sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A015301
Inverse of 1292nd cyclotomic polynomial.
[ "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
14
0
1
null
null
Simon Plouffe
2017-04-07T12:31:52
oeisdata/seq/A015/A015301.seq
cf4d0b764cde204cf1e151a502bbdcd2
A015302
Gaussian binomial coefficient [ n,4 ] for q = -12.
[ "1", "19141", "399683221", "8283038077141", "171765360605672917", "3561712204486990461397", "73855689005170238163929557", "1531471524472711661173885667797", "31756593605318274408653251348629973" ]
[ "nonn", "easy" ]
19
4
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015302.seq
a8f1d8ab4149f46ee274b72d614a0bc5
A015303
Gaussian binomial coefficient [ n,4 ] for q = -13.
[ "1", "26521", "761974851", "21752862899691", "621305270140974342", "17745052029585350965782", "506816536013640476467362442", "14475186854407942097510802411322" ]
[ "nonn", "easy" ]
24
4
2
[ "A015000", "A015129", "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015303.seq
4f0c249b5cc1376e1d71927a1269e7a5
A015304
Inverse of 1295th cyclotomic polynomial.
[ "1", "-1", "0", "0", "0", "1", "-1", "1", "-1", "0", "1", "-1", "1", "-1", "1", "0", "-1", "1", "-1", "1", "0", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "0", "1", "-1", "1", "-1", "0", "1", "-1", "1", "-1", "1", "0", "-1", "1", "-1", "1", "0", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "0", "1", "-1" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2024-02-18T12:43:15
oeisdata/seq/A015/A015304.seq
85d2108b7764d66b803990f42b455440
A015305
Gaussian binomial coefficient [ n,5 ] for q = -2.
[ "1", "-21", "903", "-25585", "875007", "-27125217", "882215391", "-28005209505", "899790907743", "-28735427761313", "920460637644639", "-29439916001972385", "942314556807454559", "-30150270336284213409", "964869381941043396447", "-30874848551033891160225" ]
[ "sign", "easy" ]
28
5
2
[ "A015109", "A015305" ]
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015305.seq
f8d9187438919350cbc70f93f7ee9b56
A015306
Gaussian binomial coefficient [ n,5 ] for q = -3.
[ "1", "-182", "49777", "-11662040", "2869444942", "-694405675964", "168973319623174", "-41041673208656120", "9974653139743515223", "-2423717068608654822146", "588973263031690760850991", "-143119691677080990521708240" ]
[ "sign", "easy" ]
35
5
2
[ "A015251", "A015268", "A015288", "A015305", "A015306", "A015308", "A015309", "A015310", "A015312", "A015313", "A015315", "A015316", "A015317", "A015319", "A015321", "A015324", "A015340", "A015357", "A015375", "A015388" ]
null
Olivier Gérard, Dec 11 1999
2025-06-30T23:46:46
oeisdata/seq/A015/A015306.seq
9c0c76cd92c578232b0e684c3bb1898a
A015307
Inverse of 1298th cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2023-01-16T11:57:20
oeisdata/seq/A015/A015307.seq
90d29ef6a3cef74030d8e6f9fe877932
A015308
Gaussian binomial coefficient [ n,5 ] for q = -4.
[ "1", "-819", "894621", "-901984419", "927257668701", "-948584595081123", "971588061067577437", "-994845394688060798883", "1018737244037427165087837", "-1043182954580986851130914723", "1068220365220113899181567068253" ]
[ "sign", "easy" ]
39
5
2
[ "A015305", "A015306", "A015308", "A015309", "A015310", "A015312", "A015313", "A015315", "A015316", "A015317", "A015319", "A015321" ]
null
Olivier Gérard, Dec 11 1999
2024-12-30T21:53:58
oeisdata/seq/A015/A015308.seq
5ffe68b9f1b91edf2ea1875688f62d53
A015309
Gaussian binomial coefficient [ n,5 ] for q = -5.
[ "1", "-2604", "8476671", "-26279294704", "82254445109046", "-256962886520659704", "803060432690378496546", "-2509531719872244898534704", "7842306707330337276457324671", "-24507195908707737696414306347204" ]
[ "sign", "easy" ]
26
5
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015309.seq
f3b0ee439f00a915ee377ba5e51466f2
A015310
Gaussian binomial coefficient [ n,5 ] for q = -6.
[ "1", "-6665", "53308003", "-412612541285", "3210953026617931", "-24965159781954413525", "194133243948726244454635", "-1509574711680960125598763925", "11738459947705882553575280369515", "-91278255494743382265330154281509525" ]
[ "sign", "easy" ]
25
5
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015310.seq
86195ceccfd94f4c633c286be3ce7e16
A015311
Inverse of 1302nd cyclotomic polynomial.
[ "1", "1", "0", "-1", "-1", "0", "1", "0", "-1", "-1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "0", "1", "1", "0", "-1", "0", "1", "1", "0", "-1", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "-1", "-1", "0", "1", "0", "-1", "-1", "0", "1", "1", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
16
0
1
null
null
Simon Plouffe
2018-05-03T19:10:29
oeisdata/seq/A015/A015311.seq
da70b306a530e8a86fafe500cdbbb152
A015312
Gaussian binomial coefficient [ n,5 ] for q = -7.
[ "1", "-14706", "252313293", "-4228301370600", "71094673339606302", "-1194817080145423511412", "20081461365765141084602686", "-337508711324786004755672161800", "5672509895284807570626050787828903" ]
[ "sign", "easy" ]
30
5
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015312.seq
70c7ff0bd55b00bf52eb1d98d63b2da2
A015313
Gaussian binomial coefficient [ n,5 ] for q = -8.
[ "1", "-29127", "969583737", "-31709385606535", "1039306892330748537", "-34054968941001637311879", "1115917479276007905665796729", "-36566366524181816928510601278855" ]
[ "sign", "easy" ]
18
5
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015313.seq
d9c90ef4fd15ad3b96d97ad15e52505f
A015314
Inverse of 1305th cyclotomic polynomial.
[ "1", "0", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "0", "-1", "0", "0", "1", "0", "0", "0", "0", "0", "-1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2020-01-17T12:11:07
oeisdata/seq/A015/A015314.seq
776b666c1bca8e8c4a0722d8d957607e
A015315
Gaussian binomial coefficient [ n,5 ] for q = -9.
[ "1", "-53144", "3177326971", "-187360965026144", "11065164158125239526", "-653375813208979143531248", "38581260992855637306941215162", "-2278184404047301621409794099651808" ]
[ "sign", "easy" ]
19
5
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015315.seq
f4ec30991c4b5541829da2f07fae9721
A015316
Gaussian binomial coefficient [ n,5 ] for q = -10.
[ "1", "-90909", "9182728191", "-917355454462809", "91744720010017447191", "-9174380256281734701652809", "917438943076290926712489347191", "-91743885133148835462057759420652809" ]
[ "sign", "easy" ]
19
5
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015316.seq
9105b7c190cff88dd2c2d311e71d0104
A015317
Gaussian binomial coefficient [ n,5 ] for q = -11.
[ "1", "-147630", "23974093353", "-3858153003126520", "621401842151984058606", "-100076766678577032638496300", "16117472448301015835209097979510", "-2595734922068255016665440444288632600" ]
[ "sign", "easy" ]
19
5
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015317.seq
7138e48bed11be3fad106cdbff96d659
A015318
Inverse of 1309th cyclotomic polynomial.
[ "1", "-1", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "1", "0", "-1", "0", "2", "-1", "-1", "1", "0", "0", "0", "1", "-1", "-1", "1", "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "0", "1", "0", "0", "0", "0", "-1", "1", "1", "-1", "0", "0", "0", "0", "1", "0", "-1", "0", "1", "0", "0", "0", "0", "-1", "1", "1", "-1", "0", "0", "0", "0", "1", "0" ]
[ "sign" ]
13
0
29
null
null
Simon Plouffe
2021-10-17T14:54:21
oeisdata/seq/A015/A015318.seq
c3899a8db5ac772b99b7cbdc8b6f4de4
A015319
Gaussian binomial coefficient [ n,5 ] for q = -12.
[ "1", "-229691", "57554154133", "-14313032243145515", "3561712204486990461397", "-886264409554702323499876907", "220531019414004693731359534452181", "-54875173091354091477849994502919434795" ]
[ "sign", "easy" ]
21
5
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015319.seq
be7d345a2593b28cee718e61220d9ad0
A015320
Inverse of 1311th cyclotomic polynomial.
[ "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0" ]
[ "sign" ]
14
0
1
null
null
Simon Plouffe
2017-04-07T12:47:29
oeisdata/seq/A015/A015320.seq
620a215fa7893e20d08df50afc99ae65
A015321
Gaussian binomial coefficient [ n,5 ] for q = -13.
[ "1", "-344772", "128773405047", "-47790911017216080", "17745052029585350965782", "-6588595858168804130787130344", "2446300028783605805772822454177234", "-908294062111964496034866469968025332240" ]
[ "sign", "easy" ]
22
5
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015321.seq
008d73ea60f252194c9df3ea5d03569e
A015322
Inverse of 1313th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T12:48:09
oeisdata/seq/A015/A015322.seq
4ff1d4bdd2dd3bbf04941e623772bb37
A015323
Gaussian binomial coefficient [ n,6 ] for q = -2.
[ "1", "43", "3655", "208335", "14208447", "882215391", "57344000415", "3642010817055", "233988483199263", "14946527496991519", "957498220445101855", "61250446192484546335", "3920970870875818419999", "250911985465716094666527" ]
[ "nonn", "easy" ]
21
6
2
[ "A015109", "A015323" ]
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015323.seq
c59d8166ed3ac7bf5b34c0b64c866015
A015324
Gaussian binomial coefficient [ n,6 ] for q = -3.
[ "1", "547", "448540", "315323620", "232740363922", "168973319623174", "123350523324917020", "89881489830655851460", "65533580739687859229563", "47771556642163840723529281", "34826053765400471578213696840" ]
[ "nonn", "easy" ]
24
6
2
[ "A015251", "A015268", "A015288", "A015306", "A015324", "A015340", "A015357", "A015375", "A015388" ]
null
Olivier Gérard, Dec 11 1999
2025-06-30T23:46:41
oeisdata/seq/A015/A015324.seq
6d5749b6ead4c35750ca41db5e02d5b9
A015325
Inverse of 1316th cyclotomic polynomial.
[ "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2022-09-12T12:36:51
oeisdata/seq/A015/A015325.seq
b57caf4f6c5358772139640100512b2a
A015326
Gaussian binomial coefficient [ n,6 ] for q = -4.
[ "1", "3277", "14317213", "57741320029", "237435704507485", "971588061067577437", "3980596286193864759389", "16303527542855381993658461", "66780267552779682073190144093", "273530932713230996784935699290205" ]
[ "nonn", "easy" ]
20
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015326.seq
384d301ebba70a188b1a1ca59d9cab16
A015327
Gaussian binomial coefficient [ n,6 ] for q = -5.
[ "1", "13021", "211929796", "3285123767796", "51412313316921546", "803060432690378496546", "12548622321219854387027796", "196069714237340352552410777796", "3063597127265150338968694860387171" ]
[ "nonn", "easy" ]
20
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015327.seq
6d9cb789ac8e012adf8c8538a7a64cfe
A015328
Gaussian binomial coefficient [ n,6 ] for q = -6.
[ "1", "39991", "1919128099", "89126228045659", "4161484248724884235", "194133243948726244454635", "9057674762915720387519905195", "422593364163884169440003098013995" ]
[ "nonn", "easy" ]
19
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015328.seq
6440c455f185a425d32e319f0449120d
A015329
Inverse of 1320th cyclotomic polynomial.
[ "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "-1", "0", "0", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "-1", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2017-04-07T12:49:21
oeisdata/seq/A015/A015329.seq
1aa3dcc2f1e80adea8dbda60828beb70
A015330
Gaussian binomial coefficient [ n,6 ] for q = -7.
[ "1", "102943", "12363454300", "1450319733570100", "170699761008128301202", "20081461365765141084602686", "2362583929682268848603506007900", "277955299234477922983349122651265300" ]
[ "nonn", "easy" ]
19
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015330.seq
af73701fc251f1065252fa64a875bb74
A015331
Gaussian binomial coefficient [ n,6 ] for q = -8.
[ "1", "233017", "62053592185", "16235267484138105", "4257017266254230145657", "1115917479276007905665796729", "292532187604809092430760283523705", "76685521221108550544352295253436844665" ]
[ "nonn", "easy" ]
29
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015331.seq
3e170730b48f666bb0afc6f2af691c5d
A015332
Gaussian binomial coefficient [ n,6 ] for q = -9.
[ "1", "478297", "257363962948", "136586400868021924", "72598678627860564552010", "38581260992855637306941215162", "20503702504565185601675453268123604", "10896505884544222754038383150470776581556" ]
[ "nonn", "easy" ]
22
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015332.seq
f584d32e7223fc4a31fbbe2a61b94122
A015333
Gaussian binomial coefficient [ n,6 ] for q = -10.
[ "1", "909091", "918273728191", "917356372736537191", "917448117456547208447191", "917438943076290926712489347191", "917439860515234003003416059680347191", "917439768771348869854580597622587770347191" ]
[ "nonn", "easy" ]
22
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015333.seq
423bb34dd538f8e6215e07178fa5bd9c
A015334
Gaussian binomial coefficient [ n,6 ] for q = -11.
[ "1", "1623931", "2900866919644", "5135204548028317764", "9097949506151746630368210", "16117472448301015835209097979510", "28553101725457044215054700034776694620" ]
[ "nonn", "easy" ]
29
6
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015334.seq
8e40b7d19ce8d6f144ef27a7c5a483cf
A015335
Inverse of 1326th cyclotomic polynomial.
[ "1", "1", "0", "-1", "-1", "0", "1", "1", "0", "-1", "-1", "0", "1", "0", "-1", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "-1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "0", "1", "0", "-1", "-1", "0", "1", "1", "0", "-1", "-1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T12:50:12
oeisdata/seq/A015/A015335.seq
73db82e3adb9cfb462b826b3bc21c673
A015336
Gaussian binomial coefficient [ n,6 ] for q = -12.
[ "1", "2756293", "8287800951445", "24732928003956401365", "73855689005170238163929557", "220531019414004693731359534452181", "658502316004926805411433599481195683285" ]
[ "nonn", "easy" ]
17
6
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015336.seq
aa425409942e9f245d2abbb69495423c
A015337
Gaussian binomial coefficient [ n,6 ] for q = -13.
[ "1", "4482037", "21762709934980", "104996653267533662740", "506816536013640476467362442", "2446300028783605805772822454177234", "11807825441932996339362317150047214843540" ]
[ "nonn", "easy" ]
21
6
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:18
oeisdata/seq/A015/A015337.seq
d8dae95134124c0aac74898188c7f65b
A015338
Gaussian binomial coefficient [ n,7 ] for q = -2.
[ "1", "-85", "14535", "-1652145", "225683007", "-28005209505", "3642010817055", "-462535373765985", "59438516325245343", "-7593183562134412385", "972884994173649887135", "-124468028808034701006945" ]
[ "sign", "easy" ]
26
7
2
[ "A015109", "A015338" ]
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015338.seq
f8a76668bed3b0c8b5980529566d1143
A015339
Inverse of 1330th cyclotomic polynomial.
[ "1", "1", "0", "0", "0", "-1", "-1", "-1", "-1", "0", "1", "1", "1", "1", "1", "0", "-1", "-1", "-1", "-2", "-1", "0", "0", "1", "2", "1", "1", "1", "0", "-1", "-1", "-1", "-1", "-1", "0", "1", "1", "1", "2", "1", "0", "0", "-1", "-2", "-1", "-1", "-1", "0", "1", "1", "1", "1", "1", "0", "-1", "-1", "-1", "-2", "-1", "0", "0", "1", "2", "1", "1", "1", "0", "-1", "-1", "-1", "-1", "-1", "0", "1", "1", "1", "2", "1", "0", "0", "-1" ]
[ "sign" ]
11
0
20
null
null
Simon Plouffe
2017-04-07T12:50:55
oeisdata/seq/A015/A015339.seq
eeac376b879e0ed815f3cc9c4c441731
A015340
Gaussian binomial coefficient [ n,7 ] for q = -3.
[ "1", "-1640", "4035220", "-8509702520", "18843459775162", "-41041673208656120", "89881489830655851460", "-196480936769813691291560", "429769342296322230713871283", "-939857780045414554730512966640" ]
[ "sign", "easy" ]
25
7
2
[ "A015251", "A015268", "A015288", "A015306", "A015324", "A015340", "A015357", "A015375", "A015388" ]
null
Olivier Gérard, Dec 11 1999
2025-06-30T23:46:37
oeisdata/seq/A015/A015340.seq
5870affeaf978df37b806cd58be00082
A015341
Gaussian binomial coefficient [ n,7 ] for q = -4.
[ "1", "-13107", "229062301", "-3695215419555", "60779845138496605", "-994845394688060798883", "16303527542855381993658461", "-267100691734599723202106566563", "4376244513647234644625387176712285" ]
[ "sign", "easy" ]
19
7
2
null
null
Olivier Gérard, Dec 11 1999
2019-12-07T12:18:19
oeisdata/seq/A015/A015341.seq
2c6b60536e40c4e896438130fd2a37b7
A015342
Inverse of 1333rd cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
24
0
1
null
null
Simon Plouffe
2017-04-07T12:51:46
oeisdata/seq/A015/A015342.seq
ae4a5e3411ae0b5d0d3256f3ca348f1f
A015343
Inverse of 1334th cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T12:52:32
oeisdata/seq/A015/A015343.seq
698db7e0722bc61eb19dba480102f584
A015344
Gaussian binomial coefficient [ n,7 ] for q = -5.
[ "1", "-65104", "5298179796", "-410635172794704", "32132285187903171546", "-2509531719872244898534704", "196069714237340352552410777796", "-15317750355077977702804539604534704", "1196702310087594273181943625299134137171" ]
[ "sign", "easy" ]
20
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015344.seq
40739cb7237d1835543eea06bd0d25cc
A015345
Gaussian binomial coefficient [ n,7 ] for q = -6.
[ "1", "-239945", "69088371619", "-19251196169490725", "5393264335151280477835", "-1509574711680960125598763925", "422593364163884169440003098013995", "-118298673397216914972187267242547690325", "33116077152651051199781730118147946460139435" ]
[ "sign", "easy" ]
20
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015345.seq
ada3795d7006b295062f000b6323b656
A015346
Gaussian binomial coefficient [ n,7 ] for q = -7.
[ "1", "-720600", "605808540100", "-497459062806004200", "409849628721453245181802", "-337508711324786004755672161800", "277955299234477922983349122651265300", "-228907863042160417649553303166468327692600" ]
[ "sign", "easy" ]
18
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015346.seq
6b9bd6e2c6ed668729f507a088c2bf7f
A015347
Gaussian binomial coefficient [ n,7 ] for q = -8.
[ "1", "-1864135", "3971428035705", "-8312452980450674055", "17436734410124346225937017", "-36566366524181816928510601278855", "76685521221108550544352295253436844665", "-160821117514369017882638960343040332226049415", "337266348340144487783661620118192764663158488484473" ]
[ "sign", "easy" ]
18
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015347.seq
3c6db7897bf5c09eee26b817deb1446a
A015348
Inverse of 1339th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2021-07-25T11:31:56
oeisdata/seq/A015/A015348.seq
956d65f1adef2a4c21e83d66e6ef95cf
A015349
Gaussian binomial coefficient [ n,7 ] for q = -9.
[ "1", "-4304672", "20846476694116", "-99571465386311288480", "476319830905927777714449130", "-2278184404047301621409794099651808", "10896505884544222754038383150470776581556", "-52117638957586712017437457380440909324731738208" ]
[ "sign", "easy" ]
21
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015349.seq
13b1665fbb3bf8047ce1cb3f86671802
A015350
Gaussian binomial coefficient [ n,7 ] for q = -10.
[ "1", "-9090909", "91827363728191", "-917356280909173462809", "9174480257209191175298447191", "-91743885133148835462057759420652809", "917439768771348869854580597622587770347191" ]
[ "sign", "easy" ]
21
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015350.seq
a7ebe4d982a12a9e971275c0cb65bdb0
A015351
Inverse of 1342nd cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
18
0
1
null
null
Simon Plouffe
2021-06-05T19:24:02
oeisdata/seq/A015/A015351.seq
40de100942cc870bf200113266df94cd
A015352
Inverse of 1343rd cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1" ]
[ "sign" ]
14
0
1
null
null
Simon Plouffe
2017-04-07T12:54:53
oeisdata/seq/A015/A015352.seq
75466afc2da067248ec8f39d533e2cb4
A015353
Gaussian binomial coefficient [ n,7 ] for q = -11.
[ "1", "-17863240", "351004879413684", "-6834956902420811530200", "133203071884610819994409432410", "-2595734922068255016665440444288632600", "50583558850117484638411502782868591609069220" ]
[ "sign", "easy" ]
16
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015353.seq
fe516338eff40f96e7fb95c1ad2e2f10
A015354
Gaussian binomial coefficient [ n,7 ] for q = -12.
[ "1", "-33075515", "1193443303932565", "-42738498397393357626155", "1531471524472711661173885667797", "-54875173091354091477849994502919434795", "1966277324678482270775562667263264108238642645", "-70455269606355713779351701809782497716434153197609515" ]
[ "sign", "easy" ]
21
7
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:39
oeisdata/seq/A015/A015354.seq
2d5ba7060dd72d98efef5c928386f9a3
A015355
Gaussian binomial coefficient [ n,7 ] for q=-13.
[ "1", "-58266480", "3677897920745140", "-230677643550873536294640", "14475186854407942097510802411322", "-908294062111964496034866469968025332240" ]
[ "sign", "easy" ]
24
7
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015355.seq
a5edc548b4f735d71dad075b9a42f532
A015356
Gaussian binomial coefficient [ n,8 ] for q=-2.
[ "1", "171", "58311", "13275471", "3624203583", "899790907743", "233988483199263", "59438516325245343", "15275698695588053151", "3902985682508407194271", "1000137219716325891620511", "255910660218571393553843871" ]
[ "nonn", "easy" ]
27
8
2
[ "A015109", "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015356.seq
f0e770551794083e0ad23ca476ee7f80
A015357
Gaussian binomial coefficient [ n,8 ] for q=-3.
[ "1", "4921", "36321901", "229798289941", "1526550040078063", "9974653139743515223", "65533580739687859229563", "429769342296322230713871283", "2820146424148466477944423359046", "18502040831058043147238631145734166" ]
[ "nonn", "easy" ]
29
8
2
[ "A015251", "A015268", "A015288", "A015306", "A015324", "A015340", "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370", "A015375", "A015388" ]
null
Olivier Gérard
2025-06-30T23:46:33
oeisdata/seq/A015/A015357.seq
08beb31754afee45633d7c4679ef5ef4
A015358
Inverse of 1349th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2017-04-07T12:55:30
oeisdata/seq/A015/A015358.seq
28b27869aacd422d7d7cb6e9f8598e8b
A015359
Gaussian binomial coefficient [ n,8 ] for q=-4.
[ "1", "52429", "3665049245", "236497451900765", "15559876852907031645", "1018737244037427165087837", "66780267552779682073190144093", "4376244513647234644625387176712285", "286805936690898816904813999400193022045" ]
[ "nonn", "easy" ]
22
8
2
[ "A014985", "A015253", "A015271", "A015289", "A015308", "A015326", "A015341", "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370", "A015376", "A015390", "A015408", "A015425" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015359.seq
3e930bb0543efaf63dd6c13de71eb070
A015360
Gaussian binomial coefficient [ n,8 ] for q=-5.
[ "1", "325521", "132454820421", "51329529054158421", "20082729571968536374671", "7842306707330337276457324671", "3063597127265150338968694860387171", "1196702310087594273181943625299134137171", "467463036580276600555969910576099571466559046" ]
[ "nonn", "easy" ]
26
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015360.seq
4589a22c041e6d5c0a8dd9f0d794b64f
A015361
Gaussian binomial coefficient [ n,8 ] for q=-6.
[ "1", "1439671", "2487182817955", "4158260859792814555", "6989674736616919292088715", "11738459947705882553575280369515", "19716527736890127515275338116221320235", "33116077152651051199781730118147946460139435", "55622326158904300663023790195853299389540017396395" ]
[ "nonn", "easy" ]
21
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015361.seq
5473492f155024254d64a14245ecfaeb
A015362
Inverse of 1353rd cyclotomic polynomial.
[ "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
14
0
1
null
null
Simon Plouffe
2017-04-07T12:56:13
oeisdata/seq/A015/A015362.seq
714230f3a36d70d794f9123ebce9d6f2
A015363
Gaussian binomial coefficient [ n,8 ] for q=-7.
[ "1", "5044201", "29684623509101", "170628488227082949701", "984049129188697468764456303", "5672509895284807570626050787828903", "32701168672146988445875611556849499108603", "188515500954498588979354521825234382842445990403" ]
[ "nonn", "easy" ]
25
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015363.seq
dcb6cdec2c87bd950d795c7a7efb620d
A015364
Gaussian binomial coefficient [ n,8 ] for q=-8.
[ "1", "14913081", "254171409198201", "4255976180162154314361", "71420868399845502303592335993", "1198206769685258176958937686297856633", "20102650473193049559156865045854634505718393" ]
[ "nonn", "easy" ]
20
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015364.seq
c1fd6192cbee812cf72e1c2eff5df190
A015365
Gaussian binomial coefficient [ n,8 ] for q=-9.
[ "1", "38742049", "1688564650965445", "72587599955185580267365", "3125134483161392104770081009295", "134524513999723596604019036560420619887", "5790850118312580284352508983888376537699322083" ]
[ "nonn", "easy" ]
19
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015365.seq
c72f4f15f3197f281e6054d09a6e931e
A015366
Inverse of 1357th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2022-04-21T19:15:04
oeisdata/seq/A015/A015366.seq
4e6fea35197e7aed491fc16ca4dfe046
A015367
Gaussian binomial coefficient [ n,8 ] for q=-10.
[ "1", "90909091", "9182736463728191", "917356290091909926537191", "91744803489448201844894398447191", "9174388605059687035653977786959679347191", "917439777945737474914267633276565557306870347191" ]
[ "nonn", "easy" ]
20
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015367.seq
7e54b3d7cdc5b97e88c04c573b6f88f0
A015368
Gaussian binomial coefficient [ n,8 ] for q=-11.
[ "1", "196495641", "42471590605551405", "9097327679593690752247605", "1950226184559914695131839252162415", "418045706884240723248900544124967821025015", "89611860518118688087749643530422009144522097477435" ]
[ "nonn", "easy" ]
20
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015368.seq
8100761c95b0322c56fc2d866c1942c1
A015369
Gaussian binomial coefficient [ n,8 ] for q=-12.
[ "1", "396906181", "171855836163195541", "73852125402551558141191381", "31756593605318274408653251348629973", "13654699102424414895934644240803700147539413", "5871272644707452307243912611380074655778555267227093" ]
[ "nonn", "easy" ]
23
8
2
[ "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015369.seq
aac95a3e98997777584808e16b8e06bd
A015370
Gaussian binomial coefficient [ n,8 ] for q=-13.
[ "1", "757464241", "621564749363392901", "506798783502833908602716981", "413425812255544017749839936272484623", "337243227617163445881817693983677965955870943", "275099718210633054941121644140453635236773122223471523" ]
[ "nonn", "easy" ]
23
8
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015356", "A015357", "A015359", "A015360", "A015361", "A015363", "A015364", "A015365", "A015367", "A015368", "A015369", "A015370", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015370.seq
754d28bf2c678367083a00e2c9d7b606
A015371
Gaussian binomial coefficient [ n,9 ] for q=-2.
[ "1", "-341", "232903", "-105970865", "57881286463", "-28735427761313", "14946527496991519", "-7593183562134412385", "3902985682508407194271", "-1994425683761796076272481", "1022146087305755916943130783", "-523082886040328458081329117025" ]
[ "sign", "easy" ]
21
9
2
[ "A015109", "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015371.seq
af112e5521acc5a85ecc34b5dddbcae3
A015372
Inverse of 1363rd cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "0" ]
[ "sign" ]
14
0
1
null
null
Simon Plouffe
2017-04-07T12:57:29
oeisdata/seq/A015/A015372.seq
d9022b6d8bd9db73a4898af68f10fae1
A015373
Inverse of 1364th cyclotomic polynomial.
[ "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2017-04-07T12:58:06
oeisdata/seq/A015/A015373.seq
c1e7ec3b06b5a21900c732db285bda57
A015374
Inverse of 1365th cyclotomic polynomial.
[ "1", "1", "1", "0", "0", "-1", "-1", "-2", "-1", "-1", "0", "0", "1", "0", "0", "0", "1", "1", "1", "1", "1", "1", "0", "0", "-1", "-1", "-2", "-1", "-2", "-1", "-1", "1", "1", "2", "1", "2", "1", "1", "0", "1", "0", "0", "-1", "-1", "-2", "-2", "-2", "-1", "-1", "-1", "0", "1", "1", "1", "2", "2", "2", "1", "1", "0", "0", "-1", "0", "-1", "-1", "-1", "0", "-1", "-1", "-1", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0" ]
[ "sign" ]
14
0
8
null
null
Simon Plouffe
2017-04-07T12:58:44
oeisdata/seq/A015/A015374.seq
e9b1b515ce6b20f4f6e8356583f1ae99
A015375
Gaussian binomial coefficient [ n,9 ] for q=-3.
[ "1", "-14762", "326882347", "-6204226946060", "123644349019377043", "-2423717068608654822146", "47771556642163840723529281", "-939857780045414554730512966640", "18502040831058043147238631145734166", "-364157167636884405223950738210339855212" ]
[ "sign", "easy" ]
26
9
2
[ "A015251", "A015268", "A015288", "A015306", "A015324", "A015340", "A015357", "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385", "A015388" ]
null
Olivier Gérard
2025-06-30T23:46:26
oeisdata/seq/A015/A015375.seq
3adc19abb82d374add3882ef758ed075
A015376
Gaussian binomial coefficient [ n,9 ] for q=-4.
[ "1", "-209715", "58640578205", "-15135778281070755", "3983313338565919030365", "-1043182954580986851130914723", "273530932713230996784935699290205", "-71700116580663579186545558567554787235", "18796042166858164201094703719132482337953885" ]
[ "sign", "easy" ]
21
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015376.seq
b4d13980b873ea8f019c82009afcb1b9
A015377
Gaussian binomial coefficient [ n,9 ] for q=-5.
[ "1", "-1627604", "3311368882921", "-6416187820400919704", "12551699566292514833249671", "-24507195908707737696414306347204", "47868680606322065338648160779243199671", "-93492320106912696270274007078334075223284704" ]
[ "sign", "easy" ]
26
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2024-08-04T18:58:03
oeisdata/seq/A015/A015377.seq
096be2f8dbc65a809d180be20afd19ab
A015378
Gaussian binomial coefficient [ n,9 ] for q=-6.
[ "1", "-8638025", "89538572808355", "-898184256176675135525", "9058617560471271225871839115", "-91278255494743382265330154281509525", "919894226814090294609303909820267635374635", "-9270381253910297854571803793049953719997957501525" ]
[ "sign", "easy" ]
19
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015378.seq
7e5ddfcf92625d3833644b5e321a098b
A015379
Gaussian binomial coefficient [ n,9 ] for q=-7.
[ "1", "-35309406", "1454546516636543", "-58525570007342935110900", "2362701900656492615160524472603", "-95337871447349860183019420430515900118", "3847259697771549596318959641032366290112134229" ]
[ "sign", "easy" ]
17
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015379.seq
df291adeb317a5a43fcf83a93d3c90fb
A015380
Gaussian binomial coefficient [ n,9 ] for q=-8.
[ "1", "-119304647", "16266970069380217", "-2179059787976052939572615", "292539874786707389459461268654713", "-39262839136506665155883080645146897495431", "5269789166381879647128952074697436662720144919161" ]
[ "sign", "easy" ]
17
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015380.seq
27b55b056252a8ef8e6f08ae96a9ba69
A015381
Gaussian binomial coefficient [ n,9 ] for q=-9.
[ "1", "-348678440", "136773736379522605", "-52916360230556551635386480", "20504007291105533368839949866598015", "-7943538006665671364765186721016327317109448", "3077495169782617972230910362141435994555138110002155" ]
[ "sign", "easy" ]
17
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015381.seq
24018ae75c2d58d3de282b1762968116
A015382
Gaussian binomial coefficient [ n,9 ] for q=-10.
[ "1", "-909090909", "918273645463728191", "-917356289173636281073462809", "917448033977125729275307703398447191", "-917438859588520669588272049420660231320652809", "917439777028298615325746963688293507886210115870347191" ]
[ "sign", "easy" ]
12
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015382.seq
d0734848ad1f631f5c87478bc63e0977
A015383
Gaussian binomial coefficient [ n,9 ] for q=-11.
[ "1", "-2161452050", "5139062461110267955", "-12108543136400139930131294300", "28553261556033167915025118560778623715", "-67326679110860591163925513616845073983121067050", "158752877164012182076561255078472431325233637546101158985" ]
[ "sign", "easy" ]
12
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015383.seq
f35b03831c110978216b2108c8a0ece1
A015384
Gaussian binomial coefficient [ n,9 ] for q=-12.
[ "1", "-4762874171", "24747240402737283733", "-127616472670861852065241422635", "658504724872263265466971967899949697493", "-3397726086395967282512946130260694347212577518123" ]
[ "sign", "easy" ]
19
9
2
[ "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015384.seq
c9202fd32986e75671fb8cd39347ceaf
A015385
Gaussian binomial coefficient [ n,9 ] for q=-13.
[ "1", "-9847035132", "105044442632566365137", "-1113436927250681654567602842120", "11807854622717155763702496765310830475383", "-125216049699851612689080581288579246248342359563916" ]
[ "sign", "easy" ]
15
9
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015371", "A015375", "A015376", "A015377", "A015378", "A015379", "A015380", "A015381", "A015382", "A015383", "A015384", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015385.seq
6db31c536d608108f2b58bb24a002ee0
A015386
Gaussian binomial coefficient [ n,10 ] for q=-2.
[ "1", "683", "932295", "848699215", "926949282623", "920460637644639", "957498220445101855", "972884994173649887135", "1000137219716325891620511", "1022146087305755916943130783", "1047699739488399814866709052575", "1072321450350081081965428740719775" ]
[ "nonn", "easy" ]
26
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015386.seq
3c69017ad6ed4be50eea81cd1126dda9
A015387
Inverse of 1378th cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T12:59:21
oeisdata/seq/A015/A015387.seq
feeb1e184bc72a2192f51b93d73de6c2
A015388
Gaussian binomial coefficient [ n,10 ] for q=-3.
[ "1", "44287", "2941985410", "167517069529030", "10015359787639069513", "588973263031690760850991", "34826053765400471578213696840", "2055503791013087031667210071738520", "121393945396362834176064326157233601646" ]
[ "nonn", "easy" ]
23
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015388.seq
72e3e0db83dbef3d76f9786a904a03ff
A015389
Inverse of 1380th cyclotomic polynomial.
[ "1", "0", "1", "0", "0", "0", "-1", "0", "-1", "0", "-1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "-1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "-1", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2017-05-22T10:00:38
oeisdata/seq/A015/A015389.seq
9284f1aa5f246a9f0edbb790e6d64e1f
A015390
Gaussian binomial coefficient [ n,10 ] for q=-4.
[ "1", "838861", "938250090141", "968690748238618461", "1019729183363623510391901", "1068220365220113899181567068253", "1120383768613759382944995805859747933", "1174735830441360695151745376566623493806173", "1231818594183047090443637654682442929123639613533" ]
[ "nonn", "easy" ]
23
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015390.seq
8a1293393c511ce8190b3776fa967d13
A015391
Gaussian binomial coefficient [ n,10 ] for q=-5.
[ "1", "8138021", "82784230211046", "802023560334345174046", "7844813030956382105126218421", "76584995059524711257676812461230921", "747948211058777330441088769852487456090296", "7304088256300765454892487244083619479306573590296" ]
[ "nonn", "easy" ]
21
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015391.seq
41eb03f13192afb02b8725e7ed3d9ac8
A015392
Gaussian binomial coefficient [ n,10 ] for q=-6.
[ "1", "51828151", "3223388672928931", "194007802557550502202331", "11739968552378570066280405695371", "709779726467093092873777345973423761771", "42918585756017923252384776090351752769462732331" ]
[ "nonn", "easy" ]
23
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015392.seq
4114e8b730f7f38f798ad9730df316f5
A015393
Gaussian binomial coefficient [ n,10 ] for q=-7.
[ "1", "247165843", "71272779562356450", "20074270583791406305395150", "5672847283550509352791825564114953", "1602343611088456383646516751967506297398179", "452626257785468649545785666454333613632908777305800" ]
[ "nonn", "easy" ]
19
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015393.seq
8fffdd6ebf9dcdd7c267d45fd139c74e
A015394
Gaussian binomial coefficient [ n,10 ] for q=-8.
[ "1", "954437177", "1041086085394771065", "1115678612484825190455949945", "1198243328242032079710778546865654393", "1286564714023293732070008866290952083995937401", "1381443612518576172240265744739493702803061753684478585" ]
[ "nonn", "easy" ]
21
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015394.seq
a0e869df200d401718794d1262e3c70f
A015395
Inverse of 1386th cyclotomic polynomial.
[ "1", "0", "0", "1", "0", "0", "0", "0", "0", "-1", "0", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "-1", "0", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "-1", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2025-02-11T12:47:16
oeisdata/seq/A015/A015395.seq
279e26fe7436a019b7c6507f50271587
A015396
Inverse of 1387th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T13:01:38
oeisdata/seq/A015/A015396.seq
c6329efc27c2f378896c4b7ae2329bbc
A015397
Gaussian binomial coefficient [ n,10 ] for q=-9.
[ "1", "3138105961", "11078672649879436966", "38576026619154398792076180886", "134526791875519431052113309866825757301", "469057975890128020293538941741406421614821552253", "1635507110993502253670495254060345828123783573932476807608" ]
[ "nonn", "easy" ]
20
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015397.seq
e428b74c6345507145415ef1ca9e8e5a
A015398
Gaussian binomial coefficient [ n,10 ] for q=-10.
[ "1", "9090909091", "91827364555463728191", "917356289265463645628926537191", "9174480340688613582018540679613398447191", "91743885968026547299515818524084563811678679347191", "917439777120042501293773510987809326410294679682025870347191" ]
[ "nonn", "easy" ]
21
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015398.seq
8aa404b28670dc99c45707566722bcb1
A015399
Gaussian binomial coefficient [ n,10 ] for q=-11.
[ "1", "23775972551", "621826557818118395106", "16116470915170412804822871108406", "418048302457998082359053173653182700919721", "10843028997901257369999365975865569183708813670389271" ]
[ "nonn", "easy" ]
19
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015399.seq
60c47dd008681688bdb2f750804e867a
A015400
Inverse of 1391st cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
16
0
1
null
null
Simon Plouffe
2022-08-03T15:45:54
oeisdata/seq/A015/A015400.seq
ae1fc6de63ee415bc80fe4a5bd984d37