sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A015401
Gaussian binomial coefficient [ n,10 ] for q=-12.
[ "1", "57154490053", "3563602618051323347605", "220521264778812882986788501660885", "13654753975171772337501943609360145428875733", "845462977543736084817433183822531039414960234418458069" ]
[ "nonn", "easy" ]
23
10
2
[ "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015401.seq
a01a26ac55c31c2a78b273a8a7938e80
A015402
Gaussian binomial coefficient [ n,10 ] for q=-13.
[ "1", "128011456717", "17752510805031727164870", "2446220929187500105890055171302510", "337244135881870906696294510219932684378716373", "46491842741544248966048667175076748587505712393943779761" ]
[ "nonn", "easy" ]
20
10
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015385", "A015386", "A015388", "A015390", "A015391", "A015392", "A015393", "A015394", "A015397", "A015398", "A015399", "A015401", "A015402", "A015422", "A015438" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015402.seq
fc20d5162a29eb972d6ea8ead7445c1b
A015403
Inverse of 1394th cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2017-06-15T11:55:59
oeisdata/seq/A015/A015403.seq
aefd01b39a9e1192b2a550c9a36a9073
A015404
Inverse of 1395th cyclotomic polynomial.
[ "1", "0", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "0", "-1", "0", "0", "1", "0", "0", "0", "0", "0", "-1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2022-10-05T14:03:25
oeisdata/seq/A015/A015404.seq
5c4a5ee92c82b2a6688afec0c24d13b1
A015405
Gaussian binomial coefficient [ n,11 ] for q=-2.
[ "1", "-1365", "3727815", "-6785865905", "14824402656063", "-29439916001972385", "61250446192484546335", "-124468028808034701006945", "255910660218571393553843871", "-523082886040328458081329117025" ]
[ "sign", "easy" ]
17
11
2
[ "A015109", "A015405" ]
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015405.seq
1c49144a708f5dccd10a5e562c250a00
A015406
Inverse of 1397th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T13:04:31
oeisdata/seq/A015/A015406.seq
6d06362c58832c4338d4dd8e1f8d6366
A015407
Gaussian binomial coefficient [ n,11 ] for q=-3.
[ "1", "-132860", "26477735830", "-4522934399547980", "811239619864365082573", "-143119691677080990521708240", "25388050075285266699527263288120", "-4495361402895546052989488899628855120" ]
[ "sign", "easy" ]
20
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015407.seq
d9a5d1749c469bb08ba6cc2695dd127f
A015408
Gaussian binomial coefficient [ n,11 ] for q=-4.
[ "1", "-3355443", "15011998086813", "-61996192875273494691", "261050608944894743386831965", "-1093857392934787687867181291059107", "4589090822384565497755014953620236474461", "-19246867256860431244800698494652605702283863971" ]
[ "sign", "easy" ]
19
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015408.seq
d1fdfdd4210481c61d90b2f6629eef7c
A015409
Gaussian binomial coefficient [ n,11 ] for q=-5.
[ "1", "-40690104", "2069605714586046", "-100252942972187432169704", "4903008044094795843516454343421", "-239328104658006678585444195424892284704", "11686690558465291130135333443500921076518590296", "-570631883336806742698184435808699328319904985223284704" ]
[ "sign", "easy" ]
22
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015409.seq
32ef8164dcdf3886cfa5f5ef5b0b85a4
A015410
Gaussian binomial coefficient [ n,11 ] for q=-6.
[ "1", "-310968905", "116041991914472611", "-41905685236388916561230885", "15214999201976941569510489219969931", "-5519247137793116688209551072778853951561365", "2002409531513525089470147425061900304433199288073771" ]
[ "sign", "easy" ]
18
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015410.seq
b091663c93713c0406ada83e811f94a6
A015411
Gaussian binomial coefficient [ n,11 ] for q=-7.
[ "1", "-1730160900", "3492366196825305150", "-6885474806748086165925231300", "13620506320919298149305087013514770853", "-26930589057943180119027708901012791326856423600", "53251026575272012092468957753658186409285293414393640600" ]
[ "sign", "easy" ]
19
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015411.seq
d01100426747eb5eb71b2d34d394afbf
A015412
Inverse of 1403rd cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1" ]
[ "sign" ]
16
0
1
null
null
Simon Plouffe
2021-12-27T17:51:40
oeisdata/seq/A015/A015412.seq
263dd8587e584a2f7f9916da25f83d0b
A015413
Gaussian binomial coefficient [ n,11 ] for q=-8.
[ "1", "-7635497415", "66629509457629850745", "-571227449525600988055816521095", "4908004671908135948969747939905903872633", "-42158152544207284340561914581652169948472972883335" ]
[ "sign", "easy" ]
18
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015413.seq
3c84cf976bf38cc95dcedc2e5bdf6d0b
A015414
Gaussian binomial coefficient [ n,11 ] for q=-9.
[ "1", "-28242953648", "897372484611991440598", "-28121923404466184234811544425296", "882630281467161063728449241801432249226565", "-27697404417453539188846019907159858548132165589760832", "869175534545800426775448129124238227336771807766117241522242296" ]
[ "sign", "easy" ]
18
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015414.seq
249d183659371a39cf923b4ea2ba7266
A015415
Inverse of 1406th cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2017-06-16T19:19:53
oeisdata/seq/A015/A015415.seq
1e7b25ad2c9aef851c81077a1d04c00d
A015416
Inverse of 1407th cyclotomic polynomial.
[ "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "-1", "1", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2020-12-05T12:51:11
oeisdata/seq/A015/A015416.seq
8c78dc7651ff76fa4f137fee60f87701
A015417
Gaussian binomial coefficient [ n,11 ] for q=-10.
[ "1", "-90909090909", "9182736455455463728191", "-917356289256280909173471073462809", "91744803405968779530929125886960513398447191", "-9174388596710909926545613072877527255280907421320652809" ]
[ "sign", "easy" ]
17
11
2
null
null
Olivier Gérard
2022-09-08T08:44:39
oeisdata/seq/A015/A015417.seq
4bcddec7d86b8c70de60eff0ea4904ce
A015418
Gaussian binomial coefficient [ n,11 ] for q=-11.
[ "1", "-261535698060", "75241013495730790109766", "-21451022788016578429723510655178620", "6120645196266098901030880937026524413510456541", "-1746280663134874755499501790878094901668461626016352027280" ]
[ "sign", "easy" ]
18
11
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015418.seq
295d91261844e7a03e87d7f319b2ac9f
A015419
Inverse of 1410th cyclotomic polynomial.
[ "1", "1", "0", "-1", "-1", "-1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "0", "1", "1", "1", "0", "-1", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T13:58:14
oeisdata/seq/A015/A015419.seq
cf88d53a2b9a10523594748e3556bb8f
A015420
Inverse of 1411th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T13:58:54
oeisdata/seq/A015/A015420.seq
5f53e10fba346dcf36d6a1c600a0b0fb
A015421
Gaussian binomial coefficient [ n,11 ] for q=-12.
[ "1", "-685853880635", "513158776998704708174485", "-381060745537275503024171826161834795", "283144978428780810444903027180667803787005364693", "-210378243627879792478862753186483140572522717247026752860715" ]
[ "sign", "easy" ]
22
11
2
null
null
Olivier Gérard
2024-12-30T21:53:36
oeisdata/seq/A015/A015421.seq
79ac97854cca3034757892e51b7d5991
A015422
Gaussian binomial coefficient [ n,11 ] for q=-13.
[ "1", "-1664148937320", "3000174326048697741925710", "-5374347381421937558314402513609688760", "9632029764916740618771445568833182996026908640493", "-17262095767026556801586191040816999767731925288888540910160480" ]
[ "sign", "easy" ]
21
11
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015422.seq
31690abf8b3b03f1d6d17177e3046db5
A015423
Gaussian binomial coefficient [ n,12 ] for q=-2.
[ "1", "2731", "14913991", "54301841231", "237244744338239", "942314556807454559", "3920970870875818419999", "15935828658299317547308959", "65529064844612576067331339935", "267883966717492783113707839256735" ]
[ "nonn", "easy" ]
22
12
2
[ "A015109", "A015423" ]
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015423.seq
399a525ccc66fc9c9e6f7ca78aff3671
A015424
Gaussian binomial coefficient [ n,12 ] for q=-3.
[ "1", "398581", "238300021051", "122119467087816511", "65710531328480659504924", "34778150788062009177434607244", "18507923283033747485964552371646724", "9831373896055842251635498188040677794164" ]
[ "nonn", "easy" ]
22
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015424.seq
3b83bf81fd4f897b523799340f5bdb02
A015425
Gaussian binomial coefficient [ n,12 ] for q=-4.
[ "1", "13421773", "240191982810781", "3967756584209486471005", "66828959857649638516515454045", "1120110037194182450025632158559979613", "18796917128597217472986991275660647159371869" ]
[ "nonn", "easy" ]
19
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015425.seq
9b4d5051ae6379cf78f16170e67b0090
A015426
Inverse of 1417th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T13:59:32
oeisdata/seq/A015/A015426.seq
47a8240f81320be9ddd1272b994b9f09
A015427
Gaussian binomial coefficient [ n,12 ] for q=-5.
[ "1", "203450521", "51740143068101671", "12531617923263572089314671", "3064380040090865325461356053952796", "747900330120650910670378436164144443652796", "182604540723920504029015495725080327984747417027796", "44580616068292567497216163076570130750072904955316534527796" ]
[ "nonn", "easy" ]
21
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015427.seq
46c0ba932cbaa061b29e7ff2a9cdc431
A015428
Inverse of 1419th cyclotomic polynomial.
[ "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2018-01-15T00:28:11
oeisdata/seq/A015/A015428.seq
0247e0f241c6126c19c07793e4213e25
A015429
Gaussian binomial coefficient [ n,12 ] for q=-6.
[ "1", "1865813431", "4177511710786827427", "9051628015237517688012698587", "19718638974813744289323111717093729163", "42917665763197914342331213431251480044434903403" ]
[ "nonn", "easy" ]
18
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015429.seq
8d5d808b8ca378b9dd4d7d9445272a6e
A015430
Gaussian binomial coefficient [ n,12 ] for q=-7.
[ "1", "12111126301", "171125943656551078651", "2361717858885719498568905414551", "32702835678888952715367233418017870232604", "452622410329553863939387656214689217248493781677804" ]
[ "nonn", "easy" ]
19
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015430.seq
fd2756d38a13fd5313444128cc3e613d
A015431
Gaussian binomial coefficient [ n,12 ] for q=-8.
[ "1", "61083979321", "4264288605349394427001", "292468454161371994489927453227641", "20103187136428193301141459556344509715532409", "1381438342588687480407961010312719764427906885156653689", "94932082182896025238148883982319050364413593497347296287825382009" ]
[ "nonn", "easy" ]
19
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015431.seq
d1482211c6c4039264bbf2592208167c
A015432
Gaussian binomial coefficient [ n,12 ] for q=-9.
[ "1", "254186582833", "72687171253825493271271", "20500882161928535478431441379312055", "5790937276726544621284284010937628428554805020", "1635504033452004972838895174119166771419593874338342173788", "461915515256190228639422934162753182948200513062452706826160310202324" ]
[ "nonn", "easy" ]
20
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015432.seq
f4c12b96e382c382971de5e20babba88
A015433
Gaussian binomial coefficient [ n,12 ] for q=-10.
[ "1", "909090909091", "918273645546455463728191", "917356289257199182819017528926537191", "917448034060605151598548458052424151513398447191", "917438859672008440688621912439351273986143166283578679347191", "917439777111785551556734609501952335249856503700731106092153925870347191" ]
[ "nonn", "easy" ]
20
12
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015433.seq
441e3ad3a23655d519474cf228cefa9c
A015434
Gaussian binomial coefficient [ n,12 ] for q=-11.
[ "1", "2876892678661", "9104162632986302495960347", "28551311330859170052594978984538703567", "89612366318560505321323986969057938917191132920348", "281240247078624326614268823428029385995576471270476701478391628" ]
[ "nonn", "easy" ]
20
12
2
null
null
Olivier Gérard, Dec 11 1999
2022-09-08T08:44:40
oeisdata/seq/A015/A015434.seq
91aaf0b2ebf47cea6c957fb07c7ecd66
A015435
Inverse of 1426th cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T14:00:52
oeisdata/seq/A015/A015435.seq
8da95ce6c9f67ffa558b216c51d9a0a5
A015436
Gaussian binomial coefficient [ n,12 ] for q=-12.
[ "1", "8230246567621", "73894863887821708223693461", "658472968288485964089656737315874219221", "5871294272699857358353797657582417236064659116493269", "52348839118418455816373076458257326632599555195248225626953928149" ]
[ "nonn", "easy" ]
23
12
2
null
null
Olivier Gérard
2024-12-30T21:53:30
oeisdata/seq/A015/A015436.seq
112c08d3caab695550ff733917461597
A015437
Inverse of 1428th cyclotomic polynomial.
[ "1", "0", "1", "0", "0", "0", "-1", "0", "-1", "0", "0", "0", "1", "0", "0", "0", "-1", "0", "-1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "-1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "-1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "-1", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "-1", "0", "-1", "0", "0", "0", "1" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2017-04-07T14:02:20
oeisdata/seq/A015/A015437.seq
00f31fd91745b940e8aff71d122cd05d
A015438
Gaussian binomial coefficient [ n,12 ] for q=-13.
[ "1", "21633936185161", "507029461102251552321630151", "11807441196984503845077844573952807835871", "275100402115798836253928241395289617394098490488956444", "6409295323626866454933457428954320223001885025904687118646704057084" ]
[ "nonn", "easy" ]
22
12
2
[ "A015265", "A015286", "A015303", "A015321", "A015337", "A015355", "A015370", "A015385", "A015402", "A015422", "A015438" ]
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015438.seq
6678fe8bdca5fbd07909614b367dc6f5
A015439
Inverse of 1430th cyclotomic polynomial.
[ "1", "1", "0", "0", "0", "-1", "-1", "0", "0", "0", "1", "0", "-1", "-1", "-1", "-1", "0", "1", "1", "1", "1", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "1", "1", "1", "0", "-1", "-1", "-1", "-1" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T14:05:12
oeisdata/seq/A015/A015439.seq
033bb761c1e8ccaa4669afbe6fb22238
A015440
a(n) = a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.
[ "1", "1", "6", "11", "41", "96", "301", "781", "2286", "6191", "17621", "48576", "136681", "379561", "1062966", "2960771", "8275601", "23079456", "64457461", "179854741", "502142046", "1401415751", "3912125981", "10919204736", "30479834641", "85075858321", "237475031526", "662854323131", "1850229480761", "5164501096416" ]
[ "nonn", "easy", "changed" ]
124
0
3
[ "A006130", "A006131", "A015440", "A015441", "A049310", "A222134", "A365824" ]
null
Olivier Gérard
2025-07-06T10:02:45
oeisdata/seq/A015/A015440.seq
4128087ba5f45f86acefa3efbf4031a0
A015441
Generalized Fibonacci numbers.
[ "0", "1", "1", "7", "13", "55", "133", "463", "1261", "4039", "11605", "35839", "105469", "320503", "953317", "2876335", "8596237", "25854247", "77431669", "232557151", "697147165", "2092490071", "6275373061", "18830313487", "56482551853", "169464432775", "508359743893", "1525146340543", "4575304803901", "13726182847159" ]
[ "nonn", "easy", "nice" ]
140
0
4
[ "A000079", "A000400", "A001656", "A003462", "A015441", "A016153", "A087451", "A109466", "A122117" ]
null
Olivier Gérard
2025-06-30T23:46:04
oeisdata/seq/A015/A015441.seq
020a328229ba637ac44162102a07e47d
A015442
a(n) = a(n-1) + 7*a(n-2), a(0)=0, a(1)=1.
[ "0", "1", "1", "8", "15", "71", "176", "673", "1905", "6616", "19951", "66263", "205920", "669761", "2111201", "6799528", "21577935", "69174631", "220220176", "704442593", "2245983825", "7177081976", "22898968751", "73138542583", "233431323840", "745401121921", "2379420388801" ]
[ "nonn", "easy" ]
74
0
4
[ "A015440", "A015441", "A015442", "A049310" ]
null
Olivier Gérard
2024-08-04T18:50:54
oeisdata/seq/A015/A015442.seq
4ad4e92cef0fb8020409b81d0f0eecf6
A015443
Generalized Fibonacci numbers: a(n) = a(n-1) + 8*a(n-2).
[ "1", "1", "9", "17", "89", "225", "937", "2737", "10233", "32129", "113993", "371025", "1282969", "4251169", "14514921", "48524273", "164643641", "552837825", "1869986953", "6292689553", "21252585177", "71594101601", "241614783017", "814367595825", "2747285859961" ]
[ "nonn", "easy" ]
66
0
3
[ "A015441", "A015442", "A015443", "A100302", "A100303" ]
null
Olivier Gérard
2024-08-31T08:33:57
oeisdata/seq/A015/A015443.seq
a1fa9c25e34c18ca85d8c03391b7f5bd
A015444
Inverse of 1435th cyclotomic polynomial.
[ "1", "-1", "0", "0", "0", "1", "-1", "1", "-1", "0", "1", "-1", "1", "-1", "1", "0", "-1", "1", "-1", "1", "0", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "0", "1", "-1", "1", "-1", "0", "1", "-1", "1", "-1", "1", "0", "-1", "1", "-1", "1", "0", "0", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
15
0
1
null
null
Simon Plouffe
2020-06-02T14:01:17
oeisdata/seq/A015/A015444.seq
cb0741673bd80b76d90da36eaefbb70f
A015445
Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2).
[ "1", "1", "10", "19", "109", "280", "1261", "3781", "15130", "49159", "185329", "627760", "2295721", "7945561", "28607050", "100117099", "357580549", "1258634440", "4476859381", "15804569341", "56096303770", "198337427839", "703204161769", "2488241012320", "8817078468241", "31211247579121", "110564953793290" ]
[ "nonn", "easy" ]
60
0
3
[ "A015442", "A015443", "A015445", "A026595", "A128099" ]
null
Olivier Gérard
2025-04-17T03:35:27
oeisdata/seq/A015/A015445.seq
07bba17e7d40db3919e14c5ffd42f3fb
A015446
Generalized Fibonacci numbers: a(n) = a(n-1) + 10*a(n-2).
[ "1", "1", "11", "21", "131", "341", "1651", "5061", "21571", "72181", "287891", "1009701", "3888611", "13985621", "52871731", "192727941", "721445251", "2648724661", "9863177171", "36350423781", "134982195491", "498486433301", "1848308388211", "6833172721221", "25316256603331", "93647983815541", "346810549848851" ]
[ "nonn", "easy" ]
107
0
3
[ "A015443", "A015446", "A015447" ]
null
Olivier Gérard
2025-04-17T03:35:23
oeisdata/seq/A015/A015446.seq
c17c9c435a05fb5f8f967568141c3a81
A015447
Generalized Fibonacci numbers: a(n) = a(n-1) + 11*a(n-2).
[ "1", "1", "12", "23", "155", "408", "2113", "6601", "29844", "102455", "430739", "1557744", "6295873", "23431057", "92685660", "350427287", "1369969547", "5224669704", "20294334721", "77765701465", "301003383396", "1156426099511", "4467463316867", "17188150411488" ]
[ "nonn", "easy" ]
54
0
3
[ "A015443", "A015446", "A015447" ]
null
Olivier Gérard
2023-03-18T05:35:19
oeisdata/seq/A015/A015447.seq
51e044dc8eb9b529f698bbcd5ac6687b
A015448
a(0) = 1, a(1) = 1, and a(n) = 4*a(n-1) + a(n-2) for n >= 2.
[ "1", "1", "5", "21", "89", "377", "1597", "6765", "28657", "121393", "514229", "2178309", "9227465", "39088169", "165580141", "701408733", "2971215073", "12586269025", "53316291173", "225851433717", "956722026041", "4052739537881", "17167680177565", "72723460248141", "308061521170129", "1304969544928657", "5527939700884757" ]
[ "nonn", "easy" ]
191
0
3
[ "A000032", "A000045", "A001076", "A003946", "A014445", "A014448", "A015448", "A033887", "A046854", "A049310", "A055830", "A055870", "A084326", "A086344", "A109499", "A147722", "A154626", "A167808" ]
null
Olivier Gérard
2024-12-30T21:52:38
oeisdata/seq/A015/A015448.seq
8dead2256cf983f882d0a13900196843
A015449
Expansion of (1-4*x)/(1-5*x-x^2).
[ "1", "1", "6", "31", "161", "836", "4341", "22541", "117046", "607771", "3155901", "16387276", "85092281", "441848681", "2294335686", "11913527111", "61861971241", "321223383316", "1667978887821", "8661117822421", "44973567999926", "233528957822051" ]
[ "nonn", "easy" ]
83
0
3
[ "A015449", "A084057", "A108306", "A164549" ]
null
Olivier Gérard
2024-02-27T21:02:36
oeisdata/seq/A015/A015449.seq
0301eb2b32d42bc110b10c0819b85ebd
A015450
Inverse of 1441st cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
16
0
1
null
null
Simon Plouffe
2017-05-20T11:50:49
oeisdata/seq/A015/A015450.seq
d0c862236e69a0356311c4893b5666a7
A015451
a(n) = 6*a(n-1) + a(n-2) for n > 1, with a(0) = a(1) = 1.
[ "1", "1", "7", "43", "265", "1633", "10063", "62011", "382129", "2354785", "14510839", "89419819", "551029753", "3395598337", "20924619775", "128943316987", "794584521697", "4896450447169", "30173287204711", "185936173675435", "1145790329257321" ]
[ "nonn", "easy" ]
70
0
3
[ "A015451", "A049310", "A055830" ]
null
Olivier Gérard
2024-02-14T07:29:48
oeisdata/seq/A015/A015451.seq
f86677ccaceac4a8979bf8c5e82c43d7
A015452
Inverse of 1443rd cyclotomic polynomial.
[ "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "-1", "0", "1" ]
[ "sign" ]
16
0
1
null
null
Simon Plouffe
2024-01-03T12:11:05
oeisdata/seq/A015/A015452.seq
1196a068a7ee77e1f9d6615b44dfaba9
A015453
Generalized Fibonacci numbers.
[ "1", "1", "8", "57", "407", "2906", "20749", "148149", "1057792", "7552693", "53926643", "385039194", "2749201001", "19629446201", "140155324408", "1000716717057", "7145172343807", "51016923123706", "364263634209749", "2600862362591949", "18570300172353392" ]
[ "nonn", "easy" ]
63
0
3
[ "A015453", "A054413", "A055830", "A135597" ]
null
Olivier Gérard
2024-02-27T19:38:22
oeisdata/seq/A015/A015453.seq
57406a0fbfc091bc60b6b9522d92903d
A015454
Generalized Fibonacci numbers.
[ "1", "1", "9", "73", "593", "4817", "39129", "317849", "2581921", "20973217", "170367657", "1383914473", "11241683441", "91317382001", "741780739449", "6025563297593", "48946287120193", "397595860259137", "3229713169193289", "26235301213805449", "213112122879636881" ]
[ "nonn", "easy" ]
60
0
3
[ "A015454", "A135597" ]
null
Olivier Gérard
2023-12-30T23:40:38
oeisdata/seq/A015/A015454.seq
0c8c4b82ab671d7fd91ee7f874276d6e
A015455
a(n) = 9*a(n-1) + a(n-2) for n>1; a(0) = a(1) = 1.
[ "1", "1", "10", "91", "829", "7552", "68797", "626725", "5709322", "52010623", "473804929", "4316254984", "39320099785", "358197153049", "3263094477226", "29726047448083", "270797521509973", "2466903741037840", "22472931190850533" ]
[ "nonn", "easy" ]
47
0
3
[ "A015455", "A135597" ]
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015455.seq
f9e22157ed4ad21051d2c98b796005d6
A015456
Generalized Fibonacci numbers.
[ "1", "1", "11", "111", "1121", "11321", "114331", "1154631", "11660641", "117761041", "1189271051", "12010471551", "121293986561", "1224950337161", "12370797358171", "124932923918871", "1261700036546881", "12741933289387681", "128681032930423691", "1299552262593624591", "13124203658866669601" ]
[ "nonn", "easy" ]
44
0
3
[ "A015456", "A135597" ]
null
Olivier Gérard
2023-12-30T23:40:42
oeisdata/seq/A015/A015456.seq
c9337e803ce3c0bf616096c16c182bcb
A015457
Generalized Fibonacci numbers.
[ "1", "1", "12", "133", "1475", "16358", "181413", "2011901", "22312324", "247447465", "2744234439", "30434026294", "337518523673", "3743137786697", "41512034177340", "460375513737437", "5105642685289147", "56622445051918054", "627952538256387741", "6964100365872183205", "77233056562850402996" ]
[ "nonn", "easy" ]
50
0
3
[ "A000045", "A015457", "A049310", "A055830", "A135597" ]
null
Olivier Gérard
2023-12-30T23:40:46
oeisdata/seq/A015/A015457.seq
3ab3b13c0558d8cd9ee2e1b5e4302c2d
A015458
Inverse of 1449th cyclotomic polynomial.
[ "1", "0", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "-1", "0", "0", "1", "0", "0", "0", "0", "0", "-1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T14:07:59
oeisdata/seq/A015/A015458.seq
e89b25f92f4453bf7268ea7ee8ecd80e
A015459
q-Fibonacci numbers for q=2, scaling a(n-2).
[ "0", "1", "1", "3", "7", "31", "143", "1135", "10287", "155567", "2789039", "82439343", "2938415279", "171774189743", "12207523172527", "1419381685547183", "201427441344229551", "46711726513354322095", "13247460522448782176431", "6135846878080826487812271" ]
[ "nonn", "easy" ]
69
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470", "A015473" ]
null
Olivier Gérard
2025-02-16T08:32:33
oeisdata/seq/A015/A015459.seq
f7afe31da91118d77a51134f672981a1
A015460
q-Fibonacci numbers for q=3, scale a(n-2).
[ "0", "1", "1", "4", "13", "121", "1174", "30577", "886423", "67758322", "5883579625", "1339570631551", "348759063908176", "237649677731273173", "185582515360156234789", "379075929664916795231668", "888014493839316022947740209" ]
[ "nonn", "easy" ]
34
0
4
[ "A000045", "A003462", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T05:50:40
oeisdata/seq/A015/A015460.seq
d8fde8d60d59ea2ef0dfa950a51f3126
A015461
q-Fibonacci numbers for q=4, scaling a(n-2).
[ "0", "1", "1", "5", "21", "341", "5717", "354901", "23771733", "5838469717", "1563742763605", "1532083548256853", "1641235215638133333", "6427665390003549698645", "27541785384957544314239573", "431380864280640133787922528853" ]
[ "nonn", "easy" ]
31
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:43:59
oeisdata/seq/A015/A015461.seq
bc5a76127eccba2ab62f4d93d0739151
A015462
q-Fibonacci numbers for q=5, scaling a(n-2).
[ "0", "1", "1", "6", "31", "781", "20156", "2460781", "317398281", "192565913906", "124176269429531", "376229476867085781", "1213035110624630757656", "18371792960261297531148281", "296169521847801754865890523281", "22426801247965814514582357345601406" ]
[ "nonn", "easy" ]
35
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:46:10
oeisdata/seq/A015/A015462.seq
1fecfaf7ed5de0d11ca6b1b77d9deade
A015463
q-Fibonacci numbers for q=6, scaling a(n-2).
[ "0", "1", "1", "7", "43", "1555", "57283", "12148963", "2684744611", "3403616850979", "4512743621400355", "34305128668265064739", "272902655183139496957219", "12446072589202949254455565603", "594062125322746104949654522449187", "162554939850629908283324416663519980835" ]
[ "nonn", "easy" ]
33
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:46:30
oeisdata/seq/A015/A015463.seq
c1b0aeb8d5422cd990d5c84117173a88
A015464
q-Fibonacci numbers for q=7, scaling a(n-2).
[ "0", "1", "1", "8", "57", "2801", "139658", "47216065", "16477840107", "38900937658402", "95030370064332109", "1569888180568718888123", "26845297334664927227358264", "3104208728255475471662060331653", "371576574614065326331102018605110717" ]
[ "nonn", "easy" ]
19
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:46:52
oeisdata/seq/A015/A015464.seq
148ff87804517cf786b0a0aa969ee7b1
A015465
q-Fibonacci numbers for q=8, scaling a(n-2).
[ "0", "1", "1", "9", "73", "4681", "303689", "153690697", "79763939913", "322392516534857", "1338539241447957065", "43272129632752387301961", "1437288838737538572434088521", "371706200490726725394268777423433", "98770108622737228265012391281001570889" ]
[ "nonn", "easy" ]
16
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:47:11
oeisdata/seq/A015/A015465.seq
fe8765737b250d8f446bd775111f0aa1
A015466
Inverse of 1457th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1", "-1" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T14:08:40
oeisdata/seq/A015/A015466.seq
e874a72e06292b1202ecb6aa3359666d
A015467
q-Fibonacci numbers for q=9, scaling a(n-2).
[ "0", "1", "1", "10", "91", "7381", "604432", "436445101", "321656391613", "2087825044676482", "13848340772676227455", "808880048095782179467153", "48286987465947852695801396608", "25383561292811993463191359951919785", "13637696871632801620185917930189837576233" ]
[ "nonn", "easy" ]
16
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:47:28
oeisdata/seq/A015/A015467.seq
e13f430b07ae7e6aa25a0c4e30f00451
A015468
q-Fibonacci numbers for q=10, scaling a(n-2).
[ "0", "1", "1", "11", "111", "11111", "1121111", "1112221111", "1122223221111", "11123333333221111", "112233445444433221111", "11123445566666555433221111", "1122345577889898877665433221111", "1112345679012233433220988765433221111" ]
[ "nonn", "easy" ]
14
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:47:46
oeisdata/seq/A015/A015468.seq
7964f77ca7e55d7b78a83f921f2789f5
A015469
q-Fibonacci numbers for q=11, scaling a(n-2).
[ "0", "1", "1", "12", "133", "16105", "1963358", "2595689713", "3480804151551", "50586130104323474", "746191869036731097905", "119280194867984161366496439", "19354414621214347335584253057344", "34032051023004810891710239239325511573" ]
[ "nonn", "easy" ]
14
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:49:51
oeisdata/seq/A015/A015469.seq
cd06dde69f5c12f22c1bfe01530eb316
A015470
q-Fibonacci numbers for q=12, scaling a(n-2).
[ "0", "1", "1", "13", "157", "22621", "3278173", "5632106845", "9794204234077", "201818365309759837", "4211530365904119214429", "1041342647528423104910537053", "260767900948768868884822059725149", "773726564635922870118341112574642827613" ]
[ "nonn", "easy" ]
14
0
4
[ "A000045", "A015459", "A015460", "A015461", "A015462", "A015463", "A015464", "A015465", "A015467", "A015468", "A015469", "A015470" ]
null
Olivier Gérard
2025-02-03T06:50:21
oeisdata/seq/A015/A015470.seq
8fdcc90dca20a05096239ac38945e615
A015471
Inverse of 1462nd cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
16
0
1
null
null
Simon Plouffe
2018-03-30T18:24:56
oeisdata/seq/A015/A015471.seq
cb201472e05828dd7ba9575b1eced534
A015472
Inverse of 1463rd cyclotomic polynomial.
[ "1", "-1", "0", "0", "0", "0", "0", "1", "-1", "0", "0", "1", "-1", "0", "1", "-1", "0", "0", "1", "0", "-1", "1", "0", "-1", "0", "1", "0", "-1", "1", "0", "0", "-1", "1", "1", "-2", "1", "0", "0", "0", "0", "1", "-1", "0", "0", "1", "-1", "0", "1", "-1", "1", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "-1", "1", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
14
0
35
null
null
Simon Plouffe
2017-04-07T14:10:16
oeisdata/seq/A015/A015472.seq
00332d81413aa8ba7969d7ad7b560322
A015473
q-Fibonacci numbers for q=2, scale a(n-1).
[ "0", "1", "2", "9", "74", "1193", "38250", "2449193", "313534954", "80267397417", "41097221012458", "42083634584154409", "86187324725569242090", "353023324159566199755049", "2891967157702491033962603498", "47381990264820937260009495466281" ]
[ "nonn", "easy" ]
22
0
3
[ "A000045", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485", "A061377" ]
null
Olivier Gérard
2025-02-03T05:48:55
oeisdata/seq/A015/A015473.seq
55183d7bc9d229c43fb4de02ac1edef8
A015474
q-Fibonacci numbers for q=3, scale a(n-1).
[ "0", "1", "3", "28", "759", "61507", "14946960", "10896395347", "23830431570849", "156351472432735636", "3077466055723967094237", "181721293280796005380336249", "32191381943890636020834392595840", "17107820211824904790829046440906141689" ]
[ "nonn", "easy" ]
16
0
3
[ "A000045", "A015460", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485" ]
null
Olivier Gérard
2025-02-03T05:49:46
oeisdata/seq/A015/A015474.seq
078d8d06178e285663bf6fbe6f3d77b9
A015475
q-Fibonacci numbers for q=4, scaling a(n-1).
[ "0", "1", "4", "65", "4164", "1066049", "1091638340", "4471351706689", "73258627454030916", "4801077413298721817665", "1258573637505038759624004676", "1319710110525284599824799048959041", "5535265395417901871821058989004725507140" ]
[ "nonn", "easy" ]
17
0
3
[ "A000045", "A015461", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485" ]
null
Olivier Gérard
2025-02-03T06:50:41
oeisdata/seq/A015/A015475.seq
31b28e05249c6257306088757711326c
A015476
q-Fibonacci numbers for q=5, scaling a(n-1).
[ "0", "1", "5", "126", "15755", "9847001", "30771893880", "480810851722001", "37563347821553222005", "14673182743275038197425126", "28658560045496622327167502440755", "279868750444317625596488416061195472001", "13665466330288975220888581437110387323801268880" ]
[ "nonn", "easy" ]
18
0
3
[ "A000045", "A015462", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485" ]
null
Olivier Gérard
2025-02-03T06:59:11
oeisdata/seq/A015/A015476.seq
80b6ff0d66f3d0aefedd8b030fb4589e
A015477
q-Fibonacci numbers for q=6, scaling a(n-1).
[ "0", "1", "6", "217", "46878", "60754105", "472423967358", "22041412681808953", "6170184900967295034366", "10363541282645125629123492409", "104440618529953822157016270251244030", "6315124821581059445960128077000914860421689" ]
[ "nonn", "easy" ]
18
0
3
[ "A000045", "A015463", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485" ]
null
Olivier Gérard
2025-02-03T06:59:50
oeisdata/seq/A015/A015477.seq
5f434058cbb04ff5c85331c32613a86f
A015478
Inverse of 1469th cyclotomic polynomial.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T14:11:03
oeisdata/seq/A015/A015478.seq
73a3ef8bbb98c7eb701a645bf829bef8
A015479
q-Fibonacci numbers for q=7, scaling a(n-1).
[ "0", "1", "7", "344", "117999", "283315943", "4761691172000", "560208204977943943", "461355545756912579822049", "2659622911535555605275705841192", "107325377740302038777488717075646201593", "30316762801210878398501692486189317906592712849" ]
[ "nonn", "easy" ]
17
0
3
[ "A000045", "A015464", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485" ]
null
Olivier Gérard
2025-02-03T07:00:11
oeisdata/seq/A015/A015479.seq
74cc31ab3ab4d1d1e5622d37c225babe
A015480
q-Fibonacci numbers for q=8, scaling a(n-1).
[ "0", "1", "8", "513", "262664", "1075872257", "35254182380040", "9241672386909078017", "19381191729586400963887624", "325162439984693881306137776652801", "43642563925681986905603214423711358943752" ]
[ "nonn", "easy" ]
18
0
3
[ "A000045", "A015465", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485" ]
null
Olivier Gérard
2025-02-03T07:00:32
oeisdata/seq/A015/A015480.seq
05bf4c73717463be642ab2333dce96b0
A015481
q-Fibonacci numbers for q=9, scaling a(n-1).
[ "0", "1", "9", "730", "532179", "3491627149", "206177092053480", "109570959981485091829", "524074504891889945272313781", "22559688995294431207802541840253930", "8740085742244887761578226267084082717085551" ]
[ "nonn", "easy" ]
19
0
3
[ "A000045", "A015467", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485" ]
null
Olivier Gérard
2025-02-03T07:00:50
oeisdata/seq/A015/A015481.seq
6ccf1aebfb778a09b9e5d6b0327fd62c
A015482
q-Fibonacci numbers for q=10, scaling a(n-1).
[ "0", "1", "10", "1001", "1001010", "10010101001", "1001010101101010", "1001010101111020101001", "10010101011111202020111101010", "1001010101111121203021211212020101001", "1001010101111121213031312223131303021111101010" ]
[ "nonn", "easy" ]
17
0
3
[ "A000045", "A015468", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485", "A280221", "A280222", "A280261" ]
null
Olivier Gérard
2025-02-03T07:01:10
oeisdata/seq/A015/A015482.seq
2843c751c23c5db8d869ee4c3ac7213f
A015483
Inverse of 1474th cyclotomic polynomial.
[ "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "-1", "1", "0", "0", "0" ]
[ "sign" ]
11
0
1
null
null
Simon Plouffe
2017-04-07T14:12:48
oeisdata/seq/A015/A015483.seq
7936b51c550421587c8d18c89780c9d3
A015484
q-Fibonacci numbers for q=11, scaling a(n-1).
[ "0", "1", "11", "1332", "1772903", "25957074155", "4180412751509808", "7405856194503424044443", "144319186063701664852323850561", "30936099231445891001437365359291226684", "72945703751334713422596099393765798208419237205" ]
[ "nonn", "easy" ]
16
0
3
[ "A000045", "A015469", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485", "A280221", "A280222", "A280261" ]
null
Olivier Gérard
2025-02-03T07:01:27
oeisdata/seq/A015/A015484.seq
66599fd05303b4492247f8cee7794fd3
A015485
q-Fibonacci numbers for q=12, scaling a(n-1).
[ "0", "1", "12", "1729", "2987724", "61953446593", "15416000025617100", "46031929420554204172993", "1649407256866864913519509578444", "709214929702322267749941478181800334017", "3659393259623103647557638545139154960967463412428" ]
[ "nonn", "easy" ]
16
0
3
[ "A000045", "A015470", "A015473", "A015474", "A015475", "A015476", "A015477", "A015479", "A015480", "A015481", "A015482", "A015484", "A015485", "A280221", "A280222", "A280261" ]
null
Olivier Gérard
2025-02-03T07:02:13
oeisdata/seq/A015/A015485.seq
a107ddb90af1db04f10598df8b42bfeb
A015486
a(0)=1, a(1)=2, a(n) = sum_{k=0}^{k=n-1} 2^k a(k).
[ "1", "2", "5", "25", "225", "3825", "126225", "8204625", "1058396625", "272007932625", "139540069436625", "143028571172540625", "293065542332535740625", "1200689526936398929340625", "9837249294189916428087740625", "161183329685301780674217630140625" ]
[ "nonn", "easy" ]
11
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015486.seq
61d4041426af731c2177d2503ff66f5c
A015487
a(0)=1, a(1)=3, a(n) = sum_{k=0}^{k=n-1} 3^k a(k).
[ "1", "3", "10", "100", "2800", "229600", "56022400", "40896352000", "89481218176000", "587175753670912000", "11557967535258231808000", "682497982956998588262400000", "120903152684866385913507635200000" ]
[ "nonn", "easy" ]
9
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015487.seq
1a88b759a64e80eee8fa6cb368ad7ae8
A015488
Inverse of 1479th cyclotomic polynomial.
[ "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "2", "-1", "-1", "2", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "1", "0", "-1", "2", "-1", "-1", "2", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "0", "1", "-1", "1", "0", "-1", "1", "0", "-1" ]
[ "sign" ]
11
0
30
null
null
Simon Plouffe
2017-04-07T14:13:28
oeisdata/seq/A015/A015488.seq
3dfe0aebc8124f05c97369160dffd48d
A015489
a(0)=1, a(1)=4, a(n) = sum_{k=0}^{k=n-1} 4^k a(k).
[ "1", "4", "17", "289", "18785", "4827745", "4948438625", "20273753046625", "332185443668950625", "21770437421732017110625", "5707011317919939625464790625", "5984240806710536532650993759190625" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015489.seq
57b6e5b4fbaff24453b30691a2f54dc6
A015490
a(0)=1, a(1)=5, a(n) = sum_{k=0}^{k=n-1} 5^k a(k).
[ "1", "5", "26", "676", "85176", "53320176", "166678870176", "2604524025370176", "203481044006070370176", "79484986295915244420370176", "155244193344195757673779920370176", "1516056730871105040228764708644920370176" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015490.seq
6dcb93cbd9ff3fae9a5479dedce5f857
A015491
Inverse of 1482nd cyclotomic polynomial.
[ "1", "1", "0", "-1", "-1", "0", "1", "1", "0", "-1", "-1", "0", "1", "0", "-1", "-1", "0", "1", "1", "-1", "-2", "-1", "1", "2", "1", "-1", "-1", "0", "1", "1", "0", "-1", "0", "1", "1", "0", "-1", "-1", "1", "2", "1", "-1", "-2", "-1", "1", "1", "0", "-1", "-1", "0", "1", "0", "-1", "-1", "0", "1", "1", "0", "-1", "-1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
16
0
21
null
null
Simon Plouffe
2020-07-30T11:27:04
oeisdata/seq/A015/A015491.seq
0101cb40b641942b45e25ae7d7b2bf30
A015492
a(0)=1, a(1)=6, a(n) = sum_{k=0}^{k=n-1} 6^k a(k).
[ "1", "6", "37", "1369", "297073", "385303681", "2996506727137", "139808014368031009", "39137436118143496566433", "65735903040447825272422496161", "662466512863011927404416372294221217", "40056817423347655955546590948840276184277409" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015492.seq
e1a6124522c3a490e07090ea096aac15
A015493
Inverse of 1484th cyclotomic polynomial.
[ "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "-1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
13
0
1
null
null
Simon Plouffe
2023-09-29T14:55:38
oeisdata/seq/A015/A015493.seq
d0d5ad5575b9569bb4bd56e76e4bc67a
A015494
Inverse of 1485th cyclotomic polynomial.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0" ]
[ "sign" ]
12
0
1
null
null
Simon Plouffe
2017-04-07T14:15:49
oeisdata/seq/A015/A015494.seq
e82ce4ff3f5d06fdad9a5cbc44cf9bbc
A015495
a(0)=1, a(1)=7, a(n) = sum_{k=0}^{k=n-1} 7^k a(k).
[ "1", "7", "50", "2500", "860000", "2065720000", "34720621760000", "4084881150064000000", "3364079361848306816000000", "19393251433341842829490432000000", "782587666186514855538867732678656000000" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015495.seq
1750375a2bbb4828054177f23b52080e
A015496
a(0)=1, a(1)=8, a(n) = sum_{k=0}^{k=n-1} 8^k a(k).
[ "1", "8", "65", "4225", "2167425", "8879940225", "290986761233025", "76280724523431338625", "159972350276487602091434625", "2683890834588642498097652544938625", "360225732702402245287553744812732691882625" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015496.seq
bfc25273dc1728468e71f8c49ce9c4a1
A015497
a(0)=1, a(1)=9, a(n) = sum_{k=0}^{k=n-1} 9^k a(k).
[ "1", "9", "82", "6724", "4908520", "32209708240", "1901983271572000", "1010793793810766824000", "4834596391983083396187280000", "208113526867898819658489702096160000", "80627444554789525982513713046048334318400000" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015497.seq
08c6c9f32ab9078e82bc907bf4e8cab1
A015498
a(0)=1, a(1)=10, a(n) = sum_{k=0}^{k=n-1} 10^k a(k).
[ "1", "10", "101", "10201", "10211201", "102122221201", "10212324242321201", "10212334454645443321201", "102123354758788887857453321201", "10212335578002243544534219977553321201" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015498.seq
3773882c3558b4a77b156dc51dd24310
A015499
a(0)=1, a(1)=11, a(n) = sum_{k=0}^{k=n-1} 11^k a(k).
[ "1", "11", "122", "14884", "19825488", "290284795296", "46750946852011392", "82822200907043005634304", "1613970474494103062192651148288", "345968906493565448004393168763031894016", "815776584570266460972904878145357549417415811072" ]
[ "nonn", "easy" ]
8
0
2
null
null
Olivier Gérard
2022-09-08T08:44:40
oeisdata/seq/A015/A015499.seq
64a2ebb7abc9e21013dcec447dccdb11
A015500
Inverse of 1491st cyclotomic polynomial.
[ "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "1", "0", "-1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "-1", "0", "1", "-1", "0", "1", "0", "-1", "1" ]
[ "sign" ]
16
0
1
null
null
Simon Plouffe
2020-11-03T19:17:34
oeisdata/seq/A015/A015500.seq
128b2cb4b3bc1799b5f18f866652211a