output
28.875
97
0.707071
1b56962e5a6d5a63085f2158e015e7d133280d2e
82
py
Python
0-notes/job-search/Cracking the Coding Interview/C14Databases/questions/14.5-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C14Databases/questions/14.5-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C14Databases/questions/14.5-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
# 14.5 Denormalization # What is denormalization? # Explain the pros and cons.
16.4
28
0.731707
a2173048fd49fa12babfe4478a4385f72c5c1495
871
py
Python
frappe-bench/apps/erpnext/erpnext/patches/v8_0/update_supplier_address_in_stock_entry.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
1
2021-04-29T14:55:29.000Z
2021-04-29T14:55:29.000Z
frappe-bench/apps/erpnext/erpnext/patches/v8_0/update_supplier_address_in_stock_entry.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/patches/v8_0/update_supplier_address_in_stock_entry.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
1
2021-04-29T14:39:01.000Z
2021-04-29T14:39:01.000Z
# Copyright (c) 2017, Frappe and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe def execute(): # copy supplier_address to address_display, and set supplier_address to blank stock_entries = frappe.db.sql(""" select name, purchase_order, supplier_address from `tabStock Entry` where ifnull(supplier_address, '') <> ''""", as_dict=True) frappe.reload_doc('stock', 'doctype', 'stock_entry') for stock_entry in stock_entries: # move supplier address to address_display, and fetch the supplier address from purchase order se = frappe.get_doc("Stock Entry", stock_entry.get("name")) se.address_display = stock_entry.get("supplier_address") se.supplier_address = frappe.db.get_value("Purchase Order", stock_entry.get("purchase_order"),"supplier_address") or None se.db_update()
37.869565
123
0.768083
bf914edd5e334bdda9f1192d6a3b43c7fe5939d7
6,731
py
Python
frappe-bench/apps/erpnext/erpnext/shopping_cart/test_shopping_cart.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/shopping_cart/test_shopping_cart.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
frappe-bench/apps/erpnext/erpnext/shopping_cart/test_shopping_cart.py
Semicheche/foa_frappe_docker
a186b65d5e807dd4caf049e8aeb3620a799c1225
[ "MIT" ]
null
null
null
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import unittest import frappe from frappe.utils import nowdate, add_months from erpnext.shopping_cart.cart import _get_cart_quotation, update_cart, get_party from erpnext.tests.utils import create_test_contact_and_address # test_dependencies = ['Payment Terms Template'] class TestShoppingCart(unittest.TestCase): """ Note: Shopping Cart == Quotation """ def setUp(self): frappe.set_user("Administrator") create_test_contact_and_address() self.enable_shopping_cart() def tearDown(self): frappe.set_user("Administrator") self.disable_shopping_cart() def test_get_cart_new_user(self): self.login_as_new_user() # test if lead is created and quotation with new lead is fetched quotation = _get_cart_quotation() self.assertEqual(quotation.quotation_to, "Customer") self.assertEqual(quotation.contact_person, frappe.db.get_value("Contact", dict(email_id="[email protected]"))) self.assertEqual(quotation.lead, None) self.assertEqual(quotation.contact_email, frappe.session.user) return quotation def test_get_cart_customer(self): self.login_as_customer() # test if quotation with customer is fetched quotation = _get_cart_quotation() self.assertEqual(quotation.quotation_to, "Customer") self.assertEqual(quotation.customer, "_Test Customer") self.assertEqual(quotation.lead, None) self.assertEqual(quotation.contact_email, frappe.session.user) return quotation def test_add_to_cart(self): self.login_as_customer() # remove from cart self.remove_all_items_from_cart() # add first item update_cart("_Test Item", 1) quotation = self.test_get_cart_customer() self.assertEqual(quotation.get("items")[0].item_code, "_Test Item") self.assertEqual(quotation.get("items")[0].qty, 1) self.assertEqual(quotation.get("items")[0].amount, 10) # add second item update_cart("_Test Item 2", 1) quotation = self.test_get_cart_customer() self.assertEqual(quotation.get("items")[1].item_code, "_Test Item 2") self.assertEqual(quotation.get("items")[1].qty, 1) self.assertEqual(quotation.get("items")[1].amount, 20) self.assertEqual(len(quotation.get("items")), 2) def test_update_cart(self): # first, add to cart self.test_add_to_cart() # update first item update_cart("_Test Item", 5) quotation = self.test_get_cart_customer() self.assertEqual(quotation.get("items")[0].item_code, "_Test Item") self.assertEqual(quotation.get("items")[0].qty, 5) self.assertEqual(quotation.get("items")[0].amount, 50) self.assertEqual(quotation.net_total, 70) self.assertEqual(len(quotation.get("items")), 2) def test_remove_from_cart(self): # first, add to cart self.test_add_to_cart() # remove first item update_cart("_Test Item", 0) quotation = self.test_get_cart_customer() self.assertEqual(quotation.get("items")[0].item_code, "_Test Item 2") self.assertEqual(quotation.get("items")[0].qty, 1) self.assertEqual(quotation.get("items")[0].amount, 20) self.assertEqual(quotation.net_total, 20) self.assertEqual(len(quotation.get("items")), 1) def test_tax_rule(self): self.login_as_customer() quotation = self.create_quotation() from erpnext.accounts.party import set_taxes tax_rule_master = set_taxes(quotation.customer, "Customer", \ quotation.transaction_date, quotation.company, None, None, \ quotation.customer_address, quotation.shipping_address_name, 1) self.assertEqual(quotation.taxes_and_charges, tax_rule_master) self.assertEqual(quotation.total_taxes_and_charges, 1000.0) self.remove_test_quotation(quotation) def create_quotation(self): quotation = frappe.new_doc("Quotation") values = { "doctype": "Quotation", "quotation_to": "Customer", "order_type": "Shopping Cart", "customer": get_party(frappe.session.user).name, "docstatus": 0, "contact_email": frappe.session.user, "selling_price_list": "_Test Price List Rest of the World", "currency": "USD", "taxes_and_charges" : "_Test Tax 1 - _TC", "conversion_rate":1, "transaction_date" : nowdate(), "valid_till" : add_months(nowdate(), 1), "items": [{ "item_code": "_Test Item", "qty": 1 }], "taxes": frappe.get_doc("Sales Taxes and Charges Template", "_Test Tax 1 - _TC").taxes, "company": "_Test Company" } quotation.update(values) quotation.insert(ignore_permissions=True) return quotation def remove_test_quotation(self, quotation): frappe.set_user("Administrator") quotation.delete() # helper functions def enable_shopping_cart(self): settings = frappe.get_doc("Shopping Cart Settings", "Shopping Cart Settings") settings.update({ "enabled": 1, "company": "_Test Company", "default_customer_group": "_Test Customer Group", "quotation_series": "_T-Quotation-", "price_list": "_Test Price List India" }) # insert item price if not frappe.db.get_value("Item Price", {"price_list": "_Test Price List India", "item_code": "_Test Item"}): frappe.get_doc({ "doctype": "Item Price", "price_list": "_Test Price List India", "item_code": "_Test Item", "price_list_rate": 10 }).insert() frappe.get_doc({ "doctype": "Item Price", "price_list": "_Test Price List India", "item_code": "_Test Item 2", "price_list_rate": 20 }).insert() settings.save() frappe.local.shopping_cart_settings = None def disable_shopping_cart(self): settings = frappe.get_doc("Shopping Cart Settings", "Shopping Cart Settings") settings.enabled = 0 settings.save() frappe.local.shopping_cart_settings = None def login_as_new_user(self): self.create_user_if_not_exists("[email protected]") frappe.set_user("[email protected]") def login_as_customer(self): self.create_user_if_not_exists("[email protected]", "_Test Contact For _Test Customer") frappe.set_user("[email protected]") def remove_all_items_from_cart(self): quotation = _get_cart_quotation() quotation.flags.ignore_permissions=True quotation.delete() def create_user_if_not_exists(self, email, first_name = None): if frappe.db.exists("User", email): return frappe.get_doc({ "doctype": "User", "user_type": "Website User", "email": email, "send_welcome_email": 0, "first_name": first_name or email.split("@")[0] }).insert(ignore_permissions=True) test_dependencies = ["Sales Taxes and Charges Template", "Price List", "Item Price", "Shipping Rule", "Currency Exchange", "Customer Group", "Lead", "Customer", "Contact", "Address", "Item", "Tax Rule"]
30.876147
122
0.733769
157d19a898890b81f2e5c2fb54100bd500b6c261
1,857
py
Python
tests/web.adblockplus.org/pages/landingPage.py
adblockplus/web.adblockplus.org
c2c570ce4f4296afc3577afe233c6b23b128f206
[ "MIT" ]
9
2016-01-29T18:05:29.000Z
2021-10-06T04:21:55.000Z
tests/web.adblockplus.org/pages/landingPage.py
adblockplus/web.adblockplus.org
c2c570ce4f4296afc3577afe233c6b23b128f206
[ "MIT" ]
9
2015-04-06T19:03:32.000Z
2019-05-28T13:34:55.000Z
tests/web.adblockplus.org/pages/landingPage.py
adblockplus/web.adblockplus.org
c2c570ce4f4296afc3577afe233c6b23b128f206
[ "MIT" ]
18
2015-04-06T17:42:31.000Z
2021-10-06T04:26:29.000Z
from pages.basePage import BasePage DOWNLOAD_BUTTON_HREF = 'a[href*="install"]' DOWNLOAD_BUTTON_HREF_ANDROID = 'a[href*="https://eyeo.to/adblockbrowser/android/abp-website"]' DOWNLOAD_BUTTON_HREF_IOS = 'a[href*="https://eyeo.to/adblockplus/ios_safari_install/abp-website"]' DOWNLOAD_BUTTON_HREF_LANG = 'a[href*="chrome_install"]' class LandingPage(BasePage): def __init__(self, driver, is_language_test=False): self.driver = driver self._download_button_href = DOWNLOAD_BUTTON_HREF if is_language_test: self._download_button_href = DOWNLOAD_BUTTON_HREF_LANG @property def get_download_button_link(self): return self.driver.find_element_by_css_selector(self._download_button_href).get_attribute('href') @property def get_download_button_link_android(self): return self.driver.find_element_by_css_selector(DOWNLOAD_BUTTON_HREF_ANDROID).get_attribute('href') @property def get_download_button_link_ios(self): return self.driver.find_element_by_css_selector(DOWNLOAD_BUTTON_HREF_IOS).get_attribute('href') @property def get_download_button_text(self): return self.driver.find_element_by_css_selector(self._download_button_href).get_attribute('innerText') @property def get_download_button_text_android(self): return self.driver.find_element_by_css_selector(DOWNLOAD_BUTTON_HREF_ANDROID).get_attribute('title') @property def get_download_button_text_ios(self): return self.driver.find_element_by_css_selector(DOWNLOAD_BUTTON_HREF_IOS).get_attribute('title') def click_download_button(self): self.driver.find_element_by_css_selector(self._download_button_href).click() def click_download_button_android(self): self.driver.find_element_by_css_selector(DOWNLOAD_BUTTON_HREF_ANDROID).click()
38.6875
110
0.777598
1734d420c88d48f5713ccdaf11d5cc003b5ad203
43,342
py
Python
Packs/CounterTack/Integrations/CounterTack/CounterTack.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/CounterTack/Integrations/CounterTack/CounterTack.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/CounterTack/Integrations/CounterTack/CounterTack.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * ''' IMPORTS ''' import json import requests import os import os.path # Disable insecure warnings requests.packages.urllib3.disable_warnings() # remove proxy if not set to true in params if not demisto.params().get('proxy'): del os.environ['HTTP_PROXY'] del os.environ['HTTPS_PROXY'] del os.environ['http_proxy'] del os.environ['https_proxy'] ''' GLOBALS/PARAMS ''' USERNAME = demisto.params().get('credentials').get('identifier') PASSWORD = demisto.params().get('credentials').get('password') SERVER_URL = demisto.params().get('server')[:-1] if demisto.params().get('server').endswith('/') else \ demisto.params().get('server') FETCH_TIME = demisto.params().get('fetch_time', '3 days').strip() FETCH_NOTIFICATIONS = demisto.params().get('fetch_notifications') FETCH_BEHAVIORS = demisto.params().get('fetch_behviors') # Should we use SSL USE_SSL = not demisto.params().get('unsecure', False) # Service base URL BASE_PATH = '{}/api/v2/'.format(SERVER_URL) # Headers to be sent in requests DEFAULT_HEADERS = { 'Content-Type': 'application/json' } def http_request(method, suffix_url, headers=DEFAULT_HEADERS, body=None): """ returns the http request """ url = BASE_PATH + suffix_url response = requests.request( method, url, auth=(USERNAME, PASSWORD), headers=headers, verify=USE_SSL, data=body ) # handle request failure if response.status_code not in {200}: message = parse_error_response(response) return_error('Error in API call to CounterTack with status code {}\n{}'.format(response.status_code, message)) try: response = response.json() except Exception: return_error(response.content) return response def parse_error_response(response): try: res = response.json() msg = res.get('message') if res.get('details') is not None and res.get('details')[0].get('message') is not None: msg = msg + "\n" + json.dumps(res.get('details')[0]) except Exception: return response.text return msg """ ENDPOINTS """ def get_endpoints_request(): """ This request returns a collection of endpoints. """ suffix_url = 'endpoints' response = http_request('GET', suffix_url) return response def get_endpoints(): """ Returns the information on existing endpoints """ data = [] endpoint_standards = [] endpoints = get_endpoints_request() for endpoint in endpoints: data.append({ 'Id': endpoint.get('id'), 'Name': endpoint.get('name'), 'OS': endpoint.get('product_name'), 'IP': endpoint.get('ips'), 'Status': endpoint.get('status'), 'Threat': endpoint.get('threat') }) endpoint_standards.append({ 'Id': endpoint.get('id'), 'IPAddress': endpoint.get('ips'), 'Domain': endpoint.get('domain'), 'MACAddress': endpoint.get('mac'), 'OS': endpoint.get('product_name'), 'OSVersion': endpoint.get('driver_version'), 'Model': endpoint.get('current_profile'), 'Memory': endpoint.get('memory'), 'Processors': endpoint.get('num_cpus') }) context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(endpoints, keyTransform=underscoreToCamelCase), 'Endpoint': endpoint_standards } headers = ['OS', 'Name', 'Threat', 'Status', 'Id', 'IP'] entry = { 'Type': entryTypes['note'], 'Contents': endpoints, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown( 'CounterTack Endpoints', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) def get_endpoint_request(endpoint_id): """ Request for a specific endpoint """ suffix_url = 'endpoints/' + endpoint_id response = http_request('GET', suffix_url) return response def get_endpoint(): """ Get the information for the requested endpoint demisto parameter: (string) endpoint_id The unique ID of the endpoint returns: The information about the specified endpoint """ endpoint_id = demisto.args().get('endpoint_id') response = get_endpoint_request(endpoint_id) content = { 'OS': response.get('product_name'), 'Domain': response.get('domain'), 'IP': response.get('ip'), 'Threat': response.get('threat'), 'MaxImpact': response.get('max_impact'), 'TenantID': response.get('tenant'), 'IsQuarantined': response.get('is_quarantined'), 'Profile': response.get('current_profile'), 'Cluster_hosts': response.get('cluster_hosts'), 'Status': response.get('status'), 'Tags': response.get('tags') } endpoint_standards = { 'Id': response.get('id'), 'IPAddress': response.get('ips'), 'Domain': response.get('domain'), 'MACAddress': response.get('mac'), 'OS': response.get('product_name'), 'OSVersion': response.get('driver_version'), 'Model': response.get('current_profile'), 'Memory': response.get('memory'), 'Processors': response.get('num_cpus') } context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase), 'Endpoint': endpoint_standards } headers = ['OS', 'Domain', 'IP', 'Threat', 'MaxImpact', 'TenantID', 'IsQuarantined', 'Profile', 'Tags', 'Cluster_Hosts', 'Status'] entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown( 'CounterTack Endpoint information:', content, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) """ ENDPOINTS TAGS """ def endpoint_tags_request(endpoint_id): """ This request retrieves tags from specified endpoint """ suffix_url = 'endpoints/' + endpoint_id + '/tags' response = http_request('GET', suffix_url) return response def get_endpoint_tags(): """ Get the tags for the specified endpoint demisto parameter: (string) endpoint_id The unique ID of the endpoint """ endpoint_id = demisto.args().get('endpoint_id') response = endpoint_tags_request(endpoint_id) response = { 'tags': response } tags_context = { 'Id': endpoint_id, 'tags': response } context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(tags_context, keyTransform=underscoreToCamelCase) } entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('CounterTack tags for the specified endpoint:', response, removeNull=True), 'EntryContext': context } demisto.results(entry) def add_tags_request(endpoint_id, body): """ The request adds tags to specified endpoint The request gets the endpoint ID and the tags the user wants to add. """ suffix_url = 'endpoints/' + endpoint_id + '/tags' response = http_request('POST', suffix_url, body=json.dumps(body)) return response def add_tags(): """ The command add tags for the specified endpoint. demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (array) body The tags to add to the endpoint """ endpoint_id = demisto.args().get('endpoint_id') body = argToList(demisto.args().get('tags')) response = add_tags_request(endpoint_id, body) response = endpoint_tags_request(endpoint_id) response = { 'tags': response, 'Id': endpoint_id } context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase) } entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown("Endpoint tags were added successfully", response), 'EntryContext': context } demisto.results(entry) def delete_tags_request(endpoint_id, body): """ This request deletes specific tags from specified endpoint. demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (array) body The tags to delete from the endpoint """ suffix_url = 'endpoints/' + endpoint_id + '/tags' response = http_request('DELETE', suffix_url, body=json.dumps(body)) return response def delete_tags(): """ The command deletes tags for the specified endpoint. demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (array) body The tags to delete from the endpoint """ endpoint_id = demisto.args().get('endpoint_id') body = argToList(demisto.args().get('tags')) response = delete_tags_request(endpoint_id, body) response = endpoint_tags_request(endpoint_id) response = { 'tags': response, 'Id': endpoint_id } context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase) } entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown( 'Endpoint tags were deleted successfully', response), 'EntryContext': context } demisto.results(entry) """ ENDPOINTS COMMANDS """ def endpoint_quarantine_request(endpoint_id, body): """ Request to quarantine a specified endpoint demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (string) type The type of the command: quarantine """ suffix_url = 'endpoints/' + endpoint_id + '/commands' response = http_request('POST', suffix_url, body=json.dumps(body)) return response def endpoint_quarantine(): """ Prevents an endpoint(s) from any network communication, but maintains a connection to the Sentinel Cluster and addresses defined in the Global Whitelist. demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (string) type The type of the command: quarantine """ endpoint_id = demisto.args().get('endpoint_id') body = { 'type': 'quarantine' } response = endpoint_quarantine_request(endpoint_id, body) quarantine_response = get_endpoint_request(endpoint_id) quarantine_context = { 'Id': endpoint_id, 'is_quarantine': quarantine_response.get('is_quarantined') } context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(quarantine_context, keyTransform=underscoreToCamelCase) } data = { 'Id': response.get('id'), 'user name': response.get('username'), 'request time': response.get('request_time'), 'endpoint ID': response.get('endpoint_ids'), 'command name': response.get('command_name'), 'status': response.get('status'), } entry = { 'Type': entryTypes['note'], 'Contents': quarantine_context, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('The command has been applied successfully:', data, removeNull=True), 'EntryContext': context } demisto.results(entry) def disable_quarantine(): """ Allows a previously quarantined endpoint to communicate with the network. demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (string) type The type of the command: lift_quarantine """ endpoint_id = demisto.args().get('endpoint_id') body = { 'type': 'lift_quarantine' } response = endpoint_quarantine_request(endpoint_id, body) quarantine_response = get_endpoint_request(endpoint_id) quarantine_context = { 'Id': endpoint_id, 'is_quarantine': quarantine_response.get('is_quarantined') } data = { 'Id': response.get('id'), 'user name': response.get('username'), 'request time': response.get('request_time'), 'endpoint ID': response.get('endpoint_ids'), 'command name': response.get('command_name'), 'status': response.get('status'), } context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(quarantine_context, keyTransform=underscoreToCamelCase) } entry = { 'Type': entryTypes['note'], 'Contents': quarantine_context, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('The command has been applied successfully:', data, removeNull=True), 'EntryContext': context } demisto.results(entry) def file_extract_request(endpoint_id, body): """ Request for extracting file from specified endpoint """ suffix_url = 'endpoints/' + endpoint_id + '/commands' response = http_request('POST', suffix_url, body=json.dumps(body)) return response def extract_file(): """ Enables an API consumer to extract the file in addition to some file metadata. demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (string) body The type of the command: extract file and the file path """ endpoint_id = demisto.args().get('endpoint_id') paths = argToList(demisto.args().get('file_path')) body = { 'type': 'extract_files', 'paths': paths } response = file_extract_request(endpoint_id, body) data = { 'Id': response.get('id'), 'User Name': response.get('username'), 'Request Time': response.get('request_time'), 'Endpoint ID': response.get('endpoint_ids'), 'Command Name': response.get('command_name'), 'Command Arguments': response.get('command_arg'), 'Status': response.get('status'), } context = { 'CounterTack.File(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase) } headers = ['Id', 'User Name', 'Request Time', 'Endpoint ID', 'Command Name', 'Command Arguments', 'Status'] entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown( 'The file has been extracted successfully:', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) def delete_file_request(endpoint_id, body): """ Deletes a file from the specified endpoint """ suffix_url = 'endpoints/' + endpoint_id + '/commands' response = http_request('POST', suffix_url, body=json.dumps(body)) return response def delete_file(): """ Deletes a file from the specified endpoint demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (string) body The type of the command: delete_file and the file path """ endpoint_id = demisto.args().get('endpoint_id') path = demisto.args().get('file_path') body = { 'type': 'delete_file', 'path': path } delete_file_request(endpoint_id, body) demisto.results('The file has been deleted successfully') def kill_process_request(endpoint_id, body): """ Reqquest to terminates all instances of the process identified in the command. """ suffix_url = 'endpoints/' + endpoint_id + '/commands' response = http_request('POST', suffix_url, body=json.dumps(body)) return response def kill_process(): """ Terminates all instances of the process identified in the command. Processes can be identified by the PID or process name. demisto parameter: (string) endpoint_id The unique ID of the endpoint demisto parameter: (string) process_id The ID of the process to terminate demisto parameter: (string) process_name The name of the process to terminate """ endpoint_id = demisto.args().get('endpoint_id') pid = demisto.args().get('process_id') name = demisto.args().get('process_name') if not pid and not name: return_error('Please provide either process_id or process_name') body = { 'type': 'kill_process', 'pid': pid, 'name': name } response = kill_process_request(endpoint_id, body) data = { 'Id': response.get('id'), 'User Name': response.get('username'), 'Request Time': response.get('request_time'), 'Endpoint ID': response.get('endpoint_ids'), 'Command Name': response.get('command_name'), 'Status': response.get('status'), } context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase, removeNull=True) } entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown( 'The process has been terminated', data, removeNull=True), 'EntryContext': context } demisto.results(entry) """ ENDPOINT FILES """ def file_request(): """ This request retrieves all extracted files for all endpoints on the cluster """ suffix_url = 'endpoints/files' response = http_request('GET', suffix_url) return response def get_all_files(): data = [] files_standards = [] files = file_request() for file in files: data.append({ 'Id': file.get('id'), 'user': file.get('user'), 'endpoint_id': file.get('endpoint_id'), 'path': file.get('path'), 'extraction_time': file.get('extraction_time'), 'Status': file.get('status') }) files_standards.append({ 'Size': file.get('size'), 'MD5': file.get('md5'), 'SHA256': file.get('sha256'), 'SSDeep': file.get('ssdeep'), 'Path': file.get('path') }) context = { 'CounterTack.File(val.Id && val.Id === obj.Id)': createContext(files, keyTransform=underscoreToCamelCase), outputPaths['file']: files_standards } headers = ['Status', 'Id', 'path', 'endpoint_id', 'extraction_time', 'user'] entry = { 'Type': entryTypes['note'], 'Contents': files, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown( 'CounterTack Endpoints Files', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) def endpoint_files_request(endpoint_id): """ This request returns all extracted files from specified endpoint """ suffix_url = 'endpoints/' + endpoint_id + '/files' response = http_request('GET', suffix_url) return response def get_endpoint_files(): """ Returns extracted files from specific endpoint demisto parameter: (string) endpoint_id The unique ID of the endpoint """ endpoint_id = demisto.args().get('endpoint_id') data = [] files_standards = [] files = endpoint_files_request(endpoint_id) for file in files: data.append({ 'Id': file.get('id'), 'User': file.get('user'), 'EndpointId': file.get('endpoint_id'), 'Path': file.get('path'), 'ExtractionTime': file.get('extraction_time'), 'Status': file.get('status') }) files_standards.append({ 'Size': file.get('size'), 'MD5': file.get('md5'), 'SHA256': file.get('sha256'), 'SSDeep': file.get('ssdeep'), 'Path': file.get('path') }) context = { 'CounterTack.File(val.Id && val.Id === obj.Id)': createContext(files, keyTransform=underscoreToCamelCase), outputPaths['file']: files_standards } headers = ['Status', 'Id', 'path', 'endpoint_id', 'extraction_time', 'user'] entry = { 'Type': entryTypes['note'], 'Contents': data, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown( 'The extracted files from the endpoint:', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) def file_information_request(file_id): """ request specific file information """ suffix_url = 'endpoints/files/' + file_id response = http_request('GET', suffix_url) return response def get_file_information(): """ Get the information of a specific file demisto parameter: (string) file_id The unique ID of the extracted file """ context = {} files_standards = [] file_id = demisto.args().get('file_id') response = file_information_request(file_id) data = { 'endpoint_name': response.get('endpoint_name'), 'path': response.get('path'), 'size': response.get('size'), 'extraction_time': response.get('extraction_time'), 'status': response.get('status') } files_standards.append({ 'Size': response.get('size'), 'MD5': response.get('md5'), 'SHA256': response.get('sha256'), 'SSDeep': response.get('ssdeep'), 'Path': response.get('path') }) context['CounterTack.File(val.Id && val.Id === obj.Id)'] = createContext(response, keyTransform=underscoreToCamelCase) context[outputPaths['file']] = files_standards headers = ['endpoint_name', 'path', 'size', 'status', 'extraction_time'] entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('CounterTack File Information:', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) def download_file_request(file_id): # This request downloads an extracted file. suffix_url = 'downloads/extractedfiles/' + file_id response = http_request('GET', suffix_url) return response def download_file(): """ Download an extracted file in a ZIP format. demisto parameter: (string) file_id The unique ID of the extracted file """ file_id = demisto.args().get('file_id') response = download_file_request(file_id) demisto.results(fileResult(file_id + '.zip', response.content)) """ BEHAVIORS """ def get_behaviors_request(): """ This request retrieves information on a collection of behaviors. """ suffix_url = 'behaviors' response = http_request('GET', suffix_url) return response def get_behaviors(): """ retrieve information on a collection of behaviors. """ data = [] behaviors = get_behaviors_request() for behavior in behaviors: data.append({ 'Id': behavior.get('id'), 'Name': behavior.get('name'), 'Type': behavior.get('type'), 'ImpactLevel': behavior.get('impact_level'), 'lastReported': behavior.get('last_reported'), 'EndpointId': behavior.get('endpoint_id') }) context = { 'CounterTack.Behavior(val.Id && val.Id === obj.Id)': createContext(behaviors, keyTransform=underscoreToCamelCase) } headers = ['Name', 'Id', 'Type', 'ImpactLevel', 'EndpointId', 'lastReported'] entry = { 'Type': entryTypes['note'], 'Contents': behaviors, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('CounterTack Endpoints Behaviors', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) def get_behavior_request(behavior_id): """ Request for getting specified behvior """ suffix_url = 'behaviors/' + behavior_id response = http_request('GET', suffix_url) return response def get_behavior(): """ Get behavior information demisto parameter: behavior_id(string) The unique ID of the behvior """ behavior_id = demisto.args().get('behavior_id') response = get_behavior_request(behavior_id) data = { 'Id': response.get('id'), 'Name': response.get('name'), 'ImpactLevel': response.get('impact_level'), 'LastActive': response.get('last_active'), 'EventCount': response.get('event_count'), 'MaxImpact': response.get('max_impact'), 'EndpointId': response.get('endpoint_id'), 'Type': response.get('type'), } context = { 'CounterTack.Behavior(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase) } headers = ['Name', 'Id', 'ImpactLevel', 'MaxImpact', 'EventCount', 'Type', 'EndpointId', 'LastActive'] entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('CounterTack Behavior information', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) """ BEHAVIORS TAGS """ def behaviour_add_tags_request(behaviour_id, body): """ The request adds tags to specified behaviour """ suffix_url = 'behaviors/' + behaviour_id + '/tags' response = http_request('POST', suffix_url, body=json.dumps(body)) return response def add_behavior_tags(): """ Add specific tags to specified behavior demisto parameter: (string) behavior_id The unique ID of the behavior demisto parameter: (Array) Body. The tags to add to the behavior. seperate the tags with comma """ behaviour_id = demisto.args().get('behaviour_id') body = argToList(demisto.args().get('tags')) response = behaviour_add_tags_request(behaviour_id, body) behavior_tags = get_behavior_request(behaviour_id) response = { 'tags': behavior_tags.get('tags'), 'Id': behaviour_id } context = { 'CounterTack.Behavior(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase) } entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Behavior tags were added successfully', response), 'EntryContext': context } demisto.results(entry) def delete_tags_behavior_request(behaviour_id, body): suffix_url = 'behaviors/' + behaviour_id + '/tags' response = http_request('DELETE', suffix_url, body=json.dumps(body)) return response def delete_behavior_tags(): """ Delete specific tags from behavior demisto parameter: (string) behavior_id The unique ID of the behavior demisto parameter: (Array) Body. The tags to delete from the behavior. seperate the tags with comma """ behaviour_id = demisto.args().get('behaviour_id') body = argToList(demisto.args().get('tags')) response = delete_tags_behavior_request(behaviour_id, body) response = get_behavior_request(behaviour_id) response = { 'tags': response.get('tags'), 'Id': behaviour_id } context = { 'CounterTack.Behavior(val.Id && val.Id === obj.Id)': createContext(response, keyTransform=underscoreToCamelCase) } entry = { 'Type': entryTypes['note'], 'Contents': response, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Endpoint tags were deleted successfully', response, removeNull=True), 'EntryContext': context } demisto.results(entry) """ SEARCH """ def search_endpoints_request(exp): """ Request for endpoints search using CQL expression """ suffix_url = 'search/endpoints' + exp response = http_request('GET', suffix_url) return response def search_behaviors_request(exp): """ Request for endpoints search using CQL expression """ suffix_url = 'search/behaviors' + exp response = http_request('GET', suffix_url) return response def search_events_request(exp): """ Request for events search using CQL expression """ suffix_url = 'search/events' + exp response = http_request('GET', suffix_url) return response def search_events(): """ Request for events search using CQL expression demisto parameter: (dict) expression The CQL expression to be used for the search """ data = [] expression = demisto.args().get('expression') exp = '?expression=' + expression events = search_events_request(exp) if events.get('results'): results = events.get('results') results_lst = list() for i in range(len(results)): results_lst.append({k.replace('events.', ''): v for k, v in results[i].items()}) events['results'] = results_lst for event in events.get('results'): data.append({ 'Id': event.get('id'), 'Events Action': event.get('action'), 'Events Impact': event.get('impact'), 'Events EndpointID': event.get('endpoint_id'), 'Event Type': event.get('event_type'), 'Collected time': event.get('time_stamp'), 'Source process PID': event.get('source_process_pid'), 'Source process name': event.get('source_process_name') }) context = { 'CounterTack.Event(val.Id && val.Id === obj.Id)': createContext(results_lst, keyTransform=underscoreToCamelCase, removeNull=True) } headers = ['ID', 'Event Type', 'Events Action', 'Events EndpointID', 'Events Impact', 'Collected time', 'Source process PID', 'Source process name'] entry = { 'Type': entryTypes['note'], 'Contents': results_lst, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Results of the events search', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) else: demisto.results('No results found') def search_endpoints(): """ Request for endpoints search using CQL expression demisto parameter: (dict) expression The CQL expression to be used for the search """ data = [] endpoint_standards = [] expression = demisto.args().get('expression') exp = '?expression=' + expression endpoints = search_endpoints_request(exp) if endpoints.get('results'): results = endpoints.get('results') results_lst = list() for i in range(len(results)): results_lst.append({k.replace('endpoints.', ''): v for k, v in results[i].items()}) endpoints['results'] = results_lst for endpoint in endpoints.get('results'): data.append({ 'Id': endpoint.get('id'), 'Name': endpoint.get('name'), 'OS': endpoint.get('product_name'), 'IP': endpoint.get('ips'), 'Status': endpoint.get('status'), 'Threat': endpoint.get('threat') }) endpoint_standards.append({ 'Id': endpoint.get('id'), 'IPAddress': endpoint.get('ips'), 'Domain': endpoint.get('domain'), 'MACAddress': endpoint.get('mac'), 'OS': endpoint.get('product_name'), 'OSVersion': endpoint.get('driver_version'), 'Model': endpoint.get('current_profile'), 'Memory': endpoint.get('memory'), 'Processors': endpoint.get('num_cpus') }) context = { 'CounterTack.Endpoint(val.Id && val.Id === obj.Id)': createContext(results_lst, keyTransform=underscoreToCamelCase, removeNull=True), 'Endpoint': endpoint_standards } headers = ['Status', 'Name', 'Id', 'OS', 'Events Impact', 'Threat', 'IP'] entry = { 'Type': entryTypes['note'], 'Contents': results_lst, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Results of the endpoints search', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) else: demisto.results('No results found') def search_behaviors(): """ Request for behaviors search using CQL expression demisto parameter: (dict) expression The CQL expression to be used for the search """ data = [] expression = demisto.args().get('expression') exp = '?expression=' + expression behaviors = search_behaviors_request(exp) if behaviors.get('results'): results = behaviors.get('results') results_lst = list() for i in range(len(results)): results_lst.append({k.replace('behaviors.', ''): v for k, v in results[i].items()}) behaviors['results'] = results_lst for behavior in behaviors.get('results'): data.append({ 'Id': behavior.get('id'), 'Name': behavior.get('name'), 'Type': behavior.get('type'), 'Impact_Level': behavior.get('impact_level'), 'lastReported': behavior.get('last_reported'), 'EndpointID': behavior.get('endpoint_id') }) context = { 'CounterTack.Behavior(val.Id && val.Id === obj.Id)': createContext(results_lst, keyTransform=underscoreToCamelCase, removeNull=True) } headers = ['Name', 'Type', 'Impact_Level', 'Id', 'EndpointID', 'lastReported'] entry = { 'Type': entryTypes['note'], 'Contents': results_lst, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Results of the behaviors search', data, headers, removeNull=True), 'EntryContext': context } demisto.results(entry) else: demisto.results('No results found') def hashes_search_request(exp): """ Request for Hashed search using CQL expression """ suffix_url = 'search/hashes' + exp response = http_request('GET', suffix_url) return response def search_hashes(): """ Request for hashes search using CQL expression demisto parameter: (dict) expression The CQL expression to be used for the search """ data = [] file_standards = [] expression = demisto.args().get('expression') exp = '?expression=' + expression hashes = hashes_search_request(exp) if hashes.get('results'): results = hashes.get('results') results_lst = list() for i in range(len(results)): results_lst.append({k.replace('hashes.', ''): v for k, v in results[i].items()}) hashes['results'] = results_lst for hash_type in hashes.get('results'): file_hash_type = hash_type.get('type', '').upper() if file_hash_type == 'SSDEEP': file_hash_type = 'SSDeep' hash_id = hash_type.get('id') data.append({ file_hash_type: hash_id, 'Type': file_hash_type, 'Impact': hash_type.get('impact'), 'VT report location': hash_type.get('vt_report_location'), 'AV Coverage': hash_type.get('av_coverage') }) if file_hash_type: file_standards.append({ file_hash_type: hash_id }) context = { 'CounterTack.Hash(val.hash_id && val.hash_id === obj.hash_id)': createContext(data), outputPaths['file']: file_standards } entry = { 'Type': entryTypes['note'], 'Contents': results_lst, 'ContentsFormat': formats['json'], 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Results of the hashes search:', data, removeNull=True), 'EntryContext': context } demisto.results(entry) else: demisto.results('No results found') """ FETCH INCIDENTS """ def search_notifications_request(params=''): """ Request for notifications search using CQL expression """ suffix_url = 'search/notifications?expression=' + params response = http_request('GET', suffix_url) return response def fetch_behaviors_request(params=''): """ Request for behaviors search using CQL expression """ suffix_url = 'search/behaviors?expression=' + params response = http_request('GET', suffix_url) return response def fetch_incidents(): incidents = [] last_run = demisto.getLastRun() if last_run and last_run['time_stamp']: last_update_time = last_run['time_stamp'] else: # In first run last_update_time, _ = parse_date_range(FETCH_TIME, date_format='%Y-%m-%dT%H:%M:%S.%f'[:-3]) max_timestamp = last_update_time if FETCH_BEHAVIORS: params = 'behaviors.time_stamp>' + last_update_time behaviors = fetch_behaviors_request(params) for behavior in behaviors.get('results'): incident = behavior_to_incident(behavior) # 0 corresponds to never triggered time_stamp = behavior.get('behaviors.time_stamp')[:-5] # comapre time_stamp if time_stamp > max_timestamp: max_timestamp = time_stamp incidents.append(incident) if FETCH_NOTIFICATIONS: params = 'notifications.time_stamp>' + last_update_time notifications = search_notifications_request(params) for notification in notifications.get('results'): incident = notifications_to_incidents(notification) time_stamp = notification.get('notifications.time_stamp')[:-5] if time_stamp > max_timestamp: max_timestamp = time_stamp incidents.append(incident) demisto.setLastRun({ 'time_stamp': max_timestamp }) demisto.incidents(incidents) def behavior_to_incident(behavior): incident = {} incident['name'] = 'CounterTack Behavior - ' + behavior.get('behaviors.name') incident['rawJSON'] = json.dumps(behavior) return incident def notifications_to_incidents(notification): incident = {} incident['name'] = 'CounterTack Notification - ' + notification.get('notifications.message') incident['rawJSON'] = json.dumps(notification) return incident """ EXECUTION """ command = demisto.command() LOG('Running command "{}"'.format(command)) try: if command == 'test-module': get_endpoints_request() demisto.results('ok') elif command == 'fetch-incidents': fetch_incidents() elif command == 'countertack-get-endpoints': get_endpoints() elif command == 'countertack-get-endpoint': get_endpoint() elif command == 'countertack-get-endpoint-tags': get_endpoint_tags() elif command == 'countertack-add-tags': add_tags() elif command == 'countertack-delete-tags': delete_tags() elif command == 'countertack-endpoint-quarantine': endpoint_quarantine() elif command == 'countertack-disable-quarantine': disable_quarantine() elif command == 'countertack-extract-file': extract_file() elif command == 'countertack-delete-file': delete_file() elif command == 'countertack-get-all-files': get_all_files() elif command == 'countertack-get-endpoint-files': get_endpoint_files() elif command == 'countertack-get-file-information': get_file_information() elif command == 'countertack-download-file': download_file() elif command == 'countertack-get-behaviors': get_behaviors() elif command == 'countertack-get-behavior': get_behavior() elif command == 'countertack-add-behavior-tags': add_behavior_tags() elif command == 'countertack-delete-behavior-tags': delete_behavior_tags() elif command == 'countertack-search-events': search_events() elif command == 'countertack-search-hashes': search_hashes() elif command == 'countertack-search-endpoints': search_endpoints() elif command == 'countertack-search-behaviors': search_behaviors() elif command == 'countertack-kill-process': kill_process() except Exception as e: return_error(e.message) LOG(e)
30.245639
120
0.604056
bdac16655c6ca969dc0bc7dd06b8c0d0dd447a3b
482
py
Python
pattern-classification/machine_learning/scikit-learn/tokenizer.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
1
2021-12-13T15:41:48.000Z
2021-12-13T15:41:48.000Z
pattern-classification/machine_learning/scikit-learn/tokenizer.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
15
2021-09-12T15:06:13.000Z
2022-03-31T19:02:08.000Z
pattern-classification/machine_learning/scikit-learn/tokenizer.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
1
2022-01-29T00:37:52.000Z
2022-01-29T00:37:52.000Z
from nltk.stem.porter import PorterStemmer import re from nltk.corpus import stopwords stop = stopwords.words('english') porter = PorterStemmer() def tokenizer(text): text = re.sub('<[^>]*>', '', text) emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower()) text = re.sub('[\W]+', ' ', text.lower()) + ' '.join(emoticons).replace('-', '') text = [w for w in text.split() if w not in stop] tokenized = [porter.stem(w) for w in text] return text
34.428571
84
0.595436
97a8774db190df1aef3f8228788815dfb27dbc2d
70
py
Python
research/cv/ICNet/src/models/__init__.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/ICNet/src/models/__init__.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/ICNet/src/models/__init__.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
"""__init__""" from .icnet import ICNet from .icnet_dc import ICNetdc
17.5
29
0.757143
a9b6354e3ee0809a18fb29ba82e1e3553ac6b3df
813
py
Python
novel/crawler/novelcrawler/spiders/jianke.py
East196/hello-py
a77c7a0c8e5e2b5e8cefaf0fda335ab0c3b1da21
[ "Apache-2.0" ]
1
2017-10-23T14:58:47.000Z
2017-10-23T14:58:47.000Z
novel/crawler/novelcrawler/spiders/jianke.py
East196/hello-py
a77c7a0c8e5e2b5e8cefaf0fda335ab0c3b1da21
[ "Apache-2.0" ]
null
null
null
novel/crawler/novelcrawler/spiders/jianke.py
East196/hello-py
a77c7a0c8e5e2b5e8cefaf0fda335ab0c3b1da21
[ "Apache-2.0" ]
1
2018-04-06T07:49:18.000Z
2018-04-06T07:49:18.000Z
# -*- coding: utf-8 -*- import scrapy class JiankeItem(scrapy.Item): title = scrapy.Field() link = scrapy.Field() desc = scrapy.Field() class JiankeSpider(scrapy.Spider): name = 'jianke' allowed_domains = ['www.xxbiquge.com'] start_urls = ['http://www.xxbiquge.com/2_2327/'] def parse(self, response): for href in response.css("#list > dl > dd > a::attr('href')"): url = response.urljoin(href.extract()) yield scrapy.Request(url, callback=self.parse_dir_contents) @staticmethod def parse_dir_contents(response): item = JiankeItem() item['title'] = response.css("div.bookname > h1::text").extract_first() item['link'] = response.url item['desc'] = response.css("#content").extract_first() yield item
29.035714
79
0.619926
e7883f622839652116c8434612035980b2af5b57
3,514
py
Python
extraction/links_in_context/main.py
dbmdz/webarchiv-dh-bestandsausbau
98c271a09cdb026d1d58133f49dcb3e1c9fcf9b6
[ "MIT" ]
null
null
null
extraction/links_in_context/main.py
dbmdz/webarchiv-dh-bestandsausbau
98c271a09cdb026d1d58133f49dcb3e1c9fcf9b6
[ "MIT" ]
null
null
null
extraction/links_in_context/main.py
dbmdz/webarchiv-dh-bestandsausbau
98c271a09cdb026d1d58133f49dcb3e1c9fcf9b6
[ "MIT" ]
null
null
null
from pathlib import Path from shutil import rmtree from aut import WebArchive from pyspark import SparkContext from pyspark.sql import SparkSession from links_in_context.filter_records import ( decode_pages, get_links_in_context, filter_links_in_context, exclude_dest_hosts, merge_links_in_context, linkcontext_schema, keep_valid_pages ) sc = SparkContext.getOrCreate() sqlContext = SparkSession.builder.getOrCreate() spark = SparkSession.builder.appName("ExtractLinkcontext").getOrCreate() input_path = Path("/in") output_path = Path("/out") seed_list = "links_in_context/Collection_Seeds.csv" exclude_list = "links_in_context/Exclude_Domains.csv" for file in input_path.iterdir(): if file.is_dir(): warc_pattern = "*.warc.gz" warc_path = file / "arcs" / warc_pattern extract_path = output_path / file.name if Path(extract_path, "_SUCCESS").exists(): continue else: if extract_path.exists(): rmtree(str(extract_path)) target_instance_size = sum( warc.stat().st_size for warc in Path(file / "arcs").glob(warc_pattern) ) if target_instance_size < 6000000000: records = WebArchive(sc, sqlContext, str(warc_path)).all() valid_pages = keep_valid_pages(records) decoded_pages = decode_pages(valid_pages) links_in_context = get_links_in_context(decoded_pages) links_in_context = filter_links_in_context(links_in_context) links_in_context = exclude_dest_hosts(links_in_context, seed_list) links_in_context = exclude_dest_hosts(links_in_context, exclude_list) links_in_context.coalesce(1).write.format("json").save(str(extract_path)) else: suffix = "_linkcontext" for warc_path in Path(file / "arcs").iterdir(): tmp_output_path = output_path / (file.name + "_tmp") extract_path = tmp_output_path / (warc_path.stem + suffix) records = WebArchive(sc, sqlContext, str(warc_path)).all() valid_pages = keep_valid_pages(records) decoded_pages = decode_pages(valid_pages) links_in_context = get_links_in_context(decoded_pages) links_in_context = filter_links_in_context(links_in_context) links_in_context = exclude_dest_hosts(links_in_context, seed_list) links_in_context = exclude_dest_hosts(links_in_context, exclude_list) links_in_context.coalesce(1).write.format("json").save( str(extract_path) ) extracts_path = Path(tmp_output_path / ("*" + suffix)) merge_path = Path(output_path / file.name) to_merge = ( spark.read.format("json") .schema(linkcontext_schema) .option("path", str(extracts_path)) .load() ) merged = merge_links_in_context(to_merge) merged.coalesce(1).write.format("json").save(str(merge_path)) rmtree(str(tmp_output_path)) extracts_path = Path(output_path / "*" / "part-00000-*.json") merge_path = Path(output_path / "all_links_in_context") to_merge = ( spark.read.format("json") .schema(linkcontext_schema) .option("path", str(extracts_path)) .load() ) merged = merge_links_in_context(to_merge) merged.coalesce(1).write.format("json").save(str(merge_path))
37.784946
85
0.653671