sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A385013
G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x)^2).
[ "1", "1", "2", "4", "9", "19", "37", "52", "-25", "-630", "-3616", "-15897", "-61476", "-215135", "-677464", "-1823081", "-3389900", "2523349", "73121734", "526205851", "2914005085", "14163375846", "62788424920", "255900158756", "945473736954", "3008738746058", "6827204137454", "-2853842162077", "-171206510083289" ]
[ "sign" ]
12
0
3
[ "A000108", "A213091", "A213225", "A213226", "A384951", "A385013", "A385017" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:57:16
oeisdata/seq/A385/A385013.seq
7ad097714192445a34db126e47c59abd
A385014
G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x))^2.
[ "1", "1", "3", "4", "3", "-15", "-118", "-336", "-595", "1467", "20391", "96205", "353686", "574786", "-2717256", "-30598208", "-197828371", "-841728699", "-2599029153", "-1309899955", "56975269295", "522707807733", "3425068059553", "16747743739845", "63468629516172", "111911654532374", "-907903172853988", "-12555837715110897" ]
[ "sign" ]
12
0
3
[ "A001764", "A213228", "A213229", "A213230", "A384894", "A384951", "A384974", "A385014", "A385015", "A385016", "A385018" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:57:22
oeisdata/seq/A385/A385014.seq
7e5bc51a3ffce66cd3c11fe577bb6f7e
A385015
G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x))^3.
[ "1", "1", "4", "4", "-13", "-81", "-389", "-198", "7455", "44515", "198661", "70243", "-5428624", "-40239313", "-218619844", "-408542577", "3648305171", "44441073999", "339489511573", "1430556904456", "2122222427956", "-35048613488679", "-504238969376070", "-3684488832562182", "-21342732340391295", "-67688326964892247" ]
[ "sign" ]
12
0
3
[ "A213231", "A213232", "A384896", "A384951", "A384975", "A385014", "A385015", "A385016", "A385019" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:57:29
oeisdata/seq/A385/A385015.seq
f9610a525ea04121a696fe79419be551
A385016
G.f. A(x) satisfies A(x) = 1 + x*A(x)/A(-x*A(x))^4.
[ "1", "1", "5", "3", "-51", "-190", "-401", "3672", "51925", "151539", "-482538", "-9063614", "-79813421", "-183787112", "1737820084", "22402935304", "179028179329", "459719628273", "-4012720499801", "-61168331089037", "-556435825634630", "-2299434933774430", "2674772917888194", "157684497102084776" ]
[ "sign" ]
10
0
3
[ "A002294", "A213233", "A384941", "A384951", "A385014", "A385015", "A385016", "A385020" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:56:53
oeisdata/seq/A385/A385016.seq
f7d3963f2052b839b87bc6c53b2cd700
A385017
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A385013.
[ "1", "1", "0", "1", "1", "0", "1", "2", "2", "0", "1", "3", "5", "4", "0", "1", "4", "9", "12", "9", "0", "1", "5", "14", "25", "30", "19", "0", "1", "6", "20", "44", "69", "72", "37", "0", "1", "7", "27", "70", "133", "183", "164", "52", "0", "1", "8", "35", "104", "230", "384", "464", "326", "-25", "0", "1", "9", "44", "147", "369", "716", "1060", "1083", "435", "-630", "0", "1", "10", "54", "200", "560", "1230", "2125", "2748", "2139", "-464", "-3616", "0" ]
[ "sign", "tabl" ]
10
0
8
[ "A000007", "A384976", "A385013", "A385017" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:57:04
oeisdata/seq/A385/A385017.seq
9fd770131e175e8be778dcb1458ff749
A385018
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A385014.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "7", "4", "0", "1", "4", "12", "14", "3", "0", "1", "5", "18", "31", "23", "-15", "0", "1", "6", "25", "56", "69", "0", "-118", "0", "1", "7", "33", "90", "151", "84", "-232", "-336", "0", "1", "8", "42", "134", "280", "288", "-234", "-974", "-595", "0", "1", "9", "52", "189", "468", "676", "54", "-1749", "-2681", "1467", "0", "1", "10", "63", "256", "728", "1326", "895", "-2232", "-6585", "-1306", "20391", "0" ]
[ "sign", "tabl" ]
10
0
8
[ "A000007", "A385014", "A385018" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:56:46
oeisdata/seq/A385/A385018.seq
5370fd6c979d82c8d031c0f4161c3725
A385019
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A385015.
[ "1", "1", "0", "1", "1", "0", "1", "2", "4", "0", "1", "3", "9", "4", "0", "1", "4", "15", "16", "-13", "0", "1", "5", "22", "37", "-2", "-81", "0", "1", "6", "30", "68", "45", "-156", "-389", "0", "1", "7", "39", "110", "141", "-165", "-1028", "-198", "0", "1", "8", "49", "164", "300", "-32", "-1796", "-1926", "7455", "0", "1", "9", "60", "231", "537", "336", "-2460", "-5499", "10923", "44515", "0" ]
[ "sign", "tabl" ]
11
0
8
[ "A000007", "A385015", "A385019" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:56:35
oeisdata/seq/A385/A385019.seq
26d41e86e5f62d1ce44f9754f8ef04b7
A385020
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A385016.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "11", "3", "0", "1", "4", "18", "16", "-51", "0", "1", "5", "26", "40", "-71", "-190", "0", "1", "6", "35", "76", "-45", "-452", "-401", "0", "1", "7", "45", "125", "43", "-702", "-1683", "3672", "0", "1", "8", "56", "188", "210", "-836", "-3784", "4336", "51925", "0", "1", "9", "68", "266", "474", "-729", "-6480", "144", "108645", "151539", "0" ]
[ "sign", "tabl" ]
10
0
8
[ "A000007", "A385016", "A385020" ]
null
Seiichi Manyama, Jun 15 2025
2025-06-15T09:58:16
oeisdata/seq/A385/A385020.seq
9edd1fb75de037c9b833518118083b63
A385021
Number of states in smallest Fibonacci DFAO generating the sequence A003849(n*i).
[ "2", "5", "10", "17", "27", "36", "52", "65", "78", "103", "119", "132", "181", "207", "208", "259", "308", "285", "329", "374", "379", "433", "559", "491", "616", "681", "689", "714", "605", "808", "906", "1013", "936", "1101", "1165", "926", "1357", "984", "1411", "1415", "1516", "1389", "1838", "1326", "1813", "1862", "1719", "1459", "2444", "2395", "2328" ]
[ "nonn" ]
7
1
1
[ "A003849", "A385021" ]
null
Jeffrey Shallit, Jun 15 2025
2025-06-21T20:01:10
oeisdata/seq/A385/A385021.seq
c27ada96cbd69a851a0bd4c37e302ee2
A385022
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A002378(n) and its long leg and hypotenuse are consecutive natural numbers.
[ "3", "4", "5", "11", "60", "61", "23", "264", "265", "39", "760", "761", "59", "1740", "1741", "83", "3444", "3445", "111", "6160", "6161", "143", "10224", "10225", "179", "16020", "16021", "219", "23980", "23981", "263", "34584", "34585", "311", "48360", "48361", "363", "65884", "65885", "419", "87780", "87781", "479", "114720", "114721", "543", "147424", "147425" ]
[ "sign", "easy", "tabf", "new" ]
20
1
1
[ "A002378", "A142463", "A385022", "A385187" ]
null
Miguel-Ángel Pérez García-Ortega, Jun 15 2025
2025-07-13T17:25:02
oeisdata/seq/A385/A385022.seq
f36a6c2b7af744efd73a812018f318fd
A385024
Number of face-connected components of tetragonal disphenoidal cells in the tetragonal disphenoidal honeycomb up to translation, rotation, and reflection.
[ "1", "1", "2", "5", "14", "47", "172", "691", "2881", "12449", "54782", "244992", "1107240", "5050360", "23202236", "107269382", "498622480", "2328953312", "10924738869" ]
[ "nonn", "hard", "more" ]
14
1
3
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027" ]
null
Peter Kagey and Bert Dobbelaere, Jun 15 2025
2025-06-24T00:53:18
oeisdata/seq/A385/A385024.seq
66bdd566e077762bb0e4124216efa410
A385025
Number of face-connected components of gyrobifastigium cells in the gyrobifastigium honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "2", "6", "31", "181", "1332", "10510", "88054", "757202", "6650140", "59248825", "534180521", "4862936054" ]
[ "nonn", "hard", "more" ]
14
1
2
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027" ]
null
Peter Kagey and Bert Dobbelaere, Jun 15 2025
2025-06-24T00:53:25
oeisdata/seq/A385/A385025.seq
b26be107e6b3451b33cea229fe7e0619
A385026
Number of face-connected components of hexagonal prism cells in the hexagonal prismatic honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "2", "5", "20", "89", "569", "4002", "31899", "266736", "2315811", "20531349", "184927106", "1684835315" ]
[ "nonn", "hard", "more" ]
13
1
2
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027" ]
null
Peter Kagey and Bert Dobbelaere, Jun 15 2025
2025-06-24T00:53:47
oeisdata/seq/A385/A385026.seq
ec6c46b656a51f27dfc57a924f1b5e14
A385027
Number of face-connected components of triakis truncated tetrahedral cells in the triakis truncated tetrahedral honeycomb up to translation, rotation, and reflection of the honeycomb.
[ "1", "2", "8", "71", "793", "11486", "177746", "2876127", "47667178", "804571359", "13773260905" ]
[ "nonn", "hard", "more" ]
14
1
2
[ "A038119", "A038173", "A038181", "A343909", "A365654", "A384254", "A384274", "A384754", "A385024", "A385025", "A385026", "A385027" ]
null
Peter Kagey and Bert Dobbelaere, Jun 15 2025
2025-06-24T00:53:37
oeisdata/seq/A385/A385027.seq
f391958b3a6776e391b979e19ba2eeaf
A385029
a(n) = Sum_{-n <= a, b, c <= n} (b^2 - 4*a*c).
[ "18", "250", "1372", "4860", "13310", "30758", "63000", "117912", "205770", "339570", "535348", "812500", "1194102", "1707230", "2383280", "3258288", "4373250", "5774442", "7513740", "9648940", "12244078", "15369750", "19103432", "23529800", "28741050", "34837218", "41926500", "50125572", "59559910", "70364110", "82682208", "96668000" ]
[ "nonn", "easy" ]
27
1
1
[ "A000384", "A002378", "A014105", "A016754", "A016755", "A055112", "A384666", "A385029" ]
null
Darío Clavijo, Jun 15 2025
2025-06-18T12:24:44
oeisdata/seq/A385/A385029.seq
20ec2195f6708c09e94e33639ebde50a
A385030
Orders of characteristically simple groups.
[ "2", "3", "4", "5", "7", "8", "9", "11", "13", "16", "17", "19", "23", "25", "27", "29", "31", "32", "37", "41", "43", "47", "49", "53", "59", "60", "61", "64", "67", "71", "73", "79", "81", "83", "89", "97", "101", "103", "107", "109", "113", "121", "125", "127", "128", "131", "137", "139", "149", "151", "157", "163", "167", "168", "169", "173", "179", "181", "191", "193", "197", "199", "211" ]
[ "nonn" ]
16
1
1
[ "A001034", "A005180", "A246655", "A385030" ]
null
Miles Englezou, Jun 15 2025
2025-06-18T18:04:42
oeisdata/seq/A385/A385030.seq
4943a17a34ccddd86adc298c601491c8
A385031
Consecutive states of the linear congruential pseudo-random number generator 171*s mod 30269 when started at s=1.
[ "1", "171", "29241", "5826", "27638", "4134", "10727", "18177", "20829", "20286", "18240", "1333", "16060", "22050", "17194", "4081", "1664", "12123", "14741", "8384", "11021", "7913", "21287", "7797", "1451", "5969", "21822", "8475", "26582", "5172", "6611", "10528", "14417", "13518", "11134", "27236", "26199", "217", "6838", "19076" ]
[ "nonn", "easy" ]
14
1
2
[ "A384796", "A385031", "A385032", "A385033" ]
null
Sean A. Irvine, Jun 15 2025
2025-06-18T03:15:01
oeisdata/seq/A385/A385031.seq
1772982d3525d05e00fd44fff54f45b5
A385032
Consecutive states of the linear congruential pseudo-random number generator 172*s mod 30307 when started at s=1.
[ "1", "172", "29584", "27179", "7510", "18826", "25530", "26952", "29080", "1105", "8218", "19374", "28865", "24739", "12128", "25140", "20486", "7980", "8745", "19097", "11528", "12861", "29988", "5746", "18488", "28008", "28870", "25599", "8513", "9500", "27729", "11189", "15167", "2322", "5393", "18386", "10464", "11695", "11278", "168" ]
[ "nonn", "easy" ]
9
1
2
[ "A385031", "A385032", "A385033" ]
null
Sean A. Irvine, Jun 15 2025
2025-06-16T16:19:22
oeisdata/seq/A385/A385032.seq
63b66e26202e85a670636305027662bb
A385033
Consecutive states of the linear congruential pseudo-random number generator 170*s mod 30323 when started at s=1.
[ "1", "170", "28900", "674", "23611", "11234", "29754", "24562", "21289", "10693", "28753", "6007", "20531", "3125", "15759", "10606", "13963", "8516", "22539", "10932", "8737", "29786", "30002", "6076", "1938", "26230", "1619", "2323", "711", "29901", "19229", "24369", "18802", "12425", "19963", "27857", "5302", "21973", "5681", "25757" ]
[ "nonn", "easy" ]
12
1
2
[ "A385031", "A385032", "A385033" ]
null
Sean A. Irvine, Jun 15 2025
2025-06-17T10:30:40
oeisdata/seq/A385/A385033.seq
23bee67520c1aaf3d82be0178e73609e
A385034
Absolute value squared of the maximal determinant of a matrix of order n with entries in the third roots of unity.
[ "1", "1", "3", "27", "189", "1701", "46656", "606528", "8957952", "387420489", "7360989291", "154580775111", "8916100448256", "222902511206400" ]
[ "nonn", "hard", "more" ]
34
0
3
[ "A000312", "A003433", "A385034" ]
null
Guillermo N. Ponasso, Jun 16 2025
2025-06-25T06:39:37
oeisdata/seq/A385/A385034.seq
3be4dc3a35a7585cbfff0ca0626f5e1a
A385035
Primes p such that p + 8, p + 14, p + 18 and p + 20 are also primes.
[ "23", "53", "89", "263", "599", "1283", "1979", "3449", "5399", "5639", "11813", "14543", "41213", "42443", "44249", "47129", "55799", "57773", "65699", "74699", "75983", "79613", "84299", "87539", "88643", "88793", "88799", "113153", "115763", "126473", "143813", "148913", "150203", "160073", "163973", "167099", "176489", "178799", "178889", "209249" ]
[ "nonn", "changed" ]
18
1
1
[ "A000040", "A078855", "A172454", "A187057", "A385035" ]
null
Alexander Yutkin, Jun 15 2025
2025-07-04T05:03:16
oeisdata/seq/A385/A385035.seq
75e6e28c281d7294cd24b3a02391ae12
A385036
Consecutive states of the linear congruential pseudo-random number generator (419*s + 6173) mod 29282 when started at s=1.
[ "1", "6592", "15713", "1470", "7181", "28248", "12157", "4888", "4505", "19720", "11329", "9340", "25127", "22148", "3791", "13374", "17017", "20770", "12049", "18200", "18653", "3486", "2707", "27690", "12611", "19422", "3595", "19096", "13411", "3238", "15923", "1614", "8953", "9384", "14281", "16384", "19081", "7126", "5203", "19362" ]
[ "nonn", "easy" ]
23
1
2
[ "A384113", "A384971", "A385002", "A385036" ]
null
Sean A. Irvine, Jun 16 2025
2025-06-24T09:59:06
oeisdata/seq/A385/A385036.seq
3b9938faadc0776662cc8fe7a575d4b3
A385037
Consecutive states of the linear congruential pseudo-random number generator (936*s + 1399) mod 6655 when started at s=1.
[ "1", "2335", "4119", "3538", "5432", "1331", "2730", "1159", "1458", "1812", "406", "2080", "5019", "753", "777", "3276", "6435", "1784", "818", "1722", "2681", "1880", "4159", "1048", "4042", "4671", "1120", "4884", "838", "477", "1986", "3550", "3354", "6238", "3732", "676", "1910", "5619", "3333", "6547", "136", "2250", "4419", "4828", "1662" ]
[ "nonn", "look", "easy", "changed" ]
15
1
2
[ "A384113", "A384971", "A385002", "A385003", "A385037" ]
null
Sean A. Irvine, Jun 14 2025
2025-07-06T18:26:11
oeisdata/seq/A385/A385037.seq
14b73d03f5946316460f42dd12b9702c
A385038
Consecutive internal states of the linear congruential pseudo-random number generator (1366*s + 1283) mod 6075 when started at 1.
[ "1", "2649", "5192", "4030", "2313", "1841", "1039", "5082", "5645", "3178", "4881", "4454", "4372", "1710", "4343", "4621", "1644", "5312", "3925", "4683", "1286", "2284", "4752", "4415", "5773", "1851", "2549", "2242", "2055", "1763", "3841", "5364", "2057", "4495", "5703", "3431", "4204", "3072", "5885", "2968", "3546", "3344", "787", "1050" ]
[ "nonn", "look", "easy" ]
12
1
2
[ "A384113", "A384114", "A384126", "A384152", "A384158", "A384196", "A384971", "A385037", "A385038" ]
null
Sean A. Irvine, Jun 13 2025
2025-06-16T17:12:06
oeisdata/seq/A385/A385038.seq
0857b1078fc9f5edce34018525ec2c53
A385039
Consecutive internal states of the linear congruential pseudo-random number generator (171*s + 11213) mod 53125 when started at 1.
[ "1", "11384", "45377", "14430", "34993", "45016", "5824", "50867", "50095", "24333", "28406", "34264", "26607", "45385", "15798", "3296", "43579", "25722", "300", "9388", "22811", "33769", "48212", "21090", "5103", "33826", "4834", "40952", "1505", "2943", "36341", "9899", "3942", "47795", "2908", "30356", "48964", "43432", "585", "4998" ]
[ "nonn", "easy" ]
13
1
2
[ "A384113", "A384114", "A384126", "A384152", "A384158", "A384196", "A385039" ]
null
Sean A. Irvine, Jun 13 2025
2025-06-24T09:59:02
oeisdata/seq/A385/A385039.seq
4ee407209444c80b6659d15c339268ad
A385040
Number of isomorphism classes of virtual racks of order n.
[ "1", "1", "4", "15", "71", "350", "2372", "18543", "199491" ]
[ "nonn", "hard", "more", "changed" ]
13
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A383144", "A383145", "A383146", "A383828", "A383831", "A385040", "A385041" ]
null
Luc Ta, Jun 16 2025
2025-07-09T17:34:38
oeisdata/seq/A385/A385040.seq
1c2ac32fa6a60fb4b033347d23c11baa
A385041
Number of isomorphism classes of virtual quandles of order n.
[ "1", "1", "2", "8", "26", "104", "467", "2540", "18419" ]
[ "nonn", "hard", "more", "changed" ]
11
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A383144", "A383145", "A383146", "A383828", "A383831", "A385040", "A385041" ]
null
Luc Ta, Jun 16 2025
2025-07-09T17:34:15
oeisdata/seq/A385/A385041.seq
22aea1d37307a42e557c2e81d57a4c73
A385042
The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).
[ "1", "2", "2", "2", "2", "4", "2", "1", "2", "4", "2", "4", "2", "4", "4", "2", "2", "4", "2", "4", "4", "4", "2", "2", "2", "4", "1", "4", "2", "8", "2", "1", "4", "4", "4", "4", "2", "4", "4", "2", "2", "8", "2", "4", "4", "4", "2", "4", "2", "4", "4", "4", "2", "2", "4", "2", "4", "4", "2", "8", "2", "4", "4", "1", "4", "8", "2", "4", "4", "8", "2", "2", "2", "4", "4", "4", "4", "8", "2", "4", "2", "4", "2", "8", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A000034", "A005117", "A034444", "A055076", "A056624", "A056671", "A068068", "A138302", "A209229", "A323308", "A353898", "A365498", "A365499", "A367168", "A367515", "A368248", "A380395", "A382488", "A385042", "A385043", "A385044" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:54:09
oeisdata/seq/A385/A385042.seq
600ef0198dc6f6a923ef1bc82b18d750
A385043
The sum of the unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).
[ "1", "3", "4", "5", "6", "12", "8", "1", "10", "18", "12", "20", "14", "24", "24", "17", "18", "30", "20", "30", "32", "36", "24", "4", "26", "42", "1", "40", "30", "72", "32", "1", "48", "54", "48", "50", "38", "60", "56", "6", "42", "96", "44", "60", "60", "72", "48", "68", "50", "78", "72", "70", "54", "3", "72", "8", "80", "90", "60", "120", "62", "96", "80", "1", "84", "144", "68", "90", "96" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A005117", "A034448", "A092261", "A138302", "A192066", "A209229", "A353900", "A358346", "A358347", "A360720", "A371242", "A380396", "A383763", "A385042", "A385043", "A385045", "A385046", "A385047", "A385048", "A385049" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:54:14
oeisdata/seq/A385/A385043.seq
8b5c8b3d194caf403f265520b87fa5a0
A385044
The number of unitary divisors of n that are 5-rough numbers (A007310).
[ "1", "1", "1", "1", "2", "1", "2", "1", "1", "2", "2", "1", "2", "2", "2", "1", "2", "1", "2", "2", "2", "2", "2", "1", "2", "2", "1", "2", "2", "2", "2", "1", "2", "2", "4", "1", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "1", "4", "2", "2", "2", "2", "2", "2", "2", "2", "1", "4", "2", "2", "2", "2", "4", "2", "1", "2", "2", "2", "2", "4", "2", "2", "2", "1", "2", "2", "2", "4", "2", "2" ]
[ "nonn", "easy", "mult" ]
8
1
5
[ "A000034", "A001620", "A007310", "A013661", "A034444", "A035218", "A055076", "A056624", "A056671", "A065330", "A068068", "A306016", "A323308", "A365498", "A365499", "A368248", "A380395", "A382488", "A385042", "A385044", "A385045" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:53:21
oeisdata/seq/A385/A385044.seq
5305125cbe7662c0e94421758b484cff
A385045
The sum of the unitary divisors of n that are 5-rough numbers (A007310).
[ "1", "1", "1", "1", "6", "1", "8", "1", "1", "6", "12", "1", "14", "8", "6", "1", "18", "1", "20", "6", "8", "12", "24", "1", "26", "14", "1", "8", "30", "6", "32", "1", "12", "18", "48", "1", "38", "20", "14", "6", "42", "8", "44", "12", "6", "24", "48", "1", "50", "26", "18", "14", "54", "1", "72", "8", "20", "30", "60", "6", "62", "32", "8", "1", "84", "12", "68", "18", "24", "48", "72", "1", "74", "38" ]
[ "nonn", "easy", "mult" ]
7
1
5
[ "A002117", "A007310", "A034448", "A065330", "A092261", "A186099", "A192066", "A358346", "A358347", "A360720", "A371242", "A380396", "A383763", "A385043", "A385044", "A385045", "A385046", "A385047", "A385048", "A385049" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:54:02
oeisdata/seq/A385/A385045.seq
27a3f06286d782d39fade60bd5a79a0c
A385046
The sum of the unitary divisors of n that are 3-smooth numbers (A003586).
[ "1", "3", "4", "5", "1", "12", "1", "9", "10", "3", "1", "20", "1", "3", "4", "17", "1", "30", "1", "5", "4", "3", "1", "36", "1", "3", "28", "5", "1", "12", "1", "33", "4", "3", "1", "50", "1", "3", "4", "9", "1", "12", "1", "5", "10", "3", "1", "68", "1", "3", "4", "5", "1", "84", "1", "9", "4", "3", "1", "20", "1", "3", "10", "65", "1", "12", "1", "5", "4", "3", "1", "90", "1", "3", "4", "5", "1", "12", "1", "17" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A001620", "A003586", "A034448", "A065331", "A072079", "A082633", "A092261", "A192066", "A358346", "A358347", "A360720", "A371242", "A380396", "A382488", "A383763", "A385043", "A385045", "A385046", "A385047", "A385048", "A385049" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:53:14
oeisdata/seq/A385/A385046.seq
05075d73ec598585b51ba1b322aea67f
A385047
The sum of the unitary divisors of n that are powers of 2.
[ "1", "3", "1", "5", "1", "3", "1", "9", "1", "3", "1", "5", "1", "3", "1", "17", "1", "3", "1", "5", "1", "3", "1", "9", "1", "3", "1", "5", "1", "3", "1", "33", "1", "3", "1", "5", "1", "3", "1", "9", "1", "3", "1", "5", "1", "3", "1", "17", "1", "3", "1", "5", "1", "3", "1", "9", "1", "3", "1", "5", "1", "3", "1", "65", "1", "3", "1", "5", "1", "3", "1", "9", "1", "3", "1", "5", "1", "3", "1", "17", "1", "3", "1", "5", "1", "3" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A001620", "A006519", "A034448", "A038712", "A092261", "A192066", "A358346", "A358347", "A360720", "A371242", "A380396", "A383763", "A385043", "A385045", "A385046", "A385047", "A385048", "A385049" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:53:00
oeisdata/seq/A385/A385047.seq
d84acd10c436e095c33409ba96e2249a
A385048
The sum of the unitary divisors of n that are cubefull numbers (A036966).
[ "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "1", "17", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "28", "1", "1", "1", "1", "33", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "1", "17", "1", "1", "1", "1", "1", "28", "1", "9", "1", "1", "1", "1", "1", "1", "1", "65", "1", "1", "1", "1", "1", "1", "1", "9", "1", "1", "1", "1", "1", "1", "1", "17", "82", "1", "1", "1", "1" ]
[ "nonn", "easy", "mult" ]
9
1
8
[ "A034448", "A036966", "A046100", "A092261", "A192066", "A358346", "A358347", "A360540", "A360720", "A368248", "A371242", "A380396", "A383763", "A385005", "A385043", "A385045", "A385046", "A385047", "A385048", "A385049" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:53:08
oeisdata/seq/A385/A385048.seq
2c4007ab78d3497f7c127ff03bde7322
A385049
The sum of the unitary divisors of n that are biquadratefree numbers (A046100).
[ "1", "3", "4", "5", "6", "12", "8", "9", "10", "18", "12", "20", "14", "24", "24", "1", "18", "30", "20", "30", "32", "36", "24", "36", "26", "42", "28", "40", "30", "72", "32", "1", "48", "54", "48", "50", "38", "60", "56", "54", "42", "96", "44", "60", "60", "72", "48", "4", "50", "78", "72", "70", "54", "84", "72", "72", "80", "90", "60", "120", "62", "96", "80", "1", "84", "144", "68", "90" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A036967", "A046100", "A092261", "A192066", "A358346", "A358347", "A360720", "A365499", "A371242", "A380396", "A383763", "A385006", "A385007", "A385043", "A385045", "A385046", "A385047", "A385048", "A385049" ]
null
Amiram Eldar, Jun 16 2025
2025-06-16T16:52:53
oeisdata/seq/A385/A385049.seq
e9a8644608d450ebe466ce42d8f64b87
A385050
a(n) is the least positive number k such that n is the greatest m such that k is a quadratic residue mod prime(i) for i=1..m and {k mod prime(i): i=1..m} are all distinct.
[ "1", "3", "4", "184", "9", "1479", "20799", "31509", "162094", "83554", "828844", "895449", "4631104", "86925309", "97476129", "14684224", "33547264", "5381151099", "516743824", "1958770564", "112746608529", "3046156864", "373079083204", "1394424964", "297469886464", "1596601563489", "976001733184", "33344131402059" ]
[ "nonn", "new" ]
20
1
2
[ "A279074", "A377212", "A385050", "A385051" ]
null
Charles L. Hohn, Jun 16 2025
2025-07-12T19:27:10
oeisdata/seq/A385/A385050.seq
b47485f455753cbed1a37dc0f8e50ceb
A385051
a(n) is the least positive number k such that n is the greatest m such that k is a quadratic nonresidue mod prime(i+1) for i=1..m and {k mod prime(i+1): i=1..m} are all distinct.
[ "1", "2", "8", "68", "173", "593", "1748", "908", "40178", "74093", "91538", "93308", "441803", "10712063", "7898483", "35865968", "133019963", "206951093", "1314259253", "2453647853", "6701493818", "54776939873", "7717930358", "250589717363", "255937042268", "3665861003153", "957987212453", "9953155219223" ]
[ "nonn", "new" ]
20
0
2
[ "A279074", "A376999", "A385050", "A385051" ]
null
Charles L. Hohn, Jun 16 2025
2025-07-12T19:49:48
oeisdata/seq/A385/A385051.seq
3534a84941f4c7a3fe47ff32f585ab2e
A385054
Numbers k such that (2*k-1)*2^valuation(k, 2) != denominator(2*Euler(2*k-1, 1)/(2*k-1)).
[ "60", "140", "196", "280", "295", "332", "390", "468", "574", "581", "604", "605", "621", "740", "760", "826", "876", "935", "1012", "1070", "1148", "1183", "1185", "1210", "1225", "1240", "1269", "1278", "1284", "1376", "1420", "1484", "1526", "1535", "1556", "1690", "1692", "1715", "1828", "1906", "1908", "1910", "1914", "1928", "1935", "1964", "2000" ]
[ "nonn" ]
7
1
1
[ "A219931", "A385054" ]
null
Peter Luschny, Jun 16 2025
2025-06-17T08:13:03
oeisdata/seq/A385/A385054.seq
aa363e34322fc9ee5c8da7d2485ce94d
A385055
a(n) = [n = 1 or A076479(n) = Möbius(A067029(n))], where [.] is the Iverson bracket.
[ "1", "0", "0", "1", "0", "1", "0", "1", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "1", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "1", "0", "1", "1", "1", "1", "0", "0", "0" ]
[ "nonn" ]
14
1
null
[ "A008683", "A067029", "A076479", "A384709", "A385055" ]
null
Peter Luschny and Friedjof Tellkamp, Jun 16 2025
2025-06-25T12:03:55
oeisdata/seq/A385/A385055.seq
01742f6e1591460533e26a295bf22679
A385056
Prime numbers whose digit product is a positive cube.
[ "11", "139", "181", "193", "241", "389", "421", "811", "839", "881", "983", "1181", "1193", "1319", "1777", "1811", "1913", "1931", "1999", "2141", "2221", "2269", "2411", "2663", "3119", "3191", "3313", "3331", "3463", "3643", "3833", "3889", "3911", "4211", "4363", "4441", "4691", "6229", "6263", "6343", "6491", "6661", "7177", "7717", "7877", "8111" ]
[ "nonn", "base" ]
27
1
1
[ "A000040", "A038618", "A184328", "A237767", "A385056" ]
null
Mohd Anwar Jamal Faiz, Jun 16 2025
2025-06-22T23:30:26
oeisdata/seq/A385/A385056.seq
6c11527eb9a75c498cb07d22b7e2c8c7
A385058
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x))).
[ "1", "1", "5", "31", "333", "3841", "57463", "836109", "11138921", "14908465", "-10091931669", "-687827361011", "-40151825312387", "-2071761364164231", "-106488772704576961", "-5002145237145820979", "-203989286928198178863", "-4164191357488024315679", "500440079223957671460307", "99906607739361143393212941" ]
[ "sign" ]
7
0
3
[ "A052750", "A384982", "A385058", "A385061" ]
null
Seiichi Manyama, Jun 16 2025
2025-06-16T08:42:35
oeisdata/seq/A385/A385058.seq
1c9777b20f612c5a2e23ecd35127fce4
A385059
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x))^2).
[ "1", "1", "7", "40", "397", "2336", "-46601", "-2661896", "-125428775", "-3724273664", "-90080842229", "1096530753176", "400257318802213", "36023363702572000", "2951479723885410943", "178834401869241704056", "8444450128124255913649", "-59239960097902788177664", "-92000068200778017857238125" ]
[ "sign" ]
8
0
3
[ "A052752", "A384983", "A385059", "A385062" ]
null
Seiichi Manyama, Jun 16 2025
2025-06-16T08:42:19
oeisdata/seq/A385/A385059.seq
90665317bb485f8a989a6f7b995a1bb8
A385060
E.g.f. A(x) satisfies A(x) = exp(x*A(x)/A(-x*A(x))^3).
[ "1", "1", "9", "43", "125", "-6279", "-412025", "-9060911", "-98234103", "10633082401", "1397628908171", "76301056937865", "3570677332342477", "-21017427583370399", "-28544077526642620977", "-3624219130398256821119", "-403594553235196466813935", "-26214785940427662614214975", "-249746440937109731554641389" ]
[ "sign" ]
8
0
3
[ "A052774", "A384984", "A385060", "A385063" ]
null
Seiichi Manyama, Jun 16 2025
2025-06-16T08:40:54
oeisdata/seq/A385/A385060.seq
03cc93bdfa9faa73c3b715def025571c
A385061
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A385058.
[ "1", "1", "0", "1", "1", "0", "1", "2", "5", "0", "1", "3", "12", "31", "0", "1", "4", "21", "92", "333", "0", "1", "5", "32", "189", "1064", "3841", "0", "1", "6", "45", "328", "2373", "14112", "57463", "0", "1", "7", "60", "515", "4464", "34923", "230188", "836109", "0", "1", "8", "77", "756", "7565", "71584", "615195", "4005920", "11138921", "0", "1", "9", "96", "1057", "11928", "130725", "1351384", "11934219", "72843408", "14908465", "0" ]
[ "sign", "tabl" ]
10
0
8
[ "A000007", "A385058", "A385061" ]
null
Seiichi Manyama, Jun 16 2025
2025-06-16T08:43:06
oeisdata/seq/A385/A385061.seq
34d4ca5c3d034017c13b5dbf8e68a246
A385062
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A385059.
[ "1", "1", "0", "1", "1", "0", "1", "2", "7", "0", "1", "3", "16", "40", "0", "1", "4", "27", "122", "397", "0", "1", "5", "40", "252", "1408", "2336", "0", "1", "6", "55", "436", "3285", "14242", "-46601", "0", "1", "7", "72", "680", "6304", "42528", "50200", "-2661896", "0", "1", "8", "91", "990", "10765", "95684", "457803", "-4177822", "-125428775", "0", "1", "9", "112", "1372", "16992", "184000", "1415728", "-595872", "-290217568", "-3724273664", "0" ]
[ "sign", "tabl" ]
8
0
8
[ "A000007", "A385059", "A385062" ]
null
Seiichi Manyama, Jun 16 2025
2025-06-16T08:42:04
oeisdata/seq/A385/A385062.seq
2fe0dc183ac0ad81ea482d645b29b948
A385063
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A385060.
[ "1", "1", "0", "1", "1", "0", "1", "2", "9", "0", "1", "3", "20", "43", "0", "1", "4", "33", "140", "125", "0", "1", "5", "48", "297", "1080", "-6279", "0", "1", "6", "65", "520", "3189", "-3568", "-412025", "0", "1", "7", "84", "815", "6800", "18003", "-828668", "-9060911", "0", "1", "8", "105", "1188", "12285", "70464", "-1033749", "-25887384", "-98234103", "0" ]
[ "sign", "tabl" ]
8
0
8
[ "A000007", "A385060", "A385063" ]
null
Seiichi Manyama, Jun 16 2025
2025-06-16T08:41:38
oeisdata/seq/A385/A385063.seq
9a541714e93313f9b6644dbfe635a64d
A385064
Numbers k such that (31^k - 3^k)/28 is prime.
[ "3", "23", "53", "661", "8923", "9721", "13807" ]
[ "nonn", "hard", "more" ]
12
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A385064" ]
null
Robert Price, Jun 16 2025
2025-06-17T11:29:16
oeisdata/seq/A385/A385064.seq
4e1181847bfdb92661394d13e983c4a5
A385067
G.f.: Sum_{k>=0} x^k * Product_{j=1..3*k} (1 + x^j).
[ "1", "1", "2", "3", "5", "6", "8", "11", "14", "18", "23", "30", "38", "47", "58", "71", "87", "106", "128", "154", "185", "221", "263", "313", "370", "437", "514", "603", "705", "822", "958", "1112", "1289", "1491", "1721", "1982", "2279", "2617", "2999", "3432", "3921", "4473", "5095", "5795", "6583", "7468", "8461", "9574", "10820", "12214", "13772", "15512", "17453" ]
[ "nonn" ]
11
0
3
[ "A000009", "A035295", "A192433", "A385067", "A385068", "A385069", "A385070" ]
null
Vaclav Kotesovec, Jun 16 2025
2025-06-17T03:33:44
oeisdata/seq/A385/A385067.seq
32ad97d06da797b26dc3d8d4e209da93
A385068
G.f.: Sum_{k>=0} x^k * Product_{j=1..4*k} (1 + x^j).
[ "1", "1", "2", "3", "5", "7", "9", "12", "16", "20", "26", "33", "41", "52", "65", "81", "99", "121", "147", "177", "214", "255", "304", "362", "429", "507", "596", "700", "820", "959", "1119", "1301", "1510", "1750", "2023", "2335", "2688", "3089", "3546", "4062", "4647", "5306", "6050", "6889", "7833", "8895", "10085", "11422", "12921", "14599", "16477", "18573", "20914" ]
[ "nonn" ]
12
0
3
[ "A000009", "A035296", "A192433", "A385067", "A385068", "A385069", "A385070" ]
null
Vaclav Kotesovec, Jun 16 2025
2025-06-17T03:34:21
oeisdata/seq/A385/A385068.seq
c36ada9d16f32c5aadf071d39647f897
A385069
G.f.: Sum_{k>=0} x^k * Product_{j=1..5*k} (1 + x^j).
[ "1", "1", "2", "3", "5", "7", "10", "13", "17", "22", "28", "36", "45", "56", "69", "86", "106", "130", "159", "192", "232", "279", "333", "397", "472", "557", "657", "773", "905", "1059", "1236", "1437", "1669", "1935", "2236", "2582", "2976", "3422", "3930", "4507", "5157", "5894", "6728", "7664", "8721", "9911", "11246", "12746", "14430", "16312", "18421", "20780" ]
[ "nonn" ]
11
0
3
[ "A000009", "A035297", "A192433", "A385067", "A385068", "A385069", "A385070" ]
null
Vaclav Kotesovec, Jun 16 2025
2025-06-17T03:34:57
oeisdata/seq/A385/A385069.seq
ef247f17e48c7aaf838ffa10f52c2e81
A385070
G.f.: Sum_{k>=0} x^k * Product_{j=1..6*k} (1 + x^j).
[ "1", "1", "2", "3", "5", "7", "10", "14", "18", "23", "30", "38", "48", "60", "74", "91", "112", "137", "166", "202", "244", "294", "352", "420", "500", "592", "700", "824", "968", "1133", "1323", "1541", "1791", "2077", "2403", "2776", "3198", "3679", "4226", "4845", "5546", "6340", "7236", "8246", "9385", "10667", "12108", "13728", "15545", "17581", "19860", "22409" ]
[ "nonn" ]
12
0
3
[ "A000009", "A035298", "A192433", "A385067", "A385068", "A385069", "A385070" ]
null
Vaclav Kotesovec, Jun 16 2025
2025-06-17T03:35:40
oeisdata/seq/A385/A385070.seq
b15ca5e0ac9a5376dde7e03cb80532fb
A385071
a(n) = number of triangular numbers <= n-th tetrahedral number.
[ "1", "2", "3", "5", "6", "8", "11", "13", "16", "18", "21", "24", "27", "30", "33", "37", "40", "44", "48", "52", "56", "60", "64", "68", "72", "76", "81", "85", "90", "95", "100", "104", "109", "114", "120", "125", "130", "135", "141", "146", "152", "157", "163", "168", "174", "180", "186", "192", "198", "204", "210", "216", "223", "229", "235", "242", "248", "255", "262" ]
[ "nonn" ]
8
0
2
[ "A000217", "A000292", "A385071", "A385072" ]
null
Clark Kimberling, Jun 16 2025
2025-06-27T19:26:58
oeisdata/seq/A385/A385071.seq
01bd2c6ba20c1810cc89f1893a51fad0
A385072
a(n) = number of tetrahedral numbers <= n-th triangular number.
[ "1", "2", "2", "3", "4", "4", "5", "5", "6", "6", "6", "7", "7", "8", "8", "9", "9", "9", "10", "10", "10", "11", "11", "11", "12", "12", "12", "13", "13", "13", "14", "14", "14", "15", "15", "15", "15", "16", "16", "16", "17", "17", "17", "17", "18", "18", "18", "18", "19", "19", "19", "19", "20", "20", "20", "21", "21", "21", "21", "21", "22", "22", "22", "22", "23", "23", "23", "23", "24" ]
[ "nonn" ]
8
0
2
[ "A000217", "A000292", "A385071", "A385072" ]
null
Clark Kimberling, Jun 19 2025
2025-06-27T19:43:42
oeisdata/seq/A385/A385072.seq
7a291e65f4a6dee1e7c2273e9e50a6ec
A385073
a(n) = b^(n-1) mod n, where b = A053669(n) is the least integer greater than 1 and coprime to n.
[ "0", "1", "1", "3", "1", "5", "1", "3", "4", "3", "1", "5", "1", "3", "4", "11", "1", "11", "1", "7", "4", "3", "1", "5", "16", "3", "13", "27", "1", "7", "1", "11", "4", "3", "9", "29", "1", "3", "4", "27", "1", "17", "1", "27", "31", "3", "1", "29", "15", "33", "4", "27", "1", "11", "49", "3", "4", "3", "1", "43", "1", "3", "4", "43", "16", "23", "1", "27", "4", "13", "1", "29", "1", "3", "34", "27", "9", "5", "1", "27", "40", "3", "1", "17" ]
[ "nonn", "look" ]
35
1
4
[ "A053669", "A385073", "A385074" ]
null
Robert G. Wilson v, Jun 16 2025
2025-06-25T18:05:51
oeisdata/seq/A385/A385073.seq
10da487304964ab8f153bb6b1eaca92c
A385074
Index of the first occurrence of n in A385073.
[ "1", "2", "20737", "4", "9", "6", "3763", "20", "40369", "35", "2951", "16", "35622023", "27", "2041", "49", "25", "42", "697", "2168", "18537061", "31958", "117", "66", "356698651", "147", "7863277", "28" ]
[ "nonn", "more" ]
18
0
2
[ "A385073", "A385074" ]
null
Robert G. Wilson v, Jun 16 2025
2025-06-27T00:37:49
oeisdata/seq/A385/A385074.seq
b37611d5d186711698b104347c38e33a
A385075
Numbers k for which sigma(k - x) + sigma(k + x) = 9*k has at least one nonnegative solution.
[ "361881", "792960", "835072", "837312", "846720", "917280", "944608", "946176", "1509236", "1517264", "1630880", "1635600", "1636614", "1697560", "1834560", "1914092", "1926336", "1927692", "1941264", "2387120", "2450112", "2474316", "2494464", "2546656", "2573088", "2624832", "2685394", "2705680", "2840468", "2913120", "2941009" ]
[ "nonn" ]
9
1
1
[ "A000203", "A141645", "A383268", "A383758", "A384838", "A384839", "A384840", "A384841", "A385075" ]
null
Michel Marcus, Jun 16 2025
2025-06-16T18:13:05
oeisdata/seq/A385/A385075.seq
18bf0933946a6ca5f21882db175eecd6
A385078
Consecutive states of the linear congruential pseudo-random number generator (967*s + 3041) mod 14406 when started at s=1.
[ "1", "4008", "3563", "5428", "8133", "1976", "12241", "12762", "12359", "11620", "2901", "13544", "5035", "2658", "9059", "4246", "3213", "12722", "2491", "6036", "5423", "3298", "8481", "7154", "6079", "3786", "4979", "6130", "9885", "10658", "9037", "11784", "3023", "1864", "4779", "8", "10777", "8862", "1025", "202", "11097", "1370", "2479" ]
[ "nonn", "look", "easy" ]
16
1
2
[ "A384113", "A384971", "A385002", "A385036", "A385078" ]
null
Sean A. Irvine, Jun 16 2025
2025-06-25T10:33:41
oeisdata/seq/A385/A385078.seq
3755261afbff911acaf81f4a7792f5ed
A385079
Consecutive states of the linear congruential pseudo-random number generator 228*s mod (2^16+1) when started at s=1.
[ "1", "228", "51984", "55692", "49135", "61490", "60339", "60059", "61756", "55450", "59496", "64466", "17960", "31586", "58075", "2626", "8895", "61950", "34145", "51694", "55109", "47285", "32912", "32718", "54023", "61825", "5645", "41857", "40531", "351", "14491", "27098", "17866", "10154", "21317", "10538", "43332", "49146", "63998" ]
[ "nonn", "easy" ]
19
1
2
[ "A384113", "A384971", "A385002", "A385079", "A385080" ]
null
Sean A. Irvine, Jun 16 2025
2025-06-20T08:38:10
oeisdata/seq/A385/A385079.seq
1f143b6aae65a42c102b0f78ecedb8b0
A385080
Consecutive states of the linear congruential pseudo-random number generator 237*s mod (2^16+1) when started at s=1.
[ "1", "237", "56169", "8042", "5381", "30094", "54282", "19582", "53344", "59424", "58570", "52783", "57541", "5521", "63274", "53502", "31333", "20240", "12679", "55758", "41709", "54483", "1682", "5412", "37441", "26022", "6736", "23544", "9283", "37350", "4455", "7243", "12629", "43908", "51350", "45605", "60317", "8063", "10358" ]
[ "nonn", "easy" ]
17
1
2
[ "A385079", "A385080" ]
null
Sean A. Irvine, Jun 16 2025
2025-06-20T08:21:54
oeisdata/seq/A385/A385080.seq
0eedab36581165b60b47a8985fd28c91
A385081
Irregular triangle T(n,k) of refined derangement counts in the symmetric group S_(n+1), refined per cycle type.
[ "1", "2", "3", "6", "20", "24", "15", "90", "40", "120", "210", "504", "420", "720", "105", "1260", "1120", "3360", "2688", "1260", "5040", "2520", "9072", "15120", "25920", "2240", "20160", "18144", "40320", "945", "18900", "25200", "75600", "120960", "56700", "226800", "50400", "172800", "151200", "72576", "362880" ]
[ "nonn", "tabf", "new" ]
22
1
2
[ "A000166", "A181897", "A385081" ]
null
Gregory Gerard Wojnar, Jun 16 2025
2025-07-09T23:08:07
oeisdata/seq/A385/A385081.seq
6f8bda494e7938c0c749378f648c6a3d
A385082
Sum of squared coefficients of Product_{i=0..n-1} 1+x^(2^i+1)+x^(2^(i+1)+1).
[ "1", "3", "13", "55", "249", "1121", "5025", "22607", "101931", "460877", "2088687", "9482763", "43109307", "196163983", "893222041", "4069162197", "18543631161", "84525140297", "385343891847", "1756959373157", "8011450183181", "36533108258455", "166602342944307", "759783053580809", "3465042771956289", "15802856371611411" ]
[ "nonn" ]
17
0
2
[ "A052984", "A385082" ]
null
Michel Marcus, Jun 16 2025
2025-06-18T16:02:11
oeisdata/seq/A385/A385082.seq
1f18da92861b36cc8fd5726ba1a32790
A385083
Expansion of e.g.f. cosh(x)*(x + x^2/2).
[ "0", "1", "1", "3", "6", "5", "15", "7", "28", "9", "45", "11", "66", "13", "91", "15", "120", "17", "153", "19", "190", "21", "231", "23", "276", "25", "325", "27", "378", "29", "435", "31", "496", "33", "561", "35", "630", "37", "703", "39", "780", "41", "861", "43", "946", "45", "1035", "47", "1128", "49", "1225", "51", "1326", "53", "1431", "55", "1540", "57", "1653", "59", "1770" ]
[ "nonn", "easy" ]
9
0
4
[ "A000384", "A005408", "A385083" ]
null
Enrique Navarrete, Jun 17 2025
2025-06-19T00:13:14
oeisdata/seq/A385/A385083.seq
fcbb4f1961c08fc2f2d7e8b4b9900691
A385085
a(n) = 2 * (3*n+2)^(n-1).
[ "1", "2", "16", "242", "5488", "167042", "6400000", "296071778", "16063620352", "1000492825922", "70368744177664", "5517094707031250", "477144100447105024", "45126980600732372162", "4633559988356427808768", "513333972375334818668738", "61035156250000000000000000", "7752538100237033690795744642" ]
[ "nonn", "easy" ]
16
0
2
[ "A007334", "A052752", "A385085", "A385086" ]
null
Seiichi Manyama, Jun 17 2025
2025-06-17T10:04:59
oeisdata/seq/A385/A385085.seq
7488b018eac5fa946c56b6bac82262ce
A385086
a(n) = 2 * (5*n+2)^(n-1).
[ "1", "2", "24", "578", "21296", "1062882", "67108864", "5131452818", "461078666496", "47622573323522", "5559811767271424", "724066662913782498", "104073121367674187776", "16365437809265714289122", "2794811034494209364066304", "515110198093444174897047218", "101914923171285428527995355136" ]
[ "nonn", "easy" ]
16
0
2
[ "A007334", "A052782", "A385085", "A385086" ]
null
Seiichi Manyama, Jun 17 2025
2025-06-17T10:04:41
oeisdata/seq/A385/A385086.seq
d6594e4e6fe5c7b8b6ffb5708c4cc5a1
A385087
2-adic valuation of A039699.
[ "3", "3", "10", "3", "6", "8", "12", "3", "6", "6", "11", "8", "11", "12", "16", "3", "6", "6", "12", "6", "9", "13", "17", "8", "11", "11", "16", "12", "15", "16", "20", "3", "6", "6", "14", "6", "9", "11", "15", "6", "9", "9", "14", "13", "16", "17", "21", "8", "11", "11", "17", "11", "14", "17", "21", "12", "15", "15", "20", "16", "19", "20", "24", "3", "6", "6", "13", "6", "9", "11", "15", "6", "9", "9", "14", "11", "14", "15", "19", "6" ]
[ "nonn", "easy" ]
20
1
1
[ "A000120", "A002895", "A007814", "A039699", "A385087" ]
null
Michel Marcus, Jun 17 2025
2025-06-18T00:53:04
oeisdata/seq/A385/A385087.seq
96d887cb13a40f3b99b3543990d0bcf6
A385088
G.f.: Sum_{k>=0} x^k * Product_{j=1..2*k} (1 + x^j)/(1 - x^j).
[ "1", "1", "3", "7", "13", "23", "39", "63", "101", "159", "243", "367", "547", "801", "1161", "1665", "2359", "3315", "4621", "6385", "8761", "11941", "16165", "21757", "29121", "38761", "51337", "67673", "88793", "116009", "150949", "195629", "252595", "324987", "416675", "532483", "678333", "861489", "1090913", "1377553", "1734761", "2178883" ]
[ "nonn" ]
11
0
3
[ "A035294", "A192433", "A207641", "A385088", "A385089", "A385090", "A385091", "A385092" ]
null
Vaclav Kotesovec, Jun 17 2025
2025-06-18T07:34:52
oeisdata/seq/A385/A385088.seq
db12c9f377c2959f0d08c2674d07315f
A385089
G.f.: Sum_{k>=0} x^k * Product_{j=1..3*k} (1 + x^j)/(1 - x^j).
[ "1", "1", "3", "7", "15", "27", "47", "79", "127", "199", "307", "465", "695", "1025", "1493", "2151", "3069", "4337", "6075", "8441", "11639", "15933", "21667", "29281", "39337", "52555", "69849", "92375", "121595", "159347", "207939", "270259", "349911", "451377", "580223", "743341", "949241", "1208415", "1533763", "1941111", "2449841", "3083637" ]
[ "nonn" ]
9
0
3
[ "A035295", "A207641", "A385067", "A385088", "A385089", "A385090", "A385091", "A385092" ]
null
Vaclav Kotesovec, Jun 17 2025
2025-06-18T07:34:40
oeisdata/seq/A385/A385089.seq
18c39feb08aa91f8d17322fdb3950b55
A385090
G.f.: Sum_{k>=0} x^k * Product_{j=1..4*k} (1 + x^j)/(1 - x^j).
[ "1", "1", "3", "7", "15", "29", "51", "87", "143", "227", "353", "537", "803", "1185", "1727", "2489", "3551", "5021", "7039", "9791", "13521", "18541", "25261", "34207", "46051", "61655", "82113", "108815", "143517", "188433", "246343", "320725", "415931", "537377", "691791", "887517", "1134863", "1446549", "1838235", "2329147", "2942849", "3708165" ]
[ "nonn" ]
9
0
3
[ "A035296", "A207641", "A385068", "A385088", "A385089", "A385090", "A385091", "A385092" ]
null
Vaclav Kotesovec, Jun 17 2025
2025-06-18T07:34:26
oeisdata/seq/A385/A385090.seq
e249be46461a5afab2680e1647ff62d3
A385091
G.f.: Sum_{k>=0} x^k * Product_{j=1..5*k} (1 + x^j)/(1 - x^j).
[ "1", "1", "3", "7", "15", "29", "53", "91", "151", "243", "381", "585", "881", "1305", "1907", "2753", "3931", "5559", "7793", "10835", "14955", "20501", "27921", "37801", "50889", "68139", "90777", "120353", "158827", "208683", "273037", "355791", "461839", "597273", "769661", "988411", "1265149", "1614215", "2053297", "2604113", "3293281", "4153407" ]
[ "nonn" ]
10
0
3
[ "A035297", "A207641", "A385069", "A385088", "A385089", "A385090", "A385091", "A385092" ]
null
Vaclav Kotesovec, Jun 17 2025
2025-06-18T07:41:28
oeisdata/seq/A385/A385091.seq
abcdaa1108fcfedd89a893f3bdbb6aa2
A385092
G.f.: Sum_{k>=0} x^k * Product_{j=1..6*k} (1 + x^j)/(1 - x^j).
[ "1", "1", "3", "7", "15", "29", "53", "93", "155", "251", "397", "613", "929", "1385", "2033", "2945", "4219", "5979", "8393", "11683", "16133", "22119", "30125", "40773", "54867", "73435", "97785", "129583", "170941", "224519", "293673", "382615", "496609", "642231", "827667", "1063073", "1361029", "1737081", "2210381", "2804485", "3548303", "4477229" ]
[ "nonn" ]
11
0
3
[ "A035298", "A207641", "A385070", "A385088", "A385089", "A385090", "A385091", "A385092" ]
null
Vaclav Kotesovec, Jun 17 2025
2025-06-18T07:41:53
oeisdata/seq/A385/A385092.seq
249cba737b53e7c3d940675d79a85e25
A385093
Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is greater than 2 and less than 3.
[ "331", "953", "1381", "1861", "2161", "2357", "2371", "2423", "2879", "3229", "3271", "3407", "3491", "3607", "3643", "3691", "3889", "4057", "4073", "4139", "4201", "4507", "4567", "4751", "4831", "4903", "4987", "5059", "5153", "5297", "5309", "5683", "5897", "6029", "6053", "6067", "6173", "6229", "6529", "6599", "6653", "6857", "7079", "7151", "7159", "7193", "7283", "7417", "7717", "7867", "7963" ]
[ "nonn" ]
13
1
1
[ "A384603", "A384618", "A385093" ]
null
Alain Rocchelli, Jun 17 2025
2025-06-29T10:06:02
oeisdata/seq/A385/A385093.seq
426104fcd3d2112238cefd9e3fcdc821
A385094
Primes that are the sum of distinct positive cubes.
[ "73", "197", "251", "281", "307", "349", "379", "433", "443", "503", "521", "541", "547", "577", "587", "631", "659", "673", "701", "709", "719", "757", "821", "827", "829", "853", "863", "881", "883", "919", "947", "953", "1009", "1091", "1097", "1153", "1163", "1171", "1217", "1223", "1231", "1249", "1277", "1289", "1297", "1307", "1361", "1367", "1423", "1433", "1439", "1483", "1493" ]
[ "nonn", "easy" ]
17
1
1
[ "A003997", "A122723", "A385094" ]
null
Zhining Yang, Jun 17 2025
2025-06-25T11:03:31
oeisdata/seq/A385/A385094.seq
4e67675d790937f9da726834944aee13
A385095
Numbers such that (-1)^Omega(k)*Moebius(espf(k)) > 0, where Moebius = A008683 and Omega = A001221, and espf(k) is the exponent of the smallest prime factor of k, with espf(1) = 1.
[ "1", "4", "6", "8", "9", "10", "14", "15", "18", "21", "22", "25", "26", "27", "32", "33", "34", "35", "38", "39", "46", "49", "50", "51", "54", "55", "57", "58", "60", "62", "65", "69", "74", "75", "77", "82", "84", "85", "86", "87", "91", "93", "94", "95", "98", "106", "111", "115", "118", "119", "120", "121", "122", "123", "125", "128", "129", "132", "133", "134", "140", "141", "142" ]
[ "nonn" ]
14
1
2
[ "A001221", "A008683", "A067029", "A383264", "A384709", "A385055", "A385095", "A385096" ]
null
Peter Luschny, Jun 17 2025
2025-06-23T03:37:50
oeisdata/seq/A385/A385095.seq
2d5efdea09b86dad6a77570c1cd05892
A385096
Numbers such that (-1)^Omega(k)*Moebius(espf(k)) < 0, where Moebius = A008683 and Omega = A001221, and espf(k) is the exponent of the smallest prime factor of k, with espf(1) = 1.
[ "2", "3", "5", "7", "11", "12", "13", "17", "19", "20", "23", "24", "28", "29", "30", "31", "36", "37", "40", "41", "42", "43", "44", "45", "47", "52", "53", "56", "59", "61", "63", "64", "66", "67", "68", "70", "71", "72", "73", "76", "78", "79", "83", "88", "89", "90", "92", "96", "97", "99", "100", "101", "102", "103", "104", "105", "107", "108", "109", "110", "113", "114", "116", "117" ]
[ "nonn" ]
16
1
1
[ "A001221", "A008683", "A067029", "A383264", "A384709", "A385055", "A385095", "A385096" ]
null
Peter Luschny, Jun 17 2025
2025-06-23T03:37:55
oeisdata/seq/A385/A385096.seq
3d1a8e8c5d270e54deecf04e99479269
A385097
Numbers k such that Moebius(espf(k)) < 0, where espf(k) is the exponent of the smallest prime factor of k, with espf(1) = 1.
[ "4", "8", "9", "12", "20", "24", "25", "27", "28", "32", "36", "40", "44", "45", "49", "52", "56", "60", "63", "68", "72", "76", "84", "88", "92", "96", "99", "100", "104", "108", "116", "117", "120", "121", "124", "125", "128", "132", "135", "136", "140", "148", "152", "153", "156", "160", "164", "168", "169", "171", "172", "175", "180", "184", "188", "189", "196", "200" ]
[ "nonn" ]
9
1
1
[ "A008683", "A067029", "A385097", "A385098" ]
null
Peter Luschny, Jun 18 2025
2025-06-23T03:37:59
oeisdata/seq/A385/A385097.seq
e38975187991905e68451528ebdf4c85
A385098
Numbers k such that Moebius(espf(k)) > 0, where espf(k) is the exponent of the smallest prime factor of k, with espf(1) = 1.
[ "1", "2", "3", "5", "6", "7", "10", "11", "13", "14", "15", "17", "18", "19", "21", "22", "23", "26", "29", "30", "31", "33", "34", "35", "37", "38", "39", "41", "42", "43", "46", "47", "50", "51", "53", "54", "55", "57", "58", "59", "61", "62", "64", "65", "66", "67", "69", "70", "71", "73", "74", "75", "77", "78", "79", "82", "83", "85", "86", "87", "89", "90", "91", "93", "94", "95", "97", "98" ]
[ "nonn" ]
9
1
2
[ "A008683", "A067029", "A385097", "A385098" ]
null
Peter Luschny, Jun 18 2025
2025-06-23T03:38:03
oeisdata/seq/A385/A385098.seq
11c8cb0d22510e59c2297680df07cb9a
A385099
LCM of the denominators of the terms of the n-th row of the triangle defined by T(n,k) = (prime(n)-prime(k))/(prime(n)+prime(k)) for k=1 to n-1.
[ "1", "5", "28", "90", "6552", "360", "87780", "720720", "1392300", "794167920", "134303400", "91891800", "124025821920", "10969219800", "83394511200", "588649168800", "9565779183760800", "8320471679520", "42091797908160", "382277027144790577800", "2236702343475600", "29537051421571016400", "2469697918375287600" ]
[ "nonn" ]
10
1
2
[ "A000040", "A385099" ]
null
Michel Marcus, Jun 17 2025
2025-06-18T06:11:24
oeisdata/seq/A385/A385099.seq
776d3182acec5d148a75e6b9037e1626
A385100
a(n) is the smallest integer k such that A384854(k) = n.
[ "1", "2", "66", "182", "30", "858", "4830", "201630", "1829030", "976430", "24877650", "645314670", "3392218830", "17041181430" ]
[ "nonn", "more", "changed" ]
15
1
2
[ "A000005", "A065295", "A384781", "A384854", "A385100", "A385499" ]
null
Michel Marcus and Juri-Stepan Gerasimov, Jun 17 2025
2025-07-01T10:17:46
oeisdata/seq/A385/A385100.seq
6397cbfdf5d7ed5931997c0270ef78cd
A385102
Consecutive internal states of the linear congruential pseudo-random number generator for Turbo Pascal 3.0 when started at 1.
[ "1", "907633514", "2028239699", "557549500", "4112042149", "3080093198", "3102664695", "1719420512", "3669547337", "1832837298", "1120443547", "3710930180", "2876256749", "2577566550", "2701236543", "1474796456", "2177815185", "2672918010", "2116672995", "3375510092", "2556738357", "14399646" ]
[ "nonn", "easy" ]
8
1
2
[ "A384404", "A384429", "A384432", "A385102" ]
null
Sean A. Irvine, Jun 17 2025
2025-06-18T05:21:23
oeisdata/seq/A385/A385102.seq
8ba415b4a6ec13f6d7a9be4ac938f641
A385103
Number of values of s, 0 < s < n, such that -(s^s) == s (mod n).
[ "0", "1", "1", "0", "2", "2", "1", "0", "1", "4", "2", "1", "4", "3", "2", "0", "1", "2", "2", "1", "3", "3", "1", "1", "2", "6", "1", "1", "3", "6", "1", "0", "2", "2", "5", "1", "4", "3", "3", "1", "1", "4", "3", "1", "2", "3", "1", "1", "1", "4", "1", "2", "4", "2", "3", "2", "3", "5", "2", "3", "4", "3", "1", "0", "5", "5", "2", "1", "2", "8", "3", "1", "3", "8", "3", "1", "3", "4", "2", "1", "1", "3", "2", "3", "5", "4", "3", "1", "4", "6", "5", "2", "3", "3", "2", "1", "5", "2", "3", "1" ]
[ "nonn" ]
30
1
5
[ "A065295", "A151821", "A373901", "A382752", "A384781", "A384854", "A385103" ]
null
Juri-Stepan Gerasimov, Jun 17 2025
2025-06-26T23:14:19
oeisdata/seq/A385/A385103.seq
66f0ab8d80171d295e780c4da72416a0
A385104
Triangle read by rows: T(n,k) is the number of residue classes obtained by solving mod(x^2,n) = k for x over the integers, n >= 1, k >= 0.
[ "1", "1", "1", "1", "2", "0", "2", "2", "0", "0", "1", "2", "0", "0", "2", "1", "2", "0", "1", "2", "0", "1", "2", "2", "0", "2", "0", "0", "2", "4", "0", "0", "2", "0", "0", "0", "3", "2", "0", "0", "2", "0", "0", "2", "0", "1", "2", "0", "0", "2", "1", "2", "0", "0", "2", "1", "2", "0", "2", "2", "2", "0", "0", "0", "2", "0", "2", "4", "0", "0", "4", "0", "0", "0", "0", "2", "0", "0", "1", "2", "0", "2", "2", "0", "0", "0", "0", "2", "2", "0", "2", "1", "2", "2", "0", "2", "0", "0", "1", "2" ]
[ "nonn", "tabl" ]
13
1
5
[ "A000089", "A000188", "A060594", "A096008", "A385104" ]
null
Jason Bard, Jun 18 2025
2025-06-25T10:19:43
oeisdata/seq/A385/A385104.seq
dcee6cc6cd70b6421f947ebb9b68fa24
A385106
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) with a(1) = 1, a(2) = 2, a(3) = 4, and a(4) = 7.
[ "1", "2", "4", "7", "12", "21", "38", "70", "129", "236", "429", "778", "1412", "2567", "4672", "8505", "15478", "28158", "51217", "93160", "169465", "308290", "560852", "1020311", "1856132", "3376605", "6142582", "11174374", "20328113", "36980404", "67273829", "122382762", "222635316", "405011895", "736786328", "1340341377", "2438312358", "4435711166" ]
[ "nonn", "easy" ]
33
1
2
[ "A079398", "A385106", "A385107" ]
null
Hung Viet Chu, Jun 18 2025
2025-06-25T09:19:04
oeisdata/seq/A385/A385106.seq
0d411f7e4761319649f36831f87522f6
A385107
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) with a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 8, and a(5) = 15.
[ "1", "2", "4", "8", "15", "27", "48", "86", "157", "292", "549", "1034", "1939", "3613", "6697", "12381", "22889", "42384", "78642", "146136", "271720", "505137", "938514", "1742620", "3234360", "6002359", "11140379", "20680696", "38398206", "71302165", "132404188", "245856269", "456491098", "847539571", "1573534749", "2921413881", "5423970485", "10070489177" ]
[ "nonn", "easy" ]
31
1
2
[ "A103372", "A385106", "A385107" ]
null
Hung Viet Chu, Jun 18 2025
2025-06-25T09:14:36
oeisdata/seq/A385/A385107.seq
6d552c4334de9346408480f87bb3440f
A385108
Triangle a(n,k) read by antidiagonals: a(n,k) is the number of dots in the k-augmented centered triangle of order n, k>=0, n>=1.
[ "1", "1", "4", "1", "10", "10", "1", "31", "31", "19", "1", "109", "109", "64", "31", "1", "409", "409", "235", "109", "46", "1", "1585", "1585", "901", "409", "166", "64", "1", "6241", "6241", "3529", "1585", "631", "235", "85", "1", "24769", "24769", "13969", "6241", "2461", "901", "316", "109", "1", "98689", "98689", "55585", "24769", "9721", "3529", "1219", "409", "136" ]
[ "nonn", "easy", "tabl" ]
31
1
3
[ "A005448", "A085473", "A381424", "A385108" ]
null
Noel B. Lacpao, Jun 18 2025
2025-06-29T22:57:21
oeisdata/seq/A385/A385108.seq
56733404d041c9a98f8756e1c06bf8f9
A385109
If n is 5 (mod 8) then apply n = (n-1)/4 until the result is not equivalent 5 (mod 8); otherwise a(n) = n.
[ "0", "1", "2", "3", "4", "1", "6", "7", "8", "9", "10", "11", "12", "3", "14", "15", "16", "17", "18", "19", "20", "1", "22", "23", "24", "25", "26", "27", "28", "7", "30", "31", "32", "33", "34", "35", "36", "9", "38", "39", "40", "41", "42", "43", "44", "11", "46", "47", "48", "49", "50", "51", "52", "3", "54", "55", "56", "57", "58", "59", "60", "15", "62", "63", "64", "65", "66", "67", "68", "17", "70", "71", "72", "73", "74", "75", "76", "19" ]
[ "nonn" ]
21
0
3
[ "A347840", "A385109" ]
null
Ralf Stephan, Jun 18 2025
2025-06-25T10:12:09
oeisdata/seq/A385/A385109.seq
80b6dcb5d9afec3cee7c9c911dfd8b73
A385110
Terms of A198587 congruent {1, 3, 7} (mod 8).
[ "17", "35", "75", "151", "1137", "2275", "2417", "4835", "4849", "9699", "19417", "38833", "38835", "72817", "77667", "145635", "154737", "309475", "310385", "620771", "621377", "1242737", "1242755", "2485361", "2485475", "4660337", "4970723", "4971025", "9320675", "9903217", "9942051", "19806435", "19864689", "19884107", "39729379" ]
[ "nonn" ]
20
1
1
[ "A198587", "A385109", "A385110" ]
null
Ralf Stephan, Jun 18 2025
2025-06-26T07:33:00
oeisdata/seq/A385/A385110.seq
a93491a308edfda5a819229e2e2aaf74
A385116
Take the natural numbers, erase all occurrences of the digit "0," and shift all remaining digits leftward without changing the position of commas.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "11", "21", "31", "41", "51", "61", "71", "81", "92", "21", "22", "23", "24", "25", "26", "27", "28", "29", "33", "13", "23", "33", "43", "53", "63", "73", "83", "94", "41", "42", "43", "44", "45", "46", "47", "48", "49", "55", "15", "25", "35", "45", "55", "65", "75", "85", "96", "61", "62", "63", "64", "65", "66", "67", "68", "69", "77" ]
[ "nonn", "base", "look", "new" ]
14
1
2
[ "A004719", "A032762", "A055642", "A385116" ]
null
Dominic McCarty, Jun 18 2025
2025-06-30T19:52:36
oeisdata/seq/A385/A385116.seq
412b597e8e26da3d492c1db952ea28a0
A385117
G.f. A(x) satisfies A(x) = 1 + 9*x*A(x)^(2/3).
[ "1", "9", "54", "243", "810", "1701", "0", "-16038", "-56862", "0", "817938", "3241134", "0", "-53872371", "-224386200", "0", "4017339666", "17216031195", "0", "-322568743770", "-1408090130370", "0", "27206369474544", "120309415164990", "0", "-2376712950727284", "-10611290417552118", "0", "213172869272924088" ]
[ "sign" ]
14
0
2
[ "A135864", "A214668", "A376636", "A385117", "A385119" ]
null
Seiichi Manyama, Jun 18 2025
2025-06-20T08:10:52
oeisdata/seq/A385/A385117.seq
03c58f65da2d301dc2bbc00b9471a237
A385118
Number of solutions to x^2 + y^2 + z^2 == 3xyz (mod n).
[ "1", "5", "9", "24", "41", "45", "29", "96", "99", "205", "89", "216", "209", "145", "369", "320", "341", "495", "305", "984", "261", "445", "461", "864", "1125", "1045", "891", "696", "929", "1845", "869", "1280", "801", "1705", "1189", "2376", "1481", "1525", "1881", "3936", "1805", "1305", "1721", "2136", "4059", "2305", "2069", "2880", "1715", "5625" ]
[ "nonn", "mult" ]
28
1
2
null
null
David Radcliffe, Jun 18 2025
2025-06-24T23:24:51
oeisdata/seq/A385/A385118.seq
d9798a0de189c60c58ef2dbdabb047de
A385119
G.f. A(x) satisfies A(x) = 1 + 9*x*A(x)^(5/3).
[ "1", "9", "135", "2430", "48195", "1015740", "22320522", "505692720", "11727186075", "277005649635", "6641224015140", "161193712078854", "3953072078945730", "97801207953712200", "2438092322304120720", "61182608813245896840", "1544295394480280288715", "39180450803555268621540" ]
[ "nonn" ]
13
0
2
[ "A135864", "A214668", "A245114", "A385117", "A385119" ]
null
Seiichi Manyama, Jun 18 2025
2025-06-20T08:10:47
oeisdata/seq/A385/A385119.seq
61d46e6351038e9007ab08e0988b7912
A385120
Number of fixed tree-like polyedges on the square lattice with n edges, rooted at a vertex.
[ "1", "4", "18", "88", "435", "2184", "11018", "55888", "284229", "1448800", "7396290", "37804344", "193405121", "990117104", "5072380140" ]
[ "nonn", "more", "hard", "new" ]
56
0
2
[ "A056841", "A066158", "A096267", "A308409", "A385120" ]
null
Ben Samberg, Jun 18 2025
2025-07-04T17:19:47
oeisdata/seq/A385/A385120.seq
da23fb548da6abe35ca733d80170c333
A385121
a(n+1) = 12*a(n) - a(n-1), a(0) = a(1) = 2, a(n) = a(1-n).
[ "2", "2", "22", "262", "3122", "37202", "443302", "5282422", "62945762", "750066722", "8937854902", "106504192102", "1269112450322", "15122845211762", "180205030090822", "2147337515878102", "25587845160446402", "304906804409478722", "3633293807753298262", "43294618888630100422" ]
[ "nonn", "easy" ]
10
0
1
[ "A061292", "A077417", "A385121" ]
null
Michael Somos, Jun 18 2025
2025-06-18T23:18:26
oeisdata/seq/A385/A385121.seq
74de0af9981e4c5f6cb94686e1b5f2cf
A385122
a(n) = d(phi(n)) - phi(d(n)) where d(n) = A000005(n) is the number of divisors and phi(n) = A000010(n) is the Euler totient function.
[ "0", "0", "1", "0", "2", "0", "3", "1", "2", "1", "3", "1", "5", "2", "2", "0", "4", "2", "5", "2", "4", "2", "3", "0", "4", "4", "4", "4", "5", "0", "7", "3", "4", "3", "6", "0", "8", "4", "6", "1", "7", "2", "7", "4", "6", "2", "3", "1", "6", "4", "4", "6", "5", "2", "6", "4", "7", "4", "3", "1", "11", "6", "7", "0", "8", "2", "7", "4", "4", "4", "7", "4", "11", "7", "6", "7", "10", "4", "7", "2", "4", "6", "3", "4", "5", "6" ]
[ "sign" ]
12
1
5
[ "A000005", "A000010", "A062821", "A078148", "A078150", "A163109", "A385122" ]
null
Sean A. Irvine, Jun 18 2025
2025-06-19T11:56:45
oeisdata/seq/A385/A385122.seq
1075fdc94eb23ee3f0ac3dac5832c10c
A385123
Triangle Read by rows: T(n,k) is the number of rooted ordered trees with n non-root nodes with non-root node labels in {1,..,k} such that all labels appear at least once in all groups of sibling nodes.
[ "1", "0", "1", "0", "2", "2", "0", "5", "6", "6", "0", "14", "22", "36", "24", "0", "42", "90", "150", "240", "120", "0", "132", "378", "648", "1560", "1800", "720", "0", "429", "1638", "3318", "8400", "16800", "15120", "5040", "0", "1430", "7278", "18180", "43128", "126000", "191520", "141120", "40320", "0", "4862", "32946", "98502", "238320", "834120", "1905120", "2328480", "1451520", "362880" ]
[ "nonn", "tabl" ]
7
0
5
[ "A000108", "A000142", "A107429", "A384685", "A384747", "A385123", "A385125" ]
null
John Tyler Rascoe, Jun 18 2025
2025-06-22T03:11:35
oeisdata/seq/A385/A385123.seq
d22ecec681cc5f10401c7cbe0d563453
A385124
Numbers k such that there are exactly 7 primes between 30*k and 30*k+30.
[ "1", "2", "49", "62", "79", "89", "188", "6627", "9491", "18674", "22621", "31982", "34083", "38226", "38520", "41545", "48713", "53887", "89459", "103205", "114731", "123306", "139742", "140609", "149125", "168237", "175125", "210554", "223949", "229269", "237794", "240007", "267356", "288467", "321451", "364921", "368248", "373370", "391701" ]
[ "nonn" ]
40
1
2
[ "A000720", "A098592", "A100418", "A100419", "A100420", "A100421", "A100422", "A100423", "A385124" ]
null
Jianglin Luo, Jun 18 2025
2025-06-24T15:33:50
oeisdata/seq/A385/A385124.seq
ce9d49824b1f6e3d38be32ae89ba210d
A385125
Number of rooted ordered trees with n non-root nodes all labeled with numbers greater than 0 such that the labels of all groups of sibling nodes cover the same initial interval.
[ "1", "1", "4", "17", "96", "642", "5238", "50745", "568976", "7256750", "103622742", "1634819518", "28208152974", "528060735100", "10654676857578" ]
[ "nonn", "more" ]
11
0
3
[ "A000108", "A107429", "A384685", "A384747", "A385123", "A385125" ]
null
John Tyler Rascoe, Jun 18 2025
2025-06-22T03:11:30
oeisdata/seq/A385/A385125.seq
0ad024f011cc6fe68dd75aadca1872fd
A385126
Hereditarily evil prime powers: numbers of the form p^k where p is prime and p^j is evil for 1 <= j <= k.
[ "3", "5", "9", "17", "23", "27", "29", "43", "53", "71", "83", "89", "101", "113", "139", "149", "163", "197", "257", "263", "269", "277", "281", "293", "311", "317", "337", "347", "349", "353", "359", "373", "383", "389", "401", "449", "461", "467", "479", "503", "509", "523", "547", "571", "593", "599", "619", "643", "673", "683", "691", "739", "751", "773", "797", "811", "821", "839", "853", "857", "863", "881" ]
[ "nonn", "base" ]
9
1
1
[ "A001969", "A027699", "A385126" ]
null
Robert Israel, Jun 18 2025
2025-06-25T00:44:59
oeisdata/seq/A385/A385126.seq
e827072bbbbfab009f6179920cc1b2f9
A385127
Consecutive internal states of the linear congruential pseudo-random number generator for gcc 2.6.3 when started at 1.
[ "1", "69074", "475904815", "884950952", "997714317", "2674863854", "2153294491", "4064640292", "103025113", "3375687626", "3068976839", "1640333408", "3540823269", "1389565030", "527860659", "3125448028", "2218581681", "3669905602", "625116511", "3161038872", "3721292605", "2231040222", "880447435" ]
[ "nonn", "easy" ]
11
1
2
[ "A084276", "A096552", "A385127" ]
null
Sean A. Irvine, Jun 18 2025
2025-06-23T19:38:09
oeisdata/seq/A385/A385127.seq
dec7800dadd769c1e147cf20c34ba608
A385128
The number of divisors of n whose maximum exponent in their prime factorization is even.
[ "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "3", "1", "1", "1", "3", "1", "3", "1", "3", "1", "1", "1", "3", "2", "1", "2", "3", "1", "1", "1", "3", "1", "1", "1", "6", "1", "1", "1", "3", "1", "1", "1", "3", "3", "1", "1", "5", "2", "3", "1", "3", "1", "3", "1", "3", "1", "1", "1", "5", "1", "1", "3", "4", "1", "1", "1", "3", "1", "1", "1", "6", "1", "1", "3", "3", "1", "1", "1", "5", "3", "1", "1", "5", "1", "1", "1" ]
[ "nonn", "easy" ]
9
1
4
[ "A000005", "A001221", "A001620", "A051903", "A368714", "A383156", "A385128", "A385129", "A385130" ]
null
Amiram Eldar, Jun 24 2025
2025-06-25T01:26:26
oeisdata/seq/A385/A385128.seq
01e98a4a955c771931d438116c5bf827
A385129
The number of divisors of n whose maximum exponent in their prime factorization is odd.
[ "0", "1", "1", "1", "1", "3", "1", "2", "1", "3", "1", "3", "1", "3", "3", "2", "1", "3", "1", "3", "3", "3", "1", "5", "1", "3", "2", "3", "1", "7", "1", "3", "3", "3", "3", "3", "1", "3", "3", "5", "1", "7", "1", "3", "3", "3", "1", "5", "1", "3", "3", "3", "1", "5", "3", "5", "3", "3", "1", "7", "1", "3", "3", "3", "3", "7", "1", "3", "3", "7", "1", "6", "1", "3", "3", "3", "3", "7", "1", "5", "2", "3", "1", "7", "3", "3", "3" ]
[ "nonn", "easy" ]
10
1
6
[ "A000005", "A001221", "A001620", "A051903", "A368714", "A383156", "A385128", "A385129", "A385131" ]
null
Amiram Eldar, Jun 24 2025
2025-06-25T01:26:33
oeisdata/seq/A385/A385129.seq
c8b9f5aef827c1537bbe6c5e9d99ef4a